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1. Introduction
The purpose of this paper is to describe a Generalized Reduced

Gradient (GRG) algorithm for nonlinear programming, its implementation

e

3

as a FORTRAN program for solving small to medium size problems,

"};

15

and some computational results, Our focus is more on the software

e

FEWTOIY

TTES
T

implementation of the algorithm than on its mathematical properties.
This is in line with the premise that robust, efficient, easy to use NLP

software must be written and made accessible if nonlinear programming

is to progress, both in theory and in practice.

Recently, there has been increased emphasis on the software
implementation of algorithms in many branches of mathematical programming,
e.g., networks [1], mixed integer programming [2], unconstrained NLP
{3, 4, 5] and some constrained NLP [6,7). The earliest work on GRG
is by Abadie [8,9], whose efforts form a basis for this work. Abadie
and others [11, 12] have written GRG codes which have been disseminated :
to a limited extent. However, the detailed operation of these codes has
not been described in the literature. We present some comparisons with .

Abadie's most recent code in Section 6 .
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Brief Description of GRG Algorithms

GRC algorithms solve nonlinear programs of the form

minimize g 1(X)

m+
subject to gi(X) = 0,

[N
1}
=
=3
el
o

e
i
=]
®
0
+
K
=]

0 g_gi(x) < ub(n+i),
ap(i) < X; <ub(i) i=1,n

where X is a vector of n varisbles, The number of equality constraints,
neq, may be zero. The functions g; are assumed differentiable.

There are many possible GRG algorithms. Their underlying concepts
are described in references {8] - [10). This paper briefly describes

the version currently implemented in our code,

The user submits the problem in the above form, It is

converted to the following equality form by adding slack variables

Xn“‘l’ LR ] Xn+m:

4

minimize gm*l(X)

Lt g s

subject to gi(x) ~ X =% i=1,m
(i) < X; < ub(d), 1 =1, o+ (2)
(i) = wp(i) = O, i = n+l, n + neq ?
(i) =0 { =n + neq + 1, nm

LA b v s BRI £ g 0 ey b

These last two equations are the bounds for the slack variables. The

varlables Xl, ceey Xn will be called "natural' variables,
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Let ¥ satisfy the cemstraints of (1), and assume that nb of’
the g; constraints are binding (i.e., hold as equalities) at X. A

constraint g; is taken as binding if

Igi - ub{n+i)| < EPNEWT
or Igi - 2b(n+i)| < EPNEWT

i.e., if it is within EPNEWT of one of its bound§. The tolerance
EPNEWT is one of the most critical parameters in the code. It can be
set by the user, and has a default value of 10~ 4 ‘
GRG uses the nb binding constraint equations to solve for nb
cf the natural variables, called the basic variables, in terms of the
remaining n-nb natural variables and the nb slacks associated with
the binding constraints.1 These n variables are called nonbasic. Let
¥y be the vector of nb basic variables and x the vector of n nonbasic
variables, with their values corresponding to X denoted by (¥, X).

Then the binding constraints can be written.
gly,x) = 0 (3)

where g 1is the vector of nb binding constraint functions.2 The basic

varinbles must be selected so tnat the nb by nb basis matrix

1The degenerate case is considered in Section 5.6.

2The definitions of g are extended here to include the slacks,
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is nonsingular at X. Then the binding constraints (3) may be solved
(conceptually at least) for’ ¥y in terms of x yielding a functior

y(x), valid for all (y,x) sufficiently near (¥,X). This reduces che

ettt v D W et LR, 20

objective to a function of x only
[l -
gm+1\y\x): x) = F(x) (4)

and reduces the original problem (at leéaét in the neighborhood of (§,§)),

to a gimpler reduced problem

minimize F(x)

LA P TN B e Bl A e M B S S e N B L

subject 1o £ <x<u

where £ and u are the bound vectors for x. The function F(x)

il b, S s R B2

is called the reduced objective and its gradient, VF(x), the reduced

gradient,
This GRG code solves the original problem (1) by solving (perhaps

Al

L

only partially) a sequence of reduced problems, The reduced problems

»

T A T 0

are solved by a gradient method. At & given iteration with nonbasic

variables X and basic variables ¥, Bt is computed, and VF(X) is

LA it e B

evaluated as follows:
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™ = (3gy,,/0y) B
BF/axk = 3gm+1/3xk - v'ag/Bxd
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A search direction d 1is formed from VF(X) and a one d:lmensional search

is 1mtiated, whose. goal is to solve the problem

minimi: (X + od) .
a>0

This minimization is done only approximately, and is accomplished by choosing a
sequence of positive values {“1'“2' «s.} for a., These are generated by
subroutine SEARCH, described in Section5.3. For each velue ®gs F(x + ai@)
mst be evaivated. By (4), th:‘ls is equal to gml(y(i + gia), X + a,d),

so the basic variatles y(X + aia) must be determified, These aati;fy

the system of equations>

‘ gly, £ +ad) =0 (5)
vhere X, d, a, are known and y 1is to'be found. This system is
solveq by a variant of Newton's method.

The one dimensioral vearch can terminate in three different ways.

First, Newton's method may not converge. If this occurs on the first
step, i.e., 1 =1 in(5), then alis reduced and we try again, Otherwise,
the search 1is teminated.l Second, if the Newton method converges, some g;
constraints (which were previously not binding) or basic variable bounds may be
violated., Then the code determines a new a value such that at least

one such new constraint or variable is at its bound and all others are

“For a discuseion of alternative strategies, see Section 5.3.
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satisfied.
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If certain- conditions are met (see description of subroﬁtine

SEARCH, Sectidn 5.3), the new constraint is added toﬁi_';he set, 6f binding

constraints, the one dimensional seéx.rch is terminated, and solution of

a new reduced problem begins. Finally, the search mey continue until

‘Then a

an objective value is found which is larger than the previous va]:ue.

quadratic is fit tothe three aivalues bracketing the minimum, F is evaluated
at the minimum of this quadratic, and the search terninates with the

The reduced problem remains the same.

lowegt F value found.

