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Purpose of the Report

The purpose of this report is to provide a basis for aszessing the merits of a proposal by
General Electric Corp. to detect acoustic signals in the water by a laser interferometer in which
the laser beam itself is totally submerged. The basis we will use for naking this assessment will
be to compare the proposed device with state-of-the-art Navy hydrophone capability. For ready
reference we take our model of (one of) the best Navy hydrophones available to datz to be the
USRD H56, whose relevant performance we summarize as follows:

Henriquez (J. Acous. So. Am. 52, p 1450 (1972)) discusses the design of the H56 hydro-
phone, which he constructed to measure ambient noise in 10 Hz to 60 kHz band. The sensitive
element is a tangentially poled PZT-6 cylinder, of which two are incorporated in a single unit.
The equivalent noise pressure level of the HE56 is 38 dB re lP.B.in a 1 Hz band at 100 Hz. The
free-field voltage sensitivity is ~185 dB re \V/FPQ. Thus the intemal noise of the H56 (in a 1 Hz-
band) appears as [Q L volt at the terminals. Knudsen seastate zero is 62 dB re OP‘PQ. inal-
Hz band at 100 Hz. This noise in the water appears as ld S volt at the terminals. Thus sea-
state zero is greater than the intemal noise of the H56 by a factor of (approximately) 10 in the
frequency region less than 1000 Hz, making the H58 ideally suited to the study of ambient sea
noise,

The HE6 active PZT element lias a capture area (i.e., the area which “sees” the wave front)
of approximately 200 It "“'l.: It a typical single beam gas laser experiment of the doppler-
velocimeter type the capture area is about ST, # |6 Snm; . The ratio of capture areas is thus
about 13,000 in favor of the H66. The H56 is a pressure-sensitive device. The proposed virtual
acoustic sensor is a particle velocity-sensitive device. Thus the H56 measures the scalar aspect of
the acoustic field while the proposed device measures (one component of) the vector aspect of.
the acoustic field.

The chief problem of the virtual acoustic sensor is minuteness of the threshold signal in
comparison to the dominating noise of the medium and of the detection circuit itself, The

following report is devoted to an analysis of this signal-to-noise ratio problem.
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Summary and Conclusions

We list below the chief conclusions of this investigation.

I. The method of detection of an acoustic signal reviewed in this report is that of
a laser heterodyne device designed to measure either of two different quantities (1) a sinus-
oidal displacement of particles in a fluid (2) a fluid velocity (turbulent or laminar). In the
first case the success in detection rests on the capability of measuring magnitude of the
power spectrum of a photodetector current in the presence of noise, rather than in the
capability of measuring a frequency shift. The important physical quantity in the signal

processing is the ‘modulation index,* not a Doppler shift. Hence the acoustic sensor in

question is a true displaccment device, rather than a velocity device. L the second case
the acoustic sensor is designed to measure fluid velocity. Success in deteciion rests on the
capability of measuring Doppler shift in the presence of noise. It is a true Laser Doppler
Velocimeter.

Conclusions on the two applications are presented below,

II. As an acoustic sensor of displacement we estimate the capabilities of the laser
heterodyne as follows:

2. The theoretical magnitude of modulation index which meets the Navy threshold
requirements for detection of a submarine in sea state 1 at 100 Hz is of the order of 8 X 10-6
radian. The possibility of detecting an index of this small magnitude is the core of the
feasibility study in the accompanying report.

b. Under the assumption that shot noise is the 21_3_{_ noise in the circuitry of an
acoustic displacement sensor Massey (1968, Proc. IEEE 56, 2157) calculated that displace-
ments of the order of |0 '2M1;:ould be measured in the laboratory for a laser wavelength
of 6330 \6.0 N, equivalent to a modulstion index of approximately 2 X 10-5 radian.
Thus the Navy threshold to be achieved is (somewhat smaller than) an order of magnitude less
than the displacement laser heterodyne capability calculated by Massey to be available in the
laboratory in the presence of shot noise.

*For definition see page 71,
tM = meter.
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¢. Power spectral broadening can be due to causes other than shot noise. When
non-shot noise is the dominant feature, the detectable modulation index is shown by
mathematical modeling to be a function of the ratio of the acoustic frequency @, to the
total noise bandwidth AB® (in units of radians/sec). Orders of magnitude calculations show

the following: when the bandwidth of noise in a power spectrum is larger than the

acoustic frequency*, the raodulation index is of the order of unity. The smallest displace-

ment that can be detected is then about 4 X 10~8 meter. This is five orders of magnitude

greater than the Navy threshold. In contrast when the noise bandwidth in a power

spectrum is a fraction of the acoustic frequency the detection capability is much greater.
Calculation shows that a ratio @5 /43~7 corresponds to a capability of detecting a
modulation index of 10-5, which is neariy the Navy threshold. This means that at an acoustic
frequency of 100 Hz the noise bandwidth mugt not exceed 14 Hz in order to measure
acoustic displacements of the order of 10°12 to 10-13 meter. The possibilty of reducing
noits lancwidth o the limit 4B ~ 7 ix:epsn to iovestigation.

d. In all calculations of c. we have assumed that the received signal from the
scattering volume is large enough to overcome the inherent noise in the photodetector

circuit. Under certain simplifying assumptions this noise is

l: N°® e 2( l‘q ) B B
fce
(e = electron charge, )‘ = Jaser wavelength, '] = detector quantum elﬁciency.“’s is the
received power.B = detector circuit bandwidth N h: Planck’s constant, Cf = gpeed of
light).
The received power collected over an area 4Q in direction B is given by

A (Q) -P(b) 3, nx': (- (RI*RI )) @7_;%2
3
( P(b) = scattering function.?. = laser power, O = attenuation coefficiest, R, ’Pl distance
to / from the scattering volume), I = depth of scattering volume).
Combining the two equations shows that the minimum detectable displacement (to an
order of magnitude) is

*This is approximately the case of a single laser beam disturbed by noiseat 100 Hg)due to Brownian motion
(see Part IV ). Muitiple beams (or “diversity’) msy remove this limit (see Part V1),
2
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At a distance of 30 meters in sea-water the backscattered (i.e. 8- 180°) laser power into
a lens of diameter 0.1 meter is of ti.e order of IO‘SE . where'g is the laser output power.
Hence the minimum detectable signal (order of magnitude) is

Xspu ¥ |6'3\/§-: (mein)

Hence we conclude that to achieve the Navy threshold at a distance of 30 meters one
requires a laser power whose magnitude in watts is about equal to the detzcior circuit
bandwidth magnitude in herz, provided the receiving aperture has a diameter of 0.1 meter.
This required laser power can be reduced by increasing the receiving aperture and/or the

depth of the scattering volume. The possibility of increasing receiving aperture is very

important to the success of the laser heteodyne detector, and is open to investigation.

e. The effect of Brownian motion is serious in that it sets an irreducible magnitude
to the noise bandwidth 4 B noted in c. above. However this is true only if the capture
area (i.e. the scattering volume) is very small. It is well-known that increasing capture area
reduces the effects of random inputs into a detection system by affording an opportunity
for increasing the S/N ratio (see “diversity,” Part VI.).

§ The elfect of “platfomm moticn” is serious only if this motion is corrsiated to, or
has a Fourier component in the same pass band, as the acoustic sigral to be processed.

h. The effect of medium inhomogeneities including yas bubbles is serious in that it
degrades the laser beam coherence over long plth length. However such degradation can
be overcome by increasing the receiver capture area.(ser. Hodars (1966) Proc. IEEE 54, 368)

i. The acoustic particle displacement (hence pa.ticle velocity)measured, is one com-
ponent of a three-component vector, namely the component in-line betiseer receiver and
scattering volume. Two component LDV’ s have been constructed (Greated 1971, J. Phys.
E. 4, 685; Blake 1972, 1. Phys. E. 5, 623; Grant 7nd Orioff (1978), Appl. Optics 12, 2913).
The vector nature of particle displacement does not appear to be a major problem.

jo A space array of laser beams (= virtual urray) is essentially an assembly of electro-

optic hydrophones of dipole type. The signal processing of tne returns from such an array

*For derivation see page 69,
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is conventioral. The virtual array has the same siz¢ as a real array at the same frequency.
k. Since a virtual array of laser beams measures the local particle displacement the

effects of reflecting, diffracting or scattering bodies must be taken into account. The

virtual array must be located far enough away from such bodies in order to give a true

statement of the incoming acoustic particle motion.

III. As a sensor of fluid velocity we estimate the capabilities of the laser heterodyne as

follows:

a. Yeh and Cummins (1964 Appl. Phys. Letters 4, 176) concluded that they could
detect (in the laboratory) constant (i.e. laminar) velocities as low as 4 X 105 meter/sec
at a scattering angle of 30°.

b. Edwards et. al (1971, J. Appl. Phys. 42, 837) estimated that under conditions (in
the laboratory) where thermodynamic diffusion of molecules was the limiting factor they
could detect constant velocities as low as 10-5 meter/sec.

Both of these values are five orders of magnitude greater than the Navy threshold.

c. The basic limit in the use of the laser Doppler velocimeter for measurement of
turbulent velocity fluctuations is the Doppler ambiguity (or uncertainty in measuring a
frequency shift) due to extraneous time-varying modulation of the laser beam. These
modulations are introduced by finite transit time of particles through the scattering volume,
turbulent fluctuations across the scattering volume, mean velocity gradients, and cirzuit
noise. Doppler ambiguity limits spatial and temporal resolution.

d. The only measurable velocity inturbulent flow is the Eulerian random velocity
uo({) averaged over the scnt'tcring volume. This is the sum cf a mean velocity tho (¢)
and a fluctuating velocity u.(!) The power spectnum o turbulence consists of a mean
{Doppler) frequency shift broadened by the spectrum of the fluctuating components. As
noted in c. the resolution of the power spectrum of turbulence (that is, its separation
out of the noise) is limited by the Doppler ambiguity (DA). If the frequency broa-ening
of the turbulent velocity fluctuations (namely the quantity we wish to measure) is of the
same order as the broadening due to Doppler ambiguity (which is the noise we wish to
avoid) then there is no way of telling them apart. If &, is the mean Doppler shift due
t Ust) then the condition of resolution is




u DA

a @,
(This Doppler ambiguity poses a severe limit in the determination of the turbulence spectrum.)
It is fundamental to recognize that the measurement of laminar flow U which is non-random
differs from the measurement of turbulent flow 1(.“) which is random. In the latter case
there is a largest wavenumber (or highest cut-off frequency) that is measurable for a fixed
Reynolds number and fixed scattering angle. Thus the entire power spectrum of velocity
turbulence is unattainable., A simple estimate of the largest measurable wavenumber is k,“;
“/L in which L is the largest dimension of the scattering volume. Thus if L is 2 number
fixed by the LDV the largest turbulence wavenumber measurable ism/L , and the rest of the
spectrum is unresolvable. Honce if the presence of submarine turbulence is to be determined
by examining turbulence scale sizes less than L meters, the LDV method fails. It can be
revived by reducing the scattering volume. However, such reduction is accompanied by
increase in Doppler ambigwuity since space is sampled over a shorter time interval. Mathemat-
ical modeling shows that there is an optimum size of scattering volume, Lm . @iven by

4 1. 'le
\.dn =Iof—i-(7_';7)<k‘ m%) , /(o’(%)

( € = rate of dissipation of turbulent energy per unit mass, ¥ = kinematic viscosity, Kes
Reynolds number based on the mean velocity = QhA‘P‘% ), O = angle of scattering).
Wavenumbers greater than m/L oy ¥ not resolvable because of Doppler ambiguity. The
symbol {, is the inner scale (metens) of turbulence, When § = 1809,

R = _L-A'Q = U (Sl/o'.'): 0.28 0,
o

2Vpm3 »10"
so that

Le = & (057)(08) T % b 30

If the turbulent velocity is 1 meter/sec, the optimum scattering volume is 1/4 of the inner scale of
turbulence. This is a very severe restriction. Any aitempt to decrease the scattering volume only
increases the Doppler ambiguity.
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e. George and Lumley (1973, J. Fluid Mech. 60, p. 321) state that * . . . estimates
show that the possibility of measuring dissipation spectra in high-speed or in geophysical
flows using Doppler velocimeters is quite remote.”

Of course the detection of submarine-induced velocity turbulence may not depend on
determination of -‘issipation spectra. It will however depend on determining some portion
of the velocity spectrum (versus wavenumber). The portion that can possibly be used is
a subject of investigation.

f. The basic analysis (presented in Part II of this report) emphasizes temporal corre-
lation of the veiocity spectrum at a single point in space. By use of two velocimeters to
sample different scattering volumes one may make two-point velocity correlations. In this
way addiiional statistical moments of the velocity turbulence can be obtained. These may
be essential in detecting the presence of a wake of a submarine.

Two-point velocity correlations in a turbulent fluid have been successfully measured
by Clark(1970 Ph. D. Thesis, U. of Virginia, Charlottesville).

It is to be noted that single-point statistics ere insufficient to characterize turbulent
flow.

g. C.J. Bates (July 1974, DISA INFO. No. 16, p. 5-10, 779 Susquehanna Ave.,
Franklin Lakes, Nzw Jersey 07417) has studied Doppler ambiguity bandwidths in {(laboratory)
pipe flow of water using an LDV. In a 10 inch pipe at flow rate of 1.4 ft/sec (Reynolds
number 2.056 x 105) he found the following ratios of spectral broadening:

Core wall
) oo t&?&:ﬁﬁ;’;’;ﬂ fonng 0.636 0.636
(2) pibue fﬁe'm%m:% 1.074 38
(3) iy gracient spectrel Droadenl®®  0.000719 0.7

Thus, in accordance with IIc. above the smallest unambiguous displacement that can

be measured in Bates® experiment is estimated to be 108 meter.
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IV. The key problem of the laser heterodyne detector of low level acoustic signals is its very
small S/N ratio. To improve this ratio General Electric Co. proposes to use the diversity tech-
nique. Diversity is discussed in Part VI of this report. Successful application of diversity is
based on these assumptions: (1) a multiplicity of “cl1annels” (or copies) of the transmitted
signal, (2) Rayleigh fading in each channel, (3) the received signal plus noise are statistically
independent.

In the laser heterodyne detector the incoming signal plus noise is generally unknown, al-
though pattemn recognition leads to positive identification. The noise of the system is primarily
due to the medium itself, and is correlated over significant distances in the medium for many
frequencies of interest. There is also sonie questior as to whether the amplitudes of the received
signals are Rayleigh distributed.

The application of diversity thus will require more insight into the fading properties of the
transmission channel from laser to field points and back. 1f the spatial sampling is at least a
half-wavelength of the acoustic frequency to be detect?, and if the fading is statistically inde-
pendent between channels it is anticipated that diversity transmission will increase the S/N ratio
significartly. The nominal increase is 10 logygN, where N is the number of channels.

V. Rough estimates of the detection limits of laser heterodyae systems may be made with knowl-
edge of times, distances, absorptions, etc., which are of significance to the generation and trans-

mission of laser light in wate:. These estimates appear below.
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Significant Distances and Times

RMS acoustic particle displacement, planewave equivalent to

seastate 1 at 100 Hz 3.4 x 10-13M
Radius of inner most electron orbit of the hydrogen atom 0.5 x 10-10m
Laser frequency 5.8 x 1014Hz
Laser wavelength 5.145 x 10-'M
Sound fpeed in water 1.5 x 103M
Cne period of acoustic wave at 100 Hz 1x 1025
Speed of light in water 2.26 x 108Ms-1
One period of laser light 1.72 x 10-15¢
2-way travel time over 30 M range in water 2.65 x 10-7s
Laser wavelength in water 3.86 x 10-™M
Time to traverse one quarter laser wavelength in water 0.426 x 10-155

Depth of Volume Interrogation(=h.'f laser wavelength) in
water(this depth can be made longer). 1.93 x 10-™™

Ratio of laser power backscattered A"  to laser power transmitted
in an "average ocean' at range R, for a scattering length of
7.5 meter (at 107 Hz) and a circular receiving aperture of diameter

0.1 meter:
4174’
R (meter) ? _
10 1.30 x 10”7
20 1.20 x 107’
30 1.96 x 10°°
40 4.05 x 10710
-l
50 9.53 x 10~ -1
b0 2.43 x 10711
70 6.58 x 10”12
80 1.85 x 10712
90 5.38 x 10713
100 1.61 x 10713
8
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Browrnian Motion and Brillouin Effect

a. The mean distance travelled in time t by a colloidal particle in water at temperature

(T) = 300°K, dynamic viscosity 7 = 10-3M-2s, diameter a of particle = 3 x 10~6M, is
—

= RTE _ [ 38‘/0.2313)!(01
/’_"; - ana ) ‘/;

moxaodear®

-6
z 0.6c62 Y10 Nt meter

Thus the mean distances travelled in significant times due to Brownian motion are:

L

(a) in one period of acoustic wave at 100 Hz 0.7 x 10-™™M
(b) in one period of laser light 2.75 x 10-14M
{c) in time to interrogate two quarter waves of laser
wavelength (2-way travel over distance equal to
a quarter wavelength) 1.9 x 10-14M
(d) in time for acoustic amplitude to go from zero to
maximum (i. e. one quarter period) 0.32 x 10°"M
(e) the time to cover the two-way travel between
laser and particle (2 x 30M = 60M) 0.341 x 10-9M
b. When observed with visible light the Brillouin eftect in water is equivalent to an
acoustic wave at approximately 1010 Hz modulating the laser beam. The laser wavelength is
then associated with two satellites at wavelength separation of ~ 0.05A (see Appendix E).

Currently Available Laser Systems

Many types of lasers useful for heterodyne experiments are available. The following set

of specifications can be considered representative of niore recent design achievement.




-y~

s P LT NS 3

R ——

Brightness:

Peak Power:

Beam Divergence:

Line Width:

Pulse Energy:

Ruby Life:

Beam Size:

Repeatability:
Wave Length:
Q-switch:

Pulse Width:
ditter:
Repetition Rate:
Power Supply:
Laser Head:

SPECIFICATIONS*

Model K 1501 is normally furnished with
selerted ruby laser crystals to provide a
brightness up to 7.5 x 1013 watts/cm2/
steradian. Through special selection
techniques, the K 1500 can be supplied
with brightness of 3 x 1014 watts/cm2/
steradian.

1.1 Gigawatt (Max.)

Avajlable from 2.4 mr FAHE down to
1.2 milliradians

Less than 0.06 A per single line achieved
spectral component with optional
accessory (KLMS).

10-15 Joules

Depends on power levels; typically 300-400
shots at 1.1 gigawatt;, much longer at lower
power levels.

Approximately 1.9 x 1.76 cm (elliptical).
Can be corrected to round shape with
optional sapphire prism.

+10% for 10 shot series

6943 A (Ruby)

Pockels Cell

10-15 Nanoseconds

+10 Nanoseconds

2 PPM

10 KV

4" x 9/16 Ruby Oscillator and 9'' x 3/4"

Ruby Amplifier. Water cooled; helical
flash lamp.

*KORAD K1500 (2520 Colorado Ave., Santa Monica, Calif. 90404).

10




: Comment: The Summary and Conclusions noted above, together with auxiliary data
on Brownian motion, Brillouin effect, available laser systems, etc. were presented to afford
the reader a condensed background of periinent facts for judging the merit of the proposed
use of laser heterodyne systems to measure acoustic signals. A deeper appreciation of the
optical-acoustical interaction requires a more detailecd mathematical model. This modeling
is presented in the remainder of the report. The reader should bear in mind however that

while the results of this investigation are based on an intensive effort to reach the key issues

involved the pcints of view presented (o not exhaust the range of possibilities in regard to

both analysis and experiment.
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Introducticn
Present day techniques for the detection of underwater sound are based on the local

interaction of acoustic pressure with a piezoactive device (vz. hydrophone) which converts
alternating pressure into alternating electric curvent. The limit of detectability is circuit
noise (Johnson noise). Sound is also made visible by shadow photography, or schlieren,
in which the local change in illumination depends on the change in the gradient of den-
sity of the fluid as the pressure wave passes through. Since acoustic pressure (or density)
waves are scalars the determination of the direction of the wave is accomplished by arrays
of hydrophones in which phase differences between elements are used to maximize sen-
sitivity in the direction of the approaching wave. These arrays must be several wave-
lengths long to be effective, but length can be reduced by use of acoustic multipoles.

Hydrophone arrays in current use suffer the following deficiencies. (1) at low fre-
quencies an array several wavelengths in size becomes very long, making for costly struc-
tures to hold them, or making for errors due to lack of stability in arrays which are
trailed behind ships (towed arrays). (2) all sound detection is local, Hence if the array
is placed on the ship hull it is disturbed very strongly by presence of the interfering hull,
by flow noise, by bubbles, by hull motion, etc. If towed, the long array suffers from
local flow noise, from bearing ambiguities, from catenary curvature in the steady drag
condition etc. Other deficiencies in hydrophone arrays are sensitivity to depth of opera-
tion, lack of precision calibration, and phase and amplitude errors due to non-uniform
elements, and/or non-uniform spacing.

