AFOSR -~ TR- 76 - 0883 It

-~

-

AMAOQ27843

B i L i SN T ISR

SYNCHRONIZATION OF FINITE STATE SHARED RESOURCES

Edward A Schineider

DEPARTMENT
of

COMPUTER SCIENCE |

T LV T e S BT L YT T 1Y

"IR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) |
NOTIew OF TRANMENITIAL TO0 DDC :
Phis teshrlonl v 0 U La. boun reviewed and is
= apbhrovsd For cualte 1anus 1ad AFR 190-12 (7b)g }
Hibtritutient 18 wlimited. |
m X aDn Bl :
u Teohnlcal Information Officer - 1
J | I
B

Carnegie-Mellon University \9'\\

[BEFEETTION STATEMENT K

BApproved for public :elecsa)
Distribution Usnlimited

T Ty T S N I 1 R L T T

SYNCHRONIZATION OF FINITE STATE SHARED RESOURCES

—— e I Edward A Schneider

, Department of Computer Science

' Carnegie-Mellon University

| Pittsburgh, PA 15213
March, 1976

Submitted to Carnegie-Mellon University in partial
fulfillment of the requirements for the degree of Doctor of

Phitlosophy.

This work was supported in part by the Defense Advanced Research Projects Agency
under contract F44620-73-C-0074,"and in part by the National Science Foundation
under contract GJ 32259. This document has been approved for public release and
sale; its distribution is unlimited. .

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

bl e il b Ty

ABSTRACT

The problem of synchronizing a set of operations defined on a shared resource
is studied. It is assumed that the decision as to which operations may be executed at
some given time is dependent only on the sequence in which the operations have
already executed. Equivalence classes of these sequences, called states, can then be
used to define synchronization. A restriction is made such that only those resources
for which the syr.chi unization can be expressed using a finite number of states will be
studied. The states along with a successor function, which is defined for a
state-operation pair if the operation may start execution when the resource is in that

state, form what are called synchronization relationships.

A distinction is made between resources on which only one process may execute
an operation at a time, called serial resources, and resources on which several
processes may execute operations in parallel, called concurrent resources. To handle
concurrent resources, the states must be modified so that they correspond to
equivalence classes of sequences of perilogues instead of operations. A perilogue is

either the start or the tinish of the executign of some operation.

Geveral variations of regular expressions are presented with which the
synchronization for a shared resource might be expressed. Also, a method which can
be used to implement the synchronization relationships is given. This implementation
has a high overhead so several possible simplifications are shown. Each variation ot

regular expressions and each simplification of the implementation is shown to

el e S

b "t b — Eme ety o g —

correspond to some restricted class of the synchronization relationships. The set of 3
synchronization problems which can be solved using one implementation or notation
which can’t be solved using some cther implementation or notation can be found by

comparing the corresponding classes
[]

gt

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and thanks to my advisor and
thesis committee chairman Professor A. N. Habermann for introducing path expressions
and for the many hours that he has spent discussing this work with me. 1 also wish to
thank the rest of my thesis committee, Professors A K. Jones, N. Suzuki, and P.

Andrews for their constructive suggestions.

Finally, I want to thank my wife Ann and daughter Peggy for their patience and

understanding.

o
i "‘.;"u s e

CONTENTS

TITLE PAGE.
ABSTRACT.
ACKNOWLEDGEMENTS.
CONTENTS.

Chapter I. INTRODUCTION.
BACKGROUND.
MOTIVATION.

PROBLEM TO BE STUDIED.
OQUTLINE OF THE THESIS.

Chapter 1I. SERIAL RESOURCES.
FINITC STATE RESOURCES.
PERGISTENT SETS.

EQt "ALENT STATES.
IMALE L ENTATION.

PR_JECTIVE AND INJECTIVE RESOURCES.

FRIORITY.

Chapter 1II. SUBCLASSES OF REGULAR EXPRESSIONS.

RESTRICTED REGULAR EXPRESSIONS.
Z EXPRESSIONS.
PERSISTENT SET ENTRY STATES.

SYNCHRONIZATION AND RESTRICTED REGULAR EXPRESSIONS.
RELATIONSHIP TO CONTROL STRUCTURES.

Chapter V. ELEMENTS.
STATE TRANSITIONS.
SUBSTATES.
IMPLEMENTATION.
ASSIGNING ELEMENTS TO STATES.
SINGLE TRANSITION OPERATIOMS.
BOOLEAN ELEMENT RESOURCES.

Chapter V. CONCURRENT RESOURCES.
PROLOGUES AND EPILOGUES.

REQUIRE AND RELEASE TRANSITIONS.

MULTIPLE REGULAR EXPRESSIONS.
PROCEDURES.

Chapter VI. CONCLUSION.

BIBLIOGRAPHY.
APPENDIX.

<

—
QOO N —

13
16
21
24
27
31
35

39
41
44
47
50
54

57
58
61
65
69
74
78

83
84
90
93
97

99

104
106

»

CHAPTER |

INTRODUCTION

In programming systems, it is usually necessary to enforce rules regulating the
behavior of the system. Such a set of rules is known as a protection policy and the
enforcement mechanisms are known as a protection system implementing that policy.
Scope rules in programming languages and the restriction of allowing only authorized
users to access files are examples ¢! protection. Another example occurs when one of
several cooperating processes must temporarily halt execution pending the completion
of some set of actions by the others. Such protection is referred to as
synchronization. A set of rules governing when a process must halt and when it can

continue execution is referred to as a synchronization problem.

An important use of synchronization is to control the access to resources by
cooperating sequential processes. A resource is any physical device or segment of
memory which can be referenced by the programming system, Some examples are a
data structure in a process’ virtual memory, a file on a permanent storage device, and
an 1/0 device. Each resource has associated with it a set of operations which are used

to extract information from it, to alter information in it, or to add information to it.

In order for the processes to cooperate, it is necessary to allow them to share
resources. For instance, a message buffer must be accessible by the processes
sending messages and by the processes receiving them. To insure that the value of a

shared resource is always well defined when a process invokes one of the operations

e | o

& i

A

INTRODUCTION 2

detined on it, usually the resource may only be operated on by one process at a time
and the operations must execute only In certain sequences. It some process tries to
execute an operation while some other process is executing on the resource or an
incorrect sequerce of operations would result, then the process must halt until this

condition is no longer trus. Such synchronization on shared resources s the toplc

which will be explored.

BACKGROUND

The problem of synchronizing processes without using busy waiting was first
solved by Dijkstra with P and V synchronization primitives [D68] Since then, several
other synchronization primitive sets have been proposed to solve problems which
couldn’t be solved easily with any of the existing primitives. These include allowing P
or V to be executed simultaneously on several semaphores (P-V multiple) [P71)
(introduced to solve the cigaraite smokers problem), allowing a semaphore to be
incremented or decremented by a velue greater than one (P-V chunk) [VL72]
(introduced to solve the hounded reader-writer problem), and separating the testing
and the decrementing of @ éemaphore into two o'perations (UP-DOWN) [W72]

(introduced to solve the general reader-wrlter problem).

In addition, several methods have been proposed to allow synchronization to be
expressed in a more “structured" manner. These methods are meant to be used in &
high level language to control access to shared resources. An analogy can be made
between the relation of these high level methods to tiie primitives and the relation of

high level programming language control structures to assembly language. The high

e

INTRODUCTION 3

level synchronization methods provide a structured means for expressing frequently
occurring synchronization, thus helping to improve understandability and reliability,

just as IF - THEN - ELSE and WHILE - DO statements provide a convenient way to

express frequently used control paths, A compiler can then be used to implement the

synchronization in terms of prit ‘ives just as the control structures ara implemented in

terms of test and jump instructions.

The first of these methods is "regions” proposed by Brinch Hansen [BH72] A

region is a statement type that is associated with some shared resource. For each of

these resources, only one process at a time can execute an associated region,

Furthermore, shared resources can only be accessed in these regions. Thus, regions

provide structured critical sections and allow a compiler to enforce mutually exclusive

access of shared resources. Sequencing is still handled using primitives,

It has long been recognized that operations composed from simpler ones should

only be executed in a rastricted manner Thus, procedures have only one entry point

and a jump may not be made into the middle of one from outside of it. Likewise,

primitive data types such as integers, reals, booleans, and characters may only be

operated on by certain operations. For instance, booleans may not Le added. This

idea should be extended to more complex resources. They should only be accessible

through a few operations which completely define the behavior of the resource.

Allowing a resource to be accessed only by some fixed set of operations has

several advantages. The first is that at the point it is used, all that needs to be known

about the resource is the effect of each operation which can be used. How it is

implemented is unimportant. For instance, a stack is defined by the effects of the

&

- T -
R g W PR G N

INTRODUCTION 4

operations push an item, pop an item, and test for emptiness on the values of the
other operations. Whether it is implemented using an array, a linked list, or by some

other means is unimportant. Users perceive only the three operations.

Next, if the resource may only be accessed through several operations rather
than in an arbitrary manner, it is more likely that the value of the resource will always
be meaningful. Finally, a verification that 'the resource always is accessed correctly
can be confined to several operaticns and can ignore the rest of the code of the

programs which use the resource.

A convenient means to insure that a resource can only be accessed through e
fixed set of oporations is to include the implementation details and the operations in a

module. The only names defined in the modyle which can be used outside of it are

those of the operations. Concentrating the implementation and access details of a

resource In a module also has the advantage that if the implementation ic changed in
some way, all of the places in the access algorithms that need modification are
localized and are therefore easily found. There is no need to search through all of ihe
programs that use the resource to make these changes. Flon [F75] discusses such

modules in more detail and gives some examples.

The module is also the best place to define in which sequences the operations of
a resource may execute. The synchronization can then be considered as part of each
operation and the operations can be used without concern for synchronlzation. Also,
as with the implementation, it is sasier to make modifications and to verify correctness.
The last two synchronization msthods to be described are meant to be used in just

this way.

INTRODUCTION 5

Hoare [Ho74] proposed the concept of a "monitor" for synchronization. A
monitor is a collection of data, procedures which operate on this dats, and
initializations. The data may only be accessed by these procedures and only one
process at a time can do s¢. Thus, a monitor may be thought of as providing a critical
section around the data and procedures of a shared resource. As with regions,

sequencing still must be expressed using primitives.

Finally, Campbel!l and Habermann [CHa74] have propcsed path expressions as a
means of synchronizing a set of procedures operating on a collection of data. A path
expression consists of an expression R which contains each operation name once and
which is enclosed in a PATH - END pair. R may be a single operation name, it may take
the torm R'+R" meaning that either some sequence of operations expressed by R' or
one expressed by R" may occur, or it may take the form RR" meaning that some
sequence of operations expressed'by R’ should be followed by one expressed by R"
where R’ and R" are of the same form as R. The path expression, once completed, may

then be repeated. Thus,

PATH t ; (g+h) END

means that f should be executed first, then g or h, and then this sequence starts over

again. C

MOTIVATION

To be able to decide how useful a given method is for some application, it must

be known which of the desired synchronization problems can be solved using that

INTRODUCTION 6

method. Therefore, when a synchronization method is proposed, the ciass of probiems
which can be solved using it should aiso be given. Lipton [L73] has compared the

various primitives and for each one has characterized some of the probiems whict

can’t be solved using that primitive system. The complete set of problems which sach -

synchronizatiqn method can or can’t soive hasn’t beer shown, though.

A strong meaning of "soive” must be used here since any synchronization
primitive may be implemented using criticai sections and ietting a process biock itseif
or wake up a blocked process. The foliowing is an exampie of how this can be done:

CRITICAL SECTION BEGIN

test each biocked process

IF process-j may now continue THEN WAKEUP(process-j) FI;

IF this process can’t continue THEN indicale it is biocked

CRITICAL SECTION END
BLOCK
ELSE CRITICAL SECTION END

Fl
The BLOCK occurs outside of the critical section in order t- aiiow dbther processes to
enter to execute WAKEUP. One way to find each blocked process is by keeping a list
of them. Then, to indicate that a process is biocked, it is put on this iist. Notice that a
process which wants to wake another might be stopped trying to enter the critical
section if another process is aiready in it. Such a deiay wouidn’t occur if a primitive
replaced the critical section. Therefore, by soive it wiil be meant that there aren’t any

extra piaces where a process may become biocked such es at the start of the critical

section above, '

In order to show that a group of processes cooperate correctly, it must be

possibie to understand how they are synchronized. Also, the consequences of any

-

L

INTRODUCTION 7

modificalini'= to the synchronization must 'be understandable. This helps insure that
what is actually programmed is what was desired. It also makes it easier for someone
else to make changes. As the difficulty in understanding Increases, the possibility of
an error occurring and the difficulty in detecting such errors also increass Finally,
certain deadlock possibilities should be .detected. These possibilities include a process
that waits on a semaphore which has an initial value of zero and which no process will
ever Increment. Another example is when a process uses @ critical section nested In

another and a second process uses the second critical section nested in the first.

The problem with synchronization primitives is that they, and therefore any
changes, may be scattered throughout the code executed by the various processes.
Furthermore, no structure is imposed on their use. Regions and monitors provide
higher level structures for writing critical sections, but sequsncing mﬁst still be
performed using synchronization primitives. = These primitjives‘ may be scattered
throughout a monitor or region. Only with path expressions is the desired sequencing

clesr,

Another problem with regions and monitors is their strict enforcement of mutual
exclusion. In the reader-writer problem where the read operation may be performed
simultaneously by an arbitrary number ot readers, this operation can’t be part of any
region or monitor. This means that the data structure on which the read operation is
defined can’t be part of any monitor since otherwise any operation which can execute
on it mus* also be part of that monitor. The result is that operations “startread” and
"endread" must be introduced just to provide synchronization. Path expressions solve

this problem with the introduction of a {-} construction. This notation has the meaning

o ey

—

INTRODUCTION 8

that an arbitrary number of processes may execute . ¢ operations within the brackets

simultaneously. Thus,
PATH write+{read} END

means that either one process may write the data structure or several processes may

simultaneously read it. The brackets, however, don’t allow restricting the numbir of

readers to some finite bound.

PROBLEM TO BE STUDIED

It is the purpose of this research to study synchronization in terms of tive
allowable sequences of operations on a shared resource. Thus, it will be assumed that
each resource may only be accesced thropgh a fived set of operations. Since state
machines have been widely used to study sequences of symbols [HU69), it will be
convenient to use them to represent these sequences. Each oporatjon defined on the
resource will correspond to one or mora qtate changes. In order‘to simplity the study
somewhat, only that synchronization which can be described In terms of a finite

number of states will actually be discussed.

The operations which can be used on a shared resource are executed by the

various processes of the programming system. A process can be considered to be a

sequence of calls on the operations of the shared resources possibly interspersed with
calls on the operations of resources which can only be accessed by that process.

There is also some control which regulates the sequence of operation calls,

INTRODUCTION 9

A distinction will be made between those resources on which operations can be
executed in parallel and those on which operations must be executed one at a time. In
order to handle parallel execution, each operation must consist of two state changes,

one at the beginning of the operation and one at the end.

Several subclasses of finite state machines will be introduced by restricting the
admissible state changes. Since each synchronization problem is represented by a
state machine, eact of these subclasses limits the set of problems which can be
expressed. Therefore, each restriction of the finite state machines also defines a class
of synchronization, The task of showing which problems a synchronizatibn system
solves thus corresponds to presenting the appropriate restriction of the state

machines,

The main criterion which is used to restrict the state changes Is the manner in
which the resulting synchronization class can be implemented. If for some
implementation there is no corresponding class, then every class containing the set of
synchronization problems which could be implemented with that implementation which
contains this set must also contain some synchronization problems which can’t be.
Thus, a more complex implementation is needed for every such class. Howevar, if this
set contains all of the synchronization problems of interest, then ‘he simpler

implementation would have been sufficient.

Ease of implementation shouldn’t be the only factor used in selecting the class of
synchronization to provide in a language for parallel programming. In order to express
synchronization outside of the class which is provided, a user must implement a larger

class in terms of the existing class. The resulting impleme-‘ation must be more

- i e e e B

i s e i bl o e

INTRODUCTION 10

complex than if the larger class hs " been provided inlially. Furthermore, the user has

an extra opportunity for a programming errer.

In order for the designer of a language for paraliel programﬁing to be able to
use one of these classes, it must be possible to express the nynchroniza‘tlon of that
class in so 18 notation. As explained above, path expressions provide a means for
expressing synchronization which is easy to understand relative to the pther methods.
Unfortunately, they can only be used for a simple class of problems. Regular
expressions of the operation names, a generalization of path expreﬁsions, can be used
to describe any synchronization which can be expressed with a finite state machine.
This suggests that some restriction to regular expressions would be suitable for each
class. Theretore, several modifications to regular expressions will be introduced and

compared with the classes.

Even though regular expressions are used in this research, there might exist
other notational systems which are equally suifable.. Regular expressions were
selected because of their correspondence to finite automa’'a and because they are
easy to use and understand for simple synchronization. It same other notation is used,

the class of synchronization which can be expressed with it should be shown.

OUTLINE OF THE THESIS

In chapter II, the finite state model tor resources on which only one operation ot
a time may execute ls developed. This includes some definitions and basic results as

well as a discussion of how these resources may be implemented. Where relevant,

R e i e

INTRODUCTION 11

how a priority system among the varloys Operations might be handled is also
ciscussed. Finally, several restrictior. to the model are presented. Chapter J]
continues the discussion of sequential resources with the Z theorem, A class of
regular expressions is presented in which Operation names may not occur more than
once and in which there are restrictions as to where the R* notation may occur, These
éxpressions are shown to correspond to a class of finite state graphs with o simple

implementat|on, This result is then extended to Programming language control

structures.

In chapter IV, the notion of a state is-changed to he a multiset of objects which
will be called elements, These elements are then used to dafine several more
restrictions to the finite state model, In chapter V, resources on which several
operations may execyte in parallel are studied. The elements Introduced.in chapter Jy
are used to simplify the implementation of these parallel resources. Chapter V]

summarizes what has been shown angd points to areas where future research is

needed.

The figure on the next page shows how the restrictions which are presented are

related to each other,

SERIAL RESOURCES

finite state

Injective

single transition

boolean element

simple serial

CONCURRENT RESOURCES

finite state

relationally parallel

boolean element

CHAPTER 1l

SERIAL RESOURCES

The first type of synchronization to be studied uwals with shared resources On
which not more than one process may exscute operations simultaneously.
Definition: A serial rasoures i8 @ shared resource on which only one process at

a time may execute.
It should be noticed that for a serial resource, nO operation ¢ for that resource may

use any other such operation g. Otherwise, USing ¢ would require that ¢ execute

during the axecution of f.

It may also be the case that the appropria’e operations must execute in specitic

sequernces.

Example 2.1: Consider a buffer used to pass Mess2ges hetwean processes.

Tre operations which are defined are "insert a message” and ‘remove @

message”. 1f more than one operation may execute at a time, messages
could be inserted jumbled together or only part of @ message might be
removed. If each message must be received exactly once, then the
execution of remove and insert must alternate. O rwise, 8 mMessage
might be overwritten and lost or else it might be twice.

It is the responsibility 3 whatever synchronization sysiem 1S used to guarantee this

serial execution and to ih.-ure that an incorrect sequence of operations doesn’t occur.

For some serial resources, any sequence ir. which the operations execute is

acceptable. If example 2.1 is modified so that @ message may be received more than

SERIAL RESOURCES 14

once or not at all, than all that matters is thal Insert and remove don't overlap In time.
The order in which they execute is no longer important. Such synchronization ls

usually handled by writing the operations as critical sections.

One way to express the allowable sequences of operations is to write them out
explicitly. Alternatively, relationships of the form “"operation f may be executed on the
shared resource if the order in which operations have been executed form sequence
«" may be used. However, if there is no restriction on the number of times that an
operation may execute, these sequences may be arbitrarily long, Therefore, an infinite
number of these relationships would be necessary. LUsuaily, though, part of the
previous history is unimportant.

Example 2.2: Returning to the message buffer of example 2.1, the desired
sequencing is that the execution of insert and remove alternate.
Therefore, when something is removed from the buffer, it matters only
that the most recent operation on the buffer was insert and when

something is inserted, It mattars.only that the most recent operation wes
remove.

Dofinition: The state of a shared resource Is that part of the succession of
operations which have exscuted on the resource and that is necessary to
determine which operations may execute in the future.

In what follows, the symbols p and g will usually be used to represent the state.

The relationships now take the form "operation f may be executed on the shared
resource if its state is p with the rasult being state q".
Dafinition: The synchronization rolationships for a shared resource consist of a

list of the states and for each, a list of the operations which may execute
when the resource is in that state and the state which results,

B TR

B = s ey s T TR

=

SERIAL RESOURCES 15

The resuiting state q is created by adding f to the execution sequence represented by
p. Of course, some of this history “21ay no longer be important and will be omitted from

state q.
The following notation will be useful when dealing with these relaticnships.

Dafinition: 1f p is a state and f an operation, then the successor function, S(p,f),
has the value q if operation f may execute when the resource state is p
with the resulting state being q. If f can't execute when the state of the
resource is p, then S(pt) is undefined. 1If S(p,f) is defined, then (p,f) Is an
arc of the resource.

Exaemple 2.3: For the message buffer, examnie 2.2 shows that there are two
states lastinsert and lastremove with lastremove being the initial state,
S(lastremove,insert) = lastinsert, and S(lastinsertremove) = lastremove.
S(lastremove,remove) and S(lastinsert,insert) are undafined. The arcs are
(lastremove,insert) and (lastinsert,remove).

Thus, the successor function S is a partial function which is defined for those states

and operations such that the operation may execute when the resource is in that state.

Whenever S(p,f) is defined, it will be said that operation t may be applied at state p.

It will often be desirable to detarnine it a sequence of operations, rather than a

single operation, may execute on a shared rasource.

[

Dafinition: An arc progression from a state ag to a state q,, is. a string of arcs
(ag,t{)-{a,.y.f,) such that (Vi, 1sisn) S(q;-t) = a;.

Thus, an arc progression specifies a possible ordering for the -execution of the

operations f.. Note that there is no restriction requiring that the arcs be distinct. It

might be true that q;_| = 9j-1 and f; = fj for some | and j, 05i<j.<.n. When this happens,

it must also be true that q; = qj A special case is when an arc progression is circular.

Dafinition: A cycle is a non-empty arc progression from a state q to q.

SERIAL RESOURCES 16
In example 2.3, the arc progression (lastremove,insert)(lastinsert,remove) is a cycle.

Critical sections are an even simpler case of cycles. Since any sequence of
operations is acceptable, none of the previous history is important, Therefors, a single
state is sufficient and each operation must start and end at this state. Fach arc
progression, including any of length one, is from this single state to itself and is @

cycle,

FINITE STATE RESOURCES

As states have been described so far, it is impossible to deal with an infinite
number of them. The successor function is defined by listing the value for each arc of

the resource. If the number of states is infinite, then so is the number of arcs. Thus,

a natural restriction will be to permit only a finite number of states for n shared

resource,

Definttion: A resource is finite ntate if the number of states, and therefore the
domain of the successor function, is finite.

Unfortunately, there are serial resources with an infinite number of states. Consider a
stack of unbounded size on which the operations PUSH and POP are defined. The
desired synchronization is that only one process at a time can exccute one of these
operations and that at any given time PUSH must have been executed at least as many
times as POP. The information represented by tl;le state must be how many more times
PUSH has executed than POP. Since this number may be arbitrarily large, there must

be an infinite number of states.

i
1

SERIAL RESOURCES 17

Usually, such resources may be studied with a finite state system by putting @
limit on the memory size used by such a resource or, if the resource isn’t serial, then
on the number of processes which can use the resource simultaneously. Thus, the slze
of the stack in the above example could be bounded. Such a restriction would oceur in
practice anyway. A mechanism will be developed in chapter IV which will enable the
handling of some resources with an infinite number of states and an indication of how
this can be done will be given in chapier VI Other than in these places, however, such

resources will be outside the range of the research reported here.

In airder to help study finite state resources, the concept of a finite automaton
[HU69, page 26] is needed. A finite automaton is a system (K,.Z3,a0,F) where Kis a
nonempty, finite set of states, I is a finite input alphabet, § is a mapping of (K,2) into
K, ap € K is the initial state, and F c K is the set of final states. The system is initially
in state qq and as each successive character f; of an input string is read, the
autometon enters state g; = &(g;_;f). If a,¢ F, then the string f)..f, is accepted.

Otherwise, it is rejected.

While the synchronization relationships for a finite state resource resemble a
finite automaton, there are several differences. These differences are based on how
each is used. A finite automaton is used to indicate whelther or not a given string is
correct. Thus it has final states. Also, regardless of what state the automaton is in,
any input is possible and therefore a resulting state must be defined. However, if an
input insures that the string will be rejected, 't must be impossible to reach a final

state from the resulting state.