An important feature of this-algorithm is its attempt to return

to the constraint surface at each step in the one dimensional search.

This differs from earlier strategies suggested by Abadie [ 9] and by

Luenberger { 131, which involve linear searches on the tangent plane

We have

to the constraint surface prior to returning to that surface.

not experimented with such strategies, choosing to return to the surface

each time because it was simpler and we felt it would lead to ‘a more

reliable algorithm. Computationa! experience presented later shows thal

if properly implemented, this strategy can be developed into an algorithm .

that is both reliable and efficient.
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a number of subroutines

S

{(Subroutines of minor
OUTRES
R] SEARCH
¢ REDOBJ
’ NEWTON
¢ CCOMP
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The main program and subroutines are arranged in a

GRG Main Program and Subroutines

am Structure
Figure 1,

This code is composed of a main program and

Pro

wportance are not shown.)

-

o

hierarchical structure, as shown in Figure 1.

written in FORTRAN IV.
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The primary function of MAIN is to call DATAIN to read the input
data, GRG to solve the problem, and OUTRES to print the results. It ) :
then tests a user-specified flag t’o decide whether to stop or tec return .
i to read additional data, It is very simple, and is'easily modified to
3 . '
L work within a larger system. All subroutines below and including GRG .
‘ ;i)*""’" comprise the GRC algorithm for iteratively solving the problem (1)-(2)° . "
P Their functions are briefly described in Table 1.
F
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2.
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10.
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GRG

CONSBS
DEGEN -
PARSH

REDGRA

DIREC
SEAKCH

REDOBJ

NEWTON

GCoMP

Controls main iterative loop. Computes inltial basis

3
3
%
ES
H
4
B3
“
-3
)
w—y
=
é
3

inverse and calls DIREC to compute search direction.

phev K

Calls one dimensional search subroutine SEARCH. Tests
for optimality.

"

e
Aol

.,

Computes Basis Inverse, BINV.

T REATIL)

Computes search direction when basis is degenerate.

s b e

Given current X and G vectors, computes array
GRAD, whose (i,j) element is the partial
derivative of & with respect to xj . May be
user supplied. If not, there is a system subroutine
PARSH which computes GRAD by forward difference
approximation. i

' , . .
R TR TTar ST S PR

it

:

S

et G

5k iy R

Given BINV and GRAD, computes Lagrange multiplier
vector T, and reduced gradient of either phase I or
phase II objectives, GRADF,

v

Sy AR DI T o Ay L

Computes search direction,
Performs one dimensional search.

Computes values of basie variables for given values of
nonbasics by calling NEWTON, Takes action if NEWTON

At

Ly
B

does not converge. Checks for constraint violations.
If any are violated, finds feasible point where some
initially violated constraint ic binding and others
satisfied.

Uses Newton's Method to compuie values of basic variables

for given values of nonbasies. If convergence not

—

achieved, sets flag and returns.

| P " Wtk "
0 i S sy e Wi, R A P L R Bl W MR

User supplied subroutine. Given current X vector,
computes vector of m+l function values G, where
G{1), ..., 6(m) are constraint functiorn values and
G(m + 1) is the objective.

Table 1. Functions of Major GRG Subroutines
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4. Uger Inputs
The only subroutine which the user must provide is GCOMP, which

computes the function gl, veos Bryg for a given vector X. First

derivatives of the functions gy are required, but these may be computed

by a gystem subrovtiss. PARSH vsing finite difference approximations (first

order forward diflerencing,;, Alternatively, the user may s'uply a sub-

rout:ne PARSP whicn compu. -r first derivatives bty analytic formulus or

other means, The finite Aiff cesce svproximations have been completely

setisfactory in all probles - arlssd thus far, and eliminate the (often

consldersble ) burden n® codlag FARSE.

The ov*her ing . “abis aie the pr-blon dimensions m, n, neq, the

bownds ub, and b cixitle valua for 4, aud (optionally) a list

o vasisblee to he 1+ the  =itia’ Ya~.s if that is possible. If the initial

vai.es of ¥ 1~ not sat_si ur~ bounds (2), an error message i< printed

and the program svops., The.e .& no conceptual difficulty in augmenting

the phase I proucedure tc dz2al with bound violatlions, and future versions

will Linelude this § -ature., AlL data are checked for obvious errors

(e.g., ub,

above mentioned data, the user may specify a number of controul and

< lbi) and are printed for inspection. In addition to the

ivlrrance parameters ‘tn be discussed later), or may leave them at

<geir default values.




=3

&
i
s
»

0 A

SRR

e

LS oo iy (R E =
TSR A A

e

0

b
!

Y

T
5

s

R~
PR

i)

oy

2k

o, B R0 Sy
Ay

,.,«__
it

TPy
e y—"

Frnas

.

A SR

LN
3

SR

i

P

oS

PR

SRR

AN KR

R et
SRR

o2 3 T3kl lnn
AR PR T

AT

LA

S

- e e
oA

oty

24

&k

AR

SR SO R G i et
3 - v

w B s

é' 5. Detailed Algorithmic Structure
% The flow charts in this section are in aggregated form, Their
% purpose is to describe overall program iogic. However, they cor£§spond
éé closely to the actual FORTRAN code.

