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PREFACE

The Post-Doctcral Program at Rome Air Development Center is pursued via

!
Project 9567 under the direction of Mr. Jacob Scherer. The Post-Doctoral ¥

Program is a cooperative venture between RADC and the participating univer-

sities: Syracuse University (Department? of Electrical and Computer Engineer- ;
{

ing), the U.S. Air Force Academy (Depariment of Electrical Engineering), i

{
Cornell University (Schoul of Electrical Engineering), Purdue University

(School of Electrical Engineering), University of Kentucky (Department of

Electrical Engineeringj, Georgia Institute of Technology (School of Electrical
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Engineering), Clarkson College of Technology (Department of Electrical
Engineering), State University of New York at Buffalo (Department of Electri-

, cal Engineering), North Carolina State University (Department of Electrical

Engineering), Florida Technological University (Department of Electrical
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Engineering), Florida Institute of Technology (College of Engineering), Air
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Force Institute of Technoiogy (Department of Electrical Engineering), and the

University of Adelaide (Department of Electrical Engineering) in South

Australia. The Post-Doctoral Program provides, via contract, the opportunity

for faculty and visiting faculty at the participating universities to sp°nd
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a year full-time on exploratory development and operational problem-solving
efforts with the post-doctorals splitting their time between RADC (or the

ultimate customer) and the educational institutions.
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I. INTRODUCTION

Coupled tran: mission lines have continually received much atiention in
many diverse areas of application. Multiconductor transmission lines have
been investigated in early power system studies and continue to receive
attention in this area with regard to the transient behavior of power lines
under fault and lightning induced conditions [1-13]. Modern emphasis on
multilayer distributed circuits, strip lines and microstrip associated with
integrated-circuit technology has produced ¢ renewal of inéerest [14-19, 68]
as has the interest in predicting transients induced on cables by external
electromagnetic field sources such as high power radars or an electromag-
netic pulse (EMP) from nuclear detonations [20-27]. Determining cross-
talk in communication circuits [28-30] and digital computer wiring inter-
ference [30-32] are examples of other areas in which the subject of multi-
conductor transmission lines consistently arise,

Of particular interest within the electromagnetic compatibility (EMC)
community is the prediction of coupling between wires and tlheir associated
termuination-networks in closely coupled, high density cable bundles and
flat pack (ribbon) cables on modern electronic systems. Control of intra-
system electromagnetic compatibility for systems within the Department of
Defense is generally governed by MIL-STD-461 and 462, These are general
documents which prescribe limits on emissions and susceptibilities of the
individual subsystems and squipments with regard to undesired signals

(interference) and do not in themselves consider the coupling paths between

-1l-
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the equipments and subsystems within systems. The undesired signals as

used in this context are with respect to the particular equipment or sub-
system, nct all . [ which are undesired from the overall system standpoint.

For example, the undesired signals may be truly undesirczd ones, such as

transmitter harmonics, or may be the result of an essential signal, such as

the fundamental frequ~ «« of a transmiiter, coupling to a receptor for which
such coupling is not intended.

Even if all the equipments and subsystems within a system conform to

the limits in MIL-STD-461, it is, of course, not necessarily true that over-

all system compatibility will be achieved. Since these limits do not take
into account the various coupling mechanisms and proximities of the equip-
ments, a system whose equipments and subsystems meet MIL-STD-461 may
prove to be incompatible and numerous instances of required retrofit and '
interference suppression measures on systems meeting these lirnits illus-

trate this fact, Thus overall cystem compatibility may not e achievad
unless all signals (desired and undesired) and actual couplirg paths within
the system are considered, analytically. This deficiency has led to the

development of various computer-aided intra-systern (as .pposed to intei-

system) cornpatibility prediction programs which mathen.atic lly model the

1

systems and take into account the various coupling paths for unintentional :
!
energy transfer (interference) as well as intentional erargy transfer [33. 37]. b
The various coupling paths can generally be classified into combinativns -

L e L el

of wire, antenna and metallic box coupling, e.g., wire-to-wire, antema-
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to-antenna, antenna-to-~-wire, box-ti-box, etc, In the case of wire-to-wire
¢ coupled interference in cable bundles, this undesired coupling of energy

between circuits sharing a common bundie may be more severe than one

may cealize. For example, numerous cases (both experiinental and analyti-

cal) may be shown where, for certain frequencies, the ratio of the received

interference voltage across the terminals of a device to the voltage emitted

U

SRR AN G R0 UM R TR Y 1 I e

by another device, which is coupled via wire-to-wire coupliag mechanisms,

exceeds unity. The two devices 2re not directly connected by a common

pair of wires; the wires connected to each device are only in close proximity

in a common cable bundle. Rarely does one encounter voltage transfer
functions with magnitudes greater than unity in antenna-to-antenna inter-
ference coupling problems and this illustrates the importance of considering
the mechanism of wire-coupled interference transfer.

It is the purpose of this report to provide a cc.nplete »md unified discus-

R

-
c e b o i . e checn i S oAl i

sion of multiconductor transmission line theorv as it applies to the predic-
tion of wire-coupled interference. The common approaches and assumptions
which are either explicitly or implicitly used in the problem formulations
which appear throughout the literature are discussed. In addition to provid-
ing a discussion of the limitations and advantages of each of these techniques,

some numerically stable and efficient techniques for solving the multicon-

ductor tranumission line problem for large numbers of closely coupled,

: dielectric-insulated wires will be presented. Methods for computing the

per-unit-length parameters will also be given., Some of the results .'an be
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found in various places in the literature although the treatments of the sub-
ject of multiconductor lines generally either discuss the solution of the
equations describing the transmission line and associated termination-net-
works with the entries in the transmission line equations (the per-unit-length
parameters) assumed to be obtainable or they discuss the derivation of the

per-unit-length parameters without regard to the solution cf the equations

describing the line. The purpose of this report is to provide a comprehen-

sive discussion of the complete problem soclution and in addition present
some new techniques for considering large numbers of closely coupled,
dielectric-insulated wires.

Throughout this report, the emphasis will be on the frequency response
of the transmisesion lines rather than the transient response since EMC con-
trol documents currently apply predominantly to the frequency domain. If
one assumes linear termination networks (no hysteresis, etc,) and assumes
no nonlinear effects associated with the transmission lines such as corona
discharge, then the equations describing the problem (the transmission linas
and associated terminations) will be linear and thus the freque-cy response
provides a comr.etely general characterization.

Matrix formulation of the equations and other results of matrix analysis
will be used where necessary for a logical and concise development and the

reader is referred to [38] or other texts on linear algebra listed in the refer-

ences.

-4.
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. THE TEM MODE FORMULATION FOR MULTICONDUCTOR LINES

Consider a Ax length section of an (n+l)-conductor, uniform transmise-
sion line ix a homogeneous medium shown in Fig, 1 lying parallel to the x
direction in a rectangular coordinate syetem, The line is said to be uniform
if there is no cross-sectional variation with x either in the conductors or the
charactoristics of the medium, i.e., "end-on' or crosc-sectional views in
planes perpendicular to x are identical for all x. The medium surrounding
the conductors and contained within the zero-th conductor is assumed to bz
linear and isotropic and therefore is describable by the scalars ¢ (permit-
tivity), u (permeability), and ¢ (condur~tivity) which are independent of the
electric and magnetic fields in the medium but may be functions of frequency.
If ¢, uend g are independent of position in the inedium, i.e., independent of
X, y and z, the medium is said to be homogeneous, Thus for uniform lines,
all (n+l) conductors have uniform cross sections along their lengths and are
parallel to each other and the x direction and in the case of an inhonio.
geneous medium, the characteristics of the medium (¢, u, o) exhibit no
cross-sectional variation with x and are therefore independent of x.

The conventional distributed-parameter, transmission line model, of
course, describes only the TEM (Transverse Electro-Magnetic) mode of
propagation on the line and higher order modes are not considered. The
elc~trie lield intensity vector, -{;(x, ¥, %z,t), and the magnetic field intensity
vector, §(x, ¥y, z,t), for the TEM mode of propagation both lie in planes (y, z)

transverse or perpendicular to the direction of propagation (the x direction)

-5-
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(o)

An (n+l)~conductor uniform
trans:ission line (cont.).
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§ and t is the time variable. Thus it has been shown a number of times that, Y

assuming (n+l) perfect ccnduciors, a homogeneous medium and the TEM ’

I St Ae

mode of propagation, the nonuzero components of the field vectors (the trans.

Iy
verse electric field, RT(x, Y, Z,t), and the transverse magnetic field,

-+
Up(%,Y,2,t)) at each x along the line satisfy the same spatial distributions as

|

static tields [¢0]. Therefore one can meaningfully define voltages between

T T Y T R

the conductors and currents flowing on the conductors [40], For further

i R R

clarification, see Appendix A.

EEE SPP T INNTY

The emphasis in this report will be upon determining the frequency

o e S LRI e T
. Sncbemamn 3l R

response of the transmission lines and associated termination-networks.

