1976

Microprogrammable data acquisition and probe control system (MIDAS IV) with application to compressor testing.

Patton, Dennis Delane
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/17863

Downloaded from NPS Archive: Calhoun
MICROPROGRAMMABLE DATA ACQUISITION AND PROBE CONTROL SYSTEM (MIDAS IV) WITH APPLICATION TO COMPRESSOR TESTING

Dennis Delane Patton
Microprogrammable Data Acquisition and Probe Control System (MIDAS IV) with Application to Compressor Testing

by

Dennis Delane Patton

Thesis Advisor R. P. Shreeve

Approved for public release; distribution unlimited.
Title: Microprogrammable Data Acquisition and Probe Control System (MIDAS IV) with Application to Compressor Testing

Authors: Dennis Delane Patton

Performing Organization: Naval Postgraduate School, Monterey, California 93940

Report Date: March 1976

Type of Report: Master's Thesis

Abstract:

The construction and use of a programmable, fully automatic data acquisition and control system (MIDAS IV) is reported with application to probe surveys in a turbomachine. The MIDAS IV system was designed to record up to 48 channels of analog data, position and align a pneumatic probe in the direction of flow in surveys across a flow passage, and control the operation of up to four Scanivalve pneumatic...
Switches. The MIDAS IV input and output is presently via a teletypewriter keyboard and paper-tape punch. A direct interface with the Hewlett-Packard HP 9830A calculator is a logical modification of the system.
Microprogrammable Data Acquisition
and Probe Control System (MIDAS IV)
with Application to Compressor Testing

by

Dennis Delane Patton
Lieutenant, United States Navy
B.S., Purdue University, 1970

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March, 1976
The construction and use of a programmable, fully automatic data acquisition and control system (MIDAS IV) is reported with application to probe surveys in a turbomachine. The MIDAS IV system was designed to record up to 48 channels of analog data, position and align a pneumatic probe in the direction of flow in surveys across a flow passage, and control the operation of up to four Scanivalve pneumatic switches. The MIDAS IV input and output is presently via a teletypewriter keyboard and paper-tape punch. A direct interface with the Hewlett-Packard HP 9830A calculator is a logical modification of the system.
CONTENTS

I INTRODUCTION

II MIDAS IV DATA ACQUISITION AND CONTROL SYSTEM

A. GENERAL DESCRIPTION

B. HARDWARE COMPONENTS
 1. MICROPROCESSOR
 2. ANALOG INPUT DEVICES
 3. SIGNAL CONDITIONERS
 4. MULTIPLEXERS
 5. DIGITAL VOLTMETER (DIGITEC)
 6. INPUT/OUTPUT DEVICE

C. FRONT PANEL DESCRIPTION
 1. UPPER FRONT SECTION
 2. LOWER FRONT SECTION

D. REAR PANEL DESCRIPTION

E. SOFTWARE PROGRAMS

F. OPERATION VIA PROGRAM "MONITOR"
 1. MIDAS IV MODE LISTING
 2. CALIBRATION MODE
 3. PROGRAM SCAN MODE
 4. READ TAPE MODE
 5. DATA ACQUISITION MODE
 6. MEMORY DISPLAY AND MEMORY EDIT MDES
 7. RESTART MODE

III PROBE AND TRAVERSE MECHANISM

A. GENERAL DESCRIPTION

B. HARDWARE COMPONENTS
 1. PROBE TRAVERSE MECHANISM
 2. CONTROL PANEL

C. OPERATION
 1. SET UP
 2. MANUAL AND SEMI-AUTOMATIC MODES
 3. AUTOMATIC MODE USING MIDAS IV

IV CONCLUSIONS
APPENDIX A. MIDAS IV HARDWARE MANUAL

A.1 PRO-LOG MPS-805 MICROPROCESSOR 55
A.2 MULTIPLEXER BOARDS 56
A.3 SIGNAL CONDITIONERS 56
 A.3.1 AMPLIFIER ADJUSTMENTS 56
 A.3.2 CALIBRATION OF CHANNELS 1-4 57
 A.3.3 CALIBRATION OF CHANNELS 41-47 58
A.4 FREQUENCY TO VOLTAGE CONVERTER 58
 A.4.1 CIRCUIT DESCRIPTION 58
 A.4.2 RANGE ADJUSTMENT 59
A.5 SCANIVALVE 59
A.6 ANALOG TO DIGITAL CONVERTER (DIGITEC) 60
 A.6.1 DESCRIPTION 60
 A.6.2 SAMPLE RATE AND INTEGRATION TIME 60
A.7 DISPLAY CARD AND LED DISPLAY 61
A.8 TELETYPE DUPLEX CARD 62

APPENDIX B. MIDAS IV SOFTWARE MANUAL

B.1 INTRODUCTION 79
B.2 TTYIN AND TTYOUT 80
B.3 HEX PAIR AND PAIROUT 80
B.4 ONEOUT, BCDHEX, AND FORMAT 81
B.5 DIGITEC 82
B.6 MULTIPLEX 82
B.7 SCANV 82
B.8 DISPLAY 83
B.9 DATAOUT 83
B.10 CONVERGE 84
B.11 START 84
B.12 CALIB 85
B.13 CHANNEL ORDER AND PROBE ORDER 85
B.14 NEXT 86
B.15 READ CORE AND WRITE CORE 86
B.16 READ TAPE 87
B.17 MONITOR 87
B.18 LISTING OF MIDAS IV SOFTWARE 88
APPENDIX B. FLOW CHARTS OF MIDAS IV SOFTWARE

APPENDIX C. PROBE TRAVERSING SYSTEM
C.1 PROBE TRAVERSING MECHANISM
C.2 PROBE CONTROL PANEL
 C.2.1 INTERFACE CABLES
 C.2.2 ANGULAR CONTROL CIRCUIT ADJUSTMENT
 C.2.3 LINEAR CONTROL CIRCUIT ADJUSTMENT

APPENDIX D. OPERATING PROCEEDURES AND PROGRAM CHANGES
D.1 SYSTEM OPERATION WITH EXISTING CONTROL PROGRAM
 D.1.1 POWER ON AND POWER OFF
 D.1.2 TO SELECT AN OPERATING MODE
 D.1.3 TO SELECT AND CALIBRATE INPUT CHANNELS (CALIBRATION MODE)
 D.1.4 TO PROGRAM THE SCANNING SEQUENCE AND PROBE MOVEMENT
 D.1.4.1 PROGRAMMING FROM THE KEYBOARD (PROGRAM SCAN MODE)
 D.1.4.2 PROGRAMMING FROM PAPER TAPE (READ TAPE MODE)
 D.1.4.3 PROGRAM EDITING FROM THE KEYBOARD (MEMORY DISPLAY AND MEMORY EDIT MODES)
 D.1.5 TO OPERATE AND RECORD DATA (DATA ACQUISITION MODE)
D.2 PROCEDURES FOR CHANGING THE CONTROL PROGRAM ON PROM
 D.2.1 INTRODUCTION
 D.2.2 MINOR CHANGES (NOT REQUIRING RECOMPIRATION)
 D.2.3 MAJOR CHANGES (REQUIRING COMPLETE RECOMPIRATION)
D.3 PROCEDURES FOR ADDING EXTRA MEMORY TO RAM

APPENDIX E. GLOSSARY OF TERMS
LIST OF TABLES

I (a). OPERATIONAL SPECIFICATIONS OF MIDAS IV 32
I (b). TECHNICAL SPECIFICATIONS OF MIDAS IV 33
I (c). ESTIMATED COST OF MIDAS IV 34
II (a). PHYSICAL SPECIFICATIONS FOR PRO-LOG MPS-805 35
II (b). OPERATIONAL SPECIFICATIONS FOR PRO-LOG MPS-805 36
III. CONNECTOR ALLOCATION 37
IV. MODE SELECTION NUMBERS 38
V. MIDAS IV PROGRAM SUBROUTINES 39

A. I. I/O PORT ASSIGNMENTS FOR MIDAS IV 63
A. II. PIN ALLOCATIONS FOR CONNECTORS 65

B. I. SUBROUTINE CALLING LEVELS 142

C. I. SPECIFICATIONS FOR THE PROBE
TRaversing MECHANISM 146

D. I. POWER ON/POWER OFF PROCEDURES 162
D. II. MIDAS IV HEADERS 163
D. III. SCAN CONTROL AND PROBE CONTROL TABLES
ENTERED AT THE KEYBOARD 164
D. IV. SCAN CONTROL AND PROBE CONTROL TABLES
ENTERED ON PAPER TAPE 165
D. V. EXAMPLES OF THE USE OF "MEMORY DISPLAY" 166
D. VI. EXAMPLE OF THE USE OF "MEMORY EDIT" 167
D. VII. EXAMPLE OF THE DATA OUTPUT 168
D. VIII. A PORTION OF THE PL/M SOURCE-MEMORY
CROSS REFERENCE 169
D. IX. A PORTION OF THE ASSEMBLY LANGUAGE
VERSION OF THE MIDAS IV SOFTWARE 170
D. X. A PORTION OF THE MACHINE LANGUAGE
VERSION OF THE MIDAS IV SOFTWARE 171
D. XI. EXAMPLE OF INSERTING A "NO-OP" INSTRUCTION 172
ILLUSTRATIONS

1(a). Laboratory Arrangement and Function of MIDAS IV (Schematic) 40
1(b). Test Cell 41
1(c). MIDAS IV Console and Teletype 42
1(d). HP-9830A Data Reduction Equipment 43
2. Schematic of MIDAS IV System 44
3. Upper Front Console 45
4. Lower Front Console 46
5. Rear Connector Panel 47
6. Schematic of the MIDAS IV Control Program - "MONITOR" 48
7. Memory Allocation Map for MIDAS IV 50
8(a). Pneumatic Probe for Flow Surveys- View of the Probe 51
8(b). Pneumatic Probe for Flow Surveys- Pressure Port Locations 52
9. View of the Probe Traversing Mechanism 53
10. View of the Probe Control Panel 54

A1. Signal Conditioning Circuit 67
A2. Input Devices to Signal Conditioner 68
A3. PRO-LOG 8402 Relay Card 69
A4. Front View of PRO-LOG MPS-805 70
A5. Multiplexer Board Schematic 71
A6. Magnetic Flux Cutter and Its Electrical Output 72
A7. View of the P/V Card 73
A8. Frequency to Voltage Converter 74
A9. Scanivalve "Advance" and "Home" Circuits 75
A10. DVM Integration and Sampling Rates 76
A11. Schematic of Display Card 77
A12. Schematic of Teletype Interface Card 78
C1. Probe Control Circuits
C2. Probe Traversing System
C3. Examples of Amplifier Output for Angular Control Circuit
ACKNOWLEDGEMENT

I wish to thank my thesis advisor, Associate Professor R.P. Shreeve, for his invaluable support and encouragement in the construction and documentation of the MIDAS IV system.

A large portion of the credit for this system belongs to Lt. J.W. Sturges, who conceived the idea and started the actual hardware.

Finally, it was through the talents and knowledge of Mr. C.E. Gordon, who assembled most of the hardware and helped to design the control circuits, that the MIDAS IV system saw its completion.
I. INTRODUCTION

The equipment described in this report was designed in answer to the particular needs of the Turbopropulsion Laboratories at the Naval Postgraduate School. In the testing of compressors and turbines, at each operating condition, data must be recorded from many channels of fixed instrumentation in steady state. Also, translational surveys of flow fields at various locations within the machines are often required. Probes are used which must be aligned with the flow direction by rotating the probe to balance the pressures sensed at two pneumatic ports before data are recorded. For safety reasons, these surveys must be remotely controlled and the data remotely recorded.

A data acquisition and control system was designed to perform these tasks and to interface with the Hewlett-Packard Model 9830A calculator system for data reduction and presentation. The design of the system was initiated by Lt. J. W. Sturges who had previously applied microprocessors to the control of data acquisition and recording [Ref. 1]. The present author completed the data system hardware, designed and constructed a traversing mechanism with linear and angular drives, and programmed the control and acquisition software in PL/M.

This document will serve both as a design report and as an operation manual. The system and its relationship to the existing test equipment are shown schematically in Fig. 1(a) with views of the equipment given in Figs. 1(b), 1(c), and 1(d). It should be noted that by programming changes only, the MIDAS IV system is applicable to a wide range of data acquisition and control tasks. In this document, however,
it is described in the context of its use in compressor testing; in particular, in acquiring data from a traversing probe system. The probe traversing mechanism mounts on the compressor case and is controlled either manually (for calibration) or automatically by the MIDAS IV system. Up to four electrically-driven rotary pneumatic switches (Scanivalves) can be used. Each Scanivalve sequentially connects 48 pressure lines from the test rig to a single strain gage transducer connected to one input channel of the MIDAS IV. Forty-four other input channels are available for electrical signals. Program inputs, program control, and data output for MIDAS IV is via a teletypewriter unit. The punched-paper tape output can be input to the Hewlett-Packard 9830A calculator for analysis. A wired interface between MIDAS IV and the HP-9830A is considered to be a feasible and practical modification of the present system.

The MIDAS IV system is described in Section II. A description of the hardware is followed by an explanation of the programs used to operate the system in Section II-F and II-P. The probe traverse mechanism and drive circuits are described in Section III. The main body of this report is intended to give a description and a general working knowledge of the complete data acquisition and control system. Details of the hardware and software needed to trouble-shoot or modify the system have been arranged in the Appendices. The operational procedures are summarized in Appendix D.
II. MIDAS IV DATA ACQUISITION AND CONTROL SYSTEM

A. GENERAL DESCRIPTION

The components of the MIDAS IV system are shown schematically in Fig. 2. At the heart of the system is a Pro-Log Model MPS-805 microprocessor which can be programmed with programmable real-only memory units (PROMS). These units, programmed, retain the program when power is turned off. Thus software replaces the hard-wired logic found in earlier steady-state data systems. Scanning and recording of up to forty-eight channels of input data is controlled by the software programmed onto the PROMS of the microprocessor. The control program also sends output signals to control the operation of up to four Scanivalves, and to control the motor drive units on a probe traversing mechanism.

The forty-eight inputs of analog data are multiplexed to a single Digitec digital voltmeter (DVM) under program control. The data received by the microprocessor is printed and punched onto paper tape by a teletypewriter, also under program control.

General specifications and features of the system are summarized in Tables I(a), I(b), and I(c). Views of the front panel of MIDAS IV are shown in Figures 3 and 4.
B. HARDWARE COMPONENTS

1. Microprocessor

A Pro-Log Corporation MPS-805 8-bit microprocessor is used in the MIDAS IV system. Reference 2 provides a complete description of the microprocessor and the programming requirements. The specifications summarized in Tables II(a) and II(b) are reprinted from Ref. 2. Briefly, the MPS-805 is a digital microprocessor using an 8009 CPU chip. It has extended input/output capabilities (6 input and 4 output ports), 4095 words of ROM (2048 is standard), and presently 2048 words of RAM. If more memory is required a further 2048 words of RAM can be added through the installation of RAM chips (Pro-Log #D1002) to the RAM card (Pro-Log #8117). RAM contents remain unchanged until new information is written over old, or the power to the system is turned off.

The microprocessor can be interrupted and restarted at any time by pressing the RESET button which is shown in Fig. 4.

2. Analog Input Devices

Pressure transducers, thermocouples, strain gages, and potentiometers are devices currently used in conjunction with the MIDAS IV system. The pressure transducers and stain gages are electrically similar and act as variable resistances in one leg of a Wheatstone bridge. The bridge outputs a voltage proportional to the pressure or strain. Potentiometers require a power supply and produce an output voltage depending on the potentiometer's resistance. Thermocouples require no power supply and generate only millivolts of electrical output. In order to accommodate
these various measurement devices, the analog inputs to
MIDAS IV are connected to signal conditioners.

3. Signal Conditioners

The purpose of the signal conditioners is to provide
power to the analog device, to accept the resulting input
level of the analog signal, and to output a signal in the
range required by the digital voltmeter (±1.3999 volts).
Channels 1 through 40 are available for pressure
transducers, thermocouples, and strain gages, while channels
41 through 47 are designed for potentiometric inputs.

4. Multiplexers

Multiplexing allows a number of electrical inputs to
be connected in succession to a single measurement device,
in this case a digital voltmeter. In the MIDAS IV system
three Datel (model #MM-16) sixteen-input analog
multiplexers are used [Ref. 37]. The three outputs are
connected in parallel to the digital voltmeter. The outputs
of the 48 signal conditioners are connected to the inputs of
the three multiplexers. The desired channel (1-48) is
selected when an address signal and a multiplexer enable
signal are received from the microprocessor.

