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nonlinear parameter (e.g., B I—%—l in gases where Y = cp/cv

- B
=1+ A in liquids)
Peak Mach Number

angular frequency of a pure tone radiated by the source (e.g.,
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Figure Captions

Axial Pressure Field of a 454 kHz Signal Radiated by a 3" Diameter
Projector in Fresh Water [ro = 1.5 yds, or = 735 x 10-3 Np,
B/A = 4.9].

Axial Pressure Field of a 454 kHz Signal in Fresh Water.

Axial Pressure Field for the Second Harmonic of a 454 kHz Signal
Generated Via Nonlinear Self-Interaction of the Fundamental in
Fresh Water.

Finite-Amplitude Absorption Losses Incurred by a 454 kHz Signal
in Fresh Water.

Far-Field Finite-Amplitude Absorption Characteristics
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Signal-Excess Characteristics
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Abstract

zﬁFollowing a review of the literature on Parametric Receiving Arrays,
the problem of defining their performance characteristics under saturated
and unsaturated conditions is considered. Basically, the problem is resolved
by establishing equations for the axial field of a spatially symmetric pump
wave in the spectral domain via Kuznetsov's nonlinear paraxial wave equation.
As a biproduct of this analysis, a simplification of terms involving the
phase of pump wave in these equations results, upon transformation to the
time domain, in a new form of Burgers' equation for a plane piston projector.
Unlike previous forms of Burgers' equation, the latter combines the effect of
wave interactions in the near and far field regions of the source. Numerical
comparisons of the more complete spectral equations and the spectral form of
the new Burgers' equation are shown to be in good agreement with experimental
results previously reported in the literature. Approximate solutions,of these
equations are also derived. The three methods thus established for represent-
ing the pump field are then used to derive scaling laws for parametric receiving
arrays, which clearly show the limiting effect of pump wave saturation upon
the conversion efficiency of the up-conversion process as the pump amplitude

is increased indefinitely.
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Introduction

In his work on the scattering-of-sound-by-sound, Wesr_erveltl’2 con-
cluded that two overlapping perfectly collinated plane waves of finite-
amplitude would only give rise to scattered waves when propagating in the
same direction - a result in keeping with the anharmonic resonan-e conditions
discussed by Landau and Lifshitz.3 This work led naturally to his funda-
mental paper on the Parametric Array where Westervelta deduced that two
perfectly collinated coterminous progressive finite-amplitude plane waves
of angular frequencies wy and w, traveling in the same direction in an
unbounded nondispersive fluid medium would interact to produce highly
directive intermodulation spectral components; that of frequency wl - w2 5
referred to as the "difference-frequency signal' being the lowest in the
spectrum. Since he was primarily interested in the generation of low
frequency waves, Westervelt'sa analysis required that the primary frequencies
be very nearly equal. This requirement, which makes possible the process
of frequency "down-conversion," is basic to parametric transmitting arrays,
although of course upper sideband components are also formed.

Alternatively, when viewed analytically, simultaneous radiation by the
source of frequencies wy and w, with equal finite-amplitudes is
equivalent to sinusoidal modulation of a finite-amplitude carrier wave or
’/ﬁEHEP" wave of frequency w_ = %(wl + wz) by a signal of frequency /2 ,
where = W, =W,y It follows therefore, from the inherent 'quadratic”
nonlinearity of the medium that the spectral components of the modulating
envelope squared and in particular the difference-frequency § , will be

amplified or "pumped” at the expense of the carrier until the amplitude of

the latter is reduced by this and other absorption losses to a level where
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it can no longer sustain a nonlinear interaction. The reader should note
at this point that the interaction is not confined to suppressed carrier
modulation, as exemplified by the work of Eller5 and Merklinger6 on more
general forms of modulation. Viewed in this manner however, it is clear
that the process of parametric amplification can be interpreted in terms
of the concept of finite-amplitude self-demodulation introduced by Berktay7
and justified experimentally by Moffett, Westervelt, and Beyer.8 *
Likewise, in the converse process of frequency ''up-conversion,' para-
metric receiving arrays are formed by projecting a finite-amplitude pump
wave of angular frequency wo into the medium to serve as the carrier wave
for a weak incoming signal of frequency § , where wO/Q >> 1 . 1In this
instance the pump field is augmented by the spatial component
of the signal along the pump axis, assuming of course, that both the pump
wave and this component are traveling in the same direction. The resulting
nonlinear interaction gives rise to an intermodulation spectrum as before,
the sum and difference frequency components w, + 0 being of greatest
interest. Since wO/Q is assumed to be considerably greater than unity
however, these s.debands are now in close spectral proximity to the pump
frequency, but unlike the latter their directivity {is
equivalent to that of a virtual-end-fire line array of length L/)\Q (in
wavelengths of the signal frequency) where L 1is the distance from the pump
projector along its axis at which a receiving hydrophone resonant at wo + Q
or w - Q is located. Upon reception the "up-converted" signal is fed

to a low pass filter to remove the pump frequency and recover the signal of |

frequency Q .




