SPECIAL DATA COLLECTION SYSTEM (SDCS) EVENT REPORT,
OFF COAST OF OREGON, 10 JANUARY 1976

TELEDYNE GEOTECH

PREPARED FOR
AIR FORCE TECHNICAL APPLICATIONS CENTER

APRIL 1976
SPECIAL DATA COLLECTION SYSTEM EVENT REPORT
Off Coast of Oregon, 10 January 1976

K.J. Hill, M.S. Dawkins, and M.D. Gillispie
Alexandria Laboratories
Teledyne Geotech, 314 Montgomery Street, Alexandria, Virginia 22314

APRIL 1976

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Sponsored By
The Defense Advanced Research Projects Agency
Nuclear Monitoring Research Office
1400 Wilson Boulevard, Arlington, Virginia 22209
ARPA Order No. 2897

Monitored By
VELA Seismological Center
312 Montgomery Street, Alexandria, Virginia 22314
Disclaimer: Neither the Defense Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which has been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary. The views and conclusions presented are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the Air Force Technical Applications Center, or the US Government.
SPECIAL DATA COLLECTION SYSTEM (SDCS)

Off Coast of Oregon, 10 January 1976

Author(s): Hill, K. J., Dawkins, M. S., Baumstark, R. R. and Gillispie, M. D.

Performing Organization Name and Address:
Teledyne Geotech
314 Montgomery Street
Alexandria, Virginia 22314

Monitoring Agency Name and Address:
VELA Seismological Center
312 Montgomery Street
Alexandria, Virginia 22314

Distribution Statement (of this report):
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Security Classification of This Page:
Unclassified
SDCS EVENT REPORT NO. 81

Off Coast of Oregon, 10 January 1976

This event report contains seismic data from the Special Data Collection System (SDCS), and other sources for the above event. Published epicenter information from seismic observations is:

<table>
<thead>
<tr>
<th></th>
<th>"P" Arrival</th>
<th>Origin Time</th>
<th>Lat.</th>
<th>Long.</th>
<th>mb</th>
<th>Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORSAR</td>
<td>09:09:59.1</td>
<td>08:58:46</td>
<td>43 N</td>
<td>127 W</td>
<td>5.6</td>
<td>N/A</td>
</tr>
<tr>
<td>Hagfors</td>
<td>09:10:08.5</td>
<td>08:59:09</td>
<td>47 N</td>
<td>126 W</td>
<td>5.6</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Using SDCS stations, LASA and NORSAR, the epicenter location and magnitudes become

08:58:42.6 43.3N 127.4W 5.4 N/A

All SDCS stations were operational during this period.

The programs used for LASA, NORSAR and ALPA data recovery are presently undergoing modifications. Information for LASA short-period is reported from their Teleseism Event Report; NORSAR short-period data is obtained from their bulletin. The long-period array beam recovery for these stations will be resumed upon completion of these modifications.

Short-period signals associated with this event were recorded at all SDCS stations, LASA and NORSAR. All SP channels at HN-ME had polarity reversals; to correct this, mathematical inversions of the data were performed. Horizontal SP channels at all SDCS stations were rotated.

Long-period signals were recorded at all SDCS stations. All LP channels at HN-ME and the LP radial channel at RK-ON had polarity reversals; to correct this, mathematical inversions of the data were performed. Horizontal LP channels at WH2YK, RK-ON and HN-ME were rotated. Signal clipping at CPSO and FN-WV prevented rotation of their LP horizontal channels.

Scaling factors on plots are millimicrons at 1 Hz (not corrected for instrument response).
Station Description