5.1 Subroutine GRG

This is the controlligg subroutine for the iterative prccess. It starts
%% by calling GCOMP to evaluate the initial constraint and objective values.
éi If any constraints are violated, a phase I procedure is entered in which the
%E objective is the sum of absoluté values of constraint violations. The array ICAND
gf in block 1 is used by CONSBS in choosing basic columns, CONSBS will
;f attempt to enter columns in ICAND into the basis first (in the order
tj listed) before trying other columns, If the user has not specified an
Y initial ICAND, block 1 sets it to the index set {1, .., nj.
;ﬁ The current X is congidered optimal if elther of two tests is
;f met in block 2., The tirst test checks if the following conditions are met:
ig for i = 1,n but x(i) not a sleck variable for an equality
Z constraint
x*(1) = b (1) == GRADF(i) > -EPSTOP
x(1) = wb (1) == GRADF(i) < EPSTOP

’ () < x(1) < w (i) == |crADF(i)] < EPSTOP

The quantities x(i) are the current nonbasic variables and GRADF( 1)
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is the ith component of the reduced gradient. Thie tests whether

the Kuhn-Tucker optimality conditions are satisfied to within EPSTOP,

a small positive num’ which cen be controlled by the user, with

default value 10““. The slack variabies for equality constraints (i.e.,

the varisble X(n + 1) to X(n + neq)) are excluded from the test

because they rust be zero in any feasible solution. The second optimality

test checks if the condition

ABS(FM - OBJTST) < EPSTOP * ABS(OBJTST)

is satisfied for NSTOP consecutive iterations. In the above, FM

is the current objective value and OBJTST 1s the objective value at

the start of the previous one dimensional search. NSTOP has a default

value of 3.

If CONSBS constructs a degenerate basis then it also computes
a useable feasible sgearch direction. Hence, DIREC need not be called

in block 3. Otherwise, DIREC generates a search direction and, in

W BB ot h e st gl

eitlier case, SEARCH 1s called to find the best point in the given

T

direction.
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Figure 2. Subroutine GRG
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The test in block 4 returns if SEARCH has halved the initial
step size 10 timeswithout finding a lower objective value and if d = -VF.
A small fraction of problems have termirated in this way, always with
objective values close to optimality. In block 5, the Y branch
indicates the case where the basis ir unchanged and the line search
terminated as in an unconstrained problem., Then ICAND is set to the
previous basic variable list, IBV, so that CONSBS will again choose
these as basic wvariables, if possible, This is desirable, because of
the use ot -.ne BFS wr-table metric algorithm [ 14} in DIREC to choose
the sear.. .irzction, d. This algorithm uses an approximation to
(V2 F(x))":L to generate d, and the spproximation is not valid unless
the reduced problem remains the same. If the reduced problem changes
(N branch, block 5), ICAND is set to {1, ..., N} to give CONSBS freedom
to construet as well conditioned a basis as possible, Setting ISET to
1 forces DIREC to reset the BFS algorithm so that 4 = -VF, Testing
for strictly satisfied constraints in block 5 permits reducing the size
of the basis by dropping these from the binding set.

In most problems solved thus far, initial iterations end with a
new constraint being added to or deleted from the basis or with & change
in basic w. .ables. The code is finding the set of constraints which
are binding at optimality, and a compatible set of basic variabies. Once
this is done, the BFS algorithm takes over, and the code operates in an
"unconstrained" mode until the optinum is reached. Most of the improvement
in the objective and most of the computations occur in the first phase

of this process, so it must be done efficiently. The critical operations
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here involve violating one or more non-binding consvraints during the
line search, and finding a new feasible point where one (or more) of
the violated constraints is binding., This latter operation occurs in

subruotine REDOBJ.

5,2 Subroutine DIREC

This subroutine computes a search direction, d. Currently 4
is computed using the Broyden-Fletcher-Shanno (BFS) variable metric
algorithm [ih]- [16], modified to accomodate upper snd lower bounds on
the variables as suggested by Goldfarb [17]. An n xn matrix H, which

is updated after each step, is used to determine d as

d = -H * GRADF (6)

where GRADF is the reduced gradient. If no one-dimensional
searches have been performed or subroutine GRG has set ISET to 1, then
d is taken as the negative reduced gradient direction and H is reset

to an identity matrix with zero diagonal elements for nonbasic variables

at bounds. H 1is updated only if a test is passed (see [16]) irdicating

that the new H will be positive definite. Numerical error may invalidate

this test, so the directional derivative r = VFtd is tested after

applying (6); if r> 0, H is reset as described above.
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The BFS method was chosen because computations in [14%] - [16]

and elsewhere show it to be one of the most efficient and reliable of'
the variable metric algorithms. In the absence of rounding error, it
minimizes a quedratic function of n variables in at most n one
dimensionral searches. Hence, this GRG algorithm is finite for guadratic
prcgrams.

The last function of DIREC is to test whether nonbasic variables

currently at bounds should be allowed to move away from these bounds,
This is done ac follows: the signs of the reduced gradient components of

nonbasic variables at bounds are checked. Among all varisbles at lower
(upper) bounds whese reduced gradient components are negative (positive),
the gradient component of largest absolute value is chosen. If this value
is denoted by MAXMULY and the corresponding index is IDROP, then variable

IDROP is released from its bound if

!
&
n
3
P
=3

)

21 (4(1))% < (MAXMULZT)?/4

This test,prescribed in [ 17}, is designed to prevent "zigzagging", i.e.,

St L b 580 ot e rl e

variables continually coming on and off their bounds.

Since H 1is a symmetric matrix, only the diagonal and super-diagonal
elements are needed, and these are stored in a linear array H in row
order. Storage requirements can be further reduced by noting that H
has zero rows and columns corresponding to nonbasic variables at their

bounds. This feature, not yet exploited, would significantly reduce

NI LN UL .
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computation time and storage requirements when most nonbasic variables
are at bounds. An extension of this idea to general linear constraints
has been developed by Prof. & ., Buckley [18], who pointed out its implica- :

tions to us. Of course, H can be eliminated entirely by use of the

Conjugate Gradient Algorithm [ 191, which is also finite for quadratic
functions. Its use will be examined in future GRG codes designed for
large scale problems.