Although implicit in Westervelt's work,l’ the process of Parametric
reception was identified and made explicit by the extensive theoretical
and experimental investigations of Berktay9 who in cooperation with Al-

mi10-12

Temi considered the practical implications of the up-conversion

process. Subsequent experimental workl3’14 has been directed to long wave-
length up-conversion in fresh water lakes13 and to the consideration of arrays
of parametric receivers,la thus involving significant practizal extensions of
the original scaled laboratory experiments. Further theoretical extensionsls’16
have also been made to provide a more precise description of the pump fields
radiated by practical sources and the resulting effect of such refinements
upon the analytical form of solutions for the up-converted fields. More
recently Goldsberry17 and McDonough18 have derived optimum operating con-
ditions for parametric receiving arrays from systems analyses based on
Berktay and Al-Temimi's analytical model10 for a spherically spreading

pump wave. With the exception of a preliminary study by Bartram19 there

has been no systematic study of the effect of finite-amplitude absorption

on the performance of parametric receivers, which although insignificant

at low pump amplitudes, ultimately determines the maximum achievable efficiency
of these arrays when the pump wave becomes saturated. In order to provide

a more complete analysis of this effect we now consider how Kuznetsov's2
nonlinear paraxial wave equation (which on account of 1its parabolic form

is ideally suited to numerical solution) can be used to define the acoustic
field of a pump wave radiated by a plane piston projector r.nder both
saturated and unsaturated conditions. Following this analysis we will

then determine the effect of saturated pump waves on the conversion

efficiency of parametric receiving arrays, and hence deduce scaling laws

to define their performance capabilities.



1. Kuznetsov's Equation

In this section we wish to investigate the distortion of progressive
finite-amplitude waves in an unbounded nondispersive fluid via Kuznetsov's
nonl inear paraxial wave equation, which it should be noted, is a more general
form of the inviscid paraxial wave equation previously derived by Zabolotskaya

otd Introducing a rectilinear Cartesian coordinate system and

and Khokhlov.
considering the propagation of progressive plane finite-amplitude waves

o 20
along the positive =z axis, Kuznetsov's equation can be expressed as,

?zu 2 ) du Bzu
332 - (1/2 kQ)nyu = 3 {(BEOkQ)u 3 + CtQ -a.l.—z } (1)
where
= = = ° = - -E-
u v/vo € vo/co 5 kQ Q/Co 5 0 Q(t co) (2)
and
2 2
S T &
y ax dy

In this notation v denotes the particle velocity resulting from propagation
of an acoustic disturbance in the fluid, vo being its peak value at the
source; P is the static density, <, is the small-signal speed-of-sound,
Eo is the peak Mach number at the source, and B is the second-order non-
linear coefficient of the fluid; & 1is an, as yet unspecified, angular
frequency, and aQ is the corresponding small-signal thermo-viscous
attenuation coefficient.

Assuming that an axially symmetric disturbance is established in the field
via radiation from a baffled piston source of radius a , it is convenient to
normalize the variables x and y with respect to a and combine them in

a single variable £ defined by Rudenko, Soluyan, and Khokhlov23 as,

"
/



£ = (x/a)2+ (y/a)2 : (4)

Expressing the x and vy derivatives in terms of £ we obtain,

Xy
2
= 12 I P
"[a] a&[gaa] : @
Substituting Equation (5) in Equation (1) thus gives,

2 2

d"u 2,5.=1 9 du, _ 9 du 9" u

3032 - U2 /DT 3 G5 T o {(Beokn)“ ot T %2 } el e
Normalizing z with respect to a reference 'Rayleigh distance'’ g, * kan/Z

where ko = wo/co , and the, as yet unspecified frequency W, is assumed to

be radiated directly by the source, Equation (6) becomes,

2 w 2
37u _|_o| 2 du| _ 3 du du
3TOR ‘[ 9] 3€ [5 ag] ol {"n“ ot + Pt 2 } i
= = 2 = =
where R = z/ro » B M koa /2, ko wo/c0 » g Beoknro . (8)

Alternatively, in terms of the 'stretched coordinate system' introduced

e
by Blackstock,“L Equation (7) becomes,



=
2% oy 2 (e ) 0 X [aBy )2t 2 (9)
3130 o’ 3 of bt 1Y o) o 2
where
0 = Bekr , o = oR, and ' = o0 /ar 1is the
[o] 0O 00 (o] [o] [o] 00
Acoustic Reynolds number. (10)

It is clear from inspection of Equations (7) and (9) that for one dimeinsional
24
waves they reduce to the plane wave form of Burgers' equation. o

Returning to Equation (7) and expressing u in terms of its Fourier

transform uw we obtain,

auw wy 3 Z)uw - oQ\
'—5R—+ i Ty 3—5 £ 3_5- + (O.wro)uw = i [5] —Z—J (uw*uw) (11)
where
a R,E) = [0 u®E,1)e @D (12a)
sRED = [0 @Dt @D Tawm) (12b)
ke o= = [ u u,d(W/R) (12¢)
w oW 21 =0 w-w W’
and
a = aQ(w/Q)z . (12d)

If the signal of angular frequency wo radiated by the source is sinusoidally
modulated by a pure tone of angular frequency 2 then for integral values
of N = wO/Q >1, w assumes the discrete values wn = n? and Equation (11)

becomes the infinitely coupled set of partial differential equations given by,

/




*
where u s denoting the complex conjugate of u » appears in Equation (13)

*
because u(R,£,T) 1is a real valued function and consequently u =W

-m m
from Equation (12a). Obviously, if the source waveform is unmodulated, we
simply set N =1.