Dofinition: A state p ¢ K is dead it (Vx € T*) 8(p,x) isn’t a final state.

e -

SERIAL RESOURCES 18

In the definition, I* is the set of all strings of length O or more of symbols from I
The function § is extended to I* as follows. If x is the siring of length O, then ipx) =

p. If x = x’s where x' ¢ I* and s ¢ I then 8(p,x) = §(8(p,x"),5).

The easiest way to find the dead states is to first find the set L of states which
aren’t dead. Clearly, any staic o r is in L. Therefore, L is initialized with F. Any
state q such that (Is) 8(qs) ¢ L is also in L. This procedure is then repeated until

there are no more such states q. Any states which aren’t in L at this point are dead.

The synchronization relationships, on the other hand, are used to guarantee that
only correct strings are input. Any input which would insure that ths string is
incorrect is delayed until this condition no longer holds. Thus, not every input is
possible from.any given ;tate and in such cases a resuiting state is not defined. This

means that dead states aren't needed. Finally, usually an infinite string will be input so

the idea of a final state is meaningless.
Subject to these restrictions, the following result is presented,

Theorom 2.8: A serial resource R is finite state iff the synchronization
relationships and some finite automaton (K.X8,a0,F) represent the same
acceptable sequences of symbols.

Proof: For each state p of R, let there be a state p' € F and for sach
operation f of R let there be a symbol s € Z. In addition to the states of
F, let there be another state in K which is dead. Since the number of
states and operations of R are finite, so are the number of states and the

input alphabet of the finite automaton. Define 8(a,s) as. follows. If S(p,f) is

defined, then &(p's) is the state of F. corresponding to S(p,t). Otherwise,

SERIAL RESOURCES 19

8(p's) is the dead state. The construction is completed by letting the
initial state of K be the state currasponding to the initial state of R. A set
of synchronization relationships corrasponding to a finite automaton may

be craated by reversing this process.

This correspondence between the synchronization relationships for finite state serial
resources and finite automata can be used to apply results from automata theory. Two

elementary resuits are particularly important.

There is a class of expressions, known as regular expressions, which have been
shown to represent the same clacz of strings from an alphabet as can be recognized
by finite automata [HU69]. These expressions may be described recursively as follows.
A single character from the alphabet is a regular expression, So are constructs of the
form RR', R+R’, and R* where R and R’ are al:o regular expressions. RR’ means a string
represented by R followed by a string represented by R'. R+R’ means either a string
represented by R or a string represented by R. R* represents the infinitely long
expression €+R+RR+RRR+.. where ¢ is the empty string. The following result can now
be given.

Carollary 2.5: A serial resource is finite state iff the permissible sequences of
operations or it can be expressed using a regular expression,
For example, the synchronization for the messuge buffer of exampls 2.3 can be

expressed with the regular expression (insert remove)*.

Using a regular expression rather than the synchronization relationships to

specify synchronization has several advantages. First, the system designer no longer

-

—— T+

T e

SERIAL RESOURCES 20

needs to werry atout states. Second and more Important, it is easier to understand

which are the allowable sequences of operations.

The unimportance of final slates has an effect on the regular expressions which
can be used to specify synchronization. The expressions (t*g)* and (i-g)* both
indicate an arbitrary interleaving of the exscution of the operations \ and g. The
difference is that in the first expression, the state won’t be final it the last operation
to execute was an f. In the second, though, there is a single state which Is also a final
state. For use in synchronization, since final states are unimportant, these expressions

are equivalent,

The successor fur-tion as described is determinstic. By this is meant that for
each element of the domain either the result is unique or else i is undefined. If the
successor function were nondeterministic, there would be more ‘han one possible
result for some argument. A state. would be chosen at random for which there might
be no processes waiting. However, processes could be waiting for anothsr possible
resulting state. These procesces would then continue to wait even though it would be

permissible to allow one to run.

It might be worth -onsidering a nondeterministic suctessor function if scme
synchronization can be described with a finite number of states that would require an
infinite number if the successor function is deterministic. The following resi!t from
automata theory shows that there are no such resources.

Corollary 2.6: 1f a serial resource is finite state, then the al'rwable sequences

of operations on it can be expressed using @a deterministic set of
synchronization relationships.

SERIAL RESOURCES 21

It the successor function S is nondeterministic, then a set of synchronization
relationships with a deterministic successcr function S which expresses the same
allowable sequences of operations can be constructed as follows [HU69). For each
nonempty element of the power set of states {PyrPp)s create a new state q. Assume
that for operation f S(py,)U..US(zf) = T where T is a set of states, If T is nonempty,
then there mlst be some new state q’ which corresponds to In this case, let
S'q,t) = q". If Tis the empty set, then f can’t be applied at q and S(q,!) is undefired.
Tha new initial state yg is the state which corresponds to {pg} where pg was the
origina! initizl state. The :ynchronization relationships can be simplified by removing

every state to which thers is no arc progression from aq,

PERSISTENT SETS

For programs consisting of several parallel processes which may r. for an
indefinite period of time, such as an operating system, some of the operations defined
on each resource must be able to be executed arbitrarily many times. Otherwise, after
an operation has been used the maximum number of times, :° a process tries to
execute the operation, then the process will wait forever and will be deadlocked.
Furthermore, when no operations will again be allowed to execute, it will be impossible
tc access the resource. Thus, there must be some set of operations such that for each
there will always be some point In the future when it can be used to operate on the
resource. In most circumstances, the only exceptions are initialization operations. For
example, an operating system might brovide an operation which is called by user

processes to reserve a tape drive. If the tape drive resource may enter a state in

SERIAL RESOURCES 22

which the reserve operation may never again exscute, then any user trying to reserve
a tape drive will become deadlocked.

Definition: An operation on a shared resource is permanont if there must
always be a possibility that it can execute sometime in the future.

One way (o specity that a set of operatiors can repeatedly be executed is to include

them in a cycle.

Definition: A porsistens sot is a set of states P such that (Yp € P) (Yt which can
be appliec at P) S(p,t) ¢ P and (Yp,q ¢ P) there is an arc progression from
p to q (and also one from q to p). An operation f is an auxiliary of the
persistent set if (3p ¢ P) f may be appiied at p.

Another way to describe a persistent set is that it is a smallest nonempty set of states

which is closed under the successor function.

In example 2.3, {lastremove,lastinsert} forms a persistent set with auxiliary
operations insert and remove. If this example is extended by adding a new initial state
start and a new operation initbuf such_!hat _S(start,ini'buf)'- lastremove, then start
isn’t a member of the persistent set and initbit isn’t an auxiliary of it. If a resource
only has one state as in the case where every sequence vi operations is acceptable,
the execution«of any Ope;aﬁon on the resource must result in that state. Therefore, it

forms a persistent set and each operation is an auxiliary.

It should be noted that there may be more than one persistent set. Consider a
serial resource with permanent operations and g such that different sequancas ere
aliowed depending on whether f executes first or g does. For exa'mple, assume thers
are five states with gqs being the initial state an (gs,f) = S{g,f) = S(q'f) = g, S(q,g) =

', S(gs,g) = S(p’g) = p, and S(p,f) = p'.

A
. ;
SERIAL RESOURCES 23
D) |
['t
f f"ﬁf;;*q) B o e |
= 1
g5== _‘;‘_
B ey f -
—»p'— »p' ——
(- Fo— € : v ¢

Then, {q,9'} and {p,p’} ¢re each persistent sets,

If the state of a resource is'in a persistent set, then it is easily seen that each
of the auxiliaries may be executed an arbitrarily many times and that any other
operations will never again be allowed to execute. Therefore, each permanent
operation must be an auxiliary of every persistent set. To show that each finite state
resource must have a persistent set, the following theorem is presented.

Lemma 2.7: If f is a permanent operation on a resource R, then (¥p) (dq) there

is an arc progression from p to q and f may be applied at g where p and

q are states of R.

Proof: Otherwise, if the state ever became p, operation f would never be

able to execute again.

Theorem 2.8: 1If a resource R is finite state and f is a permanent operation on R,
then (Yp) (3a,q") S(g,f) = @', there is an arc progression from p to q, and

(YqQ") if there is an arc progression from g’ to q", then there is an arc
progression from q" to q. '

p <%q F—>q —>q —) ,

= Proof: By lemma 2.7, (Jag) such that there is an arc progression o¢ from

SERIAL RESOURCES 24

p to qp and f can be applied at 4. Let S(ag,f) = qp'. If for every state
q" such that there is an arc progression from qp’ to q" there is an arc
progression from g" to gy, then the proof is done. Otherwlse, there Is a
state qp" and an arc progression A from gy’ to ap” such that there Is no
arc progression from qp" to qp. By lemma 2.7, there are states q; and
ay’ such that S(qyf) = ay’ and there is an arc.progression 4’ from qo" to
q;. Note that o(qyf)B38 is an arc progression from p to q;. This
procedure may then be repeated. Since for j<i there is an warc
progression from qj" to q;, if there is an arc progression from g’ to q
then there would be an arc progression from qj" to 9js thus contradicting
the assumption. Therefore, qj # q;,) and since there are only a finlte

number of states, this process must eventually terminate.

This theorem specifies a condition which must hold for the synchronization
relationships. For each perménent operation, It must always be possible to enter some
persistent set of which that operation is an auxiliary. Thus, it must also always be
possible to enter some persistent s-* of which all the permanent operations are
auxiliaries. [f this condition doesn’t hold, a delea_dloc.k cen ocﬁur when some process
tries to execute a permanent operation which will never again be allowed to execute.

Corollary 2.9: If a resource has at least one permanent operation, then (Vq) (3f)
f can be applied at q. .

e e e ——

EQUIVALENT STATES

It is sometimes possible to reduce the number of states of e serlal resource

without changing the allowable sequences of operations.

SERIAL RESOURCES 25

Example 2.10: Let the synchronization for a shared resource with operations f
and g he expressed by the regular expression
(g+Hg(f f H¥)¥(g f 1 g+f X The corresponding synchronization
relationships have states pl, p2, p3, ql, a2, and g3 such that S(pl,g) =
S(al,g) = S(p3,f) = pl, S(g2,g) = S(pl,f) = p2, S(p2,f) = p3, S(q3,f)) = ai,
S(p2,g) = S(gl,f) = g2, and S(q2,f) = q3.

— S ._’,ql —E._,p]‘- =
\ >ﬂ
f f f‘\— f
g

f

¥

f
=g g ———»n3
)

The same sequences of operations may be expressed with the regular
expression (g-f g*f f)* which corresponds to the synchronization
relationships with states rl, r2, and r3 such that S(rl,g) = S(r3,f) = rl,
Sirz,g) = S(rl,f) = r2, and S(r2,f) = r3.

gd«

¥ rl<—
1\ g
fi— f
v L
re »r3

Dafinition: States p and q are equivalent if for every arc progression
(pf1).{Pp-1:fy) there is en arc progression (afq). {an-1,fy) and vice
versa.

A trivial example of equivalent states p and q is when (Vf) S(p,f) = S(q,f). If o is an

arc progression from S(p,f), then (p,f)oc and (q,f)ec are both arc progressions.

A necessary condition for a set of states to be equivalent to each other Is that

the same operations must be able to be applied at each of these states,

Dofinition: States p and q of a serial resource are similar if (Vf) f may be
applied at p ift it may be applied at q.

B e Wi o N gt

i

SERIAL RESOURCES 26

It states p and q are similar and if whenever there are arc progressions
(Pfy)APp-1sfy) and (q,fl)...(qn_l,fn') the resulting states p, and q, are similar, then p
and q are also equivalent, This can bq shown inductively on the iength of the arc
progressions. Since p and q are similar, there is an arc (p,#f) ift there is also an arc
(q,f). Assume that for n there is an arc progression (Pt) Pp-1ifn) ift there is en arc
progression (q,f))..(a,_y,t,) But the resuiting states p,, and q, are simiiar so there is
an arc progression (p,f1)...(pn_l,fn)(pn,fn+1) itt (q'fl)"'(qn-l'fnan’fml) is also an arc
progression. In addition, if p and q are equivalent and {pty) (P sfp) and
(a,f1).(an.1.t,) are arc progressions, then (Vt) t can be applied at p,, iff it can also be
applied at q, and hence p, and g, are similar. Thus, states p and q ere equivalent iff
tor any sequence of operations the correspondiné arc progressions o¢ from p to some

state p' and A trom q to some state q’ have the property that p' and q' are similar.

To determine which states are equivaient, the set of states is first bartitioned
into sets of similar states. Next, taking each set of the p;rtition which has more than
one state, two states within the set are reiated if each operation which can execute
from those states results in the same set of the partition. If the operations in the set
aren’t all related with each other, then the set is divided by the refation. This
procedure continues until no further divisions are possible. States which remain in the

same set of the partition are equivaient and can be combined,

Returning to example 2.10, the states are first partitioned as r0 = {p1,p2,91,02}
and r3 = {p3,q3} since both f and g may execute when the resource is in any state
from rO but oniy f may execute when it is in a state from r3. Lodking at r0, f takes pl

and ql into rO and p2 and q2 into'r3 and g takes ali four states into r0. Thus, rO must

P R —— v ey | S YT . 7 Ao g T e e— - o
e fho i sl R L sl e T e AT T b o S S e Dddae o i s L 0 T e L, L

SERIAL RESOURCES 27

be divided into r1 = {pl,ql} and r2 = {p2,q2}. Now f takes pl and ql into r2, p2 and
q2 into r3, and p3 and q3 into rl and g takes pl and ql into r1 and p2 and g2 into r2.
No further divisions are possibls, so the new states are rl, r2, and r3 with S(ri,g) =

S(r3,f) =rl, 5(r2,g) = 5(r1,f) =r2, and S(r2,f) = r3.

This algorithm to find equivalent states is essentially the same as that presented
by Aho and Ullman [AU72, page 128] to reduce finite automata. It was necessary to
modify it slightly here, though, since there are no final states in synchronization
relationships and since not every operation can be applied at each state. This was
done by using whether or not an operation could be applied at a state rather than
whether or not the result was a final state to divide the sets of the partition. Since
this algorithm can be used to reduce the number of states, it will be assumed from now

on that it has been applied and that the number of states is minimal.

IMPLEMENTATION

In order for a description of the allowable sequences of operations on a
resource based on the synchronization retationships to be a useful tool which can be
included in a high level programming language, it must be possible to implement the
re!ationships. A variable is used to hold the current state. Each operation contains a
list of those states for which it can be applied. When a process tries to execute the
operation, this list is compared with the state variable. If there is a match, the process
continues by executing the operation. Otherwise, it must wai*. For each operation,
enough storage is needed to contain the values of the states for which the operation

can be applied.

SERIAL RESOURCES 28

When the process starts execution, it must storo the value of the state variable.
It needs this value in order to calculate a new state at the completion of the operation.
During execution, the state variable must be set to be the nuil state. This is a state at
which no operation can be applied. It is used to insure that only one process at & time
may execute on the resource. Thus, any attempt by a process to execute an operation
on the resource while the state variabie is nuil must fail. After execution has finished
and the new state has been calculated, a search of the waiting processes is made to
see if any is attempting to execute an operétion which can be appiied at this state. If
there are any, one is selected to proceed and the state is saved, QOtherwise, the state

variable is set to be this new state.

A list of the processes waiting to execute on a resource is maintained so that
whenever some process finishes, these can be checked. The list is ordered either by a
FCFS scheme or else according to process priority. When an operation completes
execution, each process in turn is checked to see if the operation it is attempting to
execute may be applied at the new state. The search terminates either wtisn one such

process is found or else when the list is exhausted.

One way in which the state which results trom the execytion of an operation can
be computed is with a table iookup. Assoclated with each entry in the list of states at
which an operation can be applied ié the resuiting state. Such a scheme requires room
to store a resuiting state for each state at which the operation.can be applied.
Another possibility is to number the states in sucH a manner that for each operation
there is some function to calcuiate the new state. However,' thére is no guarantee that

such functions, if they can be found, will execute any faster than the search.

SERIAL RESOURCES 29

An alternative to the state variable is to use a boolean variable for each state.
The boolean associated with the current state has the value TRUE and the rest have
the value FALSE. The null state occurs wher all of these varlables are FALSE. This
implementation can be made more efficier! if each boolean is stored as a single bit.
The state is then represented as a string of bits. For each operation, the list of states
at which It can be applied can also be stored as a string of bits. The comparison
between this list and the current state can be performed by ANDing the two bit
strings. It the result is zero, the process muct wait. A list still must be soarc'hed at
the conclusion of executipn in order to find the next state. However, this search will
caly be made once for each execution of the operbt'zon. Any thecks which are made to
see if the operation can be applied to the current state wh|ch.fail won't result In a

search.

/. list of the processes waiting to exscute on a resource ls mantained so that
whenever some process finishes, these can be checked. The list is or_defed either by a
FCFS scheme or else according to process priority. When an operation completes
execution, each process in turn is checked to see if the. operat'rb'n it 1s attempting to
execute may be applied at the new state. The search terminates either when one such

process is found or else when the list is exhausted.

A modification to the waiting list is to associate a waiting list with each set of

states for which some operation may be applied. Each operation will be assoclated’

with exactly one of these lists. The lists are ordered by @ priority scheme as before. '

Now, though, the processes on top of each list are the only anes eligible to execute.

There is no need to check any of the others. At the completion of execution each list

SERIAL RESOURCES 30

corresponding to some set of states contalning the new state must be checked for
waiting processes. Any process on one of these waiting lists will be able to execute.
There Is no need to check the list of states at which the operation it Is attempting to
execute can be applied. If there are any processes on these lists, one Is chosen to
run. In the FCFS scheme, the value of the system clock when each of the processes is
put on a waiting list must be saved. This time i then used to make the selection when
more than one list Is chiecked.

Example 2.11: Let a serial resource have states p, q, and @’ and operations t, 8
and h such that S{ph) = s(qh) = S(q'f) = p, S(p,f) = q, and S(p,g) =

S(Q’,E) - q,-
h : Waiting Lists
f___—>q {pa’} {p.a}
p o= call(f) call(th)
h j\ g 7> call(g) call(h)
o g | call(g)
. , call(f)

An implementation consisting of a state variable and several walting lists will be used.
Processe~ which become blocked while attempting to execute the operations f and g
will be put on the same waiting list since each of these operations may be applied at
the set of states {p,a’'}. There will also be a waiting list fur processes attempting to
execute h. In the diagram above, a process waiting to execute operation f is
represented by the notation "call(f)”. When a process tries to execute f, the state
variable is checked to see if it equals either p or a’. If it does, Its value Is saved, it is
set to the nullstate, and .the process executes f. Otherwise, the process will be put on
the waiting list for f and g. When execution completes, if the saved state is p then the

new state is g and the waiting list for h is checked. If there are any processes on it,

SERIAL RESOURCES 31

state q is saved and one of these processes becomes unblocked and may continue
execution. Otherwise, the state variable is set to be q. Likew'se, !If the saved state is
q’, then the new state is p and the waiting lists for f ar.\d g and for h are checked. If
they aren’t both empty, a process is chosen and state p !s saved. Otherwise, the state

varlable is set to be p. Operations g and h are controlied simiiarly.

PROJECTIVE AND INJECTIVE RESOURCES

The implementation as dascribed involves a high overhead. If only simple
synchronization problems are to be handled such as the message buffer of example
2.3, many of the details of thls implementation, such as the need to check more than
one walting list at the completion of an operation, aren't needed. It s useful to know
what resources can be considered to be simple in this respect. Thls section wiil give

an answer to that question,

There are several restrictions which can be made to an operation on a finite
state resource which will result in a more efficient implementation of the operation.
The tirst such restriction requires that an cperation always results In the same state
independent of the one in which it started.

Dafinition: An operation f is projective if (3q) (Vp) if f can be applied at p then

S(p,f) = q. A finite state seria! resource is projactive if every operation

on It is projective.

In the message buffer of example 2.3, ramove always results in lastremove and insert

always results in lastinsert. Therefore, the message buffer Os'q projective resource.

Example 2.12: Let the regular expressicn (ff*g)* represent the allowable

A
«.,_",ﬁ.j

SERIAL RESOURCES 32

sequences of operations on & shared resource. The synchronization
relationships consist of two states p and q where p is the initial state,
S(p,f) = S(g,h) = q, and Sla,g) = p. Since f always results In state g end g
always results in state p, each is projective.
»
The state of a projective resource represents only the most recent operation to
execute on that resource since each operation forgets whatever history was contained

in the previous state. This implies that there may at most be ore more state than

there are operations, an initial state and a state corresponding to each operation.

To show that for a projective resource there can't be two similar states p and q,
let f be any operation which can be applied at p. Then f can also be applied at a. But
since f is projective, S(p,f) = S(q,t). Therefore, p and q are equivalent, which is a
contradiction of the assumption that no two states of a finite state resource ara

equivalent.

Since each projective operation always results in the same staté, this resulting
state is no longer a tunction of the state from which the operation started. The
implementation can theretore be made simpler since the resulting state doesn't need to
be calculated but is a constant. Also, there is no longer any need for an operation to

remember what the state was when it started.

Another restriction which can be made to a finite state resource is to require

that, with respect to each operation, the successor function S is one to one.

Dofinition: An operation f is injective it (¥q) there is at most one state p such
that S(pf) = a. A finite state serial resource is injective it every
operation on it is injective,

Thus, if two ditferent arcs result'in the same state then they must have different

operations.

" L
m . PR —— PR e e ——— - o A . " - —

SERIAL RESOURCES

Example 2.13: If the regular expression (fg+gf)* represents the sequences in
which the operations of a shared resource are allowed to execute, then
the corresponding synchronization relationships consist of en initial state

P and states g and q” such that S(p,f) = g, S(p,g) = q', and S(q,g) = S(q'f) =
p.

The resource is injective since p is the only state such that S(p,f) = q and
S(p,g) = g, g is the only state such that S{gg) = p, q" is the only state
such that S(q'f) = p, and there is no state p' such that S(p’f) = q' or
S(p’.g) = q. However, it isn't projective since neither f nor g is a

projective operation,

It a serial resource is projective before the equivalent states are combined, then
it rust also be projective afterward, This Is trivially true since if an operation may
only result in one state and then states are combined it still will only be able to result
in one state. However, a serial resource which is injective betore equivalent states
are c0mbined'might not be injective afterwards. This can be seen by considering the

injective resource with S(p,g) = g, S(p,f) = S(p"h) = p', and 5(q,f) = S(q',h) = q".

p ~ . —g >p"
g 2 ———F— ' -
(g

States p’ and q' are equivalent. Combining them into a new state p" yields .S(p,f) =

S(a,t) = p". Therefore, the resource is no longer injective.

po—

SERIAL RESOURCES 34

The process of coribining equivalent states can sometimes be reversed to make
an operation which isn’t injective into one that is. Assume that S(p,f) = S(p’f) = q. If
there is no arc progression from q to sither p or p’, than crsate u new state q;" for
every state q; to which there is an arc progression from a. Also, create a new state
q’. For each q;" and operation g, if S(g;8) = g then let S(g;'g) = qj’. Also, 18t S(p’)f) =
qQ’. If there was an arc progressi‘on from q to p, then a state p" would have been

created such that S(p"f) = g* and thare would have been an arc progresslon from q’ to

p". This procedure would then have continued Indetinitely without f sver becoming

injective.

Examp!a 2.13 shows that not every injective resource is projective. On the
other hand, the projective resource of example 2.12 isn’t injective since S(p,f) =
S(q,f) = q. The intersection of these two serial resource classes, though, turns out to
be an interesting class itself.

Dofinition: An operation is simple serial if it is both projective = d injective. A
resource is simple serial if every operation on it Is simple serial (it Is

both a projective and an injective resource).

For each operation of a simple serial resource, there is only ons state from which it
may start execution and only one state which can result, It is easily seen that the

message buffer of example 2.3 is such a resource.

It the several waiting list implementation is used for & simple serial resource,
each list needs to be associated with only one state. This is because each operation
may only be applied at one state. This means that at the completion of execution, an

operation will only check one list to see if any processes wiiting can now continue.

N N 7 — g B TR e Sy gy e e —
el it L e e D ik i it L bl L a A o L el ra———ey. a4

SERI i RESOURCES 35

The boolean state variables can also be considered to be boolean semaphores. The
result is that each operation starts execution by doing a P on one of these semaphaores

and concludes by doing a V on the semaphore associated with the resulting state.

