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INTRODUCTION 

Recursive definitions «re usually consldt-nd frM  two different points of 

view, namely: 

(I) As an algorithm for computing a function by repeated substitutions 

of the function definition for Its name. 

(II) As a functional equation, expressing the required relations between 

values of the defined function for various arguments.  A function that 

satisfies these relations (a solution of the equation) is called a fixedpoint. 

The functional equation represented by a recursive definition may have many 

fixedpolnts, all of which satisfy the relations dictated by the ^'flnltlon. There 

Is no a priori preferred solution and therefore, if the definition has more than 

one flxedpolnt, one of them must be chosen.  A number of works describing 

a least 'defined  flxedpolnt approach towards the semantics of recursive 

definition« have been published recently (e.g., Scott [6]).  Researcher« in the 

field have chosen the least flxedpolnt as the "best solution" for three 

reasons: 

(i)  It uniquely exists for a wide class of practically applicable recursive 

definitions. 

(11) The classical stack Implementation technique compute« this flxedpolnt 

for any recursive definition. 

^111) There I« a powerful method (computational Induction) for proving 

propertle« of thl« flxedpolnt. 

However, as a mathemarlT, 1 model for extracting Infomatlon from an Implicit 

functional equation, the selection of the least deflnea solution teems a poor 

choice; for many recuralve definition«, the lea«t flxedpolnt doe« not reveal 

all the useful Information embedded In the definition.  In general, the more 

defined the «olutlon, the more valuable It Is.  On t. e other ha.-sd, tnic argument 
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sluv.jld  hi- npplifd with caution,  as  there are  inherently umierdefined  recursive 

dffftaitiOW.    CMWtdM  th."  iKtVMM  vxampl.-    F(x)  O    F(x\,   f .r which any  partial 

lunction   is a  solution.     A  randomly chosen  total   tunction  is   by  no means 

Mipiriur  to the totally  undetined   least   fixedpolnt   in  this case. 

Ilu-  optimal   tixedpoint.  detined   in  this paper,   tries   to rfnu-dy   this  situation. 

It   is   intended  to supply  the maximaliv  dillned   solution   relevant   to   the gi«*n 

..cursive definition.     Cnsider.   f M-  -xamplo,   the   f.lining  recursive definition   fat 

solving  the discrete   form ol   the  Laplace equation,  where  f(*,f]   maps  pairs of 

.iite^ers   in     -1     ,1     '.   -lXtlOO]        into  reals: 

F x^',   • ■   U  x   -IC;' V   x   1       V   y   -I       v   v. 1 

then     x +y 

11M  ; l(x-l.\ +Kxfl,v fl x,y-l +K x,y+l  . 

li.is concise organization ot knowledge is delined enough to have a unique 

total tixedpoint which is our optimal tixedpoint , but its least fixedpoinl 

is totally undclined inside the square  -lüü, lOOjv-(-lüO.lUO). 

.'Iiile the notion of the optimal fixedpoint is theoretically well-defined, its 

computation aspects contain many pitlalls, since the optimal tixedpoints ol 

c rtain recursive definitions are n >n-c wputable partial functi >ns. We d,> not 

pursue in this paper the practical aspects ot the optimal tixedpoint approach; 

in Manna and Shamir[U,^],  and in more detail in Shamir  ,  we suggest several 

tedmiques directed toward the computation of the optimal fixedpoint. 

In I'art 1 ot this paper, a few structural properties of the set of all fixedpoints 

•f recurslv definitions are pr.ven.  The otplmal fixedpoint Is then Introduced 

in Part 11) as the tormalization of our intuitive notion of the "best solution" 

• f recursive definitions. The existence .f a unique optimal fixedpoint f u- any 



recursive definition, as well as sjme of its properties, are established.  In 

Part III we consider the cnmputabllIty (from the point of view of recursive 

function theory) of the optimal flxedpoint of recursive definitions. 

An infornul exposition of the main ideas and philosophies of the optimal fixed- 

point approach is contained in [5l« A more complete investigation of the various 

fixedpoints (including the optimal flxedpoint) or recursive definitions appears in 

[9l.  Results which are somewhat related to this work have been obtained by Myhill 

[6], who investigated ways in which total functions can be defined by systems of 

formulaes. 