At this point we note that since the left-hand-side of Equation (13) is
similar to the time dependent form of Schrodinger's' equation, we can express

the axially symmetric spectral amplitudes un(R,E) as a Laguerre polynomial
expension given by,
o 0]
- N 1 - iR k
o ®,E) = (/MY z Lk moL, @ (14)
n k=02 n k

where the Laguerre polynomials Lk(g) obey the following relationshlps,26

@yd kw2

et @1 @ = . (15a)
LI(E) -y (©) = -kl (©) (15b)
EL'(B) - kL () = kL, () (15¢)
L@ = 15 L§ = -E+1; L&) = £ -45+2, ete.(15d)

Substituting Equation (14) in Equation (13) and employing Equations (15a)
through (15c) to simplify the resulting expressions, we obtain after some

manipulation,



=8=
k (
dy , o n-1
b _.1(1 +R (& . ,l2lfZe k ,s L
dR e [ n'o 1 - &R }wn £ [N}[ 4 hbé - E A an—mwm
m=1 s,2=0
[ o« K 2*
+2 £ I BWS v (16)
m=1 s,%=0 st ntm’m
where
k 112 0 -
A, - [1—\—} [2 e L L ()L, (€)dE (17a)
and
) 1 & 2m/N2]L
k _ [1)° > - 1+R
Boy - [k!] [Ce LEML_(E)L (E)E (17b)
In order to solve Equation (16), we require the initial values w:(O) . These

can be obtained from Equation (14) if the boundary value un(O,g) is pre-
scribed. Thus, by means of the orthogonal relationship defined by Equation

(15a) we have,

2
kKoo _ [L1)°p -£Q - a/N)
N OB [k,] [ e u (0,6)L, (E)4E . (18)
If, for example, un(O,E) = 1, 0<g<1
= 0, £>1 (19)

and N =1 then,

o = [r‘j 2 1@ - ol +[n“_“1}w:'1<0) ;
n, k >1 (20a)

where

k 1

Y0 = [ 1,(6)dE (20b)
and

o 1 n-1 o

v (0) = [n_l]{ -1}, n>1; ¢ (0 =1 (20¢)

>
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In general, the tripple sums on the right-hand-side of Equat’ .. (16)
are very difficult to evaluate, particularly as Equations (17a) and (17b)
cannot be reduced to simple closed form expressions if k, s, £ are non
zero. For any value of k however, since the largest terms in the double
summation over s and & are those for which s = £ , we can neglect the
terms s # £ over small increments of the distortion distance OOF(R) 9
where F(R) 1is a function which has yet to be defined. Moreover, since
the field is most intense along the beam axis, the particular values
s = £ =0 are dominant, thus giving the resulting approximation to Equation

(16), valid for small values of OOF(R) 3

k
dy o n-1
—n i+ kL |nf| o)k o 0
&R T [anro l- 1R ] wn = & [N] ( 4 J Aoo mzl wn-mwm
-] Kk *
o ,0
+2 Boo(m)wn+mwm (21)
m=1
where
Ak - —1-121'“’ oL (B)ee A° = 1 (22a)
oo k!J * % ’ oo .
and
) R 2m/N2]
k T » =& 1+R o i 1
BOO(m) 5 (k!} f Lk(g)dg ’ BOO(m) = " 2m/N (22b)
1+ R2
Inspection of Equation (21) shows that the zero order Laguerre mode (i.e.
k = 0) is now independent of the higher order modes (i.e. k =1,2, . . .),

which can all be derived from it a-posteriori. Physically, this implies
that the axial field is predominantly defined by the zero order Laguerre
mode, which in turn is primarily responsible for distortion of the off-axis
field, the latter having little effect on the axial field over small dis-

tortion distances.

h—...——n-_. PR TP T re—
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Furthermore, since small increments of the 'scaled' range OOF(R) imply
large increments in actual range R for oo << 1 , the model ensures that
all Laguerre modes other than zero will be insignificantly small under
unsaturated conditions. Thus, for a monofrequency source (i.e. N = 1) the
unsaturated harmonic directivity functions formed by self intecraction of
t'.e fundamental frequency component in the medium are given by Equation (14)

as Gaussian beam patterns,

D_(R,£) {Emal-iRMl+R%}{gmﬂl*iRMl+R%F
n

2 n 2
e-2n§/R . 2(koa sin 8)

Thus, in keeping with Rudenko, Soluyan and Khokhlov's invest:igat:ion,23 the
model is capable of defining the major lobe, but not the minor lobe structure
of the actual field. Under saturated conditions as more and more higher-
order Laguerre modes are included in Equation (14), the harmonic directivity

functions become,

un(R,E)U (R)E)

D_(R,E)

(]
SO*B %k

un(R,O)u (R,0)

[ *
RO CINGING
k, =1
e e
IR0 ML 01,0

e—2n£/(l + R2)

2
e—2n€/(l + R7) (23a)

: R>> 1 . (23b)

(24)
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Under unsaturated conditions, w: + 0 for k # 0, so that Equation (24)
reduces to the form of Equation (23) as required. With increasing values
of 00 therefore, as the number of terms in the summations of Equation (24)
increase, the directivity functions should broaden in accordance with the
experimental results of Shooter, Muir and Blackstock.27