5. Digital Voltmeter (Digitec)

A Digitec digital voltmeter (DVM) measures the
signal voltage selected by the multiplexer. The DVM
converts the analog voltage into a digital value which
appears in the display of the instrument. The digital value
is simultaneously output on the rear of the DVM as four
BCD-numbers which are read by the microprocessor [Ref. 4].
6. Input/Output Devices

An ASR-33 teletypewriter [Ref. 13] is the input/output device for the MIDAS IV system. Since the microprocessor outputs ASCII serial characters, the MIDAS IV system is compatible with other equipment using the same I/O format, such as the HP-9830A with a teletypewriter interface ROM.

C. FRONT PANEL DESCRIPTION

1. Upper Front Section

Fig. 3 is a view of the upper front section of the MIDAS IV console and shows the location of the following components:

1.1 **LED Display** shows the current channel and port to which the multiplexer and Scanivalve, if it is selected, are set.

1.2 **Thumbwheel Switches** are only active in the calibrate mode and are used to manually select a desired channel.

1.3 **Port Advance Button** advances the selected Scanivalve continuously until released. The advance rate permits the user to increment one port at a time. The pushbutton is only active when channels 1 through 4 are selected on the thumbwheel switches and the system is in the calibrate mode.

1.4 **Probe Traverse Control** moves the traverse mechanism up or down. This enables the operator to calibrate or to reposition the probe for a survey. The operation is unaffected by the program selection.
1.5 Digital Voltmeter converts the various analog inputs into digital values for the microprocessor (see Sec. II.B.6). The "on/off-repetition rate" switch and the "mode selection" switch control its operation.

1.6 Signal Conditioners, each of which are provided with "balance" and "span" controls, allow the range of each analog input to be scaled to produce ±1.3999 volts.

Note: Scanivalve "Home" Button (not shown in Fig. 3) advances the Scanivalve to the first port and is located to the left of the Port Advance Button.
2. **Lower Front Section**

Fig. 4 shows the location of the Pro-Log MPS-805 microprocessor in the lower front section of the console as well as the following components:

2.1 **Reset Button** which is used to interrupt the microprocessor and cause it to wait for a new program selection.

2.2 **Main Power Switch** is a circuit breaker type switch that controls power to the console.

2.3 **Microprocessor Power Switch** and **Indicator Light** control the power to the MPS-905 and indicate when it is on.

D. **REAR PANEL DESCRIPTION**

Fifty-four connectors are used to interface peripheral equipment with the MIDAS IV system. Fig. 5 shows the connectors located on the rear panel of the console. The connector allocation is given in Table III.

E. **SOFTWARE PROGRAMS**

MIDAS IV performs the functions of scanning, digitizing and recording data, and supplying output control signals as a result of pre-programming of the microprocessor. The programs are constructed from subroutines to allow efficient use of memory space and ease of debugging.

The construction of the control program, called "Monitor", allows the selection of one of eight possible branches or "modes" of operation. The eight modes are listed in Table IV. Operation in each mode requires the use of different subroutines as shown in Fig. 6. The function of each subroutine is summarized in Table V. Flow charts
and listings of the subroutines are given in Appendix B. Procedures for changing programs are given in Appendix D.

F. OPERATION VIA PROGRAM "MONITOR"

The operation of MIDAS IV consists of running the program, "Monitor", at the teletypewriter. Step-by-step procedures for operating the system are given in Appendix D. In this section, the available modes of operation are described. The mode is selected by entering the mode selection number at the teletype after the RESET button is pressed. A list of the mode selection numbers is given in Table IV. A summary listing of this table can be obtained by entering "0" followed by a "space" at the teletypewriter.

1. MIDAS IV Mode Listing

The operator enters "0". In this mode a list of mode selection numbers is typed on the teletypewriter. Control is automatically returned to the beginning of the "MONITOR" program, and another mode selection input can be made.

2. Calibration Mode

The operator enters "1". This mode is used to set up instrumentation and to calibrate the electrical analog signal at the DVM to the physical measurement. In the CALIBRATION mode, the operator can select any of the 48 channels and any port on each of the four Scanivalves using the thumbwheel switches and the port advance button. The selected port and channel numbers appear in the LED display and the voltage output from the signal conditioner is displayed by the DVM. Thus in this mode, the "balance" and "span" controls on the signal conditioners can be adjusted.
to provide an appropriate "zero" and "range", respectively, for each input.

The CALIBRATION mode can also be used to select and monitor particular channels while testing is in progress.

To exit this mode, the RESET button is pressed.

3. Program Scan Mode

The operator enters "2". In this mode the operator first programs the sequence of channel/port combinations to be scanned when data is recorded. Second, the required increments and direction of probe movement are programmed. The required entries and format are given in Appendix D. Briefly, two tables of information are input. The first table, the Scan Control table, lists the channel and port number, the maximum difference between two successive DVM readings on this channel which can be accepted as indicating convergence has occurred, and the time in tenths of a second that the microprocessor should wait before the first DVM reading.

The Scan Control table is terminated by entering "F" in the "channel" column.

The second table, the Probe Control table, lists the amount, in hundredths of an inch, that the probe is to move and the direction of movement (0 or 1).

The Probe Control table is terminated by entering "F" in the "Amt" column. During DATA ACQUISITION mode, the channels listed in the Scan Control table are scanned and recorded for each position of the probe entered in the Probe Control table. If no probe is used, a "zero" for the amount and a "zero" for the direction is entered in the Probe
Control table, which is terminated with a FF as before.

4. READ TAPE Mode

The operator enters "3". In this mode, the Scan Control and Probe Control tables can be entered from a pre-punched paper tape. The tape is punched with the teletypewriter in the "LOCAL" mode. An entry of data is always read as the number pair immediately preceding a space. Thus carriage return and line feed commands can be harmlessly included on the tape if they are followed by a number pair and a space, for example, CP, LF, 03, "space". Consequently, the entries on a paper tape can be made such that the information is simultaneously typed in a readable form. The information is entered as it is in the PROGRAM SCAN mode except that the teletypewriter does not prompt the operator. It is mandatory that the FF ending the Scan Control table be in the "channel" position. If it is not, the Probe Control table will be read as an extension of the Scan Control table. The FF ending the Probe Control table must be in the "Amount" position in order to terminate the table. If the tape reader continues to run after the end of the paper tape it is probable that one of the two FF's were entered in the wrong column. The last three ASCII characters on the paper tape should be the number pair, FF, followed by a "space". If additional characters follow, they are ignored.

5. DATA ACQUISITION Mode

The operator enters "4". In this mode, data scans are performed as programmed in the PROGRAM SCAN mode. When the DATA ACQUISITION mode is entered, the microprocessor first checks whether the required amount of probe movement equals FF, since this indicates the end of the run. If it is not, the probe traverse mechanism is activated in the
direction specified by the Probe Control table entry for a length of time that gives the desired incremental displacement. The microprocessor then reads the first entry in the Scan Control table. If the "channel" number is not FF, the correct channel and port are selected. After waiting the amount of time specified by the Scan Control table, the DVM is sampled on two successive scans. The two values are compared and if the magnitude of the difference is less than the tolerance given in the Scan Control table, the average of the two readings is returned. If the tolerance is not met in sixteen attempts, a value of 15000 is returned. If the DVM is overrange (the analog voltage is outside the ±1.3999 volt range), a value of 14000 is returned. The channel number, port number, and the returned data value are output on the teletypewriter.

The microprocessor then checks the next channel number in the Scan Control table for FF and repeats the above process. The cycle is repeated until FF is read, at which time the next entry in the Probe Control table is checked for FF. If FF is read, the program is terminated and control returned to MONITOR. Otherwise the above process is repeated.

6. MEMORY DISPLAY and MEMORY EDIT Modes

The operator enters "5" for MEMORY DISPLAY and "6" for MEMORY EDIT. These modes are used together to first display and then to change what has been entered into RAM. They are available for software debugging. However, they are most frequently used to make individual changes in the Scan Control and Probe Control tables. For example, the Scan Control table is stored in RAM beginning at address 1100H. Five successive number pairs beginning with the channel number constitute one line of the table. To display a number of lines starting from the top of the table, first
"5" followed by a "space" is entered, then "11", "space", and "00", "space". Following a computer printed hyphen, the address of the last line to be displayed is entered as two number pairs each followed by a space. A printout is obtained on the teletypewriter of the desired block of RAM.

After noting the exact address of the number pair to be changed (note that the addresses are in hexadecimal and not decimal), the operator enters selection number "6", a "space", and the address. For example, "4, space, 11, space, 43, space". In the MEMORY EDIT mode, the existing data in RAM location specified by the entered address is printed on the teletypewriter and followed by a hyphen. The corrected data is then entered. The program automatically prints the number in the next location and a correction can be made if required. (If no data is entered before the space, a zero is written into RAM in place of the previous contents.) The RESFT button is pressed to terminate the MEMORY EDIT mode. The same procedure is followed to edit entries in the Probe Control table, which is stored in RAM beginning at address 14000h. The MEMORY DISPLAY mode can be reentered following MEMORY EDIT for a final check of the entries in the tables.

An experienced operator can also enter new machine language programs using the MEMORY EDIT mode. (The organization of ROM and RAM is shown in Fig. 7.) The next section describes how microprocessor control is transferred to such a program.
7. **Restart Mode**

The operator enters "7". On entering this mode, microprocessor control is transferred to the address entered following the selection number and a space. For example, a machine language program beginning at RAM location 1600H would be executed by entering the selection number "7" and a space followed by "16, space, 00, space".

The **RESTART** mode is terminated by pressing **RESET**.
III. PROBE AND TRAVERSE MECHANISM

A. GENERAL DESCRIPTION

Pneumatic probes, such as that shown in Figure 8(a), are frequently used in turbomachinery applications to determine the pressure distribution and flow direction between blade rows. The flow direction at a given location is partially determined by rotating the probe until the differential pressure between two side ports (see Fig. 8(b)) is zero ("yaw" balance). In this condition, the complete velocity vector can be determined from the pressures registered by the different probe ports with reference to calibration charts or equations. "Yaw" balanced probe readings are recorded at intervals across the flow. The Probe Traversing Mechanism (PTM), shown in Figure 9., was designed to position and balance the pneumatic probe during a survey under remote control.

The mechanism can be operated in three modes: "manual", "semi-automatic" (automatic yaw-balance and manual traverse), and "fully-automatic" operation under control of MIDAS IV. In the manual mode, the operator controls the angular and vertical positions of the probe using the control panel shown in Figure 10. This mode is used for check-out measurements. It can also be used during a test if it is safe for the operator to be in the test cell. In the semi-automatic mode, the side pressures (Fig. 8(b)) are applied to a differential pressure transducer which produces a control signal for the angular probe drive. This enables the probe to track the "yaw" direction automatically while the traversing movement is controlled manually. In the
third mode, fully-automatic, the probe is moved totally under program control of MIDAS IV. "Yaw" balance is maintained as in the semi-automatic mode, and the transverse motion is controlled by the microprocessor according to the programmed entries in the Probe Control table (see Section II-F).

B. HARDWARE COMPONENTS

1. Traverse Mechanism

The traverse mechanism was designed to accommodate probes having a shaft diameter equal to 0.25 inch with a shaft length of at least 12 inches. A variety of probe types can therefore be used. Details of the probes are not given here. The application of the mechanism is described with reference to the probe shown in Figure 8(a).

The Probe Traverse Mechanism was developed from an existing motorized probe drive of uncertain identity. It was necessary to change gearing on the transverse drive, to add position potentiometers, and to redesign mounting hardware for the probe and for attachment of the mechanism itself. Figure 9 shows the components of the traversing mechanism. As the probe rotates, the rotational displacement is tracked by a Cervex potentiometer. Transverse displacement is tracked by the linear potentiometer, and limit switches are provided to protect the components in event of a malfunction. Connecting cables between the traversing mechanism and the control panel can be disconnected for ease of set-up.

The mounting plate for the PTM was designed for the 4-bolt pattern used throughout the Naval Postgraduate School Turbomachinery laboratories. Thus, the PTM can be used
without modification on different pieces of test equipment. The PTM base, the angular potentiometer, and the orientation of the probe in the PTM are adjustable, which provides flexibility when space is limited.

2. Control Panel

The control panel, shown in Figure 10, is used when operating in all modes. The panel contains the drive circuits, the power supplies, and the interface connections to the MIDAS IV system. The control panel operates on 110 volt-60Hz AC power and is located within a few feet of the PTM. The connection to MIDAS IV is not necessary for manual or semi-automatic operation.

C. OPERATION

1. Set Up

The probe is held in the Probe Traversing Mechanism by three nylon-tipped, set screws in a collar at the top of the mechanism. Thus the probe can be installed in any desired position. In the semi or fully-automatic modes, the differential pressure transducer must be connected to the control panel which contains the transducer power supply. The pneumatic pressure lines must be connected without leaks, between the transducer and the #2 and #3 probe pressure outlets. (See Fig 8(b).) For operation with the MIDAS IV system, the transverse drive and potentiometer circuits are also connected. (See Fig. C.3.) When the power switch is turned on, the PTM is ready to operate.
2. **Manual and Semi-automatic Modes**

Switches are provided on the Control Panel (Fig. 10.) for manual operation of the PTM. The translational and angular drive motors are controlled by the operator. In the semi-automatic mode, the angular setting of the probe is automatically controlled by a feedback circuit in which a gain adjustment is provided. If the gain is too high the probe continues to "hunt" for the balance condition. If the gain is too low the probe does not follow the flow direction accurately. The gain can be adjusted by the operator. A water-filled, U-tube manometer which measures pressure differential between the probe side ports is a good indicator of correct or incorrect adjustment.

3. **Automatic Mode Using MIDAS IV**

In this mode of operation the MIDAS IV provides the signal that powers the translational movement of the probe. The control program in MIDAS IV allows movement of the probe in multiples of 0.01 inches. Since the automatic angular tracking circuit also operates in this mode, the probe is maintained in alignment with the flow direction as it translates from one position to another.
IV. CONCLUSIONS

The MIDAS IV data acquisition and control system has been built, programmed and initial tests have been made with a traversing probe mechanism. While experience with the application of the system has been limited so far, several conclusions can be stated:

A wired interface between the MIDAS IV and the Hewlett-Packard 9830A calculator is a feasible and desirable modification of the present system. By bypassing the teletype printing and punching operations, the time to complete a data scan is greatly reduced. Furthermore, the need to handle paper tape is eliminated, enabling on-line reduction of data. The interface is straightforward since, as with the teletype, MIDAS IV I/O operations use ASCII serial format, and teletype interface kits are available for the HP 9830A.

A further improvement in scan rate would be obtained by replacing the present Dijitec DVM with a more recent solid-state, high-speed A/D converter. This modification would involve the cost of the new converter and possibly minor changes in the present software. No changes in the present software would be necessary if the replacement converter output is in the same format as the Dijitec.

More experience is needed to determine whether the motors on the probe traversing mechanism should be replaced. The high noise level of the present motors is undesirable and failure of electrical components may occur in time. Low noise, brushless motors are commercially available should this modification be necessary.
The MIDAS IV is a fully flexible system and is not limited to turbomachinery applications. Since the signal conditioners are designed to accept any Wheatstone bridge, potentiometric or thermocouple input, other applications might include structural analysis using strain gages, or wind tunnel testing.