It the sequences of operations defined on a serial resource are controlled by
preceding each operation with one P and following it with one V, then each semaphore
must be boolean. This is because otherwise if a semaphore ever attained a value of
more than one, any operation which started with a P on that s_emaphbre would be able
to execute in parallel with itself. Also, only one semaphore can have a positive value
when no operation is executing and none can have a positive value when one process
is executing on the resource. Thus, each semaphore may be thought of as a state and

for each operation the semaphore on which a P is done represents the state that the

operation waits for and the semaphore on which a V is done reprasents the resulting

state. Therefore, the ciass of serial resources which can be implemented with each
operation preceded by dne P and followed by one V is the same as the simple serial

resources.

PRICR!TY

When more than one waiting process can stari execution from a stz'e which
results from the currently executing process, a choice must be made. The decision
criteria is referred to as a priority policy. One such possible poli&y, FCFS, chooses the
process which has been waiting the longest. The waiting lists act like simple queues in
this case. Another possible policy is to use the same priority tor each process that
the scheduler does. The decision as to which priority policy should be used is the

responsibility of the system designer.

il o ey

j

3 il L, et A3 e e i B b R e B el el o SRR LI Sl 48) wmp = - P

SERIAL RESOURCES 36

A warning must be made about the possibility of starvation when a policy other
than FCFS is used. This can occur if for some state more than one process can start
execution whenever the resource enters that state. If one of these waiting processes
has a sufficiently low priority, it might never be chosen. This problem doesn’t occur

with a FCFS policy since the longer a process waits, the higher its priority gets.

Often when more than one operation may be applied at a given state, It is
necessary to give processes waiting to execute some operations a higher priority than
processes waiting to execute the others.

Example 2.14: Consider‘ again the message buffer of example 2.1 with the
modification that any sequence of the operations insert and remove are
acceptable. In order that the most currant message is received, insert will
have priority over remove,

Another example is a storage allocator on which the operations getspace and

releasespace are defined. Releasespace has the side effect that it will collapse any

two adjacent blocks of free storage into one. Therefors, It will have priority over

getspace.

The priority relation among the operations for a state must form a partial
ordering. This means that for operations f and g, exactly one of the followirg is true.
Either f has priority over g, g has priority over f, or they have equal priority. In
addition, this relation must be transitive. This mean: that if f has priority over g and g
has priority over h then f also has priority cver h. However, since the operation
priority is defined for each state, it is possit ie that the partial ordering between two
operations is different for the varlous states at which they each may be applied. This

may be dons to prevent starvation. For instance, consider example 2.14 again. After

& i B

SERIAL RESOURCES ¢ : 37

the buffer has been written twice, processes trying to receive information from it will
be given a chance. Three states are needed with S(p,nsert) = p’ S(p'insert) =

S(p"insert) = p", and S(p,remove) = S(p’remove) = S(p",remove) = p.

\/mser! \/
insert insert
! AN e M
P *p >p
remove remove _ remove

Operation insert is given priority at p and p’ and remove is given priority at p"

It can be shown that p, p’, and p" are equivalent. They can't be reduced,
though, due to the priority ditferences. The algorithm described above to find
equivalent states must therefors be modified to handle priority. An initial partitioning
of similar states is made as before. For each set created by the partitioning, the
operations which can be applied at the states of the set must have the same relative
priority at each of those states. If they dont, then that set must be divided. After
this step in the example, the partition would be {p,p’} and {p"}. The rest of the

algorithm is then applied.

The implementation of operation priority is simplest when the several waiting
list policy is used. If operations f and g may be applied at some state with f having
the higher priority, then when the resource enters that state the waelting list for
processes trying to execute f is checked. Only it this list Is empty is the one wit.h
processes trying to execute g considered, A problem arises if { and g may be applied

at exactly the same set of states. Then processes trying to execute these Operations

_wait on the same list. This rule must be altered whenever one of these operations has

I s e e e R WO W, T LN a— A0 TRl Cp e USSR N e ————— e L] S 5§ SR AT e e r
e s K= E

SERIAL RESOURCES 38

priority over the other at any of these states where they can be applied. In that case,

the waiting list must be divided.

In the single waiting list implementation, the processes are ordered qccording to
which operations they wait on. However, problems arise when a partial ordering of
the operations can’t be made. This can occur when one operation has priority over a
second at some state but the priority is reversed (or they both have the same
priority) at another state. Another case is when the transitive law doesn’t hold. An
example is when an operation f has p.riority over an operation g at one state, g hes
priority over h at a second state, and h has priority over f at a third. When such a

situation occurs, the entire waiting list might have to be searchad for each priority

class.

:
-s
:
%

e T T T LTI

CHAPTER 111

SUBCLASSES oF REGULAR EXPRESSIONS

no such test woulg be hecessary. Several such subclasges will be suggested. |In
addition, g COmparison will be made betwesn one such subclass and simplie seral

resources, First, though, it wil be necessary to logk at the relationship between

regular expressions and finite automata further,

Converted to , corresponding nondeterministic finite automaton in the following
manner. The finite automaton ({p,q,q'},{f}.&,p,{q})« where §(p,f) = q and 8(q,f) = §(q"f) =
q’ corresponds to the regular expression with the single symbol f. Note that qQis a

dead state since it isn't 5 fina! state anc since once the automaton enters q’ It will

never exit from it,

If the finite automaton M w (K,Z,8,p,F) corresconds to the regular expression R,

then the finita automaton Ku{p'LZ,80°Fulp'})) where

q
SUBCLASSES OF REGULAR EXPRESSIONS 40
§'(p’f) = {8(p,5)p} if 8(p,f) €¢F
= §(p,f) otherwise
8%q,f) = {§(a,f)p} if 8(a,f) € F
= §(q,f) otherwise (Yq € K)

corresponds to the regular expression R:. If p¢F and 8(qf) = p then 8'(q,f) =
{8(a,f)p} = {p} = b(a,f). Therefore, F may be replaced by F* = F-{p} in the definition ui
8. Since (Va' ¢ F") (Vg € Ku{p'}) (Vf € Z) if @’ € §'(q,f) then p € 8'(q,f), a new final state
q" can be created to replace {a’p} and g’ can be deleted. The states which can resuit
from reading a symbol when the state is g" must be the same as those which can
result when the automaton is in either state o’ o'r state p. Therefore, §%(a"f) =
{8(aq",),8"(p,f)}. By renaming each new state q" representing {a',p} to be d’, the finite
automaton is changed so that |

8'(p’f) = 8(p,f)

8'(a,f) = {8(q,f)8(p,f)} (Vq ¢ F-{n})

= §(q,f) otherwise

Notice that (Vf ¢ ¥) 8'(p,f) = 8(p’f) and therefore p and p’ are equivalent. Thus, it
p € F they can be combjned. Otherwise, if nothing can result in p thon it can be

deleted. In either of these cases, the initial state can be renamed to be p and the

resulting finite automaton is (K,2,8°p,F) where §'(p"f) is no longer defined.

Let M= (KE,8pF) and M = (K,2°8'p"F) be finite eutomata corresponding to
regular expressions R and R’ such that KniC is empty. For f not In T define (Vq € K)
8(q,f) to be a dead state and for g not in I’ define (Vq € K') 8'(a,g) to be a dead state.

The finite automaton M"| = (KUK’,!U!',B"I.p,F"l) where

8"1(a,f) = blaf) (Vg € K-F)
= {8(a,f),8(p’H)} (YqeF)
= §'(af) (Vq € K)

e |

SUBCLASSES OF REGULAR EXPRESSIONS a1

and where F"; = FuF’ if p’ ¢ F* or F"i = F* otherwise corresponds to the regular
expression RR’. The finite automaton M) = (KuK'u{p"},ZuZ" 8"5,p",F"2) where
8"5(p") = {8(p,1),8°(p" 1)}

8">(q,t) = 8(q,f) (Yq € K)
= §'(q,f) (Yq € K)

and where

F' = FuF'u{p"} if p€Forp ¢F
= Fyp’ otherwise
corresponds to the regular expression R+R'. If InZ’ is empty and 8 and &' are
deterministic, then so are 8"1 and 6"2 since (Yq ¢ K) (Yf ¢ ZuX’) either f isn’t in T and

8(q,f) is dead or else f isn’t in I’ and §'(p',f) is dead.

RESTRICTED REGULAR EXPRESSIONS

As has arready been shown, the desired sequencing of operations on any finite
state serial resource may be expressed using a regulavr expression. Since for
implementation reasons a system designer might wish to restrict himself to simple
serial resources, it would be helpful to know what subclass of regular expressions
provides exactly the synchronization needed for these resources. In an attempt to do
this, the synchronization provided by several subclasses will be examined.

Dafmmon An initinl loop regu|ar expression is defined recursively as follows,

A regular expression R* is initial loop. RR'is Initial loop if.R is and R+R’' is

initial loop if either R or R* is. No other regular expression is initial loop.

A final loop regular expression is defined similarly. A regulsr expression

R* is final loop. R+R' is selection tinal loop if either R or R’ is final loop
and RR’ is (selection) final loop if R’ is.

L

<2,

BN R e B

SUBCLASSES OF REGULAR EXPRESSIONS 42

Some examples of initial loop regular expressions are £, f'g, and f*g+h. The regular

expressions f*, fg¥, and fg*+h are final loop.

Dafinition: A restricted regular expressian is also defined recursively. A single
symbol regular expression is restricted. 1¢ R is restricted and is neither
initial nor final loop then R* is restricted. If R and R’ are restricted and
have no symbols in common, then R+R’ is restricted if it isn't initial loop
and RR’ is restricted if either R isn’t finai loop or else it isn't selection
final loop and R’ isn't initial loop.
The general requirements for a regular expression to be restricted are that no symbol
may be used more than once and that subexpressions of the form R* must occur In the
context R'R*R" where R' isn’t final loop and R" isn't initial loop. The exceptions are

that R may be omitted provided that nothing else may follow R* and the whole

expression may take the form RY,

To help understand which regular expressions are being excluded, consider fgf,
(t1g")*, f*g+h, f*g*, and (fg*+h)e. None of these is a restricted regular expression. In
the first, the symbol f is repeated twlice. In the second, R = (fg‘) is final loop and
therefore R* isn’t restricted. In the third, f*g+h is of the form R+R’ and Is initial loop
so it isn’t restricted. The next violates the condition of a final loop subexpression
being foilowed by an initial toop subexpression. Finally, tg* is final loop and therefore
(fg*+h) is selection tinal loop and éan‘t be followed by anything. Regular expressions
of the form (ﬁ’)" aren’t restricted since R* is initial loop. However, the same sequence

of symbols can be represented by the restricted regular expression R,

As might be expected, the rules for constructing @ finite automaton from a
restricted regular expressiun can be simplified. In addition, several interesting

properties are true of the finite automata sp constructed.

T L

B

SUBCLASSES OF REGULAR EXPRESSIONS 43

Thoorem 3.1: For a restricted regular expression R with the corresponding
finite automaton (K,Z,8,p,F) the tollowing properties are true.

Proporty 3.1.1: Either R is final loop or (¥q ¢ F) (Yt €) 8(q,f) is dead.

Proporty 3.1.2: (¥t € £) (Yq,q" € K) either 8(a,f) or 8(q't) is dead.

Property 3.1.3: (3f ¢ £) 3(p,0) isn’t a dead state

Property 3.1.4: Either R is initial loop or (Yaq € K) (Yf ¢ Z) 8(a/t) # p and
p isn’t in F.

Praoperty 3.1.5: If R is simpe (not selection) final loop, then there is
only one state in F.

Furthermore, let (K.X,8,p,F) be the finite automaton corresponding to R and
(K,2’,8,p",F’) correspond to R’. Then (K-F,Z,&l,p,{p}) corresponds to R¥,
either ((K-F)uK"ZuZ'6,,pF") corresponds to RR" or there is only one state
p" ¢ F and (KUK-{p'}),EuL’B3pF) corresponds to RR, and
(Ku(K’-p’}),ZUZ’,84,p,FUF") corresponds to R+R’ where

§i(af) =p if §(q,f) € F
= §(q,f) otherwise (Vg ¢ (K-F))
§o(af) =p’ if §(q,f) ¢ F
= §(q,f) otherwise (Yq ¢ (K-F)) (Vf ¢ T)
= §'(q,f) (Vq e K) (Yf e 2)
§3(p"t) =8'(p'H (Ve X"
b5(af) = b8at) (Vq € K) (Vf ¢ Z)
= §"(q,") (Vq € (K'-{p'}) (V¢ ¢ T°)
Sa(pt) =801 (Vi e 2"
balaf) = 8(af) (Yq € K) (Vt ¢ T) .
= §'uq,f) (Va € (K'-{p'})) (Y € Z°) ;

Any arguments for which 85, §3, or by are undefined are dead.

Proof: The proof is based on the invariance of the properties over the
construction of the finite antomaton. The details are presented In the :
. Y

Appendix.

Notice that for the finite automaton constructed in this manner from a restricted Jl
I

R ani Taue wat

-

o o R

SUBCLASSES OF REGULAR EXPRESSIONS 44

regular expression, § is deterministic. Also, for each symiol f there |z at most one
state q such that 8(qf) isn't dead. This means that for each operation of the
corresponding set of synchronization relationships there is st most one state at which
it can be applied. Therefore, the corresponding resource must be simple serial. In
addition, the only states which can be equivalent are those for which no operations
may be applied. The result is that the algorithms to meke the synchronization
relationships deterministic and to remove equivalent states aren't needed. All that

need be done is to combine all of the states at which no operations can be applied.

Z EXPRESSIONS

Next, the relationship between restricted regular expressions and
synchronization relationships will be exlamined. It wil be shown that if the
synchronization for a shared resource can be expressed using & restricted regular
expression then the resource must be simple serial. However, there are some simple
serial resources for whichlthe synchronization can’t be e.pressed using a restricted

regular expression,

In order to characterize those synchroniz_ation relationships for simple serial
resources which can’t be written as restricted regular expressions, It will be ne;:essary
to study groups of three arc progressions such that the first and second have the
same final state and the second and third have the same initial state. It will be
necessary to require that any given state may occur In at most two of these arc

.

progressions. However, there is no requirement that the first or third can’t be null.

By a null arc progression is meant one from a state to itself which contains no arcs.

R VT T ST e ——— Ty oy s T T N — G —— PRI L L S 1 Tty) I (g g
s ;

SUBCLASSES OF REGULAR EXPRESSIONS ' 45

Dofinition: A 7 oxprossion from a state p o a state q consists of arc

progressions o from p to some state qp, A = (ap,ty)..(a,_1fy,) from some

state gq to qp, and 4 from qg to a such that (¥i, 0<i<n) g; # p, (Vj, O<jsn)

q; # q, (Vi, 0<i<n) there are not two arcs (q;,f) in o¢ and (ql-,g) in v, there is

no arc (qp,f) in «, and there is no arc (q,f) in .
Several conditions which must be true of Z expressions but which aren’t explicitly
stated may be derived from this definition. One is that qq # q,, Otherwise, eithar 4 is
empty and q = qg = g, or else (g,f) = (ag,f) Is In ¥ for some symbol { from the nput
alphabet. Anothar is that gqn # p. Otherwise, sither o is empty and g, = p = do,
v.olating the above condition, or else thare is an arc (p,f) = (qo,f) in o¢, Finally, it p=q

then qo # g and g, ¥ p. If this wasn’t true, then p = qg or q = qj, Thus, neither ot

nor 4 can be empty wher ¢ = q.

As an example, consider the synchronization relationships with states p, p’, @',
and q and operations f, ', g, g', h, and h* such that S(p,) = S(a’3) = p*, S(p,f") = Q"

S(q’,h) = q, and S(q,b’) = S(p’,8") = p.

- & .
C f)
el 4] p‘. e
\\\,‘\J\lhh ./”/E’/; |
q *q —
W D,

Then the arcs (p,f), (a',g), and (g’h) form a Z expression from p to q. Also, the arc
(g',g) forms a Z expiession from p’ to g’ for which the o« and y arc progressions are

each empty.

In what follows, it will sometimes be easier to deal with Z exprassions restricted

such that o« and 4 have only their final states in common and 8 end 4 have oniy their

"

SUBCL.4SSES OF REGULAR EXPRESSIONS a6

initial states in common. It will slso be required that p may not occur in o« other than

at the start and q may not occur in 4 other than at the end.

Dafinition: A simple Z exprassfon from a state p to a state q consists of a Z
express'iOn oL = (po',gl)...(pm_l,gm) A = (agf) (ap-,fph and 4 where o is
trom p = pg to g, and 4 is trom aq to g such that (Vi, O<i<n) thare is no
arc (q,f) in o or «, (¥j, O<j<m) p ¢ P and there is no arc (gf) in y.

Actually, the use of simple Z expressiors isn’t really a restriction since every Z

expression may be reduced to a simple Z expression.

Lemma 3.2: If there is a Z expression from a state p to a state g, then there
also is a simple Z expression from p to q.

Proof: Let o« = (p,81)-(Pp-18m)h B = (agfy)-(an-1fy) and 4 be a Z
expression from p= pg to q K (3, O0<j<m) Pj= P then
(Pj.gj+1)...(pm_1,gm), A3, and ¥ form a Z expression from p to q. If there is
an arc (q,f' in 4, then 4 can he written as 4’(qg,f)y" where 7'~is. 8 {possibiy
empty) arc progression which doesn’t contain such an arc and «, 4, and 4’
torm a Z expression from p to q. If (3i, O<i<n) there is an arc (q,f) in «,
then (3j, O<j<m) q; = pj By the definition of a Z expression, there is no
arc (q;g) in ¥ so (po,gl)...(pj_l,gj), (qo,fl)...(qi,l,fi), and 4 form a Z
expression from p to q. Likewise, if (3i, O<i<n) there is an arc (q,f) in ¥,
then 4 can be written as ¥'(q;f)y" where " is from g; to q. By the
definition of a Z expression, there is no arc (q,f) in o« 80 «,

(@jtj41)an-1fp) and 4" form a Z expression from p to q.

T R .

Lo Jaaiy i - ik i o i TN M A - dah s N TR i it N el S e el

SUBCLASSES OF REGULAR EXPRESSIONS 47
PERSISTENT SET ENTRY STATES

Of particular interest will be 7 expressions from the initial state to what may be
regarded as the final states. In the conversions from a restricted regular expression
to a finite automaton, it may be seen that the only final state of a loop was its initial
state and that either the regular expression was final loop or else any final states had
no nondead successors.

Dafinition: An entry state of a persistent set Is an element q of the persistent

set such that either q is the initial state of the resource or (3a’, 9’ not an

element of the persistent set) (3g) S(a’g) = a.

Let the synchronization for a sarial resource be expressed by the regular expression
(f+f"h)gh)*. The synchronization relationships have three states p, q, and @’ such that

S(p,t) = S{q’h) = q and S(p,{’) = S(a,g) = q"

D
§ s
e X
p—=—"__ EL n
—
S, -

The states g and q’ form a persistent set with g and h being the auxiliary operations,
Since p isn't in the persistent set, S(p,f) = q, a_nd' S(p,f’) = q', both q and g’ are entry
states into the persistent set. Notice that (p,f), (q’h), and ¢ form a Z expression from p
to g’ and (p,f’), {q,0). and ¢ form a Z expressicn from p to q. The presence of these Z
expressions can also be ded'iced from the following result

Lemma 3.3: 1f some persistent set ha.s more than one entry state, then the

initial state of the resource p isn't in this set and there is a Z expression
from p to each of these entry states.

A

|

mmﬂmwmmm,— T IR —— -
A & v s FUS PRI T m—— T T
. % " WO i d B ki Tk b e PR —

SUBCLASSES OF REGULAR EXPRE!ISIONS 48

Proof: If p is an element of the persistent set, then every state must also
be in the persistent set and it can be the only entry state. Otherwise, lat
g and q be entry states for the persistent set. There must ba arc
progressions o from p to q, o from p to @', ¥ from q’ to q, and 4’ from q
to q°. Then o and y form a Z gxpression from p to @ and o' and 4’ form

a Z exprassion from p to a.
The final states of a restricted regular expression can now be characterized.

Lemma 3.4: 1t the synchronization for a resourcé can be expressed with a
restricted regular expression, then the set of persistent set entry states
and states with no nondead successors is the same as the set of final
states produced using ihe ccnstruction in treorem 3.1,

Proof: It will also be shown that there must be an arc progression tro.
every state to a final state. The proof is by induction on the complexty
of the regular expression. For a single siement regular expression this is
certainly true. Assume that It is true fur R. Since there it a) arc
progression from every ctale to a final state, there must be = rc
progression from every state to the initial state p in R*. Thus, all . the ;
states form a persistent set and there are no states such that every
successor is dead. Since p is the only final state, the lemma is true for R*.
Ascume that it is true for R and R". For RR’ and 87 since there must be an
arc progression from every state of K-F to a state of F in R, there must
be an arc progression from every state of K-F to p’ in RR". Als9, there is f
no arc progression from any state of K (including p’) to '.a state of K.

Thus, every state of K-F has a nondead successor and none can be in any

SUBCLASSES OF REGULAR EXPRESSIONS

persistent sef. Since (Yq ¢ K') 8.(qf) = (g, every successor of q ls
dead in RR’ iff they all are decd in R Also, p’ is the only state in K such
that 55(q,f) = p' for a state q ¢ K-F. Thus, a state q €K' is a persistent
set entry state in RR' ift it also 1s in R". Since the final states for RR' is F’
and since there is an arc progression from every state of K’ {(including p")
to some state of F’, the lemma and hypothesis are true for RR If 85 is
used, then there can only be one state g in F. Thus, q is the only state of
K such that 83(qf) € K. Since there is an arc progression from p’ to
every element of 7 in R', there must also be an arc progression from g,
and therefore from every element of K, to every element of F'. Thus, no
state of K has all dead successors. As with 85, there is no q ¢ K'-{p'} such
that 85(q,f) ¢ K for some f and also (¥q ¢ K'-{p'}) 85(a,f) = 8'(a,f). Thus, no
state of K can be in a persisten: set and a state of K’-{p'} is & persistent
set entry state or has no nondead succesa:=s in RR' iff the same is true in
R'. Since the final states of RR® are F', tre lemma and hypothesis must be
true for RR'. Finally, for R+R, since 'nere must be an arc progression

from every state in R to a state in F and there must also be an arc

progression from every state of R’ to a state in F’, the hypothesis will be

true in R+R'. For every state q ¢ (K-{phu(K>-{p’}) an operation ms&y be
applied at q in R+R’ iff it could be applied at q in R or in R" and the
resulting state will be the same. Also, by properties 3.1.3 and 3.1.4, p and
p’ have at least one nondead successor and no arc results in these states
in R and R’ and the same is true for p in R+R. Therefore, & state will
have no nondead successors or be a persistent set entry state in R+R' Iff

the same was true in either R or in R.

49

R N T — |, T v DNLTC U S W) e

S R it arcoi e AR A B Bl g bl TS L g

SUBCLASSES OF REGULAR =XPRESSIONS 50
SYNCHRONIZATION AND RESTRICTED REGULAR EXPRESSIONS

It can now be shown that each restricted reg. " expression describes the
allowable sequences of operations for some simple <. ‘esource such that in the
synchronization relationships there is no Z expression from the initial state to any

state q such that either no operation may be applled at q or else q is a persistent set

entry state.

Theoram 35: A shared resource on which the aliowable sequences of
operations are given by a restricted reguisr expression is simpla serla!

with no Z exprassion from the initial state to a final state.

Proof: JThe lack of a Z expression from the initiai state to a final state is

invariant over the construction of the finite automaton. The details &re

presented in the Appendix.
Corollary 3.6: An elementary path expression without curly brackets is simple
serial and contains no Z expression from the initial state.to itself.

This last theorem shows that every resource for which the aliowable sequences
of operations can be given by a restricted regular expression is simple serial but that
not every simple seriai resource can have the synchronization for it expressed in this
manner. The next question is whether or not the synchronization for every simple
serial resource with none of these Z expressions can even be expressed using
restricted regular expressions.

Thooram 3.7: A simple serial resource with no Z expression from the initial
state to a state q such that either no operatior. may be applied at it or

else q is a persistent set entry state can be written as a restricted
regular expression without repeated names.

&
’ tz"sf;j

Iy SpTTTTR——— Lim ¥ e i i e

i
o

SUBCLASSES OF REGULAR EXPRESSIONS 51

¢

Proot: The proof shows that the synchronization relationships can be
split into nonempty parts reversing the construction from a restricted
regular expression of else a loop can be broken if there are no Z

expressions. The details are presented in the Appendix.

It has been shown that there are some simple serial resources for which the
synchronization can't be given using restrided regular expressions, Perhaps allowing
operation names ta be repeated would help to solve this problem. Untartunately, this

is not the case.

Theorem 3.8: The synchronization for any finite state resource may be
described using a regular expression in which the conditions for a
restricted regular expression hold but in which operation names may be

repeated.