Localizing all computation of the search direction in a single
subroutine provides a great deal of flexibility. Other direction finding
procedures can be implemented simply by coding a new DIREC, leaving tne

.

rest of the system unchanged.
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5.3 Subroutine SEARCH

Subroutine DIREC provides search directions for
subroutine SEARCH, in which the variables of the problem are

assigned new values. This subroutine finds a first local minimum for the

problem

minimize ¥(x + ud)
o
The direction d is always a direction of descent, i.e.,

aNF (%) < 0

This subroutine searches for three o wvalues, A, B and C, which

satisfy
0<A<B<C

F(x + Ad) > #(x + Bd) < F(x + cd) .

L tow. o)

Then the interval [A,C] contains a local minimum of F(x + od). ;
In block 11 of Figure 3, & quadratic in o 4is passed through A, B, ;
and C, with its minimum at D. The best point, B or D, is taken as an z
estimate of the optimel o and a return is made, *

In finding (A,B,C) the choice of initial step size, B,
(block 1), is important. With the BFS or other variable metric methods,
B 1s set equal to the optimal « vslue fiom the previous search except

when this causes too large a change in the variables. The theoretical
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basis for this iz that, as a vaeriable metric method converges, the
optimal o values should converge to 1, the optimal step size for
Newton's Method. Hence, the previous optimal step is a good approxi-
metion to the current one. This must be modified when the method

is restarted, for example, when & new constraint is encountered or the
basis is changed, since then an optimal step much less than unity 1s
generally taken, Hence, we require that the change in any nonbasic
varieble larger than 1,0 in absolute value not excced .05 times its
value, while the change in any variasble smaller than 1.0 in absolute
value cannot exceed 0,05, If the largest & value meeting these con-
ditions is al, and Q is the step size found by SEARCH at iteration i-1,

then

1
B = min(aa_l,a )

if the previous search terminated with an interpolation, and B = al

otherwise.
The subroutine operates in two phases, halving the initial step

size (if necessary) until an improved point is found (loop 2 - 3 = 4 = 5),
and doubling the step size until the minimum is bracketed

(Loop 7 = 8 = 9 = 10)., In each phase the nonbasic variables are changed,
and subroutine REDOBJ is called to compute the reduced objective

F(x + ad) (blocks 2 and 8). If, in the doubling phase, the minimum is
not bracketed, the A and B points are replaced by the B and C

points, C is replaced by 2B (block 10), and the new F value is computed.
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unconstrained problems are 3, 6, 7, and 9. These déal with two ,

occurrences: (a) In attempting to evaluate the basic variables iﬁ
subroutine REDOBJ by Newton's method, Newton may not converge, and
(b) REDOBJ may produce a point at which & previously loose comstraint

is binding. In block 5, the step size is halved if Newton does not

converge. Theoretically, convergence must vltimately occur; in practice,

if the loop 2 = 3 =« 4 = 5 is traversed 10 times, a return to GRG is méde.
Blocks 6 and 9 terminate the search if case (b) occurs, while § also
terminates under case (a), Block 7 terminates the search if more than
6 Newton iterations were required the last time the basic variables were
evaluated in subroutine NEWTON. Experience has shown that the next
NEWTON call-usually will not converge,

Before beginning the line search, SEARCH computes the 1argesti
@, @, such that x + ad satisfies the nonbasic variable bounds. The
logic requ'red to insure that «a does not violate this bound, and to

detect the case where & is optimal, has been omitted from the flow chart
for simplicity.

The strategy of terminating the search if an improved point has

already been found and Newton did not converge or took too many iterations

was not adopted initially. Earlier versions of the code attempted to

push on with the line search by recomputing B~ at the last feasible
point found and cutting the step taken to 1/3 its previous value,

The current strategy has been found to be much superior., Now B"l
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:ls 'conputed only once, a.;; the beginning of ea.c;h one dimension@l search,
.vhere 1t is needed anyways to compute VF -In 8 se-t‘ of ,
six test problems, the current strategy required about half the function
and gradient evaluations of the older one (see [20] for details),
and also significantly reduced the number of times B - is evaluated.
This strategy, plus the rather conservative choice of initial steé size,
plays a large part in making an algorithm which returns to the constrqint
surface each time efficient,

Recently, much interest has been expressed in "step size"
algorithms to replace the line search. These attempt to obtain
only & “sufficient" decrease in the objective, rather than to find its
minimum, We have opted for a "sloppy" attempt o find the minimum
because of its "inside-out" nature, i.e., & small initial step is taken,

then increased if necessary. This approach is more likely to remain within

the radius of convergence of Newton's method, viz., that range of ¢ values
for which Newton will converge, with Bl evaluated only at «a =0,

This redius imposes an upper bound on .0 of unknown value., Most step-
size strategies choose large o values first (e.g., ¢ =1 in [22]),

then reduce them if necessary, and hence are more likely to exceed

B T ST D R P N SRt vl T PALC L ey

this bound, The fact that the number of Newton iterations required to
evaluate F(x + ad) increases as « increases also works ageinst
"outeide-in" strategies. These same comments also apply to algorithms

which do a one dimensional search on the tangent plane to the constraints

!

prior to returning to the constraint surface, as in [11]-[13].
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5,4 Subroutine REDOBJ

This subroutine evaluates the reduced objective function F(x + od)

for given X, @, and d. It does so by attempting to solve the system

of nb (possibly nonlinear) equations

g (y, x+ad) =0 i € IBC (7)

for the nb basic variables y, where IBC i the index set of binding constraints.

