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STABILITY IN NEUTRAL EQUATIONS

by

Jack K. Hale and Pedro Martinez-Amores

! £ Abstract

Coupled systems of differential-difference and ordinary

difference equations occur in various applications including the

theory of transmission lines [1] and gas dynamics [2]. Stability

of linear systems has been discussed by Brayton [1] using Laplace

transform and the problem of absolute stability by Rasvan [12]

using the frequency domain method of Popov.

In this paper, the same problems are discussed by the

.4ollowing method. By differentiating the difference equation,

one obtains a system of neutral differential-difference equations.

The desired solutions of the original problem are obtained by

restricting the initial data to lie on certain manifolds in the

space of all initial data. In this way, this class of problems

can be treated in a natural manner using the known methods of

neutral equations. Generalizations to arbitrary functional

differential equations is also immediate when this approach is

employed.>______
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1. Notation and Background

Let R = (- , ) and let Rn be an n-dimensional linear

vector space with norm ." For r > 0, let C = C(-r,0l,Rn )

be the space of continuous functions mapping [-r,0] into Rn

with the topology of uniform convergence. The norm in C will

also be desigalated by M = sup I4 (0)I, C s C. Suppose D,L
-r< 0<0

are bounded linear operators from C to Rn,

D( ) Hp(0) - [dp(6)](6)

(11 -Y
L ([ dn (8) 1 (0)

-Y

where H is an n x n matrix, det H € 0, pr are n x n matrix

functions of bounded variation on [-r,0] with V nonatomic at

zero. This latter hypothesis is equivalent to the existence of a

continuous, nondecreasing function y: [0,r] R such that

y(0) = 0 and

Ir[d(6)l(O) < y()
If e

M for e e [0,r], e C.

if x is a function from [a-r,-) to Rn , let xt, 1 :
t [O,co), be the function from [-r,0] to Rn defined by 1 : 7M

x (8) = x(t+O), 0 c [-r,0]. An autonomous linear homogeneous N

neutral functional differential equation (NFDE) is defined to -M

be
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(1.2) -- D( = L , t)

A solution x =x() through e C at t= 0 is a

continuous function taking [-r,A), A > 0, into Rn such that

X= , D(xt) is continuously differentiable on [0,A) and

equation (1.2) is satisfied on this interval. It follows from

Hale and Mayer [9] that a solution through exists on [-r, ) ,

is unique and depends continuously in p.

If T(t): C C, t > 0, is defined by T(t) = (fl,-t
then T(t), t > 0 is a strongly continuous semigroup with in-

kfinitesimal generator A: 9(A) - C, A(O) = (O), -r < 8 < 0,

and

9(A) = C: $ c C, D$ =43.

The spectrum o(A) of A consists of all X which

satisfy the characteristic equation

(1.3) det A(M) = 0, A(A) = XD(eX'I) - L(e *I)

= XH- ed1i(8) - el(O).- f-r

The fundamental matrix solution X(t) of (1.2) is defined

to be the n x n matrix solution of the equation
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D(Xt) I + L(Xs)ds, t > 0

(1.4)
0 , -r < 0

x o (o) =

H1, 0= 0

The following results of Ienry [11] will be fundamental

to our investigation.

Lemma 1.1. If Re X < 6 for all X satisfying (1.3),

then, for any e > 0, there is a K = K(s) such that

(1.5) IT(t)I, IX(t)I, Ik(t)I < Ke(6+E)t a.e. for t > 0.

Definition 1.1. The operator D is said to be stable if there -2

is a v > 0 such that all roots of the equation

(1.6) det D(el I) = 0

satisfy Re X < -v.

From the results of Cruz and Hale [4] and Henry [il], an 41

operator D is stable if and only if the zero solution of the

functional equation

(1.7) D(yt) = 0, t > 0
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is uniformly asymptotically stable; that is, there are constants

K, a > 0 such that

( 1.8) ytO)l < Ke-t I, t > 0, , s C, D, - 0.

if Do = HO(O) - JO(-r), then D is stable if the roots-°-I
of the polynomial equation

det [H-pJI = 0

satisfy I I < 1.
An important property of equation (1.2) when D is stable

is -he following (see [5]): If D is stable, there is a

constant aD < 0 such that for any a > aD, there are only a

finite number of roots X of (1.3) with Re A > a.

