
LAJ
DESIGN AND TESTING OF A GENERALIZED

REDUCED GRADIENT CODE FOR NONLINEAR PROGRAMMING

BY

L.S. LASDON, A.D. WAREN, ARVIND JAIN and MARGERY RATNER

TECHNICAL REPORT SOL 76-3

FEBRUARY 1976

Systems Optimization Laboratory

Department of
Operations
Research D D C

JUP IS 1976

Stanford .1-0 -P
U niversity b fz; -- A

S1 m~Bo STATEMEN4T A St anford
Appoved f r public r,,a sel California

Dst ,ibution Unmit. 94305

DESIGN ANDi)TESTING OF A GENERALIZED

REDUCED GRADIENT CODE FOR INONLINEAR PROGRMING-

K by
L.S. Lasdon, A.D. Waren, Arvind Jain and Margery Ratner'

TECHNICAL REPORT SOL 76-5

February 1976 A

I
SYSTEMS OPTIMIZATION LABORATORY

DEPARTMENT OF OPERATIONS RESEARCH

Stanford University
Stanford, California

Research and reproduction of this report were partially pported by the
Office of Naval Research under Contracts NOoib4-75-C-0267, N00014-75-C-0865;
U.S. Energy Research and Development Administration Contract E(04-5)-26 PA#18;
the National 'cierme Foundation Grant DCR75-04544 at Stanford University;
and by the Office of Naval Research under Contract NOOOlh-75-C-0240 and
National Science Foundation Grant SOC74-25808 at Case Western Reserve
University.

Reproduction in whole or in part is permitted for any purposes of the United
States Government. This document has been approved for public release and
sale; its distribution is unlimited.

'A7 MUT

TAKlE OF CONTENTS

Section Page-

2 BriefK~escription of ORG Algorithms 2

3 Program Structure 7

1. User Inputs *.................... ... o *... 10

5 Detailed Algorithmiic Structure 1
5.1 Subroutine ORG*.... ... 13.
5.2 Subroutine DiREC ,........... 15

5.3 Subroutine SEARCH 18

5.5 Subroutine CONSBS 28
5. 6 Subroutine DEGEN 32,

X6 Computational Fxperiments 34I
6.1. Comparison with Interior Penalty Methods.. 34
6.2 Solution of Himmelblau Test Problems 36

K6.3 Comparison with Two Other-NLP Codes 4.1
S6.4i Comparison of Linear vs. Quadratic

'~Extrapolation of Basic Variables 4.3

7 Conclusions and Fuiture Work i.... 144

ONA 0Uc g 5 jJ...................
..................................

..

1. Introduction

The purpose of this paper is to describe a Generalized Reduced

m Gradient (GRG) algorithm for nonlinear programing, its implementation

as a FORTRAN program for solving small to medium size problems,

and some computational results. Our focus is more on the software

implementation of the algorithm than on its mathematical properties.

This is in line with the premise that robust, efficient, easy to use NLP

software must be written and made accessible if nonlinear programming

is to progress, both in theory and in practice.

Recently, there has been increased emphas s on the software

implementation of algorithms in many branches of mathematical programming,

e.g., networks [i, mixed inbeger programming [2), unconstrained NLP

I i [3, 4, 5) and some constrained NLP [6,71. The earliest work on GEG

Vb is by Abadie [8,91, whose efforts form a basis for this work. Abadie

and others [11, 12] have written GRG codes which have been disseminated

," to a limited extent. However, the detailed operation of these codes has

not been described in the literature. We present some comparisons with

Abadie's most recent code in Section 6

1

Ac 7V-

NK,

-_ M..

2.Brief Description of GRO Algorithms

-~ ORG algorithms solve nonlinear programs of the form

subject to g1(X) 0, 1 neq

0<:S gi(X) . ub(n+i), i =neq + 1, m

Zb(i) 5 X. <ub(i) i=1

where X is a vector of n variables. The number of equality constraints,

neq, may be zero. The functions giare assumed differentiable.f There are many possible ORG algorithms. Their underlying concepts

are described in references [l]- o]. This paper briefly describes

the version currently implemented in our code.

K. The user submits the problem in the above form. It is

converted to the following equality form by adding slack variables

n~l) n+m*

minimize g M1 X

subject to g1(X) - X. 0, 1 ,m

9.b(i) S. X. ub(i), 1,n~~m (2)

* ~b(i) ub(i) = ,i-n+l, n +neq

Zb(i) 0 i n neq +l n~m

These last two equations are the bounds for the slack variables. The

variables X * X will be called "natural" variables.