PART I.  SOME STRUCTURAL PROPERTIES OF THE SET OF FIXEDPODiTS 

In this part we Introduce our terminology and prove those structural properties 

of the set of fixedpoints of recursive definitions which are needed in Part II. 

A.  Basic Definitions 

Let D be a domain of defined values  D to which the "undefined element" u 

is added. The identity relation over D is denoted by =. The set of all 

+ n       + 
mappings of (D )   into D  is called the set of partial functions of n argu- 

ments over D,  md is denoted by PF'D,nK 

The binary relation "less defined or equal," c , over various domains 

plays a fundamental role in the theory. 

Definitions: 

(•)  For x.y € D+ , x c: y if x = a; or x a y. 

+ n  _ 
b  For x,y € (D )  , x c y if x1 c yi for all l<l<n. 

(c)  For t^i    € PF(D,n) , fj c f. if ^(1) c f^x) for every x € (*•)*, 

(i)  A function  f e PF(D,n) is monotonic If x c y ■> f(x) c f(y). 

The relation r is a partial ordering of PF(D,n). We hall henceforth use 



tlie  standard  tcrminolony concerning partially ordered  sets.     In particular: 

Dftin It ions:     Kor any  subset    S    of    PF D,n   : 

aN     f €  S    is  the   least   t lement  of    S     If    f^gfor any    g €  S. 

,b^     '  €  s     ls a minimal  clc-ment  of    S     if there  is no    g t  S    which  satisfies 

C       l  £  PF(D,n)     is an upper bound of    S     if    g C  f   for all    g C  S. 

d       f €  PF D,n       is  tin-   least  upper   bound     lub    ol     S     il     I     is  the   least 

ikmrnt   in the  set  ot upper bounds of    S. 

ll-f  notions of  the Kreatest   element,   a maximal   element,   a   lower bound  and 

t,lt"  greatest   tower  bound     Klb    of S  are dually defined. 

')el im t ions : 

a   l,g € PF I),n arc consistent if  I x • x and g x ^ x Ä  13?   g x 

tor every  x €  1) 

b  A subset S of PF U.n*  is consistent if every two functions,  f.g € S 

are consistent. 

Krom the definition It follows that: 

I  A subset S of n D,n)  has a lub, denoted by hib S, If and only If 

S  Is consistent. 

H  Every non-empty subset S ot PF D.n)  has a gib, which Is denoted by 

Klb S. 

l>etlnltlons: 

a  A functional Is a mapping of PFiD.n)  Into PF(D,n). 

b  A functional 1  over  PF'D.n)  it monotonlc If  f C g -> rf f] C rfg] for 

every  f,g € PF D,n . 

1  A recursive deflnlt Ion Is of the form Ffx) <- T(F](X), where T  is a 

functional and F Is a function variable. 



All the tnnct ionals we shell deel with In this peper will be monotonic over PF(D,n) 

In practice, there are many types of functionals which are monotonic only over 

a certain subset S of PFfD.n). The theory developed in this paper can be 

applied to any such restricted functional, provided that S satisfies the 

follow ng two conditions: 

(I) any consistent subset of S has a lub in S,  and 

(II) any non-empty subset of S has a gib in S. 

For simplicity, we do not consider in this part functions over multiple 

domains e.g., D. x...v D -. D ) or systems of functionals (e.g., 

(T.,...(T. ) )« However, all the results can be extended easily to the more 

general cases. 

B.  lixedpoints. Prc-i ixedpoint s. and Post-f ixculpoi nts 

Definition:  A function f € PF D,n)  is a flxedpoint. pre-fixedpoint. or 

post-tixedpoint of T If f ■ T[ f] , f c rf f] , or T[f] C f, respectively. 

The sets of all fixedpoints, pre-fixedpoints, or post-fixedpoints of f are 

denoted by FXP(T) , PRE(T)  or POST(T), respectively. 

Clearly FXP(T) - PRE(T) fl POST(T) . A few useful properties of theee sets 

for a monotonic functional  T are: 

(I) FXP(T) , PRE(T) , and POST(T) are closed under the application of T. 

(II) If S c PRE(T) is consistent, then  hib S € PRE(T). 

(ill) If S c POST(T)  IS non-empty, then  .gJJ,S € POST(T). 