Therefore sinusoidal excitation is assumed with the field vectors written as

e R TR L

iy -» -» 3 -+ 3 -+ N

: P(X,¥, 2, t) = E(x,v, z)ed®t and H(x, Y, 2,t) = f—i(x, Y, z)ed®t where E(x,y,z) and

| - :
b H(x,y, z) are complex.valued vectors independent of time t and y is the ’

radian frequency of excitation (y¢ = 2rnf). To characterize lines in a homo-

geneous medium such as in Fig. 1 under the TEM mode assumption, the

; potential,?/i(x, t), of the i-th conductor with respect to the reference con-

JRUSIGIR SPAY

ductor (the zero conductor) and the current, Ji(x, t), asscociated with the

;
"
B
il
g
h
%
H
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i-th conductor are defined for i=l,--,n (see Fig. lc). The currents are

TS

|
; directed in the positive x direction and tl.e current in the reference conduc- C
\ .
n T
¢ tor satisfies < (x,t) == ¥ &.(x, t) [40]. Voltages and currents for sin- i )
& o i=l 1 ! ‘|
N . : !
: usoidal excitation ar¢ written as?/-x(x, t) = V.l(x)e-““’t and Ji(x, t) = I.l(x)eJ‘”t ? : i
. $
§
. where V. (x) and L. (x) are the phasor voltages and currents respectively and S 1
. are complex-valued scalars independent of time, t. In the cross-sectional i
.
-8- 3
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view of Fig. lb, the voltage of the i-th conductor with respect to the zero~th
conductor chosen as a reference is defined as the lir~ integral of ;T along
contour C; in the y, z plane and the current associated with the i-th conductor
is defined as the line integral cf ;T along the closed contour éi in the y, z
plane. The assumption of TEM mode propagation precludes the existence of
. component of the magnetic field intensity vector in the longitudinal direc-
tion (the x direction). This assumption coupled with the assurnptioa of per-
fect cordactors insures that the definition of the voltages is unique [40]. The
assumption of 8 TEM fields structure also precludes the existence of a longi-
tudinal component of the electric field intensity vector, Therafore, no longi-
tudinal condr<tion or displacement current in the dielectric is considered
and any current flow in the dielectric will be confined to the transverse
plane. This assumption coupled with the assumption of pecfect conductors
insures that the definition of the iine currents is unique [40]. These results,
of course, provide the basis for reprcsenting transmission lines for the TEM
mode of propagation over ''electrically short' Ax lengths with lumped equiva«
lent circuits whose parameters, which are per-unit-length quantities and are
- -
derived under the condition that the transverse {ield vectors, er and HT’ at
each x along the line satisfy static distributions, represent the TEM mode
of propagation for non-static excitation [40]. These important conclusion;
are demonstrated in Appendix A,

Imperfect conductors, inhomogeneous media and electrically large

cross-sectional line diinensions preclude the existence of only the TEM

- 9.
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mode for the following reasons. With lessy conductors, there will neces.
sarily be a longitudinal component of the electric field in the x direction due
to the nonzero surface impedancs of the conductors [40]. If the surrounding
medium is inhomogeanecus, then wave propagation can no longer be TEM as
a result of the different phase velocities in the different homogenecus por-
tions of the media., Imperfect conductors and inhomogeneous media are
nevertheless considered with the distributad-parameter, transmission iine
rmodel under the assumption that the conductor losses and the inhomogenei-
ties in the media do not significantly perturb the field distribution from a
TEM structure. The inclusion of inhomogeneous media which is termed the
"quasi- TEM mode'' assumption is particularly important in microstrip
problems and other associated integrated—circuit structures [14-18, 68].
Electrically large cross-sectional dimensions of the line (conductor separa-
tion, wire radius, etc,) evideutly are also capable of producing higher order
modes a_u this can be surmised from the ‘act that the infinite parallel-plate
transmission line, which is rigorously solvable and capable of supporting
the TEM mele of propagation, will support only the TEM mode for frequen-
cies such that the plate spacing is less then onc-half wavelength. Also, it
can be chown that a two-conducter coaxial line will support asigher order
modes when the mean circumference of the annular space between tae two
conductors is greater than one wavelength. Thus throughout this report,

the cross~-sectional dimensions of the line will be as umed to be electri-

cally small, i.e., much less than a wavelength, so that tranemission line
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theory applies, i.e., the TEM mode is the dominant mode of propagation.
The specific cases of interest tc be considered in this report are shown
as cruss-sectional views in the y, z plane in Fig, 2 and Fig. 3. In Fig. 2,

n wireg (circular conductors) are shown with another conductor, the refer-

ence conductor, denoted as the zero-th conductor. In Fig. Za, the reference

conductor is also a wire whereas in Fig. 2b and Fig. 2c the reference con-
ductors are an infinite ground plane and an overall circular shield respec-

tively. These lines are uniform and the surrounding medium is hornogen-

eous, In Fig. 2a and Fig. 2b, the surrounding medium is free space with

parameters €, and y_. In Fig. 2c, the medium within the circular shield is
homogeneous with parameters ¢, u,, and 0. (The permeability of all dielec-
trics in this report will be considered to be that of free space, y_.)

In Fig. 3, similar cases are shown with the wires having circular
dielectric insulations (an obviously very common situation). Thus the
medium in each of these cases is inhomogeneous although the lines are
nevertheless uniform, The permeabilities of the dielectric insulations are
considered to be that of free space, u_, as 1s typical of diele:'rics, Each
dielectric insulation is described by the scalars permittivitr, . , and con-
ductivity, 0 i=0,1,«==<,n and the space surrounding the dielectr.. =%
tions is considered to be free gpace.

The corresponding cases for the more familiar two-conductor lines

(n=1) are shown in Fig. 4 and Fig. 5. Note in Fig. 4 that the lines of E and
-

H are shown perpendicular to each other, This is a natural consequence of

-1l-
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the TEM mode assumption [40].

If the medium is homogeneaous as in Fig. 1 and Fig. 2 and all (n+l) con-
ductors are perfect conductcrs, then losses in the medium can be included
without violating the TEM mode assumption or the uniqueness of the voltage
and current definitions [40]. However, in the case of a homogeneous me-
dium in Fig. 2, it is only logical to consider a lossy medium for the case in
Fig. 2c since the surrounding medium in Fig. 2a and Fig. 2b is considered
to be iree space. Dielectric losses can be introduced through a finite, non-
zero ohmic conductivity, 0 g (which generally will be quite small for typi-
cal insulation materials) and also through dipole relaxation effects [30]. To
include both of these effects, we may consider the material to be charac-
terized by a complex, effective permittivity (which is frequency dependent)
instead of a real permittivity., To include dipole relaxation losses, the per-
mittivity may be considered to be complex as [30] ¢ = ¢ -je''. Ampere's
law in a homogeneous medium possessing both of these loss quantities be-
Catuwe)

-
we' IE.

-+ + -+ -+

comes YXH=04E + jye E = [(og + we'") +jwe'lE = jwe' [ 1-]
The real part of the complex permittivity is expressedas ¢' = €y €. where
€, is the permittivity of free space and ¢, is the relative dielectric corstant,
The effective conductivity of the ho ogeneous medium ther. becomes

g=04t% we'. Thus the losses of the medium may be accounted for by using
a complex effective permittivity €opf =ty er(l-j tan §) instead of a real per-
mittivity and tan § = o/(w e, €,) is the loss tangent of the material [40].

Ordinarily, the loss tangent and the relative dielectric constant €, ore

-18-
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given for materials as a function of freque.cy. Therefere, it is Quite clear
R that for (n+l) perfect conductors in a homogeneous medium, losses in the
medium, i.e., 7#0, can be included without violating the TEM mode

assumption or the uniqueness of the voltage and current definitions since the

real permittivity for the lossless case (¢ =0) is merely replaced by a com-

plex permittivity, e,¢p to account for losses in the medium. Since the TEM

mode assumption is legitimate for the lossless, homogeneous case, there is

no reason why the use of a complex permittivity instead of a real permit-

S0

tivity should change this.

The lumped-circuit model for a A x length section of the two-conductor

: ' lines in a homogeneous medium in Fig. 4 are shown in Fig. 6. The lines

have a total length £ and Thevenin equivalents of the linear terminations at

, the ends of the line are shown.

The lumped-circuit model describing the TEM meode of propagation for

S T R TR N T I RS

a Ax length section of any of the multiconductor lines in a homogeneous

[ medium in Fig. 1 and Fig. 2 is shown in Fig. 7. All A x length models for

AR Al s s VL . S

: other sections of the line will be identical since the line is uniform. Since

- sl Nadedk

the cross-sectional dimensions of the line {conductor spacing, wire radius,
etc.) are all assumed to be '"electrically small' and Ax is assumed to be

"electrically short', then it is valid to characterize a Ax section of the line

with 2 lumped equivalent circuit,

. Resistance elements T o rci, rcj and conductance elements 8o’ gjO’
. 8;j are included to represent lesses associated with the conductors and
é.

v e Sl

A a8
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medium respectively. The inclusion of 2 surrounding medium having a
finite, nonzero conductivity and dipole relaxation losses with these skuont
conductances 1s censistent with the assumption of TEM mode propagation
whereby no longitudinal conduction or displacement currvent can flow in the
dielectric and any current flow in the medium is confined to the transverse
plane. The shunt conductances account for the portions of the transverse
currents associated with conductive and dipole relaxation losses of the
medium, i.e., the transverse displacement and conduct'ic currents due to
the imaginary part of €ofp® Similarly, shunt capacitances account for the
transverse displacement currents associated with the real part of Coff®
Also self inductance terms for the conductors, EO' !‘i’ fj; mutual inductances
between the coanductors, m, ., ij’ mij; and mutual capacitances between the
conductors, i0* CjD’ cij’ are shown [39]. Lessy conductors also produce a
portion of the self inductances due to skin effect which is repsesented by the
elements gco, zci, !‘cj which are internal self inductances produced by cur-
rents internal to the lossy conductors [2, 3,30]. The infinite ground plane
and circular shield in Fig. 2b and Fig. 2c are considered to be perfect
conductors and for these cases rco = gco = 0. A method of including a lossy
ground plane is given in {29] and is frequently used to represent the earth
return path in power systems [13].

