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Purpose of the Report 

The purpose of this report is to provide a basis for assessing the merits of a proposal by 

General Electric Corp. to detect acoustic signals in the water by a laser interferometer in which 

the laser beam itself is totally submerged. The basis we will use for making this assessment will 

be to compare the proposed device with state-of-the-art Navy hydrophone capability.  For ready 

reference we take our model of (one of) the best Navy hydrophones available to date to be the 

USRD H56, whose relevant performance we summarize as follows: 

Henriquez (J. Acous. So. Am. 52, p 1450 (1972)) discusses the design of the H56 hydro- 

phone, which he constructed to measure ambient noise in 10 Hz to 60 kHz band. The sensitive 

element is a tangentially poled PZT-5 cylinder, of which two are incorporated in a single unit. 

The equivalent noise pressure level of the H56 is 38 dB re i|in.in a 1 Hz band at 100 Hz. The 

free-field voltage sensitivity is -185 dB re W/ufa. Thus the internal noise of the H56 (in a 1 Hz- 

band) appears as  10        volt at the terminals. Knudsen seastate zero is 62 dB re i UXx in a 1- 
-6. IS 

Hz band at 100 Hz. This noise in the water appears as 10        volt at the terminals. Thus sea- 

state zero is greater than the internal noise of the H56 by a factor of (approximately) 10 in the 

frequency region less than 1000 Hz, making the H56 ideally suited to the study of ambient sea 

noise. 

The H56 active PZT element lias a capture area (i.e., the area which "sees" the wave front) 

of approximately 200 It mm. iri a typical single beam gas laser experiment of the doppler- 

velocimeter type the capture area is about ISTC "|5 mm . The ratio of capture areas is thus 

about 13,000 in favor of the H56. The H56 is a pressure-sensitive device. The proposed virtual 

acoustic sensor is a particle velocity-sensitive device. Thus the H56 measures the scalar aspect of 

the acoustic field while the proposed device measures (one component of) the vector aspect of. 

the acoustic field. 

The chief problem of the virtual acoustic sensor is minuteness of the threshold signal in 

comparison to the dominating noise of the medium and of the detection circuit itself. The 

following report is devoted to an analysis of this signal-to-noise ratio problem. 
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Summary and Conclusions 

We list below the chief conclusions of this investigation. 

I.  The method of detection of an acoustic signal reviewed in this report is that of 

a  laser heterodyne device designed to measure either of two different quantities (1) a sinus- 

oidal displacement of particles in a fluid (2) a fluid velocity (turbulent or laminar).  In the 

first case the success in detection rests on the capability of measuring magnitude of the 

power spectrum of a photodetector current in the presence of noise, rather than in the 

capability of measuring a frequency shift.  The important physical quantity in the signal 

processing is the modulation index* not a Doppler shift.    Hence the acoustic sensor in 

question is a true displacement device, rather than a velocity device.  I/1 the second case 

the acoustic sensor is designed to measure fluid velocity.  Success in detecion rests on the 

capability of measuring Doppler shift in the presence of noise.  It is a true Laser Doppler 

Velocimeter. 

Conclusions on the two applications are presented below. 

II.  As an acoustic sensor of displacement we estimate the capabilities of the laser 

heterodyne as follows: 

a. The theoretical magnitude of modulation index which meets the Navy threshold 

requirements for detection of a submarine in sea state 1 at 100 Hz is of the order of 8 X 10"*> 

radian.  The possibility of detecting an index of this small magnitude is the core of the 

feasibility study in the accompanying report. 

b. Under the assumption that shot noise is the only noise in the circuitry of an 

acoustic displacement sensor Massey (1968, Proc. IEEE 56, 2157) calculated that displace- 
..   t 

ments of the order of 10"  M could be measured in the laboratory for a laser wavelength 
-10 

of   i> *>"30» 10     (ii    equivalent to a modulation index of approximately 2 X 10"5 radian. 

Thus the Navy threshold to be achieved is (somewhat smaller than) an order of magnitude less 

than the displacement laser heterodyne capability calculated by Massey to be available in the 

laboratory in the presence of shot noise. 

•For definition tec page 71. 
fM » meter. 
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c. Power spectral broadening can be due to causes other than shot noise.  When 

non-shot noise is the dominant feature, the detectable modulation index is shown by 

mathematical modeling to be a function of the ratio of the acoustic frequency <*\. to the 

total noise bandwidth A*R (in units of radians/sec).  Orders of magnitude calculations show 

the following:  when the bandwidth of noise in a power spectrum is larger than the 

acoustic frequency*, the modulation index is of the order of unity.  The smallest displace- 

ment that can be detected is then about 4 X 10"° meter. This is five orders of magnitude 

greater than the Navy threshold. In contrast when the noise bandwidth in a power 

spectrum is a fraction of the acoustic frequency the detection capability is much greater. 

Calculation shows that a ratio °h /&**1 corresponds to a capability of detecting a 

modulation index of 10"*\ which is nearly the Navy threshold. This means that at an acoustic 

frequency of 100 Hz the noise bandwidth must not exceed 14 H?- in order to measure 

acoustic displacements of the order of 10"*2 to 10*13 meter.  The possibilty of reducing 

noise banc width to the limit AB ^     /"]" is open to investigation. 

d. In all calculations of c. we have assumed that the received signal from the 

scattering volume is large enough to overcome the inherent noise in the photodetector 

circuit.  Under certain simplifying assumptions this noise is 

,-e/'($*> 

(e " electron charge, X " laser wavelength, n - detector quantum efficiency, \ is the 

received power, 2 - detector circuit bandwidth j H - Planck's constant, (". - speed of 

light). 

The received power collected over an area ^tt in direction 8 it given by 

&%(*) -|B(6)^t«|»(-ofc(V^)) CjfOf 

(ß(°) ** scattering function, 1^ - laser power, Qt » attenuation coefficient, t(, ,7u distance 

to / from the scattering volume), I - depth of scattering volume). 

Combining the two equations shows that the minimum detectable displacement (to an 

order of magnitude) is 

•Thit it approximately the cue of a tingle later beam ditturbed by noiaefat 100 Hzjdue to Brownian motion 

(aee Part IV ).  Multiple bearae (or "diversity") may remove this limit (aee Part VI.). 

2 
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At a distance of 30 meters in sea-water the backscattered (i.e. 6 ■ 180°) laser power into 

a lens of diameter 0.1 meter is of the order of 10*8 T t where T^ is the laser output power. 

Hence the minimum detectable signal (order of magnitude) is 

**MlH   * 10 7i HÜ 
Hence we conclude that to achieve the Navy threshold at a distance of 30 meters one 

requires a laser power whose magnitude in watts is about equal to the detect or circuit 

bandwidth magnitude in herz, provided the receiving aperture has a diameter of 0.1 meter. 

This required laser power can be reduced by increasing the receiving aperture and/or the 

depth of the scattering volume.  The possibility of increasing receiving aperture is very 

important to the success of the laser heteodyne detector, and is open to investigation. 

e.  The effect of Brownian motion is serious in that it sets an irreducible magnitude 

to the noise bandwidth A B noted in c. above.  However this is true only if the capture 

area (i.e. the scattering volume) is very small. It is well-known that increasing capture area 

reduces the effects of random inputs into a detection system by affording an opportunity 
S/H for increasing the /"^ ratio (see "diversity," Part VI.). 

g.  The effect of "platform motion" is serious only if this motion is correlated to, or 

has a Fourier component in the same pass band, as the acoustic sigral to be processed. 

h. The effect of medium inhomogeneities including gas bubbles is serious in that it 

degrades the laser beam coherence over long path length. However such degradation can 

be overcome by increasing the receiver capture area.(set Hodara (1966) Proc. IEEE 54, 368) 

i.  The acoustic particle displacement (hence pa.t'cle velocity )measured, is one com- 

ponent of a three-component vector, namely the component in-line between receiver and 

scattering volume. Two component LDV* t have twen constructed (Created 1971, J. Phys. 

E. 4, 586; Blake 1972, I. Phys. E. 5, 623; Grant and Orioff (1973), Appl. Optics U2, 2913). 

The vector nature of particle displacement does not appear to be a major problem. 

j.  A space array of laser beams (- virtual irray) is essentially an assembly of electro- 

optic hydrophones of dipole type. The signal processing of the returns from such an array 

•For derivation we page 69. 



is conventional.  The virtual array has the same si» as a real array at the same frequency. 

k.  Since a virtual array of laser beams measures the local particle displacement the 

effects of reflecting, diffracting or scattering bodies must be taken into account. The 

virtual array must be located far enough away from such bodies in order to give a true 

statement of the incoming acoustic particle motion. 

III.  As a sensor of fluid velocity we estimate the capabilities of the laser heterodyne as 

follows: 

a. Yeh and Cummins (1964 Appl. Phys. Letters 4, 176) concluded that they could 

detect (in the laboratory) constant (i.e. laminar) velocities as low as 4 X 1(H* meter/sec 

at a scattering angle of 30°. 

b. Edwards et. al (1971, J. Appl. Phys. 42, 837) estimated that under conditions (in 

the laboratory) where thermodynamic diffusion of molecules was the limiting factor they 

could detect constant velocities as low as 10'5 meter/sec. 

Both of these values are five orders of magnitude greater than the Navy threshold. 

c. The basic limit in the use of the laser Doppler velocimeter for measurement of 

turbulent velocity fluctuations is the Doppler ambiguity (or uncertainty in measuring a 

frequency shift) due to extraneous time-varying modulation of the laser beam.  These 

modulations are introduced by finite transit time of particles through the scattering volume, 

turbulent fluctuations across the scattering volume, mean velocity gradients, and circuit 

noise.  Doppler ambiguity limits spatial and temporal resolution. 

d. The only measurable velocity inturbulent flow is the Eulerian random velocity 

U (i) averaged over the scattering volume. This is the sum of a mean velocity ti© ("*) 

and a fluctuating velocity U,(t). The power spectrim of turbulence consists of a mean 

(Doppler) frequency shift broadened by the spectrum of Ihe fluctuating components.  As 

noted in c. the resolution of the power spectrum of turbulence (that is, its separation 

out of the noise) is limited by the Doppler ambiguity (DA). If the frequency broadening 

of the turbulent velocity fluctuations (namely the quantity we wish to measure) is of the 

same order as the broadening due to Doppler ambiguity (which is the noise we wish to 

avoid) then there is no way of telling them apart.  If *)© is the mean Doppler shift due 

to  U% W then the condition of resolution is 



ü > -DA 

(This Doppier ambiguity poses a severe limit in the determination of the turbulence spectrum.) 

It is fundamental to recognize that the measurement of laminar flow uL which is non-random 

differs from the measurement of turbulent flow tf#ty which is random.  In the latter case 

there is a largest wavenumber (or highest cut-off frequency) that is measurable for a fixed 

Reynolds number and fixed scattering angle. Thus the entire power spectrum of velocity 

turbulence is unattainable.  A simple estimate of the largest measurable wavenumber is «^i 
%x/\_ in which L is the largest dimension of the scattering volume. Thus if L is a number 

fixed by the LDV the largest turbulence wavenumber measurable is VlL> and the rest of the 

spectrum is unresolvable.  Hence if the presence of submarine turbulence is to be determined 

by examining turbulence «cale sizes less than L meters, the LDV method fails. It can be 

revived by reducing  the scattering volume.  However, such reduction is accompanied by 

increase in Doppler ambiguity since space is sampled over a shorter time interval. Mathemat- 

ical modeling shows that there is an optimum size of scattering volume, L^, given by 

( €"• rate of dissipation of turbulent energy per unit mats, V - kinematic viscosity, Tut» 

Reynolds number bssed en the mean velocity - VtXs^jjg^l ), • - angle ef scattering). 

Wavenumbers greater than *^        are not resolvable because of Doppler ambiguity. The 

symbol {, is the inner scale (meters) of turbulence. When 6 - 180°, 

so that 

L^  *t(«.S7)(*OüN4ä.'4 

If the turbulent velocity is 1 meter/sec, the optimum scattering volume is 1/4 of the inner scale of 

turbulence.  This is a very severe restriction.  Any attempt to decrease the scattering volume only 

increases the Doppler ambiguity. 



e. George and Lumley (1973, J. Fluid Mech. 60, p. 321) state that "... estimates 

show that the possibility of measuring dissipation spectra in high-speed or in geophysical 

flows using Doppler velocimeters is quite remote." 

Of course the detection of submarine-induced velocity turbulence may not depend on 

determination of dissipation spectra.  It will however depend on determining some portion 

of the velocity spectrum (versus wavenumber).  The portion that can possibly be used is 

a subject of investigation. 

f. The basic analysis (presented in Part II of this report) emphasizes temporal corre- 

lation of the velocity spectrum at a single point in space.  By use of two velocimeters to 

sample different scattering volumes one may make two-point velocity correlations. In this 

way additional statistical moments of the velocity turbulence can be obtained. These may 

be essential in detecting the presence of a wake of a submarine. 

Two-point velocity correlations in a turbulent fluid have been successfully measured 

by Clark(1970 Ph. D. Thesis, U. of Virginia, Charlottesville). 

It is to be noted that single-point statistics are insufficient to characterize turbulent 

flow. 

g. C. J. Bates (July 1974, DISA INFO. No. 16, p. 5-10, 779 Susquehanna Ave., 

Franklin Lakes, New Jersey 07417) has studied Doppler ambiguity bandwidths in (laboratory) 

pipe flow of water using an LBV. In a 10 inch pipe at flow rate of 1.4 ft/sec (Reynolds 

number 2.056 z 10") he found the following ratios of spectral broadening: 

(1) 

(2) 

(3) 

transit time spectral broadening 
mean Doppler frequency shift 

turbulence spectral broadening 
transit time spectral broadening 

mean velocity gradient spectral broadening 
turbulence spectral broadening 0.000719 

Core Wall 

0.636 0.636 

1.074 38 

0.75 

Thus, in accordance with He. above the smallest unambiguous displacement that can 

be measured in Bates' experiment is estimated to be 10"8 meter. 



IV. The key problem of the laser heterodyne detector of low level acoustic signals is its very 

small S/N ratio. To improve this ratio General Electric Co. proposes to use the diversity tech- 

nique. Diversity is discussed in Part VI of this report. Successful application of diversity is 

based on these assumptions:   (1) a multiplicity of "ciannels" (or copies) of the transmitted 

signal, (2) Rayleigh fading in each channel, (3) the received signal plus noise are statistically 

independent. 

In the laser heterodyne detector the incoming signal plus noise is generally unknown, al- 

though pattern recognition leads to positive identification. The noise of the system is primarily 

due to the medium itself, and is correlated over significant distances in the medium for many 

frequencies of interest. Th^re is also some question as to whether the amplitudes of the received 

signals are Rayleigh distributed. 

The application of diversity thus will require more insight into the fading properties of the 

transmission channel from laser to field points and back.  If the spatial sampling is at least a 

half-wavelength of the acoustic frequency to be detects, and if the fading is statistically inde- 

pendent between channels it is anticipated that diversity transmission will increase the S/N ratio 

significartly. The nominal increase is 10 logjQN. where N is the number of channels. 

V. Rough estimates of the detection limits of laser heterodyne systems may be made with knowl- 

edge of tines, distances, absorptions, etc., which are of significance to the generation and trans- 

mission of laser light in water.  These estimates appear below. 
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Significant Distances and Times 

RMS acoustic particle displacement, planewave equivalent to 

seastate 1 at 100 Hz 

Radius of inner most electron orbit of the hydrogen atom 

Laser frequency 

Laser wavelength 

Sound Speed in water 

One period of acoustic wave at 100 Hz 

Speed of light in water 

One period of lasr.r light 

2-way travel time over 30 M range in water 

Laser wavelength in water 

Time to traverse one quarter laser wavelength in water 

Depth of Volume Interrogation =hu,f laser wavelength) in 

water(this depth can be made longer). 

3.4 x 10"13M 

0.5 x 10-10M 

5.8 x 1014Hz 

5.145 x 10~7M 

1.5 x 103M 

1 x 10"2s 

2.26 x lO^s"1 

1.72 x 10"15s 

2.65 x 10"7s 

3.86 x 10"7M 

0.426 x 10~15s 

1.93 x 10"7M 

Ratio of laser power backscattered &"   to laser power transmitted 
■^1  In an "average ocean" at range K, for a scattering length of 
7.5 meter (at 100 Hz) and a circular receiving aperture of diameter 
0.1 meter: ' 

R (meter) _ 

10 

20 

30 

40 

50 

bu 

70 

80 

90 

100 

1.30 x 10 

1.20 x 10 

1.96 x 10 

4.05 « 10' 

9.53 x 10' 

2.43 x 10 

-7 

-9 

•10 

•11 

-11 

6.58 x 10 
•12 

1.85 x 10 
-12 

5.38 x 10 

1.61 x 10 

-13 

13 
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Brownian Motion and Brillouin Effect 

a.     The mean distance travelled in time t by a colloidal particle in water at temperature 

(T) = 300° K, dynamic viscosity J? = 10~3M-2S, diameter a of particle = 3 x 1(H>M, is 

B. .  iSi . I h>**tdzl»s7j<rfA 

.6 
*[t    me-fcr 

Thus the mean distances travelled in significant times due to Brownian motion are: 

(a) in one period of acoustic wave at 100 Hz 0.7 x 10~?M 

(b) in one period of laser light 2.75 x 10"^^M 

(c) in time to interrogate two quarter waves of laser 

wavelength (2-way travel over distance equal to 

a quarter wavelength) 1.9 x 10"1^M 

(d) in time for acoustic amplitude to go from zero to 

maximum (i. e. one quarter period) 0.33 x 10"^M 

(e) the time to cover the two-way travel between 

laser and particle (2 x 30M - 60M) 0.341 x 10"9M 

b.     When observed with visible light the Brillouin efiect in water is equivalent to an 

acoustic wave at approximately 10*0 Hz modulating the laser beam. The laser wavelength is 

then associated with two satellites at wavelength separation of ~ 0.05A (see Appendix £). 

Currently Available Laser Systems 

Many types of lasers useful for heterodyne experiments are available.  The following set 

of specifications can be considered representative of more recent design achievement. 



SPECIFICATIONS* 

Brightness: 

Peak Power: 

Beam Divergence: 

Line Width: 

"ulse Energy: 

Ruby Life: 

Beam Size: 

Repeatability: 

Wave Length: 

Q-switch: 

Pulse Width: 

Jitter: 

Repetition Rate: 

Power Supply: 

Laser Head: 

Model K 1500 is normally furnished with 
selected ruby laser crystals to provide a 
brightness up to 7.5 x 10*3 watts/cm^/ 
steradian. Through special selection 
techniques, the K 1500 can be supplied 
with brightness of 3 x 10** watts/cm^/ 
steradian. 

1.1 Gigawatt (Max.) 

Available from 2.4 mr FAHE down to 
1.2 milliradians 

Less than 0.06 A per single line achieved 
spectral component with optional 
accessory (KLMS). 

10-15 Joules 

Depends on power levels; typically 300-400 
shots at 1.1 gigawatt; much longer at lower 
power levels. 

Approximately 1.9 x 1.76 cm (elliptical). 
Can be corrected to round shape with 
optional sapphire prism. 

±10% for 10 shot series 

6943 A (Ruby) 

Pockels Cell 

10-15 Nanoseconds 

±10 Nanoseconds 

2 PPM 

10 KV 

4" x 9/16 Ruby Oscillator and 9" x 3/4" 
Ruby amplifier.  Water cooled; helical 
flash lamp. 

•KORAD K1500 (2520 Colorado Ave., Santa Monica, Calif. 90404). 

10 



Comment: The Summary and Conclusions noted above, together with auxiliary data 

on Brownian motion, Brillouin effect, available laser systems, etc. were presented to afford 

the reader a condensed background of pertinent facts for judging the merit of the proposed 

use of laser heterodyne systems to measure acoustic signals. A deeper appreciation of the 

optical-acoustical interaction requires a more detailed mathematical model. This modeling 

is presented in the remainder of the report. The reader should bear in mind however that 

while the results of this investigation are based on an intensive effort to reach the key issues 

involved the points of view presented do not exhaust the range of possibilities in regard to 

both analysis and experiment. 

11 
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Introduction 

Present day techniques for the detection of underwater sound are based on the local 

interaction of acoustic pressure with a piezoactive device (vz. hydrophone) which converts 

alternating pressure into alternating electric current. The limit of detectability is circuit 

noise (Johnson noise). Sound is also made visible by shadow photography, or schlieren, 

in which the local change in illumination depends on the change in the gradient of den- 

sity of the fluid as the pressure wave passes through.  Since acoustic pressure (or density) 

waves are scalars the determination of the direction of the wave is accomplished by arrays 

of hydrophones in which phase differences between elements are used to maximize sen- 

sitivity in the direction of the approaching wave. These arrays must be several wave- 

lengths long to be effective, but length can be reduced by use of acoustic multipoles. 