The most important property of pre- and post-fixedpoints is that they enable 

us to uniformly approach A flxedpoint of f , either by monotonically ascending 



or by monotünically descending to it.  The theoretical background of this 

process is contained in the theorem: 

ttMEM 1  Hitchcock and Park :  Let  S ,^  be a partially ordered set. with 

a least clement Q , and such that any totally ordered subset has a lub. 

Then for any monotonic mapping T : S • S , the set of fixedpoints of  T 

contains a least element. 

A formal proof, using a transflnite sequence of approximations  r "'     which 

converges to the least fixedpoint of  - , appears in Hitchcock and Park 1]. 

An inmediate corollary of Theorem 1 is: 

Theorem  :  For monotonic functional  T : 

a  FXP.T  contains a least element, denoted by  1fxp r . 

b  If  f £ PRE T)  then the set [f*  € KXP T | f = f'T  contains a 

least element. 

O  If  f € POST.V  then the set  {f € FXP(T) | f' r f}  contains i 

greatest element. 

Proof: 

a  Inmediate by Theorem 1, taking PK D.n  as S , c  as s , and the 

totally undefined »unction as H . 

b  Define Sf ■ {£' € PF ü,n  | f C £»).  Sf  is partially ordered by 

C  , and contains  f as its least element.  Since any totally ordered 

subset  | of Sf  is consistent,  hib S exists.  Furthermore. 

lub S € S  since  f g lob  S. 

The given monotonic functional  f maps PF I),.!  into PFD,n: .  It 

is easy to show .hat  T maps Sf  into itself.  Therefore, we may 
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consider the monotonlc functional  T* mapping S  Into S, , which Is 

the restriction of  T  to Sf. Theorem 1 ensures the existence of a 

least flxedpolnt for -r' , which Is exactly the flxedpolnt required. 

(c) Using the reverse order, I.e.,  f. S fp iff f0 c f. , a proof dual to 

the proof of part (b) can be obtained. Q.E.D. 

Definition:  A flxedpolnt  f of T  Is FXP-conslstent if for any  f* € FXP(T) , 

f and  f  are consistent.  The set of all FXP-conslstent fixedpoints of 

T is denoted by FXPC(T). 

From the definition, it follows that for any monotonlc functional T : 

(a) Since  Ifxp V;  Is  FXP-conslstent,  FXPC(T)  is non-empty. 

(b) Since any two FXP-conslstent fixedpoints are consistent,  FXPC(T) is 

consistent, and thus  lub FXPCQ) exists. 

Theorem 5:  For a monotonlc functional  T ,  FXPC(T) contains a greatest 

element. 

Proof; We know that  f. ■ lub FXPC'T) exists. As a lub of fixedpoints, 

fj € PRE(T) . Thus, by Theorem 2b, the set (f' € FXP(T) | f. c f) 

contains a least element, say  f . We show now that  f^ C FXPC(T), implying 

that  L  Is the greatest function in FXPC(T) . 

Let g be any flxedpolnt of T . We would like to prove that  fp and 

g are consistent, by showing the existence of a function  f7  sue'., that 

f2 C f  and g c f, . The set of fixedpoints S - FXPC(T) U {g)  is 

consistent by the definition of FXPC(T) , and therefore by Theorem 2b 

again there exists some  f, € FXP(T;  such that  lub Set,.  Thus, 

g c f, and  hib FXPC^'T,' C: f, .  Since  f  was defined as the least flxedpolnt 
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such that  hib KXPC V i_  1  , we have  f r f. . Q.E.D. 

C.  Maximal Flxcdpotnts 

üeflnttlon: A fixedpoint  I et a functional  T  is said to be maximal 

it there is no other fixedpoint  g which satifies  f  g .  The set of all 

maximal fixedpoints of -.     is  denoted by MAX  - 

Unlike the case of minimal fixedpjints, a monotonic functional may have any 

number of maximal lixedpoints.  MAX -       "covers" nt in the sense that: 

Theorem •. :  For monotonic functional ~   ,   il     ft PRK    then  f - g for 

some  g £ MAX \     . 

In other words, if  f(I   c  for some  f € PRE   , He  Ü+   and c € I), 

then there must exist  g € MAX(T)  such that  g J . c. 