Some care must be exercised in interpreting the elements Loe L; "j
and my,, myg, My as strictly ''self inductances'' and ''mutual inductances"

respectively in the conventional sense. This interpretation relies on the
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property that the sum of the currents (at a particular x) associated with all

n
(n+l) conductors is zero, i.e., ..Y’O I.l(x) = 0., An excellent discussion of this
1=

is presented in reference [3], Chapter 1 and the reader is referred to this

P
for further clarification. Our results will not rely on this interpretation i

since we will not determine these individual external inductance parameters |
but will instead obtain the per-unit-length external inductance matrix, L, of ‘
the line directly. The entries in L, which are the essential items in our

analysis, will be linear combinations of these per-unit-length "inductances"

and once L is determined, there is no need to separate its entries.
~d

i kA

All of the terms resulting from losses, rco, rci, rcj, gio» gjo, 8y "co’
L. s 4

. c. 2re, in general, functions of frequency. The external parameters,
i J

ﬂo’ !li’ 25’ mijl miot m,

20° cij’ ciO’ CjO’ g0 gjO' gij’ are derived assuming

perfect conductors such that the transverse fields satisfy a static distribution

at each x along the line [39]. These external parameters will also be func-

tions of frequency if the permeability, permittivity or conductivity of the

surrounding medium is a function of frequency. In this case, the parameters

are recomputed for each frequency assuming the transverse fields satisfy a

static distribution at each x along the line. All parameters are per-unit-

length quantities and therefore the total value of each parameter for a jx

length model in Fig, 7 is the per-unit-length value multiplied by the section [
length, Ax.

It is important to note that this is an exact representation of the TEM

mode of propagation for (n+l) perfect conductors in a homogeneous medium

-25-
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as in Fig. 1 and Fig. 2. Imperfect conductors are considered as an approxi-

mation through rco, rci, rcj, I,CO, !,Ci. l’cj under tle. issuiption that the

conductivities of the conductors are very large and much greater that the

conductivity of the dielectric medium so that the fields structure is essen-

tially TEM. Although the presence of an inhomogeneous medium as in Fig.,
i k:
3 precludes the existence of the TEM mode except perhaps in the limiting

case of zero frequency, the equivalent-circuit representation in Fig., 7 will

be assumed to be an adequate representation for the quasi-TEM mode for the

o v ik e il

lines in an inhomogeneous medium in Fig. 3, The parameters for thic case

will also be computed at each frequency by assuming (as a first-order

approximation) that the field vectors are entirely transverse and satisfy a ,

static distribution at each x along the line.

For the two-conductor cases in Fig. 4, the transmission line equations

L3
. e < o 1

can be derived from the A x equivalent circuits in Fig, 6 for the sinusoidal,

r _ steady state in the limitas pAx -+ 0 as a pair of coupled, first-order, ordi-

nary, complex differential equations [2, 3]

: dv . .
3 _ _.a.x_@i). + (rc ‘*'J(l)!«E +jwg) I(x) =0 (1a)

D 4 (g 4+ jue) V() =0 (Ib)

o Y

where Z and Y are the per-unit-length impedances and admittances of the

: line respectively. For each of these cases, r.= rc1 + rco, L. =

g = “1 + 1,0 - ZmlO’ c=cyy and g = 810° If an incident electromagnetic field s

G A A I

illuminates the line of Fig. 4a, the equations in (1) are modified to include

TR e

the effects of the incident field and become [20]
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: |V

- ‘—(—l;(-’ﬂ t 2 Ux) = V() (22}
i d I{x) _

: —_— Y V(x) = Is(x) (2b)

where V (x) and Is(x) are distributed sources along the line induced by the

spectral components of the incident field and are given by [20]

. d (inc)
V() =jwu, { H ly,x)dy (3a)
s v, 2
g [(inc)
Is(x) =Y Q E_(y,x)dy . (3b)
¥y

0 ‘

The two wires in Fig. 4a lie in the x,y plane with wire 0 aty = 0 and wire 1

aty = d. The components of the incident magnetic and electric field intensi-

{(inc)
ties at the radian frequency  in the z and y directions are denoted by Hz(y,

)
{inc)
and Eyéy,x),reSpectively.

Similarly for multiconductor lines, the transmission line equations can

be derived from the equivalent circuit in Fig. 7 for the sinusoidal, steady

state in the limitas Ax + 0 as a pair of n coupled, first-order, ordinary,

complex differential equations in matrix form as (see Appendix B)
V(x) + 2 I(x) = V_(x) (4a)

) + ¥ V(x) =1(x) (4b)

which may be written in an alternate form as a set of 2n coup.ed equations

in partitioned form as

- V) 2l 2| |¥m v, (x)
) = - + (%c)
I(x) Y ngn Ix) I (x
-27-
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A matrix, M, with m rows and n columns is said to be m y n and the ele-
ment in the i-th row and j-th columu is desi;aated [M]. . with i=l, «=w, m

and j=1l,-~-,n. The dot (*) denotes first derivative with respect to x, i.e.,

[y.(x)]i = < Vi(x)’ and mgn

S is the m y n zero matrix with zeros in every

position, i.e., [ 0 ].. =0 for i=l,~=-, m and j=1,---,n. The elements of
m~n-tl

the n 1 complex colurun vectors V(x), I(x), V (x), I (x) are [X_(x)].L = Vi(x),
[_I_(X)]i =L.(x), [-Y-s(x)]i = Vsi(x)' I )], = Isi(x) where the element of an n y 1
column vector V with n rows in the i-th row is denoted by [_’\_/'_.]1 for i=l, ---, n.

The per-unit-length series voltage sources, V. (x), and shunt current

i
sources, Is'(x), are induced by the spectral components of the incident
i

field and are complexevalued and functions of {requency and position, x,
along the line. For (n+l) wires in a homogeneous medium in Fig, 2a, these

sources are shown in Appendix C and in [27] to be

(m )

A (x) = g, g ni (gi’ x) d§; (5a)
0
L) = - {(g, +jw cig) + .7 (g c, )}K ““’(s x) dg, (5b)
84 io Tw i0 j=1 1] tiw ij y
j#i

J‘i {tgy; +iwe, ) S 10 ‘““‘"(@, x) dg
j#i ;

where gi is a straight-line contour between wire 0 and wire i and perpendic-

ular to wire 0 and wire i. Hf;_nc)(%i,x) and E(tl‘nc)(gi,x) are the components of
1

the incident field vectors normal to a plane formed by the two wires and
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parallel to g, (transverse field) respectively. Solutions for Vg (x) and L5 (x)

i
for ‘he other configurations are discussed in (22, 24,25] and Appendix C,

The n x n complex-valued matrices Z and Y are the per-unit-length

impedance and admittance matrices respectively and are symmetric, i.e.,

z = z%and Y = Y" where the transpose of ann y n matrix M is denoted as

Mb. These matrices are independent of x since the lines are uniform and
~

are separable as

Z=R_+ ,lw}:C +jeL (6a)
¥=G+iug (6b)

where R and L, _are the per-unit-length conductor resistance and conductor
internal inductance matrices respectively and are real, symmetric. The
external parameter matrices, 9, ’I;, and g, are real and can also be shown
to be symmetric (for linear, isotropic media) regardless of whether the
medium is homogeneous or inhomogeneous thus permitting the equivalent
circuit representation in Fig. 7. [39]. The matrices G, L and C are the
per-unit-length external conductance, inductance and capacitance matrices

respectively, The entries in these matrices are obtained in Appendix B

and are given by

[~C]ii = Ci + rCO [~C]ij = rCO (73)

i#j
[~c]u =4, A [l“c]U =4, (7b)

" e 0

i#j

(L), =2 + 2, = 2my, (L) = 4y +my - My -y, (7c)
i#j
-29-
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: n
i [Cl.=c + T c. [Cl, =-c. (7e)
. ii i0 j=1 ij ij ij

i# j

.
S
.

for i,j =1, <==,n. Cand G are said to be hyperdominant since each term on

o ST T T 2y,

3 e

the main diagonal is greate: than the sum of the elements in that row [39]

AR

SRS

and they can therefore be shown to be positive definite meanin;’ that al)l n

iy, 213

eigenvalues of C and all n eigenvalues of G ar2 positive and nonzero [41]. ;
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The derivation of the per-unit-length parameters will be discussed in Section
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III. SOLUTION OF THE TRANSMISSION LINE EQUA TIONS

The set of 2n first-order, complex-valued, ordinary differential eGua-
tions in (4c) which describe the transmission line for the TEM mode of pro-
pagation and the sinusoidal, steady state are in the form of state variable
equations [38,4Zj. Systerns of first-order differential equations in the state
variable form have received considerable attention in recent years in the

general area of linear systems and the solution to (4c) is

X(x)'l V(%) N N KA
= §(x, %) + 8 (x, %) | = (8)
1{x) RIESY 7%y _Is(x)

where §(x, xo) is the 2n y 2n comple.t-valued state transition matrix which is
the solution to (4c) with _Ys(x) =_I.s(x) = ngl and the parameter Xq is some
arbitrary fixed point along the line [38, 42].