As in [8] and [9 ], this is accomplished in subrcutine NEWION, using

the pseudo-Newton algorithm
~1 -
ytu{-l = y‘b - B (i‘ gB(yt’ X + ad,)’ t = O, l, 2’ s 0 (8)

where gB is the vector of binding constraints. The algorithm is called
pseudo~Newton because B"l is evaluated once at the initial point of

the search, X, instead of being reevaluated ui each sten of the algorithm,

as in the standerd Newton method.
An initial estima*z of the basic variables, Yo is computed either

by linear or quadratic extrapolation in biock 1 of Figure 4. As in (8 ],

the linear extrapolation usaes the tangeni vector

v = ~B“1(§§) ¢ (9)

In our code, v is computed at X, It is used to find inircial values,

Yor by the formule

*:

e

Y
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stert

Y @

for

Compute initial values

bagic variables

Y
[CALL NEWTON |

1 @

_ ) ; Set flags
( Newton converged and return

I &

Test for constraint violetions (see text)
If any, estimate which one
violated first

\
1 @ .

( any viclations detected above

n Phase I an

(y (5 N

current point

Compute a.ppropriat_e-, .
Jacobian border feasible /
Y End Phase I
@ Set flag and
[Compute initial values | Return
for basic variables
1
T @ Check loose constraints
{ CALL NEWTOW | for any now binding
< Y { Newton converged ) Store best point
- T Set flag if any new
\( binding constraints
Set fiags » and Return
and Return
Figure 4. Subroutine REDOBJ
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b Using these initial values, Newton finds the feasible point X,. Then,
R {
#
f at xl, v is not recomputed. The old v 1is used, but emanating now
?f; from Xl, to yield the next sot of initial values as
&
H y0=yl+(0‘2-al)v
-
3 Using these, Newton finds a new point xe. -This procedure is repeated
& until the one dimensional search is over,
Quadratic extrapolation may also be used to obtain initial
egtimates of the basic variables, at the users option, Initially,
linear extrapolation is used, After the first feasible point, xl, is
found, quadratic functions are fii vo the value and slope at < =0, and
the value at oy of each basic varisble, These aro used to predict their
values et O = ae. Subsequent quadratics are fit to the values of the
basic variables at Qy ai-l’ ai-z (1 > 2). Computationel experience
with these options appears in Section 6.5,
In blocks 2 and 8, Newton is considered to have converged if
the condition ,\
YORMG = max g, (X,)| < EPNEWE 3
1€ IBRC “
. 3
1%}
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is met within ITLIM iterstiovns, Currzatly EPNEWT = 10'h and ITLIM = 10,

If MRVG has not decressad from its previous value {or the above condition

is not met in 10 iterations) Newton hes nn% converged.

unce New.on has converged, pussible constraint violations muct be

checked {block 3), There are several reasons wry the current suvep

¢ may be too large;

(1) A strictly satisfied constraint may heve violat.d an upper

or .ower bound,

(2) A constraint in IAIQOVE, the set of constraints initislly

violatinz their upper bounds, may violate a2 lower bound,

(3) A constraint in IBELOW may violate an upper bound,

(4) A basic variable may violate a lower or upper bound.

i any of these cases hold, o is rrduced to & value o

where no conatraints are viclated and at least one new constraint is equal

to a bound, To determine this constraint, an estimete iz made of o*

in Mlock 3. Linear intexpolation between the current and previous

valua; of the violated constraint is used.

The next step determines whether case 4 or one of cases 1 - 3 is
to be dealt with, according to whick has the smallest linear estimate

*
of « . Aosuming cases 1 - 3 as an example, we then wish to solve the

Lt Y,

system
g; (vla), x + ad) = 0, i€ IBC

g v(a), x + od) = 0 (20)
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where « 1s a new variable and g, = 0 & new equation, The Jacobian

for this system is

B ¢

ladechadadly Sodaled

a tw

where

~
I

og; /oy
(3¢, /ox)"a

w

and ¢ is an nb compoaent column vector whose elements are
(agi/ax)Td for 1 & IBC. The border vectors ¢, d, and the scalar

w are computed in block 5. Until recently, this block also computed

5k by the bordered inverse formula (using the known B'l), and this

J'l was used by subroutine NEWTON in block 7 to solve the augmented

system (10). However, this has the disadvantages that the old B"l is
eresed, and it would not be suitable for a large scale GRG implementation

since it involves changing the dimension of the inverse., However,

inspection of (8 ) shows that gt

of J"1 with the vector (gB,gL). This product can be expressed in

terms of B~l and the border elements c, 4, w using the bordered

is not required, only the product

Loy s ke

I N

inverse formula. This is done in subroutine NEWION, which tests to

o3 % 8Ten g

see if the system (7 ) or the augmented system (10) is to be solved,
and computes the appropriate matrix-vector product.

The basis change procedure here, based on solving (10) and

v s

then calling CONSBS, differs from that of Abadie in [8 ] and {9 ].
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In Abadie's procedure, the basic varisbles y, in (8) are checked
for each t. Tf any violate their bounds, one is selected to leave the
basis, an entering verisble is chosen, and a pivot operation updates

B’l. The Newton iteration (8 ) then continues. This could lead

to "false" basis changes, since violation of a bound during the iterative

process does not imply violation when the process converges. Newton's

R BTN RV P AT IR s

method need not converge componentwise monotonically. Failure to con-

verge could also lead to a false basis change. In addition, if the

(Abadie) basis change is accomplished. the new point may have an objective

I
s s e sk =

value larger than F(x), which makes proof of convergence unlikely.