Proo t:     Le t    Sf- {f  c  FXP T)   |   f r   {'].     By Theorem    b,    Sf    contains at 

least one element   -  the  least   fixedpoint which   is more defined  than  f. 

We  now  show that     Sf    contains an upper bound   for any totally ordered  subset. 

Let     S    be  such a subset.     Since  it   is  totally ordered,   it   is   in particular 

consistent and  thus     Tub S    exists.     Furthermore,  as an   lub of   fixedpoints, 

lüb S     is n pre-fixedpoint.     Using Theorem    b unce more,   there  is a  fixedpoint 

fj    which  is more defined than    lub S,     i.e., which  is an upper bound of    S. 

By  the definition of    S    and    Sf,   fjC Sf and  thus S has an upper bound  in    S   . 

We have thus shown that Sf is non-empty and contains an upper bound for 

any totally ordered subset in it. By Horn's Lemma, any partially ordered 

Ml   having  these   two properties contains a maximal  element.     This maximal 



definition     of    S... m _ 
f Q.E.D. 

^s a result of Theorem h,  we cbtain 

Corollary:  For any monotonlc functional  T , MAXfr)  in non-empty. 

Proof:  Follows by the fact that  PRE(T)  is non-empty, if.nce the totally 

undefined function Q  is always In PREft). Q E D 

We also have 

Theorem fr  For a monotonlc functional  T , if f « PRE(T) and g € MAX(T), 

then either  fcg or  f and g are not consistent. 

Proof:  By contradiction.  Suppose  f^g,  and  f and  g are consistent. 

Then  f1 H lubif.g) exists and gr f^ PRE^T). Thus by Theorem 2b  there 

is a fixedpoint  f,  such that  ^5 f^.  Therefore,  g^ f  , which 

contradicts the maximality of g. 0 E D 

From Theorem : we obtain 

CorollarV:  Any two d'.stinct maximal fixedpoints of T  are not consisted. 

Proof.:  If  f,g e MAX,'-  , then in particular  f € PREf-r)  and we can thus 

apply Theorem  .  The possibilitj  f = g  in ruled out by the maximality of 

f , and thus  f and g are non-consistent. Q.E.D. 

PART II.  THE OPTIMAL FIXEOPOINT 

A^ definition and Properties 

By its definition, an KXP-consistent fixedpoint is a function which agrees 

in value wieh every other fixedpoint of T  for any argument.  In particular. 



bo no fixedpoint of i which has a different defined valao c'  at 71  . 

This value  c  is then said to be weakly defined by T  at  d   it i-: not 

"strongly defined,' however, since there nay be fixedpoints that arc not 

defined at all at  d ).  A fixedpoint which is not  KXP-consistcnt, on the 

other hand, represents sjme random selection of values from the many which 

are possible.  It is in this sense that we may say that a recursive definition 

really "well defines" only its FXP-consistcnt solutions. 

Among these "genuine" solutions of i , the more defined the solution, the 

more informative it if,. Motivated by this quality criterion, we introduce 

our main definition: 

Definition:  The optima] lixedpoint ol a monotonic functional -.     is its 

greatest KXP-conststent fixedpoint.  It is denoted by o£t'- . 

Note that Theorem ;> guarantees the existence of tin-  uniquely defined) 

optimal tixedpoint of any monotonic functional.  Using properties of MAX'T 

we can characterize the optimal fixedpoint trom a ditferent point of view. 

Definition:  Since  MAX T   is non-empty,  ^IbMAX;^  always exists, and 

is denoted by  Imax T . 

As a gib of fixedpoints, hnaxd^  € POST(T), but it is not necessarily a 

fixedpoint.  For example, consider the following functional over PFfN.r^: 

T[F1(K)J  i_f x=0 then Fx else O'Ffx-1;. 

The fixedpoints of  T  are the totally undefined function    ,  and all the 

functions  ^ , i=c,l  defined as: 

_!  N denotes the set of natural numbers. 
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f'l   If x-0 

0 otherwise. 

It   is clear  that  MAX(T)  - {^.f^...}.    The gib of this  set  of functions 

is: 

if x-0 /■CL ir x-u 
lmax(T)(x)   =\ 

^0 otherwi se 

This   function  is not a  fixedpoint  of    T   ,  but  is a post-fixedpoint  of T. 