Since the zero-order Laguerre mode can be evaluated independently of
the higher order modes for the model under consideration, it is expedient
to consider the differential equations for this mode alone. These are

given by Equation (21) as

o

dwn i o n Uo -l o o
R T [anro—l-iR an - i[ﬁ][?]{ 2 Voaln
m=1
oo 1 *
(o] (o}
R P ™Y/ e } - (L
mel |1+ ==
1+R

In Appendix A it is shown that under unsaturated conditions the second
harmonic field in an inviscid fluid obtained from Equation (25) by the

method of successive approximations is identical as « + 0 to the

r
lo
approximate solution previously derived from the inviscid form of

Equation (9 ) by Rudenko, Soluyan and Khokhlov.23
Since wg is complex it is convenient to express it in terms of its

~

real and imaginary parts Eﬁ and wz respectively where,
-0
ot 2SN T O SN A A (26)

Substituting Equation (26) in Equation (25) and equating the real and

imaginary terms respectively we thus obtain,
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3 I oo (%
£ % (@'t ) + L
< @o © @o 1+ R2 1 R @o
n n 4 n
~0 -0 -0
(n ﬂo n-1 n-m lpn-m lpml
- B2
m=1 | o e ~0
n-m n-m m )
~0 -0 -0
[n]{oo] o 1 lPn"f"m lpn"i'm 1bm
+ ell= U
N 2 m=1 n 2m/N2 - . .
L*R _wn+m -wn+m lbm

With the exception of the "diffraction-induced spreading losses' on the
left-hand-side of Equation (27) and the coefficient [1/L + —ZELEE] in

the summation on the right-hand~side, the coupled harmonic midZsRare similar
to those previously considered by Bellman, Azen and Richardson28 in their
numerical analysis of the plane wave form of Burgers' equation. Solving
these equations for a monofrequency source (i.e. N = 1) by a predictor~-
corrector method of the Adams Moulton type,29 we examined, among other

27
cases, the experiment conducted by Shooter, Muir and Blackstock. In this

instance a 3" diameter plane piston projector operating at 454 kHz in fresh

water at 17.8°F was driven at source levels from 100-135 dB re 1 ubar at 1 yd.

27
Assuming the same parameters as those previously chosen, we have

2
al/f

2.6 x 10 Y¥Np/m at 17.8°F, r = 1.5 yds, and B/A = 4.9 ;

consequently, we obtain « 7.35 x 10'3 Np. Vaiying Oo in accordance

r

lo

with the range of source levels mentioned above, w. computed wz at par-
27

ticular distances from the source selected for the experiment, giving the

axial pressure functions for the fundamental frequency component depicted

in Figure 1. It can be seen that our results are in excellent agreement with

(27)
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measurements except at ranges close to the source (i.e. 0.76 yd and 1.8 yd)
where an examination of Figure 6 in Shooter, Muir ond Blackstock's article2
shows that the experimental curves at these distances are not consistently
scaled (as they are at all other ranges) to give an extrapolated peak source
level at 1 metre. For comparison, compuced values of the fundamental, and
second harmonic are shown in Figures 2a  2b, and in Figure 3 the "extra
decibel loss" is given as a function of R at different source levels
corresponding to those of the experiment. Although the harmonic directivity
functions for this example are not shown here, they can be computed via
Equations (21) and (24) from the data already obtained. Our results have
clearly shown however, chat the axial field is accurately represented by
wg(R) , thus justifying the assumptions made in deriving Equation (21).

Since the real and imaginary parts of Equation (27) are coupled on the

left-hand-side by terms whose coefficient (1/1 + RZ) approaches zero as l/R2
for R >> 1, and since the coefficient [l/l + —ZELEE on the right-hand-side
1+R

approaches 1 as R increases indefinitely, we now propose to neglect these
: . o .
terms so that recombining the real and imaginary parts of wn we obtain an

approximate form of Equation (25) given by,

dwz R o n 0o ne o by o o

drR * *n"o i 2 wn - [ﬁ} [77] m i wn+mwm .« 42
1 +R | m=1

In this equation the effect of diffraction o the acoustic field is maintained

by the spreading-loss term, whose coefficient (R/1 + RZ) approaches zero as
R approaches zero and decreases as 1/R for R >> 1 . Using Equation (28)
to rederive the unsaturated solution for the second harmonic formed in an
inviscid fluid, and comparing it with Rudenko, Soluyan, and Khokhlov's23
solution of the inviscid form of Equation (25), as given by Equation (A )

of Appendix A, we find that neglecting phase differences, the absolute value

of the ratio of the two solutions, designated Q , can be expressed as,
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1/ 2 - 2
q = 2/ {Ln(Q + Rz)} + 4 {Qgg:ijiL_~ ) (29)

sinh_1 R

Evaluating the ratio Q as a function of R , it can be seen from Table 1
that the solution of Equation (28) for the second harmonic, approaches but
never exceeds 10% of that derived from Equation (25). It can also be seen
from Table I or from inspection of Equation (29) that the difference between
the two solutions tends to zero as R approaches zero or infinity. It seems
reasonable to assume therefore, that Equation (28) will provide a good
approximation to the absolute value of wi . Further confirmation of this
conclusion is provided by Figures 1 and 2 for the case of Shooter, Muir,
27

and Blackstock's experiment, where values of the fundamental, and second,

harmonics computed from Equation (28) are seen to be in good agreement
with the results obtained from Equation (25) based on the same numerical

29
procedure.
‘ 30
Using an approach previously adopted by the author in applying
31

Merklinger's  heuristic plane wave analysis to the spherical wave form of

Burgers' equation, it can be shown that the fundamental frequency component

of Equation (28) for a monofrequency source (i.e. N = 1) may be represented

by means of an approximate expression which differs slightly from a similar
3
approximation obtained heuristically by Merklinger, Mellen, and Moffett.