Our procedure avoids both these objections, perhaps at the expense of

e b 6T et § Y A 8 Oy e F & LIRS

slightly more computation., We feel that the (presumed) increase in

-
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reliability makes the tradeoff worthwhile,
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5.5 Subroutine CONSBS
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This subroutine selects a set of basic variables and computes the
basis inverse, B'l. Its input is a list of indices of varisbles, the
candidate list ICAND. The outputs of CON3BS include (&) a new list of

binding and strictly satisfied constraint indices (b) a new list of

<328\

basic and nonbasic variable indices and (¢) the new basis inverse, B'l.
The call to PARSH in block 1 of Figure 5 computes the gradiente of

the objective and all constraints at the current point, The gradients of

gk bt s as ey

. . . 4

the binding constraints are stored in an array, which is where the pivoting g

1 b

to compute B is done. K

[
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Determine indices of binding
and loose constraints

\'4
CALL PARSH ’
[ ®

Select candidate columns

\

©

2 Choose candidate column
o with largest norm as
: pivot column

Y @

Choose pivot row as one
with largest absolute

-7 element in pivot column

for basis
\ Select slack or other
¥ N variable at bound to
£ ( any candidates )————}— enter basis. Choose
ivot row

CABS (pives element) > EPSPIV

) 3 Perform pivot
operation

K VN

- Label pivot column
7 temporarily inadmissible
V

Y

g _<‘< Any ceandilate columns 1eftj

NG
o CALL
Leo- Figure 5.

o
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The subroutine operates in 2 modes.* In mode ). CONSBS will choose

pivot columns from whatever candidate }ist was input to it. If a basis
inverse could not be constructet from columns in this candidate list,

or if the original candidate list included all variables, the mode

T

e

indicator is set to 2, and CONSBS will choose pivot columng from the

list of all admissible columns, A columh is admissible if it is not

R AN L b

oy

scheduled to leave the basis and if it has not yet been pivoted in.

For simplicity, the mode logic is not shown in Figure 5.

SIS

In block 2, candidate columns are chosen as those which are

admissible and whose variables are farthest from their nesarest bound

SR A

(to try to reduce the number of basis changes required). A maximum of

ey

Feira®

five are chosen, and variables very close to their nearest bound are

R,

ignored. If no candidates can be found and we are in mode 1, the mode

R S
SR

is set to 2, the candidate list becomes the set of all admissible

2 o,
EHY E)\

columns, and we return to point<:). If we are in mode 2, & varisable

-

at a bound is chosen to enter the basis (block 7). The basis is labeled
degenerate. A pivot row is chosen in the same way as when the besgis is
nondegenerate, so we proceed to discuss that case,

The logic in blocks 3 and 4 represents complete pivoting within
the set of candidate columns, i.e., the entire submatrix is exeamined

to find the largest pivot element, In block 3, the L, norm is useg,

1

takenover gll rows not yet pivoted in. The default value of EPSPIV in

block 5 is 10'3 .

If the basis formed is degenerate, subroutine DEGEN is called in

e 2
BEvs

block 7 to compute a search direction which will decrease the objective

NI

without immediately violating ary bas.ec variable bounds. A flag is set

& %3 Ty

*
We thank Professor Jean Abadie for suggesting that we design CONSBS in
this way.
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to bypass the call to DIREC in subroutine GRG. DEGEN is discussed
in the next section.

Earlier veisions of CONSBS employed partial pivoting, i;e., the
pivot row was chosen in sequential order 1, 2, ... , NB, while thé plivot
column was chosen as the column selected by block 3 with largest

absolute element in that row. This was replaced by complete pivoting
when it failed on some test problems, encountering rows where all
elements were too small, and where a nonsequential order of choosing
rows led to acceptable pivots,

A recent enhancement to CONSBS consists of additional logic just
prior to entering block 6. At this point, all admissible pivot elements
corresponding to variables not at bounds have abcolute values smaller
than EPSPIV (default value 10'3). The new logic tests the largest
admissible pivot element; if its absolute value is larger than
lO.2 ¥ EPSPIV, we choose it as the pivot element rather than accepting
& variable at a bound. The motivation for this is that pivoting on an

5

element larger than 10 ° is not likely to cause severe problems,
especially if it is the largest element available, and if the alternative
is introducing a varisble at a bound into the basis. This new logic

has permitted solution of a few test problems which could not be solved
previously. The previous failures were caused by very small decreases

in objective value, along (unit vector) search directions generated

by subroutine DEGeN. With the new logic, DEGEN is not called, and the

search directions generated by DIREC lead to the optimum.
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5.6 Subroutine DEGEN

. i
&,

Subroutine DEGEN is celled by CONSBS when the basis constructed

is degenerate, i.e., has one or more basic variables at bounds., In this

case, the search direction, 4, produced by DIREC may cause sone of these

variables to violate a bound immediately,i.e., d may not be a feasible

direction. DEGEN compuies & useable reasible direction or proves that

the current point satisfies the Kuhn-Tucker conditions,

Let L and U Dbe the index sets of basic varisbles at lower and

I e B L R ST EY D L T

upper bounds respectivelv. A Adivection d 1is feasible if the following

conditions are satisfied:

v+ Nd=0 (11)

v;>0, 1L (12)

v, <0, 1€U (13)

RS o S

Here B 1is the basis, and N contains the nonbasic Jacobian columns.

Saunsansl, by

The vector v is the tangent vector of equation (9), and is the vector

.

of directional derivatives of y in the direction d., Conditions (12;-(13)

Rt B

require that basic variables at lower bound increase, and convarsely
for variables at upper bound., Strict inequality is required in (12)

and (13) to ensure that v, remains non-negative for a small movement

i

in the direction d. Our code relaxes conditions (12)~(13) to

>=~¢, L€L and v, <¢ 1€ U, with ¢ in the range ].O"5 to 10'7.