If FG: R Rn are continuous, a nonhomogeneous linear

NFDE is defined as

(1.9) d- [D(xt) - G(t)] = L(xt) + F(t).

A solution through * at t a is defined as before

and is known to exist on [a-r,c)

The variation of constants formula for (1.9) (see [81)

states that the solution of (1.9) though (a,o) is given by

______I
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t
(1.10) x(t) T(t-a) (0) + (t-s)F(s)ds

+

f t [d X(t-s)][G(s) - G(a)]
a

for t > a, where X is the fundamental matrix solution.

Another convenient equivalent form for equation (1.10),

is the following:

(1.11) x(t) - X(0)G(t) = T(t-a) (0) - X(t-a)G(Y)t t

+ X(t-s)F(s) dssX(t-s) G(s) t > c.0

Let us make a few other observations on the variation of

constants formula which suggest., changes of variables which will

be useful in later sections. Zst PC be the space of functions

taking [-r,0] into R which are uniformly continuous on

[-r,O) and may be discontinuous at zero. With the matrix X

as defined before, it is clear that

PC = C + (Xo)

0I

where (X0) = span {X01; that is, any VI c PC is given as

where e s C, b e Rn. We make PC a normed vector space by

defining the norm j p = sup (

-1 -r<0<0
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Let us define x (yv) T (t) yl where ip c PC and x(*

is the solution of (1.2) through p.The operator T(t): PC -

(functions on [-r,O]) is linear, but T(t) does not take

PC +PC. The operator T(t) is an extension of the original

semigroup, T(t) on C. If we use this notation, then the

variation of constants formulas (1.10),(11)cnbwrte

as

tt

-a

+J[d T (t-s) XtG(s) G (a)]

rtt

itJ~d5T(t-s)X ]G(s)

for t- a, c C. As usual in the theory of functional differ-

enia equations, these integrals are in Rn; that is, each

integral is evaluated at each 0 e [-r,O] as an integral inRn

F'ormula (1.13) certainaly suggests the change of variables

(1.14) - X G(t) =zt, -X 0 G(a)
t 0

fromC +PC. If this is done, equation (1.13) becomes

Mr --- m-n__- ~ ~ ~ =
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(115 T T(t-U)i + ft T (t-s) X 0 F(silds f JdST(t-s) X 0 G (s)

Fj-' a formula much simpler than either (1.12) or (1.13). This

remark will play an important role in the subse 2ent discussion.

2. Stability in Nonlinear Equations

1! In this section, we give some elementary results on the.

A stability of nonlinear equations in order to show the previous

transformation from C to PC can be of assistance. To keep

the notation at a minimum, the most general results are not

given.

Suppose F: C -Rn, G: C + R are given continuous

functions and G( ) depends only upon values of jdo) for

< 0; that is, for any a c Rn and any sequence n eC,

=no a, n =1,2,..., which converges to uniformly on

compact subsets of [-r,O), the limit of G(~n) exists as

n + and him G(4n) =G( ). The relation

(2.1) -D~ =~ ~ +Fx

with D,L as in Section 1 defines a neutral functional-~differential

equation. Existence of solutions for initial data in C follows VI

from [6], (91.

I The variation of constants formula (1.13) for this equation

(2.1) is

• _-
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(2.2) - AXt = T(t) [- ()

~t rt
+ I T(t-s)X F(x )ds -j[d.T (t-s)A ]G(x,.
f o s o s

for t > 0, c~ C.