Proof: It will be shown that for every regular expression R thero.ls a
regular expression R’ cuch that R and either R’ or (R'+¢) pxpress the same
strings and the conditions for a rastricted regular expression hold where ¢
is the null expression. Since whether or not the ngH string is acceptable
is unirmportant when expressing the synchronization of operations on a
resource, R' satisfies the theorem. The proof will be by Induction on the
complexity of the expression. Clearly, a single symbol expression is a : ,
restricted regular expression which is neither initial nor final loop.

Assume that R and R’ satisty the conditions and are neither initial nor final

TR A .

loop. Then R+R’, RR'+R, RR'+R', RR'+R+R’, and RR*R+R all satisty the
conditions and none is either initial nar final loop. Since R* = (R+¢)* = i

(RRFR4R)+€, (R+€)+R* = RHR'+€) = (RHR'+€) = (R+R")+€, R(R'+€) = RR+R, J

(R+¢)R’ = RR'+R", and (R+¢}R'+€) = (RR*+R+R")+¢ the theorem is praoved.

el B o -

SUBCLASSES OF REGULAR EXPRESSIONS 52

Another change which can be made is to remove the conditins but to continue
to prohibit the repeating of operation names.

Definition: A nonrepoat regular expression is a regular expression In which
subexpressions of the form R* = RR* and R+¢, where ¢ is the null
subexpression, are allowed but in which no operation name is repeated.

The symbol ¢ may be simulated by creating a null operation f which will never be

called. Then f* is the same as the symbol €

Lemma 3.9: For a restricted regular expression, the initiai state of a final loop

must be a final state.
Proot: The proof is by induction. If the regular expression is of the torm
R* then by theorem 3.1, the initial state is a final state. If the regular
expression is of the form RR’, then the final states of R’ are final states.
Since RR‘ is final loop itf R' is, if the lemma holds for R’ 'the,n it holds for
RR'. Likewise, if the expression is of the form R+R’, then the final states
are those of R and R'. Also, R+R’ is final loop iff either R or R'is. Thus, if
the lemma holds for R and R, then it holds for R+R".

Theorem 3.10: A serial resource on which the allowable sequences. of
operations is given by a nonrepeat regular expression either isn't simple

serial or else the synchronization can be expressed using a restricted
regular expression.

Proof: If a nonrepeat regular expression isn't restricted, then one of the

following situations mu. ! e true.

Case 1: A subexpression has the form R* and R Is restricted and simple
final foop. If R has the form R then R and R* are equivalent so
the subexpression could have been written as R. Assume that R has
the form R'R"™. Since R is restricted, R’ can't be final loop and by
theorem 3.1, properties 3.1.1 and 3.1.3, its Inltial state p can't be

T cveommame

RNy ea—

SUBCLASSES OF REGULAR EXPRESSIONS

one of its final states. Thus, no operation of R" can be applied at p
in R and since p is also the initial state of R, none can be applied at
the initial state of R®. However, after some string of R’ is executed
in R*, any operation which can be applicd at either the initial state
of R' or the initial state of R" can be applied. Thus, this state p’
can't be equivalent to the initial state. Any operation which can be
applied at p.in R’ can be applied at the initial state of R* and at p’.
Therefore, R* cant be simple serial.

Case 2: A subexpression has the form R¥ and R is restricted and selection

final loop. There must be a subexpression of R of the form
RIRZ* + Rq where R) is neither initial nor final loop. Thus, no
operation which can be applied at the initial state of Ro* can be
applied at the initial state of R By lemma 3.9, the initial state of
Rz* must be a final state of R. Therefore, there must be a state p’
in RY at which everything which may be applied at either the initial
state p of R or at the initial state of Rz* may be applied. By
property 3.1.3 of theorem 3.1, p and p’ can’t be equivalent but
everything which may be applied at the initial state of R may be
applied at both states. Thus, R* isn’t simple serial.

Case 3: A subexpression has the form R* and R is restricted and initial

loop but not final loop. Thus, R has the form R'*R" where R" is
neither initial nor final loop and its in ial state can’t be a final state.
It no operation other than those contained in R can be applied to
the final state of R¥, then R* can be written as (R'+R")*, which is
restricted. Assume that operation f can be applied at the final
states of R*. At the initial state of R*, f may be applied along with
any operations which may be applied at the initial states of R’ and
R". However, if a string from R executes, only those operation
which may be applied at the initial states of R* or R" may execute.
Therefore, there are two distinct states at which these operations
may execute and R* isn’t simple serial.

Case 8: A subexpression has the form R+R’, R is initial toop, and both R

and R’ are restricted. Thus, R has the form Rl‘Rz (R, is optional).
Any operation which may be applied at the initiol states of Ry and
R’ may be applied at the initial state ot R+R’. However, after a
string of operations from Ry have executed, the operations which
may be applied at the initial state of Ry may be applied but those
from R’ can’t be. Thus, R+R’ isn't simple serial.

Case 5: A subexpression has the form RR' where R is final loop, R’ is

initial loop, and both R and R' are restricted. Thus, by lemma 3.9,
there is a loop Ry* in R such that the initial state of Ry* is a final
state of R. Alsc, R’ has the form R2*R". Let p be the inilhal state of
Rl in RR’. Any operation which may be applied at either p In Ry or
at the initial state of Ry, may be applied at p in RR’. However, after
a string of operations frem Ry has executed, thoss operations which

53

SUBCLASSES OF REGULAR EXPRESSIONS

may be applied at the initial state of Ry may be applied but those
which can be applied at p in R can’t be. Therefore, RR’ isn’t simple
sarial. '

Case 6: A subexpression has the form RR’ whara R is selection final loop
and R and R' are restricted. As with case 2, R must have a
subexpression of the form (RyRy* + Rg) and the initial state of Ry*
and the tinal state ot Ry must be final states of R. Any operation
which can be applied at the initial state of R’ can be applied at both
of these final states in RR'. The cperations which can be applied at
the initial state of Ry in R can't be applied at the final state of Rg,
however. Thus, RR® isn’t simple serial. '

Case 7: There is a subexpression of the form R* where R is restricted. If
no operation not in R can be applied at a final state of RY, then R*
and R* are the same for synchranizaiion purposes. Assume that f
isn’t in R but can be applied at a final state of R*. It can't be
applied at the initial state of R*, but it can be applied after some
sequence of R, Thus, there are two different states at which initial
operations of R can be applied and R* isn't simple serial.

Case 8: There is a subexpression of the form ¢. Since R¢ = R = €R, ¢* = ¢,
and (R+¢)* = R¥, assume that ¢ is included in a subexpression of the
form (R+¢). If the initial state of R is a final siate or if no operation
not in R can be applied at the final states of R, then (R+¢) = R.
Assume that R is simple serial, the initial state p of R isn't a final
state, and there is at least one operation f not in R which can te
appiied at the final states of (R+€). If g is an operation of R which
can be applied at its initial state, then it can't be applied at any
other states, including the final states. However, f can be applied at
both the initial and final states of R. Therefore, (R+¢) isn’t simple
serial. .

3

54

Thus, no nonrepeat regular expression describes the synchronization for a simple

serial resource which can’t be described using a restricted regular expression,

. RELATIONSHIP TO CONTROL STRUCTURES

As shown in chapter [I, the synchronization relationships for a simple serlal

resource may be thought of as a directed graph with each state represented by a

i

SUBCLASSES OF REGULAR EXPRESSIONS 55

node and each operation represented by an arc. This graph has the property that
there are arc progressions from the the node representing the initial state to each of
the other nodes. Flowcharts with th. nroperty that each arc represents a different
computation with one entry and one exit point are also equivalent to the same set of

directed graphs.

Regular expressions and control structures from programming languages can also
be compared. The expression RR’ means first R and then R’ must occur. Likewise,
concatenating two computations means do the first and then do the second. The
expression R* means that R occurs zero or more times and the statement
WHILE p DO R means that R will be executed zero or more times. The expression R+R’
means that either R or R’ must occur and the statement IF p THEN R ELSE R’ means
that either R or R’ will be executed. Since

DORUNTILp = R; WHILENOT pDOR
and R* = RR* they each produce the same sequences. Finally, R+¢ means that R may

optionally occur and IF p THEN R means that R will optionally be executed.

The results that are given above about the relationship between regular
expressions and simple serial resources can be applied to flowcharts in which each arc
represents a different computation and programs which are written using the above
control structures. Theorem 3.10 shows that only those flowcharts without Z
expressions from the starting node fo & node with no successors or which is a
persistent set entry node can be wrilten using the above control structures without
repeating some computation. Furthermore, theorem 3.5 shows that these flowcharts
can be written without the statements IF p THEN R and DO R UNTIL p. This result is an

extension of theorem 1 in Peterson, Kasami, and Tokura [PKT73].

SUBCLASSES OF REGULAR EXPRESSIONS 56

An extension to regular expressions which might be useful is to allow a
subexpression to be "exitted". In order to do this, the .notation would be extended tq
allow a label to be applied to a subexpression. Then an indication could be made
within the labeled subexpression to jump to the point immediately following it.
Example 3.11: The regular expression (fg)*(fh+h) can be written R:(f(g+-+R))*h.

The subexpression (f(g+-+R))* is labeled by R and the notation R means

that h is the next symbol to be considered.

This extension doesn’t help though in trying to find a notation to express the
synchronization for simple serial resources Lven a simple expression like that In
example 3.11 is not injective and therefore isn’t simple serial. Furthermore, theorem 3
of Peterson, Kasami, and Tokura shows that there are still simple serial resources for
which the synchronization can’t be expressed using a regular expression without

repeated names even when this exit notation is sllowed.

CHAPTER IV

ELEMENTS

The important property of a simple serial resource is that an operation may only
be applied at one state. Thus, only one comparison needs to be made to determine
whether or not an operation may execute. Assume, however, that an operation g may
execute if the history of executions contains the operation f. Operation g may be
applied at many states but most of the information contained in these states is
unimportant to g. If the, state can be divided into two parts, one of which indicates
whether or nc;t t has executed, then g would only need to check that part to determine
whether or not it could execute. Furthermore, the part would have only one value at

which g could be apniied. In an attempt to study this issue, some modification to the

notion of state will be made.

For each resource, a new class of object which has a finite number of distinct
merber< will be introduced. Each state, instead of being a single entity, will now be a
multiset of these objects. A multiset (K69, page 420] is a et in which members may
have multiple occurances. The lnotation U+V will represent the multiset in which each
member of the class occurs the number of times it occurs in U plus the number of
times it occurs in V. The notation nsU will repres;ant the multiset in which the number

of occurances of each member is n times the number of its occurances in U,

Definition: An object which is used in the composition of a state is an element.

.
=
k:
;
1
_,;
3
b

ELEMENTS . . 58

These element: are not each confined to a single state but may be inctuded In several
of them. The states are distinguished from each other according to which slements
they contain. Thus, no two distinct states are exactiy the same muitiset of slements.

Also, since a state is represented by a group of elements, checking the state variable

to see if an operation may execute consists of testing to see that one of several

coilections of elements is included in the current state.

STATE TRANSITIONS

To convert a state p into a state q requires that every elemant of p which lsn’t
in a1 must be removed from the resource state and every elsment of q which isn’t in p
must be added.
Definition: A siate transition is the removal of some of the elements from the

state of a shared resource followed by the addition of some elements.

The notation which will be used for a state transition is <name>:{<slements

to be removed>} ~ {<elements to be added>}. The <name> part is optional
and will only be included when necessary.

.

.

It may be possible for a state transition .to be used &t several states. Thus,
{el}) =+ {2} can transform the state {el,03) into {e2,63} and the state {e1,04)} into

{e2,e4).

An operation on a serial resource will be associated with s coilection of state
transitions. For each state at which the operation can be'applied, one of 'theso
transitions will produce the eppropriate resulting stato; When a process attempts to
execute the operation, it will be delayed until nli of the elements which are removed

by on2 of these state transitions are present in the current state. These elements are

TR

4

TR T WO TE) ! ey —

ELEMENTS 59

then removed and at the end of execution the state transition is completed by adding
some elements to the state. If more than one process may now continue, a choice
must be made. Note that in general an operation doesn't need to remove all of the
elements irom its starting state but just those which aren't in the resulting state.
However, in order that another process doesn’t start exacuting on the resourr;o before
thic operation finishes, it must not be irue that a state transition associated with some
operation removes a subset of the ramaining elements.
Example 4.1: Consider the regular expression ((fg+gf')h)' and the resulting
states pl, p2, p3, and p4 with S(pl,f) = p2, Stplg) = p3, S(p2,g) =

S(p3,f) = p4, and S(p4h) = pl. Let p1 be composed of the elements @, al,
and a2, p2 = {e,b1,a2}, p3 = {e,1,b2}, and pA = {e,b1,b2}.

S obp2 = {eble2} —8&
pl = {e,al,82} <= ‘ /P'P‘* = {8,b1,b2}
g >p3 = {8,81,b2) f

X B :

If tefeal} - {e,bl} is associated with f, t_:{e,a2} » {e,b2} is associated

with g, and t:{bl,b2} - {al,a2} is associa%ed with h, then the proper

synchronization results.
Several things should be noticed in this example. First, f and g can each be
represented by just one state transition. Second, ty only removes e and al from the
current state. When f executes causing a transition from state pl or p3, a2 or b2

respecti rely remains part of the current state. Likewise, not all of the elements are

removed from the current state when g and h start execution.

While a state transition doesn’t always remove all of the elsments of the state at

the start of execution of the associated operation, frequently it must remove some

o

— aaiiba o i B T T e, e B e ik ik Bk i SR e o Lt o e e Mol b bt o el e il i h

ELEMENTS 60

elsments which also occur in the resulting state. Of course, it must then add those
elements back to the state at the end of execution. In example 4.1, t; and tu remove
and add e to the state. The reason why e ls used In this manner is that otherwise t;
and t8 would remove {al} end {a2} respoétively. Since these are disjoint sets of
elements which are both contained in pl, the start of execution of t would leave the
elements for which t8 was waiting in the state. Therefore, a process couid start
executing g before f completed, violating the seriai nature of the resource. The
solution to this problem is to create a new element which is contained in every state.
Then whenever state transitions remove disjoint subsets of a state, they must also
remove and add this new element. The state transition t, _doesn’t resd to remove e
since this Is the only element remaining during its execution and none of the

transitions remaove just e.

In addition to assuring that operations execute serialiy, there is another
situaticn when the state transition from a state p to a state q caused by an operation f
must both remove and add the same element. This occurs when the set of elements
which must be removed (tanse which are contained in p but not in q) also form a
subset of some state r’ ditferent from p. If f can’t be applied at p’ or if this state
transition results in the wrong state when applied at p' then the state transition must

additionally wait on some element e which Is In p but not in p*.
Consider the following modification to example 4.1.

Example 4.2: Let thora be five states with S(pl,f) = p2, S(p1,8) = p3, 5(p2,8) =
p4, and S(p3,f) = p&. It ls irrelevant what operations may be applied at
p4 and pb. :

ikt BaiRod L

pEE et

R R LRI (e, IR Oy T —— L mm I [—— Ak e i R N & o

ELEMENTS 6!

t>p2 = {b1,a2} — p8e(bl1p2)

pl ={al,a2} <
g —>p3 = {al,b2) ———>p5 = (e}

The state transition {a2} - {b2} is associated with g and the state
transitions {al,82} » {b1,a2} and {al,b2} - {e'} are »usociated with f.
It {al} - {b1} was used instead of {al,a2} - {b1,a2} then f could also take p3 to p4.
An element e which occurs in every state isn't needed here since thers aren’t any
state transitions which remove disjoint subsets of a state. Another modification 1 not
to allow f to be applied at p3. The state transition associated with f must still be

{al,a2} = {bl,a2} tc prevent It from being applied at p3.

Actually, in an implementation a state transition doesn’t need to remove and then
add an element only to prevent being used at a state whesg it shouldn’t be, A check
of the state to make sure that the element is present is all that is needed. However,
removing the element is acceptable and is consistent with the model f synchronlzation

as presented, so no further extension will be given for this special case.

SUBSTATES

It a state transition may occur more than once consecutively from a state, then
each element which it removes and doesn't return must have more than one instance in

the original state.

Example 4.3: Consider the regular expression (tgg)*. This may be represented

sl = - TR R T [ANl Ty PR L MAPTy o et SO

ELEMENTS , 62

with states pl = {elel,e2}, p2 = {e2,e2,e2}, and p3 = {el,e2,ec} with the

state transitions tg{elel} - {e2e2} and tg:{ez,eZ} -+ {el,02)

corresponding to f and g respectively.
Since tg removes e2 and adds el, 82 must occur at least twics in p2 and el must
occur at least twice in pl.
Deafinition: The muliiplicity of an element ‘e in the state p of a shared resource

is the number of inciances of e in p.
In examr's 4.3, e2 has a multiplicity of three in state p2, two in state p3, and one in
state pl. Since tg removes e2 twice, e2 must have a multiplicity of at least two In the
current state in order that tg may ba used. Since this is not the case in pl and since
t_ is the only state transition associated with g, any process which tries to execute g

8

when the state is pl will block,

It is now necessary to return to the situation where the elements which a state
transition must remove from a state p form a subset of some stats p' at which the
associated operation can’t be applied. Such is the case in example 4.3 where tg .ust
remove {e2} from p2 and from p3 but e2 is also in pl, a state at which g can’t be
applied. In this example, however, pl also contains the only other element, el.
Therefore, tg car’t remove an element which is contained in p2 and p3 but not in pl.
Orly the multiplicities are different. Thus, to prevent g from executing at pl, som=

element must be removed in a greater amount than its multiplicity in pl. Here that is

possible since e2 has a greater multiplicity in p2 and p3 than it does in pl.

]

It was stated above that e2 must have a muitiplicity of at least two in p2. In

tact, it has a multiplicity of three. Also, tu removes e2 twice rather than once and then

3

ELEMENTS 63

adds the second one back. This is only partly because e2 has & non-zero multiplicity
in pl. The reason why e2 has a muitiplicity in each state of one greater than it needs
to be is that it is used to perform the same function that e does in exampie 4.1. Here,
two processes could execute g simultaneously from state p2 otherwise. In general, if a
state transition can be used n times in sequence from a state o, then It can be
prevented from being used twice simultaneously by removing some element n times
and adding it n-1 times. The multiplicity of this element should ba 2n-1 in p. Thus,
after n applications of the state t ansition, the muiltiplicity of this element In the

current state is n-1 and it can’t be applied again.

It might be true that there are states p and q such that not only is every
element in p also in g but the multiplicity of each of these elements is at lsast as great
inqas itisinp.

Deofinition: 1f p and q are states, then p is a substate of q, denoted p ¢ q, if (Ve,

e an element) the multiplicity of e in p isn’t greater than the multiplicity of

e in g and (3e’, e’ an element) the muitiplicity of e’ in p is less than the

multiplicity of e’ in q.

If pis a substate of q then it is clear that any state transition, and therefore any
operation, which can be used at p can aiso be used at q. Furthermore, the state
resulting from using such a transition at p must be a substate of the state resuiting

from using it at q. This is true since the elements not removed from p are a subset of

those not ramoved from q.

It is possible to extend the concept of an &rc progression to state transitions.
For every arc progression (pg,fy)..(p,.1f,) there is a corresponding string of state

transitions t;..t,. Each t; is the state transition caused by executing f; from state p_y.

ELEMENTS 64

Composing these ctate transitions then yields a state transition which corresponds to

executing the entire arc progression.

Dafinition: A composed state cransition is the result of using a string cf state
transitigns, corresponding to some arc progression, in sequence.

A composed state transition t corresponding to ty.t, may pe created in the following

manner. If an element is added by t, and removed by tj where i<j, then this addition

and removal cancel each other. After all possible cancellations are made, t removes

the sum of the elements which the ti's remove and adds the sum ot the elements which

the ti’s add.

If the set of elements which a state transition removes is a subset of those that
it adds, then any state that contains the elements for wnich the transition waits is a
substate of the resulting state. Thus, the state transition could then be applied again.
Such a state transition can therefore be used an arbitrary number of times in

succession. Extending this observation to composed state transitions produces the

following results.

Thapeam 4.0, 1f A shared resource R has a finite number of elements, then the
numianr of states is finite iff there are no states p and q of R such that
p < ¢ nd there ie a composed state transition tip 2 a.
Proof: If there are 2 such states, then an infinite number of states may
be generated by repeated use of . On the other hand, if the number of
states is infinile, then the multiplicity of some element e must be
unbounded. Hence, there must be states PPy such that (Yi,iz21)e
has a greater multiplicity in Pjsq than in p; and there is a composed state

ELEMENTS 65

transition tip; = piy). It Py © P for some i, then the theorem Is proved.
Otherwise, each p; has at least one element with lower multiplicity than In
pi- Since there are finitely many alements and intinitely many p;’s, for
some element el there are infilnit'ely mlny.of.thc py's which have |.|ower
multiplicity of el than does py. It the multiplicity of el in py is k, then
these may be divided into k classes representing each value of the
multiplicity of el less than k. One of the classes must have an Infinite
number of members py’..,p;'s. such thét the multiplicity of el is the same
for each p;’ and (Vi, i 2 1) e has a greater multiplicity in p;,* than in p;’
and there is a composed state transition tp' = pj, . The above
procedure may then be repested. It must terminite since there are only a
finite number of elements.

Corollary 4.5: It there are a finite nunber of states and if p and q are states

such that p c q and there is an arc progression from q to p, then g len't In
any persistent set.

Proof: There can be no arc progressian from p to q.

IMPLEMENTATION

For most serial resources, the implementation based on elements will be more
compiex than that based on states. However, it will be seen that this Isn't true for a
special class of these resources. Before this class is presented, though, a general

implementation will be introduced.

In the previous implementation, the state was represented gither'by a single

ELEMENTS 66

variable or by a set of boolsan semaphoras With elements, the state must be
represerted by a set of variables. Each of these variables is used to keep track of
the current multiplicity of one of the elements. Likewise, for each state transition
associated with an operation, the amount of each element that It removes and adds
must be stored. There are two ways to do this, The first is to keep the amounts for
each of the elements, including a zero for.thoso that it doesn’t remove or doesn’t add.
The other way is to save only the nonzero amounts and to label each with the element
to which it corr.esponds. Since these labels require space, the second method will use
more storage unless most of the state transitions are sparse in that they remove only

a small percentage of the elements.

When & process attempts to execute an operation, each of the various state
transitions associated with the operation must be compared with the state. This is
basically the same procedure that was used in the implementation described In
chapter Il. The number of state transitions invoived may be fewer than the number of
states, but each comparison now requirés checking the multiplicity of each of thq
elements which must be removed. fhﬁs. s_evéral variables must be compared rather
than just one. The number of comparisons_ which will be made in the worst case, when
the process becomes blocked, will Se the sum of the number af elerients which must
be ramoved by each of the staie transitions associated with the operation. In addition,
if the first method above is used to store the state trarsitions, for each state
transition tried, every element’s value must first be compared with zero. When a
match is found, the identity of the appropriate state transition must be saved so that

the proper one will finish when the operation completes its execution.

ELEMENTS 67

If none of the state transitions can proceed, then the process must be put on a
waiting list. The waiting lists should be organized as betore. Either each set of states

at which an operation may be applied has a waiing list or else there is a single llst,

When an operation complates execution, the state transition resumes by adding
elements to the current state. Instead of being unique, the resulting state will be one
of several depending on which elements the state variable slready contsined. [f there
is a single waiting list, each process is checked in turn by comparing the current state
with the elements removed by each of the state transitions associated with the
operation the process is attempting to execute. If there are several waitlné lists, then
they are ordered wccording to the length of tim,e'that the top elemént has been waiting
or some other priority scheme. Using this ordering, the top procets on sach list is
checked as In the one list cease. When a process is found which cen continue, the

multiplicities of the appropriate elements are decremented in the current state.

The several waiting list implemantation may now seem to be the same as the one
using & single list. The difference is that with the several list scheme, if the top
process of a list fails, none of the other processes on that list will be tested to see if
it can continue. Thus, if execution of ﬁn operation f is onabled, with a single list
several processes attempting to execute anpther operation g might be highe'r on the
list than the first prccess attempting to execute an f. Each of these processes will be
tested while with several waiting lists only one such procsss would be tested. In
addition, a further simplification can be made when several waiting lists are used.
Usually, only a ftaw of the states are possible results from completing a state

transition. Some of the operations won't be able to begin execution at ‘any of these

LA Pl U e

A . :
L s
e T T

ELEMENTS 68

states. Therelore, the waiting lists of processes trying fo execute these operations

need never be checked.