SRS

Vi i
Thig accepts a small amount of infeasbility, allowing for numerical

error,

FO NI SRR Y
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DEGEN begins by checking if the direction d produced by

DIREC is feasible, If so it is used. Otherwise the column of N

whose reduced gradient yields the largest rate of improvement iz F
is found--if none yield improvement, the Kuhn-Tucker conditions are
satisfied and the current point is accepted as optimal., The direction
d 1is set to the corresponding unit vector and if v (equal to B'1
times the column chosen) passes the feasibility test, 4 1is accepted.
Otherwise the largest absolute element of v in rows with indices

in L or U 1is found,

If it is lavge enough, it is used as a pivot
element, a pivot operation is performed in (11), and the process begins
again

with the new basis B. If no basis is repeated +this process

must terminate finitely, either with a useable fzasible direction or

with the optimality test met. 1In the 3 or U4 degenerate problems

solved thus far, calls to DEGEN have required at most 2 or 3 pivots.
The test referred to above for a pivot element being large

enough initially uses a tolerance of 10~5. iIf a potential pivot

element is less than this, that column is labelled temporarily inadmissible.
If all improving columns become inadmissible, the pivot tolerance is

reduced to the same ¢ value usedto test for feasibility, and the

inadmissible column with largest pivot element is entered into the basis,
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6. Computational Experiments

6.1. Comperison with Interiur Penalty Methods

Seven test problems were solved by the GRG code and by the
interior penalty code described in [21]. Problem characteristics

are shown in table 2

No, of No. of
Source or Nature No. of Equality Inequality
Problem of Problem Variables Constraints Constraints
1 Quadratic Objective 4 0 3
and Constraeints
2 No. 11 of [4] 5 0 ) 3
3 No. 5 of [21] 8 0 23
L No. 18 of [4] 15 0 5
5 No. 6 of [21] 17 10 8
6 No. 10 of [k] 5 0 10
7 Alkyletion Problem
from {27] 7 0 1h

TABLE 2 . Characteristics of Test Problems
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. In solving problem 5 by the interior penalty code, the equality-
constraints were used to eliminate 10 vériables, leaving an inequality
constrained problem. All problems were solved on the UNIVAC 1108 at

. Case Western Reserve University. Resultg ere shown in Table 3,

% S

T Reduction Factor
Statistic Penalty GRG Penalty/GRG

One Dimensional . '
: _Searches : 495 h 5:3

Function Calls . 3173 112k 3.4

’ Gradient Calls 539 99 5.4

Equivalent
Function Calls* . 8as 2023 b5

TABLE 3. Comparison of GRG and Interior Penalty Codes

*Equivalent Funetion Calls = Function Calls + N-Gradient Calls
where N = No. of variables.
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GRG required far fewer one-dimensional searches, function evaluations
and gradient evaiuvations. While some of this reduction was offset by
the requirement of matrix inversion and solution of nonlinear equations
in GRG, GRG produced more accurate solutions for most of the problems.
Computation times were a few seconds or less, and d;fferences in
computation times (of the order of tenths of a second) could not be

estimated accurately due to the masking effects of miltiprogramming.

6.2 Solution of Himmelblau Test Problems

The first twenty-four problems specified in Appendix A of reference

[4¥], which includes all of the problems with equality or inequality con-

straints or element value bounds, have also been solved with GRG*.
Several were solved with more than one starting point and cne {number
22) with four sets of parameter values. Table 4 shows the results of

solving these problems on an IBM 370/1&5 at Cleveland State University.

e lr, -

I
4% T"-

In this table, the Newton Average is the total number of

s

iterations of the quasi-Newton method (see section 5.4) divided by uie
number of times solution of a nonlinear system was attempted, i.e.,
the number of calls to subroutine NEWTON. The Colville standard time
is obtained by dividing the execution times by T77.83, the time in
seconds required to run the Colville standard timing program (see (41)

on the 370/1&5. These numbers provide some means (admittedly imperfect)

Eheistanaaiasriisasing

i

for other investigators, using different computers, to compare results.

T

AN

*
We thank Professor David Himmelblau for providing us with a card deck
for these problems.
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The current version of GRG solved &ll but one of these probléms w3
(number €), in the sense that at least a local minimum was found. In
all but two of the problems (6 and 14) the final objective values attained

<3

by GRG starting with the initial points specifiec in [4] either mafché@

the solutions specified in {4}, to at least one part in one thousand,

o,
g g e et B

Ay Tihehdus il didrk b TS

or were better than the solutions given in [4].

In problem aumber 6, using the starting point specified in (41, $

¥

=

GRG reached s point with function valué -1365,98 compared to

-1910.361 given in [4]. However the constraints were satisfied within

AR et ko

1 part in lO12 using GRG but only within 1 part in 20 for the solutiqps K

given ir [4]. Using a different starting point (x = O) GRG does reach

an objective value of -1910.22 with constraints satisfied to 1 part

in 1010. N

’

Sl o SNt i Wevsaba

Problem number 1k "contained a myriad of local optima of many

o 850

different values." Depending on the starting point used, GRG generated

several different solutinns. Using the initial feasible starting point
in [4], GRG reached a minimum of 261,350 compared to 250800 ‘in [k].
From the nonfeasible starting point GRG attains a minimum oi 260,508.
Starting from x, = 0, i £u, x, = 2000 GRG reaches a value 251,786.