Obviously the difficult portion of the analysis (aside from the difficulty
in computing the per-unit-length parameters and equivalent field excitation
sources in _Ys(x) andls(x)) is the determination of the state transition
matrix or chain parameter matrix, g(x, xo). Fortunately, for uniform lines
where Z and Y are not functions of x, the solution is fairly simple as will be
shown (although there are some important computational problems when
losses are included}). For nonuniform lines where g and X are functions of
x, i.e., z.(x) and X(x), (4c) becomes a set of nonconstant-coefficient differen-

tial equations (Bessel's equation is an exa:nple of a nonconstant-coefficient

differential equation) [43-46]. For these types of lines, (8) holds but the

ultimate difficulty is the determination of the state transition matrix and
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except for some very special structures one must resort to numerical
methods and approximations to obtain § (x, xo) [42]. 1f the line is "abruptly '
nonuniform'' as with branched cables, i.e., consists of uniform subsections

in cascade, then the overall chain parameter rmatrix, 3(x, xo), is the pro-

duct (in the appropriate order) of the chain matrices of the individual

uniform subsections between x and Xq and thus is straightforward to obtain,

L Y L S IO 5

As an example of this application to an ""abruptly nonuniform'' line, consider

the line as a cascade of N uniform (n+l)-conductor transmission lines with

1
each section between x = x; and X, 1 described by i
3 Vix;) V) i A Va0, ‘
1 = §(x; x, 4) +§ §.(x,, x) dx (9)
4 AR i-1 x. 1~1 i A . 1
| ;
¥

X, < X < X, -
iel= " = 7

for i=l, =-~, N where gi(xi, x; 1) is the chain parameter matrix for the i-th

b
é
“.‘

section between x = *1 and x =X, (xi-l < x< xi) and _\f’siandlsi are the equiva-

T IRSPID

lentinduced source vectors for the i- th section. By sequential substitution, the

S e et o OIS 1

overall chain parameter matrix for the cascade of N sections between Xq and

P Y

g

S rirs o latmbi ™t 412

XN (which are not required to be identical) becomes

8y %) (10)

‘.’: -~ A

V(XN)

Vix,) A

e

= ) Enlxne *non) Ene1ner Bns2) ottt 3alx xp) Bg(xgs "0}
I(xpp) _l(xo)
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*i-1

v

T

X

N . A
+ S .ﬁN(xN’ X) A
XN.1 Ignix)

AR R !MWQ
R R R e DO ol e o
*

-YSN(:‘) A }
dx L)

The overall chain parameter matrix for this cascade of nonidentical line
sections between x = Xg and x = XN is identified in (10) as the matrix product

: 'g(xN, xo). Note that the indicated order of multiplication of the individual

ek achin,

chain parameter matrices must be preserved since they do not generally

R e

commute. Lumped-element networks at discrete points along the line can

also be incorporated into the problem by writing the .natrix chain parame-
ters of these networks and including them appropriately into the product of
the chain parameter matrices of the individual uniform sections in the above
manner,

When the line is uniform (as is being considered here) where E and }:

are independent of x, the state transition matrix, ,Q,(x,xo), can be shown to

R VL n_mww‘,‘ﬂmw

be a function of only one variable; the difference quantity (x-x,) [42]. Thus

. i o e g R T TR il J‘""‘?'.";"f e b
v*r"nwm“""’ v S e B T

Tag 1005,

for uniform lines, we may denote the state transition or chain parameter

&

matrix as $(x- xo). The state transition matrix has the property that

8(xq» Xy) =1, whkere 1, is the 2ny 2n identity matrix with [..I,Zn]ii = 1and

)

[»}«Zn]ij =0 fori,j=1, -=--, 2n and i#j [38]. This should be clear from (8) by
setting x equal to x;. Additionally, it may be shown that §~ 1(x,x0) = ¥xg, %)

where the inverse of an n ¥ n matrix M is denoted by sz‘l and therefore the

-33.
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inverse of the chain parameter matrix may be trivially determined [42].

This is quite obvious from (8) for V,(x) =_Is(x) = ngl by interchanging the '

roles of x and xy.

For two-corductor lines (n=1l) the transmission line equations become a 1
set of two complex-valued, ordinary differential equations given in (1). The
solution of the transmission line equations for two-conductor lines can be
obtained quite easily by differentiating (lb) with respect to x and substituting
(la) to yield

d? 1
g;éx—) = Y Z I(x) (11)

e i A0 oo, ikt 7L

vZ I(x)

where the propagation constant, v, is

v=JYZ (12)

e

77

The solution to (11} becomes

- ——— 1

I(x) = e" VX [T . V¥ I~ (13) . |

where I+ and I” are complex, undetermined constants. Substituting (13) into

(1b) yields

-—n

[] 1
P
V(x) = Z {e'Y" It 4evx 1‘} (14) ; '
1
where the characteristic impedance, Z, is given by E
i
— - g
Zo=v/Y=/2/Y . (15) 1
To find the solutions in the time domain, multiply (13) and (14) by e3¢ to . : ;
ot : :
obtain . .
jpt - yx t + - i
; V(x, t) = TZC e(']"‘t YX) ]+ 0 Zs e(']”‘ Vx)I ] (16a) 4' :
. \ i
=% - W.(, ~ - o 1 1
‘ V (x,¢) YV (x0 T
-34- {
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9 (x,t) = [e(.imt - ¥X) ] . [c(jmt + vx) -

i g SR = i

(16b)
- wr >4 “‘VM
; ¥, 1) & (x, 0
Therefore the total solution consists of waves traveling in the +x direction
5 (forward-traveling waves) denoted by VL(x, t) and J*—(x, vy and waves traveling

!~ : in the -x direction (backward-traveling waves} denoted by 77 (x, t) and §~(x, t). }
: ' The characteristic impedance, Z., is the rativ of the voltage and current in ; 1
3 P
A the respective waves. ‘ |
i For two-conductor lines, the chain par. _ter matrix is 2 y 2 and can P
E easily be shown to be [2, 3] | 1
4

; .
v . y 1 ]
v cosh {v(x-xo)} -Zc siah {v(x-xo)} |

: . s(x: xo) = 1 L](r?)

5 5 sinh {V(x-xo)} cosh {V(x-xo)

b C

’ where cosh and sinh are the hyperbolic cosine and sine respectively, ;
4
\ Note that the determinant of the chain parameter matrix is unity. Knowing

;

; this quantity, the solution for the voltage and current at any point, x, along

E‘ the line can be found from (8) in terms of the voltage and current at some

reference point, x;, as

V(x) = cosh {¥(x-x9)} Vixg) - Z¢ sinh{v(x-x0)} 1(xg)

e s e s s e AR .

{18a)
: x A A A A A
+ g [cosh{y(x-x)} Vs(x) - ZC sinh {'v(x-x)} Is(x)] dx 1
'4§ xo . ) k]
. I(x) = - .ZIE sinh IY(x-xo)} V(xo) + cosh {Y(x-xo)} I(xo) (18b) 2

+ gx’; [ z—lc' sinh {y(x.a‘c)} Va() + cosh fvix-x)} 1,0)] ax -

aas MY
vtk

*

poss
PSS
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For multiconductor lines, the equations in (4c) may be thought of as
“strongly-coupled' state variable equations since the bluck off-diagonal
terms, Z and Y, are nonzero whereas the block main-diagonal terms are
zero,

no '’ The chain parameter matrix, g(x,xo), however, may be dater-

mined in the following manner which is similar to the method for solving the

two-conductor line employed above [18, 26,47]. Assuming for the moment
]
that lfa(x) =_'_I_s(x) = ng 1, differentiating the second set of equations {1b) again '

with respect to x, ‘_I(x) =-Y i’(x), and substituting the first set (4a), _.V_(x) =

A%

-g I(x), one obtains the set of n second-order differential equations

T = Y2 1) (19)

Note that even though Y and Z are symmetric, it is not necessarily true

that the matrix fn‘oduct Zg (or ZY) will be symmetric.
The solution of (19) is usually obtained with similarity transformations

(13,18, 26, 38, 41,42,47, 48], which is referred to in the power transmission

literature as '"modal decomposition'' [13]. Define a change of variables,

e v A AR S ) W LIS, St LR FH e B 2 LA R Exty n S,
h i e A SR B bt AL S AL S A M

I(x) = TI (x) where T is an nyn nonsingular, complex-valued matrix and

PP P

_Im(x) is an nyl complex-valued vector of ''mode currents', Substituting

o

this change of variables into (19) yields

o _ -1
T,=T'yzrL, - (20)

DPRVGIPURPRPUTSICY. SV

Suppose there exists an nyn similarity transformation, T, which dia-

gonalizes Y 4, i.e.,

Tly

IN

T = y? (21) T

PPN

where v? is an nyn diagonal mistrix withk
ot

- 36-
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V .
3 T
! 2] o2
i 23 = v, (22a)
el 5 =0 (22b)
} s
f i#j
!
‘ and the termas, Yia’ i=1, ~aee,nare complex- valued scalars., Then (20)
} becomes a set of n uncoupled differential equations with the simple solution
(18, 26, 47]
1) =T1 (%) (23)
-YX + -
STl ~T17 1
where ,glx is an n¥n diagonal matrix with
X .
(¥, = (242)
[eX¥] ij =0 (24b)
. itj
and 1" and 1% are ny 1 vectors of 2n complex,undetermined constants,
: Ii+ = [__ +}i and I = {_I_"]i, which will, in general, be functions of frequency
[47]. These undetermined constants will be evaluated by conmsidering the
boundary conditions o termination-networks at the ends of the line. Since
from (4b)_i(x) T - zElx), one may obta'm. from (23)
-1 dl(x)
: oY U =l 5
Vix) = -¥ - (25)
YTy I ne ¥ e s o))
: =Z2Tyirlfmeyey +et* 1)}
: ~37-
) - i N . L mat

ikl SN AT, Bt ARG et e I Sk RN
i e itk A e AT
AR N0 N LI T AR . e " MOV LM e S T e




where vy is an nyn diagonal complex-valued matrix with
& H = :/ 2
»): E [x] ij =0 e (26D)
: i#j
‘ §
One can easily show from (21) ths identity Y'1 Ty=ZT y"l which is used in i
i R 2% ~ A~ NNt~ 4
N : ;
iy (25). %
H i The solution in the time domain can be found since Z(x, t) = Vix)e
e » . k.
; t
: 2 and J(x, t) :_I_(x)eJmt by multiplying (23) and (25) by e*®", It should then be E
; i clear that the total solutions consist of forward-traveling waves, 'Z+(x, t), 3
;o - i z
? Q_+(x, t), and backward-traveling waves, /' (x,t), & (x,t), on the line with
(18] R
F Yt = g x) + 37 (1) (27a) :
L dx,t) =dHxt) - D (x, 1) (27b)
where ) i
EMCRES S SR (282) |
4
I (x,t) = Telfp- o0t (28b) )
- Vit =297t (28¢) ’g
. . - . b
D Yt = Za97(x,t) (284d) 1
f. .sz
and Zq is the ""'characteristic-impedance matrix' relating the voltages and 2
currents in the waves with Zc defined from (23), (25) and (28) as é
Ze=YlryTl=27TyVylT"! (29a) ) i
2
B -— "'1 - "'1 »
Zo =X\ TZ=23D7 . @9v) |
E
. ;
- 38- %
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The symbolic notation in (29b) conforms to the scalar characteristic imped-

ance for two-conductor lines discussed above. It can be shown that [18]

