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FOREWORD

!

The computer-aided preliminary design system‘for light
antit.ank weapons described in this report was develéped by
Athema Engineering Company under contract DAAHO1-73-C-0654 with
the U.S. Army Missile Comﬁand, Redstone Arsenal, Alabama. The
development was sponsored and technically monitored by the
Ground Equipment and Materials Directorate, US Army Missile’
Research, Development, and Engineering Laboratory. The computer-
aiéed design system, referred to as CADLAW, is operational on |
fhe MICOM CDC 6600 computer and operates interactively through
a Tektronix 4015 communication terminal. The systeni is also
operational on a UNIVAC 1108 system used by Athena ﬁngineering
Company . ¢ :

The author wishes to acknowledge the valuable technical
contributions of Athena Engineering Company personnél Mr. James
Dagen, Dr. James L. Hill, and Dr. Howard B. Wilson and Mr.
Richard Eppes, Ground Equipment and Materials Directdrate.

Mr. Dagen provided comprehensive general programming support
including developing the interactive graphics capébility, Dr.
Hill develoPed.the CADLAW coﬁponént which calculatgs the missile
trajectory, Dr. Wilson developed the CADLAW recoilléss launcher

component arid provided the basic optimization program, and Mr.
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Eppes provided overall technical guidance and assisted in

making the CADLAW program operational on the CDC system.
Since the CADLAW program is interactive it is largely

system dependent due to the overlay structure. For this rea-

son no listing of the program is included in this report.

The program can be made operational on other systems with

minor modifications.
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1. INTRODUCTION

Conventional preliminary design of missile systems
requires the interaction of people representing various
technical and managerial disciplines in a process which is
sometimes vaguely defined and which is almost always itera-
tive in nature. The advantages of incorporating the computer
into this design process appear numerous: the process cduid
be .conducted more rapidly with less human effort, the inter-
action of various di%ciplines could be examined more easily
and precisely, a greater number of iterations could be per-
formed in a given period of time, a more efficient "Pptimum
design" could be selected, etc. The developments reported
here are directed toward the goal of utilizing the computer
as an aid in the preliminary design of light antitank

weapons.

The conventional preliminary design process typically
begins by having the designer select, on the basis of pre-
vious experience, a design which appears to meet the?design
specificatiohs, After the ihitiql design has been selected
it is passed to various people representing a broad spectrum
of technicgl and managerial disciplines where the performance

and financial cos*s are evaluated. Detailed evaluation of

3



the initial design generally reveals the need for several 1
design modifications whose impact must be evaluated through
trade-off studies. Since the goals of high strength and per-

formance conflict with the concurrent goals of low weight

and cost, inevitably compromises must be made.

The performance evaluations and trade-off studies
conducted in the course of the design development are usually
conducted separately and involve a significant amount of
human effort. Also, the final selection of a particular
design configuration is generally not obvious and involves
the judgment of the designer to a large extent. Usé of the
computer to aid in this design process appears an attractive
goal.

Although computers are employed to a large ekxtent in
the performance evaluation and trade-off studies in the
conventional design process, they are not typically used in
the decision-making process nor in the interactive demand
mode. The CAD-E program sponsored by NASA [l1l] and the CAMS
program sponsored by the Air Force [2] represent attempts
to utilize the computer to a greater extent in the decision-

"

making procés; of design.
To explore the feasibiliéy of automating thelpre-

liminary design process for a realistic ﬁissile sygtem, a .

light, sho&lder-fired, antitank weapon system was éelected

for application. The objective of the developmental effort

4
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was to demonstrate the feasibility of the computer-aided
preliminary design process on a realistic weapon system.

No attempt was made to be unduly precise in system éodeling.
Instead, reasonable mathemati:al models of all systems were
developed with the awareness that more sophisticateé models
could be substituted for Qevelopmeptal models, if desired.
The basic operation of the system would still be vaiid.

Two versions of the light antitank weapon were
selected for application, a conventional. in-tube burning
rocket system and a closed combustion chamber recoilless
system. Two versiors were studied as a result of céntempor-
ary interest by the U. S. Army Missile Command. Thé in-tube
burning rocket system has been the subject of several recent
developmental studies [3-6]. The closed recoilless:system
has also attracted attention due to its app;rent lack of
signature and blast effects [7-11]. The object of fhe pre-
sent effort was not to develop optimum designs for these
type weapons but rather to develop a computer-aided'design
system which would allow such optimum design studies to be
performed. |

A significant feature of the CADLAW system ié the
ability to seiect an "optimum deéign" automatically: It is
not clear that conventional preliminary design processes
result in such an optimum design. Thus, the abilit§ to

determine such an optimum design automatically is significant.

5
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The feature which allows a determination of the optimum
design is based upon an optimization method known as the
"flexible tolerance" algorithm [12]. This method coh-
stitutes a particularly versctile optimization method which
is a member of a wide class of such methods [13]. The
method involves an iterative pattern search of a multi-
dimensional hypersurface specified by the designer ih the
form of an objective function. The flexibla tolerance
algorithm searches the hypersurface defined by the abjective
function until an optimum, maximum or minimum, design‘
point is reached. Thus, an optimum design depends on the
character of the objective function and _constra'ints on the
design variables.

The in-tube burning rocket system and recoilless
system have propulsion, structures and weights, aerddynamics,
guidance and control, and trajectory simulation components.
From an optimization standpoint the propulsion and the struc-
ture and weight components are separate from the aerodynamics,
the guidance and control, and the trajectory simulation com-
ponents. The design variables associated with the propulsion
and the structures and weights systems are selected in an op-
timum manner iﬁdependent of the éerodynamics, the guidance and
control, and the trajectory system variables. This separation
is permitted in this application since all propulsion is accom~-

plished within the launch tube before the aerodynamic and

6
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guidance characteristics affect performance. Hence, one
objective function is needed for the propulsion phase of the
system performance and another for the flight phase.

In summary, computer-aided design techniques;offer
advantages impossible to obtain with conventional preliminary
design and analysis techniques. Computer modeling 9f all
system components and their interactions permit design
iterations to be evaluated very rapidly. The speedgof
evaluatioh permits optimum designs to be selected in an auto-
mated fashion. Perhaps the greatest advantage of tpe auto-
mated design cycle s the freedor from computationa; drudgery
afforded the designer who is then able to devote mofe of his
effort to creative thinking. Details of the CADLAW system

are contained in the following sections of this report.
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2. GENERAL DESIGN SYSTEM DESCRIPTION

As indicated previously, the CADLAW system operates
in a "demand mode" and requires interaction of the designer
with the computer. For operation on the MICOM CDC-6600
computer the computer program was designed to operate in
separate segments so that the OVERLAY feature of CDC com-
puters could be employed. Table 2.1 contains a list of the
various overlays in the CADLAW system and gives an indication

of the basic programn structure.

TABLE 2.1

CADLAW SYSTEM COMPONENTS

OVERLAY (0,0) - Main Program

OVERLAY (1,0) - Conventional Rocket System
OVERLAY (1,1) - Optimizafion Algorithm-
OVERLAY (1,2) - Pefformance Evaluation
OVERLAY (2,0) - Recoilless Rocket System
OVERILAY (2,1) - Optimization Algorithm
OVERLAY (2,2) - ~ Performance Evaluation
OVERLAY (3,)) - Tréjectory Simulation
OVERLAY (3,1) - Optimization Algorithm
OVERLAY (3,2) - Performance Evaluation




2.1 SystemiComponents

The Main Program, OVERLAY (0,0) serves mainl§ as an
instructional element to explain the basic’' purpose and use
of the design system. The user is provided, interaétively,
with information about the system and is allowed to.select
which system component he desires to work with.

It is assumed that all propulsion, in both the con-
ventional and recoilless systems, is accomplished within the
launch tube. This assumption allows the trajectory simula-
tion and guidance and control phases of the missilefperform-
ance to be separateu from the propulsion phase. Siﬁce the
strength and weight requirements are largely associ&ted with
the forces exerted during the propulsion phase, these com-
ponents are also separated from the trajectory simulation
and guidance and control phases of the system perfofmance.