These results wvere attained using the default values for all
parameters in GRG, finite difference approximations for derivatives,
quadratic extrapolation for basic variables, and double precision
SR floating point computations. We also examined the .ffects of changing

’ the EPSTOP parameter (see section 5.1) from 1o‘h to 10™. This reduced

run times for the Himmelblau problems; only slightly for most problems,

up to 25% for some. Two problems, however, stopped significantly short
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of optimality. This suggests a strategy in which a loose stopping
tolerance is met, the tolerance is decreased, and the procedure repeated
until no significant change in objective or x values is detected.

This had not yet been implemented.

Table 5 shows the results of using analytic derivatives for
problems 6 and 23. The constraints for these problems were linear and
hence analytic gerivatives were easily obtained. For all practical
purposes the number of iterations, etc. was independent of the gradient
computation. Run times are dramatically shorter when the gradients
are analytically computed. Even greater reductions could have beer
obtained by coding the partial derivative subroutines PARSH to evaluate
the constraint gradients (which are constant) once only.

In order to obtain some measure of the impact of performing the
floating point computations in double precision, the Colville program
was modified to also run in this mode. As a result of this change, the
average execution time increased from 77.83 to 109.89 seconds or 41%.
Earlier versions of GRG used only single precision computations and

occasionally failed to locate a relative minimum. Again, in the interest
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of robustness, execution speed has been sacrificed in the current version.
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Problem Time with Time with Percent
Number Finite Diff. Derv, Lnalytic Deriv. Increase

€ 227.26 66.08 olily
23 570.37 103,64 hs1

Totals 797,73 169.72 368

ot e

TABLE 5. Analytic versus Finite Difference Derivatives
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6.3. Comparison with Two Other NLP Codes

The test problems of Table 4 have also been solved* by
two other codes--Abadie's 1975 GREG (a GRG code) and a code developed
by Newell and Himmelblau [22] implementing an "exact" exterior penalty
method, or "Method of Multipliers"--as well as by an earlier version
of the code described here. All problems were solved on the CDC-6600
at the University of Texas at Austin. Computation times (in seconds)
are shown in Table 6, where F indicates a failure to solve the
probiém and a dash indicates that no attempt to solve was made.
The totals row is the sum of times for those 17 problems which were
solved by all 3 codes.

The GRG code cescribed here compares well, especially since the
current version has solved all but problem 21. In addition, our code
used finite difference approximations to derivatives, while the

other two computed them analytically. Solution times are con-

eistently small, and the code does well on the larger problems 18 and 20,

Tts advantage in total time over the other two codes is due to

a dictinct superiority on a few problems. In fact, the Newell code

was fastest in 10 problems, ours in 5 and GREG in 2.

*We are grateful to Professor David Himmelblau for running
these tests.
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Problem
number

1

O O 1 v F W

10
11f
llnf

18
19nf

GREG
1975

11
.21
.18
1.07
.18
1.70
.8

27.59

031

.21

3.51
>/

16.52
30.28

'16

.29

Lasdon-Waren
GRG Code

.09
46
.15
48
.16
1.58
17
1.55
1
12

Newell method
of multipliers

.01
.02
.07
.88
.01
A5
.16
5.11
.16
64
.62

13.15
3.9
6.06
6.97

TABLE 6
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6.4, comparsion of Linear vs. Quadratic Extrepolation of Basic Variables

As discussed in Section U4, either linear or quadratic extrapolation

can be used in subroutine REDOBJ to estimate initial values for the basic

variables. The quadratic estimates take more time and storage to compute

but should reduce the number of Newton iterations required. To assess
the relative merits of these two options all test problems of section 6.3
requiring any Newton iterations were solved both ways. Only for problem

number 18 did quadratic extrapolation take more equivalent function

Plor, werd N

evaluations although the number of Newton iterations remained the same.

In all other problems quadratic extrapolation performed as well as or

36 A B

better than linear extrapolation. On =n overall basis, the number of

equivelent function evaluations decreased by 5%, Newton iterations

decreased 16% and execution time decreased by 5%. In another series of

tests, the T problems of section 6.1, plus 2 others of 15 and 7

W aF s DAY e o

variables were solved. All are highly nonlinear. Using quadratic

versus linear extrapolation yielded the following cumulative results:

gt f M e X

one-dimensional searches increased 19%, Newton iterations decreased 43%,

and equivalent function evaluations decreased 20%, We conclude that 4

K
quadratic extrapolation can reduce function evaluations significantly ;
(especially for highly nonlinear problems), and should reduce computation k
time appreciably when GCOMP calls account for a large fraction of the . :
overall computational effort. E
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7. Conclusions and Future Work

The results presented here indicate that GRG, as implemented
in this code, is an efficient and reliable way to solve small to
moderate size NLP problems. Abadie's GRG codes have also received
extensive testing (e.g. in [L4 ] and [23]). Our results support
the conclusions reached by these authors, namely that GRG is a leading

contender among NLP algorithms. Since small, dense, highly nonlinear
propiems have olmost infinite variety. it e llnlikely that any
one algorithm will be best for all proniems., ?:-};dern penalty
“gugmented Legrengian" algorithms (sce [e4)) are among the chief
competitors, and comparative tests are plamicd in the near future.
The best test of a code is to attempt to solve a wide
variety of real problems. To facilitate such testing, we are offering
the -code {0 persons in nonprofit research institutions for a preparation
charge of $55 . .Both user and system documentation will be pro-
vided. Interested parties are urged to contact the authors.
Future work will attempt to extend GRG to large, sparsey
"mostly linear" NLP problems of general {nonseparable) nature. A
number of large problems of specinl form, e.g., electric power
distribution [ 25] and hydroelectric schieduling . 26], have already
been successfully solved by variants of GRG. To our knowledge, no
general purpose GRG code capable of solving large problems exists

today. We believe that Ifew new ideas are required to construct such

a code; a union of existing LP technology and some of the ideas pre-

sented here should suffice. Work on this project has recently begun.
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