SiZ=1y1! (30a)
V2= IZY (30b)
JYZ=v/2y Y1 | (30c)

The relations in (30) may be easily shown [18] by forming s/z Z) V}_:-Z) =

CTyIH@yTh=TyTl=YZana (Z9) (2D = XY X2 (TYTZ V-

2Y. Note that /Y Z ¥,/§Z and the order of multiplication of the matrices

cannot be interchanged since Z and Y do not,in general, commute.

If the mode currents, I, (x), are defined as in (23) and the mode vol-

tages are defined from (25) as X(x) = .g‘C I_\_'m(x), then it is clear that the

mode quantities consist of n uncoupled waves and each mode has the propa-
gation constant v,, The velocities, v;, and attenuation constants, n;» asso-

ciated with each mode are found by 'vriting Yy =n; t j(w/vi) where ni and v;

are real scalars., Thus one might think of these ''mode'' quantities as being

somewhat basic quantities in the overall propagation of the waves since the

total voltages and currents are linear combinations of the mode voltages and

mode currents,rc¢spectively. This concept, however, is not particularly

useful in obtaining numerical solutions to a given problem via machine com.

putation and is only offered as a link to the more familiar two-conductor |

case discussed above. There are, however, instances where this concept,

when related to matrix scattering parameters, can prove useful in cerfain

synthesis problems [19].
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The state transition matrix or chain parameter matrix, Q(x,xo). in (8)
which relates voltages and currents at the two ends of a section of the line
extending from x, to x can also be obtained by eliminating I *and I- from

(23) and (25) as [18, 26,47]

V(x Vix,) 8105, %g) By a0x%5) ] [Vixg)
= i,(x) xo) = (31)
_I.(x) _I(xo ) 291 (x’ xo) 23 a (xl xo ) l(xo )

where the nyn submatrices, 2'ij(x' %) i, j =1,2 are given by [26,47]

By Goxg) =172 1T (@700 4 ¢ THOHO) gl

(32a)
Bualexg) = <172 X T yeF 0N O, 4ol (32b)
172 vl v pelf (el FF0) | 00l T‘l}
o)« 212 7 07X ey 20
= -1/2 {’,1:(51 Gexo) et Ge-xg), '{1}3 yirly
Baalxxg) = 1/2 T(eUPT0) 4 g A%0)y o1 (324)

From (21), one can obtain 3_1212 %Il’l and therefore X'IZ:{‘ in (32) can
be written in terms of Z. '

The state transition matrix can also be obtained as an absolutely con-
vergent matrix infinite series [38, 42]

2 3 (o a
x, xy) = MOT0) Ly Mlx-xo)  MPxexg)® MP(x-xg)

~2Zn 1! 21 31 ¥ (33a)
where from (4c¢)
0 -Z
M= ~ (33b)
~ ]-y 0
~ n~n

After obtaining the indicated products of M, one can obtain [18]
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(x-xo)3
—

- a (x-xg)* .
Biaxg) =1 +2ZY HZY)? 00 e (342)

| (x-%g)3 (x-%0)*
=Y {_gn tYZ 0+ (g 0 +---} Y

2! ~

8ia0x,x)) = -2 (x-x ) - %ZE(X—;:L) -(ZY)* 2 "‘5"‘0’ - === (34Db)

=-2(fX g)“{/xg (x-x0) + (T Z)> Lol

5
+( X%)s Si:fg_)_ +___}

51

R

(/2% g + T 0
(x-xq)° -
FEDR R ] 23 x

- B
85y (x, %) = Y (x-x3) - YZY ("ﬁ“_‘g)_a- (Y 2)3 zi’i";g’_ - =n= (34c)

~ o [}
:

'X‘v/%l”'l{f?.x (x-x4) + (fZ ¥)® ("""0)3

(x-x,)°
YVl

-{ YZ (xexg) + (f12 el

1]
o T e} Ry

4
3"(&)‘0) =14 YZ X +(Y Z)2 (x_';'l)_ 4 cu- (34d)

(x-xp)? (x-xq)4 -1
=Y{l +2Y +(Z3 0 +...1y
-~ ~n ~ o~ z ! (~ ~ —T!— } ~ Y
Matrix hyperbolic functions Cosh and Sinh may logically be defined in

. J Z (x-
the following manner. The matrix exponential, e Iz x xo)’ may logically

-41-
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be defined as the absolutely convergent matrix infinite series [18, 38, 42]

- 2 - 3

The matrix exponential, sx(x'x()), can similarly be defined as an absolutely

convergent matrix infinite series [16, 38, 42]

Y(x-xg) _ (%-%p) a (x-%5)2 5 (x-%,)%
= =la X 1! Y 21 Y 3 to--- (36)

Since Y Z is assumed to be diagonalized by T as in (21), then the square

root of Y% may be defined as /YE =Ty T'las shown in (30), Therefore,

~ A Pt P

(35) may be written as [18, 38, 42]

T (eox0) | g Y%%) g 1)

JZY (-xp) )

U4
w

where,/ZY is defined in (30b) and (30c). Thus the matrix hyperbolic func-
tions Cosh and Sinh may be defined from (35), (36) and (37) as
Cosh{/Y Z (x-xo)} - 1/3{2435 (e-xg) 4 VY2 (x-xo)} (38a)
(x-x4)2 (x~xg)*
= 2 4 0
Lo+ WYZ2P e+ (Y20 S0 -
=1/2 T{ex(x-xo) + e-l(X-xo)} -1

Slnh{‘lzg (x..xo)} = 1/2{2' Z% (x-xo) - E"ng (x-xo)} (38b)

+(fYzye ___(x;x°)5+ —--
~ !

=172 {00 SXEOf pe
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Therefore, it should be clear by utilizing the relations in (35), (36), (37)
and (38) that the expressions for the chain parameter submatrices in (32) and

(34) are equivalent and may be written symbolically as [18]

3, (x, %) = Cosh{jg—g (x-x4)} = ¥~1 Cosh {fii (x-xo)} Y  (39)
31506%0) = -Z(fT D) sinh { JTZ (x-xq)] = -Sinh f /ZY (x-xo)} /25(3:3;
= -Z¢ Sink { fYZ (x-x))} = -Sinh {fg"f texp) } Zc
3., (%, %)) = -¥(/ZX)"! Sinh {/Z‘E (x-x0) = -sinh { /Y Z (e-x0) } (/f'gz;;cyg
-z siah { f2 Y (xxy)} = -inh {,/f;z' (x-xq)} 2
422 (x, x5) = Cosh { /Y Z (x-x0)} = ¥ Cosn { /2 Y (x-x) } X1 (394)

where the characteristic-impedance matrix, EC' is defined in (29) and (30),
(Note that these reduce to the scalar elements for two-conductor (n=1) lines
in (17),) For numerical machine computation, however, one would use the
forms of the submatrices given in (32) since the equivalent expressions in
(34) and (39) would be of little practical value in obtaining numerical results,
Also one can show certain fundamental matrix identities involving the

submatrices of ine chain parameter matrix [18]:

Identity 1: 8, &5, 3;}, $0 - 81585, 1 ) (40a)
Identity 2: %5, &, 32y a2 = 8o, 8,5 = 1, (40b)
Identity 3: &, 3 Q;]; = &, (40¢)
Identity 4: &,, &,, Q;} = §a3 (404d)
Identity 5: §,, = Q:a (40e)
-43.
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where ij refers to Qij(x, xo). Identities 1 and 2 reduce, in the case of two-
conductor lines (n=1) where e submatrices become scalars, to familiar )

results, described above i.e., &3 %;; - &3 $3, =1 and the determinant of

the chain parameter matrix is equal to unity. Similarly, Identities 3, 4 and i
: i

5 also reduce, in the case of two-conductor lines, to familiar results, i.e,, g
i

i

$22 = §;,. 71hese identities may be proven by substituting the forms of the

submatrices given in (32) and utilizing the fact that vy, el(x-xo)and e-x(x-xo)

~

are diagonal matrices whose products may therefore be interchanged. The
identities may be more directly shown, even when Y Z is not diagonalizable
by a similarity transformation, by recalling that the inverse of the chain

parameter matrix or state transition matrix is given by 3-1(x,x0) = g(xo,x)

[42]. Forming this relation as §(x, x9) &(xq, %) = L, yields in partitioned

form [18]

-
Eu(x, XO) ,?,12("’ xo) 211(’(0, x) 212(xop X) ln n’gn (41)

824 (x, J‘o) gaz(x» xo) Eel(xO’x) 322(x0'x) nEn ~n

Multiplying this result out and observing from (34) that ’g”(x,xo) = gn(xo,x),

Srolexy) = -8, ,_,(xO.X), 821(%,%xg) = =85y (%5, %), Baa(x, %) = $a3(xy, x) yields

Identities 1, 2, 3, 4 directly [18]. Identity 5 is easily shown from (34a) and

(34d) since Y and Z are symrnetric, i.e., Z = gt and Y = Zt, and the trans-

pose of a sum of matrices is equal to the sum of their transposes [18, 38, 42]. '

This also shows from (34b) and (34c) that $,2 and §,, are symmetric, i.e.,

21a= 252 and B, = 3;1 (18],

~44.
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Thus the result conforms (symbolically) to the two-conductor case in
which Y and E are complex scalars instead of matrices. This use of sym-
bolic notation for the squire root of a matrix and the matrix hyperbolic func-
tions Cosh and Sinh of course makes sense because it was assumed that the
matrix product Y Z was diagonalizable by the similarity transformation, T.
It is not necessarily true that the matrix product X% (and also g X) will be
diagonalizable by a similarity transformation [41, 42]. If the product is not
diagonalizable, then a similarity transformation may be found to place YZ in
the Jordan Canonical form and this result is found in [47] although numerical
results become more complicated to obtain.

