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ABSTRACT

In this paper we define a new type of fixedpoint of recursive definitions and investigate some of
its properties. This optimal fixedpoint (which always uniquely exists) contains, in some sense, the
maximal amount of “interesting” Information which can be extracted from the recursive
definition, and it may be strictly more defined than the program’s least fixedpoint. This
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INTRODUCTION
Recursive definitions are usually considered from two different points of

view, namely:

(1) As an algorithm for computing a function by repeated substitutions

of the function definition for its name.

(11) As a functional equation, expressing the required relations between
values of the defined function for various arguments. A function that

satisfies these relations (a solution of the equation) is called a fixedpoint.

The functional equation represented by a recursive definition may have many
fixedpoints, all of which satisfy the relations dictated by the uefinition. There
is no a priori preferred solution and therefore, if the definition has more than

one fixedpoint, one of them must be chosen. A number of works describing

a least (defined) fixedpoint approach towards the semantics of recursive

definitions have been published recently (e.g., Scott [€]). Rescarchers in the
field have chosen the least fixedpoint as the "best solution" for three
reasons:
(1) 1t uniquely exists for a wide class of practically applicable recursive
definitions.
(i1) The classical stack implementation technique computes this fixedpoint
for any recursive definition.
(i11) There is a powerful method (computational induction) for proving
properties of this fixedpoint.
However, as a mathematirnl model for extracting information from an implicit
functional equation, the selection of the least defined solution tcems a poor
choice; for many recursive definitions, the least fixedpoint does not reveal
all the useful information embedded in the definition. 1In general, the more
defined the solution, the more valuable it is. On tie other hand, thic argument
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should be applied with caution, as there are inherently underdefined recursive
definitfons. Consider the extreme example F(x) <= F(x), for which any partial
tunction is a solution. A randomly chosen total function is by no means

superior to the totally undefined least fixedpoint in this case.

Ihe optimal fixedpoint, defined in this paper, tries to remedy this situation,

It is intended to supply the maximally defined solution relevant to the given
recursive definition. Consider, for example, the following recursive definition for
solving the discrete form of the Laplace equation, where F(x,v) maps pairs of
integers in [-100,100)x{ -100,100] into reals:

V x2l00 v yi=100 v yI(

(>3
'}
—
Lot
>
(]
s

Fix

else

The

[F(x=1,v +F(x +1,v +F/x,y=1 +F x,v+l .

Ihis concise organization of knowledge is defined emough to have a unique
total fixedpoint (which is our optimal fixedpoint', but its least fixedpoint

is totally undefined inside the square [-100,100/v[=100,100].

“hile the notion of the optimal fixedpoint is theoretically well-defined, its
computation aspects contain many pitfalls, since the optimal fixedpoints of
certain recursive definitions are non-computable partial functions. We do not
pursue in this paper the practical aspects of the optimal fixedpoint approach;
fn Manna and Shamir{y,5), and in more detail in Shamir ], we suggest several

techniques directed toward the computation of the optimal fixedpoint.

In Part [ of this paper, a few structural properties of the set of all fixedpoints

f recursive definitions are proven. The otpimal fixedpoint is then introduced

in Part II)as the formalization of our intuitive notion of the "best solution"

f recursive definitions. The existence of a unique optimal fixedpoint for any



recursive definition, as well as some of its properties, are established. In

Part III we consider the computability (from the point of view of recursive

function theory) of the optimal fixedpoint of recursive definitions.

An informal exposition of the main ideas and philosophies of the optimal fixed-
point approach is contained in [S5]. A more complete investigation of the various
fixedpoints (including the optimal fixedpoint) or recursive definitions appears in
[9]. Results which are somewhat related to this work have been obtained by Myhill

[6], who investigated ways in which total functions can be defined by systems of

formulaes.

PART I. SOME STRUCTURAL PROPERTIES OF THE SET OF FIXEDPOINTS

In this part we introduce our terminology and prove thogse structural properties

of the set of fixedpoints of recursive definitions which are needed in Part II.

A. Basic Definitions

+
Let D be a domain of defined values D to which the '"undefined element"

is added. The identity relation over D+ is denoted by =. The set of all
n
mappings of (D+) into D+ is called the set of partial functions of n argu-

ments over D, and is denoted by PF(D,n).

The binary relation "less defined or equal," C , over various domains

plays a fundamental role in the theory.