Consider the map

h: C -~C +(X 0

given by

-~~~ ~h(O) (0) ~ () <

() H-G(O), 8 0

Since G (O) does not depend on (8), the mapping h has a

U continuous Inverse, that is, h is a homeomorphism, [81

If =t h(xt) () equation (2.2) becomes

(2.3) =t T (t) 4 + JT(t-s)X F(h l(z ))ds

-f[d T(ts)X ]G(h ( 5 )

ISWe are now in a position to prove the following theorem.

Theorem 2.1. Suppose F(0) Oz G(O) =0 and the first

i derivatives DF (O), DG (O) are continuous and vanish at 4p= 0.
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If the linear equation (1.2) is uniformly asymptotically stable,

then the system (2.1) is uniformly exponentially asymptotically

stable. 3

Proof: From the hypothesis on G, the mapping h: C + C + (X0)

is a homeomorphism in a fixed neighborhood of 4 = 0 c C,

i = 0 c C + (X0Y Furthermore, there are constants kl, k2 > 0

such that in this neighborhood p = h(f) implies 141 < k1 01,

Icf <_ k2Itp. Applying Lemma 1.1 and the hypotheses on F,G,

we have there a 6 > 0 (as small as desired) such that z

in (2.3) satisfies

Iztj . Ke- tlpj + tKe-21

as long as Izs < e(6). Applying Gronwall's inequality to
4-; -e1 t

-y
lztIe at we obtain

1 -(a-Kk 26)t K (a-Kk26)t

as long as Iztj < c(6). Since this clearly can be assured for

all t > 0 if f is sufficiently small, we obtain the result

stated in the theorem.

As one sees from the above proof, the transformation from

C + C + (X0) reduces the discussion to an argument very similar

to the ne for ordinary differential equations. One could easily

generalize the above results to obtain the more general stability

.3
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properties given by Hale and Ize [10].

Another interesting remark about the above transformation

concerns the manner in which difference equations are included

in neutral equations. Suppose F = 0, L= 0 in (2.1). Then the

equation is equivalent to the functional equation (no derivatives)

(2.4) D(xt) - G(xt) = D() - G(), t> 0

with x= . The usual difference equations are homogeneous,

(2.5) D(x - G(xt) = 0, t > 0, x 0 = .

That is, the initial function satisfies

(2.6) D(g) - G(¢) = 0.

It is a well known fact that if the zero solution of the

linear homogeneous equation

(2.7) D(xt) = 0

is uniformly asymptotically stable (i.e. D is stable) then the --_71

nonhomogeneous equation (2.5) satisfies the same properties if G j
satisfies the conditions of Theorem 2.1. On the other hand,.

Theorem 2.1 does not imply the result since the homogeneous

linear equation



D~x t ). . = 0

is not uniformly asymptotically stable as a consequence of the

fact D() 0 for all e s C. The question is the following:

How can we use the theory of neutral equations to obtain the

above stability theorem for the functional equation (2.5)?

Let us now show how the transformation h: C C + (x0)

solves this problem. Let

(2.8) = { C c + (2%): D0) = o}.

Using Laplace transform and the same type of arguments as in

Henry [11], one can prove the following

Lemma 2.1. If D is stable, then there are positive constants

K,a such that if x(W) is the solution of

D(xt) = 0, t > 0, x 0 = C C + (x0)

A then

Ix( ) (t) K _ e-atlpt t > 0.

Now consider the equation

dt [D(xt) - G(xt) ..

d
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The variation of constants formula implies

rt
X- XoG(xt) T(t) [-XoG() ] - T (t-s)X0 lG(xs).

If we let z t = h(xt), q = h(p), then, a direct evaluation yields

3t

, iE
Di) D (0~-X G (0)J D (0) G- 0

1

If we assume satisfies (2.6), then D() = 0 and

IT(t)I , KI_< fle by Lemma 2.1. The kernel in the integral

above also has an exponential bound of the same type since

T(t)X0  satisfies D(T(t)X0) = I and we are only interested

in the variation of T(t)X0. Consequently, the stability 4

results for equation (2.5) is easily obtained exactly as in the

proof of Theorem 2.1 after we have made the above elementary

observations about PC 0 .:%

These observations about functional equations are the

motivation for the discussion of the mixed differential and

difference equations of the next section.