Hydrophone arrays in current use suffer the following deficiencies.  (1) at low fre- 

quencies an array several wavelengths in size becomes very long, making for costly struc- 

tures to hold them, or making for errors due to lack of stability in arrays which are 

trailed behind ships (towed arrays).  (2) all sound detection is local. Hence if the array 

is placed on the ship hull it is disturbed very strongly by presence of the interfering hull, 

by flow noise, by bubbles, by hull motion, etc.  If towed, the long array suffers from 

local flow noise, from bearing ambiguities, from catenary curvature in the steady drag 

condition etc. Other deficiencies in hydrophone arrays are sensitivity to depth of opera- 

tion, lack of precision calibration, and phase and amplitude errors due to non-uniform 

elements, and/or non-uniform spacing. 

It is clearly advantageous to devise a system of sounu detection which is not local. 

A promising technique is to use an optical heterodyne to detect the phase difference be- 

tween a reference laser beam and a laser beam scattered from suspended particles in mo- 

tion in afluid. The feasibility of this technique is investigated in the body of this report. 

Magnitude of Threshold Underwater Acoustic Signal to Be Detected 

In anti-submarine warfare the threshold of detection of a submarine by passive lis- 

tening is a somewhat arbitrary numbei. It will be taken here to be the magnitude of a 

12 
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signal of the level of noise in the ocean at sea state 1 at specified frequency in a one herz 

band.  For purposes of this analyses we choose a frequency of 100 Hz.   The average deep- 

water ambient spectrum level of plane wave equivalent of rms noise in a 1 Hz band is 

found in several references (Horton, Fundamentals of Sonar, p. 61, Urick, Principles of 

Underwater Sound for Engineers, p. 168). Two values of noise are quoted, one without 

shipping noise, and ehe second with shipping noise. We choose here the smallest magni- 

tude of the threshold by excluding shipping noise. This we state the threshold of detec- 

tion in terms of the following selected plane wave equivalents: 

100 HZ Plane Wave Equiv. in 1 Hz Band 

Spectrum pressure level -70 dB re N/M2 

(or)  Particle velocity 2.13 x 10"10 Ms"1 

(or) Power spectrum level -132 dB re 1 watt M*2 

(or)  Particle displacement 3, 4 x 10*13 M (- 3.4X10"3 

Angstrom) 

The addition of shipping noise increases the threshold amplitude by approximately 20 dB. 

As the frequency rises the level of ambient-noise spectra first increases (i.e. the ocean be- 

comes more noisy) to about - 65 at 500 Hz, then declines at a rate of about 6 dB per 

octave until it reaches the thermal noise limit. 

Proposed Method of Detection 

In the publication "Virtual Operture Sonar" R.M. Ameigh et al, (General Electric Co. 

973-SH-347-973SQ-142-01, March 1970) it is proposed to use an optical Doppler radar 

to operate underwater for the measurement of the motion of natural colloidal-type particles 

suspended in sea water. Devices of this type have the generic name of Laser Doppler Veloc- 

imeter (LDV).  Since LDV't come in different arrangements it will be useful here to de- 

scribe three varieties that are in common use. The first typ« i» the local-oscillator hetero- 

dyne arrangement shown in Fig. 1. 

13 
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In this system a local oscillator beam (or "reference beam") couples with the scattered 

light from a .second beam at the focal point of the principal lens and is then viewed di- 

rectly by the photodatector which detects the Doppler (Goldstein and Kried, (1967), 

J. Appl. Mech 21» 313). The second type or differential heterodyne arrangement is shown 

in Fig. 2. 

APEftMtfc 

TkMHOlK 
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■3 

4 

In this arrangement the light scattered from the common focal region is focused by a lens 

on to the photodetector which detects the Doppler shift due to motion in the focal volume 

(Rudd, 1969 J. Phys. E.J, 55). The third type is the symmetric heterodyne arrangement, 

?ig.S 
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In this arrangement the scattered light bundle is stopped by an aperture with two slit 

openings, which are combined by a lens and focused on the photodetector. 

It is noted that in all three arrangements of LDV it is necessary to use the heterodyne 

technique to retain phase information. This means a reference signal (of coherent light) 

must be mixed with the scattered light. Ths method of providing the reference signal 

distinguishes the varieties of LDV. 

Unified Mathematical Modeling 

Two beam interferometry is briefly reviewed in Appendix A. More complicated 

devices have been reviewed by Wang (1972, J. Phys. E. J>, 763). He has proposed unified 

mathematical models for the varieties of LDV shown above. These- are listed here for 

easy reference. 

Type I.  Local oscillator heterodyne 

A reference beam, amplitude Q0 , phase <|>a , frequency 4», is assumed to have 

the form, 

EJi) = a0«L>p(-LCüxt-»i<t^ 

The scattered beam is a collection of light scattered by M partices, velocity V« phase 4 . 

frequency ^ , amplitude OL , i.e. 
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in which K = *s - ijx being the scattered wave vector. In brief: there is one incident 

and one (generally different) scattered direction. The power spectral density of the photo- 

detector current is, 

in which e , at are photodetector parameters. 

Type II Differential heterodyne 

Fig. 2 shows that there are two incident beams with wave vectors JJJ. and %n 

The scattered light has the mathematical form, 

♦ Mb [itfe-fc..)-***1^ 
In brief:  there are two incident directions and one (generally different) scattered direction. 

The power spectral density of the photodetector current is, 

7C       | » 
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Type III Symmetric Heterodyne 

Ii< the symmetric heterodyne the scattered light field is given by 

In brief:  there is one incident direction and two scattered directions. The power spectral 

density is quite complex, but it can be retrieved in the cats of common particle velocity by 

replacing! ^zl - Ffji.^rW (j^- *i|)in the above formula for Type II. 

Concluding Remarks:  The power spectra formulas derived by Wang (loc. cit) are spectral 

lines, the linewidths not being considered. These spectra serve to identify th' prominent 

features of the Doppler - induced frequency shift*. However, by failing to present line- 

widths the spectra do not tasist us in estimating the detectabil'ty of these lines in the 

presence of noise originating both in the fluid and in the LDV itself. Since the inherent 

noises in the systems will be our chief concern we will be compelled to find and develop 
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more detailed models. A list of the important noises in LDV systems is given here. 

Noises in LDV Systems 

The Iinewidths of the Doppler-shifted spectrum originate from the following 

causes: 

1. laser light non-chromaticity, 

2. Brownian motion of the colloidal particles. 

3. velocity gradients across the scattering volume. 

4. fluctuations of velocity in the scattering volume (i.e. turbulence). 

5. angular uncertainties due to the divergence of the incident beam and detector 

angular aperture. 

6. finite passage of scattering particles through the laser beam. 

7. temporal jitter of the electronic LDV apparatus. 

8. temporal and spatial changes in the index of refraction of the scattering fluid. 

In order to account for such a profusion of quantities which broaden the Doppler-spectrum 

we must find their order of appearance in the more detailed model cited above. Since 

the model to be developed is very complex it will be useful to first present a physical 

picture A a generic LDV, following which we will develop the math model with greater 

understanding. 
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Parti 

Simplified Model of the Laser Heterodyne 
Detector of Sound 

Simple Model of a LDV 

The optical heterodyne (or Laser Doppler Velocimeter (LDV)) can be modeled in a 

simple way (Rudd, J. Sei. bist Vol. 2 Series 2 1969, p.55), Fig.4 

THo-woereemit 

TRAHSHtT 

in* 

Here, a laser beam is first «pi vied (Station 1) then focused by a transmission lens in 

the fluid (2) then collected by a receiving lens (3) on to a photodetector. In order to 

produce "beats" (i.e. a fringe system) the beam from (2) is masked (MASKA) by a 

screen with two splits before it is brought to a focus in the fluid. Alternatively tho 

beam is masked at position 3 by MASK B, after it leaves the focus in the fluid. Mask 

A generates a real set of fringes. Mask B generates a virtual set of fringes. 

The two positions of the masks correspond to two systems of LDV in current use. 

A system with Mask A describes the Goldstein-Kreid experiment (J. Appl. Mech. 1967 

34  813-8). in this experiment a real set of fringes is generated at the focal volume on 

the Quid by beam splitting the laser light, then bringing the two beams to a focus at an 

arrival angle 2.^ between them. Scattering then occurs, which is then detected (as in 

Fig. 1). 

A system with Mask"B describes the Yen-Cummins experiment (Appl. Phys. Letters 

4 176-8 1964).  Here scattering occurs  irst. The scattered light is then brought together 



with the unscattered (or reference) beam (at angle 24) to form a virtual fringe system 

which is then detected by the photodetector. 

Simple Description of Photocurrents 

When MASK A is the position of the effective screen, and a set of real fringes is 

available, a scattering particle entering the focal region and crossing the fringes samples the 

succession of light and dark bands. The scattered light is alternately bright and dark, with 

maximum brightness occurring in the center of the fringe system. The two scattered laser 

beams EJL , Cs^ are modulated by the Quid flow (at velocity 1£), and are multiplied by 

the photomultiplier to give an electric current proportional to their product, i.e. 

T OG    !i +  ?5» + Es, E$x <»i ('K*jt ) 

in which V  is the Doppler shift in the laser frequency due to a (constant) velocity of the 

scattering particle.  A sketch of this current is shown in Fig. 5 

When MASK I is in position a set of virtual fringes is found in the focal volume.  A 

particle crossing this volume at constant velocity \r alternately scatters and does not scatter 

light as it is illuminated with the light and dark bands of the fringei. The scattered light 

£    is combined with a reference beam E^(i.e. the second beam generated by MASK B) 

which is detected ac a current * where 

ToC   ?5*  ^ * **^ CM(*W$»"t) 

A sketch of this current is shown here, 

T 

i 
m .6 
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'1. 

The Doppler Shift 

To understand the Doppler shift (which is the same in both experiments) we first 

consider the focal volume to be infinite, i.e. we first consider an infinite set of fringes to 

be available, each of equal intensity. A scattering parti   s crossing there fringes at right 

angles (to the fringe lines) samples the alternating light and darkness (as noted earlier). 

This has the same effect as making the particle stationary and allowing the set of fringes 

to slide over the particle.  Let the speed of the fringe motion be Vf . If the wavenumber 

of the fringes is K»(= *yfi_\then the radian frequency of appearance of (say) the brightest 

scattered light is \E V, (radians per sec), that is, the time required to ride over one wave- 

length is Ath-sT (in units of seconds/cycle), so that the frequency of alternating 

darkness and light is T = $jp   which is a "Doppler Shift." Since light frequency SI f 

is given by K^Ct we also see that   (ai^* lit {  /ct ), or £ps £§ ( */£g ) 

We next take the focal volume to be finite, that is, we consider the set of fringes to 

be bounded in space. The time history of the scattering of light is then as follows:  zero 

before the (finite) set of fringes rides over the particle; abruptly oscillatory when the 

fringes cross the particle; abruptly zero again at the termination of the fringe set. The 

frequency of appearance of the light and dark scattered light must be measured from the 

entire time record of -o»"t»+^. This record can be visualized as a infinite sinusoid 

screened by a black screen with a single rectangular window. The time history of 

scattered light is thus a product of two functions (sinusoid times window). The Fourier 

spectrum of this time history is the convolution of the spectrum of each function separately, 

i.e. the convolution of a delta function o (-W- lie) and a siny/y. The resultant spectrum 

(in the range d)'0 t» *)•*■*) is a ünx/j( centered at.Qg.Thus the spectral representa- 

tion of the time history of the crossing of a particle through a finite set of fringe* has a 

spectral width of the first lobe of the sinX/( spectrum.  If AT is the (finite) time of 

transit of the particle then the bandwidth of the first lobe otsmX/jt   14   & £ * (fit) 

(BraceweC "The Fourier Transform" p. 128, and p. 368). Thus the spread in the Doppler, 

4(_ , due to finite transit time A^ is   17^3 {Atj)   This spread is essentially a repre- 

sentation of uncertainty in the Doppler (see Figs.5, £). 

A second approach to the calculation of Doppler spread due to finite transit time is 

to use the model given by Fig. 1, and consider the masks to be two slits of the 
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equivalent interferometer. The aperture of the equivalent slits is the spatial function 

Hi> n(aÄVn(s*) 
in which fl is a rectangle function of unit height, centered at Xs t W . and " units wide. 

The Fourier transform of this aperture is, 

TU^iS^c (*)«(«£) 
(1.4) 

5) 

(Bracewell, p. 2R3). The power spectrum k (approximately) the square of this, or 

If we set the variable %: i} (2L » interpreted as time) then the "width of the inter- 

ferometer" is calculated in seconds, W/^r At »ec. and the first zero of S(jf)occurs at 

&t$s\   OH, ■(»(A'ty  (as before).  We thus model the spectrum of the photodetector 

current by    S (■?)• 

Basic Coherence Requirement» 

In the model of Fig. 4 the basic optical system is that of a two beam interferometer. 

A review of this system will help define coherence requirements.  Let   E, (- /4 e   /be 

the complex amplitude of the first beam at distance "5. from the two-slit screen, and let 

£, (= ^»C      A» the second complex r .iplitude observed at the same observation point 

but traveling distance o* The total intensity of light ati is 

I.- EE*« *,*♦ A? 4 2 A A CM (Ikf ) (I.6) 

in which Jt* 3,- S,    i> the optical path difference.  Since cos (•') is periodic we define 

an order number (K.D. Mielenz, p. 89 "Electron Beam and Laser Technology" ed. L. 

Marton, 1968),    m* M r N+6   0$€<J  ^integral. 
*R      0      L Now, to quantities of small tK, AK _ iL 

This means that the phase kl has an uncertainty in order number (s *w) due to an 

uncertainty of path difference £v caused by finite extension of the source (i.e. of the slit) 

and to an uncertainty in wavenumber AK due to lack of moRochromaticity.  Assume 
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next that there is an incremental  uncertainty in W i.e. 

U   * 2ttm + filC lAlftl 
(1-8) 

If  [4nri| = /j,       , it is seen that the change in intensity A.T due to uncertainty in/w is 

Thus the uncertainty in intensity cancels the cosine term of the intensity itself leading to 

the conclusion that the condition |AMp 72 results is incoherent superposition of the 

two light beams, with the disappearance of observable interference effects. Thus the limit 

of coherence is given by 

One can arbitrarily define a coherence condition if   jd *v j Ä 1/4, or if, 

(1.9) 

(1.10) 
The two parameters, Mt A k   , require separate investigation. 

Case I.  Assume source (i.e. slit) is infinitesimaly small so that c is exactly specifiable, 

(i'6. A<:o)   and assume that the source emits a spectrum of finite width (ftJj-U),)-A&RJCg. 

The uncertainty in the order number is 4 to where 

(Ml) 

The temporal coherence length of the source is thus found from the condition X. 4 R = i 7t 
c«K 

tobe 

Thus the greatest path difference over which fringes can be observed is controlled by the 

frequency spread of the source.  When ths source is white light, fe^-f,   is very large, 

and the temporal coherence length is small, i.e. fringes are observed only over very small 

path distances.  In contrast laser light has a value (fiüt.-^ij/ce 2   2>lO    •     Hence 

X(^L  ** i,lA»|ft    ~3)( t0 cm or 30 million kilometers. 

In a mulümode laser the Doppler width is much greater, e.g. a  neon line is 

O*»-*0»//^    *■»    0.3 rad/cm. Since the mode separation in a laser of length L   ' i    A*c' 

^ß_   , it is seen that the number of possible modes is 

((AV-U, )     ( 
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For a laser length L = loO Cm.} AK •* 0.03 rad/cm. Thus 10 modes may be in operation. 

The coherence length with 10 modes is thus reduced to 

Kb. s   ~   ^ 20 owu 
Case II.  Spatial Coherence 

Assume one (slit) source has a finite (width) dimension (say QQ), and emits perfect 

monochromatic light ( (s^ - (*>0 ? (^ ).  Let ot be the angle at observation point T which 

encloses QQ (Pig. 7*). From Q there is emitted a wave which arrives atT simultaneously with 

a wave from the corresponding Q of the second slit, with a path difference /. The geometric 

picture of two wavefronts atT can be duplicated at <? by assuming P to issue two wave- 

fronts which intersect at <y(of one slit) with the same path difference I. The wavefronts 

W, |^ also intersect in the plane of the figure along a line.  Assume point A is on this 

line of intersection, n  is chosen such that one wavefront passes through Q of the slit. 

The second wavefront is at a path inference (to Q ) given by 6/S.  If the slit dimension 

QQ is projected on the line of intersection to give dimension 9 , then the path difference 

QS is (approximately) <& .  Thus the effect of finite slit size is to introduce a path length 

uncertainty, from zero at Q then along all intermediate points to i.9* at<J .  Using the 

center of the slit as reference the uncertainty is zero to - $°7Z which is Al of the above 

formula Eq. 1.7.  The source is spatially coherent if 

£(*> or <?* « 2± 
1 A (1.14) 

The largest source (width) with which interference fringes can be observed is called ^L^ 

which is twice the above number, or 

t+  ,  "to  U (I.«) 
Spatial coherence is thus controlled by slit width and wavelength of the laser light. 

Statistical Nature of Coherence 

Interference by n single pair of wavetrains is too rapid for any detector to follow. 

Under actual experiment the set of fringes generated by the equivalent mask is the 

statistical average of a large number of wavetrains.  The coherence time of a typical gas 

laser is of the order of 10~2 sec.  Although this allows transient tracking by a detector of 

F»C|T 
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single pair interference fringes, the time required for the remainder of the experiment and 

signal processing only allows statistical averages. 

For ideal two beam interference the intensity at the observation point is (as noted 

above) 

r*V* K+ ZA,AX uti) 
(1.16) 

and the fringe visibility is 

V* 
At A* 

V* At 
(1.17) 

For a general two beam interference experiment this is replaced by a statistical statement, 

1=   I, + It  +   Z J JJi | Vu (t)| Of [<*» fr>]        (1.18) 
in which |.,(?)   is the complex degree of mutual coherence of two points S, Sj in the 

wavefield, \y^ \   Ot a . axe it» magnitude and angle, and If is a time shift between the 

signals from,5t>and S.The angle ot,, (t) is obtained from the phase condition for the 

appearance of bright fringes, 

^,»(t)« iitM, N« i*+eg&r (I19) 

The magnitude |olt» |    is obtained from observation of the two beam interferometer 

measurement of visibility at \ called   rentes 

(1.20) 

IrfAX+l HIM (1.21) 

Degradation of coherence is caused by several factors:   (1) increase in path length (2) 

change in particle numbers and particle density in the fluid (3) change in index of refrac- 

tion of the fluid.  A typical experiment to test changes in coherence is to generate a set 

of interference fringes in space, and observe the distortion of these fringes due to the 

above factors.  The degradation of coherence in a two-beam interferometer experiment 

using an argon laser, A** beam, 5145A° has been studied by R. E. Lee et al (Opto- 

electronics) 5,(1973) 41-51. These authors used distilled water, coastal water and 
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fabricated salt water as transmitting media.  All water samples showed approximately the 

same value of normalized degree of coherence (about 0.97), independent of their nature 

and independent of path length (for paths up to 3 meters).  Agitating the water mechanically 

by moving & stick back and forth along the water trough showed no change in fringe pattern, 

except in the fabricated salt water where a transient reaction (i.e. spotty unsteady motion 

of the fringes) was observed due to a transient non-homogeneous condition of the water- 

salt mixture. This transient disappeared after a few moments.  The interference patterns 

generated in space were recorded by a traversing photomultiplier.  These records show 

(a) relatively smooth oscillations of light intensity due to fringes for tap water and distilled 

water (b) ragged or spiky oscillation of light intensity for coastal water and fabricated 

salt water, both containing suspended particles.  The spikes appear to correspond to the 

observed low frequency local wandering of the fringes.  It is concluded that any inhomo- 

geneity of the medium which disturbs the phase uniformity of the laser beams will decrease 

the visibility of the fringes (i.e. decrease coherence).  As noted earlier, these disturbers are 

(1) suspended particles which introduce (moving) delta function-type density changes (2) 

temperature changes which also introduce mass density changes in the medium.  When 

these inhomogenities are functions of time they cause the fringe system to undergo wriggly, 

sloshing motion, with transient brightening and fading.  The frequency spectrum of the 

photomultiplier current shows considerable broadening ("noise", "Doppler noise"). 