Definitions:
o +
a) For x,y€D , xSy if x=wor x=y.
s M Y = -
b) ForX,y€ (D) ,xCyif X S Yy for all 1<i<n.

n

e) Por f f_, € PF(D,n) , f, ¢ fp if {l ¥ & f2.j§) for every X ¢ (D+) .

1'

d) A function f € PF(D,n) is monotonic if XCy = f(x)c £(y).

The relation C 1is a partial ordering of PF(D,n). We :hall henceforth use



the standard terminology concerning partially ordered sets. In particular:

Definitions: For any subset S of PF/D,n):

a) [ €S is the least clement of S {f f € g for any g € S,

b t €S is a minimal element of S if there is no g € S which satisfies

T=
¢ f € PF(D,n) is an upper bound of S if b & fox wll 3 & 8.

d f € PFib,n) {is the least upper bound (lub) of S§ {if f 1is the least

¢lement in the set of upper bounds of S.

The notions of the greatest clement, a maximal element, a lower bound and

the greatest lower bound glb) of S are dually defined.

Jefinitions:

=l

a f,3 € PFD,n) are congistent if £ %X) £ o and BIX) 2 w=((X)2g
n
' = +,
tor every X € D
b A subset S of PF D,n) 1is consiscent if every two functions, f,g € S

are consistent.

From the definition it follows that:
i A subset S of I'"(D,n) has a lub, denoted by lub S, if and only {f
S 1is consistent.

i1  Every non-empty subset S of PF(D,n) has a glb, which is denoted by

glb s.

Definitions:
‘a A functional is a mapping of PF D,n) into PF(D,n).
b’ A functional 71 over PF(D,n) 1: monotonic if fcg=>1(f] C 7ig)] for

every f,g € PF(D,n).

¢ A recursive definitfon is of the form ¥’x) <= 1[F)(X), where T 1is a

functional and F is a function variable.



All the functionals we shall deal with in this paper will be monotonic over PF(D,n).
In practice, there are many types of functionals which are monotonic only over

a certain subset S of PF(D,n). The theory developed in this paper can be
applied to any such restricted functional, provided that S satisfies the
follow.ng two conditions:

(1) any consistent subset of S has a lub in S, and

(i11) any non-empty subset of S has a glb in S.

For simplicity, we do not consider in this part functions over multiple
domains (e.g., DY Wi o D: —oD+F or systems of functionals (e.g.,
(Tl,...,Tk) ). However, all the results can be extended easily to the more

general cases.

B. Fixedpoints, Pre-fixedpoints, and Post-fixedpoints

Definition: A function f ¢ PFfD,n) is a fixedpoint, pre-fixedpoint, or

post-fixedpoint of * if f = «[f] , fC 1[f] , or *[f] C f, respectively.

The sets of all fixedpoints, pre-fixedpoints, or post-fixedpoints of t are

denoted by FXP(t) , PRE(r) or POST(1), respectively.

Clearly FXP(7) = PRE(7) N POST(71). A few useful properties of these sets
for a monotonic functional 1 are:

(1) FXP(t) , PRE(T) , and POST(71) are closed under the application of .
i1) I1f S ¢ PRE(7) is consistent, then lubS € PRE(T1).

(i) 1f S < POST(1) 1is non-empty, then glhS € POST(T).

The most important property of pre- and post-fixedpoints is that they enable

us to uniformly approach a fixedpoint of 1 , either by monotonically ascending



or by monotonicaily descending to it. The theoretical background of this

process is contained in the theorem:

\

Theorem 1 (Hitchcock and Park): Let S,¢) be a partially ordered set, with

a least element () , and such that any totally ordered subset has a lub.
Then for any monotonic mapping 71 : S .8 , the set of fixedpoints of -
contains a least element.

’s
A

A formal proof, using a transfinite sequence of approximations r which

converges to the least fixedpoint of - » appears in Hitchcock and Park 1!.

»

An immediate corollary of Theorem 1 is:

Theorem -: For monotonic functional =
a  FXPi7) contains a least element, denoted by lEop(~).
bl If f & PRE(r1) then the set {f' € FXP/t | £ £V contains a
least element,
¢, If f € POST(t) then the set {f' € FXP(1) | £' = £} contains a

greatest element.

Proof:

a Immediate by Theorem 1, taking PF(D,n) as S , as « , and the

n

totally undefined function as (O .