It is cleurly advantageous to devise a system of sounc detection which is not local.
A promising technique is to use an optical heterodyne to detect the phase difference be-
tween a reference laser beam and a laser beam scattered from suspended particles in mo-
tion in afluid. The feasibility of this technique is investigated in the body of this report.
Magnitude of Threshold Underwater Acoustic Signal to Be Detected

In anti-submarine warfare the threshold of detection of a submarine by passive lis-
tening is a somewhat arbitrary number. It will be taken here to be the magnitude of a

12
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signal of the level of noise in the ocean at sea state 1 at specified frequency in a one herz
band. For purposes of this analyses we choose a frequency of 100 Hz. The average deep-
water ambient spectrum level of plane wave equivalent of rms noise in a 1 Hz band is
found in several references (Horton, Fundamentals of Sonar, p. 61, Urick, Principles of
Underwater Sound for Engineers, p.168). Two values of noise are quoted, one without
shipping noise, and che second with shipping noise. We choose here the smallest magni-
tude of the threshold by excluding shipping noise. This we state the threshold of detec-
tion in terms of the following selected plane wave equivalents:

100 HZ Plane Wave Equiv. in | Hz Band
Spectrum pressure level -70 dB re N/M2
(or) Particle velocity 2.13 x 1010 Mgl
(or) Power spectrum level -132 dB re 1 watt M2
Particle displa t 3,4 x1013 M (= 3.4x103
(or) icle displacemen 4 x M ( ingstxom)

The addition of shipping noise increases the threshold amplitude by approximately 20 dB.
As the frequency rises the level of ambient-noise spectra first increases (i.e. the ocean be-
comes more noisy) to about - 65 at 500 Hz, then decliries at a rate of about 6 dB per
octave until it reaches the thermal noise limit.
Proposed Method of Detection

In the publication “Virtual Operture Sonar R.M. Ameigh et al, (General Electric Co.
973-SH-347-973-80-142-01, March 1970} it is proposed to use an optical Doppler radar
to operate underwater for the measurement of the motion of natural celloidal-type particles

Juspended in sea water. Devices of this type have the generic name of Laser Doppler Veloc-
imeter (LDV). Since LDV's come in different arrangements it will be useful here to de-

scribe three varieties that are in cominon use. The {irst type is the Jocal-oscillstor hetero-

dyne asrangement shown in Fig. 1.

13
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In this system a local oscillator beam (or “reference beam'’) couples with the scattered
light from a second beam at the focal point of the principal lens and is then viewed di-
rectly by the photodatector which detects the Doppler (Goldstein and Kried, (1967),

J. Appl. Mech 34, 813). The second type or differential heterodyne arrangement is shown
in Fig. 2.

APERMRE

LASER .
THOTOIETECTOR

ERS
- Fig. 2

In this arrangement the light scattered from the common focal region is focused by a lens
on to the photodetector which detects the Doppler shifi due to motion in the focal volume
(Rudd, 1969 J. Phys. E. 2, 55). The third type is the symmetric heterodyne arrangement,
Vig. 8
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In this arrangement the scavtered light bundle is stopped by an aperture with two slit
openings, which are combined by a lens and focused on the photodetector.

It is noted that in all three arrangements of LDV it is necessary to use the heterodyne
technique to retain phase information. This means a reference signal (of coherent light)
must be mixed with the scattered light. The method of providing the reference signal
distinguishes the varieties of LDV.

Unified Mathematical Modeling

Two beam interferometry is briefly reviewed in Appendix A. More complicated
devices have been reviewed by Wang (1972, J. Phys. E. 5, 763). He has proposed unified
mathematical models for the varieties of LDV shown above. Thesc are listed here for

easy reference.

Type I. Local oscillator heterodyne
A reference beam, amplitude Q° » phase 4>. » frequency @), is assumed to have

the form,

E(t) = O mp (- fwgt 4 4%\

The scattered beam is a collection of light scattered by N partices, velocity y? phase é? .
frequency ﬁ% , amplitude Q’ , lLe.
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N
1 2 0y mp [t s ikt %]
in which l( = ‘gs - g: being the scattered wave vector. In brief: there is one incident
and one (generally different) scattered direction. The power spectral density of the photo-

detector current is,
S (w) —-d. (Qo *Zap)* e'o’ (Qo +Zar)8("’)
+ et Go Z_ Q; S(wtKW)

s el ZZaw, $[w+* K- (%-3)]

P Q‘P

in which € , ™ are photodetector parameters.
Type II Differential heterodyne

Fig. 2 shows that there are two incident beams with wave vectors fz; and __*:1;.
The scattered light has the mathematical form,

N
£, 2 % op (~iad) { top [ (ke Re)ovpt +5d]

In brief: there are two incident directions and one (generally different) scattered direction.

The power spectral density of the photodetaecwr current is,

S(w) = Eet ZQP t 43*(2% S(®)+eo< ZQP“U

16
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.-a'g'-s anu,ufg..

—— t———— =

e G £ (hy -k, ) (41
P‘Z%r { [0t (b -ky)- (4-4)]

+ 8 fos (k) ]f 5(u+(k,, -kt -t (1 ,!%J]
+8 [0 (barke) Yy ¢ (h-ku)(hoy)]

Type Il Symmetric Heterodyne

It: the symmetric heterodyne the scattered light field is given by
N ’
IO Z,- o ”f<' {wgt) {hp Li Chy-ke)ent +igy]
+ sp [i (k‘: ‘kx)'l’r* i #&]}

In brief: there is one incident direction and two scattered directions. The power spectral
density is quite complex, but it can be retrieved in the cas? of common particle velocity by
replacing(kz, - zs Jvm (s~ &))in the above formula tor Type I

Concluding Remarks: The power spectra formulas derived by Wang (loc. cit) are spectral

lines, the linewidths not being considered. These spectra serve to identify the prominent

features of the Doppler - induced frequency shifts. However, by failing to present line-
widths the spectra do not assist us in estimating the detectability of these lines in the
presence of noise originating both in the fluid and in the LDV itself. Since the inherent
noises in the systems will be our chief concern we will be compelled to find and develop
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more detailed models. A list of the important noises in LDV systems is given here.
Noises in LDV Systems
The linewidths of the Doppler-shifted spectrum originate from the following

causes:
1. laser light non-chromaticity.

Brownian motion of the colloidal particles.

velocity gradients across the scattering volume.

fluctuations of velocity in the scattering volume (i.e. turbulence).

angular uncertainties due to the divergence of the incident beam and detector

angular aperture.

6. finite passage of scattering particles through the laser beam.

7. temporal jitter of the electronic LDV apparatus.

8. temporal and spatial changes in the index of refraction of the scattering fluid.

L ol

In order to account for such a profusion of juantities which broaden the Doppler-spectrum
we must find their order of appearance in the more detailed model cited above. Since

the model to be developed is very complex it will be useful to first present a physical
picture f a generic LDV, following which we will develop the math model with greater
understanding.

18
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Part I

Simplified Model of the Laser Heterodyne
Detector of Sound

Simple Model of a LDV

The optical heterodyne (or Laser Doppler Velocimeter (LDV)) can be modeled in a
simple way (Rudd, J. Sci. Inst. Vol. 2 Series 2 1969, p.66), Fig. 4

i K3
2 I : 3
e, &
Wi
" Fwe “ProToDETECTOR
| :
TRANSHT | Recewve
Lens Lens
Fig. 4

Here, a laser beam is first expr aded (Station 1) then focused by a transmission lens in
the fluid (2) then collected by a receiving lens (3) on to a photodetector. In order to
produce “beats” (i.e. a fringe system) the beam from (2) is masked (MASKA) by a
screen with two splits before it is brought to a focus in the fluid. Alternatively tho
beam is masked at position 3 by MASK B, after it leaves the focus in the fluid. Mask
A generates a real set of fringes. Mask B generates a virtual set of fringes.

The two positions of the masks correspond to two systeras of LDV in current use.
A system with Mask A describes the Goldstein-Kreid experiment (J. Appl. Mech. 1967
34 813-8). In this experiment & real set of fringes is generated at the focal volume on
the Quid by beam splitting the laser light, then bringing the two beams to a focus at an
amival angle 2§ between them. Scattering then occurs, which is then detected (as in
Fig. 1).

A system with Mask B describes the Yeh-Cummins experiment (Appl. Phys. Letters
4 176-8 1964). Here scattering occurs irst. The scattered light is then brought together
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with the unscattered (or reference) beam (at angle 24) to form a virtual fringe system
which is then detected by the photodetector.
Simple Description of Photocurrents

When MASKA is the position of the effective screen, and a set of real fringes is
available, a scattering particle entering the focal region and crossing the fringes sampies the
succession of light and dark bands. The scattered light is alternately bright and dark, with
maximum brightness occurring in the center of the fringe system. The two scattered laser
beams E 3 Es& are modulated by the fluid flow (at velocity 1& ), and are multiplied by
the photomultiplier to give an electric c\:rrent proportional to their product, i.e.

I E-;_.: + g&i + B By, cos andyt)
in which ;,n is the Doppler shift in the laser frequency due to a (constant) velocity of the
scattering particle. A sketch of this current is shown in Fig. §

I

* % Fig S

° K

When MASK B is in position a set of virtual fringes is found in the focal volume. A
particle crossing this volume at constant velocity ¥ alternately scatters and does not scatter
light as it is illuminated with the light and dark bands of the fringeis. The scattered light
Es is combined with a reference beam E‘(i.e. the second beam generated by MASK B)
which is detected ar a current I where

IoC E:_‘ v Ezs. r EeE cosan ot )

A sketch of this current is shown here,

FlG. 6
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The Doppler Shift

To understand the Doppler shift (which is the same in both experiments) we first
consider the focal volume to be infinite, i.e. we first consider an infinite set of fringes to
be available, each of equal intensity. A scattering parti '» crossing there fringes at right
angles (to the fringe lines) samples the alternating light and darkness (as noted earlier).
This has the same effect as making the particle stationary and allowing the set of fringes
toslide over the particle. Let the speed of the fringe motion be \ﬁ . If the wavenumber
of the fringes is KE(: m/A!\t.hen the radian frequency of appearance of (say) the brightest
scattered light is KE% (radians per sec), that is, the time required to ride over one wave-

* length is AE /v‘:T (in :mits of seconds/cycle), so that the frequency of alternating

darkness and light is T-= ;, which is a *“Doppler Shift.” Since light frequency _Q(
is given by K;CE we also see that &)y ® Qs (ﬁ/c!)) or S.D= g‘ (&A.‘)

We next take the focal volume to be finite, that is, we consider the set of fringes to
be bounded in space. The time history of the scattering of light is then as follows: zero
before the (finite) set of fringes rides over the varticle; abruptly oscillatory when the
fringes cross the particle; abruptly zero again at the termination of the fringe set. The
frequency of appearance of the light and dark scatterad light must be measured from the
entire time record of ~0024e9, This record can be visualized as s infinite sinusoid
screened by a black screen with a single rectangular window. The time history of
scattered light is thus a product of two functions (sinusoid times window). The Fourier
ipectrum of this time history is the convolution of the spectrum of each function separately,
i.e. the convolution of a delts function 5 (-Q- -Qt) and a sin X /y. The resultant spectrum
(in the range (so fpu-)d) is a sinx/, centered nt,Qg.'lhus the spectral representa-
tion of the time history of the crossing of a particle through a finite set of fringes has a
speciral width of the first lobe of the sin¥/x spectrum. If al is the (finite) time of
transit 2f the particle then the bandwidth of the first lobe of sin X /x 15 a{= (At).
{Bracewell “The Fourier Transform"” p. 128, and p. 368). Thuc the spread in the Doppler,
Ag , Cue to finite transit time At, is Aﬂ: (Atb).' This spread is essentially a repre-
sentation of uncertainty in the Doppler (see Fign.5,6).

A second approach to the calculation of Doppler spread due to finite transit time is
to use the model given by Fig. 1, and ccnsider the masks to be two slits of the
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equivalent interferometer. The aperture of the equivalent slits is the spatial function

E(%)= N(2)e N(xY)

in which n is a rectangle function of unit height, centered at X=t W , and & units wide.
The Fourier transform of this aperture is,
Plg) = X M(‘L‘.) oy [ 2EW )
S n \ 7\4‘ (14)
(Bracewell, p. 283). The power spectrum i: (approximately) the square of this, or

S()- 4(%")1( “_:Tgf;;é) . M;(ln_%g) (L5)

If we set the varisble X/3: ‘t (% is interpreted as time) then the *“‘width of the inter-
ferometer” is calculated in seconds, WA= At gec. and the fist zero of S({)occun at
at§a) or § (At) (as before). We thus model the spectrum of the photodetector
current by S (‘9).
Basic Coherence Requireruents

In the model of Fig. 4 the basic optical system is that of a two beam mterferometer.

A review of this system will help define coherence requirements. Let E ( A
the compleiamphtude of the first beam at distance 5 from the two-slit screen, and let

El(= A,.G the second complex ¢iplitude observed at the same observation point
but traveling distance 5; The total intensity of light atPis
oAl #
I: EE = A|¢A‘ + 2A,A‘M( (1.6)

in which l t 5,-S, isthe optical path difference. Since cos (“) is periodic we define
an order number (K.D. Mielenz, p. 89 “Electron Beam and Laser Technology” ed. L.
Marton, 1968), an= *_l. «N+g, 0569, Nintegnl.

Now, to quantities of lmtll 42 Ah

Ams [(’51 @4) *@9%“‘!)1 (L7

This meana that the phase ki has an uncertainty in order number =Am) due to an
uncertainty of path difference A( caused by finite exiension of the source (i.e. of the lit)

and to an uncertainty in wavenumber ak due to lack of morochromaticity. Assume
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next that there is an incremental uncertainty in kl i.e.
4 = 2mm + a7 lam) 8
it |[Aml='A it is seen that the change in intensity AT due to uncertainty in s is

| AT= Al+ A -2AA ess(k)

Thus the uncertainty in intensity cancels the cosine term of the intensity itself leading to
the conclusion that the condition ‘ am |= '/z results is incoherent superposition of the

two light beams, with the disappearance of observable interference effects. Thus the limit

of coherence is given by

tal) + (ak) =27

One can arbitrarily define a coherence condition if IAMI &« 1/4, or if,
2 2
é‘dl) +(!Ak) < 75/2,

The two parameters, 41, Ak , require separate investigation.

(1.9)

(1.10)

Case I, Assume source (i.e. slit) is infinitesimaly small so that [ is exactly specifiable,
{i:e.a(= ©) and assume that the source emits a spectrum of finite width (mrw,)= 2(4'3)('..
The uncertainty in the order number is 4m where

A,,..-._t£ (‘f)_;'wn) = 4 (-&,-{u)

&l

_ (1.11)
| ® TCe 2Cg |
The temporal coherence length ot the source is thus found from the condition l; g e k= in
to be
0,-0,) . . :
fd( ;CE‘ N (°' fuk 2 R [ (0,-w, WQ])(X.IZ)

Thus {iie greatest path difference over which finges can be observed is controlled by the

e

frequency spread of the source. When t'.c source is white light, ®,;-@, is very large,
I and the temporai coherence length is small, i.e. fringes are observed only over very siall
i path distances. In contrast laser light has a value (¢'l)a-"~’l)/(E N Ax /o-"'. Hence

~

AT

=

‘ecol\. ~ ’«'11/2 ,‘6'" N3 'on cm or 30 million kilometers.
In a multimode laser the Doppler width is much greater, e.g. a neon line is

L 4 ) |
_&v
SR g
.

'U
Con B A

(w,-w, )/( " ~ 0.3 rad/cm. Since the mode separation in a laser of length L os Akc‘
WA, it is seen that the number of possible modes is

N - (w,-w,) |
Rl (113)
Cx ak,

Iy

N
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-
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For a laser length L= i00Cm. Ak"' 0.03 rad/em. Thus 10 modes may be in operation.
The coherence length with 10 modes is thus reduced to
1«& = %'Ei' ~ 20 om
Case II. Spatial Coherence ;
Assume one (slit) source has a finite (width) dimension (say QQ), and emits perfect
monochrom:}tic light ( @, = W,= &) ). Letot be the angle at observation point T which

encloses QQ (Fig. 7*). From Q there is emitted a wave which arrives at? simultaneously with
a wave from the corresponding Q of the second slit, with a path difference 1 The geometric
picture of two wavefronts atP can be duplicated at Q by assuming'P to issue two wave-
fronts which intersect at Q(of one slit) with the same path difference [ . The wavefronts
W., m also intersect in the plane of the figures along a line. Assume point /4 is on this
line of intersection. A is chosen such that one wavefront passellthrough Q of the slit.

The' second wavefront is at a path ¢.fference (to Q ) given by Q.S If the slit dimension
Q? is projected on the line of intersection to give dimensionz , then the path difference
QS is (approximately) %d . Thus the effect of finite slit size is to introduce a path length
uncertainty, from zero at Q then along all intermediate points to 184 atQ'. Using the
center of the slit as reference the uncertainty is zero to < 84/2. which is & of the above
formula Eq. 1.7. The source is spatially coherent if

3—{(%) « X or go{«l‘i

3 P (1.14)

The largest source (width) with which interference fringes can be observed is called 3%
which is twice the above number, or

%d\’ = AE /OL (1.15)
Spatial coherence is thus controlled by slit width and wavelength of the laser light.
Statistical Nature of Coherence

Interference by n single pair of wavetrains is too rapid for any detector to follow.
Under actual experiment the set of fringes generated by the equivalent mask is the
statistical average of a large number of wavetrains. The coherence time of a typical gas
laser is of the order of 102 sec. Although this allows transient tracking by a detector of

% W,
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single pair interference fringes, the time required for the remainder of the experiment and
signal processing only allows statistical averages.
For ideal two beam interference the intensity at the observation point is (as noted

above)

T= A 4 A+ 24,4 wibe)

(1.16)
and the fringe visibility is
ahA A
V - A‘;'f A:
(1.17)

For a general two beam interference experiment this is replaced by a statistical statement,

T= I+ L+ 2)T 1 [N @) es[en®) aas
in which ‘“2',.(7) is the complex degree of mutual coherence of two points S, P Q; in the
wavefield, |V | , Oly, . are its magnitude and angle, and 7V is a time shift between the
signals from S, v ar\J S).' The angle @, ('C) is obtained from the phase condition for the
appearance of bright fringes,

S ()= 2N, Nuinteger (119)

The magnitude |d..;| is obtained from observation of the two beam interferometer
measurement of visibility at-E called Vm)

\Yu. (1')\’ Vms: I,fIz

I T (1.20)
v IHN - IMM
=== IW +1m (121)

Degradation of coherence is caused by several factors: (1) increase in path length (2)
change in particle numbers and particle density in the fluid (3) change in index of refrac-
tion of the fluid. A typical experiment to test changes in coher:nce is to generate a set
of interference fringes in space, and observe the distortion of these fringes due to the
above factors. The degradation of coherence in a two-beam interferometer experiment
using an argon laser, & YR beam, 5145A° has been studied by R. E. Lee et al (Opto-
electronics) 5 (1973) 41-51. These authors used distilled water, coastal water and
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fabneated salt water as transmitting media. All water samples showed approximately the
same value of normalized degree of coherence (about 0.97), independent of their nature

and independent of path length (for paths up to 3 meters). Agitating the water mechanically
by moving & stick back and forth along the water trough showed no change in fringe pattemn,
except in the fabricated salt water where a transient reaction (i.e. spotty unsteady motion

of the fringes) was observed due to a transient non-homogeneous condition of the water-
salt mixture. This transient disappeared after a few moments. The interference patterns
generated in space were recorded by a traversing photomultiplier. These records show

(a) relatively smooth oscillations of light intensity due to fringes for tap water and distilled
water (b) ragged or spiky oscillation of light intensity for coastal water and fabricated

salt water, both containing suspended particles. The spikes appear to correspond to the
observed low frequency local wandering of the fringes. It is concluded that any inhomo-
geneity of the medium which disturbs the phase uniformity of the laser beams will decrease
the visibility of the fringes (i.e. decrease ccherence). As noted earlier, these disturbers are
(1) suspended particles which introduce (moving) delta function-type density changes (2)
temperature changes which alsc introduce mass density changes in the medium. When

these inhomogenities are functions of time they cause tl.e fringe system to undergo wriggly,
sloshing motion, with transient brightening and {ading. The frequency spectrum of the
photomultiplier current shows considerable broadening (‘‘ncise”, **Doppler noise’).

Coherence Requirements for LDV

The temporal coherence requirements for a two-beam interferometer noted above are
somewhat modified when fluid motion is specifically to be measured. If the spread of
wavelengths in the source is ];_- 7&" and the spread of the Doppleris {,-{, then one
requires that

€
1"‘—‘;'-" $ &.—&g ):,s.:mm:mnx&ser

Ao Lo wmdenﬂk,h. (1.22)
(Rudd, loc. at eq. (13)). Similarly, the spatial coherence requirement for an LDV is given
by specifying the width d of the equivalent slit in the two-beam interferometer,

d < Ao ( 'go \

1 SemS £,-5

(Rudd, eq. (16)). The definitior. of ™ is the same as in section on Basic Coherence
Requirements.

(1.23)
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A Phasor Description of the Received Signal in an LDV

A single particle crossing the (finite) fringe pattern at constant velocity samples the
pattern and generates the (scattered) wave packet shown in Fig. (6). If its motion is
random it will generate pieces of wavepackets in a random manner, thus introducing
random noise whose spectral bandwidth is inversely proportional to the time duration of
the packet. A time record of random particle motion in an LDV will be a serics of spikes.

If many particles are simultaneously crossing the fringe pattern, each scattered wave-
packet will have different phase. The net amplitude of the wavefront scuttered by all the
particles will be proportional to the square root of their number.

if the particle samplzs the fringe pattern periodically (frequency ll.l) it will generate a fre-
quency modulation of the original carrier wave (trequencyﬂg) that generated the fringe
pattern. The net time function of the scattered wave (for particle velocity v, acoustic modu-

fation #py) is, Eq= As Re ‘“,:: i{QEt + Hm sin @ + 5!‘}

or E = A, cos {ﬂd * ey sin @,t+ K'ﬁ} (1.24)

in which 4y is the modulation index (: K+ 4 ,4 defined below), snd|K|= Qe /c.-
1t the brightness pattern is subject to fading then amplitude A will be a function of
time (: A('t)) so that the ucattered wave will be amplitude modulated,
If N particles participate in the scattering process during an observation time the time
history of the scattered wave will be
PRI N VAT 2
R=lA0ge o KINOE Hemastll 5 o g 80D K gy )

N-P (1.25)

in whiclﬂ> particles move with a signal (frequency lal, ) and N-? move randomly. If

particles all move with same signal, but have random components of motion as well, then

. (In.f) et 4t . ':'l' tK'ﬁ
AVPAC {é,.(t)*z_ﬁ.(m.t)e % S(t-t.ilen' Hflensin ot ek
™ (1.26)

This model says that the n'th particle will undergo knndom steps (the exact number
depending ony, ), scattering a spike at each step, while simultaneously scattering a
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modulated carrier. If the signal is greater than the spikes the scattered light will appear as the

time function, Fig. 8(a), 8(b)
A
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FiG. 8b

Fiq 8a.
If the signal is very small relative to the spikes, then this time function appears as
€
Ll"( J “ wli}[
0

Flq. 8¢
Finally let us suppose that all the particles simulianeously undergo a (nonsignal)

Fuc.. 8¢,

platform motion which results in a (possibly random) phase and amplitude change, C evq &)

Then,

E, )z LQ [A (4) + Jdmt)e

e
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Scattered Field In terms of the Simplified Model (Edwards et al J. Appl. Phys. 42, 837 (1971)).