Coherence Requirements for LDV 

The temporal coherence requirements for a two-beam interferometer noted above are 

somewhat modified when fluid motion is specifically to be measured.  If the spread of 

wavelengths in the source is ~^J" X,    and the spread of the Doppler is £,- f i tnen one 

requires that 

*o ■**• tfatclengfti.VftV  (122) 

(Rudd, loc. at eq. (13)). Similarly, the spatial coherence requirement for an LDV is given 

by specifying the width d of the equivalent slit in the two-beam interferometer, 

(-hr) IS«***    \ -5*-^   ' (1.23) 

(Rudd, eq. (16)). The definition of &■ is the same as in section on Basic Coherence 

Requirements. 
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A Phasor Description of the Received Signal in an LDV 

A single particle crossing the (finite) fringe pattern at constant velocity samples the 

pattern and generates the (scattered) wave packet shown in Fig. (6).   If its motion is 

random it will generate pieces of wavepackets in a random manner, thus introducing 

random noise whose spectral bandwidth is inversely proportional to the time duration of 

the packet.   A time record of random particle motion in an LDV will be a seriös of spikes. 

If many particles are simultaneously crossing the fringe pattern, each scattered wave- 

packet will have different phase. The net amplitude of the wavefront scattered by all the 

particles will be proportional to the square root of their number. 

If the particle samples the fringe pattern periodically (frequency &£) it will generate a fre- 

quency modulation of the original carrier wave (frequencyXl.) that generated the fringe 

pattern.  The net time function of the scattered wave (for particle velocity v, acoustic modu- 

lation MFM) >s, ES s   A« Gk avu i | _Q6t + jiPn sin <*>j + £*J^| 

of |s =   K c* [Uti+^iw &)£t+!<\rt]       (I 24) 

in which U^, is the modulation index (s f^' £ £ defined below), ftnJll^l=    % fC^' 

If the brightness pattern is subject to fading then amplitude A will be a function of 

time (= Ah)) so that the -scattered wave will be amplitude modulated. 

If N particles participate in the scattering process during an observation time the time 

history of the scattered wive will be 

H+ (1.25) 

in which r particles move with a signal (frequency la^ ) and M-*P move randomly. If 

particles all move with same signal, but have random components of motion as well, then 

"t * (1.26) 

This model says that the n'th particle will undergo fc random steps (the exact number 

depending on^), scattering a spike at each step, while simultaneously scattering a 
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modulated carrier. If the signal is greater than the spikes the scattered light will appear as the 

time function, Fig. 8(a), 8(b) 

h 

RQ8CU " FIG. 8b * 

If the signal is very small relative to the spikes, then this time function appears as     n«j. &C} 

M-kUmil>hhJi 
t 

Fiq.öc 
Finally let us suppose that all the particles simultaneously undergo a (nonsignal) 

platform motion which results in a (possibly random) phase and amplitude change, C C  « 

Then, 

M. 
(127) 

• e 
iQtt^ij^HflHC^t+i^ 
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Scattered Field In terms of the Simplified Model (Edwards et al J. Appl. Phys. 42, 837 (1971)). 

Let the finite scattering volume ^V have jl particles at time 1=0 . The distance 

moved by the /»^particle is    To* (*)» §m (o) + &f,m (*) + ¥"t + & ** *tf 

The scattered laser field may be modeled as follows: 

/n.     >• 

(The significance of the terms appearing in this math model are detailed in Appendix H) 

Here we desire to describe the scattering process in terms of the simple model of particles 

sampling fringes. The following points are to be noted: 

(1) the initial phase of fs   is exp   t   ( K*  ^0«rOM(o), 

(2) each random walk step AfomH)    samples a fraction of the fringes and 

introduces spikes, plus wavering noise in the scattered light associated with 

phase changes exp   t ( K""K ) • 4fo«H/» 

(3) the steady velocity V samples the entire fringe set and generates a complete 

wave packet of the sinusoid cos (*H y» *)       multiplied by the window 

function   defined by the scattering volume. 

(4) the sinusoidal particle displacement & A**» ws*    samples the fringes 

periodically. The number of fringes sampled depends on the amplitude £. 

and number of cycles tt^t.  If fl^T is small then the sinusoidal sampling 

appears as a (nearly constant)velocity £<t?t, additive to V    i f.      the 

apparent Doppler is (K~ K )*{¥ + *»«9j) •    I* many cycles  4%t occur 
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during the observation time then the number of fringes sampled depend on ^, To clarify 

the physical picture we assume the steady velocity V is zero. At time t  and position 

/it* (O)   inside the fringe set, the amplitude of particle displacement is & [ft^ (o)j. 

Let   2^» X fringes ( >  not generally integer).  If JL is less than one fringe 

(namely, less than a half wavelength of light at frequency £l& ) tne scattered electric 

field exhibits little phase modulation (it is black, gray or white, almost independent of 

time). If £ is exactly two neighboring fringes, the scattered field is nearly sinusoidal, 

with equal plus and minus amplitudes. If I is more than two fringes, plus a fraction, 

the scattered electric field is periodic, but not sinusoidal, see Fig. (9) , 

-MW 

cMiM 

t= 
FIG,. 9 
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In which the period of sampling is T*   %) .  The modulation index n is (Js~ K ) 

'*\ (.QMjin which |KJ = **-K/Ct T*16 Jacobi expansion of exp(l flsin&J is found in 

Watson "Bessel Functions." page 22), 

oo oo 

/r>»! /T)=0 

in which J^rOis the «*1A order Bessel function (of the first kind), and 9 * tö%tt For 

very small M 

e * 30(H) +Ät T.lHj^^t ~   |+ (, fl^ ^f 

Thus for very small modulation index the phase moduli tion appears as a (sinusoidal) 

amplitude modulation.  Considering only a partial product we have 

=   c#s £lEt + M /*<„ flEt fü»> Of-t 

The spectrum of the modulation is given by 

In the positive half of the frequency spectrum the modulation appears as two side bands, 

at a distance t t^s *F.O (Brace well "Fourier Transforms" p. 184).  Thus the spectrum of 

scatter:ü the light amplitude is typically that of a sinusoidal FM (or AM) modulated carrier. 

However, these spectral lines have no finite width, and thus do not account for noise. 
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Conclusion to Part I 

In Part I we have presented a physically appealing model of the laser Doppler veloci- 

meter in terms of a set of laser interference fringes crossed by occulting particles.  This 

model is useful in providing insight into the scattering process, thus allowing experimen- 

talists to master the details of the phenomena in their laboratory experiments.  It is 

however very important to comprehend the exact nature of what the experiments are 

measuring, and to construct a qualitative model of the complex nature of the "noises" 

in the experiment which set lower limits in detectability of the fluid motion.  A very 

detailed math model has been devised by George and Lumley (J. Fluid Mech. 60, p. 321 

(1973)).  We adopt this model in all succeeding discussions. 



Part II 

Mathematical Modeling 

gvtmmarr of Math Modeling 

The scattering volume is assumed to be three-dimensional (effective dimensions 

C^Oi Qj) and to contain more than one scattering particle in motion. A first step in 

math modeling is to project the volume on to the *¥ plane. Fig. (lo). Next the random 

velocities of the light scattering particles are averaged over particle position on the scat- 

tering volume to give the instantaneous equivalent of an ensemble averaged (random) 

velocity U.(i) * (u»H), V«ft))   (which is the Eulerian velocity reported by the detection 

system as producing the Doppler shift), and a (random) deviation from this average, 

AU(>M) S(^U (X,<) ,A^(x,i))   whic'i the particle at£ possesses. The displacement of a 

particular particle (at X ) in timet is thus assumed to be the sum of a displacement 

3>o(0«(Xf*))V^)) (the ensemble average for all particles) due to U«,(*) and  &P(>,*)* 

(oXe,*)itlkti) du* to ^W)uniqu' to *■ P«*4* at *• 
« A" 

n. 
Vv':"" 

Fig. 10 

The analysis proceeds by restricting attention to a single dimension, (say x-dimension). 

The random Eulerian velocity \jjt)» separated into a random mean velocity Ucfc) and 

a fluctuation about the random mean  U„(*)* <Uo(i)*%«^A time average of %(t) is 

labeled tfo  The square of the random deviation AU[x(«,*}t|b ensemble averaged over 

particle position ft and time averaged overt to give the average mean - square velocity 
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deviation   (A U)   When the motion is laminar and deterministic , 

U, = Ü , ÜJ*  r 0 a "5u? 
The time-averaged random mean velocity U0 (in general turbulent flow) is assumed to 

contribute the Dopp'er spectral line in the photodetector (electric) current,  The Doppler 

shift of this line is U)6 s KU» where K is the x-component of the "vector wavenumber". 

The fluctuating quantities tie  Alt are assumed to contribute spectral noise (called 

Doppler broadening) centered on the spectral line at   4)Q 
I 

Assuming the fluctuations U,Ali to be Gaussian distributed one can show by math 

modeling that the frequency bandwidth A» which measures the Doppler broadening 

(o*<»V) is, 
1 __* 

auf = K\:* + K WX + ^ 
20-,* 

Here the term   IL /ad",1, is the spectral broadening due to finite transit time of the 'average' 

particle traveling at averaged speed U. through the effective (projected) volume 0",, in the 

absence of fluctuations the broadening of the spectrum due to finite travel time is called 

the Doppler ambiguity of RADAR. 

When other sources of time fluctuation of the scattering particles are present they 

can be assumed to be Gaussian distributed. The most important of these contribute band- 
a 

widths as follows: A A) due to gradients in the (laminar) mean velocity U, across the volume, 
* 5 a 

A(tL due to Brownian motion, and LUi due to non-monochromaticity of the laser light 

beam.  Assuming these to be important one   rites the frequency bandwidth of spectrum 

tobe 

(ph)X"   K    (4W)*   +^,.+   *<!>*♦ A.&JI+*«^ 

Here DA is called the Doppler ambiguity of the model. 
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Two important ratios can be formed from these assumptions and definitions. These 

are:   (1) ^/(JL the ratio of the Doppler ambiguity to the Doppler shift, (2) K/ Htx/j(^J, 

or   fa the ratio of fluctuation intt-to the laminar M which is equivalent to the ratio of 

spectral broadening due to U to the line spectrum due to 14.» These ratios are useful in 

setting limits to resolution in applications of the LDV to turbulence measurements. 

The basic model of the LDV is the equivalent two-beam interferometer using waves 

of laser light. The Doppler (electric) current Itvreport^d jy the photodetector of the 

interference light intensity is 

in which F(t) <£ m account for fluctuations in the scattering process aid finite beam 

widths of the laser beams, and 4*'V is a phase (of light intensity) given by tan  (&/ß. Thus 

the photodetector current is ....»resented by a phasok* whose amplitude and pnase are 

random functions of time.  Tue probability distribution of Fand (q are assumed Gaussian. 

The fluctuation "V/J^ot the phase is important in the determination of the Doppler 

spectrum since the equivalent Doppler frequency is   to = <yjft I $((i) - &(*){ ■ TR
C corre- 

lation properties of yH/are modeled as filtered noise m an FM receiver.  Its power spec- 

trum is labeled N(oO. It has been found (by experiment) to be white with a magnitude 

proportional to the Doppler ambiguity DA(i.e.   N (*) * N(o) » 0. J4 Sl>A ) • 

Under the assumption that the scattering volume is larger than the wavelength of the 

laser light (t ■€• K 0", >> I ) it can be shown by math modeling that the correlation of 

F(v is approximately the same as the correlation for <5fy that the cross-correlation of 

F and Q is approximately zero, and that the time average over fluctuations (but not the mean) is, 

to£ K [X(*> - X6')l**r{- &*} <»<[&*)■ X (4 

Here, 

:* v? a-t')' 
and j\(yia the time average (or mean) of the random displacement A"/. Similarly, under 

the same assumption of volume size, the math model shows that 
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F"tt> 
ft   *yt> L "*A KVI , tfW-xV)' 

} 4«i> 

where 

<r*X  ft     (AtO* (t-tT 

Thus the normalized correlation of the random photodetector current is modeled as the 

correlation of a phasor with random amplitude and phase, 

[EÜÜ . *„ i- KV, XtQ.yfrO)     L KV1 

in which the exponentials account for the fluctuations in both amplitude and phase. 

The basic math model is first used to calculate the power spectrum of the photo- 

detector current.  In this modeling we require an explicit form for the average (time- 

varying) displacement X(v to be attributed to all the particles. We assume that all the 

particles have a volume averaged velocity tfo and an acoustic displacement Xv sin fl#stWith 

this choice of X(y >l '* found D>' Fourier transformation of the autocorrelation of   t It) 

that the Doppler spectrum consists of two Gaussian peaks at (t) - 1 r\Ü0with amplitude 

proportion*! to Jo\Mv each peak in turn associated with two satellite Gaussian peaks 

\lsi- i U^ with amplitude proportional to T, (N)0 making a total of two groups of peaks 

with three peaks in each group. The "spectral lines" in one group are thus: KHo ^MAo "*"<"* 

V\ U» - (t>}.  The math model also predicts that each spectral line will be broadened by 

fluctuations and finite transit time. The Doppler broadening will be A3 as defined above, 
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This model will be now be used to determine limits of detection of the acoustic signal in 

the presence of noise, and to estimate the limits of detection of turbulence. 

In the case of particle displacements due to a mean velocity H0 and an acoustic dis- 

placement X}/9<rt(t)Jthe spectrum of the photodetector current centered at Ktt« together 

with one satellite is shown in Fig. 10a. Here the acoustic signal is so weak that the acoustic 

satellite is everywhere less than the noise accompanying the Doppler shift due to Ktla. 

Increasing the amplitude of the acoustic signal raises the spectrum of the satellite to posi- 

tion Bj ,3, (Fig. 10b). At the same time the Gaussian spectrum at Kile diminishes to A , 

A .  At the point marked by the circle the satellite just emerges from the noise. The 

amplitude of acoustic signal required to reach this condition is the theoretical minimum 

detectable acoustic signal for given frequency to)% and Doppler broadening £B . The irre- 

ducible minimum spectral noise is that of the photodetector. 

In the case where the particle displacements are due to turbulence one must measure 

fluctuations of velocity in the fluid flow by observing the fluctuations in the Doppler fre- 

quency $L •  If the frequency broadening of these velocity fluctuations are of the same 

order as the broadening due to the Doppler ambiguity (=DA, defined above), then one 
» 

cannot distinguish between fluctuations U. and fluctuations giving rise to the Doppler 

ambiguity. The limit of resolution of U relative to U. (i.e. of turbulent change velocity 

relative to laminar flow), is then given by the condition 

^> 
T)A 

44, Otio 
* 

Thus the measurement of turbulent U. is limited by the Doppler ambiguity. 

A | 
SPECISOH       I 

KiTo 

FIQ. lob 
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Conclusion 

This summary has served to note the following points:  the only hydrodynamic 

velocity that is measurable in a laser Doppier velocimeter (LDV) is the Eulerian velocity 

fo(y. which is an average overall the scattering particles. The Lagrangian velocity of in- 

dividual particles (in the case of flow of many particles) is not measurable. The principal 

sources of spectral noise associated with the scattering volume are finite transit time of 

particles crossing the scattering volume, the temporal fluctuations in WeH)itself, and the 

random motion of individual particles about the mean Eulerian velocity l/e&)as functions 

of particle position in the scattering volume. The basic model of the LDV is a two beam 

interferometer. The basic model of the electric current in the photodetector is that of 

phasor with random amplitude and random phase. The calculation of minimum detectable 

signal is based on comparison of the size of the acoustic spectrum to the spectral noise in 

the absence of acoustic signals. The irreducible noise in the system is that of the photo- 

detection process. The possibility of reducing all other noises remains open to research. 

Model of George and Lumley 

It is known (see Appendix C) that the light intensity 5 falling on the detector is 

Q-   C    I—  F. fCL.  , where Ö. is a unit vector normal to the photosensitive area, 
■3*  *ÜV/*    *•*   1 $ „    ¥ 

and E^, is the reference beam.  Assume the coordinates of the photosensitive area are x, jf 
•I j "j," A     A * 

r    and that an element of area is «* «•Z   so that dps \ ", where i." u the unit vector 

in the direction of 4 .  Let M be a constant which converts light intensity into electric 

current (dimensions: vtftt   ). The total electric current detected by the LDV is, 

TUT £/JjJ \&*:fv%.Wi.'>'ii*'*' 
(ii.i) 

in which there are «rv scattering particles.  If the scattering particle is small relative to a 

wavelength of laser light the scatterer is a simple monopole so that in the coordinates of 

the reference beam (double prime coordinates) the scattered field is 

1*€ (II.2) 
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in which %,  is the position of the particle m the coordinates of the reference beam, X* 

is the position of the same particle in the coordinates of the scattered beam, (L is a scat- 

tering coefficient constant, and 

|*-*T • (*••*$** (Mt+ t*'-if) 
(H.3) 

(Note again that the double primed coordinates are on the photodetector).  Since 

4»   I1--VI (11.4) 
it is seen that the electric current due to one particle is 

(II.5) 

The reference beam and scattered beam cross each other at angle 8 . The photodetector 

is set to detect the reference beam only. 

As noted earlier, LDV's arc essentially based on two-beam interference. The "slit- 

sources" are two laser beam» which sre characterized by finite v, idths.  It is customary to 

assume that the distribution of light amplitude in each beam width is Gaussian. Thus the 

light beams are modeled as 

:i(jf).  *i»,{- ^W^e ■ i&J 
(116) 

Ke -• ^/cc 

(II.7) 
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in which E^.    & are amplitudes at the center of the beam (as measured at the focus) and 

<T is given by 

Q-.- ß ^2± 
ltd 

(II.8) 

where {is the focal length of the lens, 7L is the wavelength of light, and ctis the dis- 

tance (in the cross-section of the light beam) between the (£  intensity points of the beam. 

It is convenient next to introduce a local coordinate system £ fixed at the intersection 

point of the two crossed beams. A particle in X is located at Xt = (y*( </*>, i\, where 

one defines X* in terms of /, X, H, y   by the relations, 

In terms of )L the net current due to a particle fe is 

(II.9) 

(11.10) 

(ii.ii) 

This is the analog of the classic formula for a two-beam interferometer (see Eq. A5), in 

which 

<Ti  " r-     ft    > *     ~      ft       ,     yl - ^T 

(11-12) 
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The exponential term in Fig. 11-10 accounts for the finite cross section 

of the laser beams. 

Note that the plane /«, 4p is normal to the plane of the two laser beams, and effectively 

describes the observing screen in the conventional 2-beam Young interference experiment. 

The coordinate */p is normal to the effective observing screen. 

Now X-  U   £    are Eulerian coordinates of particle position, and so are functions 

of Lagrangian initial position a.) (.$, A=Xi»(4;t) (see Eringen, Mech. of Continuies p. 7). 

Lett*, jftßf be the velocity components (in the local coordinate system) of identified par- 

tides, i.e. U * Ufaj) etc. Then 

&• 

(11.13) 

However, ol (((.■{) is not observable in the case under consideration where there are many 

particles in the scattering volume. The observable velocity is  t/aft) which is an ensemble 

average over all scattering particles. To perform the averaging process one introduces a 

probability function ifa\that a particle of specific size is present in the scattering volume. 

The scattering volume itself is specified by v£ >V14/Nowhere W(]£)'a tne exponential 

in Eq. 11.10. Thus the observable velocity is 

*•(*>*  jj~{  Uiqti^wlXpUf)]^ 

(11.14) 

ve- and AL is the expected number of particles in the volume. At any instant a particle 

locity deviates from the observable average by amount U.(&>t)-UQH) . The time-averaged 

deviation is 

*(*,*) - r [2i(«.t.)-«.<*.)]*! 