It  descends  to the  fixedpoint    Q    by  repeatedly applying    T    to it. 

However, we  show now that  the  function    ImaxM     is closely  related  to 

o£t(T): 

Theorem t:     For  a monotonic   functional     f   ,     optfr)     is  the greatest  element 

of the  set  {f'  €  FXP(T)   |   f r  Imax T)1. 

Pro£f: Let us denote by f the greatest element in the set. By Theorem 

2c, the function ^ must exisn since Imax T € P0ST(V. We now have to 

show that    oattT1) c  f.     and    f    c OEtf-r)   . 

To  show    ogt   T    CT  fj   ,  we note  that   by definition,     optf-r >     is  consistent 

with any maximal   fixedpoint     f     of     T   .     By Theorem 5,   it   follows  that 

o£t(T) C  f.     Thus,     0£t   T       is a   lower  bound of     MAX(T)   ,  and   therefore 

opfW) g Iroaxfr)  =  g^lb MAX(T)   .     Since     fj  is  the greatest  element  of 

{f  £  FXP T     |    f r   ImaxT)}    we obtain    o£(t) C f.. 

We now show that f1 r opt(j) . By the definition of —fe/»1 , it suffices 

to show that ^ € FXPC(T) . Let f be any fixedpoint of T . Theorem 1* 

implies  that   there  exists  some     f.,,  € MAX(T)     such  that    f c f?.     By the 
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bound of  f and  1^ , which implies that they are consistent. Since this 

holds for any f e FXP'T) ,  f € FXPC(T). 

The original definition of o£t;T)  and Theorem 6 suggest that o-it  T 

can be "reached" both from below (by ascending ^rom ^|(T) as high as 

possible in FXPC(T) ), or from above  by descending from MAX'V ).  This 

situation is illustrated by the schematic diagram of Figure 1.  In our graphical 

representation, the set  {f € FXP.-n | f c f}  is shown as an upper cone 

Figure 2A    . and the set {f € FXP{T1 \   f £ t]     is shown as a lower cone 

ligure CB' . 

The  following properties  of    ogt   T     .   for a monotonic   functional     T 

are   immediate consequences of  its definition and  Theorem ., : 

a       If     Uxp T       is a  total   function,   then    o£t  T ifxp'r). 

b      o£t. -     €  MAX T)     if and  only  if     T     has  a  unique maximal   fixedpoint. 

It   is clear that  a  necessary condition  for    ofit/rVd)  5  c     for some    d € 

D and     c    €  D  is: 

fi)   f(d) - u, or f(d) ■ c  for all  I € FXP(T\ and 

(11)  f(i) = c  for at least one f € FXP(T) . 

However, this condition is not sufficient, as demonstrated in the previous 

example: 

T[F](X): it    x»C then F(x) else O'F(x-l). 

All the fixedpoints of i are either undefined or defined as C at x - 1 

and there are fixedpoints which are defined at x  1, wnile opt'T^'ll 3 „,. 

B.  Examples 

In  this  section we  illustrate  the theory presented  in  this pan  with  two 
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Opt(T) 

FXP(TH 

MAX(T) 

FXPC(T) 

lfxp(T) 

Fig. ). The fixedpoints of a recursive program 

Fig. 2A Fig. 28 
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tunctlonals.  These functionals are monotonlc only over the subset 

MOM N,P  of all monotonlc functions In PF(N,1).  Since MDN(N,1) satisfies 

the two conditions mentioned at the end of section I-A, we may restrict the 

discussion to the domain M0N(N,1)  rather than PF(N,1). 

Example 1:  Consider first the monotonlc functional  T.  over MDN(N,1): 

Tj'FKx) ; If x-0 t! Li>] 1 else F(?(x-l)). 

The least fixedpolnt of  Is functional Is 

•1 If x » 0 

otherwise. 

UV vould like to show that  O^T,) B IfxpfT.).  For this purpose, It 

suffices to find two flxedpolnts  f.,f € FXPfx '  whose values disagree 

fof any positive x.  Two such functions are, for example: 

rl If x e N 
t x   1 
1     1L   If x = a' 

and 

- , «   rx+l If x € N 

\\ii I f X    JL 

Thus both op^T.'  and  Imaxu. )  cannot be defined for any positive 

Integer x ;     since  ff«,) ■ ou  for any  f 6 FXP(T ), we finally obtain 

that oEt'-r.) H Imaxfi.^  1 fxp T  . 