This aﬁproximation is given by,

(a r )R/
/l + R
¥ (R) S (30a)
1 / [00} JR i -{Z Oter)R 2
1+4 = ===~ dR'
2 o vy 1 + R
..((1 r )R 2
1 /
5 e °/ Lt h , for R >> 1 (30b)

/1 + |ij ]2 (B (2 a,r) -Y (2 OL,r,‘)]2

e T o
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TABLE 1

% ,/Iin(l + RZ)}Z + #ltan TR}
1073
10
10°
0.86
2.74
4.86

7.08

9.34

sinh 'R

10~

10~

10

0.88

3.00

5.30

7.60

9.90

0.98

0.91

0.92

0.93

0.94
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where Ho and Yo are zero order Struve and Neumann functions, re&OeCtiVely.33
As shown in Figure 1, results obtained from Equation (30a) are also in good
agreement with those computed directly from Equation (28), thus lending
credibility to the approximation.
Another interesting result inherent in the form of Equation (30) is
that the finite amplitude absorption loss incurred by the fundamental in
propagating through the medium, designated the "extra decibel loss" by

Blackstock?a and hence denoted EXDB , can bc expressed as,

EXDB

- 20 Log,, [/ 1+ Rz} %xp[(alro)R] } w‘l’

s — '
o R 2(a;r )R 2'|
10 Logyy | L+ 4 5 L (31a)

b /1 % x?

+ 10 Log, {1 + (noo/A)z[Ho(Z alro) - Y (2 oclro)]2 } ’

n

:

for R>>1 . (31b)

Denoting the "extra decibel loss' defined by Equation (31b) as EXDB_ to
indicate that for fixed values of Oo it represents the maximum finite-amplitude

absorption loss incurred by the fundamental, the curves of Figure 3 were computed

showing the variation of this parameter with & and AT . Since O is

related to the source level, as shown in the caption of Figure 4, these
characteristics can be used to obtain the "saturation threshold" of a
monofrequency source (i.e. the difference between a desired source level and

the appropriate value of EXDB_) once T and Oo are specified.

Having provided some degree of justification for Equation (28), we

now take its inverse Fourier transform to obtain a new form of Burgers'
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equation for a plane piston source, which can be expressed as

2
Yoltoly o my - @r) 5= o (32}
1+R aT
(o0} . ’[‘
where VR, = D YR e (33)
n:-co
It can be seen by inspection that if R << 1 , Equation (32) approaches
the plane wave form of Burgers' equation. Alternatively, if R >> 1, it
assumes the spherical wave form of Burgers' equation, as required.
Assuming further that the axial field is determined primarily by
wz(R) it follows from Equation (14) that
U(R’O’T) S lJ)(R,T) e (34)

In order to obtain the Fubini,35’36 Fay,37'40 and aéymptotic far field34,41
solutions of Equation (32), it is convenient to reexpress it in terms of the
'stretched coordinate’ system introduced by Blackstock.2* This transformation
is carried out in Appendix B yielding the scaled form of Equation (32) pre-

scribed by Equation (B7) as,

2
w oW -1 AW
- (1/N) W = - '{Fo cosh(O/Oo)} ';;E = 0 (35)
whar's W o= o1+ R (36)
and o/o0 = F(R) = e (37)
35-41

The established solutions of Equation (32) for a monofrequency source

are outlined in Appendix B, but before concluding it should be noted that

e,

T W —
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the unspecified "distortion function'" F(R) previously mentioned in the
text has now been equated to sinh-lR in Equation (37). Strictly speaking,
a more precise form of F(R) for the case of Equation (21) would be the
numerator of Equation (29), but as we have shown in Table I, this differs
only marginally from sinh_lR .

Having thus completed our discussion of the field equations governing
the propagation of finite-amplitude waves radiated by a plane piston pro-
jector, we will now consider how these equations can be used to provide

scaling laws for parametric receiving arrays.
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2. Parametric Receiving Arrays

Since the analytical model that has been -leveloped can be used to
define the field of a finite-amplitude pump wave radiated by a plane piston
projector under saturated or unsaturated conditions, we now wish to consider
the up-converted fields generated via interaction between the pump and a
plane wave of angular frequency { whose wave normal intersects the pump
axis (i.e. the positive 2z axis) at an angle © . We begin by expressing

the component of the signal along the pump axis in vhe form,

S S Re {11 ei(Qt - XQz cos O)}
s’ s
o
3 Re{u LA ~ Xz + mﬂz}
o
- Re{u o0z + 1 - koz + ZMQZ)} (38)
5o
where XQ = kQ - iaQ , and MQ = XQ sin2(0/2) 3 (39)

We now let T =Q(t - z/c )= (0t -k.z), R=2/r ,and r =k a2/2 so
o Q o o o

that Equation (38) becomes,
US(R,T) - RG{US e-(aQro)R + 1[T + (ZMQrO)R]} . (40)
o