2

Ir -

Mr .- *,


~~~ "M. . - ,F M7171-771 -, -M.M!

N,

Let X satisfy the constraints of (1), and assume that nb 'of"

the gi constraints are binding (i.e., hold as equalities) at X. A

constraint gi is taken as binding if

Igi - ub(n+i)l < EPNEWT

or Igi -b(n+i)j < EPNEWT

i.e., if it is within EPNEWT of one of its bounds. The tolerance

EPNEWT is one of the most critical parameters in the code. It can be

set by the user, and has a default value of lO- .

GRG uses the nb binding constraint equations to solve for nb

of the natural variables, called the basic variables, in terms of the

remaining n-nb natural variables and the nb slacks associated with

the binding constraints. These n variablea are called nonbasic. Let

y be the vector of nb basic variables and x the vector of n nonbasic

variables, with their values corresponding to X denoted by (y, i).

Then the binding constraints can be written.

g(y,x) 0 (3)

where g is the vector of nb binding constraint functions.2  The basic

variables must be selected so tnat the nb by nb basis matrix

iThe degenerate case is considered in Section 5.6.

2The definitions of g are extended here to include the slacks.

3

; 8 . < . . . . .. . ... . . - - . ..



U kB (a= /y

is nonsingular at X.Then the binding constraints (3) may be solved

(conceptually at least) for y in terms of x yielding a functior

y(x), valid for all (y,x) sufficiently near (~i.This reduces Ghe

objective to a function of x only

gm+l'

0111and reduces the original problem (at ldabt in the neighborhood of ( ,i))

~ ' to a simpler reduced problem

-4-

Sminimize F(x)

subject to 2 <x <u

~~ where 2and u are the bound vectors for x. The function F(2c

~ ~'*'~1is called the reduced objective and its gradient, VF(x), the reduced

~: gradient.

This GRG code solves the original problem (1) by solving (perhaps

only partially) a sequence of reduced problems. The reduced problems

are solved by a gradient method. At a given iteration with nonbasic

~ variables and basic variables yB is computed, and VF(i) is

~ j' ~evaluated as follows:

r (ag.+ 1/ay)B

WF/axk ag~/3xk - r iT

k 4g+

-- g-RW



A search direction a is formed from VF(Fi) and a one dimensional -search

is initiated, whose, goal is to solve the problem

c>O

This minimization is done only approximately, and is accomplished by choosing a

V OV

[' subroutine SARCH, described in Seetion5.3. For, each value cti, #Fci + a -)

must be eva-Luated. By (4, this is equal to gm+ 1.(y(i + ae + aa),

'4 -- so the basic variables y(i + a )must be determined. These satisfy

-,the system of equations

g(y, TC+ a a)O (0
where i, a, a~ are kntivn and y is to-be found. This system is

solved by a variant of Newtons metod

The one dimensional evearch can terminate in three different ways.

First, Newton's method may not converge. if this occurs on the first

step, i.e.,. 1 1 in(5), then ciais reduced and we try again. Otherwise,

the search is terminated. Second, if the Newton method converges, some g

constraints (which were previously not binding) or basic variable bounds may be

violated. Then the code determines a new ai value such 'that at leaat

~'-one such new constraint or variable is at its bound and all others are

1For a discussion of alternative strategies, see Section 5.3. #

54
4- 4

Laii



satisfied. If certain-conditions are met (see description of subroutine

SEARCH, Section 5.3)-,the new colstraint is added to the set 6f birding.

constraints, the one dimensional search is terminated, and solution of

a new reduced problem begins. Finally, the search may continue until

an objective value is found which is larger than the previous value. Then a

quadratic is fit to the three cyvalues bracketing the minimum, F is evaluated

IRI at the minimum of this quadratic, and the search terminates with the

.£%Kj lowest F value found. The reduced problem remains the same.

[~ ~Am important feature of this'algorithm is its attempt to return

to the constraint surface at each step in the one dimensional seairch. ,

This differs from earlier strategies suggested by Abadie [9] and by

Luenberger [13], which involve linear searches on the tangent plane

to the constraint surface prior to returning to that surface. We have

o/ [ *1 not experimented with such strategies, choosing to return to the surface

each time because it was simpler and we felt it would lead to a more

derreliable algorithm. Ceptation experience presented later shows thm t

, : : .if properly implemented, this strategy can be developed into an algorithm

[ that is both reliable and efficient.

gnL.g¢

jj V",

~2

~.

... .... , . ..... , --:i -' . ! '- - '6



3.Program Structure

Thits code is composed of a main program and a number of subroutines,

written in FORTRAN IV. The main program and subroutines are arranged in a

hierarchical structure, as shown in Figure- 1. (Subroutines of minor

inportance are not shown.)

14

INI

- ~DEGEN RELDOBJ

NEWTON

v-I- GOOMP

Figure 1. GRG Main Program and Subroutines

~Ot

- 00



The- primary functio~n of MAIN is to call DATAIN to read the input

Sdata, GRG to solve the problem, and OUTRES t~o print the results. It

then tssaue-specified flag to decide whether to stop or to return

to read additional data. It is very simple, and Is easily modified to

work within a larger system. All sulbroutines below and includine GRG

comprise the GRC algz:,rithm for iterativiely solving the problem (1)-(2)'

A ~ Their functions are briefly described in Table 1.

'UL,

~ 8

14 
F

Ma

I RC,



1. GRG Controls main iterative loop. Computes initial basis

inverse and calls DIREC to compute search direction.

Calls one dimensional search subroutine SEARCH. Tests

for optimality.

2. CONSBS Computes Basis Inverse, BINV. "

3. DEGEN Computes search'direction when basis is degenerate.

4. PARSH Given current X and G vectors, computes array

GRAD, whose (ii) element is the partial

derivative of gi with respect to X. May be

user supplied. If not, there is a system subroutine

PARSH which computes GRAD by forward difference

Y approximation.

5. REDGRA Given BINV and GRAD, computes Lagrange multiplier

vector 7r, .nd reduced gradient of either phase I or

phase II objectives, GRADF.

6. DIREC Computes search direction.

7. SEARCH Performs one dimensional search.

8. REDOBJ Computes Values of basic variables for given values of

nonbasics by calling NEWTON. Takes action if NEWTON

does not converge. Checks for constraint violations.

If any are violated, finds feasible point where some

initially violated constraint is binding and othe's

satisfied.

9. NEWTON Uses Newton's Method to compute values of basic variables

for given values of nonbasics. If convergence not

achieved, sets flag and returns.

10. GCOMP User supplied subroutine. Given current X vector,

computes vector of m+l function values G, where

G( ), ... , G(m) are constraint function values and

G(m + 1) is the objective.

Table 1. Functions of Major GRG Subroutines

94V4
- ~x;- ~ A

*~4*;4



~ I~i4. lner Inputs
The only subroutine which the user must provide is 3COMP, which

K computes the function gi, 6..) gm41  for a given vector X. First

derivatives of the functions gi are required, but these may be computed

I by a s7ystem subroxt~~.',; tNARS} using finite difference approximations (first

ord(-'- for. iard dWL ('eren l .,' Alternatively, the user may sv'uply a sub-

rout:'~na PAM'~ whicai torqp,.-r -Lrst derivatives ty analytic formulas or

other means, The fin'.te 41ff _43. plcximnat~ons have been completely

si. ae tori i all pro u. sr i% .. ,6 far, and elimnate th 0ofe