Since  Ifxp T.)  and opt 'T. )  are the least and greatest elements of  FXPC(T1) 

Ifxp T )  is clearly the only element of FXPCfr.). 

The functions  f.  and  f  above are maximal, since they cannot be extended 

at  x ? «j .  It Is quite an Instructive exercise to characterize all the 

maximal flxedpolnts of T. .  For example, It can be easily shown that any 

maximal fixedpolnt other than  f.,  Is a total, ultimately periodic function 
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over    N. 

Example 2;    Let us consider now the functional    T2   ,    defined over the  sane 

domain: 

T2[F](X)   ;   If x"0 then  1  else 2¥(F'*-1)). 

One can easily show that    IfRgfrg) ■  Ifxp^)   .    The  flxedpolnt    optfr ) 

cannot  be  obtained  by  the technique used  In the  previous example,   since  no 

appropriate  flxedpolnts     ^ and    ^    can be  found.     As a matter of  fact,  this 

functional has exactly  three  flxedpolnts: 

{ft otherwl 
5    0 

se 

A  If x = 0 
0 if x =   1 

f0(x) ■ <8 if « ■ 8 
/U  if x - 3 
luu otherwise 

/I  if x s  0 
\0 if x = ^1+1 

f,(x)  ? 22  if x = 3i-feV  1-0,1,2,... 
fk if x ,, 3i+3J 
^U)  if  x s (ü 

These   flxedpolnts are   related by       fj c  f   c f      and  therefore 

Uttfrg) ■ f1 

22l(i2) s lmax(T2) =  L 

MAX(TJ s {y 

FXPC(T2)  ? FXP(T2)  S  {^.^/g   . 

PART   III.     THE COMPUTABILITY OF OPTIMAL  FIXEDPOINTS. 

In this  part we  state  several  results concerning the computabillty of optimal 

flxedpolnts  over  the  natural  numbers.     In our constructions we  shall use 

systems of functionalg        ? - (T| ^ where each    ^    y , nonoKonlc 

functional mapping any k-tuple    (fj ^)  of partial   functions  into a  partial 
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fUnCtl0n    TIffl fkJ-    Thu8.    T    mapsany k-tuple  ,.,    ...,fk)     of partial 

functions Jnto thj» k-tuple     ^T ff f  1 r * r  i \       . 

I  syfltem of recursive de/lnltlon»  of the  form 

^(x)  <- J1[F1 Fkl(x) 

\(*) •-- Tfclr, Fk!ix; . 

A flxedpolnt of T is now defined as a k-tuple  (f. t   mapped by 

to itself. We shall be interested in the cocnputabil ity of the function 

f, appearing as the first element in such a tuple ithis function is usually 

calU*d the "lain function; the others are called the auxiliary function«^. 

All the definitions and results contained in parts I and II of the paper can 

ho extended easily to this general case. 

We first show that the collectior of  optimal fixedpoints of recursive delinltions 

over the natural numbers contains (as miin function«) all the partial camputabU 
functions: 

Iheorem^: Any partial recursive function 9      over the natural numbers is 

the optimal fixedpoint of some effectively constructable system of recursive 

definitions. 

VrooJi:    Anv partial recursive function can be computed by a counter machine 

with two counters cf. Hopcroft and Ullman (2!, page 96). Such a machine 

can be simulated by a syntem of recursive definitions in the following way. 

The input value is stored in variable xc , and with each counter c  >1, 

is associated a variable xi. The main recursive definition which initializes 

the counters is 

V"   ■F 'x. .   • 
The   function variables    Y   Fk    correspond  to  the  states    q q.   of 
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the counter machine.    The    i-th(i^)    recursive definition is either of the 

form 

MW^ <m 11 xo"0 1^ xl ^e F
m^o.xi.<). 

or of the  form  (for J-1,2) 

where  the   indexes    n.m    are chosen according to  the  state  to which  the counter 

machine transits when  it   is  In state    ^    and counter    Cj    has  the respective 

value  («ero or non-zero).    Each  transformed variable    x'    or    x      stands  for    either 

x+1     or    x-1,  according to the  operation done on  the counter or  the  input  value 

upon  transition. 