Let the finite scattering volume AV have N particles at time t=0. The distance
moved by the mihparticle is  Tom ()= Gom (0) + AN, ()¢ V1 4 & o it
The scattered laser field may be modeled as follows:

E (e)=® A 2 %,Q ( (o (0)+ AMom() + ¥ +4 amagt)

x ”FL ( (l_(_-l_(_,).(hm(oh A_Gm(t)+y't+%[hg.,(o)]mw;\‘)}

(oxp - (Qet) oV (fun)

{The significance of the terms appearing in this math model are detailed in Appendix H)
Here we desire to describe the scattering process in terms of the simple model of particles

sampling fringes. The following points are to be noted:

(1) the initial phase of Es isexp ¢ ( E‘ f') -_QM(O) .

(2) each random walk step Alom ) samples a fraction of the fringes and
introduces spikes, plus wavering noise in the scattered light associated with
phase changes exp (E-K ’) * 8V om &),

(3) the steady velocity ¥ samples the entire fringe set and generates a complete
wave packet of the sinusoid cos @-n &t) multiplied by the window
function defined by the scattering volume.

(4) the sinusoidal particle displacement & A«n U;t samples the fringes
periodically. The number of fringes sampled depends on the amplitude ﬁ-
and number of cycles @t . 1f @t is small then the sinusoidal sampling
appears as a (nearly conmm)velocity fm); s additive to ¥ | (e the
apparent Doppler is (E‘ K.)'(! +§¢>s) . If many cycles &5t occur
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during the observation time then the number of fringes sampled depend on 5. To clarify
the physical picture we assume the steady velocity V is zero. At time T and position

Mam (0) inside the fringe set, the amplitude of particle displacement is ‘E\ [ fom € 0)] P
Le-t z&: 1 fringes ( ﬂ not generally integer). If l is less than one fringe
(namely, less than a half wavelength of light at frequency -Q-E ) the scattered electric
field exhibits little phase modulation (it is black, gray or white, aimost independent of
time). If t is exactly two neighboring fringes, the scattered field is nearly sinusoidal,
with equal plus and minus amplitudes. If 2 is more than two fringes, plus a fraction,
the scattered electric field is periodic, but not sinusoidal, see Fig. (9) o

Y
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in which the period of sampling is T= "y . The modulation index Mis (K-K )
’Q [[(0)] in which “( l = QGE /é‘; The Jacobi expansion of exp (L Nsine) is found in
Watson ‘“Bessel Functions.” page 22),

LHMO: JO(H)* 'lZI:n(M)MZMB - :LZ IW'(N)MQM“) ¢
m=} =

in which J:“(H)is the m order Bessel function (of the first kind), and 6 = @st, For
very small M

 Maun 05t . : D
er A ToM) +2i TlM)penagt 2 1+ i Main wt

Thus for very small modulation index the phase modul: tion appears as a (sinuscidal)
amplitude modulatior.. Considering only a partial product we have

& e.indea(s-g} & [an)] pon ]
Re (cas@et) -t pom Qet )(1+ { Myumcnt)

= s Qet + M eun et ain it

The spectrum of the modulation is given by

Y(w) = ﬂ, { S(w'tﬂe*ws) + 0 (w*ng-ws) + o(@-Ale ‘Hﬁs)
4

+8 (0-2¢- w,,)}

In the positive half of the frequency spectrum the modulation appears as two side bands,
at a distance t U)s cFQL(Bracewell “Fourier Transforms” y.. 184). Thus the spectrum of

scatterza the light amplitude is typically that of a sinusoidal FM (or AM) modulated carrier.

However, these spectral lines have no finite width, and thus do not account for noise.
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Conclusion to Part [

In Part [ we have presented a physically appealing model of the laser Doppler veloci-
meter in terms of a set of laser interference fringes crossed by occulting particles. This
model is useful in providing insight into the scattering process, thus allowing experimen-
talists to master the details of the phenomena in their laboratory experiments. It is
however very important to comprehend the exact nature of what the experiments are

measuring, and to construct a quantative model of the complex nature of the “‘noises”

in the exp=riment which set lower limits in detectability of the fluid motion. A very
detailed maih model has been devised by George and Lumley (J. Fluid Mech. 60, p. 321
(1973)). We adopt this model in all succeeding discussions.




o

-

Gtk n“‘- ¥

2

Part II
Mathematical Modeling

Summary of Math Modeling

The scattering volume is assumed to be three-dimensional (effective dimensions
a6, '0’5) and to contain more than one scattering particle in motion. A first step in
math modeling is to project the volume on to the x4 plane, Fig. (10), Next the random
velocities of the light scattering particles are averaged over particle position on the scat-
tering volume to give the instantaneous equivalent of an ensemble averaged (random)
velocity Us(t)= (ﬂ.«),V. h)) (which is the Eulerian velocity reported by the detection
system as producing the Doppler shift), and a (random) deviatica from this average,
AU(!;Q) :(Au (3‘{) ,AV(;_n,i)) whics the particle at X possesses. The displacement of a
particular particle (at X ) in timet is thus assumed to be the sum of a displacement
3 ({): ( X(t) ,Y(f)) (the ensemble average for all particles) due to U (") and AD( b4 1)3
(Xt t),a)(x +)) due to AU(x *) unique o the parice st X.

\

% |
6‘"
v
v é
S Fig. 10 X

The analysis proceeds by restricting attention to = single diniension, (say x-dimension).
The random Eulerian velocity Ui {¢) is separated into a random mean velocity U, (¢) and
a fluctuation about the random mean uo‘(f)‘ U k)- ao“)A tine average of 1, (¢) is
labeled Yo The square of the random deviation Au[x(- De “b ensemble averaged over
particle nosition d and time averaged over't to give the average mean - square velocity
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deviation (A u)& When the motion is laminar and deterministic ,

o= 1‘?5 =0= _‘A_:F

The time-averaged random mean velocity -u-. (in general turbulent flow) is assumed to
contribute the Doppler spectral line in the photodetector (electric) current. The Doppler
shift of this line is -(5,= K tlo where K is the x-component of the “vector wavenumber”.
The fluctuating quantities uo') AW are assumed to contribute spectral noise (called
Doppler broadening) centered on the spectral line at 76,,

Assuming the fluctuations ua',Au. to be Gaussian distributed one can show by math
modeling that the {requency bandwidth AD which measures the Doppler broadening
(om @,) is,

2 ——

a ; e
@B) = K> +Keur+ 2
YA

2
Here the term W, /30*,‘ is the spectral broadening due to finite transit time of the ‘average’
particle traveling at averaged speed Tithrough the effective (projected) volume 0, In the
absence of fluctuations the broadening of the spectrum due to finite travel time is called

the Doppler ambiguity of RADAR.

When other sources of time fluctuation of the scattering particles are present they
can be assumed to be Gaussian distributed. The most important of these contribute band-
widths as follows: A&)adue to gradisnts in the (laminey) mean velocity Wacross the volume,
AU; due to Brownian motion, and Ah): due to non-monochromaticity of the laser light
beam. Assuming these to be important one .rites the frequency bandwidth of spectrum

to be a___ 2
(A‘B)’z K Ut + CDA)

3 e . LY
(Dh)‘: K (o) +;_“67.“+ Aw;+ Aw;-\-aws
!

Here DA is called the Doppler ambiguity of the model.
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Two important ratios can be formed from these assumptions and definitions. These
are: (1) M/Eb the ratio of the Doppier ambiguity to the Doppler shift, (2)'Kfﬁ?" (g
or u'/i the ratio of fluctuation inWto the laminar U which is equivalent to the ratio of
spectral broadening due to u'to the line spectrum due toi.These ratios are useful in
setting limits to resolution in applications of the LDV to turbulence measurements.

The basic raodel of the LDV is the equivalent two-beam interferometer using waves
of laser light. The Doppler (electric) current i(t)report_ed Oy the photodetector of the

interference light intensity is

(6)= Fi) s KX + G)nKX = G) ot [KX6)- 46)]

in which F(—l))ﬁ ('t) account for fluctuations in the scattering process a-d finite beam
widths of the laser beams, and ¢(‘) is a phase (of light intensity) given by tan..(a/}a, Thus
the photodetector current is . oresented by a phasor whose amplitude and pnase are
random functions of time. The probability distribution of F and Gare assumed Gaussian.
The fluctuation dd’/&t of the phase is important in the determination of the Doppler
spectrum since the equivalent Doppler frequency is @ = “/Jt [KX(“) 3 #ﬁ)] . The corre-
lation properties of ¢a)are modeled as filtered noise 1n an FM receiver. Its power spec-
trum is labeled N(ﬂ) It has been found (by experiment) to be white with a magnitude
proportional to the Doppler ambiguity DA(ie. N ( o) % N( 0) 20.368DA).

Under the assumption that the scattering volume is larger than the wavelength of the
laser light {i(-e. K:r,’ » \) it can be shown by math modeling that the correlation of
F(*) is approximately the same as the cor.elation for ﬁﬂ), that the cross-correlation of

F and Q is approximately zero, and that the time average over fluctuations (but not the nean) is,

tos K [ X(e) - X(t')]zﬂxp{— {E“} wK[ﬁ(f)- X )]

Here, __ "
T:’-‘ U (*‘t')

A
and X(*)is the time average (or mean) of the random displacement X(f) Similarly, under

the same assumption of volume size, the math model shows that
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where

P— NS
o 2 @Qw® (¢-t)

Thus the normalized correlation of the random photodetector current is modeled as the

correlation of a phasor with random amplitude and phase,

:(:_(izl_(t_'_)_ . “P {_ K‘Q;* ;(\(‘t)‘)?(*l)g ny {- .‘fi‘:‘.;%

EFYTEY ] 4071 %

(&
v cos K [)A((f) —)?(i')]

in which the expnnentialgaccount for the fluctuations in both amplitude and phase.

The basic math modcl is first used to calculate the power spectrum of the photo-
detector curreat. In t}kis inodeling we require an explicit form for the average (time-
varying) displacement X(‘t)to be attributed to all the particles. We assume that all the
perticles have a volume averaged velocity -1;9 and an acoustic displacement X3 sin dst.With
this choice of X(&) it is found by Fourier transformation of the autocorrelation of { (t)
that the Doppler spectrum zonsists of two Gaussian peaks at @ = 2 Ka‘owith amplitude
proportionai to To(sz) each peak in turn associated with two satellite Gaussian peaks
A= iuls with amplitude proportiona: to J, (K)s making a total of two groups of peaks
with three peaks in each group. The “spectral lines” in one group are thus: K Uo ,Kaoﬂ')s
KU. - Wg, The math model also predicts that each spectral line will be Lroadened by
fluctuations and finite transit time. The Doppler broadening will be AB as defined above,

— ‘h
AB = [_K’u;" +@M‘]
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This model will be now be used to determine limits of detection of the acoustic signal in
the presence of noise, and to estimate the limits of detection of turbulence.

In the case of particle displacements due to a mean velocity 'ﬁ. and an acoustic dis-
placement X¢ Ma];t the spectrum of the photodetector current centered at K4, together
with one satellite is shown in Fig. 10a. Here the acoustic signal is so weak that the acoustic
satellite is everywhere less than the noise accompanying the Doppler shift due to Kﬁ.
Increasing the amplitude of the acoustic signal raises the spectrum of the satellite to posi-
tion B, , B, (Fig. 10b). At the same time the Gaussian spectrum at Kils diminishes to A, ,

5 At the point marked by the circie the satellite just emerges from the noise. The
amplitude of accustic signal required to reach this condition is the cheoretical minimura
detectable acoustic signal for given frequency @s and Dopplef broadening 48 . The irre-
ducible minimum spectral noise is that of the photodetector.

In the case where the particle displacements are due to turbulence one must measure
fluctuations of velocity in the fluid flow by observing the fluctuations in the Doppler fre-
quency GL If the frequency broadening of these velocity fluctuations are of the same
order as the broadening due to the Dopplgr ambiguity (=DA, defined above), then one
cannot distinguish between fiuctuations ¥ and fluctuations giving rise to the Doppler
ambiguity. The limit of resolution of u’relative to U (i.e. of turbulent change velocity

relative to laminar flow), is then given by the condition
'

w DA
“ @o
4
Thus the measurement of turbulent Y is limited by the Doppler ambiguity.
; | \
SPECTRUK !

Kil,
FlG. 1ob
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Conclusion

This summary has served to note the following points: the only hydrodynamic
velocity that is measurable in a laser Doppler velocimeter (LDV) is the Eulerian velocity
uoﬂ), which is an average overall the scattering particles. The Lagrangian velocity of in-
dividual particles (in the case of flow of many particles) is not measurable. The principal
sources of spectral noise associateC with the scattering volume are finite transit time of
particles crossing the scattering volume, the temporal fluctuations in ‘Noﬂ)itself. and the
random motion of individual particles about the mean Eulerian velocity _17.(t)as functions
of particle position in the scattering volume. The basic model of the LDV is a two beam
interferometer. The basic model of the electric current in the photodetector is that of
phasor with random amplitude and random phase. The calculation of minimum detectable
signa! is based on comparison of the size of the acoustic spectrum to the spectral noise in
the absence of acoustic signals. The irreducible noise in the system is that of the photo-
detection process. The possibility of reducing all other noises remains open to research.

Model of George and Lumley

It is known (see Appendix C) that the light intensity 2 S falling on the detector is

5 - f E E,Q, , where CL} is a unit vector normal to the photosensitive area. ,
and E is the reference beam. Assume the coordmates of the p'xotosensmve area are x ¥

2" and that an element of area is dx JZ so that a.Pz 3 » Where } is the unit vector
in the direction of g Le: M be a constant which converts light intensity into electric

current (dimensions: w& ). The total electric current detected by the LDV is,

. . M E v owa [ [
by in 7 H lE»(* r)ZE (x) 3 2 )ldxdz -

in which there are s scattering particles. If the scattering particle is small relative to a
wavelength of laser light the scatterer is a simple moncpole so that in the coordinates of

the reference beam (double prime coordinates) the scattered field is

E,® )= .C.r_ HES og{a““‘}, g7

, (11.2)
lR XP')
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in which X; is the position of the paiticle in the coordinates of the reference beam, ’)‘(f
is the position of the same particle in the coordinates of the scattered beam, QPIS a scat-

tering coefiicient constant, and

1l 2 a 3 ; a
'R -2 = LAV y » + n
B2l < 0uf)s (g s o 2g)
(11.3)
(Note again that the double primed coordinates are on the photodetector). Since

H Eh. (R) ”‘iﬁ kR XP 1} du'dy - Es (. 45, zr)
: 42 IR-xp (11.4)

it is seen that the electric current due to one particle is

-Me [€ I Ao,
el E G B lega) B Of g2

(11.5)
The reference beam and scattered Leam cross each other at anglee . The photodetector
is set to detect the reference beam only.

As noted carlicr, LDV's are essentially based on two-beam iaterference. The “slit-
sources’ are two laser beama which are characterized by finite v idths. It is customary to
assume that the distribution of light amplitude in each beam width is Gaussian. Thus the
light beams are modeled as

( ) Ev HP{ (x"a }ﬂxr'{tK g} At

(11.6)
El (X')= & Pp { * *.‘L)} ur{ }e"ﬂ‘t

(1.7
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in which E’h, El are amplitudes at the center of the heam (as measured at the focus) and

¢ is given by

q- !3 9‘7‘5
nd

(11.8)
where g.xs the focal length of the lens, RE is the wavelengtl;t of light, and d is the dis-
tance (in the cross-section of the light beam) between the € intensity points of the beam.

It is convenient next to introduce a local coordinate system X fixed at the intersection
point of the two crossed beams. A particle in X is located at XF ( yr gr i’p) where
one defines X? in terms of x ) X 3 , by the relations,

Upeass +fpmnl), 4= Capund gy cart

. (I1.9)
= ¢ - e
) (XPC”’I 3?‘“‘%: }" ("rwgf gpawg)
In terms of xf the net current due to a particle p is
™ e [ Cone{ 20 8080 g B ik
4| M f r W oan aR? E"" xf’
(I1.10)
)
K = aKehn 3
(I1.11)

This is the analog of the classic formula for a two-beam interferometer (see Eq. A5), in
which

m"'q:'e . G'z":*a:“" G;=“T:‘
(EC&‘]-. R Ans ! ]
(11.12)
40




posy

s ges

‘4

WARLY N 5N

.‘,
A

The exponential term in Fig. 11-10 accounts for the finite cross section

of the laser beams.

Note that the plane XP . SP is normal to the plane of the two laser beams, and effectively
describes the observing screen ir the conventional 2-beam Young interference experiment.
The coordinate yP is normal to the effective observing screen.

Now X? ¥ #r’z b are Eulerian coordinates of particle position, and so are functions
of Lagrangian initial position o, (.¢. 2(? = 3',(&{) (see Eringen, Mech. of Continuies p. 7).
Letu,V,jf’ be the velocity components (in the local coordinate system) of identified par-
ticles, i.e. 'U L U(g,t) etc. Then

t
Xf (3,*) =g(> + S) U(f’,,{,) d{, p & .

(11.13)
However,'U,(aP;l) is not observable in the case under consideration where there are many
particles in tl:e scattering volume. The observable velocity is u,,&) which is an ensemble
average over all scattering particles. To perform the averaging process one introduces a
probability function 3(Q)that a particle of specific size is present in the scattering volume.
The scattering volume itself is specified by W’[ )!P (a ,{jszhere V(z)is the exponential
in Eq. 11.10. Thus the observable velocity is

U l2)2 A—,‘-S U (a,2) g@ywlx (an) da
: (IL.14)

and ~£ is the expected number of particles in the volume. At any instant a particle ve-
locity deviates from the observable average by amountu(ﬂ ;f)- lloﬂ) . The time-averaged

deviation is

A (g)t) = gi [u(g b)) - U (fn)]d+;

(]

(I1.15)
If the effective displacement over all particles is X(t) then by definition,
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X(4)= &, w (t) dt,

(11.16)

Hence the (Eulerian) coordinate of the particle at q is,

X (a2) = Qp + X)) + 4 (ayt)

(11.17)
that is, a particle which is initially at“dP moves an average distance X(i)(in the zP system)
plus a random distance (along the XF coordinate) of amoeunt li(gp )f . Hence the total

current due to mn particles iz

‘ c f"_.C_ .E. ' (M N l\-

(11.18)
This cwrrent is again a function of particle positions (9..\ and is unobservable. The current
{ (t) averaged over all 3 will be observable. Hence one again introduces the probability
function 3,(2)nnd writes

P (4) S {(a,4) gla) da

(I1.19)
Two random variables are in i.(a ,f)namely random particle position (= Q) and random par-
~ ~
tlcle displacement (= A(a4)). Noting that €as (°“(8) =cpsxcp,13 -pnd 4u}, one can

write
2 th
[)e F) con KX +6@ankX =(F467) as[KX0)-0t0]
(11.20)
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(I1.21)
Gy -( A amK La +4 @] g6 )
(11.22)
Al e W E
deon - it Jo i
(11.23)

Since the photodetector. gives a signal proportional to the time derivative of the phase the
output of the velocimeter is a frequency shift

@, = Kd-oé" %% =Kuo('¢)_4;

(I1.24)
The observed (averaged) velocity ‘l(.(t) is a random function of time, with mean
value -ﬂ-.&) fluctuation Uol¥)= U, (*)ﬂé,.md mean-square fluctuation u,',(f)‘ =
L'u.(t) - 179('&)]’ . The local (non-averaged) velocity u(y ,%) is also a random function, with
mean value 'ﬂ-(! yand fluctuation u(x‘e)-@,'l'he coMmmR,, (X,X") is the x-component
time averaged product of WY t) at X and 1',

Ry X‘) = Eu-(b*) “i‘—(}.ﬂ[ uy,¢) - 4 ()]
(11.25)
Now the time averaged mean-square ﬂuctuation_lcrcm be written in terms of Ru pro-
vided the space average product 3@ )3 (g.') is known. It can be shown ((seorge & Lumley,
p. 360) that if the particles are distributed as a Poisson process, then
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$D) (@)= N + N 8la-g)

(11.26)
where N&‘ i« the expected number of particles in the scattezing volume. The formula fo:
1(9' 3 is then

W= (R LX) waywdy Jﬁ'*t Jwwwy

A (1\
(zn) 70T,
(11.27)
Noting that
Rulxx)s § & (4 ek Jz'“o‘b
(I1.28)
and defining
o (h) = (k) WA(k)
(11.29)
where ‘Bc‘(é)u the Fourier transform of Wz), it is seen that
w2 = (3, <§)W(5)1,@Wi.(mu‘)
‘ (11.30)

under the mumptxom that the fluctuations of l(x)conform to the picture homogeneous-
turbulence, Note that u.‘ is the particle-averaged vuiance of u(x)(over the scattering
volume) and u, is the averaged square of u(i) at X Under the further assumption that
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Ng ! and :‘H'(g)\ 7 N£ , one reduces this last formula to

—

oy (B, () Mk b

(11.31)
In words: the time and particle averaged mean-square fluctuation of the observable veloc-
ity (in the X direction) is obtained by integrating the 11-component of the power spectrum
of fluctuating flow at wave number R times the weighted volume of ‘é space Zf'{ ,é ) d ,é
(which tells what weight to assign to §,, (5 )dﬁ) The weighted volume is essentially a
statement of the finite boundaries of intersection volume in real space. From the defini-

tion of W(X), it is seen that

Wikye - | B, kP4
et { -?K.ﬁ.;%i_’ +.fK’ ‘g
1 3

(11.32)
in which & = (ky, by, & )and
Kt == . F =L . .|
B CE A A N 'K/'::‘Q
(11.33)

This form of u'(é) has an important meaning. Noting that 07, , T, ,0'3 essentially define
the’)l. g,! boundari2s of the scattering volume one sees that K 1 K; and K‘ are t.he‘cut-
off wave numbers arising from the spatial Fourier decomposition of the scattering volume.
Similarlyko B kz, L; are the wave numbers associated with the spatial Fourier decomposi-
tion of the fluid velocity field. Now if & K | that is, if the spatial variation of fluid
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velocity is smaller than the scattering volume in the x-direction then -l)fr - hl Agi is

small. This means that the h, component (or its corresponding velocity change) is se-

verely attenuated by the measurement volume. This conclusion is of prime importance in

the question of velocity resolution of the velocimeter.
The subscriptof!n have special significance. Let V,(})and I@'(;) be two velocity

vector fields (in Cartesian index notation). Then the velocity correlation tensor is the

spatial average

Rij (a) = Vi)V (x4p)

(11.34)
In paﬂicuhr?,.Q«)is the correlation of a velocity vector field at X and at X4he The spec-
tral density (tensor) 1‘.‘.( K) is the Fourier transform of Ri; &), and &, (R ) is the spectral
density component of the average product at X and X+ of the same velocity field. Since

only one-dimensional velocity spectrums can be measured one defines

(-]

F'—n. (ki) = “ 2 (ko, k,,h;)Ak.Olks

(11.35)
]

The notation F“(k,) means the following: the 11 subscript signifies the same veiocity
fisld, and superscript 1 indicates tbh3 first (ua x) component. Note that

Do

2 - |
whoe COE (k) dh,
(11.36)
i.e. the mean-square fluctuation of the x-component of velocity spatially averaged is given
by the integral shown. The measured one-dimensional spectrum E( k.) is quite different
since gives the temporally averaged mean-square value of the average (effective) velocity in
the scattering volume,




-0 (11.37)
F, (k) = zx,,{ “Kf ﬁ g, (kb h)
¢ e k’
: *F{ i }dﬁ J‘? .