‘b Define S,={f'ePFip,m) | £g £'}. S

Z » and contains f as its least element. Since any totally ordered

is partially ordered by

subset S of § is consistent, lub § exists. Furthermore,

f 2
&sesf since fC lub S.
The given monotonic functional - maps PF(D,n) {nto PF/D,n) . It

is easy to show that 1 maps Sf into itself. Therefore, we may

¢



congsider the monotonic functional +t' mapping S into Sf , which {s

f
the restriction of T to Sf. Theorem 1 ensures the existence of a
least fixedpoint for +t' , which is exactly the fixedpoint required.

(¢) Using the reverse order, i.e., £, < £ iff £, ¢ f, , a proof dual to

the proof of part (b) can be obtained. Q.E.D.

Definition: A fixedpoint f of t 1is FXP-consistent if for any f' € FXP(7) ,

f and f' are consistent. The set of all FXP-consistent fixedpoints of

v 1is denoted by FXPC(7).

From the definition, it follows that for any monotonic functional T :
(a) Since 1lfxp(t) 1is FXP-consistent, FXPC(t) is non-empty.

(b) Since any two FXP-consistent fixedpoints are consistent, FXPC(t) is

\

consistent, and thus lub FXPC(7) exists.

Theorem 3: For a monotonic functional 1 , FXPC(7) contains a greatest

element.

Proof: We know that f, = lub FXPC(7) exists. As a lub of fixedpoints,

f, € PRE(T) . Thus, by Theorem 2b, the set {f' € FXP(7) | f, C f'}

contains a least element, say f,. We show now that f, € FXPC(T), implying

2
that f, is the greatest function in FXPC(T) .
Let g be any fixedpoint of t . We would like to prove that £2 and
g are consistent, by showing the existence of a function f5 suci: that
f, c f3 and gC f5 . The set of fixedpoints S = FXPC(t) U {g] is

consistent by the definition of FXPC(r) , and therefore by Theorem 2b
again there exists some f,) € FXP(t) such that 1lub ScC t:’3 . Thus,

gC f, and lub FXPC(7) T f, Since f, was defined as the least fixedpoint

> ¢



such that lub FXPC(t) © [ , we have f 2 = Q.E.D.

C. Maxi{mal Fixedpoints

Definition: A fixedpoint f cf a functional + 1is said to be maximal
it there is no other fixedpoint g which satifies f g . The set of ali

maximal fixedpoints of - is denoted by MAX(+) .

Unlike the case of minimal fixedp>ints, a monotonic functional may have any

number of maximal fixedpoints. MAN 7 "covers" FXP 1 in the sense that:
Theorem ..: For monotonic functional 1 , if f € PRE v) thes (o g for

some g € MAX 7)

In other words, if f£(d ¢ for some [ € PRE(7), T € p¥ and ¢ € D,

then there must exist g € MAX(71) such that g(d) = c.

Prool: Let S {£' e FXP(+) | £ €'Y, By Theorem :'b, S¢ contains at

least one element - the least fixedpoint which is more defined than f.

We now show that Sf contains an upper bound for any totally ordered subset.

Let S be such a subset. Since it is totally ordered, it is in particular

consistent and thus lub S exists. Furthermore, as an lub of fixedpoints,

lub S is a pre-fixedpoint. Using Theorem b once more, there is a fixedpoint

fl which is more defined than 1lub S, 1.e., which i{s an upper bound of S.

By the definition of S and Sf, flC S[ and thus S has an upper bound in Sf.

We have thus shown that S[ is non-empty and contains an upper bound for

any totally ordered subset in it. By Zorn's Lemma, any partially ordered

set having these two properties contains a maximal element. This maximal



definition of Sf. Q.E.D.

4s a result of Theorem L4, we cbtain

Corollary: For any monotonic functional 1 » MAX(t1) in non-empty.,

Proof: Follows by the fact that PRE(1) 1is non-empty, since the totall
~100s 4

undefined function () is always in PRE(1). Q.E.D.
We also have

Theorem 5: For a monotonic functional =1 , if f ¢ PRE(r) and g € MAX(7),

then either fC g or f and g are not consistent.

Proof: By contradiction. Suppose fg g, aund f and g are coansistent.

Then f. = lub{f,g] exists and gC f € PRE(1). Thus by Theorem 2b there

I = 1
is a fixedpoint f_  such that fl € f.. Therefore, g r'f2 , which
contradicts the maximality of g. Q.E.D.