The evaluation of the  least   fixedpoint of  this  system of  recursive definitions 

is done  by  repeatedly ^placing a  term    F^.Xj.x by  the appropriate term 

Fn XC,X1'XZM    or    Fm x   •xrx     »     thus  simulating the  state  transitions of 

the counter machine.    The process  stops  if and when a term    F  (x  ,x  .JU)     is 

replaced  by  the term    ^       according to a definition of the  first  type),  and 

the current value of    ^     U  taken as ttie result of computatloni 

Due  to the  simple  nature  of  these  recursive definitions,   their  optimal 

fixedpoint  coincides with  their  least   fixedpoint     the main  function In which 

is    ~l}.    To show this,  define  for any natural  number    c     :he  following 

k-tuple of functions       f^,...,ff): 

c (c    if  evaluation of '••    x    is non-terminating 

I ly    if evaluation  of Fj  ■]   terminates with value    y, 

and  similarly,   for    i^ß: 

tc, .     f    if evaluation of    F^x.x.,^)     Is non-ternlnatlng 
f. 'x   »x. fx, ^   -) i    «#    »    « B 

II ly     It  evaluation of    Fi'x   .x^J     terminates with  value y. 

For any    c,     the k-tuple       fj f£       so defined   la a   fixedpoint  of  the 

system.     It   is a maximal   fixedpoint  by  its  totality.    The optimal   fixedpoint 
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*! V  i9 le" defined than  f^J fj)  for all c, andchus 

fj x  cannot be detlned if the evaluation of Fjfx)  li non-teminatlng. 

Q.E.D. 

Thoroem 7 thow« that any function which can be defined ai the main function in 

the Ua«t flxedpoint of an efftctive r.curtivo definition (i.e., any partial 

recursive function) can alao be defined as the main function in the optimal 

flxedpoint of a (perhaps different) effective recursive definition. The 

converse, however, is not true. To show this, it suffices to consider the 

following simple function I over tfu- natural numbers: 

" !  x : 11  F'x  1 then h x  else 0, 

where h x  is the halting function, defined as: 

/•I it 'c   .x  Is defined 
h x   (      * 

^■i  If 9 x Is undefined. 

The function h x;  is computable, as are all the other base functions which 

appear In the definition.  In order to find the optimal flxedpoint of T, 

we analyze the possible values of  F x  for any x  there is absolutely no 

relation between values of  F  for different arguments x .  The value of 

I x  can always be uu or  ;,  as a direct substitution jhows.  The value 1 

is possible only if h x   1.  Any maximal flxedpoint of T  Is a composition 

ot values    and  1  only if legaP for the various arguments x.  The 

optimal flxedpoint is then defined as    whenever only .  is a possible 

value, while It is a, whenever both    and  1 are possible values. Thus 

0 if 

if -^ x  is defined 

~ x  Is undefined, x 

and  this  "inverted  halting  function"  Is non-computable. 

In order to    sec  how    non-computable    an optimal   flxedpoint may be, we 

prove: 

1 



Theorem^: Let ((«j xn) be a total predicate over the natural ..umbers^- 

which la the main function In the optimal flxedpolnt of some system of recursive 

definitions  (iy...,Tk). Then there is a system of recursive definitions 

l,T?,T5,*,,,Tk^ "uch chat: 

SStl^l)^ xn^ "" ^ xieN)[f(x1,...,xn)]# 

Proof:    The two additional  recursive definitions    T      and    T      are given by: 

F1(x2,...,xn)  <- F2(0,x2,...,xn) 

^^l'^ xn) "* i^ F5(x1,x2,...,xn) > 0    ÜifiQ 1 ela^ S-FgCx^I.Xg ■ ). 

The   first  definition slinplv  Initializes the s-arcj conducted  by the second 

definition  for a value of    Xj     for which    F^Xj .Xg ,... ,xn)     la non-aero  (true). 

Such a  sequential  search  is  legal,  because we assume  that   In the eptlmal 

fixedpoint      F^'Xj.Xj,... ,xn)    represents a total  function.     If thla aearch la 

successful,    Fp(0,x2,...,xn
>    (which  is the value returned  by  the main definition 

T|)     is    B  to the power of the  first  such    x.     found, and this value la 

clearly non-zero. 