The optimized design and performance evaluation of
thé conventional in-tube burning light antitank pr6pulsion
and launch systems is accomplished in OVERLAY (1,0) of
CADLAW. The influence of such parameters as motor diameter,
launcher length, and propellant burning rate are dealt with.
To perform'an_optimized design study OVERLAY (1,1)?19 called
while OVERLAY (1,2) is called if a certain design #s to be
evaluated with a parameter study. OVERLAY (1,2) céntainé

an advanced graphics package for plotting 311 resuits if

desired.
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The retoilless rocket system model is contained
in OVERLAY (2,0). Such parameters as recoil-mass weight,
launcher length, and propellant burning rate are typical
parameters dealt with in OVERLAY (2,0). To conduct
an optimized design study OVERLAY (2,1) must be called
while OVERLAY (2,2) must be called to evaluate a particular
Jdesign, conduct parameter studies or plot all results.
OVERLAY (2,2) also contains the advanced graphics routines
mentioned above.

The flight characterisitcs of both the conventional
and recoilless syst-ms are assumed to be the same after the
missile leaves the launch tube. This allows the flight
characteristics of the missile to be evaluated in OVERLAY
(3,0). The aerodynamic force and moment coefficients,
guidance system gain setting and miss-distance are typical
parameters dealt with in OVERLAY (3,0). As in the other
overlays, OVERLAY (3,1) is called to conduct an optimized
design study while OVERLAY (3,2) is called if one wishes to
conduct a parameter study with a graphics capability.

The designer, of course, does not need to understand
the overlay system nor how to call them since these‘opera-
tions are conducted automaticaliy as a result of the answers
provided to certain simple questions. These characteristics

are illustrated by example in Section 7 of this report.
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The brief descriptions contained in this section
are intended to mainly provide an overview of the CADLAW
system. Details of the various mathematical models used

i
to describe the different systems are contained in Sections

3, 4, and 5.

2.2 Optimization Strategy

The criterion used to determine what constitutes an
"optimum design" must be decided upon by the designer. The
existing CADLAW system has certain built-in criteria in the
form of specified objective functions. However, these cri-
teria uay be changed.at the discretion of the designer
should the desire arise. ;

There are two types of objective functions embloyed
in CADLAW: one to govern the optimization of the propulsion
phase of the rocket performance and one to regulate the
optimization study of the flight phase. The optimum design
of the propulsion phase parameters for both the conventional
and recoilless systems are based upon an objective function
of the form

§ _ a B
Fy (VW) = C (v 1% + C,[W,] (2.1)

where the notation Fl(VeWs) indicates the objective function

F1 is a function of the muzzle velocity Y and system weight
Wg . The muzzle velocity Vm and system weight Wg. The

quantities Cl' C2' a, and B are constant parameters to be

11



specified by the designer. The objective function in

Eq. (2.1) was selected on the basis of convenience and what

appears to be a rational design philosophy. The impértance

of muzzle velocity relative to system weight can be changed

by merely changing the quantities Cyv Cyr 0, and B. An

optimum design is defined as the set of design variables which

produce a minimum value for the objective function Fl. This

results in a system with low weight and high muzzle velocity.
The design variables associated with the flight phase

of the rocket system performance are selected on the basis

of minimizing the miss distance dm and the time of flight

tf. The objective function selected to accomplish this is
of the form
Fo(t.,d ) = C.[t.]" + c,(a 1" (2.2)
S22 f" ' m 3'°f 4" 'm :

where, as before, C3, C4, A, and p are parameters with which
to change the relative importance of the time of flight and
miss distance.

CADLAW contains default values for the parameters Cl'
C2, C3, C4, a, B, A, and p if the designer does not wish to
specify these parameters himself. The optimization strategy

is to search combinations of design variables which result

in a maximum or minimum value for the objective function.

12
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2.3 Design Variables and Parameters

One concept which is basic to the optimization
capability of CADLAW concerns design variables and design
parameters. Obviously, there are literally hundreds of
quantities to be specified in calculating the propuision
and flight characteristics of a light antitank mis§i1e sys-
tem. State-of-the-art optimization methods do not permit
the evaluation of a large number of parameters in aﬂ optim-
ized design process. Consequently, the design quantities -
are divided into two groups, design variables which are
selected in the optimization process, and design parameters
which must be arbitrarily selected by the designer.’ Ai-
though the design parameters are not optimized automatically,
they may be changed in such a way that their influence can

be examined and appropriate values selected for the design.

13
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3. CONVENTIONAL ROCKET SYSTEM

The computer-aided preliminary design system
applicable to conventional rocket launcher systems assumes

the system to consist of z small rocket propelled missile

launched from a tube. Figure 3.1 contains a schematic
diagram of the system. As can be seen, the rocket motor
consists of a combustion chamber where solid propellant is
burned and a nozzle. The burned gases are exhausted from
the rear of the laurch tube. For protection of the person
holéing the launcher. combustion is completed and the cham-
ber is allowed to exhaust to a low pressure before the mis-
5sile leaves the launch tube.
Typical parameters of interest in the preliminary
‘ design of this conventional-in-tube-burning rocket system
are the system diameter, launcher length, propellant burning
rate, propellant mass, chamber pressure and nozzle éxpansion
ratio. CADLAW allows these design variables to be selected
( such that the system performance is optimized.
As discussed in Section 2.3, the performance of the
conventional ?ocket system is meésured by the value'of an

arbitrarily defined objective function which depends on the

muzzle veloéity and system weight. An optimum design is

defined as a set of design variable values which minimizes

14
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the objective function and thereby maximizes the muzzle
velocity while keeping the system weight low. To calculate
the muzzle velocity and system weight when all design para-
meters are specified, resort must be made to a system of
mathematical relations obtained by application of the

principles of mechanics.

3.1 Ballistic Performance Equations

The mathematical eguations which describe the ballistic
performance of small solid rockets are described in detail in
the literature [14]. For the sake of completeness, the
equations are repeated here in the form and order in which
they are evaluated in CADLAW,

The following parameters are assumed to be specified
numerically at the time the performance equations are evalu-

ated to obtain the muzzle velocity and system weight:

1. Pca = chamber pressure at ambient temgerature
(psi)

21 Ae/At = nozzle expansion ratio (dimensionless)

3. D, = outer diameter of motor case (in.)

4. kAb = propellant volumetric burning rate
coefficient YinB/sec) |

5)a Wp = weight of solid propellant (lbs)

6. Lm = length of motor combustion chamber (in.)

7. o = gpecific heac of gas (BTU/1b°F)

8. pp = propellant density (1bs/in.3)

16
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9.
1o0.
11.
12.
13.
14,
15.

16.

17.
18.
19.
20.

e
FS - = gystem factor of safety
Tc = cold temperature extreme (°F)
Ta = ambient temperature (°F)
Th = hot temperature extreme (°F)
T = pressure sensitivity parameter (%/°F)
Pe = final chamber blowdow: pressure (psi)
Ty = thickness of launcher (in.)
P = density of motor-launcher material
(1bs/in.3)
9, = allowable stress for motor material (psi)
o = nozzle expansion angle (degrees)
Ww = warhead weight (lbs)
Wx = weight of fins, pole piece, fixtures,

etc. (lbs)

With numerical values specified for the above parameters, the

following
Ae
Ae
and
Ve

geometrical quantities can be evaluated:
2
| —2 (3.1)
4

_ Lt ‘ '
= () (Ag) (3,2)

< "Ly (3.3)

[
8

17



where Ae is the area of the nozzle exit plane, At is the
area of the nozzle throat and Vc is the volume of the motor
combustion chamber.

The Mach number at the nozzle exit plane Me can be
evaluated by solving the nonlinear equation

mi= Ao o 58 D (3.4)

e (y-1) e A,

for M. This is accomp!ished in CADLAW by using a rapid
step-by-st. -» evaluation routine. Based upon a knowledge of
the motor chamber pru¢ssure Pca at ambient temperature Ta and
the temperature extremes Tc and Th’ the chamber pressures at

the temperature extremes, PCc and Pch' can be evaluated as

200 + m (T -T)‘I '
Poc = Poa|200 =7 T =T (2.2
cc ca nk( c a)—J

and

200 + ﬂk(Th-Ta)

=P - - (3.6)
ch cal| 200 'nk(Th Ta)

P

The conventiénal system perférmaﬁce varies with temperature.

