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ABSTRACT 

High austenite stability resulting from a variation of working tem- 
peratures during warm extrusion caused insufficient work hardening and a 
loss of ductility in warm-extruded TRIP steel. The austenite stability 
could be adjusted, however, by a tempering treatment to remove some carbon 
from solid solution, giving tensile properties equivalent or superior to 
those obtained by warm rolling.  Difficulties in alloy composition control 
or temperature control during processing of TRIP steels can thus be com- 
pensated by a simple final heat treatment. 
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INTRODUCTION 

TRIP steels appear to offer the highest combination of strength, ductility, 
and fracture toughness of any known alloy.1»2 The high ductility and fracture 
toughness of these metastable austenitic alloys are a result of a strain-induced 
martensitic transformation during service, while the high yield strength levels 
are usually obtained from the prior thermomechanical treatment.  The highest 
strength levels are obtained by a reduction of 80% by rolling at temperatures from 
700 to 1000 F.  These high rolling reductions at such moderate temperatures impose 
severe restrictions on the fabrication of these materials.  For certain applica- 
tions it may be desirable to use alternative processing techniques.  Thermomechan- 
ical treatment by warm extrusion appears to offer some potential advantages over 
warm rolling, particularly for applications requiring material in bar or rod form. 

The warm extrusion of TRIP steels has been investigated and reported in de- 
tail in Reference 3. A significant result of this study was that, unlike the 
nearly isothermal conditions encountered in sequential warm rolling, substantial 
temperature increases on the order of 300 F occurred during warm extrusion. Ac- 
cordingly, the initial billet temperature was adjusted to obtain a final tempera- 
ture of approximately 850 F, corresponding to the warm-rolling temperature known 
to give the best mechanical properties for the alloy composition studied. 

It may be anticipated that a varying temperature during thermomechanical 
processing would have a serious effect on the final mechanical properties of a 
TRIP steel.  It is well established that the austenite stability with respect to 
martensitic transformation in these alloys is sensitive to the temperature of 
warm working,1*»5 higher working temperatures usually resulting in lower stability. 
This effect is attributed to carbide precipitation (or pre-precipitation effects) 
concurrent with the plastic deformation which results in a decrease of carbon in 
solid solution.  Austenite stability has a profound influence on the mechanical 
properties of a TRIP steel. Too high a stability results in insufficient strain- 
induced transformation in service and hence a loss of ductility and toughness. 
Too low a stability can cause a drastic reduction in yield strength due to the 
premature plastic flow associated with a stress-assisted martensitic transforma- 
tion.  Examined here are the tensile properties of the warm-extruded TRIP steels, 
with particular regard to the effect of the increasing warm-working temperature 
on the austenite stability. 

1. ZACKAY, V. F., PARKER, E. R., FAHR, D., and BUSCH, R.   The Enhancement of Ductility in High-Strength Steels.   Trans. 
ASM. v. 60, 1967, p. 252-259. 
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formation in TRIP Steels.   Met. Trans., v. 2, 1971, p. 2135-2141. 

I    GAGNE, R. A., AZR1N, M., and DOUGLAS, J. R.   Warm Extrusion of TRIP Steels.   Army Materials and Mechanics Research 
Center, AMMRC TR 76-2. January 1976. 
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University of California, Berkeley. UCRL-20308, August 1970. 
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MATERIAL AND PROCEDURES 

The material preparation is described in Reference 3.  Nominal composition of 
the alloy is Fe-9Cr-8Ni-4Mo-2Si-2Mn-0.3C.  Both air and vacuum melts were used 
(Table 1).  Ingots were homogenized at 2300 F for 6 hours, press forged to 3-3/8- 
inch diameter at 2100 F, and machinecl to 3-1/8-inch-diameter billets.  The billets 
were extruded to 1.25-inch diameter at 2100 F, solution treated at 2250 F for 1 
hour and water quenched.  The solution-treated billets were then warm extruded to 
40%, 60%, or 80% reductions of area.  Because of the temperature rises during 
extrusion, the initial billet temperatures were adjusted to produce a final extru- 
sion temperature of approximately 850 F.  In order that the initial deformation 
temperature should always remain above M^ (maximum temperature for formation of 
strain-induced martensite) the 80% reduction was performed in two steps, 60% 
followed by 50%.  Temperature changes during extrusion are listed in Table 2. 