Thus one of the important simplifying assumptions is that Y Z is diago-
nalizable by a similarity transformation as in (21). It is often assumed that
Y Z can be diagonalized by a similarity transformation regardless of the
numerical entries in Y and Z and this is,of course;not necessarily true
[41, 42]. To more completely investigate the problem, determine the eigen-
values of YZ as roots of the n-th order complex polynomial in v [18, 41, 42]

det (v21 -¥2) =0 (42)
where det denotes the determinant, If the resulting eigenvalues, Yiz' are
distinct, then diagonalization of ¥ Z is assured and the n x 1 columns of T =
['_1:1, T, ==, In]' "_I_’i, are eigenvectors of Y Z sati.fying

(71, -x2) 1= 9, (43)
fori=1, ---, nl18, 41, 4Z]. But,.{ course,one does not generally know a

priori if the eigenvalues will be distinct and considerable computation may

-45-
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be required to determine this. If there exist repeated eigenvalues, then it

may or may not be possgible to determine n linearly independent eigenvectors

via (43), If n linearly independent eigenvectors can be found, then diagona-
lization is assured [18, 41, 42]. It can be shown that the eigenvalues of Y%
are the sarme as the eigenvalues of ,Z.Z (see [42], pp. 101-102). When either

Y or Z are nonsingular, this can be easily shown by forming [18]

det (2 1, -¥2) =aet {7 1 -z¥}y)=det (z1{\2 1 -zy}z)- .

|
%
|

~a
Ly

det 6/2 '\IJn -ZX) since the determinant of a product of square matrices is

PRSP

equal to the product of their determinants and det (X) det@:'l) =

det (Z'l> det (Z) = 1, Also one can form (43) as X(y? ln -ZY)Q‘1 Ti):
-1, 2 . _ e v s .

ng-l and 5 (yi ’ln 'E X)(fg‘i) = ng-l so that if X :s nonsingular then each of

the eigenvectors of Z Yis equal to the product of Y-! and each of the eigen-

vectors o: X% (within a scalar constant), and if g is nonsingular, then each
of the eigenvectors of ZY is equal to the product of Z and each of the eigen-
vectors of XE (within a scalar constant) [18]. These facts can be used to
form the relations in (23), (25) and (32) in terms offg-f and its eigenvectors,
When discussing the question of distinct eigenvalues in numerical come.
putation, it is important to consider the question of "how distinct'', For

example, if two of the eigenvalues are distinct only after the 16-th digit,

et e ek et s o PR el B e A B S bt Sl

then although they are technically distinct, the two eigenvectors from (43)

associated with these two '"almost~distinct'' eigenvalues may be very nearly

collinear causing T to be an ill-conditioned matrix with a very small deter-

5
I3
5
|
[
i
A

et L et

minant, i.e.,, T will be "almost singular''. Thus numerical instabilities
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and other associated errors can occur when, for exarnple, computing the

inverse of T, T"l, since T may be an ill-conditioned matrix having a very
small dete rminant [49].
This is one of the reasons why determining numerically stable similarity

transformations such as orthogonal or unitary transformations are important

in numerical machine computations[49]. For example, a real, orthogonal

similarity transformation, T, can always be found which will diagonalize a
real, symmetric matrix and I'l = It where the transpose of a nma trix M is
denoted by ILAt [4¢,49]. Also, complex,unitary transformations, I‘, can
always be found which diagonalize complex matrices which are either hermi-
tian or normal and ;I_"']‘ = Tx* where the complex conjugate transpose of a
matrix M is denoted by M [41, 49]. Hermitian matrices satisfy M = M and
normal matrices satisfy (M)(M*) = (M*)(M) [41].

Machine computation of the eigenvalues and eigenvectors of Y g is not
generally periormed by a direct application of (42) and (43). Instead of
directly applying (42) and (43), a more efficient method would be to tranform
ZE with a similarity transformation to some cther more convenient form
whose eigenvectors and eigenvalues are related to these of YZ. For example
it is known that it is always possible to obtain an nyn complex,similarity tran-
formation, LJ, which is unitary that will reduce any nyn complex matrix (in

particular Y Z) to upper triangvlar form, i.e., U* YZU = Man

~ A A ~

aux =yl

~

where M has zeros below the main diagonal [41], Then since M is similar to

Yg (in the mathematical sense of similarity), the eigenvalues of M which are
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the elernents on the main diagonal of M are the same as the eigenvalues of
Y Z 4], 49]. A commonly-used algorithm is the QR transformation [49]. The
eigenvectors of XE, T,, are related to the eigenvectors of I'\Li, —Si' by T, =
US; where S, is an nxl eigenvector of M associated with the eigenvalue y? and

corresponds to the eigenvector T; associated with eigenvalue y;" [41,49). The

transformation to Hessenberg form is also commonly employed [49].

In addition to the question of the existence of a numerically stable simi-

3

‘; larity tranrformation which diagonalizes the matrix product Y Z, there is

the problem of recomputing the eigenvalues and eigenvectors at each fre-

OE quency being considered. Since the matrix product Y Z is a function of ‘

; frequency, then one is, in general, required to repeat the determination of ;

t; the eigenvalues and eigenvectors of this complex-valued matrix product, 'i

i Xg, at each frequency and this can be a very time-consuming task when the .

b response at a large number of frequencies is desired. There are, however,

certain practical cases where Y Z can be diagonalized by a numerically ;

f stable transformation and, moreover, for these cases, T is independent of %

frequency and need only be computed once, These important cases will now ]i

% be discussed. 1

3.1 Transmission Lines in a Homogeneous Medium !

£ 1

é This section will consider the (n+l)-conductur lines in a homogeneous ‘ ;
medium represented in Fig. 2. Although the lines in Fig. 2a and Fig. 2b z
can only logically be considered immersed in free space which is considered ‘

¥

lossless, the formulation which will be investigated will assume losses in

b -48-
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the medium in order that the situation in Fig. 2c may be considered. The

following important relationas which are well known in the case of two-con-

ductor lines in a homogeneous medium are shown in Appendix A for the

case of (n+l)-conductor lines in a homogeneous medium which is assumed to

be characterized by y, €, o0: :

ey il

LC=CL=udel (44a)
LG=GL=uol . (44b)

When the dielectric medium is lossy as in Fig. 2c, the coaductivity in (44b)
refers to the effective conductivity as g= oq + me't = we, €. tan and includes
the combined losses due to ohmic conductivity, Oge and dipole relaxation
effecte, The loss tangent of the medium is denoted by tan §, ¢, is the per-
mittivity of free space and ¢, is the relative dielectric constant. The per-

mittivity, ¢, refers to the real part of the complex effective permittivity,

i.e., ¢= e, ¢, and the permeability, 4, will typically be that of free space,
Uype

In addition, since the medium is homogeneous it can al~o be shown [54]

that g = eg and from (44) it follows that

C=¢K (45a)
? L =uK-! (45b)
G =0K (45¢)

where K is an nXn real, symmetric, positive definite matrix independent of
€¢{and therefore frequency) and is dependent only upon the cross-sectional
structure of the line (conductor separations and wire radii). The matrix

: product Y Z with the relations in (44) and (45) becomes

-49-




Q

= - " WY
-y e p——n T T YT e —p— " T - - -

YZ=(o+jwe) KR, +jwL.) + (Juwuo - o®ue) L (46)
a:.d if perfect conductors are assumed, then all n mode velocities and
attenuation constants degenerate intc one set, which represents the true
TEM mode of propagation.

If perfect conductors are assumed, i.e., B’c =L = 0, then from (46)

~C N~

”

T=1, and y.f = (jwuo~ w®ue) in (?1) where 1, is the nyn identity matrix
with ones on the main diagonal and zeros elsewhere. Thus, the matrix
chain parameters for the homogeneous-medium case with (n+l) perfect con-

ductors become from (32)

#,.(x,%5) = cosh {y(x—xo)}l’n (47a)
B1o0x,%g) = - sinh {vix-x))} [Guw/v) L] (47b)
005, %0) = - sinh {v(x-x0) } [(ju/v) L]} (47¢)
#55(x,%)) = cosh {y(x-xo)}Ln (474d)

where v =’jwu(c + jwe) and the characteristic impedance matrix becomes

from (29a)
Jonl -1
Z = e et — 4 3
~C ,/ (o+ jwe) 3 (48)

= (ju/v) L .