For a giveh set of parameters the system muzzle velocity and

chamber pressure will be lower when operated at the cold tem-
perature extfeme than when operated at the hot temperature

extreme. The system weight depends strongly on the motor

18



chamber pressure. For conservative purposes

muzzle velocity and launcher weight are based upon upera-

the system

tion at the cold temperature extreme T while the motor

weight is based upon the chanber pressure when the system

is operated at the hot temperature extreme T -

The pressure at the nozzle exit plane Tec

perature Tc is

o
i
o
+

ec ccC

The thrust Fc at Tc,is given by the equation

¥-1
: ec ¥

Y+l
T-1 ]

N

2 Y
Fo = (=) = [ L=
Y=l =1 R

[1/2 (1 + cosa)] AP

and the propellant mass discharge rate Wc at

Tc by the relation

. b B =
We = ppkAb(Pcc) épr(Pcc)

B

where the parameter Kb

1/2

temperature

for tem-

{(3.7)

(3.8)

(3.9)

is one of the optimum design variables

in CADLAW._ Knowing the thrust and mass discharge rate per-

mits the calculation of an effective exhaust velocity Ve

use of the equation

19
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- Fc.
v = (3.10)
8¢ /9

S.

o]

The burning time of the propellant tb can be determined by

the equation

e {3.11)

ﬂ
"
S'toz
Q

where wp is the weight of the propellant. Using the equation

- c __ (3.12)

W
€a " a.p

t cc
to calculate the mass discharge coefficient permits the
elapsed time from the time when burning is completed until

the motor exhausts to a pressure Pf, i.e., the "blowdown"

time tog to be calculated by using the equation

£ . = VeCa (Y*l)%é% 399)Yi3 -1 (3.13)
bd Ggy(Y—l)At Y Pf

The chamber pressure, thrust, propellant burhing time,
and motor blowdown time have been calculated using Egs.
(3.1--3.13). 'Before the missile exit velocity can be deter-
mined, the total missile weight, both with propellant le and
without propellant W s must be known. This includes the

structural weights of the motor and nozzle. A description

of the structural and system weight calculations are contained

20



in Section 3.2. It is sufficient to recognize that, from

a performance viewpoint, the structural weight depends
directly on the highest operational pressures Pch' The other
weight components are specified by the designer. ,

Assuming the weights wwl and wwu are known, the mis-

sile velocity at the time of burnout vm~is

v = veln (wwl/wwu) (3f14)

where 1ln(x) denotes the natural logarithm of x. The specific

impulse can be expr.ssed as

I " Fc/wc (3.15)

and the distance traveled during burning Sb as

W
Sp = 91 .ty Il - ‘W?" In(W_, /W, )] (3.16)

The distance traveled during blowdown can be expressed as
S =V tbd : . (3.17)

since the missile velocity is assumed to reamin constant
from the time of burnout until the missile exits the launch

tube. Therefore, Vi is the muzzle velocity.

21
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3.2 Structural Design and Weight Equations

As indicated in Section 3.1, the structural design
and resulting weight depends directly on the maximum opera-
ting pressures. The effects of high acceleration are small,
relative to the pressure induced stresses and strains, due
to the small size of the weapon system. . The design pressure

P. is obtained by multiplying the maximum chamber pressure

d

Pch by the factor of safety FS, i.e.,

Py = (FS) P, (3.18)
Thin-walled pressure vessel theory is utilized in the
structural design o the rocket motor case and nozzle. The
rocket motor structure is idealized as illustrated schemati-
cally in Figure 3.2. The nozzle consists of two truncated
cones of thickness to the chamber is a thin-walled circular
cylinder and the dome consists of a 2:1 ellipse of thickness
td.
Based upon a maximum normal stress failure criterion,

the weight of the nozzle can be shown to be

3
W = “Pmpd(Dt) -
n 240a
Dm 3 25 Dﬁ 2
t t :

where Ca ié the maximum allowable stress in the nozzle. The

cylindrical chamber weight can likewise be expressed as

22
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Figure 3.2 ~Structural Model Idealization

b) 1Idealized Configuration

N
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W, = —23B

Pq

—S5- | (3.20)
a

d

and the end-closure dome weight expressed as

_ 11 3 d d :
Wi = 138 T Do (8_:55_‘[ 1+ 3 _Pd] (3.21)

&
f

the unloaded motor structural weight can be expressed as

W =W +W_ +W
n c

- + Wx (3.22)

d

where Wx is the weight of the non-structural components such

as the polar adaptor and guidance fins.
The unloaded weapon weight is calculated by adding the

weight of the warhead Ww to the unloaded motor weight, i.e.,
1 =W + W (3.23)

The initial, loaded weapon weight W*l is obtained by adding
the weight of the propellant wp to the unloaded weapon weight
o’ ' ) . .

W.=W +W ) (3.24)

In addition to the motor structural weight and the

warhead weight, the system weight must include the weight of
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the launcher.  The launcher length depends upon the burning
time of the motor and the distance traveled during burning

and subsequent blowdown. These distances have been calculated
in Egs. 3.14 and 3.15. With numerical values for Sy and de,

the launcher length Ll can be expressed as

+ 8.4 (3.25)

and the launcher weight as

Wy = mhyt Lo, (3.26)

where tl is the thickness of the launch tube as specified
by the designer. Finally, the total system weight W is the

sum of the loaded weapon weight Wi and launcher weight Wl,

W_ =W + W (3.27)

As discussed earlier, the purpose of the mathematical
modeling of the conventional rocket performance is to permit
the muzzle velocity Vi and system Ws to be calculated as a
function of the design variébleg, kb' dm' Lm' Ll' and the
design parameters. The muzzle velocity §nd system weight
have been qalculated in Egs. 2.14 and 2.27, respectively.
Their dependence on the design variables can be seen to be

quite complicated. This complication precludes the use of '
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any analytical optimization technique and instead requires
the use of a pattern search routine such as that described

in Section 6.
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4. RECOILLESS LAUNCHER SYSTEM

A schematic diagram of the recoilless launcher
system, upon which the mathematical model is based, is il-
lustrated in Figure 4.1. The parameters utilized in the
analysis of the recoilless launcher system, some of which
are contained in Figure 4.1, are defined as follows:

W = weight of warhead, (1lbs)

1

w2 = weight of recoil mass, (lbs)

L = totalilength of launch tube, (in.)

L1 = portion of launch tube traversed by warhead,
(in.)

L, = portion of launch tube traversed by recoil mass,
(in.)

wp = weight of solid propellant charge, (1lbs)

d = inside diameter of launch tube, (in.)

t, = wall-thickness of launch tube, (in.)

t,. = thickness of reinforcing ring, (in.)

L. = length of reinforcing ring, (in.)

K = .propellant buining rate coefficient,

(in.3/1b—sec/sec)
n = burning rate exponent (dimensionless)
A = initial position of warhead, (in.)
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Ay = initial position of recoil mass, (in.)

The objective of the analysis is to develop a means
for calculating the exit velocity of the warhead and the
total system weight when all parameters of the system are
defined. The performance of the system can then be evaluated
in terms of the warhead exit velocity and system weight
values. An optimum design is defined as one which simultan-
eously maximizes the muzzle velocity and minimizes the system
weight, according to some predetermined relation.

To calculate the muzzle velocity and system weight,
resort must be made to various principles of mechanics.
Specifically, the principies of balance of momentum, mass,
and energy must be employed along with conccpts of étructural
mechanics and fluid dynamics to arrive at mathematical equa-

tions which describe the system behavior.

4.1 Equations of Motion

Application of Newton's Second Law yields the equa-

tions of motio:n. for the warhead and recoil mass:

W 2
L, _ ,7d X
and
W 2
2 I - 'ﬂ'd ;
T X, = (—Z-—)Pg (4.1b)
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where -

Wl = weight of warhead, (lbs)

W2 = weight of recoil mass, (1lbs)

X, = position of warhead at time t, (in.)

X, = position of recoil mass at time t, (in.)
Pg = pressure of gas in chamber, '(psi)

d = inside diameter of launch tube, (in.), and
g = dgravitational constant, (in./secz).

A dot over a variable is used to denote the derivative of
that variable with respect to time. The initial conditions

are

1) @ t=20, Xy, = A, Xy = 0 and (4.2a)

2) et =x, =0 (4.2b)

I
(=)

where 4 is the initial position of the warhead. From Egs.
(4.1a) and (4.1b), it is observed that thLe acceleration of

the warhead and recoil mass'are related as

s o0y
3 ¥ =35 % (4.3)
Integration of Eq. (4.3) and employment of the initial con-
ditions listed in Egs. (4.2a) and (4.2b) allows the establish-
ment of a llnear relationship between the respective positions
of the two masses and between the forward and rearward lengths

of the launch tube. These relationships are
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X, = W; (xl-A) | (4.4)
and
¥
L2 = ﬁ; (Ll-A) (4.5)

where A is the initial pbsition of the warhead with respect
to the origin of the coordinate system illustrated in Figure
4.1.