The concept of substituting software for hardware in a data acquisition system is beneficial because of flexibility, reduced maintenance, and lack of complexity. If a system component, an A/D converter for instance, is to be replaced, changes in software can be made easily. Such a replacement could be difficult in a system using only hard-wired logic. System maintenance is simplified since there are fewer components to fail, and the difficulty of fault-finding in interconnected hard-wired logic circuits is largely eliminated.
1. Completely self-contained system for 4 Scanivalve inputs, 36 bridge-type inputs or thermocouples, and 7 potentiometric inputs

2. Individual channel monitoring capability

3. Completely programmed for all operating functions

4. Programmable convergence specification for each channel

5. Programmable sampling time delay for damped signal input on each channel

6. Automatic non-convergence and overrange indication on all channels

7. Random channel selection and calling order

8. 4½ digit A/D with signal conditioning capability on each channel

9. Scans and records up to 30 channels/min.

10. Self-contained F/V for RPM measurement

11. Automatic pneumatic probe positioning and yaw angle ballancing

12. Full probe-position recording capabilities

13. Serial I/O for direct connection of ASR-33 or other ASCII compatible devices

14. Self-contained power supplies for Scanivalves, bridges, and probe traverse mechanism
TABLE I(b). TECHNICAL SPECIFICATIONS OF MIDAS IV

1. Input Points: 47
2. Measurement Functions:
 A. Thermocouples
 B. DC Voltages
 C. Potentiometers
 D. Wheatstone Bridge Applications
3. Resolution:
 A. $\pm 0.2 \text{ mV}$ for DC (after amplification)
 B. 0.01% of full scale for Thermocouples
4. Input Impedance: Determined by amplifier gain
5. Noise Rejection: 80db
6. Digitizing Technique: Ramp
7. Display Range: ± 13999 Digits
8. Calibration: All normal adjustments are labeled on upper front panel
9. Operating Temperature: 10 to 50 C
10. Power: 115 VAC 60Hz
11. Ventilation: Small exhaust fan on rear panel
12. Size:
 A. Height - 4 ft.
 B. Depth - 2 ft.
 C. Width - 2 ft.
14. Case Construction:
 A. 12 gage steel
 B. 8 gage aluminum
<table>
<thead>
<tr>
<th>Pro-Log Equipment</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPS-805</td>
<td>$790.00</td>
</tr>
<tr>
<td>PROM Chips (14)</td>
<td>490.00</td>
</tr>
<tr>
<td>ROM Card (#8116)</td>
<td>95.00</td>
</tr>
<tr>
<td>RAM Chips (8)</td>
<td>60.00</td>
</tr>
<tr>
<td>I/O Card (#8113)</td>
<td>105.00</td>
</tr>
<tr>
<td>Relay Card (#8402)</td>
<td>120.00</td>
</tr>
<tr>
<td>Total</td>
<td>1660.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIDAS IV Hardware</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Datel F/V (VFV-10K)</td>
<td>59.00</td>
</tr>
<tr>
<td>Datel Multiplexer (3) MM-16</td>
<td>387.00</td>
</tr>
<tr>
<td>Signal Conditioning Cards (48)</td>
<td>1035.00</td>
</tr>
<tr>
<td>Digitec A/D</td>
<td>650.00</td>
</tr>
<tr>
<td>Thumwheel Switch</td>
<td>20.00</td>
</tr>
<tr>
<td>LED Display</td>
<td>10.00</td>
</tr>
<tr>
<td>5 Pin Connectors (4)</td>
<td>75.00</td>
</tr>
<tr>
<td>14 Pin Connectors (4)</td>
<td>8.00</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>190.00</td>
</tr>
<tr>
<td>Power Switches and</td>
<td></td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td></td>
</tr>
<tr>
<td>Metal Case</td>
<td>250.00</td>
</tr>
<tr>
<td>Total</td>
<td>2694.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe Traversing System</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Traversing Mechanism</td>
<td>750.00</td>
</tr>
<tr>
<td>Probe Control Panel</td>
<td>285.00</td>
</tr>
<tr>
<td>Total</td>
<td>1035.00</td>
</tr>
</tbody>
</table>

| ASR-33 Teletypewriter | 800.00 |
| | **800.00** |

TOTAL ESTIMATED COST: 6189.00
<table>
<thead>
<tr>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three 4.5" by 6.5" printed circuit cards</td>
</tr>
<tr>
<td>- One 8111 CPU card</td>
</tr>
<tr>
<td>- One 8114 Input card</td>
</tr>
<tr>
<td>- One 8115 Output card</td>
</tr>
<tr>
<td>- One 8116 ROM card</td>
</tr>
<tr>
<td>- One 8117 RAM card</td>
</tr>
<tr>
<td>Connector Requirement for each card</td>
</tr>
<tr>
<td>56 pin. 28 position dual read-out on 0.125 centers</td>
</tr>
<tr>
<td>CPU Card includes</td>
</tr>
<tr>
<td>8088 CPU</td>
</tr>
<tr>
<td>Crystal clock</td>
</tr>
<tr>
<td>Address latches, data buffers, and control decode circuits</td>
</tr>
<tr>
<td>Power-on and external restart</td>
</tr>
<tr>
<td>DMA buffers</td>
</tr>
<tr>
<td>ROM Card includes</td>
</tr>
<tr>
<td>One 1702A PROM (256 bytes) and eight PROM sockets</td>
</tr>
<tr>
<td>Socket for card expansion circuit (up to 8 cards)</td>
</tr>
<tr>
<td>RAM Card includes</td>
</tr>
<tr>
<td>Eight 2102 RAM (1024 bytes) and thirty-two RAM sockets</td>
</tr>
<tr>
<td>Socket for card expansion circuit (up to 4 cards)</td>
</tr>
<tr>
<td>Input Card includes</td>
</tr>
<tr>
<td>32 TTL input selector circuits addressable in groups of 8</td>
</tr>
<tr>
<td>Socket for card expansion circuit (up to 2 cards)</td>
</tr>
<tr>
<td>Output Card includes</td>
</tr>
<tr>
<td>32 TTL output latch circuits addressable in groups of 8</td>
</tr>
<tr>
<td>Socket for card expansion circuit (up to 6 cards)</td>
</tr>
</tbody>
</table>

TABLE II(a). PHYSICAL SPECIFICATIONS FOR PRO-LOG MPS-805
Operational

CPU
- Executes all of the 8008 instructions.
- 4 microsecond time state cycle using 8008 (MPS 1805).
- 2.8 microsecond time state cycle using 8008-1 (MPS 805-1).

Memory for data or program storage card expandable to any combination of ROM and RAM to 16384 words
- ROM, 2048 word capacity per card.
- RAM, 4096 word capacity per card.

Input and Output
- Input gates implement the INP instructions.
- Output latches implement the OUT instructions.

Interrupt or External Restart
- Single line, synchronized interrupt on CPU card can be optionally wired for multi-level interrupt or Power-on external restart.
- Multi-level Interrupt - Control lines available for external interrupt such as 8118 priority interrupt card.
- Power on and external restart option: CPU starts at instruction location 0000 by wiring restart output from CPU card to Interrupt Request Input.

DMA (Direct Memory Access)
- Data, address, and control lines are 3-state disconnected by the CPU following a HALT instruction allowing
- DMA by peripherals. The CPU must be interrupted to continue following a HALT.

Electrical Requirements
- Refer to individual data sheets and schematics on the 8111, 8114, 8115, 8116, and 8117 for interface and wiring.

Power Requirements for the five card set fully loaded
- VCC = 15V ± 3.3 Amp maximum (35mA per ROM, 50mA per RAM)
- GND 0 volts
- VDD = 9 volts ± 0.3 900 mA maximum (15 mA per ROM)

Hardware
- Compatible with Siemens 8900 interface cards
- Fits CR5, CR10 or CR19 card racks
- Use M271 power supply
- PROM's programmable on Series 81 programmers

Software
- MPS 800 hardware is fully compatible with any 8008 software assuming I/O and interrupt can be assigned compatibly. Teletype operating system and system monitor available. Assemblers, compilers and simulators available through computer time-sharing services.

TABLE II(b). OPERATIONAL SPECIFICATIONS FOR PRO-LOG MPS-805
<table>
<thead>
<tr>
<th>CONNECTOR NUMBER-</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>SCANIVALVE SIGNAL INPUTS</td>
</tr>
<tr>
<td>5 - 40</td>
<td>STRAIN GAGE AND PRESSURE TRANSDUCER INPUTS</td>
</tr>
<tr>
<td>41 - 47</td>
<td>POTENTIOMETRIC INPUTS</td>
</tr>
<tr>
<td>48</td>
<td>MAGNETIC FLUX COUNTER INPUT</td>
</tr>
<tr>
<td>49</td>
<td>PROBE TRAVERSE MECHANISM CONTROL</td>
</tr>
<tr>
<td>50</td>
<td>TELETEYPewriter I/O</td>
</tr>
<tr>
<td>51 - 54</td>
<td>SCANIVALVE CONTROL I/O</td>
</tr>
<tr>
<td>MODE SELECTION NUMBER</td>
<td>MODE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>0</td>
<td>MIDAS IV</td>
</tr>
<tr>
<td></td>
<td>HEADER</td>
</tr>
<tr>
<td>1</td>
<td>CALIBRATION</td>
</tr>
<tr>
<td>2</td>
<td>PROGRAM</td>
</tr>
<tr>
<td></td>
<td>SCAN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>READ TAPE</td>
</tr>
<tr>
<td>4</td>
<td>DATA</td>
</tr>
<tr>
<td></td>
<td>ACQUISITION</td>
</tr>
<tr>
<td>5</td>
<td>MEMORY</td>
</tr>
<tr>
<td></td>
<td>DISPLAY</td>
</tr>
<tr>
<td>6</td>
<td>MEMORY</td>
</tr>
<tr>
<td></td>
<td>EDIT</td>
</tr>
<tr>
<td>7</td>
<td>RESTART</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>1.</td>
<td>BCDHEX</td>
</tr>
<tr>
<td>2.</td>
<td>CALIB</td>
</tr>
<tr>
<td>3.</td>
<td>CHANNEL ORDER</td>
</tr>
<tr>
<td>4.</td>
<td>CONVERGE</td>
</tr>
<tr>
<td>5.</td>
<td>DATAOUT</td>
</tr>
<tr>
<td>6.</td>
<td>DIGITEC</td>
</tr>
<tr>
<td>7.</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>8.</td>
<td>FORMAT</td>
</tr>
<tr>
<td>9.</td>
<td>HEX PAIR</td>
</tr>
<tr>
<td>10.</td>
<td>MONITOR</td>
</tr>
<tr>
<td>11.</td>
<td>MULTIPLEX</td>
</tr>
<tr>
<td>12.</td>
<td>NEXT</td>
</tr>
<tr>
<td>13.</td>
<td>ONE OUT</td>
</tr>
<tr>
<td>14.</td>
<td>PAIROUT</td>
</tr>
<tr>
<td>15.</td>
<td>PROBE ORDER</td>
</tr>
<tr>
<td>16.</td>
<td>READ CORE</td>
</tr>
<tr>
<td>17.</td>
<td>READ TAPE</td>
</tr>
<tr>
<td>18.</td>
<td>SCANV</td>
</tr>
<tr>
<td>19.</td>
<td>START</td>
</tr>
<tr>
<td>20.</td>
<td>TTYIN</td>
</tr>
<tr>
<td>21.</td>
<td>TTYOUT</td>
</tr>
<tr>
<td>22.</td>
<td>WRITE CORE</td>
</tr>
</tbody>
</table>
Figure 1a. Laboratory Arrangement and Function of MIDAS IV (Schematic)
FIGURE 1(c). MIDAS IV Console and Teletype
FIGURE 1(d). HP-9830A Data Reduction Equipment
Figure 2. Schematic of MIDAS IV System
FIGURE 4. Lower Front Console
FIGURE 5. Rear Connector Panel
Figure 6. Schematic of the MIDAS IV Control Program - "MONITOR"
Figure 6. (cont.) Schematic of the MIDAS IV Control Program - "MONITOR"
Figure 7. Memory Allocation Map for MIDAS IV
FIGURE 8(a). Pneumatic Probe for Flow Surveys—View of the Probe
THREE HOLE PROBE: PORT #1 TOTAL PRESSURE
PORTS #2 AND #3 YAW ANGLE INDICATORS

FIVE HOLE PROBE: PORT #1 TOTAL PRESSURE
PORTS #2 AND #3 YAW ANGLE INDICATORS
PORTS #4 AND #5 PITCH ANGLE INDICATORS

FIGURE 8(b). Pneumatic Probe for Flow Surveys—Pressure Port Locations
FIGURE 9. View of the Probe Traversing Mechanism
APPENDIX A. MIDAS IV HARDWARE MANUAL

A.1 PRO-LOG MPS-805 MICROPROCESSOR

The microprocessor used in MIDAS IV is a modified version of the Pro-Log Model MPS-805, the specifications of which are given in Tables II(a) and II(b). Schematics of the cards in the MIDAS IV microprocessor are contained in the following Pro-Log drawings:

1. CPU CARD (8111)
 #100308
 #100305

2. ROM CARD (8116)
 #100328
 #100325

3. RAM CARD (8117)
 #100332
 #100329

4. I/O BOARD (8113)
 #100316
 #100313

5. INPUT BOARD (8114)
 #100320
 #100317

6. OUTPUT BOARD (8115)
 #100324
 #100321

7. RELAY BOARD (8402)
 #100333
 #100336

The MIDAS IV uses one additional I/O card (#8113) and one additional ROM card (#8116). The number of input ports was increased from 4 to 5. PROM capacity was increased from 2048 to 4096 words. The layout of the cards in the microprocessor is shown in Figure A1, and a side view of the relay card is shown in Figure A2.

The extra wire-wrap connections required for these cards and the original connections are listed in Ref. 5. The I/O port assignments are given in Table A.1.
A.2 MULTIPLEXER BOARDS

Three 16-input Datel Model MM-16 multiplexers are mounted on boards contained in a separate chassis above and to the right of the MPS-305. Specifications are given in Ref. 3.

Figure A3. is a schematic of the multiplexer circuit and identifies the pin allocation of the card.

A.3 SIGNAL CONDITIONERS

Signal conditioning circuits are incorporated in channels 1 to 47 to enable the analog inputs to be scaled to ±1.3990 volts at the DVM. The circuit diagram for channels 1 to 40 is shown in Fig. A4., and notes are given in the figure for the differences in channels 41 to 47. The adjustments described in the following paragraphs are carried out in the CALIBRATION mode.

A.3.1 Amplifier Adjustments

The signal conditioners use SIGNETIC 741 operational amplifiers [Ref.5].

1. The amplifier gain is fixed by the value of the input resistance R3 (Fig. A4.) according to the relation:

\[\text{Gain} = \frac{R4}{R3}, \text{ where } R4 = 100,000 \text{ ohms} \]

2. The amplifier offset is set to zero by connecting test points 1, 2, and 3 together (Fig. 3. and Fig. A4.), and adjusting R6 to give a zero reading on the DVM.

3. The amplifier output is set to zero by
disconnecting the transducer input, shorting test points 1 and 3 together and adjusting R5 to give zero voltage.

A.3.2 Calibration of Channels 1-40

The signal conditioners on channels 1 to 40 were designed to be used with strain gage transducers (for force, torque or pressure measurements) and with thermocouples.

Strain gage inputs: A, B, C, and D (Fig. A5.) are used to complete a Wheatstone bridge circuit through the transducer.

1. The bridge is balanced to zero using R2 (labelled "hal" in the upper front panel shown in Fig. 3.)
2. The range, or span, is set using R1 (labelled "span" in the upper front panel shown in Fig. 3.)
3. A previously calibrated input can be checked using a fixed known resistance in the following way:
 i) Connect the resistance across test points 2 and 3 (shunting one leg of the bridge) and record the DVM reading.
 ii) Connect the resistance across test points 1 and 2 and record the DVM reading.
 iii) If the voltages agree with established calibration values, no adjustment of R1 and R2 is necessary. Otherwise R1 and R2 must be adjusted to produce the correct calibration values.

Thermocouple Inputs: Thermocouples are connected as shown in Fig. A5. Since thermocouples are low-level voltage sources (the voltage is the analog of the temperature being
measured) the power supply is not needed. The amplifier gain required is considerably higher than for strain gage inputs.

A.3.3 Calibration of Channels 41-47

The signal conditioners on channels 41 to 47 were designed to be used with potentiometric inputs. The 20,000 ohm resistors on either side of R2 in Fig. A4. are bypassed, and pins A, C, and D are connected as shown in Fig. A5. The calibration is in two steps:

1. The potentiometer is set to one limit of travel and R2 ("bal") is adjusted to give zero voltage.
2. The potentiometer is set to the other limit of travel and P1 ("span") is set to a desired maximum voltage. (The maximum is ±1.3999 volts, set by the DVM.)

A.4 Frequency to Voltage Converter

A.4.1 Circuit Description

A frequency to voltage (F/V) converter is used at the input of channel 48 to allow the measurement of RPM.

A magnetic flux cutter, consisting of an inductance sensor passed by an indented wheel mounted on the drive shaft, generates a pulsed signal at a frequency proportional to the RPM of the turbine (Fig. A6.). The F/V converter card detects the frequency and produces a voltage proportional to the frequency. A schematic of the card is shown in Fig. A8. Specifications for the Datel Model VPV-10K F/V converter are given in Ref. 8.
The F/V card produces 1 volt per 10KHz. To adjust to the range of the A/D converter (±1.3999 volts) the F/V card output is fed through a 10:1 voltage divider to the channel 48 input. Using an indented wheel with 6 teeth, the DVM reading from 0 to 1.0 volts corresponds to a shaft rotation rate of 0 to 100,000 RPM.