From Theorem 5 we obtain
Corollary: Any two d.stinct maximal fixedpoints of T are not consisten:.

Proof: 1If f,g € MAX(-) , then in particular f € PRE(1) and we can thus
apply Theorem 5. The possibility fC g in ruled out by the maximality of

f , and thus f and g are non-consistent. Q.E.D.

PART 11. THE OPTIMAL FIXEDPOINT

A. hefinition and Properties

By its definition, an FXP-consistent fixedpoint is a function which agrees

in value with every other fixedpoint of 1 for any argument. In particular,



be no fixedpoint of 1 which has a different defined value c¢' at d .

This value ¢ 1is then said to be weakly defined by 1 at d (it i¢ not

“strongly defined,' however, since there may be fixedpoints that are not
defined at all at d )« A fixedpoint which is not FXP-consistent, on the
other hand, represents some random selection of values from the many which

are possible. It is in this sense that we may say that a recursive definition

really 'well defines" only its FXP-consistent solutions.

Among these 'genuine' solutions of 1 , the more defined the solution, the
more informative it is. Motivated by this quality criterion, we introduce

our main definition:

Jefinition: The optimal fixedpoint of a monotonic functional =+ 1is its

greatest FXP-consistent fixedpoint. 1t is denoted by opt(+).

Note that Theorem 3 guarantees the existence of the uniquely defined’
optimal fixedpoint of any monotonic functional. Using properties of MAX'7 ' |

we can characterize the optimal fixedpoint from a different point of view.

Definition: Since MAX(7) is non-empty, glb MAX(7) always exists, and

is denoted by lmax(71).

As a glb of fixedpoints, lmax(7) € POST(1), but it is not necessarily a

fixedpoint. For example, consider the following functional over PF\N,I"l:
[J

T[Fl(x): if x=0 then F(x) else O-F(x-1).
The fixedpoints of 7T are the totally undefined function » and all the

functions fi i=0,1,..., defined as:

1 N denotes the set of natural numbers.



i 1f x=0
fi(x) E{

0 otherwise.
It is clear that MAX(7) = {fo,fl,...}. The glb of this set ¢f functions
is:
w 1f x=0
Imax (1) (x) ={
0 otherwise

This function is not a fixedpoint of 1 , but is a post-fixedpoint of 7.

It descends to the fixedpoint () by repeatedly applying T to it.

However, we show now that the function lmax(t) 1is closely related to

opt(7):
Theorem 6: For a monotonic functional 17 , opt (1) 1is the greatest element

of the set {f' € FXP(7) | ' < lmax(7)}.

Proof: Let us denote by f1 the greatest element in the set. By Theorem
2c, the function £, must exis” since lmax(r) € POST(7). We now have to

show that opt(7) C f, and f, ¢ opt(7)

To show opt(r) C f1 » we note that by definition, gp_t.('r) is consistent
with any maximal fixedpoint f of 1 . By Theorem 5, it follows that
opt(7) ¢ f. Thus, opt(7) is a lower bound of MAX(t) , and therefore
opt(r) C lmax(r) = glb MAX(r) . 3ince £, is the greatest element of

{f' € FXP(1) | £'C lmax(r1)} we obtain opt (1) C £

We now show that f, c opt(r) . By the definition of opt(r) , it suffices

to show that f, € FXPC(7) . Let f be any fixedpoint of t . Theorem L

implies that there exists some £, € MAX(7) such that fc f.. By the
=4

11
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bound of f and fl » which implies that they are consistent. Since this

holds for any £ € FXP/7) , fl € FXPC(r1). Q.E.D.

The original definition of opt(7) and Theorem 6 suggest that oot(71)

can be "reached" both from below (by ascending from 1lfxp(r) as high as
possible in FXPC(7) ), or from above (by descending from MAX's) ). This
situation is illustrated by the schematic diagram of Figure l. 1In our graphicai
representation, the set {f' € FXP(7) | f f') is shown as an upper cone
Figure 2A) , and the set (f' € FXP(7) | f' € f} is shown as a lower cone

Figure 28).

The following properties of opt 1) , for a monotonic functional = N

are immediate consequences of its definition and Theorem 6

a) If Llfxp(r) 4is a total function, then opt(+) = lfxp/t).

b) opt(r) € MAX(7) 4if and only if + has a unique maximal fixedpoint.
It is clear that a necessary condition for opt(+)/d) = ¢ for some Jd €

n
D+' and ¢ € D is:

(1) £(d) =@ or £(d) =c for all f e FXP(1), and

]

(11) £(d) = ¢ for at least one f € FXP(<).