<table>
<thead>
<tr>
<th>Site Code</th>
<th>Location</th>
<th>Site Coordinates</th>
<th>Elevation Meters</th>
<th>Instrumentation (Short-Period)</th>
<th>Instrumentation (Long-Period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPA</td>
<td>Alaska</td>
<td>65 14 00.0 N</td>
<td>626</td>
<td>None</td>
<td>31300</td>
</tr>
<tr>
<td></td>
<td>147 44 36.0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPSO</td>
<td>McMinnville, Tennessee</td>
<td>35 35 41.4 N</td>
<td>574</td>
<td>6480 V</td>
<td>SL210 V</td>
</tr>
<tr>
<td></td>
<td>085 34 13.5 W</td>
<td></td>
<td></td>
<td>7515 H</td>
<td>SL220 H</td>
</tr>
<tr>
<td>FN-WV</td>
<td>Franklin, West Virginia</td>
<td>38 32 58.0 N</td>
<td>910</td>
<td>KS36000</td>
<td>KS36000</td>
</tr>
<tr>
<td></td>
<td>079 30 47.0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LASA</td>
<td>Billings, Montana</td>
<td>46 41 19.0 N</td>
<td>744</td>
<td>HS10</td>
<td>7505A V</td>
</tr>
<tr>
<td></td>
<td>106 13 20.0 W</td>
<td></td>
<td></td>
<td>8700C H</td>
<td></td>
</tr>
<tr>
<td>HN-ME</td>
<td>Houlton, Maine</td>
<td>46 09 43.0 N</td>
<td>213</td>
<td>KS36000</td>
<td>KS36000</td>
</tr>
<tr>
<td></td>
<td>067 59 09.0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORSAR</td>
<td>Kjeller, Norway</td>
<td>60 49 25.4 N</td>
<td>379</td>
<td>HS10</td>
<td>7505A V</td>
</tr>
<tr>
<td></td>
<td>010 49 56.5 E</td>
<td></td>
<td></td>
<td>8700C H</td>
<td></td>
</tr>
<tr>
<td>RK-ON</td>
<td>Red Lake, Ontario</td>
<td>50 50 20.0 N</td>
<td>366</td>
<td>18300</td>
<td>SL210 V</td>
</tr>
<tr>
<td></td>
<td>093 40 20.0 W</td>
<td></td>
<td></td>
<td>SL220 H</td>
<td></td>
</tr>
<tr>
<td>WH2YK</td>
<td>White Horse, Yukon</td>
<td>60 41 41.0 N</td>
<td>853</td>
<td>18300</td>
<td>SL210 V</td>
</tr>
<tr>
<td></td>
<td>134 58 02.0 W</td>
<td></td>
<td></td>
<td>SL220 H</td>
<td></td>
</tr>
</tbody>
</table>

Note: The orientation of the radial instruments at FN-WV is assumed to be $16^\circ \pm 5^\circ$ based on empirical data (event recordings). Rotation, where performed, is referenced to this azimuth and may be questionable.
HYPOCENTER DETERMINATION

INPUT FOR EVENT

<table>
<thead>
<tr>
<th></th>
<th>10 JAN 76</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08:58:46.0</td>
</tr>
</tbody>
</table>

RESIDUALS

<table>
<thead>
<tr>
<th>STA.</th>
<th>ARRIVAL</th>
<th>CALC</th>
<th>REST</th>
<th>DIST.</th>
<th>AZ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAO</td>
<td>09 02</td>
<td>-0.1</td>
<td>0.1</td>
<td>15.4</td>
<td>70.1</td>
</tr>
<tr>
<td>WH2YK</td>
<td>09 02</td>
<td>0.0</td>
<td>0.4</td>
<td>18.0</td>
<td>347.9</td>
</tr>
<tr>
<td>RK-ON</td>
<td>09 03</td>
<td>0.3</td>
<td>-0.1</td>
<td>24.0</td>
<td>60.0</td>
</tr>
<tr>
<td>CPSO</td>
<td>09 05</td>
<td>-0.2</td>
<td>0.2</td>
<td>33.0</td>
<td>89.2</td>
</tr>
<tr>
<td>FN-MW</td>
<td>09 05</td>
<td>0.5</td>
<td>0.6</td>
<td>36.1</td>
<td>80.9</td>
</tr>
<tr>
<td>HN-ME</td>
<td>09 06</td>
<td>-0.5</td>
<td>-0.8</td>
<td>41.5</td>
<td>64.7</td>
</tr>
<tr>
<td>NAO</td>
<td>09 09</td>
<td>-0.0</td>
<td>-0.4</td>
<td>70.8</td>
<td>20.2</td>
</tr>
</tbody>
</table>

67 HERRIN TRAVEL TIME TABLES

<table>
<thead>
<tr>
<th>ORIGIN</th>
<th>LAT.</th>
<th>LONG.</th>
<th>DEPTH (KM)</th>
<th>SDV IT STA</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:58:49.6</td>
<td>43.572N</td>
<td>127.235W</td>
<td>40.0</td>
<td>CALC</td>
</tr>
<tr>
<td>08:58:42.6</td>
<td>43.341N</td>
<td>127.438W</td>
<td>0.0</td>
<td>REST</td>
</tr>
</tbody>
</table>