Note again that F ( k is the measured spectrum and F, is the theoretical spectrum.
The ratio F(k ) / (k is the velocimeter transfer function. Typical values based on

the assumption of isotropic turbulence, and a special form of the energy spectrum

is shown in Fig. 4, p. 322, George and Lumley .
Particie Displacement

The observed x-component instantaneous velocity, averaged over all particles, is tlolt).
This is a random variable since the number of particles varies from moment to moment in
the scattering volume. If we assign a probability distribution to ‘Uoﬂ) we cnn find its
mean value UO&) (see Fig. 11)e The effactive displacement due to w({) is X(i) where

A S
X )+ g @) dt, -at

(11.39)
Here W is a tictitious average constant velocity such that the effective displacement& is the
product Ut. Now )A((f) itself is a random function of time. Thus at timel the fluctua-
tion in observable (x-component of)disphcement is

X it)= X(t)- X ()

(I1.40)
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Fig.ha, b, 11
In distinction to observable 'uoﬁ)there is the unobservable x-component of velocity of a
particular particle , mw(_l ,0. The difference between Z-!(S,’l') and u,(i). averaged over-
time, results in a random x-displacement A(g#. The ¢~ (random) instantaneous dis-

placement is therefore

* t ¢
xrs v [ Rt - | uedde +(ub)dh
(2]

(I1.11)
e X@)= a + alat)+ X&)
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In this formX('l’) is unobservable because of d(g,ﬁ A method of averaging over all par-
ticle position is discussed in the next se~tion.

Measurable Correlation of the Photodetector Current

We desire to form (1) the total current L(f)and (2) the normalized correlation of current,

(1) ¢(t)= f z(g,t)gzwﬁ

(2) L(z) ¢ (t') (11.42)
2 (t)
(I1,43)

in which the random variables are @ Xfthnd 4(4%) The function 9(a) is alreadty
assigned (see Eq. I1.26}. To X (f)we assign the probability density

— -S0)-o-$u]
Pye-X 6, X)X (t')] ﬁﬁﬁﬂ& “p z and }

(I1.44)
and to A(4,*), considered « variabie, we assign

1
a . - [atat) - 4 (ap)]
?IA(_:t)>A(9>*)] ( )_{az x‘; {_

20

(George and Lumley, Eqs. 4.1.2, 4.1.3) (I1.45)

in which 0; and 02 are standard deviations. A full calculation leads to the (measureable)
result that
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{George & Lumley. Eq. 4.1.6)

This is the correlation coefficient for the Doppler current between times tandt.

We return now to the quantityu&(_ (a ,i)] which'is the unobservable particle velocity
at point X, (where l( is the Eulerian, or fixed, coordinate), and the averaged (over particles)
particle velocity ‘Uol*) (independent of position in the volume) and form the mean-square

fluctuation.

[u [X(a,8)]- (t)T

(I1.47;
This quantity differs for each ! . If we average over volume the result is an average mean-
square velocity deviation, labelled Z;;t)_: . It is the mean-square difference between the
averaged mean square fluctuation at the center of the scattering volume, and the mean-
square velocity fluctuation averaged over the entire volume. Thus it is a measure of
velocity deviations across the scattering volume. If the fluid medium is incompressible,

and statistically homogeneous, stationary and isctropic, it is directly seen that

@ | &) {i- SO}

or (11.48)
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(2:“); 2 S: [F'"(k') - (k')]dk' (IL.49)

Hence (Z-l;).’ accounts for the difference between the volume-averaged Fo (k.) spectrum
and the true spectrum at the coordinate point. We next assume the “optical size” of the
scattering volume in the x-direction (namely KU'.) is of such magnitude that K"&l_z» |
Taking “4: ‘"t/h! ) 7',5 being the optic wavelength, this assumption means that the
scattering volume is many wavelengths of light in the x-dxrectxon Now the autocorrelation
of photodetector current depends on the quantities G‘,}/ i) [26‘: » Where ("; is
the standard deviation of the assumed Gaussian form of the joint probability of the efffec-
tive random displacement of the averaged particle at the center of the scattering volume

at times ¢ ,f; and GZ is the standard deviation of the assumed Gaussian form of the joint-
probability of the random displacement difference 4 (g ,‘l')oetween a particle at dand the
‘““averaged” central particle. For small time difference(=t‘t2

o x wr (¢ v @y (¢t

(11.50)
(again: 1?; is the mean square fluctuations cf the center; Z-VJT is the mean square fluc-
tuations relative to the centee. Using gyp | - K h’} as a characteristic number, it can
be shown that when K’cr ‘,) l, FIY F(¢) ~ Gr)IGH), () §(t')x0 and
OosK(X—)( ‘-9,?5 -LK%— }G”K(X- X ) , valid to the order of the characteristic number. Thus,

in this approximation,

e

000 o K1) | ( ’*) Xf)) LK (¢
L'z,—(t') - VF{ AA }UF{ X (t; )}'

2

2 (ot K( (t)- X(t))

(I1.51)
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A more convenient form is

L(t)_iﬁitL F(t) Fie+t) a; K‘[X(t)-)((“t)]

(11.52)
in which the superscript T means time average, and
e - S
F(t{ Flt+2) _ o §_ K’ , X(t,\-X(H‘t')}
Fi ot e
(I1.53)

The availability of the normalized correlation of the photodetector current leads directly
to a calculation of the power spectrum. It will be convenient to discuss each factor of the

(- Ko Ko, (t)}

correlation separately.
The Fourier transform of Q(‘r): e K [X(t) X (H‘l‘iénmely of ﬂxr
OasKD? (6)-X (H‘*)])"

Q) & ’xP{ (@- K:o)’z§ Q’F{ (e X::,)}

e (11.54)

The Fourier transform of ()2 (i) F(¢1?

F )

‘l)t
L '*PSL 2(E 4K @u)}

ah?

—~
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Here (as before) it is desirable to define all relevant terms again; t.hus,’il-. is the time
averaged value of u.(t), ')-J;Zis the time averaged value of Lu.u)-ﬂ.];iis the time averaged
value of the non-random X(t)/t) Eu)_’- is the time averaged mean-square deviation of the
random velocity off center from the velocity ou center. The Fourier spectrum I(U)of the

photodetecior current is then

@k | Pw) Q(e-@)dw

" (w-Klb) 3

(11.55)

In words: the normalized power spectrum of the photodetector current arising from the
motion of particles which scatter light in a heterodyne laser-doppler-velocimeter consists of
two Gaussian peaks centered at ¥ Ku. where a. is the time average of the velocity %k),
which itself is the (observable) average of the velucities of all the individual particles at
some instant T present in the scattering volume. The symbolK is ? M.b. , Where
7& is the wavelength of the laser light, mde is the included angle b‘etweenlthe two beams
of the interferonveter. The Gaussian peaks.'are broadened by the effects of several time-
varying quantities. The first of these is ps /aq"". To see its full meaning we discuss it as
if it were the only quantity affecting the spectrum. The entity 0; is recognized as the

effective size of the scattering volume (in the x-direction), mda is the time averaged
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particle velocity of all the particlegin “he absence of turbulence. Essentially-tz is the veloc-
ity of all particles through the volume, acting in laminar flow. Hence q /a is the effective
time of transit, and Wq; is the bandwidth of frequencies associated with this time of
transit. In effect the laser light is modulated by the on-off switch of the finite scattering
volume, resulting in an uncertainty in the Doppler shift that is ascribed toa;.

When the flow becomes turbulent one sees two additional effects which serve to
broaden the spectrum. First there is the effect of the fluctuation of the (particle-averaged)
central velocity uo“) about its mean ﬁ . The time scale cf this occurrence is

2
t= (K u&‘) LU @) Ule)- T

2 — 0 - (11.66a)
and the associated bandwidth is (K U ) . The fact that %(t)- Yoft)exists introduces an
uncertainty in the Doppler ascribed to’l-.l, . Second, the velocities of the particle are no
longer laminar. At any timef there is a difference between the velocity of an individual
particleu ( 5,+) and the velocity averaged d over all particles ‘Uaﬁ). The time average of
the square of this (random) difference is @u)". The time scale of this turbulence-induced

velocity variation across scattering volume is
D i
t = (K @w
(11.56b)

2 —
and the associated bandwidth is (K (Au)z) .
Power Spectrum of the Photodetector Current

In the presence of a sinusoidal phase modulation due to an acoustic signal we repre-

sent the photodetector current by the form

iy
V)R [ Fit)+6%) sup [kX— Knanot - 4]

(11.67)
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Since this function is periodic one can separate the modulation index sz from the time

variation chw,‘t , Viz

2 2 Ji ,'FKX"¢ o] - ':
L(t)=0%[F<t)+G(t)] ¢t ]Z(“') J‘M(sz)em“"t

(11.58)
We next form the covariance of the random variable ¢ ﬂ) To do this we make the basic

assumption that the acoustic signal is uncorrelated with the turbulence of the medium.

This assumption allows us to treat the acoustic term separately while obtaining the covar-

iance. Thus the covariance of the acoustic term is
o)

‘Rws = Z € J“: (K&) o mwst) €4,= Neuman number

m=0
(11.59)

The normalized covariance of LF (t)+ GI (*)} St [KX ﬂ is given by Eq. 11.46. In

the approximation that

2
& + B
Jo\\- }n;

it is seen that the normalized covariance of l (‘)in

D) . Fl) F (f)j,r( lktr,)ch( ')

——

Y P
Z AT (Kx) cot mat

55




e~

-

A

X

WAL &

.\)g‘;

N ki o S

- ) A A2
Flo) F(e) g Ko, & XT)}
) g 5 (IL60)

The power spectrum of l:(‘f)can be obtained by taking the Fourier transform of this
functicn. We note first that the FT given by Eq. I1.55 accounts for all terms in the power
spectrum except the acoustic term. By the modulation theorem (p. 108 Bracewell) if
F ((D)s the transform of -f(t)then the transform of § () Cos @, Ui‘ F(w'w") + '{ F (("“'J‘) .
Thus the power spectrum I(w)of the photodetector current in the presence of an acoustic

signal is given by

2(aB)?
+“F [_ W+ K Ko + m®s) }
TS i (IL.61)
"‘ﬁyp i_" _(__w y .KL.‘." E W»;) }
— 2 J(AB r
08Y= K'Uu® + Z_+ K eu)?
In words: In the presence of an :c?ust.ic signal which gives an average displacement of
xs;u;w;tto all the particles of the scattering volume, and in the presence of a steady
(constant) average velocity‘ﬂo of all the particles, the power spectrum of the photodetector

current exhibits the followiing character:
(1) there are two Gaussian peaks at frequencies 4 K!z, (= Case of M'O).

(2) the standard deviation of the distributions in each case is the
Doppler ambiguity AR .
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ihere are four addilional saleilite Gaussian peaks: two centered at Kuo + mw
and two centered at — Kuo 1 mws, (‘ Case of IM*O\
(4) the relative amplitude of the satellites=] to the main peak is proportional
2 s
to the ratio of the Bessel functions Je (KX;)/S" ( sz) .
Instantaneous Signal

—_
(]
-

The photodetector current i(t) has been modeled as
Sy F6) s [OX@] ¢ G (e)an[KX0)

in which F&), §{t)are functions obtained by integr: ting over random initial position and
random deviation from initial position for all particles in the illuminated volume and X('t)
is the time averaged displacement of the random “center velocity” Up a) This formula can
be altered to give a different (physical) insight into the detection process. The basic pro-
cess (as noted earlier) is a two-beam interferometer experiment; which calls for an inten-
sity of light (note: Ht) is proportional to light intensity) with a sinusoidal component

K XP (see Eq. 11.20). In the above modelX(‘t) is the analogy of XP and the illuminating
(i.e. scattering volume) source has a random character described by F(t) and G(t) One
can say that the equivalent two-beam interferometer exhibits a fluctuating amplitude versus
time. Thus one can write i(t) as a phasor with fluctuating amplitude, and fluctuating
phase,

: G N
L) Alt) cm[l(X(t)-ﬂ> A(f):if'(tﬁg(t)]) b = tas %é))

. y (11.63)
At time t. there are¢ four random quantities, F(ta), F(*i) 5 q (f l) ; Q (t.) .

Similarly at cime 't';there are four additional random quantities. The autocorrelation PNB

¢(f) ¢(f ) is that of an eight-dimensional Gaussian distribution. It is known that

. 2 ,
Ru)= 3(E-5) 4 (-e*)
git)= FOF@I) . G G

w——

F* 'q'? (11.64)
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Now according to Part II. Sect. 1 (above) the functions F, G have Gaussian correlations.

Thus

p(t)- 2o - L6)*}

(11.65)

From this one obtains

Ry )= -4 (:"A)a/t’j (-¢*)
S (11.66)
The Fourier power spectrum N (-Q ) Of ¢({)is therefore given by
: T L
N(Q)- F%cb(ﬂ} - S Rn(e) e dr

(I1.67)

or ~ . -Q2

= ‘L'('»h)Z”fa i——-— §

(11.68)

This is approximated by the two values depending on the relative magnitude of () and DA 5

0 N(Q) 2 N{o) ¢ DA
) N(Q) ~ _@ﬂz D »Dn
Q0
o N (o) = 0363 DA (L < DA),
(11.69)
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We define the Doppler ambiguity spectrum as the power spectrum due to temporal char-

- ¢
acter of the center x- component of velocity Zlo(t) ( e, i‘.l. "u.). This is given by spec-

trum of finite transit and spectrum of u{,. We .define the turbulence power spectrum as

that associated with the fluctuations in phase ¢ as defined above. Now the rate of change
. the phasem-ﬁ is the important contributor to the Doppler. One labels this &,

{2

@, = K’do(‘t) -4:

. (1.70)
Both Up and ¢ can be written as a Fourier expansion
Uo (t) = _§“ ey Z(n)
TR ALt ‘
) (CeaN @
. (I1.71)
The autocorrelations of U and ¢ are
. Q.'n.')t’ A )
Uolt) o (2 47) = fe ( d2()dz" (@)
— Ha-Qh —
o (t) ¢ (t4?) = gme dN (L)dNQR")
(11.72)

Since the amplitudes dd@mddﬂ(&) are orthogonal (in frequency), we write

A@ATE@) -0 o a0
3 -E@Eo, 00

7y

N[N (@) =0 AL
=N(Q)dR Q-4 (11.73)
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Now the limit of resob:tion of turbulence spectrum is set at a frequency.Qo such that the

Doppler ambiguity spectrum is equal to the turbulence spectrum, i.e.
(Doppler Ambiguity)=(turbulence)
[
K F( L )
"N N (-Qo)

-

“w

(I11.74)

(dimensions: (I)K M @) Fo: MS (3)'& M‘S (4)90 S (5) N: s™').
It is convenient to define (2o /‘\L = ‘0) »&o')‘ k LG*VSA] F(tj F(E)in which £ is

the Kolmogorov rate of dxssnpatnon of turbulent energy per unit mass, 7 is the kinematic

viscosity, and'] (c is the Kolmogorov microscaiv. Adopting the approximation

that
N(Qo) > N(o) =0.363DA

%2 Kn —-——;]
we are required to find appropriate values for DA- [K.'IL + Qu)
For sma,! scattering angle one can write

.28

|
@Qu)* 2 -ﬁ-[-—, Knm K an' 2
isv L K2 g
x
(George and Lumley, Eq. 3.2.8).

Hence

ar)

(6*7%‘)5,.(‘:@\ =q.3h163k.q'&i |+

SR K ?

2

K|=;i'-‘3‘

(IL.75)

ifa

(I1.76)

(George and Lumley, Eq. 5.5.2). Here 2 is the Reynolds number based on the smallest

length L, that can be resolved in the mean flow direction, i.e.
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v zmﬁ
(11.77)

The above equation for F ( ko is a key result. in words: the one dimensional velocity
spectrum of turbulence E' ( K‘ can be deiermined for given Reynolds number R of
flow, given anglee beiween the two beams (scattered and reference) of the equivalent
2-beam interferometer, and given size 0."0! scattering volume in the x direction as it appears
in the parameter K 12 E)F‘ . In the square-root brackets the first term (ramely unity)
represents the (relative) contribution of finite iransit time. It contributes the _Dﬂglﬂ
ambiguity spectrum. The second term gives the (relative) contribution of turbulence to
the bxoademng of the spectrum of velocity. For fixed % and O the spectral broadening

in F,. ( k )u a function of the size panmeterK.q Two regimes of variation of
FI| (ko‘) with Kn] can be found. In the first, K" is made very small. This is equiva-
lent to making the scattering volume very large (relatively speaking). The spectrum broad-

ening then is due to turbulence, and incresses as the size of the volume of scattering in-

creases. In the second regime Kl'l is made very large, i.e. the scattering volume is made
very small. The spectrum broadening is then due to finite transit time (Doppler ambiguity
broadening), its magnitude increasing with reduction in size of the scattering volume. Be-
tween the two regimes there is evidently a muumum broadening of the spectrum. This
occurs at the value of ’("1 which makes F| (‘. ) a minimum. By inspection the con-
dition for minimum KW] is given by making the contributions of finite transit time and
turbulence of equal magnitude, i.e.

(1":) =1 or (KI k.

s R K?'ﬁm-m:% ) / M

(11.78)
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The smaliest value of the turbulence spectrum that than be measured with minimum ambi-

guity due to finite transit time is thus

iR s "
[ ™ ()"

(11.79)
In words: when it is desired to use the laser doppler velocimeier to measure turvulence
it is found that the power spectrum of velocity turbulence is broadened by “large” scat-
tering volume, which renders the determination of the “‘spectral line” associated with a
given wavenumber k, uncertain. The broadening of the spectrum is reduced by decreasing
the size of the scattering volume. Hence one expects that the smallest available volume of
scattering would generate the narrowest spectral lines, However as the volume of scattering
is reduced the broadening due to finite transit time is increased, making the spectral line

of velocity again uncertain. Evidently the narrowest spectral line is achieved by using a

compromise size of scattering volume. This compromise size is fixed by (Kﬂ) )op + The
1 e - 1

smallest spectral level F (L) that is optimized by scattering volume is LF;‘ ( ko)] opt.

Hence the highest value of _&. that can be measured with minimized ambiguity due to

[} (o]
finite transit tinLe is found by expressing F;, (R.) as a function of some turbulence model,
and solving for R, implicitly. _
The implicit solution for k. can be illustrated by use of the model of isotropic tur-

bulence. Here,

Fa(Re)s L ﬁ:ﬂ Eﬁ‘\ - Z'a]l“‘

Re

(11.80)
The form of E(k)s particularized by choice. Let E(R)be that of Pao (Phys. Fluids 8,
1063, (1966)),
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E(R)= o k ﬂ"’a{ (/v,);

(11.81)
Substituting thxs form into the above integral, and performing the integration leads to a
model of F"( k) which can be plotted versus k‘ On the same graph one can plot
[F“'( h,)]."for various choices of'Rg and &. The intersection of the turbulence model
(Pao’s model) with the ambiguity model [F.’.(go)] opt. gives the value ofh" , which is

the wavenumber for which the ratio of the turbulence spectrum to ambiguity spectrum is
unity. This is the largest value or wavenumber of the turbulence power spectrum that can
be measured with the minimum ambiguity (that is, under conditions of the minimum
spectral broadening due to finite transit time), for fixed?g and e -
Seeing that every choice of R, and b is equivalent to a choice of k one can plot
R ( 1 4 AM 9 ) versus &o, Suppose we desire the maximum Zo (=-Qo'] to be unity.
Then the graph shows R_ 0,10, For an experunent in which @ is fixed such that
2 MQ =0.2 and the wavelength Az & 3!/0 an it is found from the Reynolds number
that the smallest measurable velocity (the optimal velocity in the above sense) is RNy
cm/sec.
In actual experiments the optimum scattering volume can be determined by a simple
formuia once the Reynolds number and angle of scattering are known, (see Appendix B).