3. A Special Equation

In this section, we consider the system

a) x(t) Ax(t) + By(t-r)
(3.1)

Ib) y (t) E Ex (t) -Jy (t-r) =0
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where xc,y are k,m vectors, respectively, all matrices are

kconstants, El is the transpose of E. For any a e R , c C,

one can define a solution of (3.1) with initial value x(O) =a,

Y= .if we define C = (-,lR)

1 kxm
(3.2) D R x C +R

D (a,O) =a

D 2 (a,O) 0 (0) -E'a Jo J(-r) -

and

k xc Rkxm2

L(a)= Aa + Bo(-r)f

then equation (3.1) is a special case of the NFDE

d

and one obtains the equation (3.1) by requiring that

(3.5) D(,) 0. 1
observe that D(a,o) AOH(0) 0 M(-r) where
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Hence, if we assume the eigenvalues of the matrix J have

modulli less than 1, then D is stable.

The characteristic equation of (3.1) is

XI-A -Be-Ar1
det AWQ) = 0, A() L+ rE1 I-Je-l~

Equation (3.4) generates a semigroup T(t) on Rk x C. If

we define

(Rk x C) {(a, ) s Rk x C: D2(a, ) = 01
(R C 0  D2(a

then (R x C)0  can be considered as a Banach space. Further-

kmore, for any (a,$) e (R x C)0 , the solution of (3.4) though

(a,4) will be in (Rk x C)0  since it corresponds to the

solution of (3.1) through (a,O). Consequently,

~def
k C) (Rk x C)0

T0 (t) d T(t) (Rk CR

I(
and is a strongly continuous semigroup. The infinitesimal
generator r-4 of T (t) is 0= JWI(R x C) 0 where S1

is the infinitesimal generator of T(t). One can easily show that

-- --
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(3.6) a( 1 ) X- e C: det A(X) =01 '-

The fundamental matrix solution X(t) of (3.4) is defined

by

X0O)=[1 ] ' 0=0 0()=0 -r < 0 < 0.

if

11 121
I I[21 x22j

where X is a k x k matrix, etc, then X must be a solu-

tion of (3.4) with the initial data specified above. Therefore,

-- the matrices X. must automatically satisfy

(3.7) D (X,()Xi) 0 t > 0

(3.8) D (X 2 (t),X 2 t I, t > 0.

Notice that (3.7) implies X llX 21  are solutions of (3.1).L

The functions X12 , 2  do not sat5 -fy the equation (3.1ib), but FM
12'X22

OWN a nonhomogeneous version of it. Hovhever, it is important to

I notice that if these functions were differentiable, the derivatives

AMC_-I
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would satisfy (3.3.b). This is an important remark since it

essentially implies-that the variation of X(t) satisfies (3.1).

Now we consider the nonhomogeneous system

(3.9) k(t) =Ax(t) + by(t-r) + f(t)

y(t) -E'x(t) -Jy(t-r) -g(t) =0

where fjg are continuous functions from [0,-) to R ,

respectively. If

G (J kxm, (f] k

then the equation (3.9) is a special case of the NFDEA

(3.10) Tt D xt)y) G(t)] =L'xt)t + F(t)

with D,L defined as in (3.2), (3.3) respectively. one obtains

the equation (3.9) from (3.10) by requring that

(3.11) D (a,4 = g(O) t

If we let wt col(x(t),yt), ~p=col(a,4), then the

general solution of (3.10) is given by the variation of constants

formula
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1(3.12) X~ G X(t) T T(t)i X xG (0)

+ fx. 5F(s) ds - [d X(t-S)IG(s).

As in Section 2, we extend the definition of T(t) to

Rk C ( 0) efY. Then (3.12) can be written as

(3.13) wt -XoG(t) =T(t)[iP-XoG(O)1 + T(t-s)X F(s)ds

ft J~s -s)X ]G(s).