The relationship expressed in Eq. {(4.4) eliminates the
necessity of solving Eq. (4.1b). By solving only the equation
6f motion for the warhead, Eq. (4.la), the motion of the re-
coil mass can be détermined through the Qse of Eq. (4.4).

As will be shown in subsequent developments, the equation of
motion for the warhead is highly nonlinear and must be solved
using numerial integration procedures. To this end, Eq. (4.la)

can be replaced by the following two first order differential

equations:
E— =V , (4.6)
and
dav 2
l _7d%g
adE = W, 9 (447
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where vy is the speed of the warhead in units of in./sec.

4.2

Continuity Equation

The principle of conservation of mass can be expressed

here by equating the mass rate of propellant combustion to

the mass rate of gas generation within the pressure chamber,

i.e.,

where

and

rAbp

v
g

P

- =34
gas weight, (lbs)

propellant burning rate, (in./sec.)

2

propellant burning surface area, (in.

propellant density, (lbs/in.3)

2
gas density, (lbs/in.",

3

volume of gas in chamber, (in.

).

(4.8)

The volume occupied by the gas at any time can be expressed

in terms of the distance between the warhead and the recoil

mass and the launch tube diémetér or, using Eq. (4.4),

32
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or, using Eq.'(4.4),

L-2) . - 2t (4.10)

Thus, the weight of the gas at any time is

-2 © W W W

v = = Tda_ A 2, 1

Wy = ooV = 7= o [(—5-=)x - 7=A] (4.11)
2 2

These equations must be further developed through the use of

the propellant burning rate and gas constitutive equations.

4.3 Propellant Burning Rate
and Gas Constitutive Equations

The propellant burning rate is assumed to depend on the
chamber pressure through the relation

r = kPgn (4.12)
where k and n are constants and the gas is assumed to obey
the perfect gas law, i.e.,

Pg = pgRTg | (4.13)
In Eg. (4.11), R is a gas constant (37.69908 in./°R) and Tg
is the local gas temperature. in gegrees Rankine. Furthermore,
the temperaturé-pressure relatiohship assumed for this gas is

2T

--2To, -1
Tg = —-tan (Pg/Po) (4.14)

Where To and Po are reference temperature and pressure, re- |
spectively. 'I‘o is assumed to have the value of 5500°R and

the reference pressure Po is 100 psi.
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4.4 Combinéd Field Equations

Through the use of Egs. (4.13) and (4.14), the gas

weight can be expressed in terms of the pressure Pg and

position X, as r

1232 (W, +W.,) P
Wy = lg&T lw 2— T - X
o 2 tan (Pg/Po)
W
1 (4.15)
(x, = o—=A)
1 T W

For simplicity of notation, if we define two constants o and

g as
g
W, |
and
_ BRI W PRk (4.16)

2.2
n-d (W1+W2)

then the conservation of mass equation, Eq. (3.6) can be

expressed
il | Py ] (4.17)
= gel (%70 -1
tan (Pg/Po)

BPg

Expanding the derivative in this equation gives
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l g -
gp = —= + (x,-0)P_ x
g tan 1(Pg/Po) 1_ J
. ) P¢/Po . (4.18)
tan “(P_/P) [1+(P /P ) "] [tan (Pg/Po)]

where, as in Egs. (4.6) and (4.7), vy is the speed of the
warhead. Eq. (4.18) represents a nonlinear first order dif-

ferential equation in terms of the pressure Pg.

Solving Eq. {4.18) for Pg and restating Egs.. (4.6) and
(4.7) allows the final governing equations to be summarized
as three simultaneous, first order, nonlinear diffe#ential

equations of the form

xl = v1 (4.6)
2

. _ 'n'd

v1 = 4W1 Pg (4.7)
and

. vipg jl
9 = .

P = ' tan " (Pg/Py) (4.19)
g 1 ) (Pg/Po)

(X,~a) — —— ;
1 tani(Pg/Po) [1+(Pg/P°)2][tan l(pg/po)]%]

In addition, the rate of propellant combustion is determined
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by the differéntial equation

v&p =- %A _pn» (4.20)

bpg
This equation must be solved to determine the time at which
propellant burning ceases. The initial conditions which

apply for the above equations are:

1) X, = A

2) v, = 0

3) Pg = Po (4.21)
and

4) Wp = wo .
4.5 Conditions After Propellant Burnout 3

The governing Egs. (4.6), (4.7) and (4.19) apply only
until the propellant is totally consumed. After this time
of burnout, the gas in the pressure chamber is assumed to
expand isentropically until the warhead and recoil masses
leave the launch tube. The equations of motion of the warhead
and recoil masses are the same as before burnout, Egs. (4.la)
and (4.1b), and the positioﬁs oéithe two masses can be

related as in Eq. 4.4. For isentropic expansion the

pressure depends on the temperature as

p_ =kt 'l | (4.22)
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where kl is a-constant to be determined from the conditions

at burnout and vy is the ratio of specific heats. After burn-

out the weight of the gas is constant

o 1A% (W W) Igl % |
Wg = W— (kl) g (xl-a) (4.23)

where all of these parameters have been defined earlier. By
inspection of Eq. (4.23) the product Pgl/Y(xl-a) is assumed

to be a constant

1/
l/Y(xl-a) =p  (x; -a) : (4.24)

P
g o 9

* * :
where P and x, are the gas pressure and position of the

g 1
warhead at the time of burnout. Thus, Pé can be expressed
as
. A Y oy Y .
Pg = Pg (xl o) (x1 a) (4.25)
and the equation of motion becomes
2 2 11} :
14, = (M4, p* S )Y = Ly '
( 7 )Pg ( y ) Pg (xl o) (xl a) =3 Xy ' (4.26)

-

This equation can be integrated in closed form if it is first

expressed in terms of the velocity as
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dv md"gP 3 N
Vit = 4wlg (x, =)' () - @)Y : (4.27)

Integrating each side of this equation and denoting the

warhead velocity as v, when x=Lj, allows the exit velocity to

e

be expressed as

| ) ]
gndzP *(x -a)Y (x *-G)Y 1
v.l=v.2 g "1 1 — |2 (4.28)
e =1 YT, (%-D T,-a .
|

*
where it is understood that X,> o and L,> a.

4.6 Solution Method

As mentioned earlier, the object of this development
is to permit calculation of the warhead and recoil ﬁasses
exit velocities and the system weight. The exit veiocities
of the two masses can be calculated from Egs. (4.28) and
(4.4) and the system weight can be calculated from a know-
ledge of the peak pressure. To evaluate Eq. (4.28) and the
peak pressure, the governing field equations, Egs. (4.6),
(4.7), and (4.19) must be integrated with respect to time.

A foqrth order Runge-Kutta integration procedure has
been utilized to solve this Syteh of equations. To allow
for a deséription of this solution method, let the govern-

ing equation be expressed in vector form as

d -
aF = F(t,x) (4.29)
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where §T = [xi, vy Pg] and F is the right hand of the

governing equations and may depend on Xys Vys OF Pg. By

discretizing the field variables to correspond to discrete
time values tis separated by a time increment At, the Runge-

Kutta method provides an accurate method for calculating the

vector x i+l which contains the field variables at time

ti if the values of x* at time t; are known. The algorithm

can be expressed as

5’-*1 = x" + -[-’g: [K, + 2K, + 2K, + K,] ; (4.30)
. v\
where
K, = F(t;,x") ‘ (4.31)
_ At i, At
Ky = F(t; + 55, X + 55 K;) (4.32)
= At i, At |
and
= i :

This procedure may be employed to determine the values
* " . '

g
mum pressure in the chamber. With these values known the

* * > )
of Xy0 Vi and P_ at the time of burnout as well as the maxi-

velocities of the two masses can be determined from Eqs. (4.28)
and (4.4) and the system weight determined from thé peak pres-

sure calculation.
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4.7 System Weight

The system weight wS may be expressed in terms of

system component weights as

Ws = W1

+ W, + Wt + wp + W, (4.35)
where Wy and W, are the weights of the warhead and fecoil
masses, Wltis the weight of the launch tube, Wp is the pro-
pellant weight, and Wx is the weight of such extras as
handles, straps, sights, etc. The weight of the launch tube
can be calculated assuming a maximum normal stress failure
criterion and using thin-walled tube theory to calculate the
maximum stress in the tube as a function of the maximum in-
ternal pressure Pmax' Pmax must be determined by integrating
the nonlinear differential equation, Eq. (3.19), as dis-
cussed earlier. The maximum pressure is selected from the

entire pressure history during burning. A design pressure

for the launch tube is computed as

Py = (FS) Pax (4.36)
Design of the launch’'tube requires a specialjfeature

near the initial position of the warhead and recoil mass.