If the effective displacement over all particles is /((y then by definition, 

(11.15) 
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Hence the (Eulerian) coordinate of the particle at Q is, 

>^(atf « a>   ♦XM^^t) 

(11.16) 

(11.17) 

that is, a particle which is initially atjL moves an average distance /(H/(in the )L system) 

plus a random distance (along the Xp coordinate) of amount <u(<ui). Hence the total 

current due to m particles b 

^^IS^t-Si^k^KM +AJ 

(11.18) 

This current is again a function of particle positions {<C) and is unobservable. The current 

( (t) averaged over all 4 will be observable.  Hence one again introduces the probability 
•iß 

function 4(<Aand writes 

ift,   \ '(«.+)|fc><*S 

(11.19) 

Two random variables are in i(0,t)namely random particle position(=4^ and random par- 

ticle displacement (: ^(* ,■*)). Noting that   <2©S (?**&) =C&9*.C&ß ytontAuß, , one can 

write 

'/» 

ift)- F(t) c^KX t^M^Kx -(f+<$2) «[KX<*)-<M] 

(11.20) 
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in which 

FW-- ^A  <*«■[$ +i<&>*)]g<M& 
(11.21) 

<S( + >-f d ^K^^)]^« 
(11.22) 

A<!W-I&+&441 
(11.23) 

Since the photodetector gives a signal proportional to the time derivative of the phase the 

output of the velocimeter is a frequency shift 

&). Kg-£.**«-♦ 
(11.24) 

The observed (averaged) velocity V»(t) is a random function of time, with mean 

value !(»&) fluctuation 14»U)' lUtO-^and mean-square fluctuation  V^ltf - 

fu*(t)- '^(•i)]3 . The local (non-averaged) velocity u(y,-t) is also a random function, with 

mean value u(jf )and fluctuation U(^i)-yö»),The covarianceT?,! (*,x") is the x-component 

time averaged product of U()»,i) at £ and % j 

(11.25) 

Now the time averaged mean-square fluctuation i^v can be written in terms of «« pro- 

vided the space average product J& )<?(*'; is known.  It can be shown (George & Lumley, 

p. 360) that if the particles are distributed as a Poisson process, then 
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£<*>>#)* H^ ^ ««-A') 

(11.26) 

where W$ is: the expected number of particles in the scattering volume. The formula fo- 

1^'*  is then 

yn).o-,^Tft 

Noting that 

*,,<*,»> $f„(i)e-'^(i-/j4 

(11.27) 

and defining 

*"(*)■  ir(Hr'(H) 

where VIS)» the Fourier transform of Vfj«), it is seen that 

(11.28) 

(11.29) 

**  ■  $ i. (4 )W*)4^ (**■>*) 
(11.30) 

under the assumptions that the fluctuations of X.(x)conform to the picture "homogeneous- 

turbulence. Note that tt*is the particle-averaged variance of ti(*)(over the scattering 

volume) and It* is the averaged square of U(<) at X. Under the further assumption that 
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.-) 
Nj»'    and j*fl*)|) Ng    , one reduces this last formula to 

w1 * J ilt(k)Mk)4 
(11.31) 

In words:   the time and particle averaged mean-square fluctuation of the observable veloc- 

ity (in theX direction) is obtained by integrating the 11-component of the power spectrum 

of fluctuating flow at wave number It times the weighted volume of * space 2/**) «* 

(which tells what weight to assign to $„ (fc. Wfc). The weighted volume is essentially a 

statement of the finite boundaries of intersection volume in real space.  From the defini- 

tion of "Wx), it is seen that 

H 
JKi    At:   3r» J 

in which W " I*»,, *>; fc^and 

(11.32) 

I»- fft; .  F -   i 

(11.33) 

This form of /f(*)has an important meaning. Noting' that (Tj, f» (Tl essentially define 

the >ijf,* boundarias of the scattering volume one sees thatJTi, K\ and &. are the cut- 

off wave numbers arising from the spatial Fourier decomposition of the scattering volume. 

Similarly fei, Ki, R. are the wave numbers associated with the spatial Fourier decomposi- 

tion of the fluid velocity field.  Now if K()£   , that is, if the spatial variation of fluid 
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k3/ * velocity is smaller than the scattering volume in the x-direction then tyb -   •/[IT is 

small. This means that the w, component (or its corresponding velocity change) is se- 

verely attenuated by the measurement volume. This conclusion is of prime importance in 

the question of velocity resolution of the velocimeter. 

The subscript&ofZ|| have special significance. Let ^(jjand l£(&)be two velocity 

vector fields (in Cartesian index notation). Then the velocity correlation tensor is the 

spatial average 

(11.34) 

In particular 1?,|(ft)is the correlation of a velocity vector field at I and at Xfcb> The spec- 

tral density (tensor) 3;'(h) is the Fourier transform ot^iiM, and •£#{£) is the spectral 

density component of the average product at.* and£+A of the same velocity field. Since 

only one-dimensional velocity spectrums can be measured one defines 

F„' («,) •- $$ i. u., o.)JUfc» 
(11.35) 

The notation F||(.R| ) means the following:  the 11 subscript signifies the same velocity 

field, and superscript 1 indicates tbj first (*«gt) component. Note that 

u" = ? r„' tk,uk, 
(11.36) 

i.e. the mean-square fluctuation of the x-component of velocity spatially averaged is given 

by the integral shown. The measured one-dimensional spectrum r^(fei) is quite different 

since gives the temporally averaged mean-square value of the average (effective) velocity in 

the scattering volume, 
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(11.37) 

and 

C 

, (H.38) 

Note again that «^(M is the measured spectrum and rj(   is the theoretical spectrjm. 

The ratio r^(^i) If (k,,) is the velocimeter transfer function. Typical values based on 

the assumption of isotropic turbulence, and a special form of the energy spectrum 

is shown in Fig. 4, p. 322, George and Lumley. 

Particle Displacement 

The observed   x-component instantaneous velocity, averaged over all particles, is Uolt). 

This is a random variable since the number of particles varies from moment to moment in 

the scattering volume. If we assign a probability distribution to Ho «/ we can find its 

mean value V0k) (see Fig. II). The effective displacement due to U,(i) is Xftj, where 

XttV        ifc (♦.)*!   'üt 
Jo 

(11.39) 

Here U. is a fictitious average constant velocity such that the effective displacement A is the 

product U t . Now X(+) itself is a random function of time. Thus at timel the fluctua- 

tion in observable (x-component ofjdisplacement is 

x'(t)*X(*)-X«) 
(11.40) 
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HU,*) 

lfe(i) 

«S^-K.W 

r/l 
to 

*   Vw^l ' 'i'0 

Fig.ua>" b> He, 

In distinction to observable Uotv there is the unobservable x-component of velocity of a 

particular particle   , viz.tl(4(y. The difference between ?'(3,y and %fy, averaged over- 

time, results in a random x-displacement A(\$- The toM (random) instantaneous dis- 

placement is therefore 

* ** -t>    (ii.ii) 
*fc) =     Cl    +   A(A^)-rX^) 
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In this formXityis unobservable because of 4(<ft A method of averaging over all par- 

ticle position is discussed in the next section. 

Measurable Correlation of the Photodetector Current 

We desire to form (1) the total current l(yand (2) the normalized correlation of current, 

0)   Ui>   J i(i,*)$lOA 

(11.42) 

(11.43) 

in which the random variables are   A )((yand Mir). The function     o(a) is already 

assigned (see Eq. 11.26).  To X'vwe assign the probability density 

Pfyw-xft), M>-W%%*tl- ~~~*< 1 

•3 

and toAfe,*) 

(11.44) 

considered a variable, we assign 

?[*<.,«),i(s,01- ~r <*> f- ^Ll^ll 

(George and Lumley, Eqs. 4.1.2, 4.1.3) (11.45) 

in which ^   and 0^   are standard deviations. A full calculation leads to the (measureable) 

result that 
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i (*) i it' L*r\ KTOA    (X-Xj 

l+Su + ^i* 
.**b- 

K«i» 
r   A" 

* CDS 

(11.46) 

(George & Lumley. Eq. 4.1.6) 

This is the correlation coefficient for the Doppler current between times "t and t. 

We return now to the quantity (JuX (&/*)} which '.is the unobservable particle velocity 

at point X, (whereX is the Eulerian, or fixed, coordinate), and the averaged (over particles) 

particle velocity t/af*/ (independent of position in the volume) and form the mean-square 

fluctuation. 

[WIM]- V'kti 

(11.47) 

This quantity differs for each X . If we average over volume the result is an average mean- 

square velocity deviation, labelled (6V) .  It is the mean-square difference between the 

avenged mean square fluctuation at the center of the scattering volume, and the mean- 

square velocity fluctuation averaged over the entire volume. Thus it is a measure of 

velocity deviations across the scattering volume. If the fluid medium is incompressible, 

and statistically homogeneous, stationary and isctropic, it is directly seen that 

W* ji„{>)ji-M)}4 
or (11.48) 
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»•A 

(11.49) 

Hence fovif accounts for the difference between the volume-averaged   fö(F|J spectrum 

and the true spectrum at the coordinate point. We next assume the "optical size" of the 

scattering volume in the x-direction (namely KT, ) is of such magnitude that f^<T^      | 

Taking |K|- ^/"Km    7^r *>e'n8 the optic wavelength, this assumption means that the 

scattering volume is many wavelengths of light in the x-direction. Now the autocorrelation 

of photodetector current depends on the quantities 03f/t—V ^A^a      . where T^ is 

the standard deviation of the assumed Gaussian form of the joint probability of the efffec- 

tive random displacement of the averaged particle at the center of the scattering volume 

at times ?;f.and (7^ is the standard deviation of the assumed Gaussian form of the joint- 

probability of the random displacement difference 6 {* ,"^»etween a particle at g,and the 

"averaged" central particle.  For small time difference (~t~ijl 

<r/3 u'Mt-t"); tf-g57 (t-*f 
(11.50) 

(again: U * is the mean square fluctuations of the center; fok)  is the mean square fluc- 

tuations relative to the center). Using**K i.. K 0"/ J   as a characteristic number, it can 

be shown that when \(\\> I,   F(i) F (t>) ft $(*)$&)>    ^WWJXO^ 0*i 

foK(X-y%**bLl$ACti}((X-)(>)    , valid to the order of the characteristic number. Thus, 

in this approximation, 

(X K(XH>-$(*')). 

(11.51) 

51 



A more convenient form is 

F'fc) 

in which the superscript * means time average, and 

(11.52) 

Pit)   f(t*t) 

F *(*) 
rl       A -f77>       J 

(11.53) 

The availability of the normalized correlation of the photodetector current leads directly 

to a calculation of the power spectrum.  It will be convenient to discuss each factor of the 

correlation separately. ■f  * , 

The Fourier transform of Qfr)* & K[/(t)- X (t-^famely of Uf (-       *< ~H 

The Fourier transform of ?fr). P<g,gM) 
(11.54) 
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Here (as before) it is desirable to define all relevant terms again; thus, I4t is the time 
-1% 

averaged value of Vt0), #.*is the time averaged value of £u«,«)-&>]}vis the time averaged 

value of the non-random A\t)/t   (Au)* is the time averaged mean-square deviation of the 

random velocity off center from the velocity on center. The Fourier spectrum Ifojoi the 

Dhotodetecior current is then 

*   Xy 

+ * *H- 
(»-»Kg.} 

j[k (11.55) 

In words:  the normalized power spectrum of the photodetector current arising from the 

motion of particles which scatter light in a heterodyne laser-doppler-velocimeter consists of 

two Gaussian peaks centered at ± t\l^ where M* it the time average of the velocity tfely, 

which itself is the (observable) average of the velocities of all the individual particles at 

some instant f present in the scattering volume. The symbol K is IS   /un 2.      , where 
et ^ 

is the included angle between the two beams 

of the interferometer. The Gaussian peaks are broadened by the effects of several time- 

varying quantities. The first of these is \L f^ff  . To see its full meaning we discuss it as 

if it were the only quantity affecting the spectrum. The entity 0^  is recognized as the 

effective size of the scattering volume (in the x-direction), and it is the time averaged 
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particle velocity of all the particlejin *,he absence of turbulence.  Essentially U is the veloc- 

ity of all particles through the volume, acting in laminar flow.  Hence %/H is the effective 

time of transit, and^vffj is the bandwidth of frequencies associated with this time of 

transit.  In effect the laser light is modulated by the on-off switch of the finite scattering 

volume, resulting in an uncertainty in the Doppler shift that is ascribed to W . 

When the flow becomes turbulent one sees two additional effects which serve to 

broaden the spectrum.  First there is the effect of the fluctuation of the (particle-averaged) 

central velocity U» W/ about its mean 1^ . The time scale cf this occurrence is 

tf/(t)* tu(t)- % 

and the associated bandwidth is (|\ Uo *I  • The fact that Ut(i)m Vo^/exists introduces an 

uncertainty in the Doppler ascribed totl, .  Second, the velocities of the particle are no 

longer laminar.  At any time ( there is a difference between the velocity of an individual 

particleU (},■*/  and the velocity averaged over all particles tfory. The time average of 

the square of this (random) difference is d^U) . The time scale of this turbulence-induced 

■velocity variation across scattering volume is 

■- (KW) 
-i 

and the associated bandwidth 

Power Spectrum of the Photodetector Current 

is (K (AH)f 
(II.S6b) 

In the presence of a sinusoidal phase modulation due to an acoustic signal we repre- 

sent the photodetector current by the form 

(11.57) 
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Since this function is periodic one can separate the modulation index N*s from the time 

variation ot&ttJjt-, viz 

(11.58) 

We next form the covariance of the random variable t ft/ To do this we make the basic 

assumption that the acoustic signal is uncorrelated with the turbulence of the medium. 

This assumption allows us to treat the acoustic term separately while obtaining the covar- 

iance. Thus the covariance of the acoustic term is 

<aO 

^to,   =   Z     ^    3*  (K*i) <****£ ) ^sNeuman number 

4*=0 

(11.59) 

The normalized covariance of  [p (t)+ q (t^ Ä*> t [KX-^J    is given by Eq. 11.46. In 

the approximation that 

*»|v    Ar,' 

it is seen that the normalized covariance of I (vis 
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in which 

R«) F (*') 

F'ft) (11.60) 

The power spectrum of I "/can be obtained by taking the Fourier transform of this 

function. We note first that the FT given by Eq. 11.55 accounts for all terms in the power 

spectrum except the acoustic term.  By the modulation theorem (p. 108 Bracewell) if 

F (<t))s the transform of 4(i)then the transform of -f (i)Ct>lQ0t 4 f F{«*■**•) + { F (<a«d*). 

Thus the power spectrum K<«yof the photodetector current in the presence of an acoustic 

signal is given by 

r   (cü-Kuo+/mÄ)s) 1 

>U -*5F ~J 

(11.61) 

In words:   In the presence of an acoustic signal which gives an average displacement of 

X^S^tdjtto all the particles of the scattering volume, and in the presence of a steady 

(constant) average velocity V0 of ajl the particles, the power spectrum of the photodetector 

current exhibits the following character: 

(1) there are two Gaussian peaks at frequencies ~ Kt^ (= C°S* °$ *»«o J. 

(2) the standard deviation of the distributions in each case is the 

Doppler ambiguity A "6 • 
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(3) iiier«; are four additional satellite GäUSSiäii peaks:   two Centered at  !\UQ + Wiw, 

and two centered at - f\ Uo i ^^ >   (s G^* °$ «*»*oV 

(4) the relative amplitude of the satellites /#&■ \ to the main peak is proportional 

to the ratio of the Bessel functions   To (N^SJ/J /fCx<)  ' 

Instantaneous Signal 

The photodetector current i(t) has been modeled as 

in which Ffr) ^(tjare functions obtained by integriting over random initial position and 

random deviation from initial position for all particles in the illuminated volume and Xfv 

is the time averaged displacement of the random "center velocity" 'Wpfy. This formula can 

be altered to give a different (physical) insight into the detection process. The basic pro- 

cess (as noted earlier) is a two-beam interferometer experiment; which calls for an inten- 

sity of light (note: t(t) is proportional to light intensity) with a sinusoidal component 

Kx_      (see Eq. 11.20).  In the above modelX'*/ is the analogy of -C and the illuminating 

(i.e. scattering volume) source has a random character described by r (t) and q(t). One 

can say that the equivalent two-beam interferometer exhibits a fluctuating amplitude versus 

time. Thus one can write tft/as a phasor with fluctuating amplitude, and fluctuating 

phase, 

; <*). Alt) «[WMü-fl, AM-IW*)], ***■"'%j 

(11.63) 

At time t there arc four random quantities,  PUi), F(Ti) <$ (fc j), Cj (t|) . 

Similarly at time i». there are four additional random quantities. The autocorrelation 1?N' 
1" ' ■ ' '   ■ 

A(-t)A(tft\     is that of an eight-dimensional Gaussian distribution.  It is known that 

(II.64) 
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Now according to Part II.  Sect. 1 (above) the functions F, G have Gaussian correlations. 

Thus 

f(t)*   «f>[-    ±(P»f*X} 

From this one obtains 

(11.65) 

The Fourier power spectrum M(-(l,)af <^(yis therefore given by 

(11.66) 

or 

90 

* 2 

(11.67) 

(11.68) 

This is approximated by the two values depending on the relative magnitude of XI and DA. 

it) tun) ? fifii       ii»>* 
Where> I     /s .   \ 

M (o)      r   Ö, }fc*  DA 

(11.69) 
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We define the Doppler ambiguity spectrum as the power spectrum due to temporal char- 

acter of the center x- component of velocity Vo(t) (i'G> ti» *%), This is given by spec- 

trum of finite transit and spectrum of u0. We define the turbulence power spectrum as 

that associated with the fluctuations in phase <p as defined above. Now the rate of change 

the phase KX'fy is the important contributor to the Doppler. One label;-, this   &>i 

■ •«re 
* 

<y,» Knob) -4> 

(11.70) 

Both Wo and A can be written as a Fourier expansion 

-oo 

♦ f* )* re* du®} 
-J© 

9 

The autocorrelations of 14 and <? are 

(11.71) 

-«* 

♦ (rtffr^ = f eitQ"Ä (fM (&) «<«<&') 
-90 

(11.72) 

Since the amplitudes acj[Q/and<*N(£w are orthogonal (in frequency), we write 

*',,*#• 

1 »SStJito, ü»ä 

»«(&)*&,   Ä^' (H.73) 
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Now the limit of resolution of turbulence spectrum is set at a frequency Slo such that the 

Ooppler ambiguity spectrum is equal to the turbulence spectrum, i.e. 

(Doppler Ambiguity)-(turbulence) 

7 

'U/= H (0. ) 

u 

(dimensions: ff)Kl M>)Fo jH** V>* 1^ Wft; ^ ^ f| ? S*'). 

It is convenient to define lio /-£ s Koj   4*»)* »&> >{£ fy   I Pitytfkjin which ej is 

the Kolmogorov rate of dissipation of turbulent energy per unit mass, t is the kinematic 

viscosity, and 0= ML 1        is the Kolmogorov microscai«. Adopting the approximation 

that 

-A >      . 

we are required to find appropriate values forT^ - [K|"U. "+ ' <PW' J   j        '     *<T|   • 

For smaJ scattering angle one can write 

(11.75) 

(George and Lumley, Eq. 3.2.8). 

Hence 

w*v^»^A»«!^]* 
(11.76) 

(George and Lumley, Eq. 5.5.2).  Here % is the Reynolds number based on the smallest 

length L.^ that can be resolved in the mean flow direction, i.e. 
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% . uL 
^ z (11.77) 

The above equation for F (ko\ •* a kev result. In words: the one dimensional velocity 

spectrum of turbulence F (jT \ can be determined for given Reynolds number ^L of 

flow, given angle 6  between the two beams (scattered and reference) of the equivalent 

2-beam interferometer, and given size OF of scattering volume in the x direction as it appears 

in the parameter K( * ^p  •  In the square-root brackets the first term (namely unity) 

represents the (relative) contribution of finite Lransit time.  It contributes the Doppler 

ambiguity spectrum. The second term gives the (relative) contribution of turbulence to 

the broadening of the spectrum of velocity. For fixed % and 6 the spectral broadening 

in   F/i ( Ro) is a function of the size parameter fCw   • Two regimes of variation of 

Fit ( kj) w'tn ™n can be found.  In the first, W\r\   is made very small. This is equiva- 

lent to making the scattering volume very large (relatively speaking). The spectrum broad- 

ening then is due to turbulence, and increases as the size of the volume of scattering in- 

creases.  In the second regime K»*j is made very large, i.e. the scattering volume is made 

very small. The spectrum broadening is then due to finite transit time (Doppler ambiguity 

broadening), its magnitude increasing with reduction in size of the scattering volume. Be- 

tween the two regimes there is evidently a minimum broadening of the spectrum. This 

occurs at the value of MO   which makes Fii \K# ) a minimum. By inspection the con- 

dition for minimum M*)   is given by making the contributions of finite transit time and 

turbulence of equal magnitude, i.e. 

■rry-i,   •'0to|L"7= /rttfjVt    ' v    J%^\ 

(11.78) 
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The smallest value of the turbulence spectrum that than be measured with minimum ambi- 

guity due to finite transit time is thus 

[F„U)1 ■ 
(/Urn f)

% 

(11.79) 

In words:  when it is desired to use the laser doppler velocimeter to measure tuiuulence 

it is found that the power spectrum of velocity turbulence is broadened by "large" scat- 

tering volume, which renders the determination of the "spectral line" associated with a 

given wavenumber kt uncertain. The broadening of the spectrum is reduced by decreasing 

the size of the scattering volume.  Hence one expects that the smallest available volume of 

scattering would generate the narrowest spectral lines.  However as the volume of scattering 

is reduced the broadening due to finite transit time is increased, making the spectral line 

of velocity again uncertain.  Evidently the narrowest spectral line is achieved by using a 

compromise size of scattering volume. This compromise size is fixed by (K*l )tkt '  The 

smallest spectral level F,| (K») that is optimized by scattering volume is [FJ/ 0**) j   opt. 