For a lossless medium, o =0, y= jyfue and (47) becomes [26]

8,106, x)) = cos {plx-x)}1, (49a)

8,405, %)) = - j sin {B(x=xq) } [ L] (49b)

82, (x, %)) = - j sin {g(x-x) }[v ]! (49¢)

Baa(,%g) = cos {Blx-x)}1, (494)
~50-
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where the wave number, g, is given by 8= 2n/)\, A= v/f, v= 1//He and the

characteristic-impedance matrix is real and becomes Zc = n L.

If perfect conductors cannot be assumed, then from (46) it is sufficient

to find a T which diagonalizes K (BC + j‘”,Idc)’ i.e.,

T {K®. + oL} T = 42w (50)
%a; where AZ(w) is an nyn diagonal matrix with [f(w)]ii = /\2i (w) and [Az(‘”)]ij =0
3 for i #j. The eigenvalues can then be found from (46) and (50) as
;

V3 = (04 jwe) A () +(juHo - w®ue) . (51)

In general, diagonalization as in (50) is not assured since K (B.c + jw%c) is a '

complex matrix with no particular structural properties which would be

useful in determining a’ priori whether the matrix is diagonalizable, i.e.,

hermitian or normal,

If one neglects the internal inductance of the conductors, i,e., L. =

nrgn’ or neglects the resistance of the conductors, i.e., Rc = 0,
— ~ n~n

then

numerically stable transformations can be found which diagonalize each of

A Mo AP Tl -

these cases but not both, i.e., there exists a T such that [13]

, tion of a numerically stable transformation, T, which will diagonalize the

T-1KR T - L, = 0.} (52) o

or there exists a T such that ;

WITE LT = 2w {R = 0.} 53)

but the same T will not necessarily simultaneously diagonalize both., That ‘}

this can be done relies only on the fact that K is real, symmetric, positive %

definite and that R, and AI:,C are real symmetric [13, 41, 42], The construc- ‘i

é
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product of a real, symmetric, positive definite matrix and a real, symmet-

ric matrix will be shown in Section 3,2 and may be computed very effi-

e ALt L AL S e 2 e ,—w“

ciently with the subroutine NROOT in the IBM Scientific Subroutine Package

e

(SSP) [50].

Generally for high frequencies, the entries in L are much less

PP

than the corresponding entries in I,and the approximation in (52) would be
relatively accurate [13]. However, in either case, since both R and L;c
are functions of frequency, the transformation matrix, T, and the eigen-

values must be recomputed at each frequency under consideration and this

e I Ste - S

increases the overall computation time.

T T

There are cases where one can include both resistance and internal

inductance of the conductors and obtain a numerically stable, frequency-

independent transformation. For example, consider Fig. 2a in which all

(n+l) wires are assumed to be identical, In this case, (50) becoines (see (6)

and (7))

{ .
(re +iueg) TUE L + U} T = pr(w (54)

where the (n+l) conductors (including the reference wire) have resistance,

s FaaraAt i i il A s Kb e A o St P

.

re, and internal inductance, f£., and Up is the nxn unit matrix with one's in
every position, i.e., [fgn]ij =1 i,j=1,---,n. Note that even though K and
{Ln + En} each are symmetric, it is not necessarily true that their product
will be symmetric. Since K is real, symmetric and positive definite and

,Ln + Hn} is real, symmetric then, as discussed before, the product can be

mre ma e o AR L S A

diagonalized and NROOT in SSP can be used to perform the reduction [50].

Furthermore, T will be independent of frequency and need be computed

-52-
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only once in the frequency response solution and the eigenvalues can be re-

computed very simply at each frequency from (51), Assuming that the n

wires in Fig. 2b and Fig. 2c are identical, then this technique applies since
U,, does not appear in (54) because the ground plane and circular shield are

assumed to be perfect conductors., In this case one only needs to diagonal.

ize K which can be accomplished with the subroutine EIGEN in SSP [50] since

K is real, symmetric,
~

3.2 Transmission Lines in Inhomogeneous Media

One of the main problems under consideration in this report is the case
of circular wires with circular,dielectric insulation as shown in Fig. 3 which
appear in the form of bundles of closely coupled,dielectric-coated wires.

These commonly occur in electronic systems in the form of densely packed

cable bundles and flat pack or woven cables [51]. The inhomogeneity in the

surrounding medium (free space and insulation dielectric) makes the identi-

ties in (44) no longer true. However, it is always possible to diagonalize

the matrix product YZ with a numerically stable transformation, T, when

perfect conductors and dielectrics are considered regardless of the entries

in C and L.
First consider the case where losses are neglected, i.e., G = R.= Lc =
nOne The matrix product becomes
Y§=-wQSL . (55)

Recall that L and C will be real, symmetric and C will be positive definite

even for this inhomogeneous medium case [39]. Since C is real, symmetrig

-53-
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then there always exists an nyn real, orthogonal transformation U such

that 1
vlcu-=p

o~

(56)

where D is an nyn real, diagonal matrix and u-1=ut [41, 49]). Further-
more, since C is positive definite, the eigenvalues of C which are the ele-
ments of the diagonal matrix 9 are all positive, real and nonzero. Thus

one can quite easily (and meaningfully) form the square root of the matrix

D, 91/2, and write

9-1/2 H.1 cu 9-1/2 B1/2 E-l LU 91/2 - D1/2 ot LU D1/2 (57)

which is real, symmetric. Thus (57) may be diagonalized again by an nyn

real, orthogonal transformation, S, such that

st Dl/2 yt Ly Dl/2Z 5 = 3

(58)
and one can identify the transformation matrix _"]; in (21) as
T=yp'/?s (59)
and propagation matrix vZ in (21) becomes
yi= -w? AR (60)
The propagation constants become from (60), v, = jw A where [-cz]ii = /\?1,
[A‘-’]ij =0, i #jand it is a simple matter to verify that
i1t !, (61)

The matirix chain parameters for this case are givei in (32) and [26] and the
subroutine NROOT in SSP will again perform this type of reduction [50]. If
the real parts of the permittivities of the insulations are independent of fre-
quency (or assumed to be) then this reduction need be performed only once

and if the real parts of the permittivities vary significantly with frequency,
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one must recompute T and v? (as well as C) at each frequency. In either

- case, T will be real-valued and numerically stable,

In the general case, the matrix product Y Z becomes

|
YZ=(G+jwC) (R, +inL) +(G+jwl) (wl) .  (62) ’

Even if perfect conductors are assumed, i.e., R . =L = non, diagonaliza.

tion of Y Z would require the diagonalization of the complex matrix ng,{;‘ -
wz’gL. However, G in general bears no simple relationship to L or C such
as in {45) since the fields associated with conduction current or dipoie

relaxation losses will be confined tc the insulation dielectrics whereas the

}
PO VAVIIRUPT Wer DN IR TN

fields associated with the real parts of the complex,effective permittivities

of the dielectrics can fringe into the surrounding free space medium. Thus

the diagonalization of YZ is not assured a priori. If diagonalization is ‘

,;wmmm;ggg;\‘l_ e - LR

possible, T would in general be complex and a function of frequcency.

If the dielectrics are assumed to be perfect (no ohmic conductivity or

dipole relaxation effects), then assuming all n conduciors are identical

(including the reference conductor in Fig. 3a) Y Z becomes for Fig. 3a
YZ=julre tiwt) Cn + U - 0*C L . (63) ,

For a real, frequency independent transformation, T, which diagonalizes 1

Y Z to exist, it would be required in general that the same T diagonalize

both g (,l.n + Un) and _9 }:. This is, in general, not possible. Even if the

P PN A S U B RO TR A,

~n ~ n~

i

]

|

reference conductor is assumed lossless, i.e., U_ = 0n in (63) for Fig. 3b {
i

and Fig. 3c, the existence of a real, frequency-independent transformation

ok
b

which diagonalizes Y Z would imply
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TCT = A (64a)
TlCLT=pM T LT =13 (64b)
where Af and ’/\\; are nyn diagonal matrices, This would therefore imply
that the same T would diagonalize both C and L and this is generally not
possible.

Therefore, the inclusion of losses generally requires that a complex
transformation T be obtained. The existence of a numerically stable trans-
formation is not guaranteed, in general, when losses are included. ;I“ is
also a function of frequency which requires that it be recomputed at each

frequency which increases the overall computation time,

3.3 Cyclic-Symmetric Matrices

If the n conductors and dielectric insulations are identical and if the
cross-sectional structure of the line exhibits certain physical symmetry
with respect to each of the n conducters and the reference conductor, then
the matrix product Y Z can be diagonalized a’ priori with a transformation
matrix, .T.." which although complex, is independent of frequency ¢ven when
lossy conductors and lossy, inhomogeneous media are considered., For
example, if the n conductors are identical with identical dielectrics all of
the same thickness, and are equally spaced with respect to each other, on
a ring symmetrical about the reference wire or are equally spaced with
respect to each other on a ring concentric with the circular-shield reference
conductor as shown in Fig. 8, then Y Z is always diagonalizable by a fre-

quency independent transformativ-. T,

-56-
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For each of the lines in Fig. 8, Z and Y will quite obviously be of the

form

- -

Z,72,2,°" " Z,Z,] Yy Yo Y," " " " Y, Y,
” 2,2,2,2, Z, YaY, Y ¥, Y,
5‘ Zs Zz hd . ) * Ya Yz . L] : . :
Z = . T v={- N (65)
;,%' N . . . . Z’ . . . . . . Ys
-g; . - ¢ - . ‘ . .
¥ Z3 © 42, Yy TN Y,
E Z,Z Z,2,Z Y, Y Y, Y, Y
;\: - 2 B oo . a 2 I.J L 2 B3¢ v o o . ] 2 1-! 5
i : , -
% where fg]“ A Zy, [X]ii s Y,, [.%]ij' [X]ij are defined in (6) and (7). ;
" Matrices with this special structure are cyclic=symmetric matrices and the |
) general nyn cyclic-symmetric matrix, M, is defined by [M]ij = M}i 5141
- ~ - }
_g where M., = M., M . = M, and indices greater than n and less than 1
Y jin J n+2-j J . i
5 are defined by th: convention n+j = jand n+i =i [52, 6' = Because of the p
}% special structure of the matrices, there always exists a transformation, T,