Very early after the propellant is ignitéd and before the war-

head and ré&oil mass have had a chance to move significantly,

the burning gas pressure within the launch tube increases to

an extremely high pressure. After the two masses begin to

move, the pressure within the launch tube drops considerably.
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If the weightiof the launch tube were designed based upon
these early high pressures, the system weight would be un-
acceptably high. To avoid this problem and thus reduce the
system weight, the launch tube is assumed to have a:high-
strength reinforcing ring which surrounds the launch tube
in the vicinity of the initial position of the massés. This
feature is illustrated in Figure 4.1. The reinforcing ring

weight can be expressed as

(4.37)

W =

r *

2
'udLPd(Lr)pr
%a

&,

where Lr is the length of the ring, normally assumed to be
* ’ i
approximately 3 inches, and 9, is the ultimate strength of

the reinforcing ring.

Finally, the weight of the launch tube can be expres-

sed as

2 .
md. P,(L,+L,)p
W, =W +—n d 1 2L (4.38)

L r O'a

where 0, is the maximum stress allowable in the non%reinforéed
portion of the launch tube.’' Eq, (4.38) now permits the entire
system weight to be calculated aé in Eq. (4.35).

The muzzle velocity Vi and system-weight Ws can be

calculated as indicated in Egs. (4.28) and (4.38), respec-

tively. Obviously it is not possible to express the dependence
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of these quantities on the design variables in any sort of 4
functional form. This precludes the use of an analitical
optimization routine and instead requires that a pattern

search method such as that described in Section 6 be

utilized to select an optimum design.



5. TRAJECTORY ANALYSIS

To determine the effectiveness of light antiﬁank
weapons, the capability for hitting the target must be
evaluated by computing the trajectories of the missile and
target. This calculation involves modeling the aerodynamic
and ballistic forces on the missile as well as any guidance
and control systems which exist and integrating thege sys-
tems into a mathematical model. Due to the explora£ory
nature of this projcct, a trajectory analysis was developed
which embodies all the pertinent features of the system
but allows for guidance and control chafacteristics;only
within a horizontal plane. Motion normal to this plane was
assumed to follow a ballistic trajectory. This asspmed motion
corresponds closely to the motion of light antitank weapons
due to thé high muzzle velocities and to the character of
the evasive actions of the targec. The trajectory analysis

includes target motion and random crosswind effecté.

5.1 Equations of Motion

The codrdinate systeﬁ and system parameters used to
define motion of the missile are illustrated in Figure 5y 1L
Control of -the missile is maintained with a rudder. The

equations of motion of the missile can be expressed as
i
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Figure 5.1 Trajectory Coordi}\ateSv_ for Guided Missiie
and Target




IF = myv (5.1)

and

M o=1 Y (5.2)

where

ral
I

= force vector, (lbs)

M = moment, (in.-1bs)

v = velocity vector, (in./sec.)

Y = angle of rotation, (radians)

m = mass of missile, (lbs—secz/in.)

I,, = mass moment of inertia, (in.—lbs-secz).

The velocity vector can be expressed in terms of the unit

vectors éx and éy through the following equations

v (y)T +Wxv, {5.3)

W= \I’ez, (5.4)
and ”

V.. (vx - Tvy) e, + (vY + ‘i’vx)ey (5.5)

The equations of motic ‘:an then be expressed in component

form as
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IF, = ﬁ(6¥ - bv) (5.6)

IF, = m(v, + ¥v ) (5.7)
and

M, = Izz‘If (5.8)

To make solution of these equations possible, linearize the

velocity components about an equilibrium position as

Y = Uo + Au . (5.9)

v. = A 5.10

y v ( )
and

y = Wo + AY (5.11)

where Au, Av and AY are pertubations about the equilibrium

state. The equations of motion, Egs. (5.6)--(5.8), reduce to

IF, = mAu, (5.12)

ZFY = m(Av + U_A¥ ), ‘ (5.13)
and

IM, = I, AY . (5.14)
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5.2 Aerodynamic Forces

; Aerodynamic forces are exerted on the missile dqg to
dragjand pitching moment effects. As illustrated in Fiéure
5.1, the relative wind acts at an angle B with respect to
the @issile axis. The relative wind can be expressed in

vector form as

D VY T YTV " (5.15)

or, in terms of the previously defined quantities

, -
{ Ym/w = (U0+Au) é + Avéy - wxéx i wyéy _ (5.16)
Ym/w = (Uo+ Au - w cos Yy - wy sin ‘l’)ex
: : - £ '
+ (Av + w, sin y wy cos‘i’)ey (5.17)
Then, B can be expressed as
! .
§ = tan™ | TRy (5.18)
o X Y
If Bfand ¥ are assumed small .
Av-W -
B & "E—X ! (5.19)
-0

Il

The éerodynamic forces F., F and M, are functions of the

Y



dynamic pressﬁre q, a characteristic area S, the missile
length b, as well as the variables Au, B8, Gr and ¥. For
convenience, introduce the dimensionless velocity components

Au and Av defined as

Au = UoAu and Av = UoAv | . (5.20)

and express the aerodynamic forces as

Fx = qS(Cx + cquu + CxB B + styar)' ' (5.21)
F. = gS(C e+ L c.alrc s ) (5.22)
y y8 20, yY Yé, r ! |
and
b .
where
_1 2
q=3 vm/w . (5.24)
1 2 2
Qx5 p [ (U, W)© o+ Wy ), (5.25)

and where the coefficients are force and moment coefficients

determined by experiment or estimated from tests on similar

vehicles.

The equations of motion can then be expressed as
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Loc R I U BS So

mU, - -

nu 0 .. 6 . Al .

qso (Av + AY) = CyB B + 55; CyW AY + Cy&rar'
and

I, o b 7

asb S CzB B b ZUO Czd G czé,rar'

e

(5.26)

(5.27)

(5.28)

The velocity components of the missile relative to the (X,Y)

o
reference coordinate system can be expressed as

xm Uo[(1+Au) cos ¥ - Av sin Y],

and

U, [(l+Au) sin ¥ + AV cos V]

L
i

(5.29)

(5.30)

These governing equations must be integrated'in time

subject to the initial conditions

»

X (0) =0, ¥ (0) =0, Au(0) = Aﬁot

(]
=

Av(0) = Avo, AY (0) = Wo, ¥(0)

49
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5.3 Solution Technique

The differential equations of motion, Eqs., (4.26)--
(4.28), represent & set of coupled second order linear dif-
ferential equations which can be reduced to a set of first

ordeyr differential equations of the form

%E(Aﬁf = g, | (5.32)
S =g, © (5.33)
=g | _, (5.34)
& (v) = Q (5.35)

where I' = AV + AY and the other quantities in Egs. (5.32)--
(5.35) can be inferred by comparison with Egs. (5.26)--(5.28).

These eyuations, Egs. (5.32)--(5.35), can be cast into vector

form as

d o s .

EE- § _. E(tlg) o v-.
where '

T -

§ = [Au, T, 2, AY]

2 (5.36)
and
T
F* = [g9y/ 950 93+ 9.
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This vector d}fferential equation is now in the same form

as Eq. (4.29) and the step-by-step Runge-Kutta inteération

method described in Section 4 can be used to solve Eq. (5.36).
With the solution of Egs. (5.32)--(5.35) known at each

instant of time, Egs. (5.29) and (5.30) can be solved to ob-

tain the X and Y coordinates of the missile in a stey ~by-

step process.