Hence the highest value of R» that can be measured with minimized ambiguity due to 

finite transit time is found by expressing F,( (ft«) as a function of some turbulence model, 

and solving for R» implicitly. 

The implicit solution for R. can be illustrated by use of the model of isotropic tur- 

bulence. Here, 
y %    A 

EW r.   £ 1 jfe F;„V, { l» [,- i] 
ft. 

(11.80) 

The form of E(k/s particularized by choice. Let £(*#» that of Pao (Phys. Fluids 8, 

1063, (1965)), 

6? 



:; 

1 
;       ! 

-»A. 
Elk)»  otfe     P |.{-i-(*V 

<41 

(11.81) 

Substituting this form into the above integral, and performing the integration leads to a 

model of F(i(fr») which can be plotted versus f^. On the same graph one can plot 

IP.Vk» if   for various choices of K» andw . The intersection of the turbulence model 

(Pao's model) with the ambiguity model^Jiil*») J   opt. gives the value of ^ , which is 

the wavenumber for which the ratio of the turbulence spectrum to ambiguity spectrum is 

unity. This is the largest value of wavenumber of the turbulence power spectrum that can 

be measured with the minimum ambiguity (that is, under conditions of the minimum 

spectral broadening due to finite transit time), for fixed "Re and «.      ^ 

Seeing that every choice of Re and v is equivalent to a choice of R , one can plot 

\ ( * ^*Mu^? ^ versus fo. Suppose we desire the maximum #» ("-^f/kJ*0 be unity. 

Then the graph shows "R. » Q.lO . For an experiment in which 6 is fixed such that 
• ft -^ Hfl»*— -0.2 and the wavelength *7tr £'3*/0 Cm it is found from the Reynolds number 

that the smallest measurable velocity (the optimal velocity in the above sense) is U - l>£ 

cm /sec. 

In actual experiments the optimum scattering volume can be determined by a simple 

formusa once the Reynolds number and angle of scattering are know», (see Appendix B). 

Concluding Remarks to Part II 

In Part II the laser Doppler velocimeter is mathematically analyzed using the model 

of George and Lumley.  The photodetector (electrical) current l(i) in this model is a 

phasor which is a random function (in both amplitude and phase) of the particle displace- 

ment across the laser fringes (see Eq. 11.20). By assigning probability densities to the 

fluctuating component of the volume averaged displacement, and to the deviation displace- 

ment of an individual particle from the volume averaged displacement, one can find an 

ensemble average of i(t), and then form the normalized autocorrelation of i(t) at times t 

and t (see Eq. 11.46).    Under the assumption that the size of scattering volume is several 

wavelengths of laser light large, and that i't   is not too great, one can calculate the 
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power spectrum of the random current l(y(see Eq. 11.55).  The particle displacement is 

then considered -o contain a sinusoidal component due to the presence of an acoustic 

signal in the scattering volume. The calculation of the power spectrum of photodetector 

current is then repeated leading to the result shown in Eq. 11.63.  In applications to mea- 

surement of turbulent velocities one is required to find the true one-dimension power 

spectrum F..(k) of these random velocities for different scale sizes (i.e. wavenumbers k). 

Because of finite size of the laser beam, and the existence of random motion from parti- 

cle to particle within the scattering volume the measured spectrum ffc [kj differs from the 

true spectrum F„ (k), The measured spectrum Fo ("/can be summed for all values of & 

to give the time-averaged mean-square fluctuation of the observable Eulerian velocity 

The true spectrum F„ (*) can be summed for all values of k to give the time- 

averaged mean-square fluctuation of the unobservable    velocity tt (y which is  1fcfy+ 

AV(i) whereAU is the deviation of Kft) across the scattering volume. Under certain 

assumptions f(t(kj can be calculated (see Pao's spectrum Eqs. 11.80, 11.81). A theoretical 

limit of spectral resolution (of the turbulent velocity spectrum) can be calculated using a 

good model for the noise due to the phase fluctuations of the equivalent phasor ((iji The 

model is that of filtered noise in an FM receiver, called M(ÜJL By approximation H(&) is 

taken as a white spectrum with a fixed value hl(o) »0.34? (_ K (4W)*+- M/4(Jij   (see 

Eq. 11.69). The limit of resolution of the turbulent velocity spectrum F)( (*/can then be 

obtained by setting Ali») as the threshold (see Eq.II.74) of fy (k.y,The limit thus found is 

Eq. (11.76) where F„ (KQ) is found to be a function of the Reynolds number (based on the 

laminar velocity "vT) and the wavenumber of the laser light K-^^/x J        sin£ , where 9 is 

the angle between the two beams of the laser interferometer. When the magnitude of 
'/L\ A ** F., (*)   is found for given Reynolds number and V , the value of ko is then (implicitly) 

determinable. This is the "cut-off wavenumber" (see Eq. 11.79).  At this wavenumber the 

ambiguity due to finite transit time and turbulence is minimal.  It is essentially the largest 

wavenumber (hence the smallest velocity) that can be measured. 

The model of George and Lumley reviewed and extended above is the most complete. 

Additional models are briefly discussed in Appendices F, G, H and I. These serve to dis- 

play somewhat different points of view. 
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Part III 

Communications Theory Model 

In the model of George and Lumley (Part II) the photodetector current I (tfis a phasor 

with random amplitude and random phase, 

Uth [F(t) *(?(t)fcn [KX(t)-4to\ 

we restrict the generality of this model and consider only the cosine function, replacing 

the random amplitude by a constant Furthermore we take the displacement Mxj to be 

deterministic, and write 

X(t)*   &+« +  *s &**$ 
in which VLt Hf and (t^ are defined in Part II. The only random quantity is a phase c£(t) 

This kH) represents noise in the laser Doppler velocimeter and is modeled as if shaped by 

an1?C filter, bandwidth A(^H power spectrum ^(fyand covariance f\y  given by 

i ■■4 

L     Mil 

(ULI) 

It is convenient tc regard the frequency l\lt - 4JQ •» a carrier frequency, the quantity 

W5 fcS fellas a phase modulation of this carrier, and fly as a noise modulation. In 

complex notation the photodetector current then is assumed to have the form 

Since this is a periodic function it can be represented by a Fourier expansion, 

ifr)-/lfc[ZJ:iTT.(K*)e4 
(in.2) 

The covariance function of this modulated carrier is then derived to be 

>2 

MO-4 2**J*(K*s)e 

a earner is men aenvt 

(III.3) 

(Middleton, "Intro. Statis. Comm. Theory." p. 612). 
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Here £ = <Jtf)^ "LTj* tiie Bessel function of first kind of integer order, and £s I       when /m* O 

€^ s X   «jr^&t /m% 0 . The spectral distribution corresponding to this covariance 

function is i/Cy       where 

M),    4M.»-      ^7rU/t **<•/*/(i,u) 

2751 
(Middleton, p. 613).  (Note, only positive frequencies appear here.) 

This power spectrum has a dual character. It is noted in the formula for Ky/C/that 

(KWVW fc*)'0-|clilflt. ] 
6..      LVd-^l*^'^--]     ,,,,•5, 

The Fourier transform V FT/ of unity is a delta function at the origin of frequency.  The 

FT of cos ftfct is, 

If we multiply this time function by cos m djtthen 

Thus centered around 4ü* <M» there are two delta functions (or discrete spectra) for every 

value of m.  The magnitudes of these spectral lines are proportional to J#t ( SX%) We 

return now and examine MA- at the special value n »0  and 4? ■• &)« ^*<fV)^ In this case 

A1   so     «nd ß   s **    ^ . The value of the first term is known, vif, 

(III.6) 

*»yi. 
(see Morse & Feshbach, Meth. Theo. Phys. 813). Thus the term n^A-^oyields a discrete 

spectrum and the terra ink *. jt if 6    yields a continuous spectrum, i. e. 
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(III.7) 

Now let^s/   , and take A    « a*-<*V*fe, /?   r &' *fc "♦ *>*    • We then choose a 

frequency (tf-täfe -»A».  Then A^ 0   and Ä.,-*«*^» Hence for ***• choice m = I 

the spectrum again has both discrete and continuous values, 

•»/.*.»•» ^ (IIL8) 

+f (Kxs
l) /_2 ■    + 2  \) 

A sketch of the total spectrum is shown below: 

m-yät 
<*-** 

H+MÖS 

(*t4>s 

FIG».»2. 
We next consider the continuous spectrum of m-o  at the value of U)~ U>&+ U>$ and take 

NX to be small. Then the noise due to the peak at tfc is 

KV 

-     **        11+ (a) 
(III.9) 
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I (III.10) 

The continuous spectrum of /*\s |     a+   <*)= (e)a + (i)s   i& 

., JK*f , 

i wear. 
There are two signals in this special case:   (1) noise due to the main peak at the Doppler 

frequency KUo (2) noise at the frequency of the acoustic satellite.  We now assume that 

the criterion for detection of an acoustic signal is that it should equal the satellite noise 

at the satellite frequency. Hence we state that an acoustic signal of magnitude equal to 

the continuous noise at the satellite frequency will be detectable if it rises above the 

noise contributed by the Doppler ambiguity of the central peak (i>e, m?0/ in the absence 

of an acoustic signal. This means that we must find a value of rOc such that, 

 7- r«o To >*(**) 

14 (JSL V i J*h 

or 

TWO 
H   * 

*■      taw     W* J -i 

(111.11) 

These formulas will be used in the following sections to make numerical estimates 

of the minimum detectable modulation index. 
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PartlV 

Calculations 

Summary of Measured Displacements 

Massey (1968, "An Optical Heterodyne Ultrasonic Image Converter," Proc. IEEE 56, 

2157) used a local oscillator heterodyne apparatus to sense the vibration amplitude distri- 

bution on a reflective resonant diaphragm placed in a liquid acoustic medium. The phase 

modulation of the laser beam was ^(t) * 4TT^Sr(x;»#) fivn^X    in which")u is the la- 

ser wavelength, &>f is the acoustic signal frequency and Z.(\*L) " ^e amplitude of vibra- 

tion of the diaphragm. The dominant noise process was shot noise in the photodetector. 

For a circuit bandwidth B, and electronic charge e the rms noise current is 

in which Xu 1< ,,re cur"nt« in the detector due to the local oscillator beam, or signal 

beam acting alone.  Assuming a total laser power «o quantum efficiency ff, and setting 

IveX  , one finds that 

in which h is Planck's constant, Cm »s tfte speed of light. Now the minimum detectable 

amplitude is found by equating the noise tM to the first side band current. It is found 

that 

7    -/KC*«V* 
I 

Thus the minimum detectable amplitude depends on the square-root of the circuit band- 

width and inversely as the square-root of the laser power.  In a typical case 
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I» 
\t • 4330 HO   M 5,- IM"* 

*• 2ol?Hi 

V 
• 2* 

TV *   Ifl'V 
it is found that 

Z„w.2.l*/0     M (-J*ak ) 

Yeh and Cummins (1964, Appl. Phys. Letters. 4, 176) also used a LDV to measure 

fluid flow based on the local oscillator heterodyne principle. They considered that they 

could detect constant velocites as low 4<|D  HS    at a scattering angle of 30  . 

Edwards et al, (1971, J. Appl. Phys. 42 837) analyzed and measured steady flow in 

a LDV based on the local oscillator heterodyne technique. In order to resolve the Dop- 

pler signal they estimate that the (constant) velocity v_ must be such that 

K-ODK, k= K.K 

2 in which O is the translational diffusion coefficient, andlKW 4ÜL   /u/t\ \     . In the 

case of   7lE = U%\% >/0     H 6*45 ;j)s (Q  ^f $*' , they found that approximately 

I v 1 > io"5 Ms"' 
Wang (1972; J. Phys. E. 763) found the following S/N dependencies; 

2. 

local oscillator heterodyne:  S/N    *v    Yip   0» /     *    J 

differential or symmetrical heterodyne:  S/N  ** I /nJ/%)   t ( "77 I /y •V 
in which/f) i* the partical number density, Cl is the Mie scattering cross section of the 

partical, A-g is the laser wavelength, Is is the linear dimension (say depth) of the scatter- 

ing volume, and/ is the average partical size. Thus for the case of the local oscillator 
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heterodyne a high particle concentration and small focal volume are needed.  It is insensi- 

tive to particle size and has broad frequency spreading.  In contrast the differential (or 

symmetrical) heterodyne system requires low particle concentration, is sensitive to particle 

size and has low frequency spreading. 

Criterion for Signal Detection 

We assume fCx$ to be small, and consider only two terms (i.e. <WS0) m
s\   ) in the 

equation for the power spectrum of the photodetector (Eq. 11.61). We then state the fol- 

lowing criterion for signal detection:  an acoustic signal is considered detectable if it has a 

magnitude given by riq. 11.61 at Afi-t  at a frequency &)sM4o+ ^ > f°r that magnitude 

of rOCj which makes it equal to the noise of /W=0  at the same frequency:  in symbols, 

J". 

2. 

or 

,2. 

Discussion:  When the noise band width exceeds the frequency of the acoustic signal to 

(tap kV +JL *K&HJ> 

the extent that    ^i/faij&l, then jCzcZ  andA/^* 0,7 For this 

T|(K*si* 0,7 To (^s) 

case 

or 

with a solution, 

.7 
We choose   7le * 5*/0 H* Hence the threshold signal is 
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<flk 

In contrast when   "VAB^'*')   ^-* *"        ^ • If we choose 

T,(KXS) - o.tos To(K'xs) 

with the solution, 

_<* 

471 

A table of minimum detectable signals is presented here, based on the approximation that 

47C 47C 

Table 1 

ÜL X4(meter) 

UB) 

5 1.5 x 10'10 

6 9.8 x 10"12 

7 3.8 x 10-13 

Thus, in order to achieve detection of the particle displacement114/ /0   ^  associated 

with sea state 1 the noise band must be less than /y of the radian frequency of the sig- 

nal.  At  J* 100 HZ we therefore require   AB  i ('/j ),?©(>* * ^Ö^; «*'• 4$*/4 

Hz. 

A different criterion of signal detectability is to assume that the discrete spectrum of Eq. III. 8 

at &> - fc>o+4)i is equal to the continuous spectrum at the same frequency. Thus the 

condition becomes 

Kx s   < 
14 <a<w 

= IC 
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As an example let   AJj*^   Then 

K Xs  * TZ (0,?3) 

41c 

Shot Noise 

We assume the optical signal is strong enough so that the dominant noise process in 

the electronic system of the photodetector is shot noise (see Oliver, 1961 "Signal-to-Noise 

ratios in photolectric mixing", Proc. I RE (Correspondence) 49, p. 1960). The rms noise 

current in the local oscillator heterodyne system is then 

'*« j ietiio*1*)* 

(see discussion in "Summary of Measured Displacements").  Under the assumption that ILO
s 

«L$   one has 

Hence 

in ä e JJ <&y» ■*Ck 

ji -34- 
Now choosing ~\e=S. I4ff>/<f M, r)--».fiS;|: 4.6 > /Ö        joule sec, Ct - 3 > to * 

m/sec, one has 

Also, the electronic charge is 
.If   .    . 

c?=    It x /0        0>öLOM8 

Hence 

tN x(j. 6 »o")(S.O '<>/?. B =(8>'4)lö' /?«3' Om^toU 



If the system of detection is shot-noise limited then this electric current is. the threshold 

of detection.  In the general case of an unselected laser this noise threshold is 

7M^ 
in which all quantities are in M&S units. 

Minimum Detectable Signal In the Presence of Shot Noise (Massey 1968, loc. cit) 

We assume here that the only noise in the system of a local oscillator heterodyne is 

shot noise. The photodetector electric current in the presence of an acoustic signal is then 

tit)* iuo*Ta
+1yus as(<**♦ &****£) 

-r      E1    T     £* in which X *" ifL    A* * —       The side band" structure has the form 
X  ) ~     1>  * «0 

Aswmingl^« 1, then    To (Kx,)*l, 3, (&)* Wi/n (&)*0, ^M»/- 

Then the amplitude of current in one side band is 

If this is equated to the shot noise current the minimum detetestable acoustic amplitude is 

(Xs)     s AkVB I1,   • 

-7 s -3* 6 
Choosing   Xe • S. *S >/0 ,   ")• »•OS, 4* * 6*/0   > Ce ■ &/Ö , it is seen that 

-»V? (Xi)HlU *  4,lo*/0 Jyr   (ArJk*) 
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Scattering Equation 

The scattering function is definded by the relation 

fi*) HlÜ (MV) 
EJ1V 

in which 1(8) is the light intensity (watts) in the 6-direction, E is the irradiance (watts/ ^M 

dV     is the volume of scattering (Hi. The total scattering coefficient b for non- 

polarized light) is 

b-«f/XO/^»*       (H"') 
0 

Now let tne differential scattering volume be the simple geometric figure of a cross section 

A normal to the beam and a depth 1.  The product/4 E is the power of the incident beam 

<t • Hence the power scattered into the solid angle cut is 

A?s(eV AI(0)AA(I) ^aHM 

The incident power is related to the laser output power r» 

in which ^ is the attenuation coefficient and!?,  is the distance travelled. The solid angle 

,Q  is that intercepted by a lens of aperture &<L at distance Kz} i- f. 

Thus the power received over AA is 

i (8^/9(0 Tie ÄÜ5 
*2 
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Calculations 

From Duntley C963), J.O.S.A. 53, (214-233) the "average ocean water" can be de- 

scribed as having an attenuation d m 0,oS/li , and a scattering coefficient ß(l2b /- 6*/0 / 

meter steredian. 

Assuming r\,s"R» " X     it is seen that 

If we take a receiving lenfrof diameter 0.1 meter, a depth of scattering volume at least a 

half-wavelength of acoustic signal at 100 Hi (■ 7.5 meters), and a working range of 30 

meters, it is seen that 

If "clear water" is considered then   ß (b)^t 2 } .'0   • and the backscatiered light is 

Modulation Index and Doppler Shift 

The modulation index appears in Eq. II. 57 as the symbol KXs in which  K=/12L \/ton'd 

The threshold particle displacement at 100HZ  is 3.4*/Cf*M'  Choosing the 
o 

angle of observation of the scattered light to be 180   we see that the threshold modula- 

tion index is calculated to be 

The Doppler shift in the presence of an acoustic signal is given by Eq. 11.61. Here 

it is seen that a constant velocity M» shifts the frequency of the carrier by an amount 

KtT» =\*WAt)^ö ■ T*16 *coustic signal shifts the frequency be the amount mfa)s, 

where m is the number of the side-band.  We see then that an acoustic modulation of 
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the laser carrier does not appear as a true Doppler, namely as a frequency shift dependent 

on velocity, but rather as a frequency shift due to phase modulation, whose magnitude 

(of shift) is independent of the associated modulation index, but whose amplitude of 

power spectrum at the frequency of shift does depends on this index. The detection 

method is not that; of an laser Doppler velocimeter measuring a constant velocity, but 

rather of an optical heterodyne measuring sinusoidal displacement.  Ultimately the de- 

tection process rests on the ability to measure magnitude of spectrum rather than the 

ability to measure frequency shift. 

Particle Size, Particle Density, Volume Scattering Function, Attenuation in the Ocean 

Suspended material in the ocean which is retained by a 45 micron filter is called 

particulate matter. The amount of particulate matter (in milligrams per liter) ranges from 

0.04 in the surface water of the North Atlantic to 18 in the region of coastal waters.  An 

average oceanic total is 0.8 to 2.5 (See Table II). 

Particle size distribution in various ocean bases is shown in Fig. 12(a) in which is a graph 

of the number of particles per cubic centimeter versus the diameter of the particle. A 

statistical analysis leads to a statement that the mean squared particle radius is about 14 

x 10"*2 M2, so that the "mean particle diameter" is about 7 microns. According to Mie 

theory the scattering cross-section of a single sphere (IL) whicu is much larger than an 

optical wavelength is twice the geometric cross section. 

Hence & - 2 JC x 14 x 10'12 - 8.8 x 10*11 M2 

Table III shows the volume scattering function of pure water and sea water as a func- 

tion of wavelength. Fig. 12(b) shows the attenuation of sea water as a function of wave- 

length. 