L co~isidertble.) burden n" eodig 'PA116H.

~~ V The .,-1,er inj,.--t. ai e the pi M~~ndimensions m, n, neq, the

box'is a.b and. 1. initip- valu,;. fo, X) , &u (optionally) a listi1
o va,'Pir. to be 1' thL "-tial lta.-. si if that is pwssible. If the initial

va!:,es of "K '- not sat-bi;xr bounds (2), an error message 4' printed

and tbe program stops. The;.s is no conceptual difficulty in augmenting

the phase I procedure tc daal with bound violations, and future versions

will Li.~ -ohis ~ tr.XLdaTa are. checked for obvious errors

(e.g., ub, < 1b) and are printed for inspection. In addition to the

above mentioned data, the user may specify a number of control and

T. olorance parameters 'to be d-1.scussed later), or may leave them at

.ieir default values.

10

-4 ,

'M, WSu-i

I El ON



5. Detailed Algorithmic Structure

The flow charts in this section are in aggregated form. Their

purpose is to describe overall program logic. However, they correspond

closely to the actual FORTRAN code.

5. 1 Subroutine GRG

This is the controlling subroutine for the iterative process. It starts

by calling GCOMP to evaluate the initial constraint and objective values.

If any constraints are violated, a phase I procedure is entered in which the

objective is the sum of absoluti values of constraint violations. The array ICAND

in block 1 is used by CONSBS in choosing basic columns. CONSBS will

attempt to enter columns in ICAND into the basis first (in the order

listed) before trying other columns. If the user has not specified an

initial ICAND, block 1 sets it to the index set {l, .. , n).

The current X is considered optimal if either of two tests is

met in block 2. The first test checks if the following conditions are met:

for i =1,n but x(i) not a slack variable for an equality

constraint

x(i) = lb (i) ==> GRADF(i) _ -EPSTOP

x(i) = ub (i) == GRADF(i) < EPSTOP

lb(i) < x(i) <ub(i) =-> IGRADF(i)i < EPSTOP

The quantities x(i) are the current nonbasic variables and GRADF(i')

I1

WI~ C



is the i component of the reduced gradient. Thi. tests whether

the Kuhn-Tucker optimality conditions are satisfied to within EPSTOP,

a small positive num' which can be controlled by the user, with

"H default value 10 - . The slack variables for equality constraints (i.e.,

LI the variable X(n + 1) to X(A t neq)) are excluded from the test

because they must be zero in any feasible solution. The second optimality

test checks if the condition

V I ABS(FM - OBJTST) < EPSTOP * ABS(OBJTST)

is satisfied for NSTOP consecutive iterations. In the above, FM

is the current objective value and OBJTST is the objective value at

: the start of the previous one dimensional search. NSTOP has a default

value of 3.

If CONSBS constructs a degenerate basis then It also computes

a useable feasible search direction. Hence, DIREC need not be called

in block 3. Otherwise, DIREC generates a search direction and, in

either case, SEARCH is called to find the best point in the given

direction.

12

V{



Figure 2. Subroutine GRG

Start

LCall GOOMP

SpcfLrryIAD
copt iltdcntan nie

Tuest o n Reu

ine search ended with quadratN

interpolation and no binding IAD 1, N

onstraints strictly satisfie IE

IY
I IOAN~D - IBV

ISET -0

111

" V111&



~~IM

. The test in block 4 returns if SEARCH has halved the initial

step size lOtimeswithout finding a lower objective value and if d = -VF.

A small fraction of problems have terminated in this way, always with

I ~ objective values close to optimality. In block 5, the Y branch

indicates the case where the basis ip unchanged and the line search

terminated as in an unconstrained prob)em. Then ICAND is set to the

V:: previous basic variable list, IBV, so that CONSBS will again choose

these as basic variables, if possible. This is desirable, because of

"r - the use ol .,Pe BFS .- !able metric algorithm [ 1 ] in DIREC to choose

th% sear-, A.-r sction, d. This algorithm uses an approximation to

2 1(v F(x))- to gsnerate d, and the approximation is not valid unless

the reduced problem remains the same. If the reduced problem changes

(N branch, block 5), ICAND is set to {U, ..., N) to give CONSBS freedom

to construct as well conditioned a basis as possible. Setting ISET to

1 1 forces DIREC to reset the BFS algorithm so that d -VF. Testing

.:- for strictly satisfied constraints in block 5 permits reducing the size

I',  of the basis by dropping these from the binding set.

In most problems solved thus far, initial iterations end with a

new constraint being added to or deleted from the basis or with a change

in basic v;, -ables. The code is finding the set of constraints which

are binding at optimality, and a compatible set of basic variables. Once

this is done, the BFS algorithm takes over, and the code operates in an

"unconstrained" mode until the optimum is reached. Most of the improvement

in the objective and most of the computations occur in the first phase

of this process, so it must be done efficiently. The critical operations V

14

--------- -- T------------------- --------------



here involve violating one or more non-binding constraints during the

line search, and finding a new feasible point where one (or more) of

the violated constraints is binding. This latter operation occurs in

subi.\uJ.ine REDOBJ.

5.2 Subroutine DIREC

This subroutie computes a search direction, d. Currently d

is computed using the Boyden-Fletcher-Shanno (BFS) variable metric

algorithm [143- [16], modified to accomodate upper ond lower bounds on

the variables as suggested by Goldfarb [17]. An n x n matrix H, which

is updated after each step, is used to determine d as

d = * GRADF (6)

where GRADF is the reduced gradient. If no one-dimensional

searches have been performed or subroutLie GRG has set ISET to 1, then

d is taken as the negative reduced gradient direction and H is reset

to an identity matrix with zero diagonal elements for nonbasic variables

at bounds. H is updated only if a test is passed (see [161) indicating

that the new H will be positive definite. Numerical error may invalidate

this test, so the directional derivative r VP td is tested after

applying (6); if r > 0, H is reset as described above.

I{

15

3.1 Wv



The BFS method was chosen because computations in [I$] - [16]

and elsewhere show it to be one of the most efficient and reliable of

r the variable metric algorithms. In the absence of rounding error, it

2 ~ minimizes a quadratic function of n variables in at most n one

dimensior:al searches. Hence, this GRG algorithm is finite for quadratic

programs.

The last function of DIREC is to test whether nonbasic variables

K currently at bounds should be allowed to move away from these bounds.

i This is done a, follows: the signs of the reduced gradient components of

11 nonbasic variables at bounds are checked. Among all variables at lower

" K (upper) bounds whose reduced gradient components are negative (positive),

the gradient component of largest absolute value is chosen. If this value

is denoted by MAXMULT and the corresponding index is IDROP, then variable

IDROP is released from its bound if

2 2,! [(d(T.)) < (MAMLT)2/A

This test,prescribed in [ 17], is designed to prevent "zigzagging", i.e.,

variables continually coming on and off their bounds.

Since H is a symmetric matrix, only the diagonal and super-diagonal

S I I! elements are needed, and these are stored in a linear array H in row

order. Storage requirements can be further reduced by noting that H

I has zero rows and columns corresponding to nonbasic variables at their