Returning to example 2.11, let p = {el,el,e2}, q = {el,e2,e2}, and q ={elelel}
and let tgfelel} »{ele2] be associated with f, {elele2} » {elelel} and
{felelel} »{elsl,el} be associated with g, and {ele2e2} > {elel,e2} and

{eliel,e2} » {elei,e2} be associated with h.

o _ . —— ____>
(i sq={ele2e2) —
(*p = {al.al,a?.} —T""— e ~ {)
8 g = el .u 8
2ty

e - e ——p S

As explained before, since f may go iwice in a row from q' and it removes el, to
prevent two processes from executing f in parallel el should be removed twice and
added once. It must also have a multiplicity of three in g When a process tries to
execute f, it must wait until the variable for el has a value of at least two. A process
trying to execute g must wait until the variable associated with el has a value of three
or else until el has a value o‘f two and e2 has a value of one. There will be two
waiting lists as before. One is for processes trying to execute either an f or a g and
the other for those trying to execute an h. When t; completes, the resulting state will
either be p or q. Processes trying to éxecute either an f or a g wlll only be allowed
to proceed if the state is p. Thus, befors the list far processes waiting to either
execute an f or execute a g can be searched, the identity of thelcurrent state must be
determined. An h can be applied at either of these states, so the list for processes

trying to execute it must be checked. When an h finishas executing, the state must be

ELEMENTS 69

p and both lists will be examined for waiting processes. Likewise, when a g finis*.es

executing, the state must be ' and only the list for t and g will be checked.

ASSIGNIMNG ELEMENTS TO STATES

The synchrenization as studied so far is expressed in terms of states or else
using a no‘ation, such as regular expressions, which can be converted into states. In
order for elements and an implementation based on then to be useful, it must be

possible to convert from states into multisets of elements.

For a resource with states py,.,p, One way to assign muitisets of elements to
these states is to create n pairs of elements.v For each pair a; and b,-owhere 1gign,
include a; in state p, and b; in each state Pj for i#j. Thus, each state contains n
elements cach with a multiplicity of one. A stats transition from state p; to state J
can be written as {ai'bj} - {bi,aj}. The elements by, for k#i and k¢j a-e in both p; and
P; and therefore don't have to be included in the.transition. This transition may only .
be used at p; since that is the only state containing a. In example 4.1, pl =
{al,b2,b3,b4}, p2 = {b{,a2,b3,b4}, p3 = [bl,b2,a3,b4}, and pd = {b1,b2,b3,ad}. Tﬁe
state transitions {al,b2} - {bl,a2} and {a3,b8} -~ [h3,a4} are associated with f,
{al,b3} » {b1,a3} and {a2,b4} » {b2,a8} are asscciated with g, and {bl,aqi} - {al,bd} is

associated with h.

This assignment of elements to states leads to the worst case in that the
maximum numl.)er of state transitions will be needed. In order to reduce the number of

state transitions acsociated with an opsration, some of the elements in the states at

ELEMENTS 70

which the operation can be applied and in the resultinglstates must be replaced by
other elements. To do this, two such transitions are stt equal. Thus, if {e}+U > {e'}+ [
and V - V' are both associated with an operation, they are set aqual and the equation
is solved. This is done by leiling e = V+U' and e* = V'+U. This substitu'tion is made in
every state transition and also in each state. The first stete transition then becomes
V+U'+U » V'+U+U' which reduces to the second. In example A4.l, setting
{al,b2} = {bl,a2} = {a3,ba} - {b3,a8} yields al = {a2,a3,b4} and bl = {b2,b3,a8}. The
states are now pl= {a2,b2,a3,b3,b4,b4}, p2 = {a2,b2,b3,b3,a4,b4}, p3 =
{b2,b2,83,b3,a4,b4}, and pd = {b2,b2,b3,43,a8,a8}. Operation f is now only associated
with the state transition {a3,b4} - {b3,a8}, g I8 associated with {a2,b4} - {b2,ad} and
{a2,a3,b3,b4} - {b2,a3,b3,a4] which reduces to {#2,b4] > {b2,28}, and h is associated

with {b2,b3,a4,a4} = {a2,a3,b4,b4}.

Several things must be noted about the above slgorithm. First, the multiplicity
of some of the elements may be greater than one In soms of the states. In the
example, b2 has a multipiicity of two in p3 and in p4 It is therefore possible that
some elements might be removed or added more than once by a state transition. In
the transition associated with h, ad is removed twice and bd is added twice. If such a
transition is set equal to another and an element a; which is removed or added n times
by the state transition is solved for, the resuit Iwi\ll'be of the farm nxa U and nb; =
U where U and U are multisets of elements, _But aj or b; might have a multiplicity
which isn’t a multiple of n in some state. Simple substitution would therefore result in
fractions of elemants. This problem can be corrected by multiplying the multiplicity of
every element in every stale by n. The solution to the equality of the state

transitions will then be n2tai = ntl and nztbi « ntlU' which reduces to nsa; = U and

ELFEMENTS 71

nsb, = U. Now, however, the multiplicities of 8 and b; in every state must be multiptes

of n.

Next, some of the elements may have a multiplicity of at Isast one in every sta.te.
This is true of b2 and b3' above. Subtracting the minimum such hultiplicity from every
state won't change any of the state transitions. The result is that tﬁe states can be
simplified. In example 4.1, the states become pl = {a2,a3,bs,b4}, p2 = {a2,b3,a4,b4},
p3 = {b2,a3,a4,b4}, and p4 = {b2,b3,a8,ad}). Third, both elements of a pair may now be

in a state. Thus, a4 and b4 are both in p2 and in p3.

Jinally, a state transition U=V for some multisets of elements U and V can
always be written as k*{ai}+U’Q k't{bi}+v‘ where U' and V' are also multisets and
which contain neither a; nor b;. This can be sﬁdwn by assuming that the sum of the
multiplicities of the two elements in any pair is the same in every state. This is
certainly true for the initial assignment where this sum has the value one for each
pair. Thus, It a, is removed k times from ; state then b, must bé added k times.
Assume that e has multiplicity m and b; has multiplicity n in state p an‘d e hag
muitiplicity m* and b; has multiplicity n’ in state a. It the sums are the same in every
state then m+n = m’+n’. If m>m’, then in the state transition from p to q, a; must be
removed m-m’ times and b, must be added n’-n = m-m’ times. It solving for ag and bg
produces ag = U" and by = V" and 2; ¢ U" then the multiplicity of a; in ‘U" must equal
the multiplicity of b; in V", When & anq bg arn substituted for in sach stete, since the
sum of their multiplicities are the same, the sum of the multiplicity of a, and b; must be

the same in every state.

It isn't always possible lu set two state transiions equal. If it was, then the

4

3
ka&_L o

g oo

ELEMENTS 72

same transition could be used for every operation of a resource just by setting all of
the state transitions equal to rach other. There are three situations for which state
transitions can’t be set equal. The first occurs when state transitions U~ U and
V » V' are set equal and an element a is solved for which is in both U and V' with
multiplicities m and n respectively. It must also be true that b; is in both U’ and V.
The result must be that mea, = n#{b}+U" and msb; = na{e;}+V" for some multisets u"
and V". Since these solutions are mutually recursive, no such element must ever be
solved for. If every alement of Uis also in V' and every element of V' is in U, then no

element can be solved for and the two state transitions can't be set equal.

Another situaiion occurs when substituting multisets of elements V and V' for
elements a; and b, respectively causes two different stiles to bacome equal. Such a
substitution can’t be allowed. A check for this situation can be made as follows. If the
multiplicity of a; in a state p minus the multiplicity of a, in a state q is some number n,
then p and q will become equal if p-nt{a,}+nsV = g-neb;}+nsV’. 'f n=0 (a; has the
same multiplicity in p and q) then this check is unnecessary. If there are no elements
2; and b, from two state transitions which when substituted for dan't collapse some

states into one, then these transitions can’t be set equal.

A final situation occurs when making a substitution causes the intersection of the
states at which some operation can be zpplied to become contained in anothar state.
It such a substitution were allowed, then there would be no element that a state
transition could remove and that was in every state at which the operation could be
applied but not in the other state. Therefore, the operation couldn’t be associated

with just one state transition. A check must be made that this condition doesn't hold

L‘:L TR, o N I e e S T

MR . o, @

S

ELEMENTS 73

after the substitution for any operation which can be applied at more than one state.
If for two state t ansitions every elemsnt which can be solved for causes this

condition, then the transitions can't be set equel

After all possible substitutions have been made, it may be possible to o.educe the
numbsr of elements in each state. If the multiplicity of some element o' s at least as
great as the multiplicity of an element » in every state, then create a new element
e" = {2,e']. A.substitution is made Ly subtracting the multiplicity of & from that of e’ in
every state, letting ' have the same multiplicity as e, and deleting ®. A substitution
must be made in the state transitions also. It e is removed (added) then e” must be
removed (added) instead and e’ must be added (removed). If e’ is now both added and
removed, these can cancel as bsfore. This procedure can never cause two states to
collapse into one, but it might cause the intersection of the states at which a trensition
can be used to become contained i another. Therefore, a check for this situation must

be made before a substitution can be allowed.

Returning to example 4.1, every state containing #3 also contains bd. Therefore,
let al® = {a3,b4}. The states become .pl « {al’a2,b4}, p2 = {a2,b3,a4,b4}, and p3 =
{a1',b2,a8}, the state transition associated with f becomes {al'} - {b3,ad}, and the
state transition associated with h becomes {b2,b3,a4,a4} = {al’02,b4). The stete
transition associated with g remains-{a2,b4} » {b2,28} and p4 still equals {b2,b3,a4,'|4}"
Now every state containing b2 also contains a4 so lstting b2’ = {b2,a4} produces p3 =
{a1',b2’}, p4 = {b3,a8,b2'}, the state transition {a2,08} » {b2'} to be assoclated with g,
and the state transition {b3,a4,b2’} = {al’,a2,b4} to be associated wifh h. It is now

possible to let {a2,b4} = a2’ and {b3,a4} = b1’ The result Is that pl =~ {al',a2'}, p2 =

ELEMENTS 74

{b1’,a2'}, p3 = {al'b2’}, and pd = {b1'b2'}. The state transition associated with f Is
{al’} » {b1’}, {a2'} = {b2'} is associated with g, and {b1',b2'} » {al’,a2’} is assoclated

with h.

After the synchronization relationships have been reducad as much as possible,
a check must be made to be sure that the set of elements that each state transition
removes isn’t contained in some state at which the transition shouldn be used. If it
is, an element from the intersection of the states at which the state transition can be
used but which isn’t already removed should be both removed and added by the state
transition. This process should continue un'il the elements which it removes are no
longer contained in any states at whicﬁ the transition shouldn’t be used. When
including these elements ‘n the state transition, for reasuis that will become clear
later, any which have a multiplicity t-ound by one should be included first. Also, if any
two state transitions remove disjoint subsets of a state but thelr associated operations
should execute serially, a new element should be added to every state and these two
transitions must both remove and then'add this element. Thus, in example 4.1, a new
elament @ must be added to every state which the state transitions associated with f

and g each removes,

SINGLE TRANSITION OPERATICNS

As car be seen from examples 4.1 and 4.3, often one state transition can be
used to represent the state change caused by applying an operation at any one of
several states. Thus, in example 4.1 the state transition {e,all} - {e,bl} can be used to
change pl into p2 and p3 into pd. Likewise, in example 4.3, {e2,e2} » {el,02} can be

used to change p2 into p3 and p3 into pl.

ELEMENTS 75

Dafinition: An operation is single transition if one state ‘ransition can be used
to reprasent exactly those state changes which the operation can cause.
A resource is single transition if every operatior defined on it is single
transition.

The advantage of a single transition operation is that only one transition needs to be

checked at the start of the operation. Also, the identity of this transition doesn’t need

to be saved during the execution of the operation,

Trivially, every operation which Is both injective and projective s single
transition. Thus, a simple serial resource is single transition, For other resources,
though, it may not be possible to make every operation single transition. The

following resuit shows that every single transition operation must be injective,

Theoram 4.u: 1i isn't possible for a state transition to take different states p
and p’ into the same state q.
Proof: Assume that there are states p, p', and q such that some state
transition t:V - V' takes p a~d p' into q. Since t can be used at p ana p’,
there must be multisets J and U such tﬁat p = Us+V and p’ = U'+V. Using t
at p results in g = U+V' and using it at p’ results in g = U'+V'. Therelore,

U=U and p = U+V = p’ and p and p’ aren’t different states.

It state transitions U - U’ from a state p to a state g and V -» V' from £’ to q are set
equal using the algorithm above, the result will be that p and p' become equal. This
may be seen by solving for some alement e with multiplicity n in U. The result is that
nte = U'-ns{e’}+V and nte’ = U-ns{e}+V’ which becomes nse = U+V'-ns{e’}. Subtracting
the two solutions for e yields U-U' = V-V, But p = q-U+U = g-V'+¥ = p’. This resuit
can also be extended to composed state transitions. Thus, If S(p,f) = p', S(p’g) = p",

S(q,g) = q', and S(q’,f) = p", then either f or g isn’t single transition,

=

ELEMENTS 76

The next result shows that if a group of single transition operations execute
from a 'z, th_ resulting state will always be the same regardless of the ordering.
This is a commutative law for single transition operations
Thooream 4.7: 1f a state transition t takes state p into p’ and state q into g’ and

¢ state transition t* takes p into q and p’ into p", then g’ = p".

Proot: Assume thatt = U - U and t”«V 5 V. Thenp’ = p-U+U’ and p" =

p’-V+V' = p-U+U-V+V’, Also, a = p-V+V and q' = gq-U+)’ = p-V+V'-Us)’ =

p".

Thus, for the synchronization expressed by (f g h+g f i)* either f or g can’t be single

transition since f g and g f exec. ing from the initial state result in different states.

The third result shows that if an operation is single transition end it can be
applied n times in a row starting at a ctate p with the result being state p for some
n21, then the result of applying it at any state q (including p) must be q.

Theorem 4.8: It a state transition U - V can be used n times in a row starting at

a state p with the result being p for some n21, then U = V.

Proot: After using the state transition n times from p, the state will be

p-nsU+nsV = p. Therefore, nsU = nsV,

Thus, if the synchronization for a serial resource is given by the regular expression
(f+(g g))* then operation g can’t be single transition. If for some m, an operation can
be applied m times at a state p with the result being state q using a state transition
U-=U and it,can be ap‘plied at q with the result being p using a slate transition

V = V', then V' = mxU and therefore U and V' contain the same elements and It won’t

ELEHIENTS 77

pe possible to set them equal. This theorem can aiso be extended to strings of
operations. Combining it with the commutative law shows that if executing an ¢ from a
state o followed by executing a g resuits in state p and if executing & g from some
state g followed by executing an f results In a state g, then either f or g isn’t single

transition.

The final result shows that if a single transition operation f car exscute several
times in a row from a state p with the result being state g and another single
transition operation can be applied at both p and g then it can elso be applied et any
of the intermediate states in the string of f’s.

Theorem 4.9: 1t there are states pg,..,p, and a state transition t:U » V such that

(Vi, 1si<n) t takes p;_; into p; and there is a state transition t* which

removes the multiset of elements U' and can be used at py and p,, then

(Vi, 0<i<n) t’ can be used at p;.

Proof: It must be true that (Vi, Osisn) p; = p-iU+iV. Since t’ can be used
at pg and p,, for every element @ the multiplicity of e in U’ can’t be
greater than the multiplicity ot e in either p or in p, = p-nU+nV. Let mg
be the difference between the multiplicity of e in V and the multiplicity of
e in U Thus, the multiplicity of e in p; must be the muitiplicity nf e in p

plus iamg. 1f mg 2 O, then the multiplicity of e in p; must be at least as

&
great as the multiplicity of e in p which is at least as great as the
multiplicity of p in U\ If mg < O fhen i¥mg 2 nimg and therefore the
muitiplicity of e in p; is at least as great as the multiplicity of e in Py

which is at least as great as the multiplicity of e in U. Therefore, t* can

be used at p,.

mmm-—ﬁww’ﬂw BT I ¥ T EARRL SO AT Sre A 2 N Mue——— AT f Ll L Sl = R o OO v]

ELEMENTS 78

This theorem shows taat for the synchronization expressed by the regular expression
(g+ttg*h)* either f or g can’t be single transition. If the above algorithm was applied,
the intersection of the states at which g can be applied would be contained in each of

the states betwean the two f's.

.

.

Twn restrictions to a single transition resource are allowing a transition to
remove at most one occurrence of each element and allowing a transition to remove
only one element but by any amount. | These restrictipns are equivalent to the
resources which can be implemented using P-V multiple and P-V chunk respectively
and placing bounds on the semaphores. Since any synchronjzation which can be
expressed using P and V can also be expressed using P-V multiple, the resources
which can be synchronized with P and V and bounded semaphores form a subcless of

the single transition resources.

BOOLEAN ELEMENT RESOURCES

Single transition operations need only attempt one state transition in order to
execute and therefore the same set of elements is always added to the state upon
completion. However, several variables must still ke checked when a process tries to
~.z-ute such an operation and also whenever an .attempt is mada to remove it from a
waiting list. For a subclass of the single transition operations, though, the
implementation can be changed so that only one variable must be checked to determine

¢ the operation may start execution.

Dofirition: A state transition is boolean olement if every element which it
removes has a multiplicity of at most one in any state. A shared resource
is boolean olement if it is single transition and every element has a
multiplicity bounded by one.

T

TR g T

!

RN, g g g 1 | TR m——— Ty R I S LA g | | R — o L. B I N =l Ll

ELEMENTS 79

Thus, every state transition associated with an operation of a boolean element
resource must be boolean element. The resource in example 4.1 may easlly be seen to

be boolean element.

If a state transition is boolean element, then it is always possible to alter the
implementation by adding new elements such that the muitiplicity ot only one element
needs to be checked. Assume that the state transition removes n elements. Create a
new element e such that at any time its muitiplicity is the sum ot the multiplicities of
these n elements. Thus, whenevor ~e of thase elements is added to the state, the
multiplicity ot e is increased by one and whenever one is removed, the multiplicity of e
is decreased. Since the multiplicity of each of these elements is bound by one, their
sum, and therefore the multiplicity of e, is bound by n. Also, the multiplicity of e will
reach n exactly when all of these elements are part of the state. The state transition
how only must wait until the multiplicity ot e equals n. At such a time, the rest of the
elements which it must remove are guarantesd to be part of the state in the
appropriate multiplicity. A simplification can be made by deleting any element which

no state transition waits on.

Returning to example 4.1, et el = {e,al}, e2 = {e,a2}, and e3 = {blb2}. The
state transition {e,al,elel,e2) ~ {ebl,el,e2.e3} only needs to wait for the multiplicity
of el to be two and corresponds to t, {e,a. 222} = {eb2,el,e2,e3) only needs to
wait for the multiplicity ot e2 to be two and corresponds to g, and
{£1,h2,e3,e3} » {al,a2,ei,02} only needs to wait tor the multiplicity of e3 to be two
and corresponds to h. Since no state transition waits for e, al, 82, bl, or b2, these

clements may be deleted. The result ic that pl = {elel,02,02}, p2 = {el,02,2,3),

STTEN Ty e

o - [SR — g e s 8 gl ER——— - T e P v el ¥ el s mea b Laed L B e T, el
T T— — - . e ol s e mea b i o - T i g

ELEMENTS 80

p3 = {el,el,e2,e3}, and p4 = {el,02,e3,63}. The operation f corresponds to the state .
transition {el,el,e2} - {el,e2,e3} but it doesn’t need to check e2, g corresponds to
{el,e2,e2} - {e1,02,63} but doesn’t need to check el, and h corresponds to

{e3,e3} - {el,e2}. ' . |

An alternate simplification can also be made to the implementation of a boolean
element resource. The state can be represented with a string of bits. Each zero bit
means that the corresponding element is present and a one means that it isn’t. To
check. for a group of elements a mask is used. Every one in the mask indicates an |
element which is needed. If the result of performing an AND operation between the
mask nd the state is zero, then the state transition has succeeded. To remove the
appropriate elements from the state, the bit string is ORed with the mask. To add
elements to the state, another mask with a zero for each elemant being added and a |

one for the rest of the elements is used. This mask is ANDed to the current stcte bit

string.

Since the implementation of a boolean glement resource involves a fairly small
amount of overhead, it would be reasonable to restrict a programming system to such
resources. To help make such a restriction, a notation which corresponds to this class)

of synchronization is desirable.

Dafinition: A multiple rogular expression is a set of regular expressions. It is ‘i
restricted if every member of the set is restricted.

A multiple regular expression is interpreted such that the synchronization expressed j

by each of the member expressions must be satisfied. ,:

Example 4.10: The restricted multiple regular expression {(Hg+h)*(g M)

ELEMENTS 81

means that execution of f must alternate with the execution of g or h and
that execution of g and h must alternate. This is the same synchronization
as that expressed by the regular expression (f g f h)*,
It will now be shown that the restricted multiple regular expressions correspond
exactly to the boolean element resources.
Theorem 8.11: A resource is boolean element iff the synchronization on it can
be expressed with a restricted multiple regular expression.
Proof: If a resource is boolean element, then for every element e “reate
a new element e’ and inc ude e’ in every state which doesn’t contain e.
The state transitions must be changed so that if e is removed but not
added then e’ must be added and if e is added but not removed, then e’
must be removed. A restricted regular expression'will be created for
every pair of elements e and e’. Assume that operations fl"'-'fi remove e
and add e’, operations fi+1,...,fj remove e’ and add e, operations fj+l'"-'fk
remove and add e, and the rest of the operations neither remove nor add

e and e’ If e is in the initial state, then the regular expression can be

writiun as (fj“+...+fk+((f1+...+fi)(fi+1+...fj)))’t and if e’ is in the initial state,
then the regular expression can be written as
((fi+1+...+fj,\(fj+1+...+fk)*(f1+...+fi))‘. It a resource can be expressed as a

restricted multiple regular expression, then it forms a set of simple serial

resources. Assume that the states of each of these resources are disjoint

and use them as the elements of the complete synchronization
relationships. The initial state is composed of the elements representing

the initial states of the various simple serial resources. Since each of

O T e o EONENENL.. | VoW L e TR T R R R N S ey, —_— e SR W SRR

ELEMENTS 82

these resources can only be in one state at a time, the multiplicity of each
element Is hoind by one, Each operation removes the e«lements
corresponding to the states at which it could be applied and adds the
elements corresponding to the states which could result from its execution
in the various simple serial resources. Since there is only one state at

which it can be applied in each such resource, it must be single transition,

The restricted multiple regular sxpression {(f h)*(g h)*(f+g)*} can be used to express
the synchronization ¢ the resource in example 4.1. The expression In evample 4.10
corresponds to states pl = {al,a2}, p2 = {b1,a2}, p3 = {al,b2}, and p4 = {b1,b2} and
state transitions {al} - {?l} associated witn f, {bl1,a2} - {al,b2} associated with g, and

{b1,b2} » {al;a2} associated with h.

While restricted multiple regular expressions can be used to express the
synchronizations for the boolean element resources, trying to understand several
expressions simultaneously is harder than understanding a single expression. In
particular, it is easier to include deadlock sltuations. An example is {(f g)*(g £)*}. No
process will ever be allowed to execute either an f or a g. In order to help prevent
such situations from occurring, a compiler for a language which allows synchronization
to be expressed using multiple regular expressions would need tu create the states
and successor function. States at which no operation can be applied and the
auxiliaries of each persistent set then can be found. If there 1s no state in any of the
subexpressions at which no operation can be applied but there Is one for the resulting
synchronizz ‘on reletionships, then a warning should be given. Likewise, If for every
expression that some operation is in it is an suxiliary of every persistent set, then It

should be in every persistent set of the resull.

g, T r— LA TR TRy mm—————_ 0 e e b R L o L)
= wrm——— B g T L e = = N

CHAPTER V

CONCURRENT RESOURCES

When several processes can operate on a shared resource in parallel, usually
each process may be considered to be operating on a ditferent part of the resource,
each with its own set of operations and synchronization relationships. For example,
consider a ring of buffers which st veral processes may access simultaneously. Each
buffer in the ring may be thought of as a unigue resource which may cnly be accessed
by one process at a time with the operations insert and remove alternating. However,
sometimes it isn’t possible to consider a resource which can be operated on in parallel
as being composed of several independent parts.

Example 5.1: While a disk transfer is occurring, the procese which controls the

disk can be selecting the next transter. Ths new requast may not be

passed to the disk, though, until both the disk has finistzd its transfer and

the selection is completed.

In actual practice, the disk transfer resource will be more complex. A delay operation
which is part of a clock resource will be used to insure that a selection isn’t ‘made until

the transfer has almo:: completed. The selection operation first calls this operation

before it makes the selection,

Another example occurs when several processes are allowed to read or copy a
file simultaneously. However, reading and copying are r~t allowed while the file is

being written.

Definition: A comcurrent resourco is a shared resource on which It is possible
for more than one process to operate at a time.