Round tension specimens of 0.200-inch diameter and 1.25-inch reduced section 
were machined from the extruded rods.  Room temperature uniaxial tensile properties 
were measured using a 20,000-lb Instron tension testing machine at a crosshead 
speed of 0.050-inch per minute.  Elongations were measured with a one-inch gage 
length extensometer. 

RESULTS AND DISCUSSION 

Preliminary tension tests of the warm-extruded material gave 0.2% offset 
yield strength values of 145, 211, and 244 ksi for the extrusion reductions of 
40%, 60%, and 80%, respectively.  These are equivalent to the strength levels 

Table 1. CHEMICAL COMPOSITION (Wt%) 

Melt C Mn Si Ni Cr Mo P S Al N 0* H* 

Air 0.25 2.16 2.11 7.73 8.86 4.08 0.003 0.010 0.05 0.060 25 8.5 

Air .26 2.18 2.02 6.81 8.90 4.09 .003 .010 .06 .044 hi 3.9 

Air .27 2.17 2.14 7.75 8.87 4.04 .003 .010 .04 .065 11 7.3 

Air .27 2.16 1.93 7.79 8.96 4.06 .003 .010 .06 .054 49 3.7 

Vacuum .33 2.25 2.06 7.56 9.06 3.97 .003 .009 .08 .004 2.2 6.0 

Vacuum .33 2.32 1.77 7.71 8.98 4.14 .002 .009 .10 .003 0.3 5.5 

Vacuum .33 2.27 2.03 7.68 8.90 3.96 .003 .009 .09 .003 1.1 5.8 

♦Parts per million 

Table 2. WARM EXTRUSION TEMPERATURES 

Reduction 
Temperature, deg F 

Initial Final    AT 

40 700 820-860 120-160 

60 500 800-850 300-350 

50* 400 790-850 390-450 

*Step 2 of 80% cumulative reduction 



obtained by warm-rolling alloys of this composition.  The reductions of area mea- 
sured in the tension tests were also comparable to those of warm-rolled material. 
However, the total elongations* and overall work-hardening characteristics were 
generally less than those of warm-rolled material, particularly in the case of the 
80% worked material where a Lüders band formed but did not travel the gage length 
of the specimen before fracture.  This resulted in a total elongation in 1-inch of 
only 12% compared to values of about 40% obtained from similar warm-rolled material. 
Such behavior is characteristic of an insufficient rate of strain-induced marten- 
sitic transformation resulting from too high an austenite stability.  A test of the 
material in the solution-treated condition gave the properties expected for this 
alloy composition, confirming that the high austenite stability is not due to a 
variation in the basic composition but a result of the thermomechanical processing. 

Since the alloy composition used in this study was designed to give an optimum 
austenite stability after warm working at 850 F, it is not surprising that the warm 
extrusion process used here, in which the average  working temperature was below 
850 F, gave rise to too high an austenite stability.  However, it was found that 
the austenite stability can be suitably modified (decreased) by a simple heat 
treatment after the warm extrusion.  Assuming that the high austenite stability is 
the consequence of insufficient carbide precipitation at the lower average working 
temperature, it can be expected that the correct level of stability could be ob- 
tained by a tempering treatment to enhance carbide precipitation and thus remove 
more carbon from solid solution.  However, adjustment of stability in this manner 
could lead to a trade-off in ductility (reduction of area) if such a thermal treat- 
ment, without concurrent plastic deformation, leads to excessive grain-boundary 
carbide precipitation and an intergranular fracture mode. To test the feasibility 
of such an approach to austenite stability adjustment, tension specimens of the 
warm-extruded material were tempered for 1 hour at temperatures of 1000, 1100, and 
1150 F. 

The tension test results are listed in Table 3, and the individual engineering 
stress-strain curves of the 40%, 60%, and 80% worked materials are plotted in 
Figure 1.  Included in Table 3 are Young's modulus values taken from the initial 
slopes of the stress-strain curves.  The values indicate a lower modulus of the 
worked material relative to the solutionized condition, presumably due to internal 
strain energy and a high dislocation density.6 The overall tensile properties 
suggest little difference between the air- and vacuum-melted materials. 