However, this condition is not sufficient, as demonstrated in the previous
cxample:

1[F](x): 1if x=0 then F(x) else O-F(x-1).
All the fixedpoints of + are either undefined or defined as 0 at x = 1

FL i

and there are fixedpoints which are defined at x - 1, while opt (1) 1) = g.

B. Examples

In this section we illustrate the theory presented in this part with two



MAX(t)

—opt (7)

-

Fig. 2A Fig. 2B



tunctionals. These functionals are monotonic only over the subset
MON(N,1) of all monotonic functions in PF(N,1). Since MON(N,1) satisfies
the two conditions mentioned at the end of section 1-A, we may restrict the

discussion to the domain MON(N,1) rather than PF(N,1).

Example 1: Consider first the monotonic functional T, over MON(N,1):

1, [F)(x) : 1f x=0 ¢t »a 1 else F(F(x-1)).
1 if toeal else

The least fixedpoint of is functional is

lfxg'Tl‘ :{1 it x =0
p otherwise.

We would like to show that ogthl: E fxg”Tl). For this purpose, it

\

suffices to find two fixedpoints fl’f’ € FXP{TI whose values disagree

tor any positive x. Two such functions are, fer example:

b fat {1 if x € N

L‘ifx‘.-T,L\

and

f'x' V{X‘f‘l if x €N
h w ifx W o

\

Thus both gggffl and lmax(11) cannot be defined for any positive

integer «x ; since f(w) =w for any f € FXP(TI), we finally obtain

that opt(r,) = lmax(Tl) lexp(7)).

Since lfxg'71} and ogt(Tl) are the least and greatest elements of FXPC(TI).

lfxg'7l) is clearly the only element of FXPC(TI).

The funct fons fl and fp above are maximal, since they cannot be extended

at x = . It is quite an instructive exercise to characterize all the

maximal fixedpoints of For example, it can be easily shown that any

1
maximal fixedpoint other than f_ s a total, ultirately periodic function

[

1



over N.

Example 2: Let us consider now the functional LI defined over the same
domain:

T,[Fl(x) : 4f x=0 then 1 else 2F(F’x-1)).

One can easily show that 1352(72) = lEEE(Tl) . The fixedpoint 225(72)
cannot be obtained by the technique used in the previous example, since no
appropriate fixedpoints f1 and f2 can be found. As a matter of fact, this

functional has exactly three fixedpoints:

fl(x) = {1 ifx=0
w otherwise.
l1ifx=20
Oifx=1
f(x) =42 if x =2
= L if x = 3
w otherwise
if x=0
0 1f x = 314l
f.(x) =32 1f x = 3142% i=0,1,2,...
5 Lif x = 3143
wif x =

These fixedpoints are related by f, f2 & f}’ and therefore

Lxp(r,) = f,

2pt(7y) = Lmax(r,) = £
W(Tp) E {fB]

rxpc(xe) = FXP(Te) [fl,f2,€3] 4

PART III. THE COMPUTABILITY OF OPTIMAL FIXEDPOINTS.

In this part we state several results concerning the computability of optimal
fixedpoints over the natural numbers. 1In our constructions we shall use
systems of functionals T= (Tl""'fk)’ where each T is a monotonic
functicnal mapping any k-tuple (fl""’fk) of partial functions into a partial

15



function Ti[fl,...,fk]. Thus, ¥ maps any k-tuple (i, ...,fk) of partial
functions into the k-tuple (71[f1""’fk]""’Tk[fl""’fk]); it represents

a system of recursive definitions of the form

Fl \';) '\-. 71“"1 yere oFk] G)

g

b I S > )
}'k X) < Tkll'l,..o,l'k_ X,
A fixedpoint of T 1{is now defined as a k-tuple ffl,...,fk mapped by
T to itself. We shall be interested in the computability of the function
tl appearing as the first element in such a tuple (this function is usually

called the main function; the others are called the auxiliary functions).

All the definitions and results contained in parts 1 and Il of the paper can

be extended casily to this general casze.