I I T ey T - TR L VOR e PRI N T mnem——

CONCURRENT RESOURCES 84

The final synchronization to be studied is that of concurrent resources.

PROLOGUES AND EPILOGUES

So far, an operation has been viewed as a group of state transitions only one of
which is used each time it is executed. This was scceptable since the resource state
couldn’t be changed during the execution of the operation by another process starting
or completing execution. Therefore, the éxecution of an operation could be viewed as
being instantaneous. When processes can operate on a resource in parallel, though,

this is no longer true. In this case, the start and end of an operation must be treated

as sepa ate state transitions.

It is possible to handle concurrent resources within the mode aveloped for
serial resources by introHucing for each operation which mﬁst be synchronized a pair
of null operations which have no effect on the resource. One of the null operations
will be called before execution of the operation and the other will be called after
execution. The synchronization is ther expressed in terms ¢* the null operations which

must be used serially.

Dafinition: The prologue of an operation f defined on a concurrent resource is
a null operation which must be called by f at the start of its execution..
The epilogue of f is a null operation which must be called by f at the end
of its execution. A periloguas is either a prologue or an epilogue.
Since the perilogues must be used serislly, corollary 25 shows that the

synchronizaiion for a finite state concurrent rasource can be expressed as @ regular

expression of the perilogues.

e o A i B

CONCURRENT RESOURCES 85

A process must wait to execute an operation until its prologue can be applied at
the current state of the resource. The state change associated with the prologue is
then made without entering a nuil stete. This can be done since the prologue has no
code and may be thought of as executing instantancously If elements are used, this
means that a state transition removes and adds the appropriate elements
simultaneously without entering some intermediate stato. When the oneration finishes
execution, some state change corresponding to the epilogue must be made. Once

again, this state change can be made instantaneously.

While the prologue of a» operation may block until the resource enters a state
at which it may be applied, it should always be the case that an epilogue will be.able
to be applied immediately upon completion of the corresponding operation. When the
epilogue is attempted, the operation has already made all of its accesses to the
resource and reliability can’t be improvgd by a delay at this point. Tl -=refore, the
epilogue must be able to be applied at every state which can result from the prologue
in case no other operation starts or stops during execution of the oparation. In
general, if an epilogue can be applied at a state p and some other perilogue can elso
be applied at p with the result being state g, then the epilogue musi be able to be

applied at a.

In the implementation of concurrent resourcesl, the waiting lists must be checked
more often than they were in the implementation of serial resources. When a process
is allowed to execute an operation, it causes a state change to take place. Therefore,
some of the processes which are blocked and on a waiting list may now be able to

execute. A check of the waiting processes must be made. This procedure continues

-

>

CONCURRENT RESOURCES 86

untll none can go. Thus, the waiting lists must be checked whenever an opseration

starts and whenever it finishes, twice as often as for a serial resource.

Using prologues and epilogues, concurrent resources may be imptemented using
the method described in chapter Il based on the successor function. However, even
simple resources will have a complicated implemantation. On the ather hand, some of
thase resources will turn out to be boolean slement and can be implemented simply
using the method described in chapter IV.

Example 5.2: Consider a modification to example 4.1 which allows operations f
and g to be executed in parallel. There are now ten states with S(p1,f) =

P2, S(P1,gp) = P3, S(p2,t,) = ph, S(p2,g,) = S(P3,f,) = p5, S(p3,ge) = P,

S(pd,gp) = S(pSf)= p7 S(pS.gg) = S(pr) = p8 S(p7,8¢) = Sp8tg) =
p9, S(p9h)= plO and S(p10,h,) =pl.

The notation f and t, is used to respectively indicate the prologue and
epilogue of operation f. Using elements, the states become: '

pl = {al,a2} p2 = {cl,a2} _ pd = {bl,a2)}

p3 = {al,c2} p5 = {cl,c2)} p7 = {bl,c2}

p6 = {al,b2} p8 = {c1,b2} p9 .= {b1,b2}
p10 = {e}

and the prologues and epilogues become:

f.: {al} = {cl1} 8 {82} - {c2} h,.: {bl,b2} -+ {e}
fo: fc1} = {b1} Re: {c2} - {b2} he: fe] - {al,02}

L
1
|
1
‘g

CONCURRENT RESOURCES 87

Each of the perilogues fp, far Bp» and g, may be apptied at three states and none is
projective. Thus, when an operation is called, three states must be compared with the
initial state. When it finishes, this comparison must be done again to determine the
resulting state. On the other hand, the resource is boolean element and each perilogue

is only associated with one state transition.

This example is essentially the same as example 5.1. The operation to sglect the
next disk transfer corres‘ponds to f, the disk transfer itself corresponds to g, and the
issuing of the transfer command corresponds to h. The initial state for this example
must be p6 which allows a command to be selected but requires that the command be

passed to the disk before a transfer starts.

Another example of a synchronization problem involving a concurrent resource
which is boolean element but is complicated when described using states and the

successor function is the famous “Five Dining Philosophers" problem [D68]

Example 5,.3: The states of the "Five Dining Fhilosopher" prohlem are qO which
corresponds to no philosopher eating, ql, g2, a3, g4, and g5
corresponding respectively to just pl eating, just p2 eating, just p3
eating, just p4 eating, and just p5 eating, and q13, ql4, 24, 025, and q35
corresponding respectively to pl and p3 eating, pl and pé eating, p2 end
p4 eating, p2 and p5 eating, and p3 and p5 eating. In the following
diagram, going along an arc in the direction of the arrow is the prologue
of the operation and going in the opposite directior. is the epilug e rt the
operation.

o

L
N et S

oy, YRR, TR S -

CONCURRENT RESOURCES | g8

—»g2 e
N
qf qd

_—5 1
' ~p2 S
qz5 qld

*\gr’”“’ T\:] .

P __——aq3 — pl v
q35<‘"—'_' ' B, ||

This resource can be shown to be shown to ba boolsan element by
assigning elements to states as follows:

q0 = {e0,el,e2,03,e4) ql = {e5,e2,03,04) Qb = {el,02,63,09}

3 ={e0ele7ed)} ql13 = {e5,07,e4} q35 = {el,e7,09}
q84 = {e0,el,62,28) ql4 = {5,028} q25 = {e6,63,89}
q2 = {e0,e6,e3,24) q24 = {e0,e6,e8)

and by using the following prologues and epilogues:

1. :{e0el} ~ {85} p2p: {el,e2) = {eb} p3p: {e2,03} » {87}
p4p: {e3,ed) > {e8) p5p: {e0,04) -+ {e9)

Each epilogue f, is the reverse of the prologue fp.

Once again, none of the periloguas is projective, but a simple implementation is

possible based on the elements.

For shared resources, a process might call any of the operations at any time.
Thus, the resource can pe in any of its states When an attempt is made to use an
operation if the resource is serial or te use a prololgue if the resource is concurrent.
However, there are some states at which epilogues won’t be attempted. These states
correspoﬁd to the times when no process is executing the operatiyn associated with
them. Since there will never be an attempt to use them, no harm can be caused by

defining a resulting state if they were used, Because of this fact, changes can be

P LT e p———

gy s

CONCURRENT RESOURCES 89

made to the algorithm in chapter Il which tinds equivalent states and to the algorithm

In chapter IV which converts states into multisets of elemtnts.

When finding equivalent states, initially the stales were divided into sets of
similar states, When perilogues are used, this division should only be based on the
prologues which may bo applied. This is the same as allowing each epilogue to be
applied at every state. When determining if two states within a set are related, any
epilogue which is vndefined at one of these states may be disregarded. Qf course, this
means that the relationship is no longer Irensitive. For example, if states pl, p2, and
p3 are in set S1 and the epilogue for operation f is undefined at pl, takes p2 into set
S2, and takes p3 into set S3, then pl may be related to both p2 and p3 but p2 and p3
aren’t related. When St is divided, p! will be put in both of the new sets S4 and S5
containing p2 and p3 respectivety. Now if some perilogue g takes a state p4 into pl,
then p4 can be related to states which g takes into either 54 c;r S5. When this
procedure is completed, a perilogue takes a set of states into each set into which it
takes all of its member states. If it is an epilogue which is undefined for each state in
the set, then it is undefined for the set. If thers is a set of states T such that
whenever a perilogue can result in T it also results in some other set, then T can be
deleted. If a perilogue still takes a set into more than one resulting set, one of these

resulting states is chosen.

When converting states into elements, it isn't important that the intersection of
the states at which the epilogue of an operation may be applied not be contained in
any other state. There is no problem if an epilogue can be applied at any of the other
states. Thus, this check is only necessary for the prologues. A check still must be

made to make sure that two states don’t become equal.

90

CONCURRENT RESJURCES

FEQUIRE AND RELEASE TRANSITIONS

While it was required that the epilogue must be able to be applied immediately

upon completion of execution of an operation, it may be associated with more than one

state transition. Thus, several may have to be tried before one is found that can be
used. I¢ the state transition used for the epilogue is unigue given the one used for the

prologue, then no search is necessary. In that case, all of the eiements removed by

this state transition must be included in every state in which the resource can be

during the execution of the operation.

Dafinition: An eprlogue is unique terminator it the ctate transition sssocisted
with it which is used at the end of execution of the corrasponding
operation is uniguely determined by the state transition which was used
at the start of execution.

The epilogues for each operation in examples 5.2 and 5.3 may be seen to have ony

one final transition and therefore they trivially must be unique terminator.

For a state transition U=V, és explained in chapter IV there are two reasons
why an element might be in both U and V. The first is that it prevents several state
transitions from being used in paraial, With concurrent resources, however, each
state transition may be considered to be instantaneous and nothing else can happen
while one is being used. The second reason is that this elamont is removed to prevent
the state transition from being used at some state where it shouldn’t be. If the state
transition is associated with a unique terminator ep/logue, though, it should be able to

be used at any state at which it'is attempted. Thus, if a state transition U=V is

associated with a unique terminator epilogue, then U and V will be considered to be

disjoint.

. oy T Ty T gy e L e 7
¢ %,] 4 7 v S e Bl o ik A e s S

CONCURRENT RESOURCES 91 =

It an operation f has a unique terminator epilogue fe and there is some element
e such that only state transitions associated with t, remove e, then é isn’t needed.
This can easily be seen since the presence or absence of e has no effect on whether a
state transition associated with any other perilogue can be used at a state and it can
only allow the state transitions associated with f, to be used at more states than
before. In example 5.2, cl, ¢2, and e can be deleted. In example 5.3, elements eb, eb,

e7, e8, and 89 can be deleted.

It may now be observed that a state transition might not remove any elements
or it might not add any elements.
Dafinition: A require transition is a state transition in which a set of elements is

replaced by the empty set. A roleasa transition is a state transition in
which the empty set of elements is replaced by a set of elements.

A release transition may be used at every state. If one is associated with a prologue,
then by theorem 4.4 there must be an infinite number of states. In examples 5.2 and
5.3, after each element is deleted which can be, every state transition associated with

a prologue is a require transition and every one associated with an epilogue is a

release transition.

A simplification to the implementation can be made when a require transition is
used. 1f it is associated with a prologue and it was successfully used when the

operation was called or else it is associated with an epilogue, then ncne of the waiting

processes could execute batore this transition so certainly none car. wrzcua after it
and they don’t need to be checked. 1f it is associated with the prologue of some

operation called by a process which was blocked by the call, then any waiting lists

AL

CONCURRENT RESOURCES 92

which have been checked during the current search and failed will still fail and

therefore don’t need to be checked again.

The following results help determine if it is possible for a state transition to be
either a require or a release transition.
Theorem 5.8: 1f t:V » {} is a require transition which can be used at a state p,

then any state transition t* which can be used at the resulting state p-V

can also be used at p and t” commutes with t.

Proof: Let U= p-V. Let the state which results from using t*> at U be q.

Thus, using t* at p = U+V results in state q+V. Using t at this state must

result in q.

Thus, if a require transition is associated with a prologue then every perilogue which
can be used immediately after it is, except possibly the epilogue for that operation,
must also be able to be used before it. Furthermore, they must commute. A similar
result can also be shown for release transitions.
Theorem 55: If t:{} » V is a release transition which is used at a state p and t’

can also be used at p with the result being state q, then t and t* commute.

Proof: The result of using t at p must be p+V, but since " can be used at

p, wbirh is a substate of the new state, it can also be used there with the

result being gq+V. Using t at q also produces q+V.

Thus, if a release transition is associated with an epilogue, ihen every perilogue which

can be used at some state where it can must commute with it.

Sl e s i ey L L R AL o W p—— i w—
'y i S el i o i ol LR e R o - L e e T s -

CONCURRENT RESOURCES 33
MULTIPLE REGULAR EXPRESSIONS

If an operation is such that each state transition associated with its prologue is
a require transition and each state transition associated with its epilogue is unigque
terminator and a release transition, then a set of elements is removed from the state
of the resource at the start of execution and another set of elements is added at the
completion. In this manner, each require transition associated with the prologue and
the release transition of the epilogue which it uniquely determines may be united to
form a state transition which may be associated with the operation itself like the state
transitions whi.h were used for serial resources.
Dafinition: An operation defined on a concurrent resource is united transitional
if every state transition associated with its prologue is a require
transition, the epilogue is unique terminator, and each state transition
associated with the epilogue is a release transition. A concurrent
resource is united transisional if every operation defined on it is.
United transitional resources have the advantage that the synchronization can be
expressed in terms of the operations without concerning the programmer with

prologues and epilogues. Thz concurrent resources of examples 5.2 and 5.3 are united

transitional.

If a resource is united transitional, then the classitications described in
chapter IV may be used. For instance, the resources of examples 5.2 and 5.3 are
single transition since they are united transitional and the prologue of each operation
is only associated with one state transition. In addition, every element in each of
these resources has a multiplicity bounded by one. Thus, they are both boolean

element. By theorem 4.11, the synchronization for the resources in these examples

i s e e i B s et Rt ain s sotinas 2o A a i Lo i

R e i

CONCURRENT RESOURCES 94

may therefore be expressed using restricted multiple regular expressions. The
expression for example 5.2 is {(f h)*(g h)*} and the expression for example 53 is

{(p1+4p2)*(p2+p3)* (p3+pa)* (p4+p5)* (p1+p5)*).

It may be sean by the above discussion that multiple regular expressions may
be used to express the synchronization for some concurrent resources. It would be
useful to know for exactly what class of synchronization they can be used. First,
though, it is necessary |2 define what is meant by two perilogues being parallel at a

L]

state.

Definition: Two perilogues are parallel at a state p if they both may be applied
there and they commute.

It is also necessary to introduce what is meant by two perilogues being sequential.

Dafinition: Perilogues f and g are sequential if any of the following are true.

1. There is a state where both f and g may be applied but at which they
aren’t parallel.

2. There are states p and q such that f.takes p into q and g can be
applied at g but not at p.

3. There is no state at which f and g are parallel.

It should be noted that a state was part of the definitiun of paralle! perilogues but
none was part of the definition of sequential perilogues. If there are states p and q at
which perilogues f and g may both be applied, then it is possible that f and g commute

at p but don’t at q. Thus, they are parallel at p but are also sequential.

A natural restriction is to require that if two perilogues are parallel at some
state then they aren’t sequential. Parallelism may then be thought of as a symmetric

relation,

CONCURRENT RESOURCES o5
Definition: A concurrent resource Is relationally parallel if each of the
following hold.
1. The prologue of each operation is parallel at each state p where 1l
may be applied with every other perilogue which may be applied at
the resulting state p’ except for its epilogue.
2. The epilogue of each operation is parallel at each state p where it
may be applied with every other perilogue which may be applled at
p.
3. Sequential perilogues aren’t parallel af. any state.
4 The prologue and the epilogue of an operation can’t both be applied
at any state,
Conditions 1 and 2 basically insure that a relationally parallel resource must be united
transitional. A proof that this is really true will \e shown below. Condition 3is
explained above. Condition 4 requires that no tw. processes may simuitaneously
execute an operation. This may be seen from the following lemma.
Lemma 5.6: 1f a resource is relationally parallel then for each operation f the
use of its prologue and its epilogue must alternate.
Proof: The prologue must be used before the epilogue. If the prologue
fp may be used at state p with the result being state q and
(a.8)-(apn-1:8n) is an arc progression such that (Vi, 1si<n) g; ¥ tq, then

(Vi, 1gi<n) {4 can be applied at q; and therefore fp can’f be. Also, fp can't

be applied at a. Thus, (Vi, 1<i<n) g; ¥ fp.

It is now possible to show that there are some finite cte.e concurrent resources
for which the synchronization can’t be expressed using a multiple regular express:n
Theoram 5.7: Every concurrent resource for which the synchronization can be

expressed using a multiple regular expression is both united transitional
and relationally parallel.

CONCURRENT RESOURCES

Proof: A multiple regular expression may be implemented by converting
each of the membur expressions into a finite automaton, each with a
disjoint set of states. The resource state will be represented by one
state from each of these automata. When an operation starts axecuting,
each of the automata corresponding to expressions In which it occurs must
be In a state at which the operation may be applied. Tue states of these
automata are set to the null state until the operation finishes and then are
each set to new states based on the starting states. Thus, it may be seen
that every state transition associated with the prologue is a require
transition, each associated with the epilogue is & release transition, and
the epilogue is unique terminator. Thus, the resource is united transitional
and by theorems 5.4 and 5% conditions 1 and 2 of the definition of
relationally parallel hold. If periloguas for two operations are parallel at
some state, then both operations may be able to execute concurrently and
they can't both be included in the same expression. If the prologues for
both operations may both be applied at the came state and they aren't
parallel, then by theorem 5.4 neither prologue may immediately follow the
other. Thus, they must compete for the state of one of the sutcmata
which can’t be true since they aren’t in the same exprassions. Condition
4 holds since the epilogue of an operation can only be applied when each
of the appropriate automata are in the null state and the‘prologue can't

be applied then,

96

BT T T < o e himer et ot L s Bt P s imlir e e
-

i
]
1
*4
|

CONCURRENT RESQURCES 97

PROCEDURES

It is sometimes necessary that several operations defined on a resource perform
the same suboperaiion. For example, if there are operations defined on a stack to pop
the top element off and another to return the top element but to leave it on the stack,
both operations must first test to see that the stack isn’t empty. It is standard

programming practice to use a procedure for this purpose.

For a serial resource, no two operations may execute simultaneously so there
can be at most one call on {he procedure in progress at any given time. Any other
synchronization of the procedure must also be contained in the synchronization of the
calling operations. This is because the procedure itself can't be included as an
operation in the synchronization of the resource. Otherwise, since the calling
operation is executing, the call will cause the procedure to block. The result is a

deadioch.

An alternative method which can be used for serial resources which allows
procedures to be synchronized is to define the operations as sequences of procedures.
For example, if an operation f uses a procedure g, it might be writien as f = sf;g;ff
where sf and ff are also procedures and can be included in the synchronization of the

resource along with g.

For a concurrent resource it may be possible for two cperations to
simultaneously call a procedure. If only one invocation of the procedure can be
allowed at a time, it must be included in the synchronization for the resource. In this

case, it must be possible for both the calling operation and the procedure to be

P T T R T T P T e —

CONCURRENT RESOURCES 98

executed at the same time. This will only be true if there is a composed state
transition from each state which can result from the prologue of a calling operation to
a state at which the procedure can be applied. Also, these composed state transitions
shouldn’t contain the final transition of the calling operation. 1f this condition doesn’t
hold, it will be possible for a calling operltic;n to start and become deadiocked when

the procedure is called.

When an operation calls a procedure which is synchronized, it is possible to
drop the restriction discussed earlier that the final transition of an operation can be
applied at every state which can occur during the execution of the operation. In this
case, the restriction only needs to be enforced for all of the states which the resource
can be in after the last such procedure has been executed since the operation can't

complete until this occurs,

i e e e Bbbes et ol s R i bl e PR B N S Y s gy gy WL Vm——

R B — e, —— — o ey g (e e TR TR e i S I i W JELE, g ¥ i 207 ~ D e 1“ S 1y » R T

CHAPTER VI

CONCLUSION

In this research, the problem of synchronizing operations defined on a shared
resource was studied. The approach was to express the sequences of operations
which are allowed on the resource by creating synchronization relationships consisting
of a group of states and a successor function. An alternative model wa.s also given in
which states were represented as multiset; of elements and the state changes caused

by the execution of an operation were expressad as state transitions.

A series of restrictions to this model was presented to isolate classes of
synchronization due to implementation or rotation. The first restricticn was that only
those resources for which the synchronization could be expressed using a finite
number of states was studied. The next restriction was to require that the successor
function be injective with respect to eac! operation. Another class, called single
transition, was shown to be a subclass of the injective resources. A further restriction
of the single transition resources produced the boolean element resources. A subclass
of the boolean element resources was formed by requiring that the successor function
be projective with respect to each operation. These resources weie called simple
serial. The final restriction was to disallow Z expressions from the initial state to any
persistent set entry state. This leads to the restricted regular expressions described

in chapter 1.

An open question which was left unanswered was the characterization of the

" N L A W T R ——— T T T 1, oavem e
v il s ™ o i e e ity U TR R ol L L e L el e m o
. r -4 e e AT et e i e ke s _ilone o e o o e

CONCLUSION 100 g

single transition resvurces in terms of restrictions on the successor function. These
resources were shown to be injective and severel other properties were shown to
hold. However, these restrictions aren't sufficient. The problem is that the réstriction
is dependent on the sequences in which an operation can occur rather than just on the

states at which it may be used.

An extension was meade to this model to ellow concurrent resources to be
handled. It was shown that synchronization couldn’t be e'xpressed as sequences of the
operations but that prologues and epilogues were needed. Three different ieveis of
systems were looked at. The first restricts the model to only a finite number ot states.
The next allows only relationally parallel resources. The final restrl_ction also requires

that the resource be boolean element,

The method which can be used to implement synchronization weas shown to be
increasingly simple as the model was restricted. Implementations were given for all
finite state resources, the single transition resources, boolean element resources, and
simple serial resources. The overhead required to decide if an operation con'd start
execution was discussed. The differences between one waiting list and several in
relation to the difficulty of a search when an operation completes execution was also

shown.

The problem of deadlocks was briefly discussed when it was shown that every
permanent operation must be an auxiliary of every persistent set. However, this won't
prevent deadlocks from occurring. They are also dependent on the sequences of calls
made by each process. Consider, for example, two resources with synchronization

specified by the restricted regular expressions (e /)* and (g h)* respectively. Assume

P T I S T TR T TSIy e . E—

T PV S ¥ W U [F L eg— g

e e sl S ikl ikl

U, i AR S =

CONCLUSION 101

that these resources are used by two processes, one ot which calls t and then g and
the other which calls h and then e. A deadlock will result. In general, the solution to
this problem isn™ computable. Even it the processes are restricted such that it is
decidable whether or not a deadlock will occur, it would involve checking the code ot

each process which uses some shared resource.

One of the reasons for this study was to provide a means with which various
methods of synchronization could be classified. It was shown that the class of
resources which can be synchronized by using boolean semaphores such that at most
one may be positive at a time and requiring that an operation do a P on one betore it
starts and a V on one when it completes corresponds to the simple serial resources.
Allowing P-V multiple but still allowing only boolean semaphores corresponds to the
boolean element resources. Finally, combining P-V multiple and P-V chunk such thet an
operation may start by decrementing several semaphores by values which may be
greater than one but req.iring that the semaphores be bounded corresponds to the

single transition operations.

Various forms of regular expressions were also looked at. Restricted regular
expressions were shown to correspond to the simple serial resources without Z
expressions, restricted multiple regular expressions were shown to correspond to the
boolean element resources, regular expressions themselves were shown to correspond
to the finite state resources, and multiple regular expressions were shown to be a

subset of the relationally parallel resources.

A possibility tor turther work is to study other modifications to regular

expressions. This would involve discovering the necessary restrictions to the model

el e L R i b B

M | T Epe—

A —

CONCLUSION 102

and then proving that the new form of regular expression and the restriction
represent the same synchronization. One possibility is the paralle! regular expression
which allows the notation R//R’ where R and R’ are regular exprassions. The meaning
is that a sequence of operations allowed t;y R and a sequence of operatlons allowed
by R' can be executed concurrently. The advantage over multiple regular expressions
is that all of the synchronization is contzined in one expression and not spread across
several, thus improving understandability. There is also a disadventage in that some
synchronization which can be expressed using restricted multiple vegular expressions
can't be expressed using parallel regular expressions. For example, consider
{(a c)*(a d)¥ b c)*}. Initially, a and b can be executed simultaneously. After they have
each finished, c can be executed and then a and b again. This can be expressed with
((a//b))*. It isn’t possible to add d to this expression sq that it follows a and
executes in parallel with b and c It might also be desirable to restrict these
expressions In some manner similar to restricted regular expressions In order to

simplify the implementation.