Concluding Remarks to Part II

In Part II the laser Doppler velocimeter is mathematically analyzed using the model
of George and Lumley. The photodetector (electrical) current. i(f) in this model is a
phasor which is a randoin function (in both amplitude and phase) of the particle displace-
ment across the laser fringes (see Eq. 11.20). By assigning probability densities to the
fluctuating component of the volume averaged displacement, and to the deviation displace-
ment of an individual particle from the volume averaged displacement, one can find an
ensemble average of i(t), and then form the normalized autocorrelation of i(t) at times t
and t (see Eq. 11.46). Under the assumption that the size of scattering volume is several
wavelengths of laser light large, and that f't' is not too great, one can calculate the

63




&

LY

P APNT Y

.5

power spectrum of the random current i(‘l)(see Eq. I1.55). The particle displaceraent is
then considered ‘o contain a sinusoidal component due to the presence of an acoustic
signal in the scattering volume. The calculation of the power spectrum of photodetector
current is then repeated leading to the result shown in Eq. 11.63. In applications to mea-
surement of turbulent velocities one is required to find the true one-dimension power
spectrum F“.(k) of these random velociiies for different scale sizes (i.2. wavenumbers k).
Because of finite size of the laser beam, and the existence of random motion from parti-
cle to particle within the scattering volume the measured spectrum Fo (h ) differs from the
true spectrum F.: ( k) . The measured spectrum Fo ‘L)can be summed for all values of &
to give the time-averaged mez}n-square fluctuation of the observable Eulerian velocity
The true spectrum F, ( k) can be summed for all values of k to give the time-

averaged mean-square fluctuation of the unobservable velocity u(t)which is %&)4-
Au(*) whereAW is the deviation cf ﬂﬁ)across the scattering volume. Under certain
assumptions F,,'( k) can be calculated (see Puo’s spectrum Egs. 11.80, 11.81). A theoretical
limit of spectral resolution (of the turbulent velocity spectrum) can be calculated using a
good model for the noise due to the phase fluctuations of the equivalent phasor t.(f). The
model is that of filtered noise in an FM receiver, called N(Q). By approxlmatnon N ﬂ) is
taken as a white spectrum with a fixed value N(o) =0.362 [K (4“)“* “Am] (see
Eq. I1.69). The limit of resolution of the turbulent velocity spectrum Fy, ( k)can then be
obtained by setting N(B) as the threshold (see Eq.11.74) of F,, ( k) The limit thus found is
Eq. (I1.76) where F" (b'o) is found to be a function of the Reynclds number (based on the
laminar velocity @) and the wavenumber of the laser light K—@ WA‘) smg J wheree is
the angle between the two beams of the laser interferometer. When the magnitude of
F|: (L) is found for given R2ynolds number and ) , the value ofﬁl:o is then (implicitly)
determinable. This is the “cut-off wavenumber’ (see Eq. I11.79). At this wavenumber the
ambiguity due to finite transit time and turbulence is minimal. It is essentially the largest
wavenumber (hence the smallest velocity) that can be measured.

The model of George and Lumley reviewed and extended above is the most complete.
Additional models are briefly discussed in Appendices F, G, H and I. These serve to dis-

play somewhat different points of view.
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Part III

Communications Theory Model
In the model of George and Lumley (Part II) the photodetector current ( (f)m a phasor

with random amplitude and random phase,

()= [Fl(e) »q’(t)]mws [ KX()- 93]

we restrict the generality of this model and consider only the ¢osine function, replacing
the random amplitude by a constant. Furthermore we take the displacement X(t)to be
deterministic, and write

X(t)= ut+ x csit
in which %, ¥; and &} are defined in Part IL. The only random quantity is a phase & (#)
This #ﬁ) represents noise in the laser Doppler velocimeter and is modeled as if shaped by
anKC filter, bandwidth Ally , Power spectrum ”;(f) and covariance Ky given by

4
W) 4
o [r 2]

A%
It is convenient tc regard the frequency KII 2 (o as a carrier frequency, the quantity
K;(s fos. w,fu a phase modulation of this carrier, and at)u a noise modulation. In

complex notation the photodetector current then is assumed to have the form
(2): A Reoxpi { it - K st - 610)}

Since this is a periodic function it can be represented by a Fourier expansion,

(- AR ZEDTa(Kn)e

_auj
L KM g ey

cmixt 4 wgt -($(t)

(II1.2)

The covariance function of this raodulated carrier is then de?',ved to be

2 2 _(Ke)(i-e”! sk
RMC)-? 2 ém T (Kxs)€ w(%)m(—%;)

(11L.3)

(Middleton, “Intro. Statis. Comm. Theory.” p. 612).
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Here 4 = aw,,i;.‘&,,is the Bessel function of first kind of integer order, and €= / when m= 9
me2 ‘,;e,% mx 0., The spectral distribution corresponding to this covariance
function is % where

. _«Xg);“ ¥ ~
=A_e J’_a A KXS) mM + n
wr g sy Sl o).,

,3* . W@y TmU

*m
AUl
(Middleton, p. 613). (Note, only positive frequencies appear here.)

This power s h?in has a dual character. Igu noted in the formula for Kv(: )that

U(X)e x)D I¢I+El ]
" “‘“’ [- (Kx)lCIHQ(Xs)[CI“"”] ans)

The Fourier transform (FT) of unity is a delta functicn at the origin of frequency. The
FT of cos u.f is, g
FT { et w°¢}= Cb!(%w—“)} = Ji S(w-wo) + -_‘L’ S(U'Hﬂo)
If we multiply this time function by cos m wslthen
FT { cos @, t ammv,t} .L 3@ -wotme)) +l 8 (W-we-m ws )

+4 8(wrwo mm,) +} 8w+ @, + mas )
Thus centered around s (e there are two delta functions (or discrete spectra) for every

2
value of m. The magnitudes of these spectral lines are proportional to Tp (sz We
retum now and examine [I4 at the special value n 20 and & = @y +m“‘ In this case

mid
8, =0 and 4 . The value of the first term is known, vi2,
[Z4an F - Mu

111.6
/,f:”: zm = .-.1c8(/Q“.)) nf ):n, dﬂ,,,,,, (111.6)
p2° i Igh ' ” /S e
(see Morse & Feshbach, Meth. Theo. Phys. 813). Thus the term n-)o)P-)oyields a discrete
spectrum and the tern MXO A X 0  yields a continuous spectrum, i. e.




;)]
0 (w) = A € J'o (sz %5(0)-@0)71‘ *2- (KXS) m .;M)} (1L.7)

"o Ay ! sdwy

Now let =) , and take /Q'_’ . w-w,—@;}ﬂ = (0-@y+ @s . We then choose a
: ice m=/

frequency @ —»al, 4&!‘ . Then Pﬂ-a 0 and ﬁ_'-‘).'w& Hence for the choice m

the spectrum again has both discrete and continuous values,

_(Kxp
Wy (), J, "(sz)§8(w-w.—w;)x + §(w-wotGs)T
(K AwN } (111.8)
_._z Xs m . 4 , /n- —
o ey )

A sketch of the total spectrum is shown below:

} U, (w)

oL

N e N - 1 " 1 g 7
W e

Fla.2

We next consider the continuous spectrum of m=0 at the value of W= @+ i and take
sz to be small. Then the noise due to the peak at &) is

() -

1+ (Aw,,

2

Iy (w, *ax/?w% Ae

AN
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The continuous spectrum of az | at W= @Wot+ Ws s

2
2 _0<x5)

A q e | (I1.10
Zﬁ,(wo'*ws)"‘e T,(KXS)KXs I+ ———— =)
Awn |+ W) \¢

At

There are two signals in this special case: (1) noise due to the main peak at the Doppler
frequency Kio (2) noise at the frequency of the acoustic satellite. We now assume that

the criterion for detection of an acoustic signal is that it should equal the satellite noise

at the satellite frequency. Hence we state that an acoustic signal of magnitude equal to

the continuous noise at the satellite frequency will be detectable if it rises above the
noise contributed by the Doppler ambiguity of the central peak (;'oe. :o) in the absence
of an acoustic signal. This means that wa must find a value of K)g such that,

T\'}(sz) |+ yoz(KXs)

do v | -
14 (-:E) " d‘%; )a.
or ]_'i:‘_(_lfﬁ) LA ('2_:;) (.11

SR YT

These formulas will be used in the following sections to make numerical estimates

of the minimum detectable modulation index.

68




Y

Part IV
Calculations

Summary of Measured Displacements
Massey (1968, “An Optical Heterodyne Ultrasonic Image Converter,” Proc. IEEE 56,

2157) used a lccal oscillator heterodyne apparatus to sense the vibration amplitude distri-
bution on a reflective resonant diaphragm placed in a liquid acoustic medium. The phase
modulation of the laser beam was (t)= 4T L(x. y) pmat  in which g is the la-

ser wavelength, (l)' is the acoustic signal frequencgr and Z(g, }) is the amplitude of vibra-

tion of the diaphragm. The dominant noise process was shot noise in the photodetector.

For a circuit bandwidth B, and electronic charge e the rms noise current is

iy = J2e(To+I)B

in whichL'I ‘ are currents in the detector due to the local oscillator bezm, or signal
beam acting alone. Assuming a total laser power-Po' quantum efficiency # , and setting
i 5=Ilo , one finds that

Is""ILO s h‘ ]C-PO-

J“\Cg

in which h is Planck’s constant, C: is the speed of light. Now the minimum detectable

amplitude is found by equating the noise ) to the fizsi side band current. It is found
that

hea B\
2o (452

Thus the minimum detectable amplitude depends on the square-root of the circuit band.
width and inversely as the square-root of the laser power. In a typical case
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Ag = 6330 40 M §,= 1 MHz

B+ 20kH2
nn S)llb.z
-Po‘ lDJW

it is found that

Z,.,m = 2.2 *IO.MM (‘t:eo.k)

Yeh and Cummins (1964, Appl. Phys. Letters. 4, 176) also used a LDV to measure
fluid flow based on the local oscillator heterodyne principle. They considered that they
could detect constant velocites as low 4% ID_SM S" at a scattering angle of 30° .

Edwards et al, (1971, J. Appl. Phys. 42 837) analyzed and measured steady flow in
a LDV based on the loczl oscillator heterodyne technique. In order to resolve the Dop-
pler signal they estimate that the (constant) velocity v must be such that

2 2 ,

K-v>DK, K= KK
in which D is the translational dxffuslon coefficient, andlKl: 4'"" /wn X . In the
caseof AE = 6328,/0 M,B'4S ) V= IO they found that approximately

vl > 0% Ms

Wang (1972; J. Phys. E. 763) found the following S/N dependencies;

local oscillator heterodyne: SN~ Mg Q‘T<

%)

7(:
differential or symmetrical heterodyne: S/N ~ ( ) G\f )
/VP IP
in whxch/n is the partical number density, Q‘ is the Mie scattering cross section of the
partical, )'E is the laser wavelength, ls is the linear dimension (say depth) of the scatter-

ing volume, and l' is the average partical size. Thus for the case of the local oscillator
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heterodyne a high particle concentration and small focal volume are needed. It is insensi-
tive to particle size and has broad frequency spreading. In contrast the differential (or
symmetrical) heterodyne system requires low particle concentration, is sensitive to particle
size and has low frequency spreading.

Criterion for Signal Detection

We assume sz to be small, and consider only two terms (i.e. m=0,m=/ ) in the
equation for the power spectrum of the photodetector (Eq. [1.61). We then state the fol-
lowing criterion for signal detection: an acoustic signal is considered detectable if it has a
magnitude given by riq. 11.61 at m=l at a frequency M=kao+ @} , for that magnitude

of sz which makes it equal to the uoisez of m=0D at the same frequency: in symbols,
2
(awy) 2 ws
8 - gL - J (KX e a@r
T (Kxs)q 14 e = Jo (Kxs

2

@,
3 r 2@3)’
2 7. (Ke) - £ =
35 (kes) ’ 7 I+ e~ 7‘%’3»

[ §

— pr JO—
3>
@) Kut + £+ K@up
272
Discussion: When the noise band width exceeds the frequency of the acoustic signal to

the extent that wS/(A'g) 1, then C ~0,S and IJE £ 0,7 For this case

T,(Kxs)= 07 To (Kxs)

with a solution,

st—‘i;'t-lﬁ

Y
We choose A za¢ 51/0 M. Hence the threshold signal is

-2
Xe2 b os,57: 4.400 M

——

4T
7




L L & SN

wilhasume

s
C,“t e 28)*

In contrast when w‘/AB » > . If we choose

@ = 3@3),754-‘*64;‘;.011 ,1’2= 6:10§, Thus
T, (Kxs) = o0.108 To(sz)

with the solution,

] -4
szgo,z ) or Xg 2’.5_;5%/0 = §x/0 M
4n

A table of minimum detectable signals is presented here, based on the approximation that
T (Kx) K;_f_s ; Le Xg= VI)'CE ang 2 L2 i 25!

Table I
(:)_s_ )(s(mecer)
(AB)
5 1.5 x 1010
6 9.8 x 10-12
7 3.8 x 1013

Thus, in order o achieve detection of the particle displacement 3.4 % 10 HH asso.iated
with sea state 1 the noise band must be less than V7 of the radian frequency of the sig-
nal. At §= 100H2 we therefore require & B £ ('/7 )2oon‘ x QDS") ve Afx14
Hz.

A different criterion of signal detectability is to assume that the discrete spectrum of Eq. Iil. 8
at © = &,t& is equal to the continuous spectrum at the same frequency. Thus the

condition becomes
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As an example let (ﬂsfw,, Then

2
Kxs = T (0.33)

= 162 xSx/o = 6-4')‘/0.8N
41!.’
Shot Noise
We assume the optical signal is strong enough so that the dominant noise process in
the electronic system of the photodetector is shot noise (see Oliver, 1961 *Signal-to-Noise
ratios in photolectric mixing”, Proc. I RE (Correspondence) 49, p. 1960). The rms noise

current in the local oscillator heterodyne system is then
in= / 26(3,4 1) 8

(see discussion in “Summary of Measured Displacéments”). Under the assumption that I,_°=

Is one has

Is.o = Is & M&

R‘Cg

Hence

s s+ s

/J (L'L)EB :

. = 534 g
Now choosing Ag=5. 145%10 M, 0= 0.05,4:¢.Gx 10" joule sec, Cg= 32/
m/sec, one has

R ] -l 17
215'_) . (@ )(S.MSHO ),s,,o 22,6500
heg 66216 x3x 10?

Also, the eiectronic charge is

-t
e .t xt0  (pulonB

Hence

=(3. lc)lﬁ."\/ B aaforse.

Ly =(0- ¢ No'm)(sl') ‘OQJ'B'B
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If the system of detection is shot-noise limited then this electric current iz the threshold

of detection. In the general case of an unselected laser this noise threshcld is

tn =509 x/tf’/zeriBB

in which all quantities are in MKS units.
Minimum Detectable Signal In the Presence of Shot Noise (Massey 1968, loc. cit)

We assume here that the only noise in the system of a local oscillator heterodyne is
shot noise. The photodetector electric current in the presence of an acoustic signal is then

(1) Toot Tyt 2VTLI, @s (abt +Kxgeosit)

in which I,_ ER L £5 ., The side band structuxe has the form

f;ﬂs { To Kx;) o8 Dot +Z_ Tn (/st) ces[(wom ws)t]
]!

_2 J-M(sz) @sgw-miﬁ;)t {

Assuming K << 1, then  To (K ) 21, 3, (Ki) > Kxs/a, T (K ) %o, form>|.

Then the amplitude of current in one side band is

l.m ~ | aX,l, K;?“

If this is equated to the shot noise current the minimum detetestable acoustic amplitude is
\

(Xs) = 'LCE)" -
M = (TR Py
8

sy » 46 x/o."‘/% (mwbu)
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Scattering Equation

The scattering function is definded by the relation

ale)- ?"-E:-[-%) (M ")

in which I(e) is the light intensity (watts) in the B-direction,E is the irradiance (watts/ M')
dv is the volume of scattering (Ns). The total scattering coefficient = for non—
polarized light) is

b:zng‘wﬁ(a)f‘"’.' 6 49 (M-.)

Now let tne differential scattering volume be the simple geometric figure of a cross section
A normal to the beam and a depth . The productAE is the power of the incident beam
T:+ Hence the power scattered into the solid angle dL is

]

AR ()= aI(8)eLL(8) =/?(9)'P¢AM

The incident power is related to the laser output power A

- o,
'PL='P.C ol Ky

in which ®¢ is the attenuation coefficient andR, is the distance travelled. The solid angle
Q) is that intercepted by a lens of aperture 8Q, at distance R; ) e,

A0 = 82
®
Thus the power received over A& is
-O((Ro+?‘)
()= g P (40)d
B
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Calculations
From Duntley (1963), J.0.S.A. 53, (214-233) the “average ocean water” can be de-
scribed as having an attenuation of = 9,05 / M . and a scattering coefficient /3( /8% )— 6x/0 /
meter steredian.
Assuming R,=K,= R :tis seen that

AR (3 (otes <4108 (a)X )l
P 'Rz

If we take a receiving lens of diameter 0.1 meter, a depth of scattering volume at least a
half-wavelength of acoustic signal at |QOHZ (= 7.5 meters), and a working range of 30

raeters, it is seen that

° <30 Py
9_3..(_\—39—). © x/o")e %_r,/o X%

S
i = /) ?‘ xlOJ

If “clear water” is considered then ‘9 ( O)x ax/0 ,and the backscattered light is

A‘PS (‘80.) N Z‘-ﬁ‘o.q
B 03

Modulation Index and Doppler Shift
The modulation index appears in Eq. I1. 57 as the symbol KXs in which K:(ﬂ) /x,;aﬂ |
The threshold particle displacement at |00HZ is 3.4 wo"’ M. Choos?&mz the :
angle of observation of the scattered light to be 1800 we see that the threshold modula-
tion index is calculated to be

(Kx, ), = 42238080 g5 (6*)
M s asxi0T?

The Doppler shift in the presence of an acoustic signa! is given by Eq. I1.61 . Here
it is seen that a constant velocity s shifts the frequency of the carrier by an amount
K. =(4 "/l‘)'ﬁ; . The acoustic signal shifts the frequency be the amount m@s,
where m is the number of the side-band. We see then that an acoustic modulation of
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the laser carrier does not appear as a true Doppler, namely as a frequency shift dependent

on velocity, but rather as a frequency shift due to phase modulation, whose magnitude

(of shift) is independent of the associated modulation index, but whose amplitude of

power spectrum at the frequency of shift does depends on this index. The detection

method is not tha: of an laser Doppler velocimeter measuring a constant velocity, but
rather of an optical heterodyne measuring sinusoidal displacement. Ultimately the de-

tection process rests on the ability to measure magnitude of spectrum rather than the

ability to measure frequency shift.
Particle Size, Particle Density, Volume Scattering Function, Attenuation in the Ocean

Suspended material in the ocean which is retained by a 45 micron filter is called
particulate matter, The amount of particulate matter (in milligrams per liter) ranges from
0.04 in the surface water of the North Atlantic to 18 in the region of coastal waters. An
average oceanic total is 0.8 to 2.5 (See Table II).

Particle size distribution in various ocean bases is shown in Fig. 12(a) in which is a graph
of the number of particles per cubic centimeter versus the diameter of the particle. A
statistical analysis leads to a statement that the mean squared particle radius is about 14
x 10°12 M2, 50 that the “mean particle diameter” is about 7 microns. According to Mie
theory the scattering cross-zection of a single sphere ( /A’) whic* is much larger than an
opticai wavelength is twice tne geometric cross section.
Hence 8, = 21 x 14 x 1012 = 8.8 x 1011 M2

Table III shows the vclume scattering fun.tion of pure water and sea water as a func-
tion of wavelength. Fig. 12(2) shows the attenuation of sea water as a function of wave-
length.
Motion of the Scattering Pavticle

The mathematical model is based on the assumption that the motion of the “colloi-
dal” particle suspended in the water faithfully records the acoustic particle velocity. To
check under what conditions this can be true, we take the colloidal particle to be a sphere,
radius a, density s and assumie it is oscillating in & fluid medium of density g, , kinematic
viscosity 'V; at frequency ws and net amplitudev. Ther. the forces} exerted by the
fluid on the sphere are twofold: (1) the accelerative (2) the viscous force. According
to Lamb (Hydrodynamics, p. 644, Eq. (26}), the expressica for ¥ is
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TABLE II. Amount of suspended particulate matter

Depth Suspension
Area (m) (mg/l} Reference
(a) total
Oceanic deep water 005 Jacobs and Ewing,
(average) 1969
North Atlantic  surface water 0:04-0:15 Folger and Heczen,
1967
Oceanic — 0-8-2-5 Lisitsyn, 1939
(average)
Pacific, coast — 1-6 Goldberg «t al., 1052
Coastal — 6-:0-18-0 Postma, 1834
() organic fraction
Atlantic —_ 0-04-0-17 Riley ¢t al., 1963
North Atlantic —_ 005-0-2 Gordon, D. C., 1970a
North Atlantic deep water 0-01-0-02 Gordon, D. C., 1970a
Central Pacific  surface water 002 Gordon, D. C, 1971
Central Pacific deep water 0-005 Gordon, D. C., 1971
(¢} inorganic fraction
Atlantic,
offshore - 005-1-0 Armstrong, 1958, 1965
Coastal —-— 0-16-1-20 Armstrong, 1958, 1965
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Fig. 18 Examplcs of particles size dis-
tributions:

Upper scale:

& Kullenberg, Pacific deep, 1953;
|—| Brun-Cottan, Coulter counter, 500 m
depth, Mediterranean, 1971.