bounds. This feature, not yet exploited, would significantly reduce

16

4i

~-.tl
-1J .

41rf, ,; 51 MA OR



computation time and storage requirements when most nonbasic variables

are at bounds. An extension of this idea to general linear constraints

has been developed by Prof. A. Buckley [18], who pointed out its implica-

tions to us. Of course, H can be eliminated entirely by use of the

Conjugate Gradient Algorithm [ 19], which is also finite for quadratic

functions. Its use will be examined in future GRG codes designed for

large scale problems.

Localizing all computation of the search direction in a single

subroutine provides a great deal of flexibility. Other direction finding

' iprocedures can be implemented simply by coding a new DIREC, leaving tne

rest of the system unchanged.

r v

176



5.3 Subroutine SEARCH

Subroutine DIREC provides search directions for

4' vsubroutine SEARCH, in which the variables of the problem are

assigned new values. This subroutine finds a first local minimum for the

K problem

minimize F(i + ad)
a

The direction d is always a direction of descent, i.e.,

F dF(i) < 0

This subroutine searches for three a values, A, B and C, which

satisfy
0 <A <B <C

K' F(i + Ad) > F(i + Bd) < F(i + Cd)•

... Then the interval [A,C) contains a local minimum of F(i + ad).

In block 11 of Figure 3, a quadratic in a is passed through A, B,

and C, with its minimum at D. The best point, B or D, is taken as an

estimate of the optimal a and a return is made.

In finding (A,B,C) the choice of initial step size, B,

(block 1), is important. With the BFS or other variable metric methods,

[ iB is set equal to the optimal a value fxom the previous search except

when this causes too large a change in the variables. The theoretical

18

'~ IV



stat ithA

FCPBcornpute PBt"a

step size

N '-'halving

1 Ne wto n Convergedphs

Ky

LN
FB <IF

Step( siz

Siteration

y
drubnang ReturnB

N ©
iuaeraaticno

Rehare andrur

Figre3. uomute SearcVy
ermna I~tr



r1

I- basis for this is that, as a variable metric method converges, the

optimal a values should converge to 1, the optimal step size for

Newton's Method. Hence, the previous optimal step is a good approxi-

mation to the current one. This must be modified when the method

is restarted, for example, when a new constraint is encountered or the

basis is changed, since then an optimal step much less than unity is

generally taken. Hence, we require that the change in any nonbasic

K: I variable larger than 1.0 in absolute value not excced .05 times its

.:: value, while the charge in any variable smaller than 1.0 in absolute
[4~4

value cannot exceed 0.05. if the largest a value meeting these con-

ditions is and aj,- is the step size found by SEARCH at iteration i-l,

then

B =min(a _,a

if the previous search terminated with an interpolation, and B = -1

otherwise.

, The subroutine operates in two phases, halving the initial step

t size (if necessary) until an improved point is found (loop 2 - 3 4 5),

and doubling the step size until the minimum is bracketed

(loop 7 - 8 - 9 - 10). In each phase the nonbasic variables are changed,

and subroutine REDOBJ is called to compute the reduced objective

F(x + ad) (blocks 2 and 8). If, in the doubling phase, the minimum is

" not bracketed, the A and B points are replaced by the B and C

points, C is replaced by 2B (block 10), and the new F value is computed.

20

L&A~- 4A, At V-



The only blocks which would not appear in a line search for

unconstrained problems are 3, 6, 7, and 9. These deal with two

occurrences: (a) In attempting to evaluate the basic variables in

subroutine REDOBJ by Newton's method, Newton may not converge, and

(b) REDOBJ may produce a point at which a previously loose constraint

is binding. In block 3, the step size is halved if Newton does not

converge. Theoretically, convergence must ultimately occur; in practice,

if the loop 2 - 5 - - 5 is traversed10 times, a return to GRG is made.

Blocks 6 and 9 terminate the search if case (b) occurs, while 9 also

terminates under case (a). Block 7 terminates the search if more than

6 Newton iterations were required the last time the basic variables were

evaluated in subroutine NEWTON. Experience has shown that the next

NEWTON call usually will not converge.

Before beginning the line search, SEARCH computes the largest

a, a, such that i + ad satisfies the nonbasic variable. bounds. The

logic required to insure that a does not violate this bound, and to

detect the case where d is optimal, has been omitted from the flow chart

for simplicity.

The strategy of terminating the search if an improved point has

already been found and Newton did not converge or took too many iterations

was not adopted initially. Earlier versions of the code attempted to

f push on with the line search by recomputing B at the last feasible

point found and cutting the step taken to 1/3 its previous value.

The current strategy has been found to be much superior. Now B-

121

vr v



is 'computed only once, at the begi ning of each one dimensional search,

-where it is needed anyys to compute W. -In a set of

six test problems, the current strategy required about half the function

and gradient evaluations of the older one (see [20] for details),

and also significantly reduced the number of times B-1 is evaluated.

This strategy, plus the rather conservative choice of initial step size,

plays a -large part in making an algorithm which returns to the constraint

surface each time efficient.

Recently, much interest has been expressed in "step size"

V.algorithms to replace the line search. These attempt to obtain

only a "sufficient" decrease in the objective, rather than to find its

-, minimum. We have opted for a "sloppy' attempt a find the minimum

[,J because of its "inside-out" nature, i.e., a small initial step is taken,

o then increased if necessary. This approach is more likely to remain within

* the radius of convergence of Newton's method, viz., that range of a values

for which Newton will converge, with B-1 evaluated only at a = 0.

This radius imposes an upper bound on -a of unknown value. Most step-

I size strategies choose large a values first (e.g., a 1 in [22]),

then reduce them if necessary, and hence are more likely to exceed

this bound. The fact that the number of Newton iterations required to

evaluate F(x + ad) increases as a increases also works against

"outside-in" strategies. These same comments also apply to algorithms

which do a one dimensional search on the tangent plane to the constraints

prior to returning to the constraint surface, as in [11]-[3].

22

Yt



5.4 Subroutine rEDOBJ

This subroutine evaluates the reduced objective function F(x + ad)

for given x, a, and d. It does sq by attempting to solve the system

of nb (possibly nonlinear) equations

gi(y,  + ad) =0 iEIBO (7)

for the nb basic variables y, where IBC i the index set of binding constraints.

As in [ 8 ] and [9], this is accomplished in subroutine NEWTON, using

[the pseudo-Newton algorithm

=Yt B'( Y £ + ad), t = 0, 1, 2, ... (8)

t where 9B is the vector of binding constraints. The algorithm is called

pseudo-Newton because B "1  is evaluated once at the initial point of

the search, X, instead of being reevaluated at each sten of the algorithm,

as in the standard Newton method.

An initial estims.a of the basic variables, Y., is computed either

by linear or quadratic extrapolation in block 1 of Figure 4. As in [8 ],
the linear extrapolation uses the tangent vector

v =-B'l (9) -2 K

In our code, v is computed at X. It is used to find inirial values,