Another way in which regular expressions ;ould be altered would be to allow
parameters in some manner. For example, the size of a stack influences the number of
states needed to synchronize the operations PUSH and POP and therefore it affects
the regular expression used. When a type STACK is defined, it shouldn’t be restricted
to a specific size. This* decision should be postponed until a specific instance ls
declared. One suggastion'[Ha75] s to sllow the notation (t-g)". This is similar to the
notation f+g except that the number of times that f has been executed at any glven
time minus the number of times that g has executed must be neither negative nor
greater than n. Thus, the synchronization for the stack can be expressed using the

expression ((PUSH-POPYM*.

COMCLUSION 103

Another extension of the work described here is to allow an infinite number of
states. Considering each state and listing the values for the successor function for
such a resource is impossible. However, using elements to construct states and
associating operations with state transitions yields a possible solutior. *2 this problem.
It weuld still be necessary to restrict the resources such that there are only a finite
number of elements and each operation can only be associated with a finite number of
state transitions. This is a reasonable restriction since most infinite state resources,
such as an unbounded stack, are usually implemented using an unbounded counter or

semaphore which is then replaced by an element in the model.

The use of moditied regular" expressions in a resource definition to describe
synchronizatidn is an attempt to make this synchronization more understandable and
the resource more reliable. Hopefully, a high level programming |anguége containing
some form of regular expressions, which was selected based on this study, will be
developed. This research could then be considered to have made a small contribution

to the area of reliable sottware.

o b b i | s BT T 1 T, 1 I W T L T T 0 T T T T il

[AU72]

[B74])

[BH72]

[CHa74]

[CHP71]

(D68]

[F75]

(Ha72]

[Ha75]

[Ho74)

[HU69]

[K69])

(L73]

(P71}

BIBLIOGRAPHY

Aho, A. V. and J. D. Ullman, The Theory of Parsing, Translation, and Compiling,
Vo! 1: Parsing, Prentice-Hall, Inc, Englewood Clitfs, NJ, 1972.

Bekkers, Y., "A Comparison of Two High Level Synchronizing Concepts,"
Queen’s University of Belfast Report, 1974

Brinch Hansen, P., "Structured Multiprogramming,” CACM 15,7 (July 1972),
pp. 574-578.

Campbell, R. H. and A N Hatermann, "The Specification of Frocess
Synchronization by Math Expressions,” International Symposium on
Operating Systems Theory and Practice, IRIA, Paris, April 1974,
pp. 93-106.

Courtois, P. J, F. Heymans, D. L. Parnas, "Concurrent Control with "Readers"
and erters“ " CACM 14,10 (Oct 1971), pp. 667-668.

Dijkstra, E. W., "Cooperating Sequential Processes," Programming Languages,
F. Genuys, Ed., Academic Press, New York, 1968, pp. 43-112,

Flon, L, "Program Design with Abstract Data Types," Carnegie-Mellon
University Report, Juns, 1975. .

Habermann, A. N, "Synchronization of Communicating Processes," CACM 15,3
(March 1972), pp. 171-176.

Habermann, A. N, "On the Timing Restrictions of Concurrent Processes,”
Fourth Texas Conference on Computing Systems, Austin, TX, 1975.

Hoare, C. A. R, "Monitors: An Operating System Concept," CACM 17,10 (Oct
1974), pp. 549-557.

Hopcroft, J. E. and J D. Ullman, Formal Languages and Their Relation to
Automata, Addison-Wesley Publishing Co, Reading, MA, 1969.

Knuth, D. E, The Art of Computer Programming, Vol 2: Seminumerical
Algorithms, Addison-VJesley Publishing Co, Reading, MA, 1969,

Lipton, R. J, "On Synchronization Primitive Systems PhD. Thesis,
Carnegie-Mellon University, June 1973.

Patil, S. S., "Limitations and Capabilities of Dijkstra’s Semaphore Primitives
for Coordmahon among Processes,” Project MAC, Computational
Structures Group Memo 57, Feb 1971,

BIBLIOGRAPHY 105

[PKT73] Peterson, W. W., T. Kasami, and N. Tokura, "On Capabilities of While, Repeat,
and Exit Statements," CACM 16,8 (Aug 1973) pp. 503-512.

[VL72] Vantilborgh, H. and A. van Lamsweerde, “On an Extension of Dijkstra’s
Semaphore Primitives,” Information Processing Letters 1 (1972),
pp. 181-186.

(W72] Wodon, P., "Stifl Another Tool for Synchronizing Cooperating Processes,”
Carnegie-Mellon University Report, Aug 1972.

APPENDIX

This appendix contains proofs of theorems from chapter lil.

Thaoram 3.1: For a restricted regular expression R with the corresponding
finite automaton (K,XZ,8,p,F) the following properties are true.

Proporty 3.1.1: Either R is final loop or (Vq ¢ F) (Y € Z) 8(q,f) is dead.
Proporty 3.1.2: (¥t € T) (Vq,a’ € K) either 8(q,f) or §(q’,t) is dead.
Proporty 3.1.3: (3t € T) 8(p,f) isn’t a dead state.

Proporty 3.1.8: Either R is initial loop or (Yq € K) (Vf € T) 8(q,f) ¥ p and
pisn’tinF,

Praoporty 3.1.5: If R is simple (not selection) final loop, then there is
only one statq in F.

Furthermore, let (K,2,5,p,F) be the finite automaton corresponding to R and
(K280 F") correspond to R Then (K—F,E,Gl,p,{p}) corresponds to R,
either ((K-F)uK’ZuZ'6o,p,F") corrasponds to RR' or there is only one state
p"€¢F and (KU(K’-{p’}),EUI',GQ,p,F’) corresponds ta RR, and
(Ku(K-{p'}),ZUZ",8 4,0,FUF’) corrasponds to R+R' where

8i(qf) =p it 8(qf) ¢ F
= §(q,f) otherwise (Yq ¢ (K-F))
8x(af) =p’ it 8(qf) € F
= §(q,f) otherwise (Yq ¢ (K-F)) (V¢ € T)
= §'(q,f) (Vq € K') (Yf € 2)
83(‘)";“ = 5‘(9’;” (VF ¢)
83(af) = b(q)t) (Vq € K) (Vf € Z)
= §’(q,f) (Vg ¢ (K-{p'})) (Yf €)
85(p,f) = 8(p’f) (Ve
alat) = b(q,f) (Yq € K) (Yt ¢ T)
= §'(q,t) (Vg € (K'-{p’}) (Yt € F")

Any arguments far which 85, 83, or 4 are undefined are dead.

APPENDIX 107

Lemma 3.16: 1f R* is a restricted regular expression such that R and the
corresponding finite automaton (K.Z,8,p,F) satisfy properties 3.1.1 to 3.1.4
then the finite automaton corresponding to R* is (K-F,2,5"p,{p})) where

§'qf) =~p it 8(a,t) € F
= §(q,f) otharwise (Yq € (K-F))

and properties 3.1.1 to 3.1.5 are satistied.

Proof: By the definition of a restricted regular expression, R is neither
initial nor final loop. Thus, by property 3.1.1 (Yq ¢ F) (¥f € T) 8(a)f) is
dead and by property 3.1.4 p isn't in F. As shown in chapter 111, (Yq € F)
(Vf ¢ T) 8'(a,f) = {8(p,N,5(a,f)}. But 8(q,f) is a dead state and entering such
a state will never result in acceptance of the string. Therefore, 8'(a\f) =
8(p,f) and q and p’ ars equivalent and since both p’ and q are final states,
they can be combined, leaving p’ s the on'y final state. Since R isn’t
initial loop, by property 3.1.8 (Yq € K) (¥t ¢ Z) 8(q,f) # p. Thus, p can be
deleted and p’ renamed to be p. Properties 3.1.1 and 3.1.4 are true for
R* since it is both initial and final loop. Property 3.1.2 is true since
(Vf € T) if (3q ¢ K-F) 8laf) € F then (Vq' ¢ q) 8%(q'f) = B(q',h) is dead.
Otherwise (Yq,q’ € K-F) either §%g,f) = 8(a,f) or §(q'f) = 8(qt) is dead.
Since property 3.1.3 is _true for R (3f ¢ £) 8(p,f) isn’t a dead state. Either
8'(p,f) = p or §'(p,1) = b(p,f), so §%p,f) isn’t dead and property 3.1.3 is true
for R*. Property 3.1.5 is trivially true since p is the only fin;l state.
Lemma 3.1.7: Let RR’ be a restricted regular expression s‘uch that R and the
corresponding finite automaton (KI8pF) and R* and its corresponding
finite automaton (K,Z’8°p"F’) satisfy properties 3.1.1 to 3.1.5. Let M be

the finite automaton corresponding to RR’. If R is final loop, then M =
(Ku(K>~-{p’}),ZuZ’$"p,F") and F = {p"} where

APPENDIX 108

§"(p") = 8(p\f) (vt e 2
§"(qf) = &(qf) (Yq € K) (V€ 3)
= §'(q,f) (Yq ¢ (K'~{p'})) (¥t € ")

and 8"(q,) is a dead state for all other (q(f) pairs. Otherwise, M =
((K-F)uK",ZuZ’'$"p,F') where

t'qf) =p’ if 8(q,f) € F
= §(a,f) otherwise (Vq ¢ (K-F)) (Yf ¢ &)
= §%a,f) (Vg ¢ K) (VE ¢ 2°)

and §"(a,f) is a dead state for all other (q,f) pairs. In either case, RR* and
M satisfy properties 3.1.1 to 3.1.5.

Proof: By the definition of a restricted regular expression, £ and I’ are
disjoint. Therefore, as shown in chapter Ill, (Vg ¢ K) (Yf ¢ Z) 8™a,f) ~
§af), (Va € F) (Vi € 2) §%a,0) = 8'(pf), (Yg € K') (Vf € 2) 8"(a)f) = §(a)t),
and 8™(q,f) is a dead state for all other (q}) pairs. If R isn’t final loop,
then by property 3.1.1 (Vq ¢ F) (Vf ¢) 8(qtf) is dead. Thus, (Yq ¢ F)
(Vt € SUZ’) §"(q,f) = 8"(p'f) and q is a final state iff p’is. Therefore, F can
be deleted and (Vq' ¢ (K-F)) (Yf ¢ Z) if 8(q'.f5 ¢ F then 8"(q’,f) - p’.‘ If Ris
final foop, then R' can’t be initial loop. By property 3.1.4 (Yq € K’)
(Yt € ") 8%q,f) ¥ p’ and p’ isn't in F. Therefore, F* = F* and (Yq € KUK’)
(Yf € TuZ) §"(q,f) ¥ p’ sO p’ can be deleted. Property 3.1.1 halds since if
R is final loop, then so is RR’. Otherwise, by property 3.1.1 (Vg ¢ F)
(Vf ¢ 2 8(qf) = §"q,f) is dead. Also, (Yq ¢ F') (Yf ¢ I) 8"(q,f) is dead.
Property 3.1.2 must hold since if R is final loop it must be siziple fira! loop
and by property 3.15 there is only one state p" in F. (Vf¢Z)

(Yq €«(K’-{p’}) 8"q,f) is dead and (Yaq' ¢ K) eit.her $"(q,f) = 8(qf) or

APPENDIX ' 109

8(a’f) = 8(q'f) is dead. (Vg ¢ T) (Yq € K-{p"}) 8"(g,q) is dead. If §'(p"g) =
§(p’g) isnt dead, then (Yq ¢ K'-{p'}) 6"(q,g) = 8(q,g) is dead. Otherwise,
(Ya,q" € K'~{p’}) either 6(q.g) = 8%q,g) is dead or else §"(q’g) = §(q'g) is
dead. If R isn’t final loop, then (Vf ¢ 3) (Vg ¢ K’) 8§"(q,f) is dead and
(Ya,9’ ¢ K-F) either 8(a,f) is dead in which Case eitner §"(q"f) is dead and
§q'f) = 8(q’f) or else §"(aq,t) = 8(q,f). Likewise, (Vf ¢ Y (Yq € K-F) 8"(q,f)
is dead and (Ya,q° ¢ K') either 8"af) = 8%q,f) is dead or else §"(q"f) =
8’(q"t) is dead. Property 3.1.3 holds since either §"(p,f) = P’ or §"(pf) =
8(p,f). By Property 3.1.3, (3f ¢ 3) i{p,f) isn't dead. If R is initial loop then
SO is RR". Otherwi: e, by property 3.1.4 p isn't in F aﬁd (Yq € K) (Yt ¢ 3)
8af) # p. Since (Mg < K) (Yfeg 8@h # p, (VfeZTug) (Yq € Kuk*)
§"(q,f) ¥ p. Thus, property 3.1.4 vholds for RR', If RR® is simple final loop
then so is R* and there can only be one state in F’.

Lemma 3.1.8: Let K+R’ be a restricted rogular expression such that R and the
corresponding finite automaton (KZ8pF) and R' and its corresponding

finite automaton (K\Z2"8°p’F") satisties properties 3.1.1 to 3.1.4, The finite
automaton corresponding to R+R', (KU(K‘-{p’}),ZUZ’,&“,p,FUF') where

§'p,f) = B(pf) (Ve 2)
§"aq,f) = §(q,) (Yq < K) (Yf ¢ 3)
= §(q,f) (Yq ¢ K'-{p'})) (¥t < ¥)
and §"(q,f) is a dead state for all other (g,f) | y properties 3.1.1
to 3.1.5.

Proof: Neither R nor R’ are initial loop, so by property 3.1.4 (Yq ¢ K)
(VECZ) 8a) ¥ p and (Vo € k) (vg < 3) 8a'8) ¥ p". Theretore, both p

and p’ can be deleted. Also, p isn't in F and P’ isn’t In F* und therefore p"

APPENDIX 110 .

isn't in F". By the detinition of a restricted regular expression, T and T°
are disjoint. Thus, as shown in chapter 111, (¥f ¢ Z) §"(p"f) = 8(p,f) and
(Vg ¢ ") §"(p",g) = 8%p’g). Since p was deleted, p" can be renamed to be
p. Property 3.1.4 holds since by the definition of restricted regular
expression, neither R nor R' is initial loop and by property 3.1.4,
(Yq ¢ Ku(K>-{p'})) (Vt € TUT’) &+"(q,f) ¢ p. Property 3.1.1 holds since if
either Ror R is fiﬁal loop, then so is R+R". Otherwise, by property 3.1.1
(Vq € F) (Yt ¢ Z) 8"af) = b(q,f) is dead. Likewise, (Yq ¢ F) (Yt eZ)
5"(qf) = §'(q,f) is dead. Property 3.1.2 holds since (¥f ¢ 3) (Yq € K) §'(a,f)
is dead and (Yq' ¢ K) 8"(a’f) = 8(a\), (Yaq' ¢ Ku(K'-{p'})) either 8"(q,f) or
8"(q’f) is dead. Also, (Vg € 2") (Vq € K-{p}) §"(a,g) is dead. It §"(p,g) =
8(p',g) isn't dead, then (¥q' ¢ K-{p') §"(a’,g) = 8'(a'g) is dead. Otherwise,
3"(p,g) is dead and (Yqa’ ¢ K'-{p’}) either 8"(q,g) = 8'(ag) or 5"(q'g) =
$%(q’g) is dead. By property 3.1.3 (3 ¢ K) 8'p,t) = B(p,f) isn't dead.

Property 3.1.5 holds since R+R' can't be simple final loop.
The proof of theorem 3.1 will now be given.

Proof: The proof is by. induction on the complexity ot the regular
expression. For the finite automaton ({p,a.a’}{th8p,{a}) where spH) =q
and 8(q,f) = 8(a'f) = q) &a,f) and 8(qf) are dead and 8(p,f) isn't, soO
properties 3.1.1, 3.1.2, and 3.1.3 are true. Also, there.is only one final
ctate which isn't p and there is no state p’ such that §(pf) = p. Thus,
from lemmas 3.1.6, 3.1.7, and 3.1.8, a finite automaton cen be constructed

as indicated in the theorem and tiwe properties hold.

i Sl ool o

APPENDIX 111

Theoram 35: A shared resource on which the allowable sequences of
operations are given by a restricted regular expression is simple serial
with no Z expression from the initial state to a final state.

Lemma 35.1: Assume that the synchronization for a resource is expressed by
the restricted regular expression R* and that the synchronization for R
has no Z expression from the initial state p to a final state. Then the
synchronization for R* doesn’t have a Z expression from p to p either.
Proof: If there is a Z expression from p to p then by lemma 3.2 there
also is a simple Z expression ay..ay from p to g, by..b,, from a' to g, and
€y--€, from g’ to p such that qfp. Also, by the definition of a simple Z
expression, (¥q") if (3f ¢ T) such that either (3i, 1<ick) (q"f) = @;, (3i,
I<ism) {q"f) = b;, or (3, 1<ign) (q"f) = ¢; then q"dp. Thus, (Vi, lsisk)
61(2j) # p and therefore B1(a;) = 8(a;), (¥i, 1si<m) 8,(b;) ¥ p and therefore
§1{b;) = B(b), and (Vi, 1<i<n) 8,{c) ¥ p and therefore 8(c)) = 8(c;). By
property 4 of theorem 3.1, since R car’t be initial loop by the deftnition of
a restricted regular expression, (Vq € K) (Vf € T) 8(q,f) ¥ p, Thus, 8(c,,) # p
and it must be true that B(cn) < F. Therefore, aj..ay, bl"'bm' and ¢y..c,
form a Z expr-ssion from p to some element of F in R, a contradiction.

Lemma 35.2: Assume that the synchronization for a resource is expressed by
the restricted regular expression R+R' and that neither the
synchronization for R nor for R' has a Z expression from the initial state p
or p’ respectively to a final state. Then the synchronization for R+R’
doesn’t have a Z expression from p to a final state either.

Proof: Assume tha! there is a Z expression o« = (p,g) Xp}:82)..{Pp-1.8n) B
from q to p,, and y from q to g’ € (F U F’) in R+R’. By the definition of a

restricted regular expression, R+R' can't be initial loop and by property

3.1.4 (Vq" € Ku 0C-{p'}) (Vt ¢ ZU T 84(q"f) ¥ p. Let K| = K-{p} and

APPENDIX 112

Ko = K'-{p’}. Thus, p} ¢ Ky or pj ¢ K, Assume that p, ¢ Ki. By the
definition of 84, (¥i, lsisn) p; € Ky. If q ¢ Ky, then (V(q"f) in £) q" € Kp
and p, ¢ Ky, a contradiction. Thus, q ¢ K| and (V(a"f) in B) o" ¢ K, and
f ¢ Z. Likewise, (¥(q"f) in 4) q" ¢ K|, f ¢ T, and ' € K|. Since q' is also in
FUP, o, f3 and ¥ forms a 7 expression from pto @’ ¢ Fin R 1If py ¢ Ky,
then gy € 2’ and §%p'8y) = py. Using an argument similar to the one
above, it may be shown that if p; ¢ K, then o, £, and 4 form a 4
expression fromp'to g’ ¢ F*in R".

Lemma 35.3: Assume that the synchronization for a resource is expressed by
the restricted regular expression RR’ and that neither the synchronization
for R nor for R’ has a Z expression from the initial state p or »’
respectively to a final state. Then the synchronization for RR’ doesn’t
have a Z expression from p to a final state either.

Proof: There is no arc progression (qg,f;).(a,.1f,) from a state qg € K’
to a, €. Otherwise, (Ji, Osgi<n) q; ¢ K’ and (¥j, i<jsn) 9 ¢ K. Thus,
8x(afi 1) = aj4y € Kor 83(g;fi41) = qj,; which contradicts the definition
of 85 and §3. If there is an arc progression o = (agsfy)-{ap-1.fp) from
ap ¢ K to ¢, € K’ then (3i, O<i<n) g; ¢ K* and (¥j, 0gj<i) aj ¢ K. It must also
be true that (¥j, i<j<n) qj € K’. Otherwise, there is an arc progression
from g; € K* to 9j ¢ K. Assume there is a Z expressibn from p to a state
q" € F°. Then there is a simple Z expression aj..a, from p to q, bl-"bm
from q' to g, and c|..cp, ‘frdm'q’ to q". It can’t be true that g’ € K’ and
q € K. Thus, either q € K’ or @’ ¢ K,
Case 1: R isn’t final loop and 8, is .used. It there is such an o then q; =
p’. If g€ K then (3jl, 1<jIsk) (3f € 2*) «;) = (p'f). If @’ ¢ K then

(Jj2, l<j2sn) (I ¢ T = (pf). It must also be ‘true that

Cia
Bcjp-1) = pF ¢ F. 1f < Kand g € K then (3j, 1<jsm) (3 € ') b =
(p"}), a contradiction of the detinition of a Z expression. If g’ €K’

T i Sl S S ST e S L] CISRRR b b ek S pie T SRR W B LSS S A AL i R TR Lo R Teliiin Rl el

APPENDIX 113

then (¥i, 1sism) if by = (p") then p" ¢ K' and f ¢ T, Also, (Vi, 1sisn)
it ¢;= (p"f) then p" ¢K' and fe€Z. Thus, a;j.a, bj.by, and
c1-Cp form a Z expression from p’ to g" in R. Note that by the
definition of a simple Z expression there is no b; = (p’f}. Similarly,
if qCK and q' ¢ K then a;?l...ak, bj..by, and €)-Cj2-1 form a Z
expression from p to P in R,

Case 2: R is simple final loop, 83 is used, and there is only one state
p" ¢ F. If there is such an « then q;_) = p". If g €K then (3j3,
1<j3<k) (313 ¢ T°) ajq = (p"f3). If @' ¢ K then (3j4, 1<ja<n) (4 ¢ Z°)
¢jg = (p"f4). It must also be true that 8'(p"f4) = b3(p"f4). 1t q < K’
and q' ¢ K then (3j, 1<j<m) (3f ¢ ") b, = (p",f), a contradiction ot the
definition of a Z expression. If g <K, then aj..a,, b;.bp, and
€j.-Cig-1 must be a Z expression from p to p"in R If q€ K, then
.(p‘g‘)a,vaﬂ...ak, bj-by and ¢}..c, form a Z expression from p’ to q"
in R".

The proof of theorem 3.5 will now be given.

Proof: By property 3.1.2, the resource must be simple serial. There
clearly is no Z expression from the initial state to a final state of a single
operation expression. Thus, from lemmas 35.1, 352, and 353 the

theorem must hold.

PR

o AN

APPENDIX

Thaorem 3.7: A simple serial resource wit~ no Z expression from the initial
state to a state q such that either n¢ operation may be applied at it or
else q is a persistent set entry state can be written as a restricted
reguiar expression withoul repeated names.

Dafinition: The final states of a simple serial resource as described in the
theorem are the persistent set entry states and the states at which no
operation cen be apisied.

Lemma 3.7.1: Assume the synchronization for a finite state resource M with
Initial state p has the property that there is an arc progression from
every state to p. Let M’ be a resource which differs from M in that there
is an additional state p’ at which no operations can be applied and the
successor function S’ is defined as follows: SXq,f) = p’ if S{q,f) = p and
S(q,f) = S(q,f) otherwise. If M is simple serial with no Z expression from p
to p then M’ is simple serial with no Z expression from p to p’. Also, if
the synchronization for M’ can be expressed with the regular expression
R then the synchronization for M can be expressed with R*. Finally, there
is no persistent set in M.

Proof: An operation can be applied at a state of M it* it can be applied at
the sanfe state of M. Thus, M is simple serial ift M is. Since there is an
arc progression from every state of M to p, at least ons operation can be
applied at every state of M and therefore also at every state of M except
for p’. Every arc progression in M to p is an arc progression in M to p”.
Hence there can be no persistent set and p’ is the only final state. By
theorem 3.1, if the synchronization for M’ can be repregented by R, t_hen.
the synchronization for M can be represented by R*. Finally, assume that
there is a Z expression from p to p’ in M. By the definition of M, this
must also be a Z expression from p to p in M.

Lemma 3.7.2: For a finite state resource with initial state p, if there Is an arc
progression from some state q to p but none from another state g’ to p
then there can be no arc progression from g’ to q. Furthermore, if there

is no Z expression from p to a final state, then every arc progression
from q to g” must contain an arc (p,f).

114

APPENDIX 115

Proof: If there is an arc progre.sion from g' to g, since there |s one from
q to p, there must be an arc progression from q' to p, @ contradiction. It
(agyf1)(ap-1,fn) is an arc p'rogression from q = q to @’ = a, then (3k,
O<k<n) there is an arc progression o« from g, to p but there is no arc
progression from qy . to p. There must also be an arc progression £
from ay g to some final state g4 Since there is no arc progression from
Ay 4+ to p, there can be no arc (p,f) in A and there can be no arc (agf) in
. 1t qy #p, then ¢, o, and [form a Z expression from p to g, viclating .
the assumption. Therefore, q, = p and there is an arc (p,fy,}) in the arc
progression from q to q'.