We first show that the collectior of optimal fixedpoints of recursive definitions

over the natural numbers contains (as main functions) all the partial computable
functions:

Theorem 7: Any partial recursive function 0y over the natural numbers is
the optimal fixedpoint of some effectively constructable svstem of recursive

definitions,

Proof: Any partial recursive function can be computed by a counter machine
with two counters (cf. Hopcroft and Ullman [2], page 98). Such a machine

can be simulated by a system of recursive definitions in the following way.

The input value is stored in variable X and with each counter ci (i-l,

is associated a variable xi. The main recursive definition which initializes

the counters is
Fy(x) <= F,(x,0,0

The function variables F"""Fk correspond to the states q2,...,qk of

e

1/



the counter machine. The 1-£h(1;§* recursive definition is either of the

form

»

) = =) o I
Fi(xo.xl,xa) <= if x=0 then X else Fm(xo,xl,x?).

or of the form (for j=1,2)

”

Fi(xo,xl,x?) <= if xJ-P then Fn(xé,x{,xé) else Fm(xo,xi,xg),
where the indexes n,m are chosen according to the state to which the counter

machine transits when it is in state 9 and counter cJ has the respective

value (zero or non-zero). Each transformed variable x’ or x" stands for either

x+l or x-1, according to the operation done on the counter or the input value

upon transition.

The evaluation of the least fixedpoint of this system of recursive definitions

is done by repeatedly replacing a term Fifxc,xl,x;f by the appropriate term

Fn’xi,xi,xl“ or mexc,x;,x;‘, thus simulating the state transitions of

the counter machine. The process stops if and when a term Fi(xc,xl,x2) is
replaced by the term L) (according to a definition of the first type), and

the current value of X, 1s taken as the result of computation.

Due to the simple nature of these recursive definitions, their optimal
fixedpoint coincides with their least fixedpoint (the main function in which

is :if. To show this, define for any natural number the following

.,fk':

¢ 1if evaluation of "l‘x‘ is non-terminating

k-tuple of functions ’f?,..

o i
.1(x~ {y if evaluation of F1 x) terminates with value vy,
and similarly, for {i>2:

5 {c if evaluation of Fifxo,xl,xﬁf is non-terninating
) = q

fi‘xC’xl’xZ y 1if evaluation of Fi(x .xl,xﬁ‘ terminates with value y,
= (=4

For any ¢, the k-tuple _fi,...,f;f so defined is a fixedpoint of the

system. It is a maximal fixedpoint by its totality. The optimal fixedpoint

1-v
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[l x) cannot be defined if the evaluation of Flfx‘ is non-terminating.

E is less defined than ’fi....,[ for all ¢, and thus

Q.E.D.

Theroem 7 shows that any function which can be defined as the main function in
the least fixedpoint of an effective recursive definition (i.e., any partial
recursive function) can also be defined as the main function in the optimal
fixedpoint of a (perhaps different) effective recursive definitfon. The
converse, however, is not true. To show this, it suffices to consider the
following simple function:l over the natural numbers:

TFl{x): 1if F(x) 1 thea h(x) else O,
where h x is the halting function, defined as:

1 if v (x) is defined
h'x (. *
v if 9, (%) is undefined.

The function h(x) {s computable, as are all the other base functions which
appear in the definition. In order to find the optimal fixedpoint of 1,
we analyze the possible values of F(x) for any «x (there is absclutely no
relation between values of F for different arguments x). The value of
F'x can always be w or 0O, as a direct substitution shows. The value 1
is possible only if h(x 1. Any maximal fixedpoint of 1 1is a composition
ot valees O and 1 (only if legal) for the various arguments x. The
optimal fixedpoint is then defined as (O whenever only O 1is a possible
value, while it is @ whenever both ¢ and 1 are possible values. Thus

y 1f gx’x' is defined
it o
0if x) is undefined,

84

X

and this "{nverted halting function" is non-computable.

In order to see how non-computable an optimal fixedpoint may be, we

prove:
1k



Theorem 8: Let f(xl,...,xn) be a total predicate over the natural numberhl
which is the main function in the optimal fixedpoint of some system of recursive
definitions (13,...,1k). Then there is a system of recursive definitions
<TI’T?'13""’TR) such that:

225(71)'x?,...,xn) | xleN)[f(xl,...,xn)].