Lower scale:

® Gordon D.C., microscope, organic
matter, surface Atlantic, 1970;

X Carder et al., Coulter counter, Pacific
surface, 1971;

A Jerlov, microscope, fiord, 1958;

C Ochakovsky, microscope, Mediterra-
nean, 1966a.
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TaBLe I Volume scattering function at 90° and total scattering coefficient for pure water and sca water as a

function of the wavelength.

A(nm) 350 375 400 425 450 475 500 525 550 575 60O
Beof10—* m-1) 6-47 480 363 280 2:18 1-73 1-38 1112 093 078 068 DPure water
b*(10¢m-!) 1036 768 581 44:7 349 276 222 17-9 149 12:5 10-9
Be{10-¢ m-?) 841 624 472 363 284 225 1-80 1-46 121 1-01 088  Puresca
water
b*(10-*m-Y) 1346 998 7556 581 454 359 288 233 193 15-2 14:1 (S = 35-
39%.)

¢ Computed according to oq. (11) with § = 0-09 which leadls to b = 16:0:- 8 (90).
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Fig.jzbittenuation curves in the near ultraviolet and in tlie visible part of the

spectrum.

A Lenoble.Saint Guily (1955), path length: 400 em;

X+« Hulburt (1934) (1945), pat®: length: 364 em;

@ Sullivan (1963), path length: 132 cm;

0= Clarke-James (1939), path length: 97 cm (Cervsin lined tube);

O - - - James-Birgo (1038), path length: 97 cm (Silver lined tubo).
Tutal scattering coefficient for pure water and pure sea water as a function of
wuvelength, according to Table IIT .
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in which f 3@/ AV . If the period of oscillation is made infinitely long, then ,8 @ <<
]8& ¢¢ | and the term in 4 /Jt (i.e., the inertial increment due to the gross mo-
tion of the fluid) becomes negligible. Under these conditions the magnitude of the force

exerted by the fluid on the sphere is :? = cngwﬂ: This is the stokesian force resisting
the slow descent of a particle in a viscous fluid under the action of gravicy. The equation

of forced motion arising from this resistive force is therefore
4- 3
3 1!&93 d}% . 41[-}150.]5

in which h:gv is the fluid dynamic viscosity. Thus, for particles of diameter D ;

dU; XU ¥ = 1BH

gt ’ Ta
SinceU is the differential motion of the water, i.e., U‘ U;-U; , We can assume U; to
be the acoustic excitation and write U; ® U.ﬂ.nr &ﬁt At the steady state frequency
(© the velocity Us reduces to

Uy = Uo onp gt

22 ;)

X
This equation defines the properties of a low-pass filter with a cut-off frequency Q{. B 3‘
As long as ﬂl((l the motion of the colloidal particle will faithfully follow the motion
of the acoustic wave. To calculate the magnitude of the cut-off frequency, we note that 2

[] 0 -, -
the dynamic viscosity of water at 20 C(in cenzipose\I =0.0| sec fow® = 10 qNS M.
Assuming pacicle sizes of order 7 x 106 meter, one calculates = @b "( 4'—:-) o] /95'
If the density of the¢ colloidal particle is the same as that of water, the cut-off frequency
. 13 (0‘
ST SN

a9 x X
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If -;;%\« | > thenm‘-u' 3%0 ‘.By choosing w«ug, one sees that the difference be-
tween the motion of the colloidal particie and that of the acoustic wave is negligible.

It appears from the above argument that for (low-'frequency) periodic motion, which
is long relative to the optical process duration, the forces involved are purely resistive,
and the particle motion is not sensibly different from the wave motion. However, when
the wave motion is complex due to presence of soft reflective walls, diffraction, etc., the
forces acting on a colloidal particle are along more than one coordinate. The motion of
the particle is then oval, or elliptical, and the equations written above no longer hold.
It could then be said that in complex sound fields, it can hardly be expected that a colloi-
dal particle will faithfully follow the motion of the acousitic wave since it would then be
required to be nearly indistinguishable from the medium itselfyassumed free.
Brownian Motion

According to the theory of Brownian motion, the mean of the square of the distance

travelled by a particle in a fluid during a timet is given by the equation

= Dt

(See Lundau, Lifshitz “Fluid Mechanics”, p. 227£f). HereJ) is the diffusion coefficient
(dimensions Mzs-'}. For spherical particles of radius @ diffusing slowly in a me-
dium of dynamic viscosityp» , it is known that]) ‘GEI(L Thus, the mean distance
travelled in timet is q‘

i . 1/%& 3 t- F;rua

It is important to es. mate the time required for the particle to movs a “decorrelation

distance”. Arbitrarily (but reasonably), this distance is taken to be a quarter wavelength
. N -3 -2 -6

of the laser light . Let 7&« 3860 A , =10 \M S, Q=350 M, Boitzmar’s

constant = 1.38 x 1023 N M Ko-)‘ T= 300" K Then the decorrelation time is

¢ -3 -6
ty (3800 ) MA/Gx 3%00° L g ot e
4 3820 23, 3w /0
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The *‘decorrelation speed” is J ht Qor

7 .7
. (3. 86x/0 £
Ca= A_)= 4.6x/0 Ms™'
& dxro®
) -3
Thus, le of the order of |0 ~/mum [eec.

The possibility of decorrelation of the motion due to the acoustic wave by the Brown-
ian motion of the suspended particles must be seriously considered, if the duration of the
process required to sample the wave exceeds 0.02 sec, At 100 Hz this allows about 2 com-
plete cycles to be sampled. However, at 50 Hz only 1 cycle can be sampled. Thus, there
is a threshold frequency for doppler detection of particle velocity, estimated here at 50 Hz.*
Spectral Broadening Due to Brownian Motion

The probability of finding a Brownian particle in the distance interval frand h,-rd):, is
proportional to LyP (— )\,a/m)(See Landau, Liftshitz, p. 227). For two-way travel the
phase change 4¢ due to Brownian motion is A¢ :.’L)gor: im['l-lence. the probability of
finding the _x‘not.ion of the prarticle in phase A¢ is proportional to expi— (64)),:(‘41;‘%:&} =
9.1.‘, - @i)- whereB' = @%‘D In accordance with the mathematical mcdel sketched
earlier, the spectrum of the first sideband due to acoustic modulation is 1/2 of this quantity.
Thus, the spectral broadening due to Brownian Motion is

B, »tD, o whT
* 2 Ape
For a laser wavelength in waterof 3, 86 x /DJH ; }L’ 10.3 Ns M-)z as 3210 ‘H
YIRS e k")' T= 300K the spectral broadening is 165 Hz.
Multiple Scattering 3
The transport equation can be used to model multiple scattering. Let _2 (é ,!}f)d}gg __V

~

be the number of photons in volume d}. -fbwith velocities In tp\fd’! at timet. Let
oy 3 " e 3
01"'-': V,t ]h,vlf)dn'ﬂtﬂbe the number of photons scattered frem dé‘with velocities
5 A r f~ ’.. . % J%, : S 3 :
in d‘! lt’! at timel into volumedh with velocnhead! lt! and time €. Let S (ﬁ Y, 't)
3 3
dv dV  represent the rate at which photons are introduced into ([_‘- Y ) by the laser.

Then the most general tima dependent transport equation is

#This conclusion is restricted to the case of s single scattering particle whose Brownian motion disturbs the scoustic
particle velocity over short times, snd over an assumed charscteristic length of RE/I}. In the multiple particle case
the Brownian motion is random. Over long (enough) times it only adds noise to the detection process but does not
set threshold frequencies. The characteristic length is then not significant.
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This is a differential-integral equation in the unknown function i and known function ¢™,

It is too intractable to solve, Simplification is usually accomplished by considering
only the axisymmetric case in which /v is replaced by Z, ,4( Z being the direction of prop-
agation, p the polar angle to this divection), and considering only uniform velocity ht" 80
that ¥ is independent of velocity. Then, the transport equation reduces to

. ot 2 o
(@40 K+ 2) )= (o (o) ()l

where T, G are the scattering and absorption cross-sections, respectively, and L= diffusion
length. The solution is assumed to have the form Y(F,)e- . I multiple scattering s ne-
glected, then, approximately

¥ _
(%+ @) B + 7Y = E )

in which i, is number of photons simply scattered from the initial seti. The first term on
the §.4..5 is the number of singly scattered photons that are lost by absorption and scattering.
By changing subscript O to 1 and subscript 1 to 2, this same formula can be used to estimate
the number of photon that are doubly scattered. A repetiti_n of this bookkeeping process
leads to the GE conclusion that 27% of the received laser light will be multiply scattered

and 73% simply scattered (See GE Report 973-SH-347, March 1970, R. M. Ameigh, et al,

p. 28).

This conclusion on the partition of the incident photons into single and multiple scat-
tered photons is based on neglect of the integral in the transport equation which accounts
for the transfer of photons from direction fﬂ'bo direction /l ; ... the volume effect is
neglected leaving only the linear effect. A true account of multiple scattering must rely on
solving the integral equation per se.

While single scattering accounts for observed scattering effects over short path lengths,
it is not valid over long path lengths. In the latter region muitiple scattering is the dominant

factor.
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1 Part V
| The Effect of Medium Distortions On the S/N Ratio

of an Optical Heterodyne System

l Fried (Proc. IEEE §i p. 57, 1967) has developed a theoretical formula for the limit

of improvement of the S/N ratio in the presence of a distorting medium. We review here

the conclusions most relevant to our study.

E
k Tet the photodetector be modeled as a circular aperture of diameter D. By use of
L an appropriate weighting function W(_!) for the contribution of each elementary area 45
E ‘ of this circlz the total photocurrent is derived to be
*
2
: (=L §41 W) " (Ea ES(ES»rE.) =1§]>r)(ES+Eo$(a +E.)
S | D
P (V.1)
) i in which ') is the quantum efficiency of the detector, Es is the complex scattered signal
R
v feld and Eo the complex local oscillator field of the optical heterodyne. On the assump-
[; tion that Eo» Eg it is seen that the information-carrying part of the photocurrent is
kot (o= N L E|\E| cos (2magt +ad)
S 4
L«-i (V.2)
;: » ; in which A§= -95' So 5 A¢‘ @,' ‘#o ,an& ‘Eol . \Esl are the amplitudes of the local
;) :3 oscillator beam, and the scattered beain respectively.
i aj Let( be the gain associated with the current amplifier, and Rsresistance of the load
L o N in the detection circuit. Then the time average of the signal in the photodetector is
'!‘ ; 2 12 2
4 E TR T TAGR

, i S=(L3q)R =3 ['3 % EME\ G (V.3)
| g
E-Z ‘ i 86
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For circuit noise fluctuation current LN (= shot noise), the amplified noise is {y q and

the noise power per unit bandwidth is

N=eGqEVE|R

(V.4)

in which € is the electronic charge. Hence the S/N ratio per unit bandwidth is

3 a
F° L2 (|
e £
(V.5)
2
Thus S/N is proportional to the total signal power collected (i.e. I‘['D \E;‘ ) and pro-

portional to the quantum efficiency '),é of the detector.

When the wave field scattered from the medium is random one replaces the non-
random phase Cb by the random phase 45 (x) , and the non-random amplitude lE; ' by
the random amphtudelEs‘ ix F [f ( E)] , in which \E,‘ is the rms value of E (!,) and

l()() is the log amplitude i.e. ,f(x )= ,(M, E (2 /Es| The signal current (5 is then de-
rived to be

L= M) lEJTE:{g‘a\g W(g)ﬂxr[f(!ﬂm[zuft + s (¥) - bo]

(V.6)
The information bearing signal is

et m———

S- (a7 EIEIG)R { ] AW oplitseas (magtrosco o]

v.7)

5- (IENEG)R & §§ch'§’W(t)W(a')f’p(ﬂz)«i(z')]cos [, 00)-400)]

or

In the last step the time average has been dropped because: (1) the average over 4),, vanishes;
(2) the spectra of *b., (ﬁ) and A (ﬁ) are within the information bandwidth of the detector,
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¢; (5\ and /“&) therefore being virtually constant over the averaging period. Sinces 18

)
random one can form the ensemble average{S% In terms of a change of variable, N=x-X,

i - .
- , th
ne= ‘z\ ()_H'X) is average is

<55+ 3y [ETENGIR [[dede’ WO 120040 wp (15101

(V.8)
where g‘(n) is the wave-structure function defined as the sum of the structure function
for phase $¢ (n,) , and ampiitude 3} (h.) ,i.e.

D)= an) + H %) i
3s () = <oy 461>
i) = <[l LAY

= |A) (V.5)
By choosing W (x ) properly it can be shown that

¢S5+ (qlElET QIR Crdu K)oy [ L 360)]

Koy 4 (3 esg)-n(@0)")

D

(v.10)
The shot noise in the detector system is the same as Eq. V.4. Thus the S/) ratio is

<b>/N - 4 "l \E\ Sa ndn Kol ﬂxf;‘.-— &(n)]

1 = ngo (_2‘ ) lEs\ ¥ ( ho) ( V. ||)
Ry, :D. L . ol v
\v(th" n—/;;;{)‘ SD, d Kc(«c).WrL 2.3(} )}

(V.1
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The symbol 1, is introduced for the following reason. A graph of ¥ ("Dh, vs. :D/ho
in log-log coordinates has the following form,

1.0 ’

v @/ra\ ’

0.1 4

" . >
0. 1 10 Dlhe

FIG, 13 (V.13)
This graph is based on several assumptions: (1) both ¢(X} and f,(_)_t_‘) obey Gaussian
statistics (2) the turbulence in the fluid is 1sotrop1c and homogeneous (3) the Kolmogoroff
theory of turbulence applies (i.e. % J‘/‘l , ho= (6 .88 ) i 3()1) 6 986.[)
\99 q‘ usstructure constant defined by Tatarski, “Propagation in Turbulent Media”
1961 Eq. 3.50). From the graph it is surmised that <5>/ N reaches an asymptotic
limit as the apertum—D is increased, and that A, is the smallest D for which this limit is
available, Thus increasing the aperture beyond Ao¢ does not increase the < >/ N ratio,

given the existence of wave front distortion. (See next section for critical comment.)

Fried has calculated ), for many cases of distortion in atmospheric turbulence (see °
his Fig. 8). We note here that for the case: (1) electromagnetic wavelength A %0.5 ‘AM’ So00A
(2) zenith ang]e6=° (3) altitude of receiver H =T kilometers (4) daytime; the magni-
tude of )70 is approximately 0.12 meters (say 5 inches). However in the case of under-
water turbulence the calculation of hg is a subject of further investigation.

Recently, considerable progress has been made in the mathematical theory of the
propagation of laser beams in strongly turbulent media, A summery of deveiopments is

provided by Prokhorov et al. Proc. IEEE 63, p. 790 (1975), where the subject of saturation
of intensity of scintillations is treated in great depth.
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Limits on VAS Imposed By The Inhomogeneities of the Medium

The VAS is equivalent to an array of remote sensors located in an inhomogeneous
medium. The medium imposes limits on its performance. Fried (see previous section) has
discussed the effect of the medium on the photodetector performance for a single sensor.
He concludes that the S/N ratio cannot be i.aproved by increasing the receiver aperture,
once a critical aperture size is reached. This conclusion must be reviewed in light of known
statistical antenna theory. Since this theory is very extensive we focus here attention only
on one key theoretical point, namely on the maximum attainable directivity of a statisti-
cally perturbed array.

Shifrin (“Statistical Antenna Theorv,” Golem Press, 1971) provides a convenient sum-
mary. Let ], (g zl / W) be the directivity of a continuous line of length L located on
the x-coordinate axis receiving a (monochromatic) wavelength A.. Also let ¢( X) be a ran-
dom phase of (normalized) position X= & i/L . It is first assumed that ¢ ( x_) is normally
distributed with zero mean, variance ol (independent of coordinate .:), and correlation

function e+ (\ X'X\\) . The mathematical form of Q is assumed to be of the form

2
()(-X.) % : L4'—"_£_4_‘_

&, ( | A'Xn\) = Q*P i- L; (Lh)

(.1)
in which LP is the normalized correiation length for phase, and f" is the non-normalized
correlation length for phase. The mean directive gain:D is given by

+1
- o [1-8)
D Sg e dxdr
4
— ]
(.2)
Let 9 be the far field pattern angle, measured from the normal to the center of the line

array, and let the generalized angle be defined by ) ”(&LA )/‘“\e =<“: L/h ) Me .
When discussing directivity of an array that sces a wavefront with (Gaussian) phase correla-

§ tion e’ it is convenient to define a function I(L+) P, i%) in which
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H
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3= {1 (:3)

In terms of these quantities, it is seen by expanding the exponential that the mean
directive gain is

<o . L#
D =D [HiZ{% I(T,,-;,»°»°ﬂ

-

(.4)
A plot of D vs 1‘3 /1 for various values of phase variance X and correlation distance
l * is shown below:

45 1 P

5 FIG. 4
oz 10 (Shm—m Fig. 12.3)

A 4 +4 __’
Here, '[ d= 50 M (full curves), [, =j100M (broken curve). These curves can be discussed

in terms of the parameter L‘- L¢ NeC , i.e. the ratio of normalized correlation length of
phase to the standard deviation of phase. Two cases are of interest.

Casel. Let Lb»‘ , that is, the antenna dimension is m1ich smaller than the correl-
ation length l’ . Then choose L.ot>>|. It is seen that D~), . This means the fluctu-
ations of the medium have no effect on aatenna gain. Now choose L ¢<| , meaning that
the standard deviation for phase is very large. Then

= [
D= 3=
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in which ’9 is the mean value of the square of the (random) angle of arrival  (see
Fig.5).

It is seen that antenna gain ) does not depend on the length of the antenna. This is the

region of directive gain saturation. However as the length of the antenna increases the

gain saturation disappears and the mean Cirective gain increases with antenna length with-
out limit.

Case IL. Let L$<4]  (that is, the antenna dimensions are much larrer than the
correlation length {¢ ). Once again, for sufficiently large phase fluctuations there is a

region whereD is independent of length of the antenna. This is the region of directive

gain saturation. When the antenna length is increased beyond this region the gain$ in.

creases with length of the array beyond all limit. >
Summarizing: An inhomogeneous medium limits the performance of a linear array

only over a limited region (region of gain saturation) of array lengths. Beyond this region

the directive gain of the antenna increases with length beyond all limit. The limits of S/N

discussed by Fried in the previous section are seen to apply only over limited detector

spertures. If the aperture is made sufficiently large (according to Shifrin),there is always a

directivity gain for a M standard deviation of phcse fluctuation. Thus S/N can be in-

creased by increasing the aperture provided the aperture is large enough.
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Part VI
Signal Processing

We take a large two-dimensional seismic array to be roughly analogous to the projected
VAS array, and discuss seismic signal processing in a brief review.

Seismic signals are always mixed with seismic nvise. Several methods of processing to
reject noise are known. In the first method (Burg, Geophys. 29, p. 693-713, 1964) both
signal and noise are assumed to be stationary multidimensional random processes with
known crosscorrelation functions. A linear (Wiener) filter is designed which produces an
output that is a minimum mean-square-enor version of the signal. In a second method
\Claerbout, Geophys. 29 p. 197, 1954) the known noise correlation function is used to
design a linear processor for the seismometer outputs which provides a minimum-mean-
squared-error prediction of the noise over a short interval ahead. This prediction is sub-
tracted from the actual seismometer output, thus greatly reducing the noise levei. How-
ever the signal waveform is distorted. In the third method (Capon et al. Proc. IEEE 55,
p. 192, 1967) the seismic noise is assumed to be a zero-mean, time stationary multi-
dimensional random process. The signal is assumed to be a single plane wave propagating

in a homogeneous, linear, nondispersive medium, but is an otherwise unknown time func-

tion. The signal processing therefore takes on the character of generating an estimate of

an unknown time function and uses the theory of maximum likelihood (or minimum-
variance) unbiased estimator approach. The essential feature of this approach is to design

a noise-rejection filter based on a matrix of filter weighting coefficients which are obtaincd
by use of the calculus of variations on a syste'n of equations. Briefly, let there be a totai
of P sensors in the seismic array, and let the noise in each sensor constitute one component
of a multidimensional random process, N = :t. N l(t) + @, Ny @)+ oo +?§é Nptt)
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Assume further that each N{ is Gaussian, so that the total _N has a multidimensional

Gaussian distribution with zero means. The covariance matrix of f_‘! is defined as
Ku (futa) Ku (*»,ta) y ¢ kIP(tutl)
‘< (tl,t}\ * ko I "o : ONCEE

Ko (£,4)

K'PP (tl,tl)
with

Kl'.é (t';'tx)’ g (Ni ‘tl) N1 (fz)]

wheree is the expected value.

Now let the time function of the incoming wave be sampled & V+| times from -3 to
9 , and designate two distinct samples by integersm,m. Then the minimum-variance un-
biased estimator has weighting coefficients 05 ,3:1, 2.. P , determined by solving the
matrix of equations P ¥

! ]

2 2 e} (m Im) K.?k (m,m) + Ayma °
3 oL Y
in which ) are a2+ Lagrangian multipliers chosen to satisy the constraints that

P
2.8 (mln) 8w,  for ol
4!
Thus knowing Ki a , and the constraints, one finds a set of P coefficients 6, .
a.t 1,2 ... P. These coefficients form the basis of constructing a digital filter which

(by its construction) gives the optimum estimate of the unknown time function con-

stituting the signal, simultaneously rejecting noise. The synthesis of the digital (two
sided) filter is carried out in the frequency domain. It is noted that the estimator thus
found is also the maximum-likelihood estimator.