If no  auch  value    Xj    can be  found, we claim that  the only two possible valuea 

of  fixedpolnts  for    F? (O.x^,. ..,xn)    are    tu    and    G.    The  fact  that these are 

possible values  is shown by direct evaluation.    Suppose now that there Is some 

other  possible defined  value    c.     This value should  satisfy c » 2XI.p  (x +1,...  x 
2  1     ' n 

for any natural number Xj-  If c > C,  this cannot hold If x  la aufflciently 

large, no matter what the value of F0(x.+l,...,x |  la.  Thua by the 
c  i      n' ' 

definition of the optimal flxedpolnt,  o£t(tj)(x^,....xj » 0 In thle caae. 

Q.E.O. 

We can now prove: 

Theorem j:    Any ftotaP predicate  f Xj x^  in the arithmetic hierarchy of 

I    We aaaume that the truth value false true ol the predicate la determined 
by a gero non-zero value of f. 
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predicates over natural  numbers can  be defined as  the  main  function in  the optimal 

fixcdpoint  of some system of recursive definitions. 

Proof:    Any such predicate    f    can be expressed by (see,   for example, 

Rogers  [7]) 

f(xi+i Xk) :   fl«i)^l«t.i) •••(~ax1)[<pj(x1 V,M Xk)], 

or by 

f(Xi+1 Xk)   :     ^>«l)^1«l.l)   •••l-3x1}[cpJ(x1 «1.«M,...f^)], 
where 

5Pi(X|,.. . .x^,  is a recursive predicate. 

These two forms can be constructed in the following way.  First a system 

which defines the recursive function p.(«j,...^  is constructed (by its 

totality, one need not use the method described in Theorem  - any system of 

recursive definitions which yields 9.    as least fixcdpoint also yield it as 

optimal fixedpolnt^. Then the pair of recursive definitions described In 

Theorem il is added for each existential quantifier, from right to left. 

The only change one should make in each pair In order to handle the negation 

sign is to change the predicate F, X],...,Xn ^  Into F, Xj x -:; thus 

M search for values which do not satisfy the previous existential condltlot . 

Finally, 11 a fonn of the second type above should be constructed, the following 

main recursive definltlrn Is added: 

F0(x) <- Lf FjCx) >  Q then 0 else 1, 

and the resultant predicate  ^(i) Is thus Inverted In F (x). 

The proof that the procedure described above constructs a system of recursive 

definitions yielding the predicate  ffx) as the main function In the optimal flxed- 

P^int is a scmlght-forward generalization (by Induction) of Theorem fc.   Q.E.D. 
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Once wr have constructed recursive definitions for all the predicates in 

the arithmetic hierarchy, we can also construct recursive definitions for 

all the partial functions whose graph - is a predicate of the arithmetic 

hierarchy. 

Theorem 10;  If f{x) is a partial function with graph g(x,y)  in the 

arithmetic hierarchy, then there exists a system of recursive definitions 

such that the main function in its optimal fixedpoint is  f(x). 

Proof:  By Theorem 9, there exists a system of recursive definitions 

(T ,...,T )  for which the main function in the optimal fixedpoint is the 

(total) function g(x,y). The following two recursive definitions  T. and 

T« are added to the system  T.  serves as the main definition): 

F^HX-  F2(S,0) 

F2(xty)<- If  F5(x,y) > 0 then y else F2(x,y+1). 

The proof that F. x really yields the desired partial function is a mixture 

of elements from the proofs of Theorems 7 and 6. The recursive definition 

Tfl conducts a search initialized by 0) for a value y which satisfies 

F,(x,y) > 0 (i.e., for which g(x,y' is true).  If a value y is found, It 

is taken as the result of computation. Otherwise, due to the simple form of 

T., any constant value c can serve as a value for a fixedpoint, and thus the 

main function in the optimal fixedpoint is undefined. Q.E.D. 

\l    The graph g(x,y) of a partial function f(x) is a predicate defined by: 

X'y'       ^»\8e    if f(T)^y, ytf« 
ft rue 
ifalse 
Or    if y= (,.. 

In particular,   if    f(i)   it undefined  then i(x,y)   li  fa lee  for all    y/ u). 
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