Motion of the Scattering Perticle 

The mathematical model is based on the assumption that the motion of the "colloi- 

dal" particle suspended in the water faithfully records the acoustic particle velocity. To 

check under what conditions this can be true, we take the colloidal particle to be a sphere, 

radius a, density (>s and assume it is oscillating in a fluid medium of density ft , kinematic 

viscosity V at frequency fc>    and net amplitude U . Then the forces jr exerted by the 

fluid on the sphere are twofold:   (1) the accelerative (2) the viscous force.  According 

to Iamb (Hydrodynamics, p. 644, Eq. (26)), the txpressic.i for J is 
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TABLE IT- Amount of suspended particulate matter 

M 

4 

Depth Suspension 
Area (m) (mg/1) Reference 

(a) total 
Oceanic deep water 005 Jacobs and Ewing, 

(average) 1969 
North Atlantic surface water 004-015 Folger and Heczen, 

1967 
Oceanic — 0-8-2-5 

(arerage) 
Lisitsyn, 1959 

Pacific, coast — 1-6 Goldberg >.l al., 1<T!52 
Coastal — 60-180 Postma, 1954 

(b) organic fraction 
Atlantic — 004-017 RHey tl al., 1965 
North Atlantic — 005-0-2 Gordon, D. C, 1970a 
North Atlantic deep water 001-002 Gordon. D. C, 1970a 
Central Pacific surface water 002 Gordon, D. C, 1971 
Central Pacific deep water 0005 Gordon, D. C, 1971 

(c) inorganic fraction 
Atlantic, 

offshore — 0 05-10 Armstrong, 1958, lOGj 
Coastal — 016-1-20 Armstrong, 1958, 1965 
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Diameter (ym) 
10° 

,-    i. 

10' 10' 
Dio-neter (pm) 

10' 

Fig.Ijujfixnmpfcg of particles size dis- 
tributiong: 

Upper scale: 

A    Kullenberg, Pacific deep, 1953; 
|—| Brun-Cottan, Coulter counter, 500 m 

depth, Mediterranean, 1971. 

Lower scale: 

• Gordon D.C., microscope, organic 
matter, surface Atlantic, 1970; 

x Carder tt at.. Coulter counter, Pacific 
surface, 1971; 

A   Jerlov, microscope, fiord, 1955; 
O Ochakovslcy, microscope, Mediterra- 

nean, 19GCn. 
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TABLE H Volume scattering function at 00° and total scattering coefficient for pure water and sea water as a 
function of the wavelength. 

A(nm) 350       375       400       425       450       475       500       525       550       575       600 

ÄK,(10-4m-1)       6-47       4-80      3-63      2-80      218      1-73      1-38      112      003      0-78      008      Pure water 
ft'flO-'m-1)    103-5       76-8      581      44-7      34-9      27-6      22-2      17 9      14-9      12 5      10-9 

/5M(10-J m->)       8-41       6-24      4-72      3-63      2-84      2-25      1-80      1 46      1-21      101      0-88     Pure sea 
water 

^(lO-'nr1)    1345       99-8      75-5      581      45-4      35-9      28-8      23-3      193      13 2      141        (5 = 35- 
39%.) 

* Computed according to oq. (11) with 2 - (Ml!) which leads to 6 = ltl-0:  ß (90). 

80 



Fig.|{(j&ttenutition curvet in the near ultraviolet and in the visible part of the 
spectrum. 

▲ Lenoble-Saint Guily (1955), path length: 400 em; 
x • • liulburt (1(134) (1945), path length: 364 em; 
• Sullivan (1903), path length: 132 cm; 
O— Clarke-James (1939), path length: 07 cm (Certain lined tube); 
0 • - • Jatnes-Birgo (1938), pnth length: 97 cm (Silver lined tube). 

Total scattering coefficient for pure water and pure sea water n« a function of 
wavelength, according to Table TIT. 
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^-*H-*u*£)ä-»4«MA*£>lf 

.* * 
in which & -^/ÄV.   If the period of oscillation is made infinitely long, then ß (L « 

&&. «  '      and the term in * Mfc (i.e., the inertial increment due to the gross mo- 

tion of the fluid) becomes negligible.  Under these conditions the magnitude of the force 

exerted by the fluid on the sphere is J"- 67CP VdJj. This is the stokesian force resisting 

the slow descent of a particle in a viscous fluid under the action of gravity. The equation 

of forced motion arising from this resistive force is therefore 

in which Ift-ß1'    is the fluid dynamic viscosity. Thus, for particles of diameter U, 

* Tl'ft 

SinceU is the differential motion of the water, i.e.,Us U{- vs , we can assume l]g  to 

be the acoustic excitation and write (Jr. *  (Jo top 1*^ At the steady state frequency 

6) the velocity Uj   reduces to 

This equation defines the properties of a low-pass filter with a cut-off frequency du   = "^ 

As long as   l^TK^J   the motion of the colloidal particle will faithfully follow the motion 

of the acoustic wave. To calculate the magnitude of the cutoff frequency, we note that 

the dynamic viscosity of water at ZO C(ineentiposev,*o.OI flUn» Sec.^»^l*r 10    Nsfl . 

Assuming pi* dele sizes of order 7 x 10*6 meter, one calculates   X s41o -/ 1JL\ 10 /fs • 

If the density of the colloidal particle is the same as that of water, the cut-off frequency 

£..    2ii2 s58,5 kHz 
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If Ix-fl« I    » then(\]-jT|Ü^ iJ.By choosing to««?, one sees that the difference be- 

tween the motion of the colloidal particle and that of the acoustic wave is negligible. 

It appears from the above argument that for (low-frequency) periodic motion, which 

is long relative to the optical process duration, the forces involved are purely resistive, 

and the particle motion is not sensibly different from the wave motion.  However, when 

the wave motion is complex due to presence of soft reflective walls, diffraction, etc., the 

forces acting on a colloidal particle are along more than one coordinate.  The motion of 

the particle is then oval, or elliptical, and the equations written above no longer hold. 

It could then be said that in complex sound fields, it can hardly be expected that a colloi- 

dal particle will faithfully follow the motion of the acousitic wave since it would then be 

required to be nearly indistinguishable from the medium itseltassumed free. 

Brownian Motion 

According to the theory of Brownian motion, the mean of the square of the distance 

travelled by a particle in a fluid during a time! is given by the equation 

A*   =  CT>t 

(See Lundau, Lifshitz "Fluid Mechanics", p. 227ff).  HereJ) is the diffusion coefficient 

n S ), For spherical particles of radius £L diffusing slowly in a me- 

of dynamic viscosity U , it is known thatD*——.   Thus, the mean distance 

ied in time* ig 

(dimensions 

dium 

travelled 

/r«/$T;  u^ 
It is important to es mate the time required for the particle to mov» a "decorrelation 

distance".  Arbitrarily (but reasonably), this distance is taken to be a quarter wavelength 

of the laser light .Let  A^ * 3Ä6Ö A , Ü* 10 RM 5, Q. * 3 MO M >      Boitzman's 

constant - 1.38 x 10'23 Nl"tK*" T= 306° K  Then the decorrelation time is 
-4 

4 '   |.YS>/o'*\3»/Ö* 

83 



■4 

■    | 

1 

1 
» | 

" i . 

I...  '■• 

The "decorrelation speed" is *L or 

Q-ej^.).4.t^-'M.- 

Thus, Q is of the order of    JO    Arvyiv/set. 

The possibility of decorrelation of the motion due to the acoustic wave by the Brown- 

ian motion of the suspended particles must be seriously considered, if the duration of the 

process required to sample the wave exceeds 0.02 sec.  At 100 Hz this allows about 2 com- 

plete cycles to be sampled.  However, at 50 Hz only 1 cycle can be sampled. Thus, there 

is a threshold frequency for doppler detection of particle velocity, estimated here at 50 Hz. 

Spectral Broadening Due to Brownian Motion 

The probability of finding a Brownian particle in the distance intervalAand ft+aH. is 

proportional to Jtyp(-/i /Ot)(See Landau, Liftshitz, p. 227).  For two-way travel the 

phase change 4<J> due to Brownian motion is A4 r&Rär^lütfHence, the probability of 

finding the motion of the particle in phase äty is proportional to exp7- (^4>'/^47Il^t)f - 

JUbJ- •*-*- /     where 3. a ^S5>   .  In accordance with the mathematical model sketched 

earlier, the spectrum of the first sideband due to acoustic modulation is 1/2 of this quantity. 

Thus, the spectral broadening due to Brownian Motion is 

\ .   H g*? ■  Lk 7r4T 
*     ^    3 %*>* 

For a laser wavelength in water of     V 86 X iS H , It* 10    M S 1*1 t   a.* I*l0    tf 

k - l\% 1 /0    Ht\ K* t  T' 300V      the spectral broadening is 155 Hz. 

Multiple Scattering 

The transport equation can be used to model multiple scattering.  Let 2 (A. / -tjd/u <* V 
,3   *    ...     .   ...    ... A, "    ~ "'       ~  ~ 

d ,\ a V    represent the rate at which photons are introduced into (&»!f ) by the laser. 

Then the most general tima dependent transport equation is 
This conclusion is restricted to the case of a single scattering particle whose Brownian motion disturbs the acoustic 

particle velocity over short times, and over an assumed characteristic length of «,/y. In the multiple particle case 

the Brownian motion is random. Over long (enough) times it only adds noise to the detection process but does not 

set threshold frequencies. The characteristic length is then not significant. 
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This is a differential-integral equation in the unknown function £ and known function <T", 

It is too intractable to solve.  Simplification is usually accomplished by considering 

only the axisymmetric case in which /L is replaced by i} U. ( 2 being the direction of prop- 

agation, Li the polar angle to this direction), and considering only uniform velocity^ so 

that $ is independent of velocity. Then, the transport equation reduces to 

where 0", (^ are the scattering and absorption cross-sections, respectively, and |_= diffusion 

length. The solution is assumed to have the form JL(U.)G    • H multiple scattering is ne- 

glected, then, approximately 

in which X is number of photons simply scattered from the initial set jL. The first term on 

the Jt-lvS.i* tne number of singly scattered photons that are lost by absorption and scattering. 

By changing subscript 0 to 1 and subscript 1 to 2, this same formula can be used to estimate 

the number of photon that are doubly scattered. A repetition of this bookkeeping process 

leads to the GE conclusion that 27% of the received laser light will be multiply scattered 

and 73% simply scattered (See GE Report 973-SH-347, March 1970, R. M. Ameigh, et al, 

p. 28). 

This conclusion on the partition of the incident photons into single and multiple scat- 

tered photons is based on neglect of the integral in the transport equation which accounts 

for the transfer of photons from direction **■ to direction U ; i.e.. the volume effect is 

neglected leaving only the linear effect.   A true account of multiple scattering must rely on 

solving the integral equation per se. 

While single scattering accounts for observed scattering effects over short path lengths, 

it is not valid over long path lengths.  In the latter region multiple scattering is the dominant 

factor. 
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PartV 

The Effect of Medium Distortions On the S/N Ratio 

of an Optical Heterodyne System 

Fried (Proc. IEEE 55, p. 57, 1967) has developed a theoretical formula for the limit 

of improvement of the S/N ratio in the presence of a distorting medium. We review here 

the conclusions most relevant to our study. 

Let the photodetector be modeled as a circular aperture of liameterD. By use of 

an appropriate weighting function Wu) for the contribution of each elementary area <*X 

of this circle the total photocurrent is derived to be 

(V.1) 

in which f) is the quantum efficiency of the detector, E4 is the complex scattered signal 

field and E0 the complex local oscillator field of the optical heterodyne. On the assump- 

tion that Eo > E$ it U seen that the information-carrying part of the photocurrent is 

(V.2) 

in which M s ^JS" 7«, ^4' ^»" ^« > ar>^ &■ > &|      *** the «»Plitudei of the local 

oscillator beam, and the scattered beaut respectively. 

Let£} be the gain associated with the current amplifier, and TCs resistance of the load 

in the detection circuit. Then the time average of the signal in the photodetector is 

s^={[if'i*S'^       (V.3) 
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For circuit noise fluctuation current   ^ (= shot noise), the amplified noise is  iN Gj and 

the noise power per unit bandwidth is 

M = €q
2r\ £3>*[E^R 

in which 6 is the electronic charge. Hence the S/N ratio per unit bandwidth is 

(V.4) 

(V.5) 

Thus S/N is proportional to the total signal power collected (i.e. KV |ES|    ) and pro- 

portional to the quantum efficiency   % of the detector. 

When the wave field scattered from the medium is random one replaces the non- 

random phase q^by therandom phase <ps (x )   , and the non-random amplitude (Hj |   by 

the random amplitude's! **[» L *( £)J     , in wluch \£j|    is the rms value of EJ.&), and 

l(i) is the log amplitude i.e. jL(t )s jh.    ^>^^E*i The signal current 15   is then de- 

rived to be 

(V.6) 

The information bearing signal is 

s^(Sft .(^j0q)K {I^Vfej^dg«!«^^««-«!}1 

(V.7) 

or 

WE.feiG^iß^'^^h^^'**^'0'*^ 

Ln the last step the time average has been dropped because: (1) the average over <j)0 vanishes; 

(2) the spectra of  <t>4 (*) and  v (x) are within the information bandwidth of the detector, 
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4j ($) and * '&) therefore being virtually constant over the averaging period.  SinceS u 

random one can form the ensemble average^S*.  In terms of a change of variable, /Is Jt-£ , 

n s J (%W)>this average is 

(V.8) 

where Sf(/i) is the wave-structure function defined as the sum of the structure function 

for phase 9L(H.)    , and amplitude & (A.) , i*. 

£(*)• V*> ^^ 2 

A   -    \h\ (V.S) 

By choosing W ($. ) properly it can be shown that 

< S > - * (r) l&lR 4)ft ^AA. £ (A)JI„(, [- i SMo] 

(V.10) 

The shot noise in the detector system is the same as Eq. V.4. Thus the S/N ratio is 

'3> 

^(-l^Ej^PM (v.«) 

(V.l^ 
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The symbol f\t is introduced for the following reason. A graph of V r%«)vs.   fh* 

in log-log coordinates has the following form, 

VA. 1 10 

FIG,. 13 (V.13) 

This graph is based on several assumptions:   (1) both 4>(*)  and Mi)   obey Gaussian 

statistics (2) the turbulence in the fluid is isotropic and homogeneous (3) the Kolmogoroff j., 

theory of turbulence applies (i.e.^l^A   3 ,A0-(^i?) , $(h)'L•**{£) 

yi-Cj l_0      . v. ^structure constant defined by Tatarski, "Propagation in Turbulent Media" 

1961 Eq. 3.50).  From the graph it is surmised that *&>( H      reaches an asymptotic 

limit as the aperturel) is increased, and that A0   is the smallest!? for which this limit is 

available. Thus increasing the aperture beyond Ac does not increase the £*'/H    ratio, 

given the existence of wave front distortion.  (See next section for critical comment.) 

Fried has calculated /-,»   for many cases of distortion in atmospheric turbulence (see e 

his Fig. 8). We note here that for the case: (1) electromagnetic wavelength X • ^. Sun » SOOOn 

(2) zenith angle6-0    (3) altitude of receiver N -1 kilometers (4) daytime!    the magni- 

tude of ho is approximately 0.12 meters (say 5 inches).  However in the case of under- 

water turbulence the calculation of /t0 is a subject of further investigation. 

Recently, considerable progress has been made in the mathematical theory of the 

propagation of laser beams in strongly turbulent media. A summery of developments is 

provided by Prokhorov et al.  Proc. IEES 63, p. 790 (1975), where the subject of saturation 
of intensity of scintillations is treated in great depth. 



Limits on VAS Imposed By The Inhomogeneities of the Medium 

The VAS is equivalent to an array of remote sensors located in an inhomogeneous 

medium. The medium imposes limits on its performance.  Fried (see previous section) has 

discussed the effect of the medium on the photodetector performance for a single sensor. 

He concludes that the S/N ratio cannot be \nproved by increasing the receiver aperture, 

once a critical aperture size is reached. This conclusion must be reviewed in light of known 

statistical antenna theory.  Since this theory is very extensive we focus here attention only 

on one key theoretical point, namely on the maximum attainable directivity of a statisti- 

cally perturbed array. 

Shifrin ("Statistical Antenna Theory," Golem Press, 1971) provides a convenient sum- 

mary. Let 1)0 (*. IL /\\  be the directivity of a continuous line of length l_ located on 

the x-coordinate axis receiving a (monochromatic) wavelength A •  Also let 4 (x) be a ran- 

dom phase of (normalized) position  XI<J */L • It is first assumed that 4(X) a normally 

distributed with zero mean, variance oL (independent of coordinate :), and correlation 

function   Pi (I )< ~ /1 v       • The mathematical form of fi    is assumed to be of the form 

Ä 

ft(u-^-"H- -jT- h      4 KB 

(.1) 

in which Lv is the normalized correlation length for phase, and ty is the non-normalized 

correlation length for phase. The mean directive gain 3) is given by 

+ 1 

5-* [[ 
4 -. 

-oC[l-^] 
cUdUi 

. ! 

(.2) 

Let * be the far Held pattern angle, measured from the normal to the center of the line 

array, and let the generalized angle be defined by   ty *[**-/z )P*B a(lC l/^ j^0    . 

When discussing directivity of an array that sees a wavefront with (Gaussian) phase correla- 

tion p   it is convenient to define a function X(.LA ty   1^ )     in which 
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41 2 

~ i V ^»^ A* ^ j 

jr Pi (-3) 
In terms of these quantities, it is seen by expanding the exponential that the mean 

directive gain is 

D =o>oe 
.el ♦iiS1^'^] 

(.4) 

A plot of 1>     vi  «   A   tor various values of phase variance 06 and correlation distance 

JtX is shown below: 

4M 
s Fiq.H- 
'**'° /Shifrin, Fig. 12.3) 

Here> XA* SO H (tvü curves), jL s |ooH (brolten curve). These curves can be discussed 

in terms of the parameter L^« L± /Jg[ , i.e. the ratio of normalized correlation length of 

phase to the standard deviation of phase. Two cases are of interest. 

Case I.     Let L^l, that is, the antenna dimension is much smaller than the correl- 

ation length 1+ . Then choose Lot»1. It is seen that "3>*«]>#   . This means the fluctu- 

ations of the medium have no effect on antenna gain. Now choose Lot «\ , meaning that 

the standard deviation for phase is very large. Then 
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in which  y   is the mean value of the square of the (random) angle of arrival     (see 

Fig.iS). 

Fl<q.|5 

It is seen that antenna gain D does not depend on the length of the antenna. This is the 

region of directive gain saturation.   However as the length of the antenna increases the 

gain saturation disappears and the mean c'irective gain increases with antenna length with* 

out limit. 

Case II.   Let l-^«|     (that if, the antenna dimensions are much larger than the 

correlation lengthJu ). Once again, for sufficiently large phase fluctuations there is a 

region whereD is independent of length of the antenna. This is the region of directive 

gain saturation. When the antenna length is increased beyond this region the gain$ in- 

creases with length of the array beyond all limit. 

Summarizing:  An inhomogeneous medium limits the performance of a linear array 

only over a limited region (region of gain saturation) of array lengths. Beyond this region 

the directive gain of the antenna increases with length beyond all limit. The limits of S/N 

discussed by Fried in the previous section are seen to apply only over limited detector 

apertures.  If the aperture is made sufficiently large (according to Shifrin),there is always a 

directivity gain for a fixed standard deviation of phcse fluctuation. Thus S/N can be in- 

creased by increasing the aperture provided the aperture is large enough. 
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Part VI 

Signal Processing 

£ 
i 

We take a large two-dimensional seismic array to be roughly analogous to the projected 

VAS array, and discuss seismic signal processing in a brief review. 

Seismic signals are always mixed with seismic noise.  Several methods of processing to 

reject noise are known.  In the first method (Burg, Geophys. 29, p. 693-713,1964) both 

signal and noise are assumed to be stationary multidimensional random processes with 

known cross-correlation functions,  A linear (Wiener) filter is designed which produces an 

output that is a minimum mean-square-enor version of the signal.  In a second method 

(Claerbout, Geophys. 29 p. 197, 1964) the known noise correlation function is used to 

design a linear processor for the seismometer outputs which provides a minimum-mean- 

squared-error pred'ction of the noise over a short interval ahead. This prediction is sub- 

tracted from the actual seismometer output, thus greatly reducing the noise level. How- 

ever the signal waveform is distorted.  In the third method (Capon et al. Proc. IEEE 55, 

p. 192, 1967) the seismic noise is assumed to be a zero-mean, time stationary multi- 

dimensional random process.  The signal is assumed to be a single plane wave propagating 

in a homogeneous, linear, nondispersive medium, but is an otherwise unknown time func- 

tion. The signal processing therefore takes on the character of generating an estimate of 

an unknown time function and uses the theory of maximum likelihood (or minimum- 

variance) unbiased estimator approach. The essential feature of this approach is to design 

a noise-rejection filter based on a matrix of filter weighting coefficients which are obtained 

by use of the calculus of variations on a system of equations. Briefly, let there be a total 

of r sensors in the seismic array, and let the noise in each sensor constitute one component 

of a multidimensional random process,  Nj - fc M ((0 * ^ N,(t) ♦ " "   ■*■$*> Np(0 

I 
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Assume further that each Ni  is Gaussian, so that the total N has a multidimensional 

Gaussian distribution with zero means. The covariance matrix of N is defined as 

/KM (*.>ta)       Kt(M»)  ••'-• Mt,M 
Klt.,tO •(  

y K;, (t,,M         KTP (MO 

with 

whereC is the expected value. 