5.4 Control Law

The contol law used in CADLAW to insure intercept of
the missile with thg moving target is a simple rate dependent

relation of the form

Sr = Gla + ng : (5.37)
where
and

£ = §rt - im (5.39)

and where Ye and Ym are coordinates of the target and missile,
respectiveiy., The parameters G1 and G2 are gain settings

and can be determined in an optimization process.

5.5 Target Motion

-

To evaluate the performance of the aerodynamic and

guidance and control systems, the antitank missile is assumed
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to be attempting to intercept a target which moves in the
horizontal plane. To provide a variety of evasion tactics,

the target is assumed to follow a curve defined as

ax2 + bx,y, *cy. +dx, +ey +f=0 - (5.40)
where (xt,yt) denote the target location and where a,b,c . . .,
f are arbitrary constants used to describe the target notion.
The target speed Ve is assumed constant and may also be
changed by the designer to study the effects of different
gvasive tactics. Wiith the target speed constant the target
location can be determined at any time by integratiﬁg the

differential equations

X+ = v, cos 6 (5.41)
t t t ,
and
§t = Ve sin et (5.42)
where
et is defined by
dy 2a x, + by + d '
— t _ _ t t
tan et - dxt - bxt + zcyt + e - (5.43)

»

The distance from the missile to the target can be éxpressed
in terms of the missile position coordinates X and Ym’ ob-
tained by solving Egs. (5.29) and (5.30), respectivély,

and the target coordinates x, and y,_ as
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2 2, 1/2 (5.44)

a, = [(x, - )%+ (y, - ¥ )]

t m

The minimum value that dt obtains during a particular flight

is defined as the "miss distance" ¢m' Le€hy

¢m = tnlj..'-n,.sdt‘ (5.45)
The performance of the missile in flight depends strongly

on the parameter ¢m.

5.6 Wind Model

To simulate the effects of cross-winds on the missile
trajectory, a stochastic wind model is incorporated into
CADLAW. The wind is assumed to blow in the y-direction
(see Figure 5.1) only and to have a magnitude given by

w.=Ww 1l + 20(R - 0.5 5.46

y ym[ ( )] , ( )
where wym is the mean velocity of the wind, o is the standard
deviation of the distribution about the mean, and R is a
random number between zero and one. The value of w__ may be

ym
varied by the designer.
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6. OPTIMIZATION ALGORITHM

Perhaps the key element of the CADLAW system is
the optimization process used to determine the "optimum
design." As described in.Sgction 2, the optimization
process involves a pattern search of a hypersurface, defined
by an objective function, to obtain a design point which gives
a maximum or minimum value for the function. The objective
functions employed in CADLAW have previously been défined in
Section 2. The objective of this section is to describe
the particular optimization method utilized in CADLAW.

The particular alogrithm adapted to the computer
program CADLAW is the flexible tolerance method originally
described by Paviani and Himmelblau [12]. The remaining
discussion in this section represent mainly excerpté from
Reference 13. The flexible tolerance method can be classed
as a "search" method as opposed to the derivative-type methods
of optimization. In the purest of the search methoas, the
directions of minimization are determined solely from suc-
cessive evaluation of the objective functions f(x).

As a general rule, in soiving unconstrained nonlinear
programming problems, gradient and seconé-derivative methods
converge fééter than direct search methods. However, in

practice, the derivative-type methods have two main barriers
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to their impléhentation. First, in problems with a,
modestly large number of variables, it is 1aborious'or
impossible to brovide analyticai functions ' for the deriva-
tives needed in a gradient or second-derivative algorithm.
Although evaluation of the derivatives by difference
schemes can be substituteé'for evaluation of the analytical
derivatives the numerical error introduced, part;cularly

in the vicinity of the extremum can impair the use of such
substitutions. 1In principle, symbolic manipulation to -
evolve analytical derivatives is possible, but this;
technique still reqdires considerable development before

it becomes a feasible tool in practice. ' In any case, search

methods do not require regularity and continuity of the

'objective function and the existence of derivatives.

Second, and a related point, optimization techniques based
on the evaluation of first and possibly second derivatives
require a relatively large amouﬁt of problem preparation by

the user before he introduces the problem into the élgorithm,

as compared with search techniques. '

Because of the difficplties described above, direct
search opf%mization algorithms have been devised that,
although slower to execute for simple problems, in practice
may prove mo;e*satisfactory from the user's viewpoiﬁt than
gradient or second-derivative methods, and may co,t.lols

to use if the cost of problem preparation time is high rela-

tive to the computation time.
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The general nonlinear programming problem can be

stated as follows:
Minimize: £ (x) xeE®

(6-1)

#l
o
=

i
L
*
-
=

Subject to: hi(g)
gi(§) >20i=m+1, . . ., P

where f(§), hi(§), and gi(§) may be linear and/or nonlinear .
functions. In many nonlinear programming methods a con-
siderable portion of the computation time is spent 6n
satisfying rather riéorous feasibility requirements. The
flexible tolerance algorithm [12], on thé other hand, improves
the value of the objective function by using information pfo-
vided by feasible points, as well as certain nonfeasible
points termed near-feasible points. The near-feasipility
limits are gradually made more restrigtive as the sgarch

proceeds toward the solution of‘the programming problem,

until in the limit only feasible x vectors in Ec¢s. (6-1) are

accepted. As a result of this basic strategy problem, Eq. (6-1)

can be replaced by a simpler problem, having the same solution:

-

Minimize: f(§) §eE“

Subject to: O(k) - T(x) 20 (6-2)

where O(k) is the value of the flexible tolefancé;qritérion
for feasibility on the kth stage of the search as defined by
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Eq. (6-3) befbw, and T(§) is a positive functionaléof all
the equality and/or inequality constraints of Problém (6-1)
used as a measure of the extent of contraint violation.

In the particular application here, f(§) is £he
squared difference between the total strain energy density
and the element strain enefgy density summed over all the
elements of the shell. Hence, f(g) is a nonlinear function
of x. The hi(§) and 91(5) are linear constraint relations

for the composite shell optimization problem.

6.1 Flexible Polyhedron Search

Nelder and Mead [15] proposed a method of search which

has proved to be an effective strategy and one whic@ is
easily implemented on a digital computer. The method of
Nelder and Mead minimizes a function of n independent
variables using (n + 1) vertices of a flexible polyhedron
in E®. Each vertex can be defined by a vector X. The
vertex (point) in E® which yields the highest value of

f(x) is projected through the center of gravity (centroid)
of the remaining vertices. Improved (lower) values Bf the
objective fhﬁcgion are found 'by successively replacing the
point with the highest value of f(f) by bgtter points until

the minimum of f(§) is found.

The details of the algorithm are as follows.

Let fi(k) b [81(')]‘.)10--' xj(_l;),...,xj(.:)]l', = m'....,n + 1'
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be the ith veftex (point) in E" on the kth stage of the

search, k = 0, 1,..., and let the value of the objective
function at §{k) be f(§ik)). In addition, we need to label.
X vectors in the polyhedron that give the maximum and

minimum values of f(f).
Define

£M¥)) = max (£, ..., £y

with the corresponding xék) = xgk), and
£x %)) = min' (£ ,..., £ (K
(k)

with the corresponding X, = §{k). Since the polyhedron

in E? is made up of (n +1) vertices, Kyrooor Xopqo let

Xn42 be the centroid of all the vertices exciuding Xy

The coordinates of the centroid are given by

B 1™ w0, L k) . | 3
Xn+2,4 = @ [(if1 a5 ) ) ] 3 L, oy o0 iT. . (6-3)

where the index j designateg each coordinate direction.
The initial polyhedrdn uéually is selected to be a
regular simplex (it does not have to be); with poipt 1l as
the origin,- or perhaps the centroid as the origin, as in
the computer code. The procedure of finding a vertex in

!
E® at which £(x) has a better value involves four operations:
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1. Reflectioﬂ. Reflect §ék) through the centroid by

computing
C k) (K) (k) _ (k) ' |
Xne3 = Xne2 ¥ ne2 " %) Ale=4

where a > 0 is the reflection coefficient,

535% = centroid computed by Eq. (6-3)

~ék) = vertex at which f(g) is the largest qf

(n + 1) values of £(x) on kth stage

}

2. Expansion. If f(xéf%) < f(E{k)), expand the vector !

(xét% - xéfi) by computing

1

oK) o (k) (k) _ (k) I
~n+4 ~n+2 i Y(xn+3 xn+2) - (6-5)

where Y > 1 is the expansion coefficient. If

f(x(k)) < f(x(k)), replace x(k) by x(k) and continue

. ~h
from step 1 with k = k + 1. Otherwise, raplace xék)

(Eg and continue from step 1 with k = k + 1.
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Contractioﬁs. If f(xn+3) > f(§£k)) for all i # h,

(k) o (k) e

contract the vector (gh X +2 by computiﬁg
(k) (k) (k) _ (k) -
Xn+5 Xn+2 & B(f §n+2) ,(6 6)

where 0 < B < 1 is the contraction coefficient. Replace

§gk) by §é§; and return to step 1 to continue the

- gsearch on the (k + 1)st stage.