An element of the space Y can be represented as aTIk=(0,b) where, a c Rk b e Rm, c C. Let

Y (,~ Y: D (a,T) 0O}.

The analogue of Lemma 2.1 for this situation is obtained by

using Laplace transform and applying the arguments in Henry

1 11]1 and is stated precisely asA

Lemma 3.1. If the eigenvalues of J have modulii less than

one and all roots of (3.6) satisfy Re A < -6 < 0, then there

Li are positive constants K,cQ such that

Ix (t)It, IX21 tI Ik..(tfl <e ta.e. t > 0
21t)1

ElA
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A i,j 1,2, and, for any (a,T) e Y0, the solution x(a,) of

the equation (3.1) satisfies

It

Jx(a,) (t) I Ie at (a, i) I, t > 0.

As a first application of the previous results, let us

consider the stability of the solution (x~t),yt 0 of the

equation

d-(3.14) [ D(x(t),yt) G~x(t),yt)J L(x(t),yt) + F~x(t),yt)

H

G(a,)={gj F(a,O)=

where f,g are continuous functions with

(31)f(0,O) =0, Y(0,O) =0

Im - f( 19I P(a) I'-111

for jic 1p1 , where 11(a) is a continuous nondecreasing

function such that pj(a) +0 as a +0.

If D (a, ) =g(a,O) then the corresponding solution ofI _ 2
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(3.14) satisfies

(3.16) i(t) =Ax (t) + By (t-r) + f (x (t) yt)

y(t) =E'x(t) + Jy(t-r) + f(x(t),yt)

Theorem 3.1. If D is stable and there is a 6 > 0 such that

all solutions of (3.6) satisfy Re A~ < -6 then the zero solution

of (3.16) is uniformly asymptotically stable.

Proof: The variation of constants formula (3.13) is

tt

wtzO wt (t) [-XG w)1- 0 ~t)-

>~~~ 0 suc ht j~<kIp, Ii 2 ~ o ~~~

X~ G (t) , y'ip X= 0 y
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since equation (3.16) is satisfied. Since F = col(f,0), only

the col(XllX 21) of X is used to evaluate T(t-s)X0F(ws).

Therefore, we may apply Lemma 3.1 and the same arguments as

in the proof of Theorem 2.1 to complete the proof of the theorem.

It is obvious that one could generalize the results in

this section in many ways. The perturbations g,f could depend

upon t as long as all estimates are uniform in t. Also,

and more importantly, the linear equation can be much more

general. In fact, we could have considered an equation of the

form

d D(x(t),yt) =L(x(t),yt)

where L = 1 . x C R is an arbitrary continuous linear

functional and

D(a, ) = H{ - dl(4)

where H is a (kxm) x (kxm) nonsingular matrix and

I °N[di (0) d ( 0 ()

with g an m x m matrix of bounded variation with P(O) =10-1.

This means the results apply to the more general equation
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1(t L(x t),yt) + f (x t),yt)

D 2 (x (t) yt) = g (x (t), yt)

where j
D(a,p)= col(a,D (a,4))).

These same remarks apply equally as well to the results

in latter sections.1

4. Absolute Stability

Let D,L be as in section 3; let hi > 0 be given and

let f: R -* R be a given continuous function satisfying

(41 2  2 O<h h <' h.(.)ha< af (a) <h~a <h

4

kc mLet c be a k-dimensional row vector, b1 e R ,b 2 e R -

be constant vectors and consider the systemf

(4.2) (~t) L= L(x (t) yt) + blf (at) M1

D2 (x(t),yt) =b 2f(a(t))

a= cx.

IIOur objective is to apply the method of Popov to determine

sufficient conditions for the absolute stability of system (4.2).

IIThe variation of constants formula implies the solution of (4.2)
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Rkxmthrough ep=(,~ x C satisfies the equation

(4.3) wt XoG(aF(t)) =T(t)Iip-X0G(ar(O))1] + tt-)Fas)d

- [d T (t-s) X]G (a (s))

where w~ col(x(t),yt), G =col(O,bf) F =col(blf,O) and
t 2f)x

As in the previous sections, let us simplify the formula

(4.3) by putting

(4.4) zt =W - X0 (cx(t)").