Now let the time function of the incoming wave be sampled 2 V+l times from -V to 

1> , and designate two distinct samples by integers'«!,it Then the minimum-variance un- 

biased estimator has weighting coefficient« 0* ,"151. 2... < , determined by solving the 

matrix of equations y 

in which ~\     are j^f I   Lagrangian multipliers chosen to satisy the constraints that 

C4IT),/M 

t *l 
Thus knowing Kti , and the constraints, one finds a set of "P coefficients Bi  , 

1* 1,2 ...T. These coefficients form the basis of constructing a digital filter which 

(by its construction) gives the optimum estimate of the unknown time function con- 

stituting the signal, simultaneously rejecting noise.   The synthesis of the digital (two 

sided) filter is carried out in the frequency domain. It is noted that the estimator thus 

found is also the maximum-likelihood estimator. 

Diversity 

Diversity is a signal processing technique aimed at improving the reliability of 

reception of signals that are subject to fading in the presence of random noise. To 

discuss diversity one requires a brief summary of the nature of a fluctuating channel. 
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We assume that there exists in a communications channel many "copies" of a 

signal, travelling    different paths.  Each copy has an identifiable amplitude and phase 

which vary slowly with time.  At a particular receiving point the instantaneous time 

signature of arrival of signals is the sum of two or more sinusoids with vary amplitudes 

and phase. This sum shows fluctuations in signal strength called multipath interference 

fading.  By choosing many different channels one can obtain many time signatures which 

differ noticeably from each other, some fading, some flaring up, etc. If these signatures (consisting 

of signals plus noise) are widely enough spaced in location (or time, or frequency) as to 

be statistically independent, one can combine them in an appropriate manner so as to 

obtain better or more reliable reception of the "message". Such combinations form the 

basis of diversity methods of signal enhancement.  It is to be emphasized that enhance- 

ment is possible only when there is a random character to the received signal itself, and when 

diverse copies of the signal can be obtained, or generated, from a single original. 

A convenient and much used model of a fluctuating channel is the "Rayleigh- 

fading" model.  In this model a transmitter projects a signal at frequency ttfe  which 

arrives at the receiver in the form 

>(t)'   ALi) CM D*t+e>ft)] 

The random amplitude /j (i) is Rayleigh distributed, with probability density 

f(A>- ^4 e- 
/U3 

A>o 

in which (Lis the J A1 in an (appropriate) interval T . The random phase is 

usually assumed to be uniformly distributed between 0   and ITC with a value  ^7* 

Thus eU) i* a narrow b- id gaussian process with zero mean and variance % - & (z 

If   ff(i)    is expressed in quadrature form 

e(t) * e< L+) to (oct 4 e,(t) -t*. to0i 

then Cs   ,f      are independent gaussian random variables. 
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According to the Rayleigh-fading law the probability that the received signal will fall 

below A  in any time interval fitting T is 

T(AiA')-\.x^(-{)1 

Half the time the signal will be greater than the median   An ~ 0 • 6 ? 3 & . A sketch of 

various models of amplitude fading channels is shown below: 

f»tx) 

FIQ. K> 

"NV-_ 
> y 

In these (see D.G. Brennan, MIT Lincoln Lab.) probability densities, curve 9- is <k-Rayleigh 

channel, curve b shows mild fading, curve C shows deep, frequent and persistent fading. 

We assume now that a number of copies of the signal (or "message") are available. 

These are to be sent from source to receiver.  Upon arrival each copy is assumed to show 

fading in the presence of noise of the transmission path itself or of the receiver. To apply 

the technique of diversity signal processing the fading patterns of the original copy must 

be statistically independent. To assure this several methods of transmission are used:   (1) 

copies of the signal are sent in time succession as a sequence of pulses. The signal is said 

then to be time diversified. (2) copies of the signal are transmitted on different carrier 

frequencies. The signal is said to be frequency diversified.  (3)  Copies of the signal are 

received from different spatial locations in the medium. The signal is then said to be spa- 

tially diversified.  In all cases statistically independent poise is assumed to corrupt the signal. 

When K copies of the received signal are available they can be signal processed in 

various ways.   A simple technique is coherent processing. In this procedure the K received 

signals are added, and then squared to form the power. The signal power is proportional 

to K   and the noise power is proportional  to N    Hence the improvement in S/N ratio 

is equal to the number j^ of independent copies available. Such processing however assumes 

the quality (good or poor) of all signals is identical.  A more general type of processing is 

to weight each available copy (» (it(*)) by a weighting factor Ö*. and then add them together 

to form ('v, where 
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Different choices of 0. lead to different processing techniques.  If only one (2 is different 

from zero at any time, one has switching techniques.  Trying each d^ one at a time is 

called scanning diversity.  Trying a group of (^simultaneously and selecting the best is 

called optimal selection diversity.  If all the d^ are used, and given equal magnitudes the 

processing is called equal-gain combining.  If the tyS are adjusted according to the quality 

of «H/so as to yield the maximum S/N the result is called maximal-ratio combining. 

These different procedures can he calculated to show the S/N gain of diversity over 

signal channel reception.  A set of charts have been prepared by Brennan (1959, Proc. 

IRE 47 p. 1075-1102) for the cases of two-channel, four-channel diversity, and theoretical 

gain for a large number of channels.  For example, a typical case shows that ten (fading) 

copies can be made to deliver a 10 dB improvement over a single copy when the technique 

of maximal-ratio combining is used. 
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Conclusion to the Report 

We have presented above a comprehensive review of all factors pertinent to the detec- 

tion of acoustic phenomena by use of a laser heterodyne detector. The principal problem 

in proposed Navy applications of this technique (as replacement of standard Navy hydro- 

phones) is the very small signal to noise ratio in a single beam. This limits detection 

threshold in noisy environments to (a few) orders of magnitude greater than the thresholds 

currently available to the Navy.  However, considerable improvement in S/N ratio is fore- 

seen in the proposed use of multiple beams (i.e., "diversity"). The gain is anticipated to be 

proportional to the number of beams employed. 

■4 
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Appendix A 

Analysis of Two Beam Interference 

Two point sources of light separated a distance d in a dark screen superimpose on an 

observing screen at distance«'.  The total field at point ?(x) in the observing screen is 

If we assume:  ~ „       t- • 
(. }  F, = E» * E«- 

then 

**i ■»(»•*) 
Now let the angle of intersection of the two beam be Ö. Then 

so that 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

The intensity at r is TL given by 

in which Ko is the dielectric constant, and c * Q & 

If the sources have finite width QQ  the projection of which on to a plane normal to 

OP is 0 and if ol is the angle enclosed by the rays from Q and Q then a path difference 

^ is introduced, as measured form origin 0 at the center of the width. The phase difference 

is K| i-, Eq. A„5 constitutes the basic formulation appearing in George and Lumley's 

model. Part II of this report 
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Appendix B 

* 

Dimensiorüess Wavenumbers and Optimum Scattering Volume (George and Lumley loc. cit). 

The symbol Tj is the Kolmogorov microscale ( *| * (' /( j       ) and has the dimension* 

of length. The symbol ot Is a frequency, appearing in the spectra for velocity, phase etc. 

The symbol VI is the mean flow velocity. The symbol f, is the dimensionless wavenumbcr 

for which the ratio of turbulence to ambiguity spectrum is unity. By definition 

k. =   % <B.D 

Thus if R0*|.0   the me«ui velocity u, is equal to the velocity of the fluid of displacement 

equal to the Kolmogorov microscale multiplied by frequency &o. 

The symbol k^ n (pNr.)    where Ü] is the size of the scattering volume in the 

x-direction.  The symbol l^n = b is thus a ratio of the Kolmogorov microscale to the 

"x-component of scattering volume." The statement that ^ is optimum when 

V     (*^|)*. for, If, 
means 

to\ *♦ 
x (f 

'•aivi 

in which the Reynolds number is 

•fc* V5L 
fir« * ku» 

(B.2) 

(B.3) 

(B.4) 

The symbol /*>< = (<? 0\\ where <£ is the size of the scattering volume perpendic- 

ular to the flow, but in the plane of 0",     For small 6 , 

*ft< (B-5) 

Thus, 

ft 

The optimum volume of scattering should be determined by this formula, 

- I,a1 C"^r / (B6) 
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Appendix C 

'A 

Optic-Acoustic Interactions 

Optic-acoustic interactions are reviewed in Appendices C, D and E. 

We consider first a nonstationary medium in which the time-rate of change of the 

index of refraction is much slower than the frequency of the electric field.  In symbols 

{^"nftlLzs) ^< T       where/n is the index of refraction andl is the period of oscillation 

of the electric field. Now let the change in index (s m,") be caused by the passage of a 

soundwave, i.e. caused by a change in mass density.  Thus when the sound wave is present 

the instantaneous index of refraction I- *>) ia the sum of the unperturbed value Mo and 

the perturbation #i.  In the absence of true sources the propagation of the electric vector 

E is governed (to quantities of first order in /fi^by the linear wave equation 

7»tr . (*>*+*,)* dE = 0        7£ . JA£ . (Mfao) ög 

in which terms of order Al'have been omitted. The perturbation in the index of refrac- 

tion ftt is proportional to the perturbation in fluid density flt i.t 

thus we write the wave equation for E in the form 

-   Cg at*"   f, Cgv at* 

The transit of the electric vector in the medium creates a mechanical body force ^ 

(dimensions-. N M  ) which acts as a source of acoustic pressure h the propagation of 

which is governed by the equation 

YF   c; at1    - -£ 

(C.2) 

(C.3) 

Now ihe acoustic density is proportional to the acoustic pressure, and the mechanical 

stress is proportional to the electric field. We write -h " IT» f, t- g - Kt £ . 

Thus, 
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^ at*    Ks - 
(C4) 

Taken together we see that the waves of density and electric field form a coupled system 

given by Eqs. (Cl) and (C2).   Returning to Eq. (Cl) we let f, - p, (> t4)   and seek a 

solution E (y,-t) by Fourier transformation of the time coordinate with zero inivial condi- 

tions, 

(A*1)E(_vu>) =(fo)e, (w) * (-|!)EM* Q(*>*>)  (C5) 

in which * signifies the convolution opera-ion. The symbol Q (2,1*)) describes a 

(fictitious) source.  The electric field at any point is obtained by the use of the Green's 

function for the infinite domain 

Efeu»*   $9<*.,«0<5.G,*)'i« (C.6) 
if 

This formula is an integral equation in the scattered part of the e'ectric field, the scatter- 

ing itself being due to inhomogeneity in mass density of the medium.   A few important 

applications of this formula to the interaction of acoustic and electric fields are discussed 

by Morse and Ingard (Chap. XIII). They are (a) the Oebye-Sears effect (b) Bragg scat- 

tering (c) Brillouin scattering.  These topics are briefly reviewed here. 

A.  Debye — Seats Effect 

Let the perturbation of the mass dr-sity be due to a periodic progressive ultrasonic 

wave travelling in the positive x-direction.  The harmonic frequencies are a>s ' , and the 

wave numbers are «s   *>= I, i • •   ....  It is assumed that the width of the sound beam 

is small. 

Now let the incident light be a monochromatic plane wave, C = C« cos ( Kg' - "■»i^ ) 

where Kf »(t COi* I   i, COijJ-fJ? Cfiii) |K|    >,Ä,T,     being direction 

cosines, and (^£ .-• it/c6 . This light is scattered by the "grating effect" of the periodic 

ultrasonic wave.  Choosing for example then n'th Fourier component of this wave, and 

writing the mass density as sinusoid; 
» •»>. 

one then seeks a solution to Eqs. (3) and (4).  In general the solution process is difficult 

to carry through.  Approximate answers are obtainable by the following procedure.   First 
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it is assumed the perturbation is so small that the electric field in the source term Q^ 

(£,<•>) is effectively the incident light. This is the Bom, or single scattering, approxi- 

mation.  Secondly it is assumed that the width of the sound beam (- Z L ) is so small that 

multiple reflection (as from parallel layers) is negligible in establishing the scattered electric 

field.  Thirdly, both electrical and mechanical fields are taken as 2-dimensional (i.e. 

coordinates x, z), so that KE = t, K* f -fe, K«     and   [Kg 1 * fc< ■+ %,   •  Thus using the 

2-dimensional Green's function (1/4. ) rl0'' (|K& I J^-Xft)*4 (?4>f » *»"* t**"1* ^° 

to be parallel to the y-axis, one arrives at the following approximation to the scattered 

field due to the n'th harmonic components of the periodic ultrasonic wave, 

E* E,p*.[& T -(&<*)*] * ^[jd'jr -jfi-^KI       (C7) 
where 

F, ü\rto 1 Awn [cn.L/fc)c^a^65-] 
c tfu»,)«1**)    (xa^) <*>« <* ^ 

Ö^«T +Co±Si)ftflM4 M-* 

(m) 

(C.8) 

(C.9) 

i x MV, Ds *    «|& | **«* ± HtObAf'Jhfijii     (c-10> 

The symbol £),     is the angle of scattered light 

In words:  each Fourier component of the periodic mass density perturbation induced 

by the ultrasonic wave scatters the light (incident at angle 6 ) into two plane waves 

$ traveling in directions g^ and Be respectively where 

When (Oj «11    (as is usually the case) the -cattering a angles are given by 

(C.ll) 

(C12) 
(I) ' I'VE I A 

Let \     be the fundamental component of the sound wave, and ' J» the wavelength of 

the incident light wave, then. 

Jtr» 0+  AV 4l (C.13) 

Thus on each tide of the direction of the incident beam will be found two diffracted plane 
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waves for each harmonic of mass density appearing in the periodic ultrasonic beam.  The 

frequencies of these waves are XI +1h(t^ ("up Doppler") andiZ —,itQ ("down Doppler"). 

Their amplitudes are proportional to the amplitude *1      of the n'th order harmonic of 

the ultrasonic wave (which diminishes with increasing/v).   For an arbitrary periodic dis- 

tribution of mass density a family of plane waves  nil appear in space distributed in angle 

according to Eq. (6C).  These diffracted waves mane up the Debye-Sears effect.  It is a 

notable feature of this phenomenon that the diffracted waves appear for any angle of 

incidence? . 

Bragg Reflection 

A plane wave train of monochromatic light (wavelength^   ) crosses a plane wave 

train of monochromatic sound (wavelengths ) at an angle of incidence &•.  The sound 

of train constitutes parallel layers of density from which the light is reflected.  We con- 

sider three wavefronts of sound at phases 0, 2 n and 4 n radians (that is 2 A.long), and 

a single wavefronts of light at zero phase. The light is first reflected by the zero phase 

wavefront of sound at an angle &'.  In order for a second reflection to occur the light 

must reach the second layer, travelling a distance ac. It is seen that d. must be equal to 

or less than l^, Thus the angle %l is given by 

,/    A' - A* 
(C.14) 

Now we choose A« to be/| (one wavelength).  This sets the requirement that the second 

reflected wavetrain be in phase with the first reflected wave.  This is equivalent to the 

geometrical requirement that the wavefronts 1 and 2 be reflected into wavefronts 3 and 

4 shown in the Fig. Cl.  This is the Bragg angle requirement that 

H 
fU/f\ * öi s Am 

ax« (C.15) 

FIG,. Cl 
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For given /I and X it is seen that only one angle will satisfy this equation. If we set 

0£ - 90° the light is reflected exactly backward, provided the wavelength of light is twice 

the wavelength of sound.  In going from wavefronts 1 and 2 into wavefronts 3 and 4 the 

light wave is scattered through a total angle 6  - 2 6'.  However the wavelength X is 

created by a wave moving at velocity C , and characterized by a frequency £3 * <*/■ju, 

The frequency of the light-tj. *     TYA is thus Doppler shifted by an amount — J, that is, 

by an absolute amount, 

& = 2 & g A  i (C.16) 
This equation gives the spatial and temporal relations between all the vrriables.  If, for 

example, we are to observe reflection of light from a sonic wavetrain at "scatter" angle 

9| then for a selection of frequency of light Lwe must employ a frequency of sound given 

by the above equation. In a typical case (Morse and Ingard, p. 819) +_is taken as 10*5 

Hz, C£ as 3 X 108 fts"1 and C as lO3«^"1.  Then the observation of back reflection 

(at Bragg angle 180°) requires an ultrasonic frequency of some 10*0 Hz.  If £ is less 

than 10** Hz the reflection angle is very small, that is, the reflection is very nearly in the 

same direction as the incident wave. 
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Appendix D 

Thermal Modes of Fluid Motion  (Ref. "Theoretical Acoustics", Morse & Ingard, Chap. XIII.) 

The generation of acoustic pressure J> and the diffusion of acoustic temperature T 

form a coupled system,      described by the equations, 

7*f> - <£, j, = - «P<*.T (D.1) 

(D.2) 

in which 

at» 

Here, CL, C^ are specific haats at constant pressure and constant temperature, n is the 

bulk viscosity modulus, U is the shear viscosity modulus, ß is the coefficient of thermal 

expansion, r\ is the thermal conductivity and Kr is the bulk (elastic) modulus at constant 

temperature. Eqs. (1) and (2) are acoustic equations. A more general equation of fluid 

dynamics is the Navier-Stokes equation, 

tut 
(D.3) 

(D.4) 

in which ty« and K^. are the longitudinal and transverse parts of the fluid velocity,^ "a 

the acoustic pressure, P is the equilibrium fluid density. 
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Three species of fluid motion are predicted by Eqs. (D.l) thru (0.4).  These are (1) 

longitudinal waves of acoustic pressure k (» Eq. 0.1), (2) transverse shear waves (= Eq. D.4) 

(3) thermal diffusion of temperature {■ Eq. D.2) which then gives rise to acoustic 

waves (*■ Eq. D.l).  We will discuss thermal motion and the accompanying thermal modes 

of sound generation. 

In the thermal mode <JlT is very much greater than jb. The diffusion of temperature 

in this case is given by Eq. (2). To apply this equation we first assume the acoustic pres- 

sure on the/i'K.S is negligible, and take the temperature pertubation to have the space and 

time dependence of a plane highly damped travelling wave, tec tyb <•(£•£- m) . Then, 

to first order, _ 
V C'     K l (D.5a) 

Qr-ikiT (D.5b) 

From Eq. (2) it is then seen that the effective square of the wave number is complex, 

£C$ (D.5C) 

The acoustic pressure corresponding to this diffusion of temperature is found from Eq. (1) 

in combination with Eq. (5a), (5b), and (5c), i.e. 

*>-  iis* U-f„> (D.6a) 

The effective perturbation of pressure is not this h alone but the combination 1P- otf. 

The term Q(T describes the reduction in pressure due to heat conduction (i.e. describes the 

departure from the assumed adiabatic condition of wave propagation).  Corresponding to 

waves of acoustic pressure are waves of acoustic density f, which to first order are related 

to each other by the formula ■jf-^l »C$ or 

t 

9i. Jtjyr s i^Mh:L) _ # (D6b) 
c\ c, c; 

The perturbation in fluid velocity associated with thermal motion is found from Eq. (3) 

by neglecting the viscosity term on the/i-vs since this term will yield only a second- 

order effect of termperature on velocity. Thus one finds 
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% . Ä- (4-^) Hr (D.6c) 

The set of equations comprised in (5)-(6) form a convenient description of the thermal 

mode of fluid motion in terms of the parameters %&>*& and iJt. 

Decay Rate.i of Temperature and Pressure Fluctuations 

Assume the modes of motion noted above arise from random fluctuations in pressure (4b) 

and temperature (^T). Temperature fluctuations decay at the rate 

r   at 
(D.8) 

Assuming the spatial dependence of AT has the form exp i«-P, we reduce this equation 

to the form 

a (AT) \ 

at 
--   -pfrT), fim£rt (D.9) 

Hence the time decay of (spontaneous) fluctuations in temperature of a fluid follows the 

law ATQC exp (-ßt), in which fi is the temporal decay constant. 