Proof: The two additional racursive definitions T, and 1. are given by:

1 2

FI(XQ""'xn) <= Fé(C,xQ,...,xn)

Fg(xl,xa,...,xn) <= if F3<xl’x2""'xn) >0 then 1 else 2'F2(xl+l,x2,...,xn).
The first definition simply initializes the searci conducted by the second
definition for a value of x, for which Fj(xl’XE""’xn) is non-zero (true).
Such a sequential search is legal, because we assume that in the cptimal
fixedpoint Fj(xl,x ,...,an represents a total function. If this search is
success ful , Fﬁ(O,xE,...,xnf #hich {s the value returned by the main definition
11‘ is 2 to the power of the first such x, found, and this value 1s
clearly non-zero.
1f no such value X, can be found, we claim that the only two possible values
of fixedpoints for Fr/’,x,....,xn' are w and O. The fact that these are
possible values is shown by direct evaluation. Suppose now that there i{s some
other possible defined value c¢. This value should satisfy c = 2xl-Fé(xl+l,...,an
for any natural number X If ¢ >0, this cannot hold {f X is sufficiently
large, no matter what the value of F,'xl+l,...,xn) is. Thus by the
definition of the optimal fixedpoint, 225(11‘(x”,...,xn) = 0 1in thie case.

Q.E.D.

We can now prove:

Theorem 9: Any (total) predicate f'xl,...,xnf in the arithmetic hierarchy of

1l We assume that the truth value false 'true of the predicate is determined
by a zero/non-zero value of f.

10



predicates over natural numbers can be defined as the main function in the optimal

fixedpoint of some system of recursive definitions.

Procf: Any such predicate f can be expressed by (see, for example,
Rogers [ 7))

f\xi_ﬂ,...,xk) : (gxi)(~3xi_l) ...(~3x1)[oj(xl,...,xi,xH_l,...,xk)f,
or by

B ivsc-bel) & A o & e M V1
(Xi4 k) ( Sxi)( dxi_l) ool xl)‘wj(xl,...,xi,xi_*_l,...,xk ;
where

wJ(xl,...,xk: is a recursive predicate.

These two forms can be constructed in the following way. First a system
which defines the recursive function oj’xl,...,xk) 1s constructed (by its
totality, one need not use the method described in Theorem 7 - any system of
recursive definitions which yields wj as least fixedpoint also yield it as
optimal fixedpoint). Then the pair of recursive definitions described in
Theorem £ is added for each existential quantifier, from right to left.
The only change one should make in each Pair in order to handle the negation
sign is to change the predicate Fﬁ'x]""’xn}>0 into fﬁ'xl,...,xnfti; thus
we search for values which do not satisfy the previous existential conditior .
Finally, if a form of the second type above should be constructed, the following
main recursive definition is added:

Fﬁ&} <= Lf F)(X) > 0 then 0 else 1,

and the resultant predicate Fl(;) is thus inverted in FC(;)'

The proof that the procedure described above constructs a system of recursive
definitions yielding the predicate f£(X) as the main function in the optimal fixed-

point is a stmight-forward generalization (by induction) of Theorem &. Q.E.D.



Once we have constructed recursive definitions for all the predicates in
the arithmetic hierarchy, we can also construct recursive definitions for
all the partial functions whose graph\l is a predicate of the arithmetic

hierarchy.

Theorem 10: If f(x) is a partial function with graph g(x,y) in the
arithmetic hierarchy, then there exists a system of recursive definitions

such that the main function in its optimal fixedpoint is f(x).

Proof: By Theorem 9, there exists a system of recursive definitions
(13,...,7n) for which the main function in the optimal fixedpoint is the
(total) function g(x,v). The following two recursive definitions T, and
7, are added to the system {71 serves as the main definition):

<

Flfi)<- (x,0)

Fo
Fe(;,y)<- if FBG,y) > O then y else Fe(;,y+1).

The proof that Fl(;) really yields the desired partial function is a mixtur

of elements from the proofs of Theorems 7 and 8. The recursive definition

s conducts a search (initialized by O) for a value y which satisfies

FB(;’Y) >0 (i.e., for which g(x,y) is true). If a value y is found, it

is taken as the result of computation. Otherwise, due to the simple form of

7., any constant value ¢ can serve as a value for a fixedpoint, and thus the
<

main function in the optimal fixedpoint is undefined. Q.E.D.

\1l The graph g(x,y) of a partial function f(x) is a predicate defined by:

x g jtrue if £(X)=y, Y£ﬂ‘
8(x,y) = X 1se 1f £(x)fy, yfw
== 5 Y= w. -
In particular, if f(x) ie undefined then g(x,y) is false for all yf w.
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