A.4.2 Range Adjustment

The range adjustment procedures are:
1. Place the toggle switch shown in Fig. A7. in the "calibrate" position.
2. Select channel 48, in the CALIBRATION mode.
3. With a stationary shaft, adjust the green trim pot for zero at the DVM. (Fig. A7.)
4. Input a 10,000 Hz signal from a frequency generator on pins A and C of the 48 pin connector. Place toggle switch in the "normal" position.
5. Adjust the tan colored trim pot ("main adj.", Fig. A7.) to give 0.1000 volts on the DVM.
6. Disconnect the frequency generator. This completes the adjustment.

A.5 SCANIVALVE CONTROLS

The Scanivalve is a commercially produced pneumatic switch that selectively connects one of several input ports to a pressure transducer contained in the unit. The Naval Postgraduate School Turbomachinery Laboratories uses two types of Scanivalves, one with 24 ports, the other with 48 ports. The MIDAS IV system can control up to four Scanivalves, thus multiplexing up to 196 pneumatic connections into four input channels.
The Scanivalve responds to two commands, "Home" and "Advance". "Home" causes the Scanivalve to be stepped until the first port is selected. "Advance" steps the Scanivalve one port at a time.

Fig A9. shows the Scanivalve "Advance" and "Home" circuitry. When MIDAS IV selects a Scanivalve, the GROUND for that Scanivalve is completed through the Pro-Log Relay Card (8402). The "Address" and "Home" signals are sent to all the Scanivalves, but only the one with the completed GROUND responds. Table A.II. lists the pin allocations for all connectors, including 51 through 54, which carry the Scanivalve control signals.

A.6 ANALOG TO DIGITAL CONVERTER (DIGITEC)

A.6.1 Description

The Digitec digital voltmeter converts an analog input voltage within the range ±1.2000 volts into a 4 1/2 BCD output.

The specifications for the Digitec Model 251-3 used in MIDAS IV are given in Ref. 4.

A.6.2 Sample Rate and Integration Time

The sample rate of the Digitec is adjustable between 0 and 5 samples/second. The integration time (for example, the time for the analog voltage to be measured) is independent of the sample rate, and it is possible to sample at intervals shorter than the integration time.

The MIDAS IV is programmed to compare up to 16 successive readings (samples) and test for convergence
within a prescribed limit. The upper section of Fig. A10 illustrates that it is possible to sample 16 times before the analog value is measured. This is avoided in two ways:

1. By slowing the DVM sample rate (illustrated by the center section of Fig. A10.).
2. By increasing the time delay in the Scan Control table (illustrated by the lower section of Fig. A10.). Note: A delay time of 0.7 sec. (obtained by entering 07 in the "Time" column of the Scan Control table) is usually sufficient to allow the DVM to complete integration.

A.7 DISPLAY CARD AND LED MODULES

Five 5-by-7 matrix light emitting diode (LED) modules display the channel and port numbers currently selected. The information is sent to the display card from the microprocessor in BCD format. The information is "latched" by following the initial display card input with the same information "or"-ed with 000H. (This is a latch enable signal being sent to the display card and is only necessary due to hardware design.)

A schematic of the circuit of the Display Card is given in Fig. A11. Specifications for the LED modules are given in Ref. 10.
A.8 TELETYPETE INTERFACE

The function of the teletype interface card is to process the output of the teletypewriter in order to eliminate transients (such as are due to bounce in the mechanical contacts) and to insure that the TTL voltage levels of 0 and 5 volts are maintained.

A schematic of the teletype interface card is given in Fig. A12.
TABLE A.I. I/O PORT ASSIGNMENTS FOR MIDAS IV

<table>
<thead>
<tr>
<th>INPUT CARD 3</th>
<th>INPUT CARD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8</td>
<td>1-8</td>
</tr>
<tr>
<td>Digitec 8000</td>
<td>Digitec 80</td>
</tr>
<tr>
<td>0-7</td>
<td>1-7</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>0-6</td>
<td>1-6</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>0-5</td>
<td>1-5</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>0-4</td>
<td>1-4</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>0-3</td>
<td>1-3</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>0-2</td>
<td>1-2</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>0-1</td>
<td>1-1</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT CARD 3</th>
<th>INPUT CARD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-8</td>
<td>3-8</td>
</tr>
<tr>
<td>TTY Input</td>
<td></td>
</tr>
<tr>
<td>2-7</td>
<td>3-7</td>
</tr>
<tr>
<td>2-6</td>
<td>3-6</td>
</tr>
<tr>
<td>2-5</td>
<td>3-5</td>
</tr>
<tr>
<td>2-4</td>
<td>3-4</td>
</tr>
<tr>
<td>Digitec Blanked</td>
<td>New Convert Pulse</td>
</tr>
<tr>
<td>2-3</td>
<td>3-2</td>
</tr>
<tr>
<td>Port Adv.</td>
<td>Polarity (1=neg)</td>
</tr>
<tr>
<td>2-2</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT CARD 4</th>
<th>INPUT CARD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-8</td>
<td>5-8</td>
</tr>
<tr>
<td>Scanivalve 80</td>
<td>Thumbwheel- 80</td>
</tr>
<tr>
<td>4-7</td>
<td>5-7</td>
</tr>
<tr>
<td>Position- 40</td>
<td>(Negative 40</td>
</tr>
<tr>
<td>4-6</td>
<td>5-6</td>
</tr>
<tr>
<td>(Negative 20</td>
<td>Logic) 20</td>
</tr>
<tr>
<td>4-5</td>
<td>5-5</td>
</tr>
<tr>
<td>Logic) 10</td>
<td>5-5</td>
</tr>
<tr>
<td>4-4</td>
<td>5-4</td>
</tr>
<tr>
<td>"</td>
<td>8</td>
</tr>
<tr>
<td>4-3</td>
<td>5-3</td>
</tr>
<tr>
<td>"</td>
<td>4</td>
</tr>
<tr>
<td>4-2</td>
<td>5-2</td>
</tr>
<tr>
<td>"</td>
<td>2</td>
</tr>
<tr>
<td>4-1</td>
<td>5-1</td>
</tr>
<tr>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td>OUTPUT CARD 5</td>
<td>OUTPUT CARD 5</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>0-8</td>
<td>1-8 TTY Output</td>
</tr>
<tr>
<td>0-7</td>
<td>1-7 MPX 3 Enable</td>
</tr>
<tr>
<td>0-6</td>
<td>1-6 MPX 2 Enable</td>
</tr>
<tr>
<td>0-5</td>
<td>1-5 MPX 1 Enable</td>
</tr>
<tr>
<td>0-4</td>
<td>1-4 MPX ADDR 8</td>
</tr>
<tr>
<td>0-3</td>
<td>1-3 MPX ADDR 4</td>
</tr>
<tr>
<td>0-2 Probe Up</td>
<td>1-2 MPX ADDR 2</td>
</tr>
<tr>
<td>0-1 Probe Down</td>
<td>1-1 MPX ADDR 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2-8 Display, D.P.</td>
<td>3-8 S.V. Home</td>
</tr>
<tr>
<td>2-7 Digit Sel. 4</td>
<td>3-7 Advance</td>
</tr>
<tr>
<td>2-6 "</td>
<td>3-6 S.V. Sel. 6</td>
</tr>
<tr>
<td>2-5 "</td>
<td>3-5 "</td>
</tr>
<tr>
<td>2-4 BCD Value 8</td>
<td>3-4 "</td>
</tr>
<tr>
<td>2-3 "</td>
<td>3-3 "</td>
</tr>
<tr>
<td>2-2 "</td>
<td>3-2 "</td>
</tr>
<tr>
<td>2-1 "</td>
<td>3-1 "</td>
</tr>
</tbody>
</table>
Table A.II. Pin Allocation for Connectors

<table>
<thead>
<tr>
<th>Connector Number</th>
<th>Pin</th>
<th>Wire Color</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-47</td>
<td>A</td>
<td>GRN</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>BLK</td>
<td>Signal (-)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>WHT</td>
<td>Signal (-)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>RED</td>
<td>Bridge Excitation</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>YEL</td>
<td>Shield</td>
</tr>
<tr>
<td>48</td>
<td>A</td>
<td>GRN</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>BLK</td>
<td>Signal (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not Used)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>WHT</td>
<td>Preq Input</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>RED</td>
<td>Bridge Excitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not Used)</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td>Shield</td>
</tr>
<tr>
<td>49</td>
<td>A</td>
<td>RED</td>
<td>11 Volts</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>BLK</td>
<td>"Up"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(24 ga)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>WHT</td>
<td>"Down"</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>BLK</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(18 ga)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td>Shield</td>
</tr>
<tr>
<td>50</td>
<td>A</td>
<td>BLK</td>
<td>Output to TTY</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>RED</td>
<td>Output to TTY</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>GRN</td>
<td>Input from TTY</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>WHT</td>
<td>Input from TTY</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td>Shield</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td>N/C</td>
</tr>
</tbody>
</table>
TABLE A.II. PIN ALLOCATION FOR CONNECTORS (CONT)

<table>
<thead>
<tr>
<th>CONNECTOR NUMBER</th>
<th>PIN</th>
<th>WIRE COLOR</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-5'</td>
<td>A</td>
<td>WHT</td>
<td>GROUND</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>WHT</td>
<td>GROUND</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>BLK</td>
<td>+24 VOLTS</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>BLUE</td>
<td>ADVANCE</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>GRN</td>
<td>HOME</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>BRN</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>ORG</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>YEL</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td></td>
<td>N/C</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>GRY</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>VIO</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>WHT</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>RED</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>GRN</td>
<td>ADDRESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STROBE</td>
</tr>
</tbody>
</table>
Figure A3. Multiplexer Board Schematic
Note 1. 1, 2, and 3 are Test Points for Amplifier Adjustment and Signal Calibration.

Note 2. For Channels 41-47, the 20K Resistors are Bypassed.

Figure A4. Signal Conditioning Circuit
PRESSURE TRANSDUCER OR STRAIN GAGE

THERMOCOUPLE (PINS A AND D NOT USED)

POTENTIOMETER (PIN 3 NOT USED)

Figure A5. Input Devices to Signal Conditioner
Figure A6. Magnetic Flux Cutter and Its Electrical Output
Figure A2. View of the P/V Card
Figure A8. Frequency to Voltage Converter
FIGURE A10. DVM Integration and Sampling Rates
Figure A11. Schematic of Display Card
Figure A12. Schematic of Teletype Interface Card
APPENDIX B. MIDAS IV SOFTWARE MANUAL

B.1 INTRODUCTION

The software for MIDAS IV was written in PL/M, a higher level language developed for microprocessors by Intel Corporation. References 11. and 12. were used in the generation of the software described in the following sections. The use of PL/M rather than assembly language was intended to simplify program changes and debugging for all future users.

Each of the following sections contains a brief description of a program subroutine. Listings of the program in PL/M and schematics of the program logic are located at the end of this appendix. The subroutines are described in the order that they appear in the PL/M source file. The sequence in which the subroutines are called by the Control Program "MONITOR", and by other subroutines is shown in Table B.I. The attempt is made in the text to describe how the microprocessor carries out the separate tasks. The program listings and logic are needed if alterations to the software become necessary.

The procedures for operating the programs and for making changes to the software are given in Appendix D.
B.2 TTYIN AND TTYOUT

These subroutines are the teletypewriter I/O drivers. They are software equivalents to a serial-to-parallel and parallel-to-serial shift register, respectively. When TTYIN is called it returns an ASCII character pair to the microprocessor from the teletypewriter operating in the LINE mode. TTYOUT performs the reverse operation. As can be seen in the program listing, a time delay is included in the data transfer process to match the processor to the teletype [Ref. 13] operating at a pulse rate of 9 msec. A PL/M library subroutine is called with the statement "Call Time()", where the calling argument would normally determine the delay time in units of 0.1 msec. However, since the PL/M-8 compiler was written for microprocessors using a 4.0 micro-second time base, whereas the MPS-805 has a 2.8 micro-second time base, the "Call Time" arguments must be multiplied by 4.0/2.8 or approximately 1.43. For example, "Call Time (100)" on a microprocessor with a 4.0 micro-second time base would give a 10 msec delay. Since the MPS-805 microprocessor with a 2.3 micro-second time base executes each instruction proportionately faster, "Call Time(143)" is required to generate a 10 msec delay.

B.3 HEX PAIR AND PAIROUT

HEX PAIR is a subroutine that converts two ASCII characters representing a hexadecimal pair into binary code. Valid inputs are O0H through FFH. If other characters are entered an error in conversion results. HEX PAIR calls TTYIN (and TTYOUT to provide a written output of what is input at the keyboard) to allow the ASCII characters to be input at the teletypewriter. The value of "word" is initialized to zero and then the input is checked to
determine if it is a space, 020H. If it is, "word" is returned; if it is not, the input is converted from ASCII to binary and "or"ed with the "word". If more characters are entered, only the two characters immediately preceding the space are taken. The others are shifted to the left and out of the register.

PAIR OUT performs the opposite function. It converts the binary code of a hexadecimal pair into two ASCII characters and outputs the result via TTYOUT to the teletypewriter.

5.4 ONPOUT, BCDHEX, AND FORMAT

ONPOUT converts the binary code of a single hexadecimal character into the corresponding ASCII code of that character. Then, by calling TTYOUT, the character is written on the teletypewriter.

BCDHEX converts a two digit BCD coded number into its binary equivalent. The maximum input is the decimal value 99.

FORMAT is a subroutine used in formatting the teletype output. The inputs are the ASCII character to be outputted and the number of times it is to be repeated. For example, FORMAT(02AH, 5) prints "*****" on the teletypewriter.
DIGITEC interfaces the Digitec DVM with the MIDAS IV system. The subroutine reads a 4-digit BCD-coded decimal number, checks the high range indicator, and records the sign of the voltage. The data is then converted into binary code and a constant, "sign", is set to indicate the polarity.

The subroutine can be used with any DVM which outputs data in the format of the Digitec. If a 3 1/2 digit DVM is used, the four most significant bits of the high-half of the data should be grounded and the "high range" constant should be changed from 10000 to 1000.

If the DVM is overrange, the subroutine returns a value of 14000 since 13999 is the maximum range of the Digitec DVM.

B.6 MULTIPLEX

MULTIPLEX controls the multiplexers. The channel number is converted from decimal to binary code and the appropriate multiplexer (one of three) is selected.

B.7 SCANV

SCANV controls the Scanivalves. The calling routine specifies the Scanivalve number (1 through 4) and the port number (1 through 48). SCANV enables the selected Scanivalve and reads the current port address. If the address is not equal to the specified port number, SCANV advances the Scanivalve until the address and number match. (Note: It is possible to enter a continuous loop if the
Scanivalve does not have a port corresponding to the desired port number. For example, some Scanivalves have only even numbered ports. To avoid an endless search, odd numbers should then not be requested with this type of Scanivalve. Since SCANV creates the advance pulse, for other scanning systems it may be necessary to change the pulse width and repetition frequency. This is a minor program change involving only the limits of the "Do" loops. The execution of the loop provides a 10 msec delay. Therefore "Do" loop limits of 1 to 8 provide about 80 msec of delay. The procedure for these changes is given in Appendix D.

B.8 DISPLAY

DISPLAY controls the LED display which shows the channel and port numbers. The calling routine specifies the sign, the channel, and the port number. Once the values are latched into the LED display, they are retained until changed by DISPLAY. The sign convention is given in the listing of the DISPLAY subroutine.

B.9 DATAOUT

DATAOUT receives the data in binary code and the channel and port numbers in BCD from the calling routine. DATAOUT converts the data from binary to BCD code, then outputs the channel, port, and data followed by carriage return and line feed commands via ONEOUT and TTYOUT.
CONVERGE, when given an error tolerance and the current line number in the Scan Control table, uses the line number to locate and read the time delay entered for the selected channel and port, and delays that length of time (in tenths of a second) before calling DIGITEC. After obtaining a second DIGITEC reading, the two values are checked to see if the difference is less than the specified tolerance. If it is, the average of the two values is returned. If it is not, the subroutine tries 16 times to meet the tolerance and if unable to do so, returns 15000. If the Digitec is overrange, CONVERGE returns 14000.