y-, by the formula

1 25

OR5A1M VII*



13A

Start

Compute initial values 4
for~ basic2 varials

Set f lags
lwton onvergted

4Test for constraint violcations (see text)

If any, estimate 'waich. one

ayviolations detected above

'Ci

n n Phase I 

ICompute initoiavles
Jaoa oodr bascvariblesf~cr I [Pec losiorai

ergdj Stoe et point an

0 Chebinding constraints

Sete flag anf Returew
bindin consraint

~and Return

Figure 4.Subroutine REDOBJ

21;

lf '77-,--7V" 61 wlMplivwri



Yo + cAiv

Using these initial values, Newton finds the feasible point X1. Then,

at X10 v is not recomputed. The old v is used, but emanating now

from X, to yield the next s,'t of initial values as

Yo O Y + ( 2 " )v

Using these, Newton finds a new point X. This procedure is repeatedx2
until the one dimensional search is over.

Quadratic extrapolation may also be used to obtain initial

estimates of the basic variables, at the users option. Initially,

linear extrapolation is used. After the fir-t feasible point, X1. is

found, quadratic functions are fit to the value and slope at a = 0. and

the value at a1  of each basic variable. These art used to predict their

values est a = a2 . Subsequent quadratics are fit to the values of the

basic variables at a1, ai-, ai 2 (i > 2). Computational experience

with these options appears in Section 6.4.

In blocks 2 and 8, Newton is considered to have converged if

,- the condition

NORMG max Igi(XtI < EPNEWT
i E IBC

4

25II

,'

'0 7V5



is met within ITUJM iter"i~cnn. Curr'.ntly BMWNET 10 and ITLIM4 10.

I f YD FMG ha~s not decreasedi f'rom its previous value (or the above condition

Wr ~is not met in 10 iter26tioxis) N~ewton has rnot+ converged.

Once Nev'An has convejrged, possible constraint violations muct be

checked (block 3). There are several reasons wily the current si"e

o~ may be too large;

(1) A strictly satisfied constraint may hove violat, J an upper

or lower bound.

S (2) A constraint in IAJYWE, the set of constraints initially

violatixA7 their upper bounds, may violate e. lower bound.

-~ - A constraint in IBELOW may violate an upper bound.

A basic variable may violate a lower or upper bound.

~ary of' these cases hold, ax is r~Jluced to a value d*

whece no constraints are violated and at least one new constraint is equalj to a bound. To determine this constraint, an estimate is made of a:*

in I1.ock 3. Linear inter'polation between the current and previous

value- of the violated constiaint is used.

The nexct step determrtnes whether case 4 or one of cases 1 3 is

to be dealt with, according to which has the smallest linear estimate

Of a*. A;bwuuing cases 1 - 3 as an example, we then wish to solve the

1' system

9L( x) + ad) 0 (10)

26

( TOQ;"
t4 1 ________



where ar is a new variable and g= 0 a. new equation. The Jacobian

for this system is

[d w

where

f% kd = gL/by

w =(6g /,dx) Td

and c is an rb component column vector whose elements are

P Tgi/x)Td for i Z IBC. The border vectors c, d, and the scalar

w are computed in block 5. Until recently, this block also computed

j by the bordered inverse formula (using the known Bl), and this

I was used by subroutine NEWTON in block 7 to solve the augmented

-1
system (10). However, this has the disadvantages that the old B is

erased, and it would not be suitable for a large scale GRG implementation

since it involves changing the dimension of the inverse. However,

inspection of (8) shows that J is not required, only the product

of J with the vector (gB,gL). This product can be expressed in

terms of B and the border elements c, d, w using the bordered

inverse formula. This is done in subroutine NEWTON, which tests to

see if the system (7 ) or the augmented system (10) is to be solved,

and computes the appropriate matrix-vector product.

The basis change procedure here, based on solving (10) and

then calling CONSBS, differs from that of Abadie in [8 ] and [ 9].

27

VN



In Abadie' s procedure, the basic variables Yt in (8) are checked

for each t. if any violate their bounds, one is selected to leave the

basis, an entering variable is chosen, and a pivot operation updates

: B - I . The Newton iteration (8 ) then continues. This could lead

to "false" basis changes, since violation of a bound during the iterative

process does not imply violation when the process converges. Newton's

A
method need not converge componentwise monotonically.. Failure to con-1' -I verge could also lead to a false basis change. In addition, if the

1 (Abadie) basis change is accomplished, the new point may have an objectlve

value larger than F(x), which makes proof of convergence unlikely.

Our procedure avoids both these objections, perhaps at the expense of

slightly more computation. We feel that the (-presumed) increase in

reliability makes the tradeoff worthwhile.

1i( 5.5 Subroutine CONSBS

This subroutine selects a set of basic variables and computes the

basis inverse, B "
. Its input is a list of indices of variables, the

candidate list ICAND. The outputs of CONBS include (a) a new list of

binding and strictly satisfied constraint indices (b) a new list of

basic and nonbasic variable indices and (c) the new basis inverse, B "I

The call to PARSH in block 1 of Figure 5 computes the gradients of

the objective and all constraints at the current point. The gradients of

the binding constraints are stored in an array, which is where the pivoting

* to compute B is done.

28

W - -



Lr

Determine indices of bind 7ig
and loose constraints

CALLPA RSH

Select candidate colun

for bsisK- Select slack or other
N variable at bound to

aeny ca~ndidates enter basis. Choose
I pivot row

Choose candidate column

with largest norm asK pivot column

Choose pivot row as one
with largest absolute
element inio column

Peror pvo

1 o eration

~ I Label pivot column N nbPvt

y

Basis Dere

~N

Figure 5. Subroutine CONSBS

- 29

-~-4I

~ -~- -, - - - -,-.-~.-.~--x- -- ~-~~.-~A-
;MU; Q



The subroutine operates in 2 modes. In mode 1 CoNBS will choose

pivot columns from whatever candidate list was input to it. If a basis

inverse could not be constructel from columns in this can.didate list,

or if the original candidate list included all variables, the mode 4

["'< indicator is set to 2, and CONSBS will choose pivot columns from the

.\- list of all admissible columns. A column is admissible if it is not

scheduled to leave the basis and if it has not yet been pivoted in.

For simplicity, the mode logic is not shown in Figure 5.

In block 2, candidate columns are chosen as those which are

admissible and whose variables are farthest from their nearest bound

(to try to reduce the number of basis changes required). A maximum of

five are chosen, and variables very close to their nearest bound are

ignored. If no candidates can be found and we are in mode 1, the mode

f i is set to 2, the candidate list becomes the set of all admissible

columns, and we return to point . If we are in mode 2, a variable

I .at a bound is chosen to enter the basis (block 7). The basis is labeled

degenerate. A pivot row is chosen in the same way as when the basis is

nondegenerate, so we proceed to discuss that case.

The logic in blocks 3 and 4 represents complete pivoting within

the set of candidate columns, i.e., the entire submatrix is examined

to find the largest pivot element. In block 3, the L norm is used,

I takenover all rows not yet pivoted in. The default value of EPSPIV in

block 5 is 10
" .

If the basis formed is degenerate, subroutine DEGEN ih called in

block 7 to compute a search direction which will decrease the objective