If wo is the pump frequency, we arbitrarily chose its time waveform at

the source tc be,

up(o,T) = sin(lT) N wo/Q 5 (41)
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The spectral amplitude of the component of the signal along the pump axis can

thus be expressed as

(o] 8]
VR = Y (R)

_ l',)c e—(alro)R + i(ZMQrO)R : " & I ’ al - ag (42)

S S s
o o o

hence from Equation (26) we have,

wi(R) = wz e_(alro)R cos(ZMQroR) (43a)
o
&?(R) = —wz e—(alro)R sin(ZMQrOR) . (43b)

o

Likewise, the spectral amplitudes of the pump wave at the source can be

arbitrarily expressed as,

o _ .0
wN(O) = wp(o) (44)
giving w;(O) = 0 (45a)
and qf;(O) = 1 (45b)

With the boundary conditions for the pump field prescribed by Equations (45a)
and (45b), we can now solve Equation (27) numerically to determine the up-
converted frequency components w;+l(R) using Equations (43a) and (43b) to
define ;E(R) and @?(R) throughout the field. This calculation can be
repeated using different values of N , (aNro) , and A in order to express
the 'signal excess' w;+l/wz as a function of the pump amplitude via the

= o

parameter O for particular values of (aNro) and R . These calculations
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must then be repeated for different values of © 1in orler to determine the
spatial directivities of the up-converted fields. Since this is a very
lengthy process it is expedient to take advantage of the fact that in most
applications of interest the signal is considered to be very weak relative
to the pump. The equations for the up-converted spectral amplitudes wg+1
can thus be considerably simplified by neglecting terms on the right-hand-
side of Equation (25) other than those that involve direct products of the
pump and signal components giving,
dby, g (n+1)(%) ] 3 *
N+ i o o o o o o
aR T TT-o1 ) Y T TN ]I 5 )| 5 Vern¥n * 2 2 Vnsintn
(A1) (e - L
= N 4 N+1l-m'm
m=1
r 0
. N+1|| ol o0
i ][ 2 )wNwl (4b%)
- *
( i o N =1 0o A=2 o o - 1 o o
|*n-170 7 1 - iR Up-1 7 1 N 4 § UN-1-mPm ¥ 2 § 2a/N | YN-14n’n
m=1 m=1(1+ —
14+R
. *
1[N -lJ[SgJ ; 1 ’wo lpo
= N 2 m=l |1 + 2m/§ N-1+m'm
| 1+KR J
0] o« e \ * *
N, =: 1 o) 1 o 1 o o
i [ N ][ 2 ) . N | Ut 5 | Vg [V - (48R
m=1|1 + s | 1+ —3
\ 1+R” 1+R
Under unsaturated conditions the pump field is given approximately by Equation (25) |
as
-(a,r )R ;
e "o (47) :

W® = TR
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Substituting Equations (42) and (47) in the right-hand-side of Equation (46a)

we thus obtain,

[0} H
iy Lo i )0 _ o fnsa SQ 0 omloyr, t ar IR + i(2Mr DR
dR N+1 o 1 - iR N+1 N 2 So 1 - iR )
(48)
Since w;+1(0) = 0 , the solution of Equation (48) enables the 'signal excess'

¢;+1/w: for the upper sideband to be expressed as,

o ,.0 (e 1){%) e Cari® * 1M ror o,
ber'Vs = 1| Tn L'E_] '"_1_-W_J S b ualllcs
- [ N ; 1] 21:] R [Si“{(Mgro)R}] o~ Oy TIR + i{tan 'R + (Mor )R},
J / 2 (Mﬂro)R
1+R (49)

By means of the plane wave impedance relationship, we can reexpress the signal

excess as U . /U° = p'/p' so that in terms of more conventional notation |
WL Sa + So
Equation (49) becomes,
w o sin{ (X.r )R sinz(O/Z)} -1
: + o R o -(a,r )R + i{tan "R
p'/p il -t | 7 e “+o
+ o o i e R2 (XQro)R sin”(0/2)

+(XQro)R sinz(O/Z)}.(SO)

M1 T s

Inspection of Equation (50) shows that if R << 1 it approaches Berktay and

Al.Temimi's solutio&u%or a plane pump wave, and likewise if R >> 1 it
approaches the form of the corresponding spherical pump wave solution,
utilized by Goldsberry17 and McDonough18 in their respective systems studies.
Since Equation (50) is perfectly general and can easily be incorporated in
such studies it should prove useful in cases where the pump projector Rayleigh

distance is large.
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Equation (46b) and substituting Equations (42) and (47)

e we obtain,

e
¥y Y R S TR § o %) ,0 ) (1/1 - iR}, [1/1 + iR
dR ¥-1"0 ~ 1 - iR "N-1 N 2 )%, )| 4 2] L. 2
14k 148
e-(aNro + alro)R - 1(2MQrO)R
o , 2
(B2 o) e [i4+fLodR){L*R )
~ YN 2 /"8, L+ 1R) (5 4 g2/

e-(OLNro + alro)R - i(ZMQrO)R
- iR

14

. N -1 200~ ¢° e—(OLNr0 + alro)R - J(ZMﬁro)R
K 3 s 1 - iR 1

o
(51)

Hence with w;_l/wz = p'/p' the solution of Equation (51) gives,
- s,
. , 2
o' /p! 5 f:. 200 & sin (XQrO)R sin“(8/2) e“(a_ro)R + i{tan_lk
- s w 3 W o 2
b ® JrREe | G Resinl(012) ~(%r R sin’(©/2)}