Lemma 3.7.3: 1f there is a Z expression from e state p to itselt then (Va) it
there is an arc progression from ¢ 10 q then there is a Z expressgion from
p toa
Proof: Since there is a Z expression izom p to p, by lemma 3.2 there is
also a simple Z expression from p to p composed of arc progressions of =
(Po81)-(Pm-1:8m) from p = pg to some state g, £ = (agsf 1)-4ap-1tn)
from a state qp o gy, and 4 from qp to p such that (¥i, O<i<n) q| ¥ p, (vj,
0<j<n) there is no arc (qj,f) in ¥, (Vk, O<k<n) there is no arc (qif) in o,
there is no arc (p,f) in o, and p # qp. There are several cases which must
be handled. In each, ¢ represents the empty arc progression.

Case 1: 1t p = q, then there trivially is a Z expression from p to q.

Case 2: It (Zk, O<ksn) gy = q, then there are ro arcs (p,) or (qy,f) in #,
pé a= q, p¥ qp and (Vi, O<i<ksn) p# q; Thus, € «, and
(apsf 1) (ay - fy) form a Z expression from p to q.

Case 3: If there is an arc (q,f) in 4, then 4 can be written as ¥’(a,0)y", (Vi,
O<i<n) q; # p, (Vi, O<isn) q; ¥ q and there is no arc (q;f) in «’, and
there is no arc (agf) in o« Thus, o, A, and ¥’ form a Z expression

fromptoq..

M

APPENDIX 116

Case 4: If there is an arc progression o' from g, to q which doesn’t
contain any arc (p,f) and there is no arc (q,f) in «, then there is no
arc (p,£f) or (a,f) in v, p # q, (Vi, 0<i<n) q; ¥ p, and there is nn arc
(p,f) in e2". Thus, ¢, +, and A’ form a 7 expression from p to q.

Case 5: If there is no such o' from q,, to g, then every arc progression
from p to a which contains an arc (a,,8) must also contain an arc
(p,f). Therefcre, there is a'so an arc progression 4’ from p to q
which doesn't contain any arc (g,,8). As a result, (Vi, O<i<n) ¢; ¢ p,
(Vi, O<i<n) q; ¥ q, (¥i, Osi<n) there is no arc (q,f) in «, end there is
no arc (a,.g) in y or y'. Thus, o, 4, and ~4' farm a Z eypression
from p to q.

Lemma 3.7.4: Assume the synchronization for a finite state resource M with
initial state p has the property that there are arc progressions from some
of the states to p. Let M be a resource consisting of those states of M
for which there is an arc progression to p along with all of the arcs which
result in one of these states. Let M" be a rescurce consisting of the
states of M not in M, a new siate p’, and the arcs of M not in M’ with any
state of M’ replaced by p’. There are no states of M" in any arc of M. M’
is a persistent set with entry state p. M and M" have disjoint sets of
operations and =are simple serial if M is simple serial. If the
synchronization for M’ zan be expressed with the reguls expression P’
the synchronizatios for M" can be expressed with the regular expression
R" and there is no Z expression from p to a final state, then there is no Z
expression from p to p in M or from p’ to a final state in M" and the
synchronization for !4 can be expressed by R'R".

Proof: By lemma 3.7.2 there can be 1o arc progression from any state of
M" to any state of M’ in M. Thus, every arc resulting in a state of M must
be of the form (q,f) for some state q of M. If (qqg,f().(g,.1f,) is an arc
progression from = state qy to p in M, then (Vi, O<i<r) there is ‘an arc
progression from q; to p. Therefore, q; and (q;)f;,) are in M’ and there is
an arc progression from qg tc p in M. Since there is an arc progression
from every state of M’ to p in M, ’there also is one in M and M’ is a

persistent set. Since p is the initial state, it must be the entry state and

also the only final state of M. There is a one-to-one correspondence

-

APPENDIA

between the arcs of M and those of M and M". Therefore, if an operation
is only part of one arc of M, it will be part of either one aic of M or one
arc of M". If there is a Z expression from p to p in M therr must also
have been one in M and by lemma 3.7.3 there must have been a Z
expression from p to a final state in M. Assume that o, v, and A form a
expression from p* to a final state in M". The first arc o must be of
the forp (p*f) and results in a state q" of M". This arc must represent
(a,f) in M where q is a state of M. But then (q,f) is an arc progression
from a state of M to a ctate of M" and by lemma 3.7.2 must contain an arc
(p.g). Thus, g = p and o, 4, and /8 forms a Z expression from p to a final
state in M. By theorem 3.1 and the fact that every.arc'(p‘,f) in M"
represents an arc (n.f in M, M can be represented by R'R".

Definition: The next st of a state p, Nip), is {g | (31) S(n,f) = q). The tail :tates

of a state p is {q | (Vq" ¢ N(p)) there is an arc progression from q' to q}.
The tail arcs of a state p is {(q,f) | q is a tail state of p}.

Lemma 3.7.5: If qis a tail state of some state p and there is an arc progression
A from q to another stite g, then q’ is a tail state of p. .
Proof: Since q is a tail state of p, for each state p’ in N(p} there must be
an arc progression « from p’ to q. Bqt then o8 is an arc progression
from p’ to q°.

Lemma 3.7.6: 1f there is no Z expression from a state p to a final state, there
are no arc progressions from p to itself, and there is at lsast one state in

N(p), then there is a unique tail state p’ of p such that every arc from p to
a tail state of p other than p’ must contain an arc (pf).

Proof: Let « be an arc progression from p to a tail state p' of p which

R P I R ey e

i L e L DA e o e ko

117

il - e el

e N e R —

i b i

APPENDIX 118

contains no arc (q,f) for some tail state q. (If there is such a state q, let «
be the arc progression from p to q instead). Assume. that there is an arc
progression from p to a tail state q';l p' of p which contains no arc (p"f).
Using the same argument as above, it may also be assumed that there is
no arc (q,4f) in the arc prOgression. for some tail state q. if there is no
such arc progre;sion, ther the proof is done. Either there is an arc
progression ' from q' to some final state as ¥ p’ which contains r arc
(p',f) or else there is one from P’ to a final state other than q’ which
contains no arc (q'f). Without loss of generality, it may be assumed that
the former is the case. It should be noted that since there is no arc
progression from p to itselt, p isn't in Nip) nor can it be a tail state of
itself. Since there is an arc progression from q' to a4, by lemma 3.7.5 as
must be a tail state of p. If there is an arc progression ¢ from g to p’,
then for each arc (q,f) in v, by lemma 3.7.5, q must be a tail state of p and
it must be true that q ¢ p. Therefore, ~, v, and ¢ form a 2 expression:
trom p to q;. Since there is no such 2 exptessian, thers can be no such 5.
Let the last arc of « be (p"1). Since p" isn't a tail state of p there must
be some state q" In N(p) such that there is no arc progression from q" to
P" Let 4 and 4 be the arc progressions from q“ to p' and to q
respectively. For every state q such that (q,g) is an arc in o there
trivially is an arc progression from q to p". Thus, the_rle can be no arc
(qh) in ¥ or in 4. Als», there can be no arc {aph) in 4 since otherwise
there would be an arc progression from qs to p" It must therefore be

true that o, v, and 448" form & Z exnression from p to q;.

Definition: The unique state p' will be called the tail entry state of p.

APPENDIX

Lemma 3.7.7: Assume there is no Z expression from a state p to a final state,
there are no arc progressions from p to itself, and there is at least one
state in N{p). If p’ is the tail entry state of p and q isn’t a tail state of p
but there is an arc progression o from p to g, then any arc progression /3
from q to a tail state of p must contain an arc {p",f).

Proof: Since /3 is an arc progression from p to one of its tail states, by

lemma 3.7.6 either o« or A must contain an arc (p'f). If (p'f) is an arc of
«, then there is an arc progressiun from p’ to q and by lemma 3.75 q
must be a tail state of p, a contradiction.

Lemma 3.7.8: Assume there is no Z expression from a state p to a finel state,
there are no arc progressions from p to itself, and there is at least one
state in N(p). If p’ is the tail entry state of p, then there can be no Z
expression o, ¥, and /8 from p to p’ such that no arc (q,f) in o', y,0r 8 q
is a tail arc.
Proof: There must be an arc progression 4’ from p' to a final state. By
lemma 3.7.5, for each arc (g,f) in 4° must be a tail arc of p. Thus, o, «,
and A/ forms a Z expression from p to the final state.

Lemma 3.7.9: Assume there is no Z expression from a state p to a tinal state,
there are no arc progressions from p to itself, and there is at least one
state in N(p). If p’ is the tail entry state of p, then there can be no Z
expression o, ¥, and [from p’ to a final state such that every arc (q,f) in
o, 7, Oor A is a tail arc,
Proof: By lemma 3.7.6, there must be an arc progression o from p-to p’
which contains no arc (q,f) for a tal state g of p. Thus, otol', ¥, and
would form a Z expression from p to the final state.

Lemma 3.7.10: 1If a finite state resource is such that there is no arc resulting in

{ the initial state p, there is no I expression from p to a final state, ard

there is at least one tail state of p, then every final state is a tail state of
p.

. —
EP e U T T e PRT o W o g ST P e L T T ra———

119

L PR e, ST TEEE

APPENDIX 120 N

Proof: If there is an arc progression from a persistent set entry state q
to the tail entry state p’, then p’ must be in the persistent set and there
must be an arc progression from p' to q. Therefore, by iemma 3.75 q
must be a tail state of p. Assume that there is a final state p" which isn't
a tail state of p. Let (p,f")Z be an arc progression from p to p" where 8
is from a state q" ¢ N{p) and contains no arc (p,g). ‘Since p" Isn't a tail
state of p, (3’ ¢ N{p)) there is no arc progression from q’ to p". Let /pf)
be an arc progression from p to g, o« be one from o’ to p’, and ¥ be one
from q" to p’. There can be no arc (p"g) in y or o or else there would be
an arc pregression from p" to p. If (g,f) is an arc in 3, then there can be
no arc (q,g) in « or else there would ba an arc progression from @’ to p".
The arc progressions (p,f)et, ¥ and 4 therefore form a Z expression from
p to p", a contradiction.

Lemma 3.7.11: Assume the synchrorization for a finite state resource M with
initial state p has the property {hat no arcs resuit In p and there is at
ieast one tail arc of p. Let M’ be a resource consisting of those states of
M which aren’t taii states ot p, a new final state q’, and every arc (q,f) for
a state g of M’ such that if an arc of M resul's in a tail state of p in M
then it results in ' in M, Let ™" consist of the tail states of M and all of
the arcs (q,f) for a state q of 3 The initial state p is in M. It there is
no Z expression from p to a final state in M, then every final state of M is
in M", there is no Z expression from p’, the tail entry state of p, to a final
state in M", and if the synchronization for M can be expressed with R’
and the synchronization for, M" can be expressed with R", then the
synchronization for M can be sxpressed with R'R". 1f M is simple serial,
then so are M’ and M" and the sets of operations are disjoint.

Proof: Since no arc results ‘in p, p isn't In N{p) and there can be no arc

progression from a state in N{p) to p. Therefore, p isn't a tail state of

Itsalf and must be in M. By lemmas 3.7.8, .3.7.9, and 3.7.10, if there is no

e R R e g bk . . ’ . 4

R R

A

APPENDIX

7 expression from p to a final state in M, then every final state must be a
tail state of p and therefore in M". Also, by temmas 3.7.5 and 3.7.7, there
is no arc progression trom a state of " to a state of M in M and any arc
progression from a state of M to a state of M" other than p’ in M must
contain an arc (p’,f). Using the construction from theorem 3.1 for en
expression of the form RR" where there is only one state in F ,roduces M
from M and M" Finally, there is @ one-to-one correspondence between
the arcs of M and M" and the arcs of M. Therefore, if an oparation is in

only one arc ot M, it will be in only one arc of either M OF M

Definition: The accessable arck of a state p, Alp), is {(q,h) | there is an arc
progression ¢rom p to a). Note that the tail arcs of 8 otate p is the
intersection over @ ¢ N(p) of A). '

Lemma 3.7.12: Let p be a state such that no arcs result in p and there is no Z
expression from P to a final state. For states PyrPrPn+l ¢ N(p) and
1cign+l, let Ay = A(pl)n...nA(p«‘) and A= Alp;) A A(pn+l). It An isn't

empty and (3i, 1<i<n) A} st empty, then either A CA and Apst = An or

else ACA, and Apep = A

Proof: Assume that (a8 ¢ Mn and (q.8) € AY but (q,g) isn’t in A? and
(@) isn't in An Since (98" isn't in Ay (3j, 1<jsn) (a"&) isn't in A(pj).
Let « be the arc progression from Pnal to q, ¥ be the aré progression
from p; to g, and [be the arc progr_ession from p; to o There also must
bhe an arc progression trom pj 1 q but there can be none from Ppnay to q
or trom pj to q". Let & be an arc progression fromqtoa final state q".
Since no arc results in p, there can be no arc (p4) in oty 1 OF AR Iftq =
g" or if there is an arc (@"f) in 7 then there is an &7¢ progression from p;

toqtoaq to g which is a contradiction. It there is an arc (p’f) in both

121

i aA AR § ¥ ik

BEL e e b i L g
st 3 i - -t e T T2 . | L gt R e 1l cammisi e L
RN T Rl T e S—r

APPENDIX 122

and A or if (q'f) is in 8 then there is an arc progression from pp,g to p’
or q' to q which is a contradiction. Likewise, if there is an arc (p"f) in
both « and A or if (q'f) is in & then there is an arc progression from Pj
to qtop orqg toq which is a contradiction. Finaily, 8ince Ppay € Np),
(3t) S(p,f) = P4y The arc progressions (p,flec, 7, and. AR form a Z
expression from p to a final state, which is & contradiction,

Lemma 3.7.13: Let p be a state such that no arcs result in p and there is no Z

expression from p to a final state. For states q,a’,q" € N(p), if A(q) n Al@")
isn't empty but A(g) n Alq"} is, then A(Q") n A(q") is empty.
Proof: Assume that A(q) n AQ") isn't empty. Then by lemma 3.7.12,
either A(g) n A(g) n Alg") = Ala) n A(q") or else A(q).n A(g’) n Aq") =
A(@’) # A(q"), neither of which is empty. (Let py=a, P2=q’s p3=a") and
imn=2). Therefore, A{a) n A(q"} isn't empty, a contradiction.

Lemma 3.7.14: Let p be a state such that no arcs result in p and there is no Z

expression from p to a final state. If pq,..Pp ¢ Np) and A, is @s defined in
lemma 3.7.12, then (3j, 1<jsn) A, = Alpy) n A(pj).
Proof: Ao = Alpy) N Alpy) so the lemma is true for n=2. Assume that for
some n, n22, the lemma is true. Thus, (3j, 1<jsn) A, = A(py) N A(pj). By
lemma 3.7.12, if Alpy)n AlPps) isn't empty, then either An,1 ™ An ™
A(py) n A(pj) or else Ay = A(pl) n A.(pml)' Likewise, if
Alpy) N Alppay) s empty, then Ap,q s ‘empty and Ay ™
A(py) n Alpp4+1) Thus, the lemma is also true fOr. n+1 and by induction
(¥n, 1<n) it is true.

Lemma 3.7.15: Assume the synchronization for a finite state resource M with
initial state p has the property that no arcs result in p, there are no tail

Y, N R— (YU F v S e L S T ey e S ey R T T ST S e [COTR— S e———————t,. SEEE e RS
e e i e 3 4k

APPENDIX 123

arcs of p, and there is no Z expression from p to a final state. It may also
be assumed that it for state q there is no arc (q,f) thon there is only one
arc (g’f) such that S(qg't) = q. If there is another arc (g“g) such that
S(q",g) =q, then ereate a new state p" equivalent to q and let S(g",g) = p".
Select any state p" such that p" ¢ Nip). Let Blp") = {q]q ¢ Mp) and
A(p") n A(q) isn’t empty} u {p"}. ({p"} is necessary in case A(p") is
empty). Let M be a resource consisting of p, B(p"), any state @’ such that
(3g ¢ B(p")) there is an arc progression from q to q’, any arc from p to a
state g ¢ B(p"), and any arc (g',f) such that (g € B(p")) (g',f) € Alg). Let M"
be a resource consisting oht a new state p’ and all of the states and arcs
of M which aren’t in M with the exception that every arc (p,f) is replaced
by (p'f). Either there is only one arc or else there must be at least one
in M and at least one in M". There is no Z expression from p to a final
state in M’ or from p’ to a final state in M". If M is simple serial, then so
are M’ and M" and M’ and M" are disjoint, Finally, if the synchronization
for M’ can be expressed by R’ and the synchronization for M" can be
expressed by R" then the synchronization for M can be expressed by
R'R", :

Proof: Since there are no tail arcs of p, the intersection over the states
q € N(p) of A(q) is empty. 1f p" is the only state in N(p), then there can be
no arc (p",f). Otherwise'the arc would be a tail arc of p. Sine every arc
(p,f) results in p" and there can only be one arc resulting in p", there is
only one arc. Assume that there is at least two states in N{p). By lemma
3.7.14, (3q ¢« N(p)) A(p") n A(d) is empty. Thus, thére are arcs (p,f) to p" in
M and .(p,g) to q in M". By the definitions of M and A(g), for each arc
(9f) in M g is in M. If g=p, ther S(g,f) must be in B(p") and therefore
also in M’. Otherwise, (39’ ¢ B(p™)) such that (q,f) € A(@’). Thus there is an
arc progression from g’ to q to S(q,f) which {herefore must also be in M.
For each arc (qg,t) in M", either q=p’ and S(q,f) is in N{p)-B(p") or else
every arc progression from p to g in M starts with an arc (p,g) such that
S(p,g) = q" and q' ¢ N{p)-B(p"). Thus, (q,t) ¢ Alg’) ard there is an arc

progression from gq' to S(g(f). Since A(p")n A(Q") is empty eand

r-.—-—ﬂﬂn-np—m--m—- -

N Ry T —

APPENDIX

(Yg" € B(p")) Alp") n A(g") isn't empty, by lemma 3.7.13, A(q’) n A{q") is
empty. Thus there can be no arc progressian from q" to q. If there is an
arc progression from q" to S(a,f), then any arc (S(q,f),g) would be in both
A(q') and A(q"), a contradiction. Thus, either there is no arc progression
from " to S(q,!) or else there is no arc (S(q,f),g). But in the latter case,
only one arc can result in S(q,#) and that is {a,f). Since there is no arc
progres.sion from q" to q, there can be none fron q" to S(q,f). Using the
construction of thecrem 3.1, the synchronization can be expressed as
R'+R" and since each arc of M is either in M or M", if M is simple serial
then so are M’ and M" and R’ and R" must be disjoint. ! for a state g of
M or M" there is no arc (qf) then there can be no arc (qf) in M.
Likewise, every persistent set of M and M" must be a persistent set in'M
with the same entry states. Thus, every flﬁal state of M’ and M" must be
a final state of M and every Z expression in M’ or M" from p or p’
respectively to a finai state must be a Z expression from p to the same

final state in M.
The proof of theorem 3.7 will now be given,

Proof: For a set of synchronization relationships M with initial state p

there are five possibilities.

1. There is an arc progression from every state to p. In this case, the

set of states form a persistent set with p as the only entry state.
By lemma 3.7.1, the resource M’ as described in that lemma must be
simple serial with no Z expression from p to a final state. Also, if
the synchronization for M can be expressed with the regular
expression R, the the synchronization for M can be exprassed with
the regular expression R, Finally, there are no persistent sets in
M’ and p isn't the successor of any arc in M so R can't be either
tinal nor initial loop. '

1

s ol

24

SR T dd e

TP pame——

E s 1 .

APPENDIX 125

2. There is an arc progression from some states to p, By lemma 3.7.4,
the resources \ and M" ag describad must be simple serjal with no
Z expression from p to P in M or from P' to a final state in M" ¢
the synchronization for M’ and M" can be expresseqd with R’ ang R"
réspectively, t}en the synchronization for M can be expressed with
R'R", Finally «¢ is a Persistent set ¢ R is simple fina) loop and p'

Isn’t the successor of any arc in M so R isn’t initial loop,

expressad by R'R" Finally, the Operations of R’ and R" are disjoint
and there is ng arc (gf) in M o R’ isn’t final o0p,

With no 7 expression from P to a final stete in M o from p’ to a
tinal state of M If the synchronization for M and can be
éxpressed with R’ and R" respectively, then the synchronization for
€an be expresseq by R+R" Finally, tha Operations of R and R"
are disjoint ang P isn’t the successor of any are in M and P’ isn't
the successor of any arc in M" go neither R’ nor R" is initial loop.

B TP e
bbbl

G i

L]

S CJRITY CLASSIFICATION OF THIS PAGE (When Data Enterod)

< ¥

| / 'REPORT DOCUMcNTAuION PAGE

READ INSTRUCTIONS
BEFORE COMPLFTING FORM

LJWHDRTNUMBE& / 2. GOVT ACCESSION NO.

zCSPJ ' M- !;‘ 0 53

3. RECIPIENT'S CATALOw NUMBER

4. TITLE (and Subflrla)

et o i At a2 et ——

SYNCHRONIZATION OF FINITE _STATE SHARED RESOURCES ‘(interim

5. TYPE OF REPORT & PERIOO COVERED

/

i’y)

PERFORMING ORG.REPORT-NUMBER

m‘b

7. AUTHOR(3)

/' Edward A. Schneider>j
i A

8 GONTRACI.QR GRANT NUMBER(S)
- F44620-73-C-0074,

| ISKARFS fin ler 24

A g,
ST § i T 8. ettt 4

9. PERFORMIMG ORGANIZATION NAME ANO ADDRESS
Carnegie-Mellon University

Computer Science Dept.
Pittsburgh, PA 15213

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

~.61101D
AO 2466

11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research P -ojects Agency .

| 12. REPORT DATE
AL LA a)

Z/ Marthﬁiﬁ?gj

1400 Wilson Blvd
Arlington, VA 22209

13. NUMBER OF PAGES

130

. MONITORING AGENCY NAME & ADORESS(if different from Controfling Office)

Air Force Office of Scientific Research (NM)

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

Bolling AFB, DC 20332 ’i5772537"}
(..l‘i e
I

OECLASSIFICATION DOWNGRADING
SCHEDULE

15a,

=

- OISTRIBUTION STATEMENT (of this Report)

Approved for public release;

distribution unlimited,

7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WOROS (Continue on reverse side if necessary and identify by bfock number)
\
20. l=<>=<'ﬂf'1’ fContinue on reverse side if necessary and Identify by bfock number)
The problem of synchronizing a set of operations defined on a shared resource
is studied. It is assumed that the decision as to which operations may be executed at
some given time is dependent only on the sequence in which the opearations have
already executed. Equivalence classes of these sequences, called states, can then be
i
DD ,FO%™ . 1473 EoiTion oF 1 NOV 65 15 0BSOLETE 2 N ‘:}?
1JAN T3 UNCLASSIFIED D

SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Enlered)

- me——] g

o

k4

AL LMAOOLL Ly]
fl.___ .

SUSURITY CLASSIFICATION OF THIS PAGE(Whan Data Fntered) !

~'used to define synchronization. A restriction is made such that only those resources
for which the synchronization can be exprt‘:ssed using a finite number of states will be ! -
studied. The states along with a successor function, which is defined for a

state-operation pair if the operation may start execution when the resource is in that

" state, form what are called synchronization relationships.

A dist‘inctior_\ is made between resources on which only one process may execute
an operation at a time, called serial resources, and resources on which several
processes may execite operations in parallel, called concurrent resources. To handle
concurrent resources, the states must be modified so that they correspord to
¢quivalence classes of sequences of perilogues instead of operations. A periiogue is

f either the start or the finish of the axecution of sore operation.

Several variations of regular expressions are presenrted with which the
synchronization for a shared resource might be expressed. Also, a method which can
be used to implement the synchronization re’ationships 1s guven.\This implementation
has a high overhead so several pcesble simpifcatcns a-e snown. Each varation of

regular expressions and each - ~clfcation of the mperentaton s shown to

correspond to some restricted class of the syncnronization relationships. The set of
synchronization problems which can be solved using one implementation or notsation

which ‘can’t be solved using some other implementation or notation can be found by

comparing the corresponding classes.

UNCLASSIFIED
& SECURITY CLASSIFICATION OF THIS PAGE(\When Data Entered)
8 = Y s, AR 1. Y =

T . - fost 4 crmrenay D o ¥ m———y

EOR P e o ’ g »