Now let there be a pressure fluctuation (spontaneous) of amount £*>(H(-t)whose 
Wi      _ spatial dependence is cos 0. f. 4s p . Th'j mode of fluid motion if found by solving 

V*f-   o£p r   0 (D.10) 

for the complementary solution* in time. The result is 

4f>(h,i)«ce'^ [c.i(<j.r+^t)+arf(^r-^ti] (D ID 

which describes .iro waves traveling in opposite directions (at angle ^Q«T) at frequency 

4>v - ?C. where 9 (k>) satisfies the dispersion formula obtainable from (O.10).  The tem- 

poral decay constant is 
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«* (*44)-?= Li*/* (D.12) 

which is also obtained from the complementary solution of (D.10). The time t= d     will 

be called the effective life time of the wave. 

Under forced drive Eq. (D.10) has a forcing function FC^-tjon the fi-fa  Dy Fourier 

transformation of time (under zerc initial conditions) the acoustic pressure is seen to be 

given by 

1  A 

f   (A, to)- -V 
(D.13) 

at to-ftl the lifetime of 6) (i.e. its effective influence on the spectrum of ^>(ht(t) ) is oL 

order o(" (dimensions of seconds).  The bandwidth of j» under forced drive is therefore 

of order -J-.| • that is, of ordere/. 

In sum:  Spontaneous fluctuations of pressure are propagated as damped traveling waves, 

and spontaneous fluctuations of temperature are diffused as critically damped waves. A 

spontaneous spatial sinusoidal distribution of pressure at wave number 0. propagates away 

as two damped wave* in opposite directions at frequency (*'j: j?C-  E*ch propagating acous- 

tic mode is associated with a propagating mass density. The mathematical form of these 

damped waves have the same form as the forced drive of a damped harmonic oscillator 

(Eq. (D.10)). 

We next consider the interaction of light waves with mass density fluctuation associated 

with thermal motion of a fluid. Let Ap {h ,■») be a spontaneous fluctuation in mass density. 

Choosing (as before) the thermodynamic variables the pressure and temperature we write. 

*?-(S)M£VT 
(D.14) 

We consider the effects of temperature and pressure separately. We first take the spatial 

Fourier transform of the pressure and temperature fluctuation», and write. 
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!, '1 

tk'l 
(D.15) 

(D.16) 

where the volume of integration is finite (as it must be in any real case). Treating Ap as 

a random variable we next calculate the temporal autocorrelation ftp i*/>bf the pressure, 

% (k> *)* < *p(M«*) *£ M> <D-17> 
in which the symbols ^ represent a temporal average ( » integration) where the integration 

is over finite time. The intensity of the pressure-fluctuation is obtained by setting 7"= 0 . 

Similarly the autocorrelation of the temperature fluctuations is given by 

*r(k,t). <iT(k,t*tUT*(t>*» (am 
Assuming further that the pressure and temperature fluctuations are uncorrelated we can 

find the autocorrelation of mass density "Rpikfy by addition, i.e. 

(D.19) ^(^--fe.JTir «?)<(%fait) 
From previous analysis (see Eq. (D.ll)) the temporal character of a pressure fluctuation 

has been involved as the response of a damped Ample harmonic oscillates for each wave- 

number K    , and associated frequency |L r if^ g . Thus one can write 

ftp (ktr) * % (kt o) e     & «*?     {DM) 

Similarly, 

T?T^)r^ri.?.»j^frl 
( D.21) 

These formulas will be used in the discussion of Brillouin scattering (<ee Eqs. E6, E7, etc). 
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Appendix E 

Brillouin Scattering (Ref. "Theoretical Acoustics", Morse & Ingard, Chap. XIII.) 

The interaction of light waves with inhomogeneities of mass density in a fluid hts 

been discussed in Appendix C in the case of Debye-Sears effect. In the present applica- 

tion the perturbations of mass density are assumed to be due to changes in pressure 

and to be spontaneous (i.e. random). Let Af>(^roe the random fluctuation in pressure. 

Its spatial Fourier transform Ab(k}t) is given by 

where 

0 \   -i-k'S ,3 

rf 

(E.1) 

(E.2) 

Assume the volume V of pressure inhomogeneities to be finite, and assume the incident 

light to be a plane wave £f, - E0 ^vb t (& f« -jßy- Using the Green's function for un- 

bounded space and approximating the local electric field by _E; (»Bom approximation), 

one formulates Eq. (C.6) for the scattered wave by 

in which the dimensions of Q are meter"! aeC-l| and 

J(t.-f ♦ !££!} 
C      / 

Q 
(E.3) 

Gj.  -2-, 
4n U-r.i 

In the far Geld ^r- r\ ft >L and»,f- p»l/c ~ A - *.%?.        , where   k = | K I 

forming all mathematical operations on (E.3) one arrives at the formula 

(E.4) 

Per- 

(E.5) 
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in which we have set K - K~ K .  Now the intensity of light waves (J) is given by the 

Fourier transform of the time averaged autocorrelation of B , (brackets indicate time aver- 

age, or division, by time interval), %    / 

I (*, K-K Si) • U < hft, *-*>*> E,% , <L% )*)>etAr 

in which ® is the effective duration of the pressure inhomogeneity. The autocorrelation 

of intensity of pressure has the same form as that of a damped harmonic oscillator, as 

noted earlier, (see Eq. D20), 

... It-Ik 

Thus, the intensity of the scattered light is given by 

,,  c (xv-n* it- 

The integral is standard. The final result is, 

(B.8) 

» 
In words:  the intensity of scattered light in the direction K~K   at distance^ due to 

spontaneous pressures in a fluid is the sum of two contributions, namely, the two 

Brillouin lines.  The first line is at frequency Si - Jl* <«J, and the second line is at 

-\..\-W- The bandwidth of these lines is c* , and the corresponding lifetime k ^   . 

When mass density fluctuations are due to fluctuations in temperature a similar 

(B.9) 
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mathematical treatment leads to the result that 

i<TM-*,.a)= 
10) 

This is the scattered Rayleigh line which appears in the direction j£~j( , centered at fire- 

quencyü. (- incident frequency) with bandwidth ß (or effective lifetime of fi   ). 

The total intensity of scattered light is the same of scattering due to pressure and 

temperature. However, by using an appropriate equation of statte relating pressure per* 

turbations in the fluid to temperature perturbations one can reduce all Brillouin scattering 

to thermal motions of the fluid. 

The intensity of light derived earlier was expressed in Lorentirian form which is 

e    ivalent to the form of the response of a simple harmonic oscillator to a randoir. exci- 

tation. An analog of  Eq.(D13) is the RLC circuit with forced   &     (volts) at frequency 

■f.  For a random emf the random current is given by 

<$>. 
<fl> 

«'-(L-iir 
60 =  *uf 

(B.U) 

Now if the random emf consists of fluctuations in the resütor R (■ thermal noise) it wu 

shown by Nyquist that in the small frequency interval between"!^ £*A^one has 

t?> --   4ft kTtf (E.12) 

in which k ■ Boltsman's constant T ■ absolute temperature. The mean square current 

accompanying thermal noise it therefore 

4 v (6IiL)\—* -3     «,' i 
111!) 
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Here a - */2L and a"1 is the effective life of the fluctuation, kT is energy pf r degree 

of freedom and RTÄ^ is the power in the fluctuation. 

Instead of an electrical problem one can consider a single degree of freedom mechani- 

cal system of a mass M, spring K, a-^d viscous resistance R. The equivalent Nyquist for- 

mulas for random (spontaneous) noise in the system are 

<?\*)> - aUkTt 
(E.14a) 

3 
,1 

in which pis the force impulse (Newton sec) which operates during time t sec, and 

(E.14b) 

in which x is the amplitude of free Prownian motion in time. Thus, 

<¥(&$)>   r 4*RWTdf (E14c) 

is the (time) average of forces with frequencies between f and f + £•£.   In words:  A 

system at temperature T exhibits landom impulses during any time interval t, the meui 

square average of which is given by Eq. (E.14a). These impulses u^t at an extraneous 

particle causing it to undergo Brownian motion. The motion is damped by viscosity. 

Experimental Observation of Brillouin lines 

Brillouin lines are observed by high resolution spectroscopy.  A modern technique is the 

laser interferometer.   According to Eq. C.16 the shift in laser beam frequency d$e fig due 

to the velocity Cs of the acoustic wave generated randomly by the Brillouin effect is 

in which C& is the speed of light in the fluid, and \   is its wavelength.   Assuming 8s IfD, 
_        i ft    »I 

^ - 1.5 i KT Ms"\fl- 2.26 x 10  Ms" (in water), it is seen that 

^?8   LS  -IC'* 
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The wavelength separation ÄLdepends on the laser wavelength to be used.   Let \g =3<84> /0 

M   (in water). Tl\en 

This is the magnitude of Brillouin effect that can be detected with visible light. 
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Appendix F 

A Case of Scattering of Sound Waves by Inhomogeneiües 

Let there be a region R (in a fluid) in which the change in compressibility is de- 

scribed by the factor   YR (A >t) 

(F.1) 

The acoustic pressure satisfies the equation 

(F.2) 

-t(Jt \ \ 
Assuming b{rt{)* hif)t > «nd using the Green's functionjL/vC')*0* unbounded space, 

it is seen that the total field is 

-f><4 )-• f. (4)+ +1(4) 

in which t^lL-frl 
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In the far fieid 

sm-*4te 'ita-ikjt-r. 

»  Z} 
kr 

(F.4) 

The scattered field is 

(F.5) 

Using the Bom approximation we set the total pressure fc (^e) to be the incident pressure 

A /f \   .   Let the incident beam be finite, and choost- its form to be 

Then, 

i (*-*)* 
<*V. 

(F.6) 

If the inhomogeneities are in the form of particles the volume integration can be replaced 

by a sum, 

/«. 

Finally we allow Q^ to be a function of time, )cj1)- We *ee ^^ tiiat tne incident 

wave is phase and amplitude modulated. 

When there are many scattering inhomogeneities we write 
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a 

t,(i i« ^Äz_ 5 Ai^wfS'-'^A ik-ti'ß* (F.8) 

47t/u A» 

The value of the integral depends on the size of the scattering volume äVity*) relative 

to the wavelength of the incident wave, >  . If   4 VWM)«^ , then the phase func- 

tion (given by the exponential) is constant during the integration process. In this case 

(Rayleigh scattering) 

47T/t     * (F.9) 

»vhere, 

(F.10) 
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Appendix G 

Volume Scattering Due to Perturbations of Fluid Density 

In volume scattering due to perturbations on mass density the scattered field obeys the 

wave equation 

v*e -1 Ü - z6z JL if. 
(G.l) 

Now 

in which 4M represents chemical (= mass) concentration. 
Consider only mass changes, (*»^(ft).  Then 

i 

JE 

Then let 

(G.2) 

(G.3) 

(G.4) 

Assume next that the electric field E$ on the A- Cj » the incident field F© */t> * [ (J*Jf ""^2.^/ 

and use the free-field Green's function (#* )( |r_-r<» |)* £(f0- t+ |C-£>^C )     to solve 

the wave equation.  Thus 

(G.6) 

or 
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-   -'        ftVWfJLq?      Jj      P -       "t&l    (G.6) 

As before, assume    |f-rb( v /»-(K/^\»r»     p^ Is "*   fCf  Integration over To 

gives 

Now of the volume V(^>)is large enough the integration over f, is an infinite integration 

over an imaginary exponential which yields a delta function 

Thus 

-S '-      '      4«A£ ?«Hr 

The autocorrelation IC is 

"RE frV  < E,(++r)E ft» 

(G.8) 

(G.9) 

dimensions:   field' 

or 

(G.10) 

The value K~ (») gives the intensity of the scattered electric field. The power spectrum 

lE^1)!    ot   f. (dimensions:   field2 x sec2), is the Fourier transform of T?E over the 
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finite interval T, 

7 'V, 
or 

a IBOL'JI1. (g gjty j W^MV^)* 
(G.ll) 

Now the spectral intensity density ^£(Q/>f the electric field is the limit 

,3. 
(G.12) 

Hence 

^^j-^xS)Bi; 
. id* 

\ ^All ^1- >^)C        off (dimensions: Seid2x sec) 

(G.13) 

1 

IT words:   If we observe the scattered electric field in direction K~K    •» * function of 

frequency we can find the autocorrelation of the density field by Fourier transformation. 

Alternatively, if we know the autocorrelation of the mass density field we can calcu- 

late the electrical spectral intensity density (dimensions:  electric field2 % sec). 
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1  * 
Appendix H 

Scattering of Light from Particles Suspended in a Fluid 

(Edwards et al. J. Appl. Phys. 42, 837, (1971)). 

The scattered electric field E  is given by 

4nr^.\3A1/r)TJ (H.i) 

x/o      ö( r. 

Let us now consider individual scatters rather than a continuum. To do this we replace 

the volume integration over A. by a sum over individual scattering particles, i.e. 

e.M. A I *«My&&)*,-^ A&^ 

ill/lS \  e-l- J*£ 
r ; electric field      \ 

acoustic pressure/ 

(H.2) 

Ancl 
in which A*   is the volume of a scatterer. Furthermore let us take the location vectors 

&*  to be functions of time (namely we take the particles to be in mcaon) and write 

This reads:   the n'th particle, initially at f»*6>) moves  &f}   (i)  in timetrelative to 

the fluid, which is itself in motion with velocity V, 

The density perturbation   z/f     is a function of space and time.  Let us take an 

arbitrary tin» to be the origin, and writ« 

(H.3) 
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Also, at time * 

In this analysis we require the intensity of the scattered electric field. We can ob- 

tain this by use of an autocorrelation function f%fty, defined as 

Tthl*) = «  E, ft, 6) E$0r>r)» 
(H.5) 

in which the double angle brackets indicate ensemble averages over (1) initial position 

fy»>(°* ' (2) random displacements At^(t). To form an ensemble average over initial 

position we introduce (see Edwards et al) a probability vi Ue(o)jper unit volume that a 

scattering center will be found in volume / . To- form an ensemble average over displace- 

ments Ah^fA we introduce a probability per volume l^af^ ft),?)   that the nth par- 

ticle will move Af^» units in timeT. The autocovariance of the scattered field then 

becomes 

fh I (H.6) 

+ yr)   dlV^(«)^r»n ^) &^^ ^1*" (dimensions: fetf) 
We note that only one sum o*« is used in the productCt- required by the definition 

of s. «nee the contributions /*>$/►> all vanish in view of the assumed statistical indepen- 
c 

dence of the scattering centers. This equation can be written in another way by defining 

an autocorrelation function for the density, 

(H.7) 

Thus, 

(dimensions, acoustic 
pressure*) 
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i 

t 

v 

i   i 

•T?MI (^utr)tjft)e>f>-i (£'/)•/*&$« (H.8 

The power spectrum [t$(U ) |     of the scattered field is obtained by Fourier transfor- 

mation of Kg (V J over a finite interval 7 , 

"* iOt. 
T J 

The spectral intensity density ^Tf(fX Jot the electric field is ihe limit 

#£ (A1) »A» ^ /E(fl')l?- £*,(t)c'aTdt 
T^~?ao   I ... .......o 

(H.9) 

ift*. 

(dimenzions: electric field^ x sec) 

In words:  3 time record of the received signal observed in direction K*- £ is used to 

form an autocorrelation function Tfe (f) where T is the time shift. After T(m(t)ia 

formed we then set'f rj to obtain the intensity of the received electrical signal. This in- 

tensity is a function of the autocorrelation of the density field. In the absence of an 

acoustic signal the autocorrelation A^p fywill correspond to the autocorrelation of noise. 

The ratio of signal power to noise power will have the form 

*6   (>l 
N 

if we set a threshold ^s / 

trie signal as, 

«a. 
%'oh (IU0) 

we establish the minimum detectable intensity of elec- 

% <>)*«s B (')» (H.ll) 

The function^Cnis an amplitude weighting of the laser light,which depends on 

the position of the scatterer relative to a characteristic size (or dimension).  For example, 

if the characteristic dimension is Lc and the position /u> L^ then we would expectr to 

be very small. The vector position/, is a function of time. If • is the velocity of the 
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fluid then ytis a component of £ . Hence P(r) ■ P(r(t)). 

Now the autocorrelation *g of the scatter field is 

HE (it) ««.   « Es (*,<>) ^*(£/O» (H-12> 
in which <?<   >>   means averaging over (1) initial position of the scatterers (2) over dis- 

placements relative to fluid (■ random deviations). Let  Q (tfi tftj be defined as 

(H.13) 

If one selects d (spherical) finite volume as a model of the collection of scatterers and 

writes 

"£<*> 
"» 

(arrtf*)*/» (H.14) 

then Urtft)        '(K'ir)r 
Q^Le*   w'   e 

(H.15) 

The raticfi /^ gives the residence time of the scattering centers in the sample volume. 

The effect of random displacements is expressed in the if dependency, conjoined with a 

probability function 1^ Ur,t)which shows the probability that a scattering particle has 

moved t£ in time? . Thus the generalized autocorrelation e2 (*£+¥Vt& /M 

ä (AT* vr,k). \ ($> ^) <3far t'M) e"^'£r 
v
 *    '** ' (H.16) 

(the minus sign in the exponential is derived from the conjugate electric field). Thus, 

for a continuum of particles, the autocorrelation function is 

K£   (i,*).<»Jt. _[ AlVW,*)'?*! (H.17) 
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!       t 

The power spectrum Oxk^ts then obtained by Fourier transformation 

sa^^Tsiitfe-^jr (H.18) 

In words: The detection process for measuring the scattered electric field is modeled as 

a harmonic oscillator, frequency K'V , damped by two terms. V»*. the AT effect due to 

random motion of the particle relative to the average motion of the fluid, and ft effect, 

arising from finite transit time of the particles in the scattering volume. 

Specific Example 

Assume the^r effect can be modeled on the theory of the random walk, i.e. 

in which D is the diffusion coefficient of the particles ir the fluid. Choosing the ampli- 

tude weighting function!^ to be given by Eq. (H.Pt) (in which a scale size <T is specified) 

it is seen that the power spectrum or the scattered field is 

S(k,w)- <W.& (   <?' 
sA-Qfl 

(4ltJ>tf> 

(H.20) 

We first allow ^ to be zero. Then, using the convolution theorem for Fourier transforms 

one arrives at OQ _,  * *        r- ' 

_ AK"<r']<U''«/r w-*« 

An approximate spectrum can be obtained by expanding the diffusion term in a Taylor 

Series about h- *   , and then integrating. The result is 

(H.22) 

7 "ISS 
127 



We next allow V* to be finite, and proceed again to expand the diffusion term in a Taylor 

series about  K»0 .  For small volumes of interrogation we can use only the first term 

in this expansion, namely, 

(H.23) 

When the diffusion effect is small relative to the finite transit time effect, this formula 

reduces to 

5(K,tt))-cM,t(-T)*vK  -     jg. \ 
(H.24) 

Note again that j **/y   is the effective transit time of the particle in the volume, and 

/^.(j   is the effective bandwidth of the spectrum. 
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Appendix I 

Intensity of Scattered Light From Acoustic Signals (Edwards et al. Model) 

The intensity of scattered light iu a medium of dielectric constant $ , magnetic per- 

meability V, is given by the Poynting vector, 5 - ~e E X H   , or 
' -    41 ~ "" 

S » vrVZ 

8       -I 
in which   Cg. "   3* /0   HS 

—   > 
jrp 

(i.i) 

(dimension:     E, 

e. 
volt/meter 

coulomb/(meter x volt) 

•yT,       volt coulomb/meter^ 

U ,       meter volt/coulomb 

C, V   meter/sec 

S,        coulomb volt/(sec x meter^)) 

Thus in MKS units, 

(1.2) 

Now the scattered electric field is a random function of particle motion. We therefore 

will obtain the quantity C   by finding the autovariance of the scattered field (» Kg (t) / 

between two moment« in time, ti,l, (note "t »ti-t, )t ming «n appropriate spatial aver- 

aging to average out the initial position /fc«f*) , and random motion 4*0* f* ) over all 

space. Thus, according to Eq. (H6), 

K6(tV MW* \ I "PH (*^*)ftf-i* f(M^).^M] 
~°° * (I. (1.3) 
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in which 

+4 «**, a^T)> (A tor*,))* ] /jj>j 
The magnitude of intensity, averaged over random time history of particle motion (that is, 

ensemble averaged through definitions of probability functions T^ (AfgmS an<^ ^v('»'»i'pv 

and average! over time shift T, is, 

|S|-- S±   K,   *<•) 
47C   /M 47C   //* 

The spectral intensity density <^fZ |[Q ) of the scattered light is 

(1.4) 

(1.5) 

(dimensions: *S ) 

(see Eq. H.9). The actual power spectrum of the scattered electric field, calculated over 

a finite interval / , is 

in which the dimensions of    |f4(l>.')l     <*te    Vs  H   . 

(1.6) 
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