B.11 START

START is the controlling routine for the DATA ACQUISITION mode. When called by MONITOR, START types 20 asterisks on the teletypewriter inorder to give the operator time to turn the paper punch on and to provide a leader. The "Amount" entry in the Probe Control table is checked for PP. If not PP, the probe is moved the specified amount (in hundredths of an inch) in the direction specified by the "Direction" entry in the Probe Control table. The "Channel" entry in the Scan Control table is now checked for PP. If the entry is PP, control is transferred to where the Probe Control table is checked. If the entry in the Scan Control table is not PP, MULTIPLEX is called with arguments , channel number , and port number, and latches those values into the LED display. If the channel number is between 1 and 4, SCAMW selects the specified Scanivalve and port required. If the channel number is above four, SCAMW has no effect. The error tolerance is read from the Scan Control table, CONVERGE and DATAOUT are called and control is transferred back to check the "Amount" entry in the Probe
Control table. When PF is encountered at this point, START ends and control is returned to MONITOR.

B.12 CALIB

CALIB is the controlling routine for the CALIBRATION mode. The routine is continuously looping and must be terminated with the RESET button. When selected, CALIB reads the thumbwheel switch and calls MULTIPLEX. If a Scanivalve is not selected by the particular thumbwheel setting, DISPLAY latches the channel number and 00 (for the port) into the LED display. If a Scanivalve is specified by the thumbwheel settings, an enable signal is sent and the port address is read from the Scanivalve. After calling DISPLAY, the current channel and port are latched into the LED's. If the Port Advance pushbutton is pressed, CALIB advances the Scanivalve and returns to read the thumbwheel switches again. The rate at which the Scanivalve is advanced when the Port Advance button is continuously pressed is determined by time delay loops as in the SCANV subroutine.

B.13 CHANNEL ORDER AND PROBE ORDER

CHANNEL ORDER is one of two controlling routines in the PROGRAM SCAN mode. It is used to write the Scan Control table into RAM beginning at address 1100H, using HEMPAT. CHANNEL ORDER continues to fill RAM until FF is entered in the "Channel" column of the Scan Control table. PROBE ORDER is then called. PROBE ORDER, the second routine in the PROGRAM node, writes the Probe Control table into RAM beginning at 1400H and continuing until FF is read in the "Amount" column. When PROBE ORDER is terminated with FF, control is transferred back to MONITOR.
B.14 NEXT

NEXT is a short routine which types "Enter the next selection number:" before control is transferred back to MONITOR.

B.15 READ CORE AND WRITE CORE

READ CORE is the controlling routine in the MEMORY DISPLAY mode. After calling READ CORE, a beginning and an ending address are entered. The routine types the contents of memory between the specified addresses including the line number at the beginning of each line of memory. (An example is given in Table B.VI.) If the first address is inadvertently entered to be higher than the ending address, the routine will attempt to print 256 pages of text. The process can be terminated at any point by pressing the RESET button.

WRITE CORE is the controlling routine in the MEMORY EDIT mode. After selecting this mode, the beginning address is entered. WRITE CORE types the current contents of the memory location followed by a hyphen. The correct number pair is entered at the keyboard, followed by a "space." WRITE CORE then causes the contents of the next memory location to be typed. Note that the data must either be repeated or changed, since pressing the space bar without an entry causes a "00" to be read. To exit WRITE CORE, the RESET button is pressed. (This does not effect the last uncorrected memory location.)
B.16 READ TAPE

READ TAPE is the controlling routine in the READ TAPE mode. After being selected, READ TAPE waits for a paper tape input. (The paper tape format is critical to the operation of READ TAPE. Care must be exercised that the correct format as described in APPENDIX D is used.) READ TAPE loads the Scan Control table into RAM beginning at 1100H and after encountering FF in the "channel" column, loads the Probe Control table into RAM beginning at 1400H. The end of the Probe Control table is read when FF is encountered in the "amount" column. Control is then transferred back to MONITOR.

B.17 MONITOR

MONITOR is the controlling program for the MIDAS IV system and enables the user to select one of eight operating modes. All other routines and subroutines are called as a result of the mode selection input. Table B.I gives a listing of the subroutine calling levels.
DECLARE DEC LITERALLY 'DECLARE';
DEC (I, SIGN) BYTE;
DEC CR LITERALLY '00DH';
DEC LF LITERALLY '00AH';
DEC SP LITERALLY '020H';
DEC DASH LITERALLY '02DH';
DEC INZERO LITERALLY 'INPUT(0)';
DEC INONE LITERALLY 'INPUT(1)';
DEC INTWO LITERALLY 'INPUT(2)';
DEC INTTHREE LITERALLY 'INPUT(3)';
DEC INFOUR LITERALLY 'INPUT(4)';
DEC INFIVE LITERALLY 'INPUT(5)';
DEC OUTZERO LITERALLY 'OUTPUT(0)';
DEC OUTONE LITERALLY 'OUTPUT(1)';
DEC OUTTWO LITERALLY 'OUTPUT(2)';
DEC OUTTHREE LITERALLY 'OUTPUT(3)';
DEC M DATA(CR, LF, LF, ' MIDAS IV ' , CR, LF, LF, ' TYPE THE SELECTION NUMBER FOLLOWED BY A SPACE:
CR, LF, LF);
' 0 - MIDAS IV HEADER', CR, LF,
' 1 - CALIBRATION', CR, LF,
' 2 - PROGRAM SCAN', CR, LF,
' 3 - READ TAPE', CR, LF,
' 4 - DATA ACQUISITION', CR, LF,
' 5 - MEMORY DISPLAY', CR, LF,
' 6 - MEMORY EDIT', CR, LF,
' 7 - RESTART', CR, LF, LF);
DEC N DATA(CR,LF,LF, 'ENTER THE NEXT SELECTION NUMBER: ',CR,LF,LF);
DEC CSHEADER DATA(CR,LF,LF, 'CH PT ERROR TIME ',CR,LF,LF);
DEC PSHEADER DATA(CR,LF,LF, 'AMT DN=0/UP=1', ,CR,LF,LF);
DEC (CHAN BASED B$CH) BYTE;
DEC (PROBE BASED B$PB) BYTE;
DEC (BCH,BPB,ADDRM) ADDRESS;
B$CH=1100H;
B$PB=1400H;
TTYIN:PROCEDURE BYTE;/* TELETYP E SERIAL INPUT */

DEC (XTI, ITI) BYTE;

HERE: IF (INTWO AND 080H) <> 080H THEN GO TO HERE;

CALL TIME(64); /* 8.5 MSEC PULSE */

XTI = 0;

DO ITI = 1 TO 8;

CALL TIME(130);

XTI = ROR(XTI, 1);

XTI = XTI OR (INTWO AND 080H);

END;

CALL TIME(130);

RETURN ((NOT XTI) AND 07FH);

END TTYIN;

TTYOUT:PROCEDURE(ZTO); /* TELETYP E SERIAL OUTPUT */

DEC (ITO, ZTO) BYTE;

ZTO = NOT ZTO;

OUTONE = 080H; /* START PULSE */

CALL TIME(130);

DO ITO = 1 TO 8;

ZTO = ROR(ZTO, 1);

OUTONE = ZTO AND 030H;

CALL TIME(130);

END;

OUTONE = 0;

CALL TIME(130);

RETURN;

END TTYOUT;
HEX$PAIR: PROCEDURE BYTE; /* HEXIDEC PAIR INPUT */
DEC (WORD,AHP)BYTE;
WORD = 0;
M1: CALL TTYOUT(AHP:=TTYIN); /* ECHOS INPUT TO TELETYPE */
IF AHP=20H THEN RETURN WORD; /* SPACE = END OF PAIR */
IF AHP>39H THEN AHP=AHP-37H;
/* CONVERTS ASCII TO HEX */
ELSE AHP=AHP-30H;
WORD=SHL(WORD,4) OR AHP;
GO TO M1;
END HEX$PAIR;
PAIROUT: PROCEDURE(ASC);
DEC (ASC,ASC1)BYTE;
IF (ASC1:=SHR(ASC,4))<0AH THEN ASC1=(ASC1 + 030H);
ELSE ASC1=ASC1 + 037H;
CALL TTYOUT(ASC1);
IF (ASC1:=(ASC AND OFH))<0AH THEN ASC1=(ASC1 + 030H);
ELSE ASC1=ASC1 + 037H;
CALL TTYOUT(ASC1);
RETURN;
END PAIROUT;
00088 1 ONEOUT:PROCEDURE (NUM);
00089 1 DEC (NUM,NUM1)BYTE;
00090 2 IF (NUM1:=(NUM AND OFH))< 10 THEN NUM1=
00091 2 (NUM1 + 030H);
00092 2 ELSE NUM1=NUM1+037H;
00093 2 CALL TTYOUT(NUM1);
00094 2 RETURN;
00095 2 END ONEOUT;
00096 1

00097 1 BCDHEX:PROCEDURE(ABH)BYTE;
00098 2 DEC (ABH,BH)BYTE;
00099 2 BBH=((SHR(ABH,4)=00AH) + (ABH AND 00FH));
00100 2 RETURN BBH;
00101 2 END BCDHEX;
00102 1

00103 1 FORMAT:PROCEDURE (TYPE, NUM);
00104 2 DEC (TYPE,NUM,IFOR) BYTE;
00105 2 DO IFOR=1 TO NUM;
00106 2 CALL TTYOUT(TYPE);
00107 3 END;
00108 2 RETURN;
00109 2 END FORMAT;
DIGITEC:PROCEDURE ADDRESS;

 /* READS BCD DIGITEC OUTPUT */

DEC (VAL,OVER)ADDRESS;

DEC (ADC,BDC,CDC,HEXA,HEXB) BYTE;

HERE: IF (INTHREE AND 004H)<004H THEN
 GO TO HERE;

/* END OF CONVERT*/

THERE: IF (INTHREE AND 004H)=004H THEN GO TO THERE;

IF ((CDC:=INTHREE) AND 008H)=003F THEN DO;

VAL=14000;

RETURN VAL; /* IF DIGITEC IS OVERRANGE */

END;

SIGN=1;

IF (CDC AND 002H)=002H THEN SIGN=2; /* SIGN OUTPUT */

OVER=0;

IF (CDC AND 001H)=001H THEN OVER=10000;

HEXB=BCDHEX(INONE);

/* LOWER 2 DIGITS*/

HEXA=BCDHEX(INZERO);

/* UPPER 2 DIGITS*/

VAL=(OVER + (HEXA=100) + HEXB);

RETURN VAL;

END DIGITEC;
MULTIPLEX: PROCEDURE (CHM); /* SELECTS CHANNEL */

DEC (CHM,BM,DM) BYTE;

BM = (BCDHEX(CHM) - 1);
DM = BM AND 0OFH;
DO CASE (SHR(BM,4));

OUTONE = DM OR 010H;
OUTONE = DM OR 020H;
OUTONE = DM OR 040H;

END;
RETURN;
END MULTIPLEX;
SCANV:PROCEDURE (CHS,PTS);
/* SELECTS PORT ON ENABLED S.V. */
DEC (CHS,PTS,BS,IS) BYTE;
IF (((CHS>0) AND (CHS<5)) THEN DO;
 IF PTS > 048H THEN RETURN;
 IF PTS = 0 THEN RETURN;
*/ SCANOVALVES ARE ONLY ON CH1 TO CH4. */
DO CASE (CHS-1);
 BS=01H;
 BS=02H;
 BS=04H;
 BS=08H;
END;
OUTTHREE = BS;
DO WHILE (PTS<(NOT(INFOUR)));
 OUTTHREE = (040H +BS);
/*/ BIT 7 IS S.V. ADVANCE, BIT 8 IS S.V. HOME. */
 DO IS=1 TO 8;
 CALL TIME(143);
 END;
 OUTTHREE = BS;
 DO IS=1 TO 12;
 CALL TIME(143);
 END;
END;
END;
RETURN;
END SCANV;
DISPLAY:PROCEDURE(SDY,CHDY,PTDY); /*LED DISPLAY*/
DEC (CHDY,PTDY,SDY,VDY,BDY) BYTE;
OUTTWO = (080H OR (VDY:= (PTDY AND 00FH)));
CALL TIME(143);
OUTTWO = (0FOH OR VDY);
/* MUST FOLLOW INPUT WITH OFCH ANDED WITH INFO */
/* INORDER TO LATCH THE INFC. */
CALL TIME(143);
OUTTWO = (090H OR (VDY:= SHR(PTDY,4)));
CALL TIME(143);
OUTTWO = (0FOH OR VDY);
CALL TIME(143);
OUTTWO = (0AOH OR (VDY:= (CHDY AND 00FH)));
CALL TIME(143);
OUTTWO = (0FOH OR VDY);
CALL TIME(143);
OUTTWO = (060H OR (VDY:= SHR(CHDY,4)));
CALL TIME(143);
OUTTWO = (0FOH OR VDY);
CALL TIME(143);
OUTTWO = (0FOH OR VDY);
CALL TIME(143);
CALL TIME(143);
DO CASE SDY; /* SIGN CONVENTION */
BDY = 00H; /* 00 = +0 */
BDY = 01H; /* 01 = +1 */
BDY = 10H; /* 10 = -0 */
BDY = 11H; /* 11 = -1 */
END;
OUTTWO = (0COH OR BDY);
CALL TIME(143);
OUTTWO = (0FOH OR BDY);
CALL TIME(143);
RETURN;
END DISPLAY;
DATAOUT:PROCEDURE (DATA0,CHDO,PTDO);

/* PAPER TAPE AND TTY OUTPUT. */

/* THE INFO IS IN CHANNEL-PORT-DATA FORMAT. */

/* OUTPUT FOLLOWED BY CARRIAGE RETURN/LINE FEED */

DEC (DATA0,001,002)ADDRESS;

DEC (CHDO,PTDO,SIGNBIT,BCD1,BCD2,BCD3,
 BCD4,BCD5)BYTE;

CALL PAIROUT(CHDO);

CALL FORMAT (SP,3);

CALL PAIROUT (PTDO);

CALL FORMAT (SP,3);

BCD1=0;

/* IF THE FIRST NUMBER IN DATA0 IS BETWEEN */

/* A AND F THEN BCD1 AND BCD2 ARE USED TO */

/* REPRESENT THE NUMBER IN BCD. */

IF (BCD2=DATA0/1000)>9 THEN DO;

 BCD1=1;

 BCD2=BCD2-10;

END;

BCD3=((001=DATA0 MOD 1000)/100);

BCD4=((002=001 MOD 100)/10);

BCD5=DC2 MOD 10;

IF SIGN=1 THEN CALL TTYOUT('++');

ELSE CALL TTYOUT('--');

CALL ONEOUT(BCD1);

CALL ONEOUT(BCD2);

CALL ONEOUT(BCD3);

CALL ONEOUT(BCD4);

CALL ONEOUT(BCD5);

CALL TTYOUT(CR);

CALL TTYOUT(LF);

RETURN;

END DATAOUT;
CONVERGE:PROCEDURE(ERCCR, VAL) ADDRESS;

/* DIGITEC CONVERGENCE FOR SUCCESSIVE VALUES. */

/* ERROR IS FROM TOLERANCE. */

DEC (ERROR, AOC, A1C, A2C, A3C) ADDRESS;
DEC (A4C, A5C, A6C, CC, VAL) BYTE;
A4C = BCDHEX(CHAN(VAL+4));
DO A5C = 1 TO A4C;
DO A6C = 1 TO 10;
CALL TIME(143);
END;
END;

IF (AOC = DIGITEC) = 14000 THEN RETURN AOC;
CC = 0;
C1: IF (A1C = DIGITEC) = 14000 THEN RETURN A1C;
IF (A2C = A1C - A0C) < 0 THEN A2C = -A2C;
IF A2C < ERROR THEN DO;
A3C = A0C + (A2C/2);
RETURN A3C;
END;
AOC = A1C;
IF (CC = CC+1) = OFH THEN RETURN 9999;
GO TO C1;
END CONVERGE;
START: PROCEDURE;
DEC (IST, JST, KST, LST, TST, AST) BYTE;
DEC ERROR ADDRESS;
CALL TTYOUT(CR);
CALL TTYOUT(LF);
CALL FORMAT(02AH, 30);
CALL TTYOUT(CR);
CALL TTYOUT(LF);
LST = 0;
STO: IF (TST = PROBE(LST)) = OFFH THEN DO;
OUTTHREE = 0;
RETURN;
END;
IF TST <> 0 THEN DO;
AST = 01H;
IF PROBE(LST + 1) = 1 THEN AST = 02H;
OUTZERO = AST;
DO KST = 1 TO (3CDHEX(TST));
DO JST = 1 TO 50;
CALL TIME(143);
END;
END;
OUTZERO = 0;
END;
LST = LST + 2;
IST = 0;
ST1: IF (CHAN(IST) = OFFH) THEN GO TO STO;
CALL MULTIPLEX(CHAN(IST));
CALL DISPLAY(0,CHAN(IST),CHAN(IST+1));
CALL SCANN(CHAN(IST),CHAN(IST+1));
ERROR=(BCDHEX(CHAN(IST+2))=100H) +
 (BCDHEX(CHAN(IST+3)));
CALL DATAOUT(CONVERGE(ERROR,IST),
 CHAN(IST),CHAN(IST+1));
IST=IST+5;
GO TO STL;
END START;
CALIB: PROCEDURE;