without immediately violating arj baslc variable bounds. A flag is set

,We thank Professor Jean Abadie for suggesting that we design CONSBS in

i " this way.

30

-' .~."v



to bypass the call to DIREC in subroutine GRG. DEGEN is discussed

in the next section.

Earlier veisions of CONSBS employed partial pivoting, i.e., the

pivot row was chosen in sequential order 1, 2, ... , NB, while the pivot

column was chosen as the column selected by block 3 with largest

absolute element in that row. This was replaced by complete pivoting

when it failed on some test problems, encountering rows where all

elements were too small, and where a nonsequential order of choosing

122 rows led to acceptable pivots.

A recent enhancement to CONSBS consists of additional logic just

prior to entering block 6. At this point, all admissible pivot elements

corresponding to variables not at bounds have abcolute values smaller

than EPSPIV (default value 10"3). The new logic tests the larges

admissible pivot element5 if its absolute value is larger than

-210 * EPSPIV, we choose it as the pivot element rather than accepting

a variable at a bound. The motivation for this is that pivoting on an

element larger than 10 is not likely to cause- severe problems,

especially if it is the largest element available, and if the alternative

is introducing a variable at a bound into the basis. This new logic

has permitted solution of a few test problems which could not be solved

previously. The previous failures were caused by very small decreases

in objective value, along (unit vector) search directions generated

by subroutine DEGwN. With the new logic, DEGEN is not called, and the

search directions generated by DIREC lead to the optimum.

K 31

'1v



5.6 Subroutine DEGEN

Subroutine DEGEN is called by CONSBS when the basis constructed

H is degenerate, i.e., has one or more basic variables at bounds. In this

case, the search direction, d, produced by DIREC may cause sone of these

variables to violate a bound immediately,i.e., d may not be a feasible

'4 direction. DEGEN computes a useable feasible direction ox proves that

the current point satisfies the Kuhn-Tucker conditions.

S-Let L and U be the index sets of basic variables at lower and

upper bounds respectively. A direction d is feasible if the following

conditions are satisfied:

H Dv + Nd =0 (

v.> 0, 1iEL (12)

'2.
tv < f yj , ~ (E5)

Here B is the basis, and N contains the nonbasic Jacoblan columns.

The vector v is the tangent vector of equation (9), and is the vector

of directional derivatives of y in the direction d. Conditions (12)-(13)

require that basic variables at lower bound increase, and conversely

for variables at upper bound. Strict inequality is required in (12)

and (13) to ensure that vi remains non-negative for a small movement

Iin the direction d. Our code relaxes conditions (12)-(13) to

-5 -7vi > -, i E L and vi < E, i C U, with c in the range 10" to 0.

This accepts a small amount of infeasbility, allowing for numerical

error.

32 '

Lid

-, '. t.. yir. r c- -4

I U~V !- 4_____.i



DEGEN begins by checking if the direction d produced by

DIREC is feasible. If so it is used. Otherwise the column of N

whose reduced gradient yields the largest rate of improvement in F

is found--if none yield improvement, the Kuhn-Tucker conditions are

satisfied and the current point is accepted as optimal. The direction

d is set to the correspondin'g unit vector and if v (equal to B

times the column chosen) passes the feasibility test, d is accepted.

Otherwise the largest absolute element of v in rows with indices

in L or U is found. If it is large enough, it is used as a pivot

element, a pivot operation is performed in (11), and the process begins

again with the new basis B. If no basis is repeated this process

must terminate finitely, either with a useable feasible direction or

with the optimality test met. In the 3 or 4 degenerate problems

solved thus far, calls to DEGEN have required at most 2 or 3 pivots.

The test referred to above for a pivot element being large

enough initially uses a tolerance of 10" . If a potential pivot

element is less than this, that column is labelled temporarily inadmissible.

If all improving columns become inadmissible, the pivot tolerance is

reduced to the same E value used to test for feasibility, and the

inadmissible column with largest pivot element is entered into the basis.

• l;JV

PW. -

55 1



6. Computational Experiments

6.1. Comparison with Interior Penalty Methods

Seven test problems were solved by the GRG code and by the

i interior penalty code described in (21]. Problem characteristics

are shown in table 2

No. of No. of
Source or Nature No. of Equality Inequality

Problem of Problem Variables Constraints Cons 4raints

1 Quadratic Objective 4 3
z and Constraints

2 No. 11 of (4] 5 0 3

3 No. 5 of [21] 8 0 23

4 No. 18 of [4] 15 0 5

5 No. 6 of (21] 17 10 8

6 No. 1o of [4] 5 0 10

7 Alkylation Problem
from (27] 7 0 14

TABLE 2 • Characteristics of Test Problems

';3

~~;>~" XVX-



71-- ,I

~,-,In solving problem 5 by the interior penalty code,, the equality

constraints were used to eliminate 10 variables, leavin an inequality

constrained problem. All problems were solved on the UNIVAC 1108 at

Case Western Reserve University' Results are shown in Table 3.

Reduction Factor
SStatistic Penalty GRG Penalty/GRG

one Dimensional 19 ~5
- Searches

Function Calls 3773 1124i 3.4

Gradient Calls 539 99 514

4 12 Equivalent
~~ 1- ~~~Function Calls*8O523 I.

,~ -TABLE 3. Co~mparison of GRG and Interior Pbenalty Codes

*Equivalent Function Calls Function Calls + N.Gradient Calls

~' where N =No. of variables.

J

35

i' -WA0 "--?



GRG required far fewer one-dimensional searches, function evaluations

. .and gradient evaluations. While some of this reduction was offset by

the requirement of matrix inversion and solution of nonlinear equations

in GRG, GRG produced more accurate solutions for most of the problems.

Computation times were a few seconds or less, and differences in

computation times (of the order of tenths of a second) could not be

estimated accurately due to the masking effects of m'altiprogramming.

'-g

6.2 Solution of Himmelblau Test Problems

I-' The first twenty-four problems specified in Appendix A of reference

[4), which includes all of the problems with equality or inequality con-

2 istraints or element value bounds, have also been solved with GRG

Several were solved with more than one starting point and one (number

22) with four sets of parameter values. Table 4 shows the results of

solving these problems on an IBM 370/1-5 at Cleveland State University.

In this table) the Newton Average is the total number of

iterations of the quasi-Newton method (see section 5.4) divided by .i.

number of times solution of a nonlinear system was attempted, i.e.,

the number of calls to subroutine NEWTON. The Colville standard time

is obtained by dividing the execution times by 77.83, the time in

' , ''1 seconds required to run the Colville standard timing program (see (41)

on the 370/145. These numbers provide some means (admittedly imperfect)

for other investigators, using different computers, to compare results.

We thank Professor David Hinmelblau for providing us with a card deck
,. for these problems.

36

(T~

4A I



The current version of GRG solved all but one of these problims

(number -6), in the sense that at least a loca. minimum was found.- In

all but two of the problems (6 and 14) the final objective values- attained