Diversity

Diversity is a signal processing technique aimed at improvinyg the reliability of
reception of signals that are subject to fading in the presence of random noise. To
discuss diversity one requires a brief summary of the nature of a fluctuating channel.
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We assume that there exists in a communications channel many “copies” of a
signal, travelling different paths. Each copy has an identifiable amplitude and phase
which vary slowly with time. At a particular receiving point the instantaneous time
signature of arrival of signals is the sum of two or more sinusoids with vary amplitudes

and phase. This sum shows fluctuations in signal strength called multipath interference

fading. By choosing many different channels one can obtain many time signatures which
differ noticeably from each other, some fading, some flaring up, etc. If these signatures (consisting
of signals plus noise) are widely enough spaced in location (or time, or frequency) as to
be statistically independent, one can combine them in an appropriate manner so as to
obtain better or more reliable reception of the “message”. Such combinations form the
basis of diversity methods of signal enhancement. It is to be emphasized that enhance-
ment is possible only when there is a random character to the received signal itself, and when
diverse copies of the signal can be obtained, or generated, from a single original.
A convenient and much used model of a fluctuating channel is the ‘“‘Rayleigh-
fading” model. In this model a transmitter projects a signal at frequency @k which

arrives at the receiver in the form

e(t)s Al) ess Lwct+ ¢@)]

The random amplitude A(t) is Rayleigh distributed, with probsbility denaity
2
Ala?
pr)= 2A o Ado
a

in which @.is the ,/ﬂf': in an (appropriate) interval T . The random phase is
usually assumed to be uniformly distributed between 0 and 2 with a value T/ .
Thus e(¢) is a narrow br.d gaussian process with zero mean and variance 0 g 0,/2, .
It e(t) isexpressed in quadrature form

e(t)= e lt) oy .t + 6(t) semivt

then ¢, , ec are independent gaussian random variables.
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According to the Rayleigh-fading law the probability that the received signal will fall
[
below A in any time interval fitting T is

P(A) 1 asp(- B)

a
Half the time the signal will be greater than the median An X 0.693G. . A sketch of

various models of amplitude fading channels is shown below:

px)

Fla o

= ¥
In these (see D.G. Brennan, MIT Lincoln Lab.) probability densities, curve & is @Rayleigh

channel, curve b shows mild fading, curve ¢ shows deep, frequent and persistent fading.
We assume now that a number of copies of the signal {or ‘‘message’) are available.
These are to be sent from source to receiver. Upon arrival each copy is assumed to show
fading in the presence of noise of the transmission path iteelf or of the receiver. To apply
the technique of diversity signal processing the fading patterns of the original copy must
be statistically independent. To assure this several methods of transmission are usea: (1)
copies of the signal are sent in time succession as a sequence of pulses. The signal is said
then to be time diversified. (2) copies of the signal are transmitted on different carrier
frequencies. The signal is said to be frequency divessified. (3) Copies of the signal are
received from different spatial locations in the medium. The signal is then said to be spa-

tially diversified. In all cases statistically independent roise is assumed to corrupt the signal.

When K copies of the recvived signal are available they can be signal processed in

various ways. A simple technique is coherent processing. In this procedure the K received

ngnals are sdded, and then squared to form the power. The signal power is proportional
to K and the noise power is proportional to K Hence the improvement in S/N ratio
is equal to the numberK of independent copies available. Such processing however assumes
the quality (good or poor) of all signals is identical. A more general type of prccessing is
to weight each available copy (= Yu(t)) by a weighting factor (i and then add them together
to form ‘(‘). where
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Different choices of Otlead to different processing techniques. If only one Qis different

from zero at any time, one has switching techniques. Trying each dh one at a time is

called scanning diversity. Trying a group of “simultaneously and selecting the best is
called optimal selection diversity. If all the (15. are used, and given equal magnitudes the

processing is called equal-gain combining. If the O*’Sare adjusted according to the quality

of {k&) so as to yield the maximum S/N the result is called maximal-ratio combining.

These different procedures can be calculated to show the 8/N gain of diversity over
signal channel reception. A set of charts have been prepared by Brennan (1959, Proc.
IRE 47 p. 1075-1102) for the cases of two-channel, four-channel diversity, and theoretical
gain for a large number of channels. For example, a typical case shows that ten (fading)
copies can be made to deliver a 10 dB improvement over a single copy when the technique

of maximal-ratio combining is used.
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Conclusion to the Report

We have presented above a comprehensive review of all factors pertinent to the detec-
tion of acoustic phe1omena by use of a laser heterodyne detector. The principal problem
in proposed _I:Iaﬂ 2pplicetions of this technique (as replacement of standard Navy hydro-
phones) is the very small signal to noise ratio in a single beam. This limits detection
threshold in noisy environments to (a few) orders of magnitude greater than the thresholds
currently available to the Navy. However, ~onsiderable improvement in S/N ratio is fore-
seen in the proposed use of multiple beams (i.e., “diversity’’). The gain is anticipated to be
proportional to the number of beams employed.
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APPENDICES

Two Beam Interference
Dimensionless Wavenumbers and Optimum Scattering Volume

Optic-Acoustic Interactions

Thermal Modes of Fluid Motion

Brillouin Scattering

A Case of Scattering of Sound by Inhomogeneities

Volume Scattering Due to Perturbations of Fluid Density
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Scattering of Light from Particles Suspended in a Fluid

-
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.

Intensity of Scattered Light
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Appendix A

Analysis of Two Beam Interference

Two point sources of light separate< a distance d in a dark screen superimpose on an
observing s reen at dutnnce2 The total field at point ?(X) in the observing screen is
EP“ £ e"Pé["ﬁ' Ke n-04(1)]+ Ea 2 ey [wt-Ki T 440 )]

(A1
u"mme (| F.x El’ E._ )
2y o) = e(t") ~1
= il =t N re|n
then G)al-inl=ar,  ar«inl, ar«inl
! R
EP =2EC C’S(—:-F'g-) (£.2)
Now let the angle of intersection of the two beam be 0. Then
%' 1eind (A3)
so that
Ccos (2T a0 Kee Qe
'QE“wP% 1)’ Ke TG a9

The intensity atPis T', given by ‘
I, = 3 ck.E o W(“' )
i cKo Ee. {H coy 2(‘-1‘-"!“«2)] (A.5)
e €' D4 a.nJ(x;] Xn 4 an
in which Ke is the dielectric comtant., andc ca,
If the sources have finite width QQ the projectior of which on to a plane normal to
OP is % and if of is the angle enclosed by thenyntromo nndQ'then a path difference
$ is introduced, as measured form origin 0 at the center of the width. The phase difference
; K;‘;. Eq. A.5 constitutes the tasic formulation appearing in George and Lumley's
model, Part II of this report.

o

wl@
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Appendix B

Dimensionless Wavenumbers and Optimum Scattering Volume (Gecrge ard Lumley loc. cit).

e

The symbolV' is the Kolmogorov microscale ( '] (73/6) s ) and has the dimensions
of length. The symbol o s a frequency, appearing in ti)e spectra for velocity, phase etc.
The symboli. is the mean flow velocity. The symbol *. is the dimensionless wavenumbcr
for which the ratio of turbulence to ambiguity spectrum is unity. By definition

ho= %0 (B.1)
Thus if k =].0 the mexn velocity W is equal to the velocity of the fluid of displacement
equal *o the Kolmogorov microscale multipiied by frequency Yo.

The symbol &y u (3%¢.)" where 0 is the size of the scattering volume in the
x-direction. The symbo} ﬁ,r, =L is thus 2 ratio of the §olmogorov microscale to the

“x-component of scattering volume.” The statement that k‘ is optimum when

ke 221 0\
" Rued) (Jso‘. Igr (B2
@)+ A (Bemed)”
*t hay 3 (B.3)
in which the Reynolds number is
‘)a - Ez B, = K'Io
S ova, € (B.4)

The symbol My = (&Kﬁ where (7 is the size of the scattering volume perpendic-

ular to the flow, but in the plane of ¥,  For smallf ,

me 2 by an®i /c‘o.% (B3-5)
Thus,
. Q ‘ V,
"f* 1“# _,i_ * a7 —l) (B.8)

The optimum volume of scattering chould be determined by this formula.
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Appendix C

Optic-Acoustic Interactions

Optic-acoustic interactions are reviewed in Appendices C, D and E.

We consider first a nonstationary medium in which the time-rate of change of the
index of refraction is much slower than the frequency of the electric field. In symbols
(%/be";‘) < T_‘ where y is the index of refraction and | is the period of oscillation
of the electric field. Now let the change in index (= Mg) be caused by the passage of a
soundwave, i.e. caused by a change in mass density. Thus when the scund wave is present
the instantaneous index of refraction (=m) is the sum of the unperturbed value Mo and
the perturbationm.. In the absence of true sources the propagation of the electric vector
E is governed (to quantities of first order in M ,]by the lingar wave equation

9'E - o) 38 Lo, - LK @)
= T ey ! % (C.1)
in which terms of order M have been omitted. The perturbation in the index of refrac-
tion/m, is proportional to the perturbation in fluid density f, , i €

m) \
"o = 79: (C.2)

thus we write the wave equation for E in the form
2 2
v’E_‘—ag _JP' _‘. .a..g.
= G ar* § ¢ ot (C.3)
The transit of the electric vector in the mediura creates a mechanical body force f;
-3
(dimensions: NM ) which acts as a source of acoustic pressumf; the propagation of

which is governed by the equation

2 _ 13 . F
Vp-qm, Ve ke

Now the acoustic density is proportional to the acoustic pressure, and the mechanical

stress is proportional to the electric field. We write 4= K, 7, fE = Kt E .
Thus,
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2, _ 120 Ke
Y ?, = Es‘ —-—-; — Y (C.4)
ot Ks
Taken together we see that the waves of density and electric field form a coupled system
given by Eqgs. (C1) and (C2). Retuming to Eq. (C1) we let =6 ( X %) and seek a
solution E (X,‘t) by Fourier transformation of the time coordinate with zero iniuial condi-

ticns,

(4RI E(rw) =(3 ) (1)0) # (‘%’;:)E )= Qu0) -

in which » signifies the convolution operaaon. The symbol Q(g,w)ducribes a
(fictitious) source. The electric field at any point is obtained by the use of the Green’s

function for the infiniie domain

E ()= § Qlee,0) Qo (1,1)dKe
Xe

(C.6)

This formula is an integral eq\:ation in the scattered part of the e'ectric field, the scatter-
ing itself being due to inhomogeneity in mass density of the medium. A few important
applications of this formula to the interaction of acoustic and electric fields are discussed
by Morse and Ingard (Chap. XIII). They are (a) the Debye-Sears effect (b) Bragg scat-
tering (c) Brillouin scattering. These topics are briefly riviewed here.

A. Debye — Sears Effect

Let the perturbation of the mass d-..sity be due to a periodic progressive ultrasonic
wave travelling in the positive x-direction. The harmonic frequencies are dvs‘m) , and the
wave numbers are k(;)) m=1,1 - .... Itis assumed that the width of the $ound beam
is small.

Now let the incident light be a monochromatic piane wave, §= Eg cos ( KE X ‘.Qf)

where K =(2 cotert g cospekcay) K| 4,87, being direction
cosines, and K = {1/, . This light is scattered by the “grating effect” of the periodic
ultrasonic wave. Choosing for exampie then n'th Fourier component of this wave, and
writing the mass density as sinusoid; ) -

»{;- < q cos { Rox - t)
one then seeks a solution to Egs. (3) and (4). In general the solution process is difficult
to carry through. Approximate answers are obtainabie by the following procedure. First
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it is assumed the perturbation is so small that the electric field in the source term Q
(X,W) is effectively the incident light. This is the Bom, or single scattering, approxi-
mation. Secondly it is assumed that the width of the sound beam (= 2L ) is so small that
multiple reflection (as from parallel layers) is negligible in establishing the scattered electric
field. Thirdly, both electrical and mechanical fields are taken as 2-di;nensional (i.e.
coordinates x, z), so that Kg= { Kﬁ /Q, K; and \KE\2= K“-} K‘_ . Thus using the
2-dimensional Green’s function (i /4 ) \-‘g) (lK; I J (AR (;.g,} , and taking Eo
to be parallel to the y-axis, one arrives at the following approximation to the scattered
field due to the n’th harmonic components of the periodic ultrasonic wave,

=B pim [ KoL - (Qra)e] + B pun] Kor - s)t] €)

where M
V(IM)Eo aon T(QL/,,)COSGG%B ]

c(Q 3“’:)““%(“)’ (.Ql./c ) e 8 a2 35"’: (C.8)

Ke - :.&lxms (O “”)szG -

") e
%xm O [KF | an® 25 ws% / J- 6% (C10)

(‘h)t
The symbol §, ~ is the angle of scattered light.
P

In words: each Fourier component of the periodic mass density perturbation induced
by the ultrasonic wave scatters the light (incident at angle b ) into two plane waves
traveling in directions 6(;“)' and GM) respectively where
2 Bw)i - ’KE"“"& + k)__

"o (Q* Py © @* o) (C.11)
When @“:) << _[ )‘ (as is usually the cm) the -cmcnng anzles are given by
Aun 0. 2 anb > (C.12)
Let )_ . be the fundamental component of the sound wave, and 4 the wavelength of
the incident light wave, then

My A
pinby = b = (€.13)

As
Thus on each side of the direction of the incident beam will be found two diffracted plane
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waves for each harmonic of mass density appearing in the periodic ultrasonic beam. The
frequencies of these waves are 1¢] +ma§ (“up Doppler”) and.Q —m% (**down Doppler”).
Their amplitudes are proportional to the amplitude ”h) of the n’th order harmonic of
the ultrasonic wave (which diminishes with increasingm. ). For an arbitrary periodic dis-
tribution of mass density a family of plane waves vill appear in space distributed in angle
according to Eq. (6C). These diffracted waves maxe up the Debye-Sears effect. It is a
notable feature of this phenomenon that the diffracted waves appesr for any angle of
incidencef .
Bragg Reflection

A plane wave train of monochromatic light (wavelength AE) crosses a plane wave
train of monochromatic sound (wavelength) s) at an angle of incidence 0;. The sound
of train constitutes parallel layers of density from which the light is reflected. We con-
sider three wavefronts of gound at phases 0, 2t and 4 1t radians (that is 2 )Elong), and
a single wavefronts of light at zero phase. The light is first reflected by the zero phase
wavefront of sound at an angle q In order for a second reflection to occur tte light
must reach the second layer, travelling a distance d; It is seen that d! must be equal to
or less than 24, Thus the angle 6; is given by

A 8L = %‘ (C.14)
Now we choose AE to beA'(one wavelength). This sets the requirement that the second
reflected wavetrain be in phase with the first reflected wave. This is equivalent to the
geometrical requirement that the wavefronts 1 and 2 be reflected into wavefronts 3 and

4 shown in the Fig. C1. This is the Bragg angle requirement that

o 0 2
A 22 (C.15)
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For given Atand 7\} it is seen that only one angle will satisfy this equation. If we set
6,‘_ = 900 the light is reflected exactly backward, provided the wavelength of light is twice
the wavelength of sound. In going from wavefronts 1 and 2 into wavefronts 3 and 4 the
light wave is scattered through a total angle e. =2 Q However the wavelength /| is
created by a wave moving at velocity Cs , and characterized by a frequency f, = Cs/ Rg e
The frequency of the light {, = CVA.u thus Doppler shifted by an amount ii, that is,
by an absolute amount, 5

Gs = 2&%4“;‘ Py (C.16)
This equation gives the spatial and temporal relations between all the vrriables. If, for
example, we are to observe reflection of light from a sonic wavetrain at “scatter” angle
9' then for a selection of frequency of light .g g We must employ a frequency of sound given
by the above equation. In a typical case (Morse and Ingard, p. 819) {-Eis taken as 1018
Hz, Cgas 3 X 108 Mg and , 35 10371, Then the observation of back reflection
(at Bragg angle 180°) requires an ultrasonic frequency of some 1010 Hz. 1f { is less
than 108 Hz the reflection angle is very small, that is, the reflection is very nearly in the

same direction as the incident wave.
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Appendix D

Thermal Modes of Fluid Motion (Ref. “Theoretical Acoustics’’, Morse & Ingard, Chap. XIL)
The generation of acoustic pressure { and the diffusion of acoustic temperature T
form a coupled system, described by the equations,

p- of.-'o = - doT (D.1)
vz“[ - £}T’ fg ‘f‘ (D.2)

P [ade
£ (-4

L 9

foe g s

,‘f" (%)% H B K

LR R brre s s [“'F%

Here, Cr, 0, are specific h2ats at constant pressure and constant temperature, 7 is the

in which

bulk viscosity modulus, ’ is the shear viscosity modulus, P is the coefficient of,the\'mal
expansion, K is the thermal conductivity and Ky is the bulk (elastic) modulus at constant
temperature. Eqs. (1) and (2) are acoustic equations. A more general equation of fluid
dynamics is the Navier-Stokes equation,

e Bgz-tl-’; - -W-P + (q+%}t)vz_l_l,r

f’a.t‘ﬁ.s -HM(W\"E#)

(D.3)

(D.4)

in which u‘ and ‘u., are the longitudinal and transverse parts of the fluid velocity.f s
the acoustic pressure, e is the equilibrium fluid density.
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Three species of fluid motion are predicted by Egs. (D.1) thru (D.4). These are (1)
longitudinal waves of acoustic pressure t, {= Eq. D.1), (2) transverse shear waves (= Eq. D.4)
(3) thermal diffusion of temperature {= Eq. D.2) which then gives rise to acoustic
waves (= Eq. D.1). We will discuss thermal motion and the accompanying thermal modes
of sound generation.

In the thermal mode % T is very much greater than P The diffusion of temperature
in this case is given by Eq. (2). To apply this equation we first assume the acoustic pres-
sure on the /::ﬁ.s is negligible, and take the temperature pertubation to have the space and
time dependence of a piane highly damped travelling wave, T €C Lp ¢(k-r-@?) . Then,
to first order,

2 2
v = -k (D.5a)
%'% =T (D.5b)

From Eq. (2) it is then seen that the elfective square of the wave number is complex,

-( z:' LW
Fs (D.5¢)

The acoustic pressure correspondiag to this diffusion of temperature is found from Eg. (1)
in combination with Eq. (5a), (5b), and (5¢), i.e.

P~ i_‘%‘ét’ (L-£,) (D.6a)
The effective perturbation of pressure is not this f alone but the combination f- al.
The term o{T" describes the reduction in pressure due to heat conduction (i.e. describes the
departure from the assumed adiabatic condition of wave propsgation). Corresponding to
wives of acoustic pressure are waves of acoustic density f, which to first order are related
to each other by the formula f-e(l -Q‘ﬁ or
/
§s p- oW ([i".'(f.)r - o (D.6b)
c Gy C‘,2

The perturbation in fluid velocity associated with thermal motion is found from Eq. (3)

by neglecting the viscosity term on the ﬁ-‘~s since this term will yield only a second-
order effect of termperature on velocity. Thus one finds
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Yy = g-‘c— (IK-&;) Gracl (D.6e)
]

The set of equations comprised in (5)-(6) form a convenient description of the thermal
2
mode of fluid motion in terms of the parameters 'C',P,k ,§, and 14' .

Decay Rate: of Temperature and Pressure Fluctuations

Assume the modes of motion noted above arise from random fluctuations in pressure (AP)

and termperature ( AT). Temperature fluctuations decay at the rate

K9'(aT)=¢G bgiﬂ
(D.8)

Assuming the spatial dependence of AT has the form exp t' g_f‘, we reduce this equation
to the form -

a_%?) = -P (AT), /Gs P—% g’ (D.9)

Hence the time decay of (spontaneous) fluctuations in temperature of a fluid follows the
law ATuc exp ( -pf). in which F is the temporal decay constant.

Now let there be a pressure fluctuation (spontaneous) of amount Af(‘_t ,f)whose
spatial dependence is cos g 1‘, %* %’ . Thy mode of fluid motion if found by solving

2
Vp- I,P =0 (D.10)
for the complementary solutions in time. The result is

.ot
ap (rt)e * (c,.s (i-_rfqt)'ra:f(g'_r -‘*W-J (D.11)

which describes .wo waves traveling in opposite directions (at angle l% +[) at frequency
l0$ = %CS where g(h)) satisfies the dispersion formula obtainable tro; (D.10). The :m-
poral decay constant is
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which is also obtained from the complementary solution of (D.10). The time t= g( will
be called the effective life time of the wave,
Under forced drive Eq. {D.10) has a forcing function F(Lt;&)on the 5§ Dy Fourier

transformation of time (vnder zerc initial conditions) the acoustic pressure is seen to be

given by

(D.13)

at (=), the lifetime of @, (ie. its effective influence on the spectrum of 16{5 ,@ ) is o
order d_'(dimeusiom of seconds). The bandwidth off: under forced drive is therefore

of order o—}-., , that is, of orderof.

In sum: Spontaneous fluctuations of pressure are propagated as damped traveling waves,
and spontaneous fluctuations of temperature are diffused as critically damped wavss. A
spontaneous spatial sinusoidal distribution of pressure at wave number % propagates away
as two damped waves in opposite directions at frequency &= SC; Each propagating acous-
tic mode is associated with a propagating mass density. The mathematical form of these
damped waves have the same form as the forced drive of a damped harmonic oscillator
(Eq. (D.10)).

We next consider the interaction of light waves with mass density fluctuation associated

with thermal motion of a fluid. Let A? (I_t ,%) be a spontaneous fluctuation in mass density.

Choosing (us before) the thermodynamic variables the pressure and temperature we write.

A Al
\ai. P (?E (D.14)

We consider the effects of temperature and pressure separately. We first tske the spatial
Fourier transform of the pressure and temperature fiuctuations, and write,
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Splht)s [ aping) e Tdy (0.15)

|k'
AT (k) = g A'l'('lvz,t)et~ ra(é ( D.16)

where the volume of integration is finite (as it must be in any real case). Treating Ap as
a random variable we next calculate the temporal autocorrelation 'Rp Qx ,'l‘)of the pressure,

R (k, 7)= < ap (b ta7) A; (kt)> (D.17)
in which the symbols ¢ represent a temporal average ( = integration) where the integration
is over finite time. The intensity of the pressure fluctuation is obtained by setting7=0 .
Similazly the autocortelation of the temperature fluctuations is given by

R kit)e ¢aTlk, t+0)aT*RO)>  (pis

Assuming further that the pressure and temperature fluctuations are uncorrelated we can
find the autocorrelation of mass density P‘,( b‘é) by addition, i.e.