(52)

Comparison of Equations (50) and (52) shows that with the exception of a slight

w
change of phase the two solutions agree to within a factor 3 w- e-(a_ro - a+ro)R
[w i
é. L= 1

Since we are primarily concerned with the effect of a saturated

pump field upon the up-converted frequency components we now repeat the previous

0

derivation of wN+l

using Equation (30a) in place of Equation (47) to define

o
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the pump field. In this manner, neglecting the small difference between w:

o
and ¥ , the signal excess p;/p; can be expressed as,
- "o

. -1 '
. oy oo]e—((xiro)R+ i tan "R [R S (2MoT IR oy
p,/p i & Bt lf oot
s eyl %l 2 0 2
2 - Y 1+R o (R' -(20,r )R"
1+ 2 _____________—__0_ dr"
/ o /14"
wg H1 O, -(a+ro)R + i tan—lR @ -1 2 R
w ad—= 5 e = L exp{i m sin " (sin 0/2)} J
2 v U == ¢
J (2X.r R') dR'
m( 0 o ) (57)
o (R' -(ar )R" 2
1+ —9-[ & =2 gR"
v & o 2
/ 1+ Ru
On axis this becomes,
§ -1
wg O e-(a+ro)R + i tan "R (R 4R
p'/p| . i = _— == J
+' Vs w 2 =
- "o 0=0 o 2 o
/Yy 1+R ~(20.1 )R" 2
oo R e N o
1+ N J dr"
/ °© /14 r?
Likewise, if D+(®) denotes the spatial directivity functions of the up-
converted fields then from Equation (53),
o _ " J (2Xgr R') dR'
% exp{i m sin 1(sin2 9/2)}J n 2
Nt
2 o 2
v/ /1 +R"
D+(O) = . (55)
X LR dr'
! ’ o -(20 r )R" 2
14 |2 [Re_TWel  pn
2

I g °© /1 +R"?

>

(54
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Evaluating Equations (54) and (55) numerically we obtained the results depicted
in Figures 5a and 5b which clearly show in terms of 'scaled' coordinates the
effect of pump wave saturation upon the up-conversion process.

Finally, in order to obtain simple numerical estimates for values of

ayr = ar, < 0.1 , we make use of weak shock theory by substituting

3 g
w;(R) ~ e_(aNro)R/[l + 7? Ln(l - iR)] in Equations (46a) and (46b) to obtain,
(W, f 2 o 2 = (a+ro)R ¥ i tan_lR - 2/o
p'/p! = -|=HEi|=|1-1-2R||-E| = |} = . (56)
+ % wo 0o 2 no 2
= \ V,1+R
0o
(wy Lol - & 5 R] _ .o -1
J GZ 2 : (aiFO)R + i tan "R , Oo s 1 (57a)
L0 i SR
(0w, ){ o -1
+ - .
b 4= o R . (0.+I'O)R + i tan "R ' g R/Z i (57b)
w 2 - = o
. ©) /1+R
) 00 Zl 2 1 ooR 2
) — = == =
o N {Ln il 2 R } l A{tan 2 }; -(a,r )R+ i tan 1R i
RO Il 2 <L
| o 1+R

OOR/Z > 1 (57¢)

Having thus obtained approximate expressions for the signal excess, the
"pump excess" pi/pi can likewise be approximated by means of Equations
(3.a) and (50) or £{57c¢).

Since the '"signal excess'" as defined by Equation (57c¢) is virtually
independent of w+/wo for w >> QS it follows that "scaled characteristics'
giving the functional dependence of (p;/p; ) exp{(a+ro)R} on o can
readily be constructed for different values 2f the "scaled range" R , as

shown in Figure 6, where the particular choice of R equal to 10 and 100

respectively, was quite arbitrary. Using such characteristics, the signal
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excess can readily be evaluated. For example, in the case of a 100 kHz
pump wave radiated by a 0.3m diameter projector in fresh water, with
r = 4.7m , a, = 2.6 x 10-4 Np/m , and ar = 1,23 % 10-3 Np , Figure 6

gives the signal excess measured by a hydrophone located on the pump axis

at R = 100 (H.e. r = 470m) for 0.01 < o, <1 as,

00 Radiated Pump Power Signal Excess
Watts dB
0.01 2 x 1073 -67
-1
0.1 2 x 10 -53
3
1.0 2 x 10 =47

It is clear from this example therefore, that increasing the radiated pump
power to enhance the signal excess reaches a point of diminishing returns
when B = 1 ; a conclusion which is further confirmed by examining the

degradation of the directivity functions as S, increases.

e T T S R—— ] w———
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Conclusions

Using Kuznetsov'szo nonlinear paraxial wave equation to derive coupled
spectral equations for the axial field of a ‘inite-amplitude pump wave radiated
by a plane piston projector, we have shown both by numerical analysis and by
successive approximation that the solutions of these equations are in good
agreement with.well established experimental result327 under saturate< and
unsaturated conditions. We have also shown that when the pump field is
modulated by the spatial component of a weak field transmitted along the
pump axis that the resulting up-converted frequency components can be amplified
by increasing the amplitude of the pump wave until a point of diminishing
returns is reached when the latter exceeds its saturation threshold. In
order to supplement our numerical analysis of the up-conversion process, we
have derived analytical expressions for the signal excess and pump excess
whica are in reasonably good agreement with our numerical results for values
of the small-signal-pump-wave-absorption-loss ar, less than 0.1 np. These
closed form approximations, which reduce at low pump amplitudes to Berktay
and Al. Temimi's10 spherical pump wave solution, are sufficiently simple to
be readily included in system simulation models where they can define upper
bounds for the conversion efficiency and directivity of Parametric Receiving