If we let =t (u(t),vt) then (4.4) is equi' alent to

(4.5) u~t M x t)

= f~2, b(cxt)

or

(4.6) u(t) =x-(t)

V (0) Y 0) 0 <

v (0) =y~ (0) b bf (cx M)

Equation (4.3) for z becomes

tV
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(4.7) z T (tz + ~-sXF()d [d T (t-s) Xo]G ((s))

since a (t) =cx (t) =cu (t) .

For the following discussion, it is convenient to have this

equation (4.7) explicitly in Rk. it is easily seen that (4.7)

is equivalent to the equations

a) u~t Mt + Jo X (t-s)b f W (s))ds

ft [d X1 2 (t-s) Ib f (a (S)

(4.8)

0
b) v(t) v (t) f JX 21 (t-s)b f(i(s))ds

[d JdX 2 (t-s)]b f(a(s)). s

Byr Lemmna 3.1, we know that if D is stable and there is

6 > 0 such that Re X < -6 for all A £ a(-Ql) then T(t)z0,

0 0that is, u (t),v (t), and X11 Mt)X 2 (t). (t), ijj 1,2

approach zero exponentially as t -7V-

Consider (4.8a). As a(t) =cx(t) =cu~t), we have

t.

0at cu (t) OXt) c(t)b 1  k.(t)) , SANt~2 k1 ()

- 0-
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Then

(4.) (t) Y M~t + Jk(t-) (r(S) ds+ f(ts) f (a(s))ds
0o Jo1 2

Notic thatt) k~) y tend to zero
exponentially as t -

Now, define

f~t)= f~a~)), 0 't < T
T0 t t>T

J < t < T

T~(

YT~~~~t)) 
0 ( '~~ a s s t T

E Thus M

(4.1.0) aTrt k Yt) f 1 (t.s)f (a)ds + Jk t-Sf()ds.

LetV
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(4.11) X(T) = a(t) - y(t) - f (a (t)I

+ q~t f dt)}(a(t) dt

10 rdU dyTf
T T

f "- + q1 ff0 aT YT h T t dt T

i J _ Re aT -T hfT + qiw (a -

where denotes the Fourier transform and f' is the transpose
_E

of f. From (4.10), by the convolution theorem, we have

Nr Y + -wT - TT : ' T 12 T11 T 1ikl2 T

Hence, (4.11) becomes

X(T) = 7-- {Ref(l+iwq)(k 1 1 +iwk 1 2 )] - } w.

1 ' -
if the condition ReL(l+iwq) (k 1 +iwk 2 )] - < 0 is fulfilled,

then X(T) < 0. This means that

in,.

f r(t) 1 f(a(t)) + q doat)))dt

fT J{(t) +9 Y-( t)+ dt f(a(t))dt. 
_

From here the proof further continues as in Halanay's book,

Chapter 4, Section 4.6, and we obtain lim a(t) = 0 and
t.*00
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Jim f(a(t) 0. This implies, by (4.8a), that

lrn u(t) = urn x(t) =0. From (4.8b) it follows that

lrn v(t) 0, since lrn f(a(t)) 0. Hence lrn y(t) =0.

t-3'w t4)-C t-OO

Thus, the following theorem is proved;

Theorem 4.1. If D is stable, all roots of (3.6) satisfy 1

Re < -6 <0 and there is a q >0 such that

Ret(l+iwq) (k11+iwk1 ) - 0

where k cX blck X then the system (4.2) is
U. 11 1  k12  X2f

absolutely stable for every function satisfying (4.1).

Rasvan [12] has studied #-he same problem. He gives t1-f

condition on q in terms of the transfer function n(iw)._

If we compute k1  + iWR1  we see that

il (iw) k iwk1  .I

One could easily study the first critical case using the

same arguments as in Halanay [7] and Datko [3].
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