DEC(ACB,BCB,ICB) BYTE;
MO: CALL MULTIPLEX((ACB:=NCT(INFIVE)));
IF ((ACB=0) OR (ACB>4)) THEN DO;
CALL DISPLAY(0,ACB,00);
OUTTHREE=00;
GO TO MO;
END;

DO CASE (ACB-1);

IF (INTWG AND 001H)<=001H THEN DO;
OUTTHREE = (040H OR BCB);
DG ICB=1 TO 3;
END;
END;
GO TO MO;
RETURN;
END CALIB;
CHANNEL$ORDER: PROCEDURE;
DEC (ICO,JCO) BYTE;
DO ICO=0 TO LENGTH ($HEADER);
 CALL TTYOUT($HEADER(ICO));
END;
ICO=0;
C0:D0
 DO WHILE (CHAN(ICO)=HEX$PAIR)< OFFH;
 CHAN(ICO+1)=HEX$PAIR;
 CALL FORMAT(SP,3);
 CHAN(ICO+2)=HEX$PAIR;
 CHAN(ICO+3)=HEX$PAIR;
 CALL FORMAT(SP,3);
 CHAN(ICO+4)=HEX$PAIR;
 CALL TTYOUT(CR);
 CALL TTYOUT(LF);
 ICO=ICO+5;
 GO TO C0;
END;
RETURN;
END CHANNEL$ORDER;
00350 1"
00351 PROBE$ORDER:PROCEDURE;
00352 2"
00353 DEC(IPC,JPO)BYTE;
00354 2"
00355 DO IPO=0 TO LENGTH(P$HEADER);
00356 CALL TTYOUT(P$HEADER(IPO));
00357 3" END;
00358 2"
00359 IPO=0;
00360 2"
00361 F01:DO WHILE (PROBE(IPO):=HEX$PAIR)<>OFFH;
00362 2"
00363 CALL FORMAT(SP,3);
00364 3"
00365 PROBE(IPC+1)=HEX$PAIR;
00366 3"
00367 CALL TTYOUT(CR);
00368 3"
00369 CALL TTYOUT(LF);
00370 3"
00371 IPO=IPO+2;
00372 3"
00373 GO TO P01;
00374 3"
00375 END;
00376 2"
00377 RETURN;
00378 2"
00379 END PROBE$ORDER;

103
NEXT:PROCEDURE;
DEC IN BYTE;
DO IN=0 TC LENGTH(N);
CALL TTYOUT(N(IN));
END;
RETURN;
END NEXT;
READSCORE: PROCEDURE;
DEC CORE BASED ADDR1 BYTE;
DEC (ADDR1, ADDR2, PGLN, NRC) ADDRESS;
DEC (HRC, LRC) BYTE;
NRC=0;
ADDR1=HEX$PAIR*100H + HEX$PAIR;
CALL TTYOUT(SP);
CALL TTYOUT(' - ');
CALL TTYOUT(SP);
ADDR2=HEX$PAIR*100H + HEX$PAIR;
CALL TTYOUT(CR);
CALL TTYOUT(LF);
RO:PGLN=ADDR1+NRC;
IF (PGLN AND 000FH)=0 THEN DO;
CALL TTYOUT(CR);
CALL TTYOUT(LF);
CALL ONEOUT(SHR((HRC:=HIGH(PGLN)),4));
CALL ONEOUT(HRC AND OFH);
CALL ONEOUT(SHR((LRC:=LOM(PGLN)),4));
CALL ONEOUT(LRC AND OFH);
CALL TTYOUT(03AH);
CALL TTYOUT(SP);
CALL TTYOUT(SP);
END;
CALL PAIROUT(CORE(NRC));
CALL TTYOUT(SP);
NRC=NRC+1;
IF PGLN=ADDR2 THEN RETURN;
GO TO RO;
END READSCORE;
004C6 1 WRITE$CORE:PROCEDURE;
004C7 2 DEC (IWC,AWC,JWC) BYTE;
004C8 2 DEC WCORE BASED ADDRWC BYTE;
004C9 2 DEC ADDRWC ADDRESS;
004CA 2 IWC=0;
004CB 2 ADDRWC=HEX$PAIR*100H + HEX$PAIR;
004CC 2 WC1:JWC=0;
004CD 2 WC2:CALL PAIROUT(WCORE(IWC));
004CE 2 CALL TTYOUT(DASH);
004CF 2 WCORE(IWC)=HEX$PAIR;
004D0 2 CALL FORMAT(SP,2);
004D1 2 IF (JWC:=JWC+1)=8 THEN DO;
004D2 2 CALL TTYOUT(CR);
004D3 3 CALL TTYOUT(LF);
004D4 3 IWC=IWC+1;
004D5 3 GO TO WC1;
004D6 3 END;
004D7 2 IWC=IWC+1;
004D8 2 GO TO WC2;
004D9 2 END WRITE$CORE;
READ$TAPE: PROCEDURE;
DEC(RT1, RT2, RT3, RT4, RT5) BYTE;
RT1=0;
RT2=0;
RT4=0;
RT5=0;
R1: IF (RT3:=TTYIN)=020H THEN DO CASE RT4;
 GO TO R2;
 GO TO R3;
END;
IF RT3>039H THEN RT3=RT3-037H;
ELSE RT3=RT3-030H;
RT2=SHL(RT2, 4) OR RT3;
GO TO R1;
R2: IF (CHAN(RT1)=RT2)<OFFH THEN DC;
 RT1=RT1+1;
 GO TO R1;
END;
RT4=1;
GO TO R1;
R3: IF (PROBE(RT5)=RT2)=OFFH THEN RETURN;
RT5=RT5+1;
GO TO R1;
END READ$TAPE;
00452 1 MONITOR: DO CASE HEX$PAIR;
00453 1 GO TO MO;
00454 1 GO TO M1;
00455 2 GO TO M2;
00456 2 GO TO M3;
00457 2 GO TO M4;
00458 2 GO TO M5;
00459 2 GO TO M6;
00460 2 GO TO M7;
00461 2 END;
00462 2 END;
00463 1 MO: DO I=0 TO LENGTH(M);
00464 1 CALL TTYGUT(M(I));
00465 2 END;
00466 1 GO TO MONITOR;
00467 1 M1: CALL CALIB;
00468 1 M2: CALL CHANNEL$ORDER;
00469 1 CALL PROBE$ORDER;
00470 1 CALL NEXT;
00471 1 GO TO MONITOR;
00472 1 M3: CALL READ$TAPE;
00473 1 CALL NEXT;
00474 1 GO TO MONITOR;
00475 1 M4: CALL START;
00476 1 CALL NEXT;
00477 1 GO TO MONITOR;
00478 1 M5: CALL READ$CORE;
00479 1 CALL NEXT;
00480 1 GO TO MONITOR;
00481 1 M6: CALL WRITE$CORE;
00482 1 M7: ADDR M=HEX$PAIR*100H + HEX$PAIR;
00483 1 GO TO ADDR M;

108
S00243 AST
S00242 TST
S00241 LST
S00240 KST
S00239 JST
S00238 IST
S00236 START
S00235 9999
S00230 CI
S00224 CC
S00223 6C
S00222 5C
S00221 4C
S00220 3C
S00219 2C
S00218 1C
S00217 0C
S00215 VAL
S00214 ERROR
S00213 CONVERGE
S00212 '1'
S00210 '+'
S00207 9
S00206 JOO
S00205 BCD5
S00204 BCD4
S00203 BCD3
S00202 BCD2
S00200 SIGBIT
S00199 DO2
S00198 DO1
S00196 FTD0
S00195 CHDO
S00194 DATA0
S00193 DATAGUT
S00192 0CO
S00191 11
S00183 3BO
S00182 0AO
S00181 0SO
S00180 0FO
S00179 5DY
S00178 VDY
S00176 PTDY
S00173 DISPLAY
S00171 12
S00174 SDY
S00175 CHDY
S00201 BCD1
S00169 143
S00155 048
S00153 5
S00152 IS
S00151 BS
S00149 PTS
S00148 CHS
S00147 SCANV
S00143 010
S00139 CM
S00138 EM
S00136 CHM
S00135 MULTIPLEX
S00134 100
S00133 10000
S00130 14000
S00127 THERE
S00125 3
S00124 HERE
S00123 HEA
S00122 HEXA
S00121 CCC
S00120 BDC
S00119 ACC
S00118 CVR
S00117 VAL
S00115 CIGITEC
S00112 IFCA
S00110 NUM
S00109 TYPE
S00108 FORMAT
S00107 EBR
S00105 ASH
S00104 ECOM/HEX
S00101 NUM
S00099 NUM
S00098 CNEOUT
S00097 OF
S00096 ASC
S00095 ASC
S00092 FAIROUT
S00088 4
S00087 30
S00085 37
S00083 39
S00081 20
S00080 M1
S00079 AMP
S00078 MORD
S00076 HEYPAIR
S00075 ITO
S00071 ZT0
S00070 TTYOUT
S00069 07F
S00068 130
S00066 6
S00064 1
S00063 0
S00062 64
S00060 060
S00059 2
S00058 HERE
S00057 ITHI
S00056 XTI
S00054 TTYIN
S00053 1400
S00052 1100
S00051 ADDRUM
S00050 BPR
S00049 PROBE
S00048 BCH
S00047 CHAN
S00046 'AMT DN=0/UP=1'
S00045 PHEADER
S00043 'CH PT ERROR TIME'
S00042 CHEADER
S00040 'ENTER THE NEXT SELECTION NUMBER:
S00039 N

111
TYPE THE SELECTION NUMBER FOLLOWED BY A SPACE:

DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV

RESTART
MEMORY EDIT
MEMORY DISPLAY
DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV

THE SELECTION NUMBER FOLLOWED BY A SPACE:

MEMORY EDIT
MEMORY DISPLAY
DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV

RESTART
MEMORY EDIT
MEMORY DISPLAY
DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV

THE SELECTION NUMBER FOLLOWED BY A SPACE:

MEMORY EDIT
MEMORY DISPLAY
DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV

RESTART
MEMORY EDIT
MEMORY DISPLAY
DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV

THE SELECTION NUMBER FOLLOWED BY A SPACE:

MEMORY EDIT
MEMORY DISPLAY
DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV

RESTART
MEMORY EDIT
MEMORY DISPLAY
DATA ACQUISITION
READ TAPE
PROGRAM SCAN
CALIBRATION
MIDAS IV HEADER
MIDAS IV
B.18 LISTING OF MIDAS IV SOFTWARE

TTYIN

1. ENCOUNTER START PULSE
 YES
 - WAIT 4.5 MSEC
 - LOOP 8 TIMES
 - WAIT 9.0 MSEC
 - ROTATE INPUT WORD
 - RIGHT ONE BIT
 - 'OR' INPUT WORD'S
 - LSB WITH INPUT PULSE

2. NO
 - DONE WITH LOOP
 YES
 - WAIT 9.0 MSEC
 - COMPLEMENT WORD
 - MASK OFF
 - PARITY BIT
 - RETURN WORD
HEX PAIR

INITIALIZE BYTE TO ZERO

CALL TTYIN FOR AMP

ECHO AMP BACK TO TTY

AMP = 023H

YES

RETURN BYTE

AMP < 023H

YES

AMP = AMP - 023H

NO

NO

AMP = AMP - 023H

SHIFT BYTE 4 BITS TO LEFT

1051 AMP WITH BYTE

1
INPUT ASC

ASC1 IS UPPER FOUR BITS OF ASC

ASC1 < 2AH

YES

ASC1 = ASC1 + 037H

NO

ASC1 = ASC1 + 037H

OUTPUT ASC1

ASC1 NOW LOWER FOUR BITS OF ASC

ASC1 < OH

YES

ASC1 = ASC1 + 037H

NO

1
INPUT RH

MULTIPLY HIGH
PART OF RH BY 12

ADD IN LOW
PART OF RH

RETURN
HEX VALUE
INPUT 'TYPE' AND 'NUM'

LOOP FOR 'NUM' TIMES

OUTPUT 'TYPE'

NO

MOVE WITH LOOP

YES

RETURN
MULTIPLEX

INPUT CMH

CALL BCDHHEX FOR CMH

DO CASE HIGH PART OF CMH

CASE = 0

YES

CASE = 1

NO

CASE = 2

YES

RETURN

OUTPUT(1) = CMH

KEEP LOW PART OF CMH WITH CMH

KEEP LOW PART OF CMH WITH LCMH

KEEP LOW PART OF CMH WITH 2:CMH

KEEP LOW PART OF CMH WITH 3:CMH

121
INPUT CHS AND PTS

NO

RETURN

YES

PTS > 43

YES

RETURN

NO

PTS = 0

YES

RETURN

NO

1
DO CASE
(CASE = 1)

CASE = 0
YES

CASE = 1
YES

CASE = 2
YES

CASE = 3
YES

OUTPUT(3) = 81H

INPUT PORT INCREASE

RETURN

YES

PORT = PTS

ADVANCE SCANWYVE

NO
DISPLAY

INPUT SIGN CHANNEL AND PORT

OUTPUT(2) LOW HALF OF PORT

LATCH VALUE

OUTPUT(2) HIGH HALF OF PORT

LATCH VALUE

OUTPUT(2) LOW HALF OF CHANNEL

LATCH VALUE

OUTPUT(2) HIGH HALF OF CHANNEL

LATCH VALUE
DRTOUT

INPUT CHANNEL PORT AND DATFO

TYPE CHANNEL NUMBER

SKIP 3 SPACES

TYPE PORT NUMBER

SKIP 3 SPACES

BCD1 = 0

DATFO BCD2 = 1000

BCD1 = 1

BCD2 = BCD2 - 12

BCD2 > 9

YES

NO

BCD1 = DATFO MOD 100

BCD3 = 100

BCD3 = 10

BCD2 = BCD4 MOD 10

BCD5 = BCD2 MOD 10
SIGN = 1

TYPE 1-1

TYPE BODY BODY BODY BODY BODY

CERTIFIED RETURN LINE FEED

RETURN

YES
CONVERSE

INPUT ERROR AND VAL

CONVERT 'TIME' TO HEXDECIMAL

RC = 'TIME' & 0.1SEC

WAIT FOR 'RC' SECONDS

INPUT RIC FROM DIGITEC

IF RIC = 14222 THEN
 RETURN RIC
END IF

R2C = RIC - R2C

IF R2C < 0 THEN
 R2C = -R2C
END IF

RETURN RIC

CC = 0

1

INPUT RIC FROM DIGITEC

1

2

3

128
CONVERGE (CONT)

2

\[B2C \]
\[A3C = A0C + 2 \]

RETURN \ A3C

3

\[B2C = A1C \]

\[CC = CC + 1 \]

\[
\begin{array}{c}
\text{NO} \\
\text{YES}
\end{array}
\]

\[CC = 16 \]

RETURN 5399
START (CONT)

2

(CMNK(1ST) = FF)

3

YES

CALL MULTIFLEX WITH CMNK(1ST)

CALL DISPLAY WITH P_ CMNK(1ST)

CALL SCAN WITH CMNK(1ST)

4

READ AND COMPUTE DATA

CALL CONVERT WITH ERROR

CALL OUTPUT WITH YCH OR MKEY

1ST = 1ST + 5

2
1

OUTPUT(3) = E08

CALL DISPLAY (R, A08/PORT 0008)

F0RT PAVANCE P0RESSED

YES

PORT ACTIVATE

NO

2
CHANNEL ORDER

1. Type Channel Header

2. \(ICD = 0 \)

3. Input Channel \(\text{CHAR}(ICD) \)

4. Check \(\text{CHAR}(ICD) = 'F' \)

 - Yes: Return
 - No: Input next Channel \(\text{CHAR}(ICD + 1) \)

5. Input next Channel \(\text{CHAR}(ICD + 1) \)

6. Skip 3 spaces

7. Input 20th parts of error

8. Skip 3 spaces

9. Input line feed

10. Compute return line feed

11. \(ICD = ICD + 5 \)
READ CORE

1. NRC = 0
 2. INPUT STARTING ADDRESS ADD1
 3. PRINT I - 1
 4. INPUT ENDING ADDRESS ADD2
 5. FELN = ADDR1 + NRC
 6. END OF LINE

 NO
 7. PRINT LINE NUMBER
 8. TYPE COLON AND 2 SPACES
 9. OUTPUT BYTE AT NRC
 10. TYPE A SPACE
 11. NRC = NRC + 1
 12. FELN = ADDR2

 NO
 13. CRARAGE RETURN LINE FEED

 YES
 14. RETURN
WRITE CORE

INPUT DATA ADDRESS

JAC = 0

PRINT DATA ON TELETYPewriter

INPUT NEW DATA

EXIT TWO SPACES ON TELETYPewriter

JAC = JAC + 1

JAC = 0

YES

NO

ADD 1 TO DATA ADDRESS

RETURN LINE FEED ON TELETYPewriter

ADD 1 TO DATA ADDRESS
<table>
<thead>
<tr>
<th>SELECTION NUMBER</th>
<th>LEVEL</th>
<th>SUBROUTINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

TABLE B.I. SUBROUTINE CALLING LEVELS
<table>
<thead>
<tr>
<th>SELECTION NUMBER</th>
<th>LEVEL 1</th>
<th>LEVEL 2</th>
<th>LEVEL 3</th>
<th>LEVEL 4</th>
<th>SUBROUTINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (CONT.)</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>START (CONT.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATAOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CONVERGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BCDHEX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIGITEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BCDHEX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>NEXT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>READ CORE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEX PAIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYCUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONROUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAIROUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>NEXT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>WRITE CORE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEX PAIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAIROUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FORMAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td>7</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>HEX PAIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYOUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTYIN</td>
</tr>
</tbody>
</table>
C.1 PROBE TRAVERSING MECHANISM

The specifications for the Probe Traversing Mechanism (PTM) are listed in Table C.1.