by GRG starting with the initial points specifiec' in [41 either match.d

the solutions specified in [], .to at least one part in one thousand,

or were better than the solutions given in-[41.

In problem number 6, using the starting point specified in [1],

GRG reached a point with function value -1365.98 compared to

-1910.361 given in [4]. Hcwever the constraints were satisfied within

£ K 1 part in 10 asing GRG but only within 1 part in 20 for the solutions

f- :given i 4 [i]. Using a different starting point (x 0) GRG does reach

an objective value of -1910.22 with constraints satisfied to 1 part-

10
in 10

Problem number 14 "contained a myriad of local optima of many

different values." Depending on the starting point used, GRG generated

several 3.ifferent solutions. Using the initial feasible starting point

in [4], GRG reached a m~iimum of 261,350 compared to 250800 'in [4].

From the nonfeasible starting point GRG attains a minimum of 260,508.

.. Starting from x. 0, i / 4, x4 = p000 GRG reaches a value 251,786.

These results -ere attained using the default values for all

parameters in GRG, finite difference approximations for derivatives,

Iquadratic extrapolation for basic variables, and double precision

floating point computations. We also examined the .ffects of changing

44

Sthe EPSTOP parameter (see section 5-1) from 1O"- to 10-3 . Thts reduced

run times for the Iimmelblau problems; only slightly for most problems,F/ up to 25% for some. Tqo problems, however, stopped significantly short

I 37



I. r

ON t4 P\UINt\ CjC \ \0 o 9 - " h tr

4 O E- CO 1 C'. CU C- Wi itu CU 0 CU0 0 0 0 CU 0~ 0t - 0) 0~' 0 t- 0

0 )

r4(N U u-\ Ht iN~c '.* u\ 0\ f-\0 t\\0X' C j\ t' t0'--tt 4 W'C-at fr t '0 co Cw iOf\ h\0

cu I

410

:10

[~ CV 4 O't

CU HCUj HCO CC- ~ W

53 Q -,I I---r4
00,4 -Wl (O174\c~ a\q \1 D 4r U

aU it' -:r N r-4 IC' C'
~4 HN t- 0\ 00 \ U N , O 0 \ C-CO -T .- G C--H 0 *,o n m t

o4 It' Cdu H- ~ - u " M

be 00

*r ro 00 0

4-) 0910
0 ) H0co - L 0C 0 C it'.t\ 4 C-Ott'.f ODr CUC *0 0 CU HTC :

Wi '. '0 I 0 It 01 . i 4I'
0 I\\ I\D\00 0 U C-x

43 Is

0
te\. -I f '\r- \D '

.0,0 C \I\ o
s-- o\ CU ( C! ' C!)

11C'JCU

4J38

H 0 m - ~mrg 0 Nt- UN N--r 0 0 :rN



of optimlity. Thi~s suggests a strategy in which a loose stopping

tolerance is met, the tolerance is decreased, and the procedure repeated

until no significant change in objective or x values is detected.

This had not yet been implemented.

Table 5 shows the results of using analytic derivatives for

problems 6 and 23. The constraints for these problems were linear and

fi'.nce analytic derivatives were easily obtained. For all practical

purposes the number of iterations, etc. was independent of the gradient

computation. Run times are dramatically shorter when the gradients

are analytically computed. Even greater reductions could have beer

obtained by coding the partial derivative subroutines PARSH to evaluate

the constraint gradients (which are constant) once only.

I I In order to obtain some measure of the impact of performing the

~ K floating point computations in double precisioni, the Colville program

was modified to also run in this mode. As a result of this change, the4

average execution time increased from 77.85 to 109.89 seconds or 4+1%.

Earlier versions of GRG used only single precision computations and

occasionally failed to locate a relative minimum. Again, in the interest

of robustness, execution speed has been sacrificed in the current version.

L44

-4-M
YMM M Q



Problem Time with Time with Percent
Number Finite Dif C. Derv. Analytic Denyv. Increase

6 227.26 66.o8 244

1.23 570.37 3.03.64 451

Totals 797.73 169.72 368

TABLE 5. Analytic versus Finite Difference Derivatives

~40

W Ko)N

~ ~ * i ___ '

E4 1;



6.3. Comparison with Two Other NLP Codes

The test problems of Table 4 have also been solved* by

two other codes--Abadie's 1975 GREG (a GRG code) and a code developed
by Newell and Himmelblau (221 implementing an "exact" exterior penalty

method, or "Method of Multipliers"--as well as by an earlier version

of the code described here. All problems were solved on the CDC-6600

4at the University of Texas at Austin. Computation times (in seconds)

are shown in Table 6, where F indicates a fallure to solve the -4

problem and a dash indicates that no attempt to solve was made.

The totals row is the sum of times for those 17 problems which were

solved by all 3 codes.

The GRG code described here compares well, especially since the

current version has solved all but problem 21. In addition, our code
used finite difference approximations to derivatives, while the

other two computed them analytically. Solution times are con-

sistently small, and the code does well on the larger problems 18 and 20.

Its advantage in total time over the other two codes is due to

a distinct superiority on a few problems. In fact, the Newell code

was fastest in 10 problems, ours in 5 and GREG in 2.

We are grateful to Professor David Himmelblau for running V

these tests.

• - L 
3I



Abadie
Problem GREG Lasdon-Waren Newell method
number 1975 GRG Code of multipliers

~ 1.11.09 .01

2 .21 .46 .02

3 .18 .15 .07

4 1.07 .48 .88J

5 .18 .16 .01

7 1.70 1.58 .45
8 .84 .77 .16

9 27.59 1.55 5.11
10 .31 .41 .16

lif --- .12 .64

linf .21 --. 62

12 2.58 F 11.7

13 .17 .11

14 .56 .46 .58
15 .52 .64 .22

16 F F .19

'~ V17 .21 .29 .08

18 3.51 2.36 13.15

19nf .97 F 3.96

S20 3.6.52 1.00 6.06
21 30.28 F 6. 97
22A a16 .18 .85

220 .29 .25 1.014

-24 -- - - - .15 -- - - -09 -- - - - - -. 014

TOTALS 54.22 10.92 28.89

~' ITABLE 6

<. ~ Computation Times (CD6600 Sec.) for Hinm'elblau Problems

142

4 { '~ 2y- ~ TA5& A M- s
4k, i ~



6.. Comparsion of Linear vs. qaaidratic Extrapolation of Basic Variables

As discussed in Section , either linear or quadratic extrapolationV

can be used in subroutine REDOBJ to estimate initial values for the basic

variables. The quadratic estimates take more time and storage to compute

but should reduce the number of Newton iterations required. To assess

the relative merits of these two options all test problems of section 6.3

requiring any Newton iterations were solved both ways. Only for problem

number 18 did quadratic extrapolation take more equivalent function

evaluations although the number of Newton iterations remained the same.

In all other problems quadratic extrapolation performed as well as or

+ better than linear extrapolation. On an overall basis, the number of

equivalent function evaluations decreased by 5%, Newton iterations

decreased 16% and execution time decreased by 5%. In another series of

tests, the 7 problems of section 6.1, plus 2 others of 15 and 7

variables were solved. All are highly nonlinear. Using quadratic

versus linear extrapolation yielded the following cumulative results:

one-dimensional searchee increased 19%, Newton iterations decreased 3. %,

and equivalent function evaluations decreased 20%. We conclude that

quadratic extrapolation can reduce function evaluations significantly

(especially for highly nonlinear problems), and should reduce computation

time appreciably when GCOMP calls account for a large fraction of the

overall computational effort.

4.3

, .. . .. .....



FI

7. Conclusions and Future Worok

The results presented here indicate that GRG, as implemented

in this code, is an efficient and reliable way to solve small to

moderate size NLP problems. Abadiets GRG codes have also receivedF

V oeag twextensive testing (e.g. in [4] and [23]). Our results support

i t ' ,'"'lcontender among NLP algorithms. Since small, dense) highly nonlinear