K. (k,¥) = @:)?RP (é*?)*@?J:E(é'?) (D.19)

From previous analysis (see Eq. (D.11)) the temporal character of a pressure fluctuation
has been i*;volved as the response of a damped siiaple harmonic oscillates for each wave-
number k’ , and associated frequency b)sr "fs C‘, . Thus one can write
_wit]
?p (k)= LA Q“,O)C it

(D.20)
Similarly,

R lht) = Bribo) e B0

(D.21)
These forinulas will be used in the diccussion of Brillouin scattering (see Egs. E6, E7, etc).
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Appendix E

Brillouin Scattering (Ref. “Theoretical Acoustics™, Morse & Ingard, Chap. XIIL.)

The interaction of light waves with inhomogeneities of mass density in a fluid hus
been discussed in Appendix C in the case of Debye-Sears effect. In the present applica-
tion the perturbations of mass density are assumed to be due to changes in pressure
and to be spontaneous (i.e. random). Let AP(I‘ f)w the random fluctuation. in pressure,
Its spatial Fourier transform AF(E f) is given by

o (har- { apit)e B

(E.1)

where

ap (k) = j Ak(f)f)e"&.rd}/é n? S
Assume the volume V of pressure inhomogeneities to be finite, and assume the incident
light to be a plane wave Et'z Eo ,gyr,i, (K[o :{29. Using the Green's function for un-
bounded space and approximating the local electric field by _E" (=Bom approximation),
one formulates Eq. (C.6) for the scattered wave by

Es(é,(pé‘l(.%)' gdfg AroS\d’L AP(le f)e '“' L_-"C_;D__

ckep it (E.3)
'] eL gl ¢ G (-r)f IG )io)
in which the dimensions of C, are meter-1 sec~1, and
- | to n t + !g:._"}.l )
C1 - S ( ¢ (E4)

41 |p-ry|

K . ro ! ] ]
In the far field \C- ol 2% and} Ol 2 A~ o awhere Kz K| . Per
forming all mathematical operations on (E.3) one arrives at the formula

! : -'-'_\t
E (n, -K RIE ('t. E_QL/ AP(K-I'\')t)eLK‘t (Al

cp anr Gt - (E.5)
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in which we have set ~‘l= !_( ‘,g . Now the intensity of light waves (] ) is given by the
Fourier transform of the time averaged autocorrelation of Es , (brackets indicate time aver-

/
Qr

age, or dmsxon, by time interval),

I ("-; 8 K -n-) S\AT < E (I'-)K K HT) E & K K )¢)>€L
woo 4 EQV\2( Ryl KK (@, ®s
- i (?’P (== f Rupl koK), b

4naC*’ Jo. @

in which @ is the effective duration of the pressure inhomogeneity. The autocorrelation
of intensity of pressure has the same form as that of a damped harmonic oscillator, &s
noted earlier, (see Eq. D20),

! d'l"
Rap (R-K,2) <Rap (K- K0)€ gt
“5" K ‘Cs =0
Thus, the intensity of the scattered light is given by
2
I, (5 K-K,Q)- ) A (5“ (R, (K-K,0))
P - (3f’ S \amr G ).);P'_ ) (ES)
(e cm»;t' e‘(nn
The integral is standard. The final result is,
o K-, 2) E(Ml E.S). 'V )(13, (k-K,0)
@ 7{-’
° (E9)

o

{ L4 [n (Q-os)) d:[; 75@1

In words: the intensity of scattered light in the direction l_( =K at distancep due to

spontaneous pressures in a fluid is the sum of two contributions, namely, the two

!
Brillouin lines. The first line is at frequency {1 [L* 4, and the second line is at
)
a : :2-05. The bandwidth of these lines is & , and the corresponding lifetime ic o .

When mass density fluctuations are due to fluctuations in temperature a similar
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mathematical treatment leads to the result that

e
IAT O‘-)K".K)-Q)=—i gﬁ) (EonV \ R_i,- (!Ik)o} g i
e*\ar A e 1@ F" (no_' ﬂ) (E.10)

This is the scattered Rayleigh line which appears in the direction E "K , centered at fre-
quency.. (= incident frequency) with bandwidth 8 (or effective lifetime of ,8" e

The total intensity of scattered light is the same of scattering due to pressure and
temperature. However, by using an appropriate equation of stato relating pressure per-
turbations in the fluid to temperature perturbations one can reduce all Brillouin scatte:ing
to thermal motions of the fluid.

The intensity of light derived earlier was expmsed in Lorentizian form which is
e ‘ivalent to the form of the response of a simple harmonic oscillator to a random. exci-
tation. An analog of Eq.(D13)is the RLC circuit with forced E  (volts) at frequency
'F. For a random emf the random current is given by

. k)
gy = <hy , w= ¢

R4 (Lo LY (E11)

Now if the random em{ consists of fluctuations in the resistor R (= thermal noise) it was
shown by Nyquist that in the small frequency interval batweent , §4afone has

b 3
¢E> - 4RETaf (E.12)

in which k- Boltzman's comtant'T- abeolute temperature. The mean square current
accompanying thermal noise is therefore

' 2 - adef o :z —L
‘ts E ( L )I.e(:"'k(w" %):1 ) W, LC,

(E.13)
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Here & = R/2L and ot~1 is the effective life of the fluctuation, kT is energy per degree
of freedom and kTA'G is the power in the fluctuation.

Instead of an electrical problem one can consider a single degree of freedom mechani-
cal system of a mass M, spring K, a~d viscous resistance R. The equivalent Nyquist for-

mulas for random (spontaneous) noise in the system are

<Flt)y « 2RRTE

(E.14a)
in which F-is the force impulse (Newton sec) which operates during time ¢ sec, and
<y < 2 kTt (E.14b)

R

in which x is the amplitude of free Rrownian motion in time. Thus,
a
<Flasy = aRRTo4 (E.14c)
is the (time) average of forces with frequencies between '5: and f# Af. In words: A
system at temperature T exhibits 1.andom impulses during any time interval t, the mewn

square average of which is given by Eq. (E.14a). These impulses .ot on an extraneous
particle causing it to undergo Brownian motion. The motion is damped by viscosity.

Experimental Observation of Brillouin Lines

Brillouin lines are observed by high resolution spectroscopy. A modern technique is the
laser interferometer. According to Eq. C.16 the shift in laser beam frequency 4fe / §g due

to the velocity Cs of the acoustic wave generated randomly by the Brillouin effect is

lAg' = "B . 4%g
— Sino —
2 e
in which Q is the :peed of light in the ﬂuld and },. is its wavelength, Assummge l&,
cls=1£'>x10, C! 226x10 Ms (mwnter),ltuseenthlt
-8
4—}—“ |-5 » "-J
Ag
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The wavelength separation A)‘depends on the laser wavelength tu be used. Let XE =3,80x /o"

™M (in water). Then
-12 . )
ang =510 M=x o.08 A,‘ ACF_" 'gs =7.6r10 Hz,

This is the magnitude of Brillouin effect that can be detected with visible light.
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Appendix F

A Case of Scattering of Sound Waves by Inhomogeneities

Let there be a region R (in a fluid) in which the change in compressibility is de-
scribed by the factor Yy (h,t)

e Q_!,’”’ éé sy R
o  oulsdeR (F.1)

The acoustic pressure satisfies the equation

3
V‘ - -L a_.E. IS _L * al
PP o o Pt )35 -

it
Assuming ?(r,{): r(r)c , and using the Green’s function 3w(dfo)(or unbounded space,
it is seen that the total field is

Pla ) pilr )t fila)
e (R g M

(F.3)
in which kir-r |
g (hley s Lo " =7
- 4n L6l
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The scattered field is
& -Lé;‘\r 3
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4tk

Using the Born approximation we set the total pressure P{ﬁo) to be the incident pressure
ﬂ U‘) . Let the incident beam be finite, and choose its form to be

‘P; (Ifo A(ro)ﬂf (k r")

Then,
. (k- k)b
s(x )- l*ie‘“fA(:o)v;(n,f)e‘ d’.
dnn ) ~

(F.6)

If the inhomogeneities are in the form of particles the volume integration can be replaced

by a sum,

2 L‘ﬂ. L(k “k) o
Ps(h)= 14—-k = ;'Xk hom*)c av(%.) (F.7)

4T N o

Finally we allow f;‘ to be a function of time, h.‘('). We see then that the incident
wave is phase and amplitude modulated.

When there are many scattering inhomogeneities we write
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2 ;-
ts (1 )= ke Z S A 6N Y (Gn)e J

anr m

The value of the integral depends on the size of the scattering volume AV(@,..) relative
to the wavelength of the incident wave, As () V(@m)«)j , then the phase func-

tion (given by the exponential) is constant during the integration process. In this case

(Rayleigh scattering)

'k}l '(é?cl"'és)-';m
= klet s, S e
5 anr ,,Z 4 Pls.) (F.9)
where,

Plra). | AG)T0)dE
‘ (F.10)

Y A Ve A V@),
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Volume Scattering Due to Perturbations of Fluid Density

L W —

In volume scattering due to perturbations on mass density the scattered field obeys the

wave equation

2
Ve . L 9E 220 | JE
= v i il (G.1)
CE a{; ea CE a{‘ '

Now

s b G )

Zo’ & an ] (G.2)
in which AM represents chemical (= mass) concentration.
Consider only mass changes, (4 ve(ﬂ). Then
2
3 E
VlEs - -‘- = R0 oM oE’s (G.3)
ORI kam> G35 T 1'%
Then let
- Lk.r 3
= Rt)e ~"dk
aM (r,4) 3 aM(kt)e k e

Assume next that the electric field E on the n. ¢ is the incident field Eo #» c'l_ Kr -Jlt]
.l
and use the free-field Green's function (%m )( ir- rl) ¢ (#,- t+ - rel/c ) to solve

the wave equation. Thus

. U! ‘.o
E, ()= § g (r ) G, L, )

(G.5)

or
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As before, assume |(_n,( ~x h (E /K fo 'K l K- Q/C. Integrauon overIL

gives

ko 3
Es - c;(‘ﬂ)e.,(an} Jartte e 4% @

E

(k-0 “’Z*QQ;?]AEO

ko
E, (n,t) = 2(28 aMlka)et= g%
(r,t) é;(an J.(n)f )e

(G.6)

Now of the volume V(': o)is large enough the integration over ’G is an infinite integration
over an imaginary exponential which yields a delta function

Thus
, s Ka-Qt
£, (rye) = RV &<3_3.)P gm(f,f)e‘ L (G.8)
anrc? § \IMky

(G.9)

The m.tt.ocorrelat‘.ion?£ is

Re ) < E(t41) E @)

dimensions: feld2

or

Re )= Eaﬂ V) ?o(BHL) ¢aM( K -K t)AM ()( ¥, t'h) (G.10)

Mh (‘E

The value ?E (0) gives the intensity of the scattered electric field. The power spectrum
by
lE Qu)\ of E3 (dimensions: field? x sec2), is the Fourier transform of Kg over the

121




.y

S

WAL NS

F e

e r—_n TP

finite interval T,

'E(.Q.)| § Re (t) e g
1

CE 2 1 Th

= e @) (E@_‘i )&a@” ] f CAMK*K 2)am (KK trt) ot

4m(.‘5’
I3 (G.11)

Now the spactral intensity density m(Q'))f the electric field is the limit

Tt (2') « Jrn 1T (@) (©.12)
T T

> (G.13)
o(?' (dimensions: field2 x sec)

!
Ir words: If we observe the scaitered electric field in direction 5"_‘.( as a function of
frequency ‘ve can find the autocorrelation of the density field by Fourier transformation.
Alternatively, if we know the autocorrelation of the mass density field we can caicu-

late the electrical spectral intensity density (direensions: electric tield2 x sec).
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Appendix H

Scattering of Light from Particles Suspended in a Fluid
(Edwards et al. J. Appl. Phys. 42, 837, (1971)).

The scattered electric field E  is given by

1 (') -0t
Eopyt) = Bolle 1) {au(pe)e ™
‘ f’)mﬂ )

!_ TR Nk

! )
i LKh
| X e K d 3£ °
) Let us now consider individual scatters rather than a continuum. To do this we replace

the volume integration over /1. by a sum over individual scattering particles, i.e.

1y

s ('.")t)z A g AM (GM'*)QXF - [('K-!’() -_R,M-Qt] eliﬁ’ex(zgg):: electric field )
‘ acoustic pressure

kk %
A= Z.E:".@S)P e_ e (H.2)
& \GMAT N 4nce

in which AV is the volume of a scatterer. Furtherinore let us take the location vectors
,ﬁ” to be functions of time (namely we take the particles to be in mc.on) and write

Pom (1) = Aoy (o) + AT, (¢) + VT

‘This reads: the n’th particle, initislly at [...(o) moves 41, (t) in time " relative to
the fluid, which is itself in motion with velocityV.

%
The density perturbation AM is a function of space and time. Let us take an
arbitrary time to be the origin, and write
€y, 00 = AZ 4M ety 0)oop ¢ [(5K) B o )
” (H.3)
E.. 1 123
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Also, at time t

£y ()= 4 2 oM[50r at, et gy ([0
: (Ce'n“) + 86 () +¥8) ) orpl-i 1) AV (60 )

In this analysis we require the intensity of the scattered electric field. We can ob-
tain this by use of an autocorrelation function %ﬁ), defined as

(H4)

Rett) =« E (0,0) Es(r1) >

(H.5)

in which the double angle brackets indicate ensemble averages over (1) initial position

(o (0) ; (2) random displacements A fb,,(‘t) . To form an ensemble average over initial
position we introduce (see Edwards et al) a probability?; (!'8 (0)) per unit volume that a
scattering center will be found in volume V . To form an ensemble average over displace-
ments 4 Ew(t) we introduce a probability per volume‘li( A(‘%&)ﬂ‘) that the n'th par-
ticle will move &f, units in timel. The autocovariance of the scattered field then

becomes

vy
Re () = - AAR. € jZ? (Afo»..(t)'t)ﬂnf;-LL(k K) ahion @]

(H.6)
: (B, (r,.m)).x‘,_L [(K-¥ ) v ] aM( m,.[a) 0) AM (fim (04 & 150 (1)
* VT') d r."‘ (‘) d Ar‘,.‘ h.) [gv e (?)] {dimensions: field2)
We note that only one sum onm js used in the productzz required by the definition
of ? since the contxibutions m#m all vanish in view of the assumed statistical indepen-

q} dence of the scettering centers. This equation can be written in another way by defining
. -:‘ an autocorrelation function for the density,
b
4
s 3 -
' 3
AU (G0} 4 8Vonie) 447) ] ' fon(6) [ OV {fom)]
(dimensions: acoustic
Thus, pressure2)
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Re (¢): AA*@fi = SZ P,,(Armh),r)exla - [(/j-_k’).‘_f_r” ()]

P&H ( Aroka)*‘ VT) exrg By (’(‘k ) V’t‘ o( AYAM (H.8)

2
The power spectrum lEs(D-,) ‘ of the scattered field is obtained by Fourier transfor-
mation of ?g (t') over a finite interval | ,
Th J
N L QT
|5 @) - | T @) e

~TA

(H.9)

4
The spectral intensity density J/‘ £ (Q )of the electric field is the limit

T (R') = M =z le@)l {7 Ree)e'™

(dimentions: electric ﬁeld2 X sec)
In words: a time record of the received signal observed in direction K_- __' is used to
form an autocorrelstion function Ke () where 7 is the time shift. After Ka (t)is
formed we then setT-0 to obtain the intensity of the received electrical signal. This in-
tensity is a function of the autocorrelation of the density field. In the absence of an
acoustic signal the autocorrelation Rg ("I)Will correspond to the auiocorrelation of noise.
The ratio of signal power to noise power will have the form

..S.. = —KE (O)Aﬂ_.
N ?g (°)N (H.10)

if we set a threshold S/jj=j , we establish the minimum detectable intensity of elec-
tric signal as,

Re (2),0 = Fe (o)

(H.11)

The funch'on_&([‘)is an amplitude weighting of the laser light,which depends on

the position of the scatterer relative to a characteristic size (or dimension). For example,

if the characteristic dimension is Lc and the position i) Lc then we would expectP to
be very amall. The vector position} is a function of time. If V is the velocity of the
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fluid then _Ytis a component of i . Hence P(r) = P(x(t)).
Now the autocorrelation -Eg of the scatter field is

Re (A¢)=® << Eg(k,0) E (kD) (H12)

in which ¢ ) means averaging over (1) initial position of the scatterers (2) over dis-
placements relative to fluid (= random deviations). Let Q ( art (4 ) be defined as

Q (ag+yt)= cond: _S(-K(F(O)YP["“) +ar+vt’] (H.13)
exp (<i o yt)dpo)

If one selects 4 (spherical) finite volume as a model of the collection of scatterers and
writes

p3
I S
AT L I
2 (k) ety e (H.14)
then (arar) _c(Ka)y

(H.15)

The nﬁo’ﬁ %' gives the residence time of the scattering centers in the sample volume.
The effect of random displacements is expressed in the Ay dependency, conjoined with a
probability f\mcu'one, (A r,‘t)which shows the probability that a scattering particle has
moved 4 in time? . Thus the generalized autocorrelation <2 (A,_I‘tw,',é )5'4 )

_LQ-,AJ*
2 (ar+vr, k)= ?n(Af,t)Q(“:»“—":Ue (H.16)

(the mirus sign in the exponential is derived from the conjugate electric field). Thus,
for a continuum of particles, the autocorrelation function is

3
Re (£ 1) = ot § 2 (Ap»yr,,g) J Ar (H.17)
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The power spectrum S(_k,ﬂ)l then obtained by Fourier transformation

S(h,w) = gb""we E)e

(H.18)

In words: The detection process for measuring the scattered electric field is modeled as
a harmonic oscillator, frequency KV , damped by two terms Viz. the AF effect due to
random motion of the particle relative to the average motion of the fluid, and Y% effect,
arising from finite transit time ¢f the particles in the scattering volume.

Specific Example

Assume the A¥ effect can be modeled on the thecry of the random walk, i.e.

ary
- T

Po(ar )= (H.19)

|
3
(4D )"
in whichD is the diffusion coefficient of the particles ir the fluid. Choosing the ampli-
tude weighting functionRto be given by Eq. (H.) (in which a scale size 0" is specified)
it is seen that the power spectrum or the scattered field is

S(k w)e et % i ‘(wa - kY" Ti (Z",;ﬁ.)ab

ar (Arwﬂ _ckea

(H.20)
e ggw e ¢ d%u‘)oh’ “

We first allow Y to be zero. Then, using the convolution theorem for Fourier transforms

one arrives at

S(K,w)= cont: (e g ;x‘,[ (w,,-w)f;”‘ ex',l_u.k)—p,.
_ ke Ay .

An appmx.imau spectrum can be obtained by expanding the diffusion term in a Taylor
Series about K o , and then integrating. The result is

/s 3\ (vnatn) }
S (K@)~ @t )““""“ * .4/}(’ ;( kvt (H.22)
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We next allow_\_/_ to be finite, and proceed again to expand the diffusion term in a Taylor
series about Kiso . For small volumes of interrogation we can use only the first term

in this expansion, namely,
S (Ko)- i & [5 op () nfele)
Z='_‘E‘:’:‘: [K2:D =0 (@o-@" K..‘./)]

When the diffusion effect is small reiative o the finite transit time effect, this formula
reduces to

(H.23)

(K ) 4 Q—-) - (wo~ - )('V)z
S (K w)= ot [L) s )-_ e }

Note again that 3 ¥/ is the effective transit time of the particle in the volume, and
/s is the effective bandwidth of the spectrum.
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Appendix I

Intensity of Scattercd Light From Acoustic Signals (Edwards et al. Model)
The intensity of scattered light i a medium of dielectric constant f# , magnetic per-

meability r , is given by the Poynting vector, S= .45‘ EX ﬂ , OF
= X

2
§=\aV“é) v: Ce -wr‘;%-rE (1.1)

in which Ce = 3110° Ms”'
(dimension: E, volt/meter
€ . coulomb/(meter x volt)
W, volt coulomb/meter3
}4 . meter volt/coulomb
C, V meter/sec
§ coulomb voit/(sec x meterz))
Thus in MKS units,

g0 lr el
- Aar Y p (1.2)

Now the scattered electric field is a random function of particle motion. We therefore
will obtain the quantity E’ by finding the autovariance of the scattered field (= Rg (t)
between two moments in time, ¢, ,f, (note ¥ sti-t, ), using an appropriate spatial aver-
aging to average out the initial position /% (4) , and random motion A%, (¢) over all
space. Thus, according to Eq. (H6),

Re)- AN N | 7 B (orntr)ag-i (k-] ag, 0]
- , (1.3)
+ Py (Afen(r)+ve+b /w}\w,’t)ﬂt,-i[( K-K')- sr+4 44;wst‘jld’4rw
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in which
Run (ar,,0) +V7T +R o w?) =
f B (fon (v) EA M (fga(o) ) &M (1, 10)+ Alon (T) + YV

-0

. 2
+h e 4T)> V() 1d6,00)
The magnitude of intensity, averaged over random time history of particle motion (that is,

ensemble averaged through definitions of probability functions '&_ ( 4'9;») and 'P,,,( Fom(0) )

and averaged over time shift 7 , i8,

151 €2 [£ Re(o)

am Y 4 (L4)
The spectral intensity density zé CQ) of the scattereq light is
’
o0
A
() 5 Kelr)e™ dv (15)
9 (dimensions: |_/_S_ )
&
(see Eq. H.9). The actual power spectrum of the scattered eiectric field, cdcuhted’gver
a finit> interval T, is T4 .
Nb SRR OX o
L | B, (@)= | R et
T L.6)

2 -
in which the dimensions of | E, ({.) P e VM
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