CHI2 COVERAGE ELLIPSE: 95 PER CENT CONF. LEVEL, SDV = 1.67

MAJOR 94.5 KM, **MINOR** 31.3 KM, **AZ** = 36, **AREA** = 9284 SQ.KM.
DATA SUMMARY

INPUT FOR EVENT

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>LAT.</th>
<th>LON.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 JAN 76</td>
<td>08:58:46.0</td>
<td>43.000N</td>
<td>127.000W</td>
</tr>
</tbody>
</table>

ARRIVAL

<table>
<thead>
<tr>
<th>STA.</th>
<th>PHASE</th>
<th>TIME</th>
<th>INST</th>
<th>PER</th>
<th>A/T</th>
<th>MB</th>
<th>MS</th>
<th>DIR</th>
<th>DIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAC</td>
<td>EP</td>
<td>09:02:19.0</td>
<td>SAB</td>
<td>0.0</td>
<td>0.0</td>
<td>5.1</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZYKM</td>
<td>EP</td>
<td>09:02:52.2</td>
<td>SPZ</td>
<td>1.1</td>
<td>315</td>
<td>5.10</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZYK</td>
<td>LQ</td>
<td>09:07:29.0</td>
<td>LPT</td>
<td>25.0</td>
<td>1268</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZYK</td>
<td>LR</td>
<td>09:08:26.0</td>
<td>LPZ</td>
<td>21.0</td>
<td>9999</td>
<td>0.0</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK-ON</td>
<td>EP</td>
<td>09:03:57.4</td>
<td>SPZ</td>
<td>1.1</td>
<td>150</td>
<td>5.18</td>
<td>24.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK-ON</td>
<td>LQ</td>
<td>09:11:49.0</td>
<td>LPT</td>
<td>23.0</td>
<td>1682</td>
<td>0.0</td>
<td>24.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK-ON</td>
<td>LR</td>
<td>09:13:30.0</td>
<td>LPZ</td>
<td>19.0</td>
<td>9999</td>
<td>0.0</td>
<td>24.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPSO</td>
<td>EP</td>
<td>09:05:18.4</td>
<td>SPZ</td>
<td>1.1</td>
<td>151</td>
<td>5.58</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPSO</td>
<td>LR</td>
<td>09:16:49.0</td>
<td>LPZ</td>
<td>19.0</td>
<td>9999</td>
<td>0.0</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN-WV</td>
<td>EP</td>
<td>09:05:46.2</td>
<td>SPZ</td>
<td>1.0</td>
<td>131</td>
<td>5.41</td>
<td>36.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN-WV</td>
<td>LQ</td>
<td>09:17:47.0</td>
<td>LPT</td>
<td>10.0</td>
<td>4099</td>
<td>0.0</td>
<td>36.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN-WV</td>
<td>LR</td>
<td>09:21:08.0</td>
<td>LPZ</td>
<td>20.0</td>
<td>9999</td>
<td>0.0</td>
<td>41.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN-ME</td>
<td>EP</td>
<td>09:06:29.4</td>
<td>SPZ</td>
<td>1.2</td>
<td>72</td>
<td>5.06</td>
<td>41.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN-ME</td>
<td>LQ</td>
<td>09:20:47.0</td>
<td>LPT</td>
<td>24.0</td>
<td>942</td>
<td>0.0</td>
<td>41.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN-ME</td>
<td>LR</td>
<td>09:23:48.0</td>
<td>LPZ</td>
<td>20.0</td>
<td>9999</td>
<td>0.0</td>
<td>41.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAO</td>
<td>EP</td>
<td>09:09:59.1</td>
<td>AB</td>
<td>1.1</td>
<td>138</td>
<td>5.74</td>
<td>70.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORIGIN

<table>
<thead>
<tr>
<th>LAT.</th>
<th>LON.</th>
<th>DEPTH (Km)</th>
<th>MAG</th>
<th>SDV</th>
<th>STA</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:58:49.6</td>
<td>43.572N</td>
<td>127.235W</td>
<td>40</td>
<td>5.37</td>
<td>0.24</td>
</tr>
<tr>
<td>08:56:42.6</td>
<td>43.341N</td>
<td>127.438W</td>
<td>0</td>
<td>5.39</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Short-period magnitudes (mP) used in averaging are restricted to those recorded at distances between 20 and 110 degrees from the epicenter.
CPSO 10 JAN 76

SPZ 204.48 MU

SPR 362.01 MU

SPT 159.81 MU

TIME 10 SEC 09:05:30