The linear travel is limited to four inches by the linear potentiometer. Otherwise, the linear travel is limited to six inches by the cylindrical portion of the mounting base and the threaded section to which the probe is attached.

C.2 PROBE CONTROL PANEL

C.2.1 Interface Cables

The four cables used with the Probe Traversing System are:

1. Power Cable
2. Transducer Cable
3. PTM Cable
4. MIDAS IV Interface Cable

In the "manual" mode, only the Power and PTM cables are used. The Transducer cable is added for "semi-automatic" mode and all four cables are needed in the "fully-automatic" mode.

C.2.2 Angular Control Circuit Adjustment
The "balance" and "gain" for the Angular Control circuit are set as follows:

1. With the turbine not operating, connect an oscilloscope to the BNC connector on the Control Panel.
2. Adjust the "balance" control, R1, until the amplifier output, as read on the oscilloscope, is zero. (See Figs. 10 and C1.)
3. With the turbine operating, adjust the "gain", R2, (Figs. 10 and C1.) so that the signal amplitude is not causing the Probe Traversing Mechanism to oscillate. (See the top part of Fig. C3.)
4. Adjust the "balance" (if necessary) until the probe is aligned into the flow. (See the center part of Fig. C3.) This adjustment can be verified with a water-filled, U-tube manometer connected across Port #2 and Port #3 pressure lines. (See Fig. 8(b).)

The Angular control circuit also has "offset" and "balance" controls (R3 and R4) that are adjusted internally and should not need further adjustment.

C.2.3 *Linear Control Circuit Adjustment*

Adjustments to the linear control circuit (Fig. C1.) are internal and further adjustment should not be necessary.
TABLE C.I. SPECIFICATIONS FOR THE PROBE TRAVERSING MECHANISM

1. MOTORS: 24VDC 200-400 mA
2. LINEAR TRAVEL: 4 INCHES
3. LINEAR RATE: 0.011 INCHES/SECOND
4. LINEAR POTENTIOMETER: 5,000 OHMS
5. LIMIT SWITCHES: 2 (FULLY ADJUSTABLE LOCATION)
6. ANGULAR TRAVEL: ± 360 DEGREES
7. ANGULAR RATE: 1.6 DEGREES/SECOND
8. ANGULAR POTENTIOMETER: 50,000 OHMS
9. PROBE DIMENSIONS:
 DIAMETER: 0.25 INCHES
 LENGTH: 12 INCHES (MINIMUM)
10. HEIGHT (EXTENDED, NO PROBE): 18 INCHES
11. RADIAL CLEARANCE REQUIRED: 6 INCHES
FIGURE C1. Schematic of the Control Circuits
FIGURE C2. Probe Traversing System
ACTIVATING LEVEL FOR POWER TRANSISTORS

CASE 1. GAIN NEEDS TO BE ADJUSTED

CASE 2. GAIN ADJUSTED CORRECTLY—BALANCED CONDITION

CASE 3. GAIN ADJUSTED CORRECTLY—UNBALANCED CONDITION PROBE ROTATES TOWARD FLOW DIRECTION

CASE 4. GAIN ADJUSTED CORRECTLY—PRESSURE DIFFERENCE WITHIN LIMITS

FIGURE C3. Examples of Amplifier Output for Angular Control Circuit
D.1 SYSTEM OPERATION WITH PRESENT CONTROL PROGRAM

D.1.1 Power On and Power Off

The MIDAS IV system must be powered up in the following sequence of steps:

1. Insure that the MIDAS IV and teletype are connected to a 110V source and the teletype send/receive line is connected to the number 50 connector shown in Fig. 5.
2. Throw the main power switch (Fig. 4) to the "on" position. (An indicator light to the left of the main power switch comes on if the unit is operating correctly.)
3. Turn the IPS-805 power switch on. (The microprocessor power light should be on and the "halt" LED (Fig. 4) should be out.)
4. Set the teletype mode switch to "line", unless a paper tape is to be programmed of the Scan Control and Probe Control tables, in which case the mode switch on the teletype should be set to "local".
 Note: Whenever the teletypewriter is turned on or switched from "local" to "line" mode, the RESET button should be pressed.
5. The system is now waiting for a Mode Selection Number to be entered. To obtain a list of the Mode Selection numbers, enter "0" and press the space bar (See Section D.1.2).
The Power Off procedure is the reverse of the above steps. Both procedures are summarised in Table D.I.

D.1.2 To Select an Operating Mode

Following the Power On procedure given above, or following a "RESET", MIDAS IV waits for a Mode Selection Number to be entered. A list of the Mode Selection Numbers is given in Table V. (The list can be obtained by the operator by entering "0", followed by a space. This is the sole function of Mode 0.) Operation in a chosen mode is effected by entering the Mode Selection Number followed by a "space".

Fig. 6 shows the function of the different modes. Return from each mode is automatic except from the CALIBRATION and MEMORY EDIT modes, where RESET is required.

D.1.3 To Select and Calibrate Input Channels (CALIBRATION Mode)

The CALIBRATION mode is selected by entering "1" followed by a "space".

Channel Selection: In the CALIBRATION mode MIDAS IV continuously monitors the channel indicated by the setting of the thumbwheel switches (Fig. 3). Any channel can be selected manually using the thumbwheel switches. When addressed, the channel and port numbers appear in the LED display. If no change occurs in the LED display when the thumbwheels are turned, press RESET, enter "1" and "space".

Port selection: When a Scanivalve channel (presently 1-4) is selected, a single LED is lit on the RELAY card (Fig. A2.). The port currently selected at the Scanivalve is then indicated in the LED display in the front
Press the PORT ADVANCE button (Fig. 3) to cause the scanivalve to advance to the next port. (The seventh LED on the RELAY CARD indicates the advance pulse transmitted to the scanivalve.)

Press the RESPT button to exit the CALIBRATION mode.

Calibration: The "zero" and "range" of the selected input channel are set using the BALANCE and SPAN adjustments on the corresponding signal conditioning card, respectively.

Adjust BALANCE to produce zero at the DVM (balanced bridge) for:
1. zero pressure differential on a differential pressure transducer input.
2. the lower limit of a displacement measurement by a potentiometric input.
3. a shorted input for a thermocouple input.

Adjust SPAN to produce a required maximum reading at the DVM (usually, recognizable engineering units for the particular measurement) for:
1. differential pressure transducer loaded pneumatically to the desired range
2. maximum displacement of a potentiometric input

Note: 1. The DVM measures in the range ±1.2029 volts. If no value is displayed, the voltage is outside this range.
2. The use of calibration resistors inserted into the CAL STEP section of the upper front panel to check a channel calibration is
D.1.4 To Program the Scanning Sequence and Probe Movement

D.1.4.1 Programming from the Keyboard (PROGRAM SCAN Mode)

Enter "2" followed by "space" to enter the PROGRAM SCAN mode. A table heading is printed out that identifies columns of data that must be entered to form the Scan Control table. Table D.III is an example of a Scan Control table, followed by a Probe Control table.

Scan Control table: The following are entered in turn, as two numbers followed by a "space":

1. Channel number
2. Port number
3. Number of counts between successive DVM readings to be accepted as indicating that a steady reading has been reached on this channel
4. Number of tenths of a second delay before the DVM is first read on this channel

The teletype advances automatically to the required column, and CARRIAGE RETURN and LINE FEED occur at the end of each line of the table.

When the required channels have been entered, enter "T" in the channel column.

A heading is printed that identifies columns of data that must be entered to form the Probe Control table.

Probe Control table: The following are entered
in turn as two numbers followed by a "space":

1. Number of hundredths of an inch the probe must be moved
2. The direction of movement (00 for down, 01 for up)

Enter one line in the table for each required probe movement. Terminate the table with FF in the "amt" column.

MIDAS IV is then ready for another mode selection to be entered. The completed tables appear as in the example shown in Table D.IV.

D.1.4.2 Programming from Paper Tape (READ TAPE Mode)

The Scan Control and Probe Control tables can be entered on paper tape. There are two steps:

1. Preparation of the tape.
2. Entry of the tape using the READ TAPE mode.

To prepare the tape, switch the teletype to "local", and switch on the punch. Punch a leader that does not include a "space". (Note: In reading the tape, the program looks for data entries. An entry of data is always read as the number pair immediately preceding a space. Thus CR/LF is harmlessly included if followed by the next data entry.)

Enter the data required in the Scan Control and Probe Control tables (described in the preceding section) as a succession of number-pairs followed by a space. The inclusion of CR/LF at the end of each line in the tables results in the printout shown in Table D.IV.
The inclusion of FF to terminate each table is essential.

To enter the tape, switch the teletype to LINE, switch off the punch and ready the tape in the reader.

Press RESET. Enter "3" followed by "space" to enter the READ TAPE mode. Push MANUAL START on the tape reader. The tape is read and MIDAS IV is ready for another mode selection number to be entered.

D.1.4.3 Program Editing from the Keyboard (MEMORY DISPLAY and MEMORY EDIT modes)

Changes can be made to the contents of RAM by:
1. using the MEMORY DISPLAY mode to print out the current contents of RAM
2. using the MEMORY EDIT mode to enter new data.

The contents of FOX can be displayed, but not edited. Thus, for example, individual entries in the Scan Control and Probe Control tables can be made after they have been entered at the keyboard or on a punched tape.

To Display Contents of Memory:
1. Enter "5" followed by "space".
2. Enter first address, to be displayed as two number pairs each followed by "space". (Teletype prints a hyphen.)
3. Enter last address, to be displayed as two number pairs each followed by a "space". (Teletype prints memory contents between the first and last addresses.)

Three examples of the use of MEMORY DISPLAY are shown in the teletype record in Table D.7. The examples illustrate:
1. A single memory location can be displayed if the first and last addresses are the same.
2. The Scan Control table is stored beginning at 1100H.
3. The Probe Control table is stored beginning at 1400H.

Note: 1. All addresses are in hexadecimal.
2. If the last address is made smaller than the first address (inadvertantly), 256 pages of memory are printed. The process can be stopped by pressing RESPT.

To Edit Contents of Memory:
1. Enter "5" followed by a "space"
2. Enter beginning address of the memory section to be changed (RAM only) (Teletype prints current content followed by hyphen.)
3. Enter number pair to replace present content. (Teletype prints content of next memory location followed by a hyphen.)
4. Enter new number pair if required. Otherwise press RESPT. Step 3 can be repeated to change contents of successive memory locations. RESPT exits the MEMORY EDIT mode.

Note: If "space" only is typed following the hyphen, the memory content becomes zero.

An example is shown in Table D.VI. The example illustrates how:

1. MEMORY DISPLAY mode is used to display contents of memory from 1500H to 150FH.
2. MEMORY EDIT mode is used to change memory contents to be the integers from 1 to 15.
3. MEMORY DISPLAY mode is used to display
the new contents.

An example of the procedure to change an entry in the Scan Control table is as follows:

Problem: In Table D.III, port 46 on channel 3 must be read instead of port 44.

Procedure: Enter "6, space, 14, space, 06, space".

(Teletype prints "44-"

Enter "46, space".

Press RFSET.

D.1.5 To Operate and Record Data (DATA ACQUISITION Mode)

The procedures for calibrating input channels, for programming the sequence of channels to be scanned and for programming the sequence of probe movements in a probe survey are given in Sections D.1.3 and D.1.4. When these steps are completed, data is taken by selecting the DATA ACQUISITION mode. To enter this mode:

1. Enter "4" followed by a "space"

(Teletype prints 30 asterisks as a leader and to provide time to turn OFF the punch.)

2. Turn on the tape punch.

(Teletype prints and punches as shown in the example in Table D.VII.)

When the data is completed a CP/LE followed by another LE are executed, and the request for a mode selection entry is typed since DATA ACQUISITION mode is exited automatically. All these characters are contained on the end of the data tape.
D.2 PROCEDURES FOR CHANGING THE CONTROL PROGRAM ON PROM

D.2.1 Introduction

Changes which might be needed in the Control Program can be classed as "minor" or "major". "Major" changes require reccompilation of the complete MIDAS IV software, usually because of additions or deletions in the number of program steps. Minor changes can be effected by changing the values in particular memory locations; for example, the limits of a Do loop.

In the following section, D.2.2, making a "minor" change is illustrated by describing a particular example in detail. In Section D.2.3, in describing procedures for "major" changes, references are given for each of the steps in the programming of MIDAS IV.

D.2.2 Minor Changes (Not Requiring Reccompilation)

Examples of minor changes include:

1. Alteration of the width (duration) and frequency of Scanivalve pulses
2. Changing time delays
3. Reallocation of RAM
4. Changing program constants

The steps involved in each of these examples are the same. Therefore the procedure is illustrated by describing the first example in detail.

EXAMPLE: CHANGING THE WIDTH OF A SCANIVALVE PULSE*

1. Locate the PL/M subroutine which generates the pulse (Using Fig. 6, and, when the correct branch is chosen, Appendix B.). For this particular example the Scanivalve is
advanced in both the CALIBRATION and the DATA ACQUISITION modes. Since both routines advance the Scanivalve in the same manner, only the change in DATA ACQUISITION is described. In the DATA ACQUISITION mode SCANV is the routine that controls the Scanivalves. From the SCANV logic schematic and the PL/M source file it can be seen that the pulse is initiated by outputting "040H + 5" on Output Port Three and then entering a "Do 1 to 9" loop that contains a 10 msec delay. After the 80 msec delay, "5S" is output on Output Port Three, and another time delay loop is entered. The first delay loop controls the pulse width and the second sets the time between pulses. If, for example, the pulse width is to be changed to 100 msec, the "Do 1 to 9" loop must be changed to read "Do 1 to 10".

2. The location in PROM of the value "8" is found by using the PL/M Source and Memory Cross Reference (Table D.VIII.). The line number of the "Do 1 to 8" loop is #161 and the hexadecimal address given is 047AH. The assembly language listing of the MIDAS IV software near address 047AH, lists the implementation of the "Do 1 to 8" loop. (See Table D.VX.) The 08H value being loaded into A-register is the upper limit of the "Do" loop. By changing the content of this memory location, 047EH, from 08H to 0AH (the value must be in hexadecimal; 10 would result in looping 16 times), the pulse width is increased to 100 msec.

3. Several of the machine code values (Table D.VX.) on either side of the 047EH location should be noted so that the same location can be verified at a later time on the PROM.

4. Turn off the MIDAS IV system (Appendix D) and remove the appropriate PROM card, in this case the # 2 card. (See Fig. A1.)
5. Program a new PROM, in this case #4, with the Pro-Log PROM programmer or the Intelec-8 microprocessor [Ref. 11 or 14].

6. Reinstall the PROM, #4 in this case, and the PROM card. This completes the change.

Note: For all changes
1. Keep the "old" PROM until the "new" PROM is verified and the system operates correctly.
2. Document the change to the software.

D.2.3 Major Changes (Requiring Recompilation)

"Major" changes are those that require recompilation of the MIDAS IV software and reprogramming of all the PROM's. Ref. 12 provides the basic PL/M background necessary to make program additions or changes to the MIDAS IV software.