N .
Reduction. If f(§n+3) > f(§(k)), reduce all the

vectors (xéf% = §ék)), i=1l,eee, n ¢ }, by one-half

“~

from §{k) by computing

O T I Tl

i‘lp-?o' n+1 . ‘:, '(6"'7)

and return to step 1 to continue the search on the

(k + 1)st.stage.

The criterion used by Nelder and Mead to terminate

the search was to test to determine if
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n+l
L 1 o I T AP LB L (6-8)

n+1 iml 2

where ¢ is an arbitrarily small number, and f(§£f;) is the

value of the objective function at the centroid xéE;.

~

6.2 The Tolerance Criterion

The tolerance criterion ¢ in Eq. 6-2 is selected to
be a positive decreasing function of the vertices of the
(k) _ 0(k) (f(k)' Eék)

AX RN}

<
flexible polyhedron in EP; ¢

L RY §r+2)' The function ¢ acts as a tolerance criterion

for constraint violation throughout the entire search,
and also serves as a criterion for termination of the .
search. Many alternative definitions of ¢ are possible,

but the one incorporated into the algorithm to be described

is
(k) _ (k=1) m+1 THl (k) _ (k) || 4(0)
W, 2 E [0 it

- 2(m + 1)t - ' (6-9)
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where t = size of initial polyhedron
m = number of equality constraints
(k) = ith vertex of polyhedron in E®

(n = m) = number of degrees of freedom

L L
"

of £(x) in Problem (4-1)

%K) o vertex corresponding to centroid as defined

~n+2
by Eq. (4-3), with n =r

k=0, 1,... is an index referring to number of

completed stages of search
¢(k-1) = value of tolerance criterion on (k - 1)st
G

stage of search

Let the second term in the braces of Eq.;(6—9) be

denoted by e‘k’.

s omaa TH U g
o g B0k B (k) (k) 2 .%
= X L - ) -
r +1 { j=1 j=1 (xxj xrf2,3) } (6=1.0}
where ~i§) j=1,..., n, are éhe coordinates of the ith

vertex of the flexible polyhedron in E". Observe that e‘k’

represents the average distance from each x(k), O I FEpRe

r + 1, to the centroid x(k) of the polyhedron in E?. To

~r+2
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understand the-behavior of ¢(k) it is necessary first to
understand the behavior of 6. It is obvious that the value
of © will depend on the size of the polyhedron in EM,
which may remain unchanged, expand, or contract, depending
on which one of the four operations described in Sec. 4.1

(k) (k+1) .

is used to carry out the transition from x to X

Thus ¢(k)behaves as a positive decreasing function of x,
although e‘k’ may increase or decrcase during the progress
of the search, and as the solution of the problem is ap-
e(k)

proached, both and O(R) approach zero

A

o{0) > o) 5 >0 5o (6-11)

In the method of Nelder and Mead, when it is not
possible to find bettef values of f(x) bi Eq. (6-4), the
vertices of the flexible polyhedron are drawn neare? and
nearer to that vertex corresponding to the best valpe of
the objective function. In the limit complete’coll@pse of
all the vertices of the flexible polyhedron takes place
onto the stationary solutioq of f(f). Thus, as thé search
approaches the stationary solution of f(f), the value of
e‘k’ given by Eq.  (6-10) becomes progressively smaller
because the-average distance between the vertices and the
centroid of the polyhedron shrinks to zero. .Since on each

{ 0
kth stage of the search o‘k)i- set equal to the smaller value

oK)

of either O(k'l) or e‘k’, the tolerance criterion
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also collapses and in the limit,

lim ¢(k) = 0 :
5] o ‘ (6-12)
6.3 Criterion for Constraint Violation

Consider now a functional of the equality and

inequality constraints of Problem (4-1);
T(x) = + [ ? hi(x) + g Uigi(x)]* (6=13)

~ i=1 ~ i=m+1 ~
whefe Uy is the Heaviside operator such that u; = p for
éi(f) 20and U; =1 for g, (x) < 0. Therefore T(g) is
defined as the positive square root of éhe sum of the
squared values of all the violated equality and/or inequality
constraints of Problem (6-1). Note that T(x) > 0 for all

m
xeE". In particular, if I hi(x) is convex and the gi(x),
i=]l - : ~

i=m+1,..., P, are concave functioné, then T(g.:) is a convex
function with a global minimum T(§) = 0 for all feasible

x vectors; i.e., for any {§,hi(§) = b,gi(§)30 for i = l,...,p}.
Also, T(§)’> 0 for all x vectors that are nonfeasible. For
(k)

a given x(k)eEn, the value of T(x) evaluated at x using

Eq. (4-13) can be used to distinguish between feasible and
nonfeasible.points. If T(x'¥)) =0, x'¥) is feasible;
if (x®)) > 0, x'®) is nonfeasible. On the other hand, a

{ i
small value of T(f(k)) implies that §(k) is relatively near

64



to the feasibleé region, and a large value for T(x(k))

implies that §(k) is relatively far from the feasib;e region.

6.4 Concept of Near-Feasibility

Near-feasible X vectors are those points in "
that are not feasible, but nevertheless :lmost feasible,
in the sense given below.‘ To establisi: » clear-cut distinc-
tion between feasible, near-feasible, and nonfeasible points,

let 0‘k)be the value of ¢ on the kth stage of the optim;zation

search and let §(k) be any vector in E®. The §(k) vector
is said to be ®

1. Feasible, if T(x'¥)) « 0

2. Near-feasible, if 0 < T(f(k))i 0(k)

3. Nonfeasible, if T(§(k)) > Q‘k)
Thus the region of near-feasibility is defined as

o) - ) > 0 ' (6-14)

On any transition from g(k) to §(k+l), the move is said to

be feasible if_T(§(k+l)) = 0, near-feasible if

0 < T(§(k+1)) < ¢(k), and nonfeasible if‘T(f(k+1)) > O(R).

Note that the value of ¢ on the (k + l)th stage of the
search is determined orly after §‘k+1) has been located as

|
‘either a feasible or :ii«ar-feasible point.
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6.5 Strategy of the Flexible Tolerance Algorithm

In this section it is demonstrated that the general
nonlinear programming Problem (4-1) can be‘replaced by the
easier problem of minimizing f(x) subject to one gross

inequality constraint as follows:

Minimize: £ (x) §eEn

Subject to: o) _ T(x) > 0 (6-15)

The flexible polyhedron search of Nelder and Mead is a
convenient and effecjive but not essential method of minimiz~

ing f(x) as an unconstrained function when the constraint

in (6-15) is not active, and is also used to minimize T(x),

to satisfy the single constraint in (6-15) when the con-

straint is active. The general strategy is to reduce ¢(k)

as the search progresses, thus tightening the region of near-
feasibility, and to segregate the minimization of f(x) from
the steps taken to satisfy the constraint in (6-15). For

a given value of ¢‘k), the value for.T(E).at x(k+1) will be

either (1) T(g(k+1)) < @‘k), in which case §‘k+1) is either
a feasible or a near-feasiblg point and will be accepted as

a permitted move, or (2) T(§(k+l)) > ¢(k), in which case

x(k+1) is classed as nonfeasible, and an % vector closer to
(k+1)

~

or in the feasible region must be found in lieu of x

(k+1)

One way of getting an x closer to the fedsibiq region is

to minimize the value of T(x(k+l)) as defined by Eg. (6-13)
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until T(§(k+l)1 < o (k)

To demonstrate that the solution of Problem (6-15)
is equivalent to the solution of Problem (6-1), it is
sufficient to consider the behavior of O(k). Because
¢(k) is a positive nonincreasing function such that
o) = o only when it is no longer possible to improve the
" value of f(g) in Problem (6-15) the region of near-feasibility
given by Eq. (6-14) is gradually restricted as the search
proceeds toward the solution of Problem (6-15). 1In the
(k)

limit, that is, when all the vertices, X, i=1,...,

r.+ 1, of the flexib%e polyhedron in E" have collapsed into l
one single point at x*, then ¢* = 0 and énly X vectors that
are feasible, that is, {x hi(f) = 0, gi(f) > 0 fof i},

can satisfy the requirements of the inequality in Eq. (4-14).
In other words, if o(k’ = 0, since T(§) cannot be néqative,
the only possible value for T(x) is T(§) = 0, which;fequires
that all the constraints of Probler (6;1) . be satisfied.