The stress-strain curves of the warm-extruded material in Figure 1 show that 
although the total elongation of the 60% worked material was quite high, that of 
the 40% and 80% worked materials was relatively low.  The curves for the tempered 
material show that the reduced austenite stability, brought about by tempering, 
increases the overall work-hardening rates and results in a general increase in 
the total elongation.  Somewhat surprisingly, the results in Table 3 indicate 
that tempering at 1000 and 1100 F also increases the reduction of area.  Carbide 
precipitation does not seem to cause embrittlement until the tempering of the 80% 
worked material at 1150 F where a drastic decrease in reduction of area is found. 
Figure lc shows overaging at 1150 F not only causes embrittlement but gives too 
low an austenite stability resulting in a lower yield strength from a premature 
stress-assisted transformation.  The influence of tempering temperature on the 

*()hi.lined from 1-mch marks on the specimen (length/diameter ■ 5 instead off the standard ratio of 4). 

6    ZENER, C   Relation Between KesiJual Strain Energy and Elastic Moduli ihiCt, v. 2, 1949. p. 163-166. 



Table 3. MECHANICAL PROPERTIES 

Y.S. 
0.2% T.S. Elon.* R.A. E 

Condition Melt (ksi) (ksi) (%) (%) (106 psi) 

Solutionized 2000 F - 1 h 
Water Quench 

Vacuum 45.3 93.2 56 40.2 26.7 

40% Warm As extruded Air 144.5 159.1 13 25.6 22.9 
Extruded 1000 F - 1 h Vacuum 135.0 182.5 58 57.4 23.2 

1100 F - 1 h Vacuum 135.7 198.6 41 33.7 24.4 

60% Warm As extruded Air 211.4 211.8 37 35.3 24.3 
Extruded 1000 F - 1 h Vacuum 207.4 207.4 36 52.3 23.4 

1100 F - 1 h Vacuum 206.9 227.5 M 38.1 21.8 
1100 F - 1 h Air 222.9 240.7 41 52.3 23.4 

80% Warm As extruded Air 244.2 260.5 12 47.5 23.7 
Extruded 1000 F - 1 h Vacuum 261.0 274.4 25 55.3 24.9 

1100 F - 1 h Vacuum 257.8 270.9 44 49.7 23.4 
1150 F - 1 h Vacuum 227.9 227.9 1 7.7 24.1 
1150 F - 1 h Air 194.0 194.0 11 8.8 24.7 

*Total elongation in 1 inch 

tensile properties is shown in Figure 2.  It is apparent that for each condition 
of warm work there is a particular tempering treatment for an optimum combination 
of tensile properties. 

The properties produced by warm extrusion and tempering are compared with 
those of warm-rolled material of the same nominal composition* in Figure 3. The 
properties are quite similar, with the extruded and tempered materials showing a 
slight superiority at high amounts of warm work.  Examination of the points shown 
for the solutionized material (0% warm work) indicate that the differences at low 
amounts of warm work are most likely due to differences in the heats used for the 
extrusion and rolling studies. 

Naturally, for a given set of warm-working conditions, the correct austenite 
stability could be obtained by adjustment of the original alloy composition; or 
for a given composition, the average working temperature could be adjusted to 
achieve the same end result.  However, these are not always practical alternatives 
once a heat has been made or once the material has undergone thermomechanical 
treatment.  It is an extremely encouraging result that difficulties in alloy com- 
position control or processing temperature control can be compensated by a final 
heat treatment to adjust the austenite stability.  It is important to note that 
the correction provided is only in the direction of decreased austenite stability. 
Conservative engineering practice might thus favor the high side of austenite 
stability in alloy design and processing control. 

* AZRIN, M., and OLSON, G. B.   Army Materials and Mechanics Research Center, unpublished research. 
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Figure 1.   Effect of tempering temperature on the engineering 
stress-strain curves of warm-extruded TRIP steel. 
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Figure 2.   Effect of tempering temperature 
on tensile properties. 

Figure 3.   Comparison of tensile properties of 
rolled versus extruded TRIP steel. 

CONCLUSIONS 

The variation of the warm-working temperature has an important influence on 
the austenite stability and resulting mechani:al properties of warm-extruded TRIP 
steel.  High stability, due to a low average working temperature, can result in 
insufficient work hardening and lower ductility during room temperature service. 
Fortunately, the stability may be decreased by a simple heat treatment to give 
properties equivalent of superior to those obtained by warm rolling to equivalent 
reductions. 
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