Arrays as the pump wave undergoes saturation.
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APPENDIX A

For an unsaturated monofrequency source of finite-amplitude (i.e.
P <1, N=1) the spectral amplitude of the fundamental frequency

component is obtained throughout the field, to a first approximation, by

suppressing the right-hand-side of Equation (22) so that,

)
dwl i o} o
<t %% " To b, = 0, v (0 =1 (Al)
h e-(alro)R

giving d)l(R) 2 T - (A2)

Substituting Equation (A2) in the right-hand-side of Equation (22), the
spectral amplitude of the second harmonic field generated by self-interaction
of the fundamental frequency component in the medium is given to second-order

by the equation,

dwg i o ioo e-zalroR
Rt %% T1- iR] Yy = 2 (1 - ir) i 8y = 4y ks
hence, ~ 3 ,
] ioo L (aZrO)R R e(onzro 2alro)R
= ]
¥, (&) 2 1-1R L Ry qr
oo e-(Aalro)R - i(2alro) 1 - iR ei(Zoclro)y |
= 1 - iR X e I
i
oo e-(&alro)R - i(Zalro)
= - —2- 1 - iR {Ei[i(ZOtlro)(] T iR)] = Ei[i(Zalro)]}

i
(a6) - j



x Y
where Ei(x) J = dy . (A5)

From the asymptotic limits of Ei(x) we obtain, for alro > 1,

—(2alro)R —(Aalro)R
o o Je e
e Ve om?  A-1B
-1 ] -1
ro e—(2a1ro)R + 2i tan 'R e—(&alro)R + i tan "R
LR 1+ &%) ) 2 =
\/l + R

Alternatively, as alro -0,

W2R) - - % 1n(l - iR)

2 1 - iR
-1
s 5> ==~ 1 tan 'R - tan—l{-—gi’—"—-%—}
= o _g///r{Ln(l + R°)}° + 4 {tan "R} S Ln(l + RY)
4 2
1+R (A7)

This inviscid solution is identical to that obtained by Rudenko, Soluyan, and

2]

25
Khokhlov.
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APPENDIX B

Combined Plane-Spherical-Wave Burgers' Equation in Stretched Coordinates

4
Following Blackstock2 we chose to redefine V¥ in terms of a new

variable W , defined as,

—————

W = w//l + R . (B1)

Substituting Equation (Bl) in Equation (30), we obtain,

2
W _ [OO/N/ 1+ R% ] W (1) W _ 9 . (B2)

oR oT 3T

N

Again, following Blackstock,24 we introduce the scaled distortion distance

g = oF(R) in Equation (B2), where F(R) has yet to be defined, giving

2

oW 0 2 _BE ' _B__E= g
- [l/NF (R)//l + R ] Wl - [1/1‘o F'(R)] arz 0 ;

Fo = Oo/aoro g (B3)

The function F(R) can now be defined by setting F'(R) = 1//' 1 + R2 so
that,
R 4R
F(R) = _____R_.__
v oL E R'2
-1
= sinh ~ R (B4)

T i —



hence o = 8. sinh_lR 2 R = sinh(o/oo) . (B5)

Frim Equations (B4) and (B5) we thus have

FR) -
/ 1+ R
1
- cosh(O/OO) ) (B6)
Finally, substituting Equation (B6) in Equation (B3) the combined plane-
spherical wave form of Burgers' equation expressed in terms of 'stretched'
coordinates becomes,
-1 32w
- (1/N) W ——-— ' " cosh(o/og )} — = 0 . (B7)
o o 3T2
For a monofrequency source (i.e. N = 1) the solution of Equation (B7) can
be expressed via the Fubini,35’36 Fay,37-40 and asymptotic far—fie1d34’41
approximations as,
o 2Jn(n0)
W(o,T) = X sin(nt) , o <0 <1 (B8a)
nd =
n=1
’ © cosh(o/0 ) sin(nT)
- & 5 =1 L2 X n/2_<_0_<_os(B8b)
o n=1 sinh{nI‘o (1 +0) cosh(cloo)}
9 Il(A)
= = {exp[- (0 /T ) sinh(O/O )1}sin(t) , 0 < 0 < =(B8c)
A IO(A) s —
where A = (2/FO) cosh(oq/oo) (B9)

and the 'scaled' shock-termination distance ¢_ 1s obtained by solving

- <2




transcendental equation, previously expressed by the authorl‘O in slightly

different form for plane or spherical waves as,

Q

éi-+ 52] cosh(os/oo) = [doro]—% (B10)

(e]

By varying 00 we can compute OS/OO for particular values of aoro 5
evaluate A via Equation (B9) and thus obtain the total finite-amplitude
absorption loss EXDB ~ for Equation (B8c) in the form,

2 L)
EXDB, = 20 Loglo I RTS) . (B11)
o

Values of EXDB_ obtained in the manner are found to be in good agreement

with similar values calculated with the aid of Equation (31b).
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