Ref. 15 contains instructions on loading the MIDAS IV PL/M source deck into the IBM 360/67 and operating in the Edit mode to change the program. The programmer should also obtain the following documentation:
1. Symbol table (see the end of the source program listing in Appendix B)
2. Assembly language representation of object code (Table D.IX.)
3. Listing of the source program (See the end of Appendix B)

The machine code listing (Table D.X.) is obtained when the paper tape is punched.

Ref. 16 contains instructions on loading the machine code program and programming the PROM's.

Note: In reprogramming, it is necessary to place a
"no-op" instruction (CO) in the first memory location. This can be done by deleting one character. For example, a "space", 020H, before the ASCII equivalent of the word MIDAS, shifts the beginning ASCII characters one space to the right and makes room for the "no-op" instruction. (See Table D.VI.) The MPS-805 requires a no-op instruction in location 0000H because of the manner in which it executes the first instruction when power is turned on.

D.3 PROCEDURES FOR ADDING EXTRA MEMORY TO RAM

In some applications, the amount of RAM allocated for the Scan Control table and the Probe Control table will not be sufficient (Fig. 7). An additional 2K of RAM can be added as described in Appendix A.

The starting address for the Probe Control table must then be changed as described in Sec. D.2.2. The memory location to be changed is 0143H.
<table>
<thead>
<tr>
<th>POWER ON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MIDAS IV AND TELETYPE ARE CONNECTED TO 110V 60Hz SOURCE (CHECK)</td>
<td></td>
</tr>
<tr>
<td>2. TELETYPE SEND/RECEIVE LINE IS PLUGGED INTO #50 CONNECTOR (CHECK)</td>
<td></td>
</tr>
<tr>
<td>3. MAIN POWER SWITCH - ON</td>
<td></td>
</tr>
<tr>
<td>4. MICROPROCESSOR POWER SWITCH - ON</td>
<td></td>
</tr>
<tr>
<td>5. SELECT TELETYPE MODE (LINE/LOCAL)</td>
<td></td>
</tr>
<tr>
<td>6. PRESS - RESET</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER OFF:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TELETYPE - OFF</td>
<td></td>
</tr>
<tr>
<td>2. MICROPROCESSOR POWER SWITCH - OFF</td>
<td></td>
</tr>
<tr>
<td>3. MAIN POWER SWITCH - OFF</td>
<td></td>
</tr>
</tbody>
</table>
TABLE D.II. MIDAS IV HEADER

MIDAS IV

TYPE THE SELECTION NUMBER FOLLOWED BY A SPACE:

<table>
<thead>
<tr>
<th>Selection Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MIDAS IV HEADER</td>
</tr>
<tr>
<td>1</td>
<td>CALIBRATION</td>
</tr>
<tr>
<td>2</td>
<td>PROGRAM SCAN</td>
</tr>
<tr>
<td>3</td>
<td>READ TAPE</td>
</tr>
<tr>
<td>4</td>
<td>DATA ACQUISITION</td>
</tr>
<tr>
<td>5</td>
<td>MEMORY DISPLAY</td>
</tr>
<tr>
<td>6</td>
<td>MEMORY EDIT</td>
</tr>
<tr>
<td>7</td>
<td>RESTART</td>
</tr>
</tbody>
</table>
TABLE D.III. SCAN CONTROL AND PROBE CONTROL TABLES ENTERED AT THE KEYBOARD

<table>
<thead>
<tr>
<th>CH PT</th>
<th>ERROR</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 02</td>
<td>00 00</td>
<td>10</td>
</tr>
<tr>
<td>03 44</td>
<td>00 05</td>
<td>00</td>
</tr>
<tr>
<td>18 00</td>
<td>00 10</td>
<td>05</td>
</tr>
<tr>
<td>47 00</td>
<td>00 50</td>
<td>01</td>
</tr>
</tbody>
</table>

MT D\(\ne\)=0/UP=1

<p>| .50 | 00 |
| 10 | 01 |
| 15 | 00 |
| FF | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
</tr>
</tbody>
</table>
TABLE D.V. EXAMPLE OF THE USE OF "MEMORY DISPLAY"

S 11 00 - 11 00

1100: 01

ENTER THE NEXT SELECTION NUMBER:

S 11 00 - 11 14

1100: 01 02 00 00 10 03 44 00 05 00 13 00 00 10 05 47

1110: 00 00 50 01 FF

ENTER THE NEXT SELECTION NUMBER:

S 14 00 - 14 06

1400: 50 00 10 01 15 00 FF

ENTER THE NEXT SELECTION NUMBER:
TABLE D.VII. EXAMPLE OF THE DATA OUTPUT

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>-15000</td>
</tr>
<tr>
<td>03</td>
<td>44</td>
<td>-00002</td>
</tr>
<tr>
<td>13</td>
<td>00</td>
<td>-14000</td>
</tr>
<tr>
<td>47</td>
<td>00</td>
<td>+06349</td>
</tr>
<tr>
<td>01</td>
<td>02</td>
<td>+15000</td>
</tr>
<tr>
<td>03</td>
<td>44</td>
<td>-00002</td>
</tr>
<tr>
<td>13</td>
<td>00</td>
<td>-14000</td>
</tr>
<tr>
<td>47</td>
<td>00</td>
<td>+06349</td>
</tr>
<tr>
<td>01</td>
<td>02</td>
<td>+15000</td>
</tr>
<tr>
<td>03</td>
<td>44</td>
<td>-00002</td>
</tr>
<tr>
<td>18</td>
<td>00</td>
<td>-14000</td>
</tr>
<tr>
<td>47</td>
<td>00</td>
<td>+06349</td>
</tr>
</tbody>
</table>

ENTER THE NEXT SELECTION NUMBER:
37 = 0147H	39 = 0148H	40 = 0158H	41 = 015EH	42 = 0161H	43 = 0174H
44 = 0177H	45 = 0178H	46 = 0181H	47 = 018AH	48 = 0184H	51 = 0199H
52 = 019CH	53 = 019DH	54 = 01E1H	55 = 01E2H	57 = 01F6H	58 = 018CH
59 = 01F0H	60 = 01F1H	61 = 01FC1H	62 = 01F2H	63 = 01F9H	68 = 01D9H
69 = 01F2H	70 = 01F4H	71 = 0204H	72 = 0204H	73 = 0204H	76 = 0212H
78 = 0217H	80 = 0220H	81 = 0232H	82 = 0233H	83 = 0245H	84 = 024CH
85 = 0251H	86 = 0252H	87 = 0258H	88 = 0259H	89 = 0260H	93 = 026CH
94 = 0271H	97 = 0276H	99 = 027EH	100 = 027EH	104 = 028CH	105 = 02D9H
106 = 02E1H	107 = 02E2H	108 = 02E2H	109 = 02E2H	113 = 02F2H	114 = 02F2H
117 = 02F3H	118 = 02F3H	119 = 0303H	121 = 0317H	122 = 0321H	123 = 0325H
124 = 032CH	125 = 032EH	126 = 0337H	127 = 0337H	128 = 0337H	129 = 0337H
130 = 0337H	131 = 0337H	132 = 0337H	133 = 0337H	134 = 0337H	135 = 0337H
136 = 0337H	137 = 0337H	138 = 0337H	139 = 0337H	140 = 0337H	141 = 0337H
142 = 0337H	143 = 0337H	144 = 0337H	145 = 0337H	146 = 0337H	147 = 0337H
148 = 0337H	149 = 0337H	150 = 0337H	151 = 0337H	152 = 0337H	153 = 0337H
154 = 0337H	155 = 0337H	156 = 0337H	157 = 0337H	158 = 0337H	159 = 0337H
160 = 0337H	161 = 0337H	162 = 0337H	163 = 0337H	164 = 0337H	165 = 0337H
166 = 0337H	167 = 0337H	168 = 0337H	169 = 0337H	170 = 0337H	171 = 0337H
172 = 0337H	173 = 0337H	174 = 0337H	175 = 0337H	176 = 0337H	177 = 0337H
178 = 0337H	179 = 0337H	180 = 0337H	181 = 0337H	182 = 0337H	183 = 0337H
184 = 0337H	185 = 0337H	186 = 0337H	187 = 0337H	188 = 0337H	189 = 0337H
190 = 0337H	191 = 0337H	192 = 0337H	193 = 0337H	194 = 0337H	195 = 0337H
196 = 0337H	197 = 0337H	198 = 0337H	199 = 0337H	200 = 0337H	201 = 0337H
202 = 0337H	203 = 0337H	204 = 0337H	205 = 0337H	206 = 0337H	207 = 0337H
208 = 0337H	209 = 0337H	210 = 0337H	211 = 0337H	212 = 0337H	213 = 0337H
214 = 0337H	215 = 0337H	216 = 0337H	217 = 0337H	218 = 0337H	219 = 0337H
220 = 0337H	221 = 0337H	222 = 0337H	223 = 0337H	224 = 0337H	225 = 0337H
226 = 0337H	227 = 0337H	228 = 0337H	229 = 0337H	230 = 0337H	231 = 0337H
232 = 0337H	233 = 0337H	234 = 0337H	235 = 0337H	236 = 0337H	237 = 0337H
238 = 0337H	239 = 0337H	240 = 0337H	241 = 0337H	242 = 0337H	243 = 0337H
244 = 0337H	245 = 0337H	246 = 0337H	247 = 0337H	248 = 0337H	249 = 0337H
250 = 0337H	251 = 0337H	252 = 0337H	253 = 0337H	254 = 0337H	255 = 0337H

TABLE D.VIII. A PORTION OF THE PL/M SOURCE-MEMORY CROSS REFERENCE
<table>
<thead>
<tr>
<th>LINE ADDRESS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hexadecimal numbers]</td>
<td>[Hexadecimal numbers]</td>
</tr>
</tbody>
</table>

TABLE D.X. A PORTION OF THE MACHINE LANGUAGE VERSION OF THE MIDAS IV SOFTWARE
BEFORE:

Assembly Language
0000H JMP, 35H, 01H
0003H 0DH OAH OAH 20H 20H 20H 4DH 49H 44H 41H 53H 20H 49H ...

Machine Language
:00000004435010D0A0A20204D494441532049...

AFTER:

Assembly Language
0000H NOP JMP, 35H,
0003H 01H 0DH OAH OAH 20H 20H 4DH 49H 44H 41H 53H 20H 49H ...

Machine Language
:0000000C4435010D0A0A20204D494441532049...

TABLE D.XI. EXAMPLE OF INSERTING A "NO-OP" INSTRUCTION
1. **ASCII:** American Standard Code for Information Interchange, an 8-bit binary convention originally developed to encode teletypewriter keyboard inputs. For serial data transmission the pulse width for each bit in the serial string is 9.0 msec. (See Ref. 2 for the ASCII table.)

2. **BCD:** Binary Coded Decimal, a system using the first ten binary numbers in a 4-bit counting scheme.

```
  0 - 0000   5 - 0101
  1 - 0001   6 - 0110
  2 - 0010   7 - 0111
  3 - 0011   8 - 1000
  4 - 0100   9 - 1001
```

3. **BCD Coded Number:** The BCD representation digit-for-digit of a decimal number. For example, 5200 = 0101 0010 1000 0000.

4. **Channel:** Any of 19 inputs to the Digital Voltmeter. Each input is selected by a multiplexer controlled by either the thumbwheel switches or the DATA ACQUISITION mode.

5. **CPU:** Central Processing Unit, that part of a computer or microprocessor that directs the operation of the remaining components of the system. The CPU usually contains the Arithmetic Logic Unit (ALU) which performs the basic arithmetic and logic functions.

7. **DVM**: Digital Voltmeter

8. **Fully-automatic-mode**: Refers to the mode of operation in which the Probe Traversing Mechanism is under the microprocessor's control for linear movement and in which the angular control circuit is in operation. (See Section III. C.3)

9. **Hex**: Hexadecimal, a number system with a base of 16. (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, and F)

10. **Hexadecimal Pair**: Refers to two binary coded hexadecimal numbers. For example, 7FH = 0111 1110. (F is used as a suffix to indicate Hexadecimal.)

11. **I/O**: Input / Output

12. **I/O Drivers**: Hardware or software that creates binary signals (serial or parallel) that can be coded to convey information into or out of a system. MIDAS IV uses standard ASCII serial Input/Output format.

13. **LED**: Light Emitting Diode

14. **Manual mode**: That mode of operation in which the Probe Traversing Mechanism is moved linearly and rotated by the switches located on the Probe Traversing Panel.

15. **Microprocessor**: A type of computer with a design "architecture" between that of a simple calculator and a full computer. Usually contains programmable memory which can be either volatile (RAM) or non-volatile
16. **MIDAS IV:** Microprogrammable Integrated Data Acquisition System, the fourth of five different data acquisition systems designed and built at the Naval Postgraduate School.

17. **Mode Selection Number (0 through 7):** One of eight numbers, identifying different modes of operation for MIDAS IV.

18. **Multiplexer:** A device which connects one of a number of input lines to a single output line. (Section II.3.4)

19. **PL/1:** A high level computer language developed for use with microprocessors and copyrighted by Intel Corporation.

20. **Port:** One of several pneumatic input lines on a Scanivalve. The port selection is controlled by the "Port Advance" button, "Home" button, or by the microprocessor in the DATA ACQUISITION mode.

21. **Probe Control Table:** A table programmed by the operator containing a listing of how the probe is to be moved when operating in the DATA ACQUISITION mode. (Section II.B.2)

22. **Pro-Log (Corporation):** (Monterey, California) manufacturers of the microprocessor and associated equipment used in MIDAS IV.

23. **PROM:** Programmable Read Only Memory Unit

24. **PM:** Probe Traversing Mechanism (Section III. B.1)
25. **RAM**: Random Access Memory, memory storage used for program variables and non-permanent data. The contents of RAM are "volatile" (can be rewritten and is lost when power is removed).

26. **ROM**: Read Only Memory, memory storage used for permanent information. The contents of ROM are "non-volatile" (not lost when power is removed).

27. **Scanivalve**: Trade name for a rotary pneumatic switch produced by Scanivalve, Inc. The Naval Postgraduate School Turbopropulsion Laboratory uses 2U and 4B port Scanivalves.

28. **Semi-automatic mode**: A mode of operation in which the angular movement of the Probe Traversing mechanism is automatically controlled to maintain probe alignment with the flow direction and in which the vertical movement is controlled by the operator.

29. **Signal Conditioning**: The electronic scaling of an analog signal to match the input requirements of a measurement system. (Section II. B.3)

30. **Software**: Another name for the "programs" of a computer system.

31. **Subroutine**: A separate program called during the execution of another program.

32. **Word**: Usually the contents of one memory location.

33. **yaw-balance**: For a directionally sensitive probe, the condition that the pressure measured at two side ports are equal and the probe is facing into the flow.
34. **7416**: "Hex Inverter/driver", an integrated circuit that acts as a binary signal inverter and supplies current to drive other components.

35. **7445**: "BCD-to-decimal Decoder", an integrated circuit that reads a BCD number and activates one of 10 output lines.

36. **7475**: "Latch", an integrated circuit that latches a binary input so that it is not lost when the input is removed.

37. **74121**: "Schmidt One-shot", an integrated circuit that outputs a pulse when the input reaches a certain level.

39. **1100D**: The decimal value 1100 (the D denotes decimal representation or base 10).

39. **1100H**: The hexadecimal value 1100 (the H denotes hexadecimal representation or base 16; 1100H = 4352).
REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Address and Details</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314 |
| 2. | 2 | Library, Code 0212
Naval Postgraduate School
Monterey, California 93940 |
| 3. | 1 | Chairman, Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 4. | 1 | Associate Professor R.P. Shreeve, Code 57
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 5. | 1 | Mr. J. F. Hamer, Code 57
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 6. | 1 | Mr. T.B. Dutton, Code 57
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 7. | 1 | Mr. C. Gordon, Code 57
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 8. | 1 | Mr. W. Trutes, Code 57
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 9. | 1 | Lt. J. W. Sturges
MC-3
NAS North Island
San Diego, California |
| 10. | 1 | Dr. H. J. Mueller
Research Administrator, Code 310A
Naval Air Systems Command
Navy Department
Washington, D.C. 20350 |
| 11. | 1 | Mr. Karl P. Guttmann
Code 330C
Naval Air Systems Command
Navy Department
Washington, D.C. 20350 |
| 12. | 1 | Turbo-propulsion Laboratory
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 13. | 1 | Lt. D. D. Patton, USN
VP-19
FPO
San Francisco, California |