Because the tolerance criterion ¢ is a=poait£ve

nonincreasing function of the sequence of points x(b), . ’F
5(1),..., x* generated during the progression of the search,
because ¢ does not depend on" "the- 'value of the objective
function nor on the values of the constrajints, and because !
in the limit_ ¢é* = 0, convergence of the algorithm io as-

sured for tho following reasons: o o ,
o
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The manner in which ¢ is computed by Eq. (6-9)
prevents the tolerance criterion from iﬁcreasing.
If ¢ were allowed té increase without bound, the
possibility would arise of being able to improve
the value of f(x) at the expense of getting
further and further away from the feasible region.
When the optimal solution of Problem (6-1) is an
interior point (no equality constraints), con-
vergence of the algorithm is assured because of
the property of the flexible polyhedron of col-
lapsing only when approaching the optimum of

of f(x) in Problem (6-1). In these circum-
stances T(§) has no effect on the convergence

of the algorithm because, in the final stages of
the search, x?, i=1,..., r + 1, are interior
po%nts yielding a T(§(k)x = 0, which implies
that inequality (6-14) is satisfied for all

xfk) and that Problem (6-1) has not active con-

~

straints.

-When the optimum of Problem (g-1) is nqt an
interior point teitﬁer because §* is a 'boundary
point or because Problem (6-1) includes only

" equality constraints]), convergence is assured

because of the condition imposed by inéquality
i
(6-14), that is o (k) T(x) > 0. The flexible
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polyhedron will not collapse as long as it is
possxble to find a better f(x(k)) such that

Let xék)be the vextex of the flexible polyhedron

such that ¢‘k’ = T(fék)) i_o; f(fék)) is the best vélue of

£(x) obtained ‘'on the kth stage of the search. Let x(k+1)

be the vertices obtained during any reflection of §£k)

through the centroid of the polyhedron such that .
o) Lope kL)) > 00 1e £ KDy > £(x{K)) for every

reflection of x‘k) through the centroid, the values of
Q(k) will decrease because of contractions in the flexible

polyhedron. 1In such a case, the values of ¢(k)are reduced,
and x(k) must satisfy the constraints of Problem (4-1) more

and more closely until the search is terminated beoanso

o (k) <e.

(1)) o gy,

On the other hand, if f(x f(x the value

of O‘k) will not decrease becauee no contraction of'the

polyhedron takes place and xék) is replaced by a better

vertex. As long as it is possible to determine either a
feasible or oear-feasible p01nt such that f(x{k+1)) < £(§:k)),
there will pe reflections and expansxons of the fle#ible
polyhedron; Thus premature termination of the search at a
nonlocal optimum is avoided because the polyhedron will not

collapse if there exists an x(k+l) such that ‘

o) L g (k1)) 5> g ang f(g_ci"“'“) < £x* + ). (6-15)
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One ad&antage of the flexible tolerance strétegy
typified by Problem (6-15) is that the extent of tﬁe
violation of the constraints included in Problem (é-l) is
progressively decreased as the search moves toward the
solution of Problem (4-1). Because the equality aﬁd/or the
inequality constraints are loosely satisfied in the early
stages of the search, and more tightly satisfied only as the
search approaches the solution of Problem (6-15), the
overall cémpution effort required in the optimization is

considerably reduced.

Another advahﬁage of the flexible tolerance;strategy
is that o‘k’ can be conveniently used as a criterion for
termination of the search. For all practical purposes it is
sufficient to continue the search until o‘k) becomés smaller
than some arbitrarily selected positive number €. In the
final stages of the search, 0(k) is glso a measure of the

average distance from each vertex §{k), i=1,.,.., r+1,

to the centroid x'X) of the polyhedron in E". If o (K) <€

~r+2
a substantial number of the vertices x;k)

are contained in

a hypersphere of radius ¢. (If the last polyhedron of the
search were regular, all the vertices §£k) would be contained
by the hypersphere of radius €, but because the poiyhedron

is distorted, some vertices may be outside the sphére.)
Therefore, if ¢(k) £ €, the chances are that the value of

[
f(§) cannot be improved without having to further reduce the
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size of the polyhedron. This implies that a change of

2e in the §£k) corresponding to the best value of f(f),
that is, §:k), will not improvelthe value éf the objective
function. Hence. upon termination of the search, the

following condition is satisfied:

£x %) < fxr +e) (6-16)
(k)
Since Egq. (4-14) is satisfied for every move, if ¢ < €
it is obvious that the condition € - T(gik)) 2 0 is also

N
A

satisfied, or

P 1
h;(g) + I Ui(g)gi(f)lr < € (6-17)

m
T(xg*)) = [ I
i=m+

i=]1
Equation (6-17) implies that, upon termination of the
search, the combined value of all the violated constraints
does not exceed €. Certainly, no individual constraint can

be violated by more than € either.

Thus, by conducting the search in the manner described
one arrives at an "optimum design" point. This procedure is

employed in CADLAW.
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7. CADLAW DESCRIPTION AND USER INSTRUCTIONS

1
The design program CADLAW operates interactiqely from

a demand terminal. The program has the capability fo perform
optimized design studies or classical parameter studies and
to present the results in either a tabular or graphical form.
To operate the program a basic awareness of the organization
of the program is helpful.

7.1 Design Program Organization

a
As described earlier in Section 2, CADLAW is designed

to permit study of three different, independent subjects re-
lated to light antitank weapon systems. The first Qubject
concerns the propulsion system, including structurai features,
of a conventional in-tube burning rocket system. The second
subject concerns the propulsion system, including structural
features, of a recoilless, closed rocket system. The third
subject with which CADLAW deals is the flight or trajectory
phase of operation of a light antitank weapon systeﬁ} The
different type propulsion systems can obviously be studied
independently 'since most antitank systems will have only one
propulsion system. The trajectory phase of antitank weapon

operation can be studied independent of the propulsion phase
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since all progulsion is accomplished within the launch tube
before flight characteristics become of interest. fhe CADLAW
user must decide which of the three subject areas is to be
studied and direct the computer to implement the suﬁject
matter of interest. Each of these three subjects are contained
in three separate overlays and are loaded and unloaded from
the computer core as the ﬁser directs. The basic overlay
design of CADLAW is described schematically in Tablé 7.1.
Within each of the basic overlays dealing with one of
the three subjects described above, there exists a éapability
to either perform an optimized design study or clas;ical para-
ﬁeter study as the user desires. Only 99e type of study may
be performed .. a time. However, both type studies may be
performed by operating in a sequential mode. These components

of the program are also illustrated in Table 7.1.

7.2 User Instructions

The CADLAW system is basically.semi-tutorial'in nature,
i.e., if desired, the system explains the basic organization
f
of itself and informs the user of the responses to be made to
implement the system. To save time the system willzskip over
all instrﬁcﬁions if the user is -familiar with it.
Siﬁce the CADLAW system is interactive, the system com-

municates with the user by printing messages on the CRT

screen of the interactive terminal. These messages are either

i
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instructions dn program usage, questions for the user, or
statements of results or data. The user responds to the
computer by typing information on the terminal keyboard.

Since the program is self explanatory, no specific instruc-
tions need be supplied the user. Only thosé data which differ
from a basic data set defined within the system required in-

put. All others assume default values.

7.3 Sample CADLAW Execution

It appears that familiarity with the program car. best
be gained by following thrcugh a typical execution éycle. The
following pages rep;ésent copies of the CRT screen displays
as seen by the user. When a right bracket appears in column
one, the computer is asking for a response from the . user.

All data input to the program is in a free-format style. Hence
the user may simply type in the desired pieces of information,

each separated by a comma. A read sequence is terminated by

typing in a series of zercs for the information asked for.
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