:- -L", ,proom a e a1mn.t , i..finite var.pf-.v 4+ .1 unlikely that any

one algorithm will be best foe all propilems-. Modern penalty

augmented Lagrs.gian" algorithms (see [24j) ore among the chief

competitors, and comparative tests are plamicd in the near future.

The best test of a code is to attempt to solve a wide

variety of real problems. To facilitate such testing, we are offering

'* I the-code to persons in nonprofit research institutions for a preparation

charge of $55 " Both user and system documentation will be pro-

vided. Interested parties are urged to contact the authors.

- I Future work will attempt to extend GRG to large, spaese,

-. "mostly linear" NLP problems of general (nonseparable) nature. A

number of large problems of special form, e.g., electric power

distribution [25] and hydroelectric sehcduling 266], have already.

been successfully solved by var.iants of GRG. To our knowledge, no S

general purpose GRG code capable of solving large problems exists

today. We believe that lew new ideas are required to construct such

a code; a union of existing LP technology and some of the ideas pre-

sented here should suffice. Work on this project has recently begun.

I '44

,,



REFERENCES

1. F. Glover, D. Karney, D. Klingman, "A Comparison of Computation
Times for Various Starting Procedures, Basis Change Criteria, and
Solution Algorithms for Transportation Problems," Management Science
20, No. 5 (1974), 793-814.

2. A. Geoffrion and G. Graves, "Multicommodity Distribution System
Design by Benders Decomposition," Management Science, 20, No. 5
(1974), 822-844.

3. Harwell Subroutine Library Descriptions (various authors),
Computer Science and Systems Division, Atomic Energy Research
Establishment, Harwell, Oxfordshire, England.

4. D. M. Himmelblau, Applied Nonlinear Programming McGraw-Hill Book Co.,i. 1972.

5. J. W. Bandler, "Availability of Internal Reports," Group on Simulation,

Optimization and Control, McMaster University, Hamilton, Ontario,
Canada, L8S 4L7.

6. G. P. Mc Cormick, "A Mini-Manual for Use of the SUMT ComputerK Program and the Factorable Programming Language," Technical Report
SOL-74-15, Systems Optimization Laboratory, Dept. of Operations
Research, Stanford, Ca., 1974.

7. J. B. Rosen and Steve Wagner, "The GPM Nonlinear Programming
Subroutine Package. Description and User Instructions," Technical
Report 75-9, Department of Computer and Information Sciences,
University of Minnesota, May 1975.

8. J. Abadie and J. Carpentier, "Generalization of the Wolfe Reduced
Gradient Method to the Case of Nonlinear Constraints," in Optimization

R. Fletcher, Ed., Academic Press, 1969, 37-47.

9. J. Abadie, "Application of the GRG Algorithm to Optimal Control
Problems," in Nonlinear and Integer Programming J. Abadie, Ed.,
North Holland Publishing Co., 1972, 191-211.

10. L. S. Lasdon, R. Fox and M. Ratner, "Nonlinear Optimization Using
the Generalized Reduced Gradient Method," Tech. Memo. No. 325,
Department of Operations Research, Case Western Reserve University,
October, 1973.

11. D. R. Heltne and J. M. Liitschwager. "Users Guide for GRG 73"

and "Technical Appendices to GRG 73," College of Engineering,
University of Iowa, Sept. 1973.

4+5

A
. . .7 l i l



12. C. Cohen, "Generalized Reduced Gradient Technique for Non-linear
Programming--User Writeup," Vogelback Computing Center, Northeastern
'University, Feb. 1974.

13. D. Gabay and D. Luenberger, "Efficiently Converging Minimization
Methods Based on the Reduced Gradient," Internal report, Department

-'1 of Engineering-Economic Systems, Stanford University.

14. R. Fletcher, "A New Approach to Variable Metric Algorithms,"
Computer Journal, 13 (1970), 317-322.

15. D.F.' Shanno and K. H. Phua, "Inexact Step Lengths and Quasi Newton
Methods," working paper, University of Toronto, 1974.

' - 16. D. F. Shanno, A. Berg and G. Cheston, "Restarts and Rotations of
Quas5 -Newton Methods," in Information Processing 74. North Holland
Publishing Co., 1974, 557-561.

17. D. Goldfarb, "Extension of Davidons Variable Metric Method to
Maximization Under Linear Inequality and Equality Constraints,"
SIAM J. Appl. Math. 17, No. 4, July 1969.

[- 18. A. Buckley, "An Alternate Implementation of Goldfarbs Minimization
Algorithm," Report No. T.P. 544, AERE, Harwell, England.

19. R. Fletcher and C. M. Reeves, "Function Minimization by Conjugate
Gradients," British Computer J. 7 (1964), 149-154.

i 20. L. S. Lasdon, A. D. Waren, A. Jain and M. Ratner, "Design and
Testing of a GRG Code for Nonlinear Optimization," Tech. Memo 20.353,
Operations Research Department, Case Western Reserve University,
Cleveland, Ohio, March 1975.

21. L. S. Lasdon, R. Fox, M. W. Ratner, "An Efficient One-Dimensional
f Search Procedure for Barrier Functions," Mathematical Programming

4 (1973), 275-296.

22. J. S. Newell and D. M. Himmelblau, "A New Method for Nonlinearly

Constrained Optimization," AICHE J. 21, No. 3 (May 1975), 479-486.

23. A. R. Colville, "A Comparative Study of Nonlinear Programming Codes,"
IBM New York Scientific Center Report 320-2949, 1968.

24. R. Fletcher, "An Ideal Penalty Function for Constrained Optimization,"
Internal Report C.S.S. 2, Computer Sciences and Systems Division,
Atomic Energy Research Establishment, Harwell, England.

25. A. Sassoon and H. Merrill, "Some Applications of Optimization
Techniques to Power Systems Problems," Proceedings of the IEEE 62,
No. 7 (July 1974), 959-979.

4 46

i~

7 - V -i



26. C. R. Gagnon et al., "1A Nonlinear Programming Approach to a
Very Large Hydroelectric System Optimization," MathematicalK Programming, 6 (1974), 28-41.

27. Bracken, J. and Mc Cormick, G.P., "Selected Applicatiors in
Nonlinear Programming," John Wiley and Sons, N.Y., 1968.

474

417

Mk -~



V4

UNCLASSIFIED-
SECUR.%y CLASSIFICATION OF THIS PAGE (lWe n Dae RAW04______________

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOR DOCMENTTIONPAGEBEFOREI COMPLETING FORM

2GOVT ACCESSION NO. IENT'S CATALOG NUMBER

I J1 ESIGN AND 2FSTING OF A 9EERAL1ZED PDUCED Tcncaipt
'- ' PDIN COME FOR YON LINEAUR P1nGAUNAIG- I'

I Arvind AAIM 59-C- 267 Re

/§_AREN 2 )*Marger ATNER 1

* ,_WERF OMNOPRAHZ~TrON... ' 5,S~t PR3GWAM ELEMENT. PROJECT. TASK
LDeparumnoueri-n esaca U h

Stanford University N-444*
Stanford, CA 914305 7-J

{ II. CONTROLLING 07FgCE NAME ANO ADDRESS

Operations Research Program Code 43451i. 17
Office of Naval. Research

, ji*on, Virginia 22217 ________

1.tONTOsINo OrENcY NAME AAODR9SSlf different frown Contml ing Office) 16. SECURITY CLASS. (at thftr eptsv)

Unclassified

[ IS~~~~~~~1. OISTRIOUTION STATEMENT (of thie Repwit) i.OCASPATN(WGRIM

This aocument has been approved for public rtdlease snd sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tA. Abe fleet entered tIn Block 20, It different u-40 Report)

1S. SUPPLEMENdTARY NOTES

19. KEY WbROS (Continue on reverse side iffneceeew1 inqd IdeniI by*block mmb)

NONLINEAR P~uG14VA).NG LARGE SCALE OPTIMIZAJMIN

-AThe purpose of this paper is to describe a Generalized Reduced Gradient
(GRG) algorithm for nonlinear programming, its implementatio.i as a FORTRAN

program for solving small to medium size problems, and some computations:
results. Our focus is more on the software implementation of the algorithm
than on its mathematical properties. This is in line with the premise that
robust, efficient, easy to use MU' software must be written and made
accessi1ble if nonlinear programming is to progress, both in theory and in
practie.=

DD ~ ~ S ItN1 043 EOIO .014 4O6 $0 CSOLT UNCLASSIFIED
01020I-gB$t sCRTV CLASSFICATION OPP TISt PAG9fen 11400 0000~a~e)

41-Z~ =2 7