Y

which is independent of frequency and the numerical entries in Z and Y

g»%:
e bl e et

b which will diagonalize both Z and Y, i.e., T'1 YT = y;, 1z T = YQZ and 1
v‘\;: ~ ~ ~ I~ "~ ~ ~ I~ ~

: 3

2 - 4% 2 2 2 3 ; £ 1 3

: Y? =Yy V% where % and Y% are nyn diagonal matrices [1, &, 52, 65], The i
i elements of T which diagonalize any cyclic-symmetric matrix of the form in ‘]
v ~ ]
’ (65) are 5, 52, 65] ‘
i

= L1l . .
& ,’T] .= 1 [(Tl- (J‘l)(1-1)> (66)
. ~4) [a

where a complex number ¢ with magnitude ¢ and angle 6. is written as

cmzem. T is unitary such that I"l = T* ap ryclic-symmetric matrices
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can be shown Lo be normal matrices, i.e., MM* = MM, since it can be

~

shown that the product of auy two cyclic-symmetric matrices of the same

order commute under multiplication [52]. The eigenvalues, of the product

of two cyclic-symmetric matrices of the form in (65), Xg, can be shown to

be [5, 52]

,_(m 2n ENUL: 2 .
¥ = {pz:lrg]lp/n (p-1) (-1} k{él[l”lq/n (@D G-D}  (67)

where [%]lp and [X]Ip are the elements in tb= first row and p-th column of
Zand Y in (65) respectively, p=l,---,n,

Thus if the line consists of n identical conductors with identical insula-
tions and thicknesses and exhibits certain cross-sectional symmetry, then
the matrix product X% can always be diagonalized regardless of the numeri-
cal entries in Y and Z and the transformation matrix is ‘independent of fre-
quency. Neither the transformation matrix T, 1‘"1 nor the eigenvalues need
be computed since they are known a priori through (66), (67) and I'l = T,

Cyclic-symmetric matrices are obviously quite desirable from a come
putational standpoint and have been used in modeling cable bundlies under
the assumption that the conductors are arranged symmetrically about the
axis of an overall shield or occupy all possible positions within the shield

randomly [52]. Special cases of cyclic-symmetric matrices are encountered

throughout the power transmission literature under the assumption that the
power line is balanced or completely transposed and the transformation
matrix is often referred to as a symmetrical-component transformation

[6, 13].
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This method cannot generally be applied when the reference conductor
is an infinite ground plane since the special structures of Y and Z in (65) -
will not result unless the system of n wires and the n images used to re-

place the ground plane possess the required symmetry. However, for the

case of a three-conductor line (n=2) consisting of two identical wires both

Do ek A
-

at the same height above a ground plane, i.e., rwl =T o ty=tz, § = €3,

0, = 0g» hy = hy in Fig, 2b and Fig. 3b, then Y and Z will be cyclic-symmet-

ric regardless of the wire spacing, d; ,, or any form of transposition. In

this case, the elements of the eigenvectors become real as T,,= l/,/Z,

Tz, = 1//2, T,y = 1//2, Tgaa = -1/,/2 and the eigenvalues are easily shown

N

tobe vy = (Z+Z NY+Y ), v3=(2Z- Z MY~ Y ) where Z=12], =

[Z)3as Zpyy =1Z)y2=12)2, anad Y =11Y],, = [Y]s,, ¥ =1Y],=1Y]s,.

UV T P
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IV. INCORPORATING THE TERMINATION NETWORKS

Note that in (23) and (25), the only unknowns are the Zn undetern.ined
constants in L+ and [ " These will be determined by the boundary conditions

(termination networks) at x = 0 and x = £ for a line of total length § (sce

i Mk A U s

Figure 9). The incorporation of the termination-networks can consume con-

siderable computation time for large numbers of mutually coupled conductors

and this necessary step in the total problem solution is generally dismissed

as a trivial, straightforward problem. It is straightforward (conceptually)

but is certainly not trivial when a large number of mutually coupled con-

ductors are involved.

For two-conductor lines, the terminations (which are assumed to be

linear) are represented by Thevenin equivalents as shown in Fig. 6,

The %
terminal equations become ‘1
V(o) = vV, - Z41(0) (68a) {

V(s) = Vet ZS! I(£) (68b) ‘

where V5 and V£ are equivalent open-circuit port voltages with respect tov

v the reference conductor,

For multiconductor lines, the termination-networks are similarly con-

sidered to be linear n-ports and are characterizable by '"Generalized

"
-
e ——————— s+ et

Thevenin Equi ralents' as

v =V ~-Z 1 6

V@) =V, - 2, 1(0) (69a) !
£ Vi) = Vg + 2 1(S) (69b)
ki !
1
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where V, and X.t are nyl complex-valued vectors of equivalent open~circuit
port excitation voltages with respect to the reference conductor and ZO and
Zg are nyn complex-valued, symmetric matrices. The linear n ports can
quite obviously be characterized by (69) and [-Y0]1 = VOi’ [X.t]i = V“:i as shown
in Fig. 10. For arbitrary termination-networks, the entries in (69) can be
quite easily obtained by treating V(0) and V({) as independent voltage sources
and writing the loop current equations of the networks, The currents_I(O) and
1(£) will comprise subsets of the loop currents for the networks and the
remaining loop currents can be eliminated to yield (69). If the i-th conduc-
tor is connected to the reference conductor only through impedances ZOi and

Zﬁ. then the entries in Z_ and ZS are easily obtained as [go]ii = Z

0 Zow Zol

=0, [gS]ii = Zﬁ, [5.‘:]ij =Q fori,j=1,---,nand i#j.

Combining (23), (25) and (69) one can obtain straightforwardly [26, 48]

{zpT-ylry} ¢ {zgTrylrv} 1 v,
. ~ = (70)
-1 1 vee -1 -v & +
ezeytzyetfi-lzpr-y et | vl
1 1 1

Since T"" Y Z T = y2, then Y~

T v in (70) can be replaced by Z T v~
Once this set of 2n equations in the 2n unknowns, l+ and 1 7, are solved (by
Gaussian elimination and back substitution, for example, [49]) then the
response, V(x) and I(x), at any point on the line can be determined from {(23)
and (25). For two-conductor lines, the matrices and vectors in (70) become
scalars and I becomes 1 (see (13) and (14)).

It is also possible to indirectly solve for the response via the matrix

chain parameters. With x = £ and Xq = 0 in (31) and (32) and using (69) one
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can straightforwardly obtain (26, 48]

[Z823() - Zp 8,51 (8) Zo - 3,2(D)+8,,(£) Zp]100) = [, (£)- Zg 82, (9] Y - Vg (Tla)

BTN e Y,

1D =83,(0) ¥, +[232(8) - 2, (8) 2] 1(0) (71b)

where 3(£, 0) A 2(8). V(x) and I(x) can be obtained for any x from (8) with

L sl

1(0) from the solution of (71z2) and V(0) determined from (69a)., Here one

ey

é need only solve n equations in n unknowns, equation (7la), as opposed to 2n

; : equations in 2n unknowns in (70). However, certain matrix multiplications

ot

are required in forming both (70) and (71). ]

Using the matrix chain parameter identities in (40}, it can be shown

P R TR T G R AR

that (71) may be written in an alternate form [18]

L 22y (9) 2 - Zoa (9} 1, 10)] |81 (0Y, a2 1
, = :
1 {82,(9 Zg- L (JYUO) |- 20 (0Ve |

which has a highly sparse (large number of zero elements) coefficient
x matrix with 2(n® - n) of the 4n® elements identically zero. Equation (72) ;
¢ can also be solved explicitly for I(0) and I(£) as 8] i
[y ~{ 2210 Zg- 820 ({82, (9 25 - H2(0}1100) = - 85, (0 Vg (73a) :
{5 0% b0} 0 Y ;
19 == {8,902y - £,.(9}10) + §, (DY, . (73b) |

The advantage of the formulation in (73) as opposed to (71) is that only two

i ———— . B

of the matrix chain parameters, 2,1 and §354, need be determined in solving

for 1(0) and I(£) via (73) (see (32)).

The most efficient method of solving n linear, algebrair equations inn

unknowns is Gaussian elimination with back substitution (LU decomposition)
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which requires (n®/3 + n® - n/3) operations (multiplications and divisions)
or on the order of n®/3 for large n [49]. Thus solving (70) instead of (71a)
or (73a) requires on the order of (2n)3/3 or 8 times the number of operations
and the complete solution of the problem requires, at a minimum, the solu-
tion of n complex equations in n unknowns, The impact of this requirement
on the overall solution times for large cable bundles can be illustrated as
follows, The time required to solve 50 complex equations with a standard
Gaussian elimination subroutine with full pivoting (DGELG in SSP [50] which
was converted for complex arithmetic) was 12,6 seconds on an IBM 360 /65
computer, So if it is required to solve for 100 frequencies, then the overall
computation time would be, at a minimum, on the order of 21 minutes, It
is not uncommon to find 100 conductors in cable bundles on modern avionics
systems and since the number of operations required increases on the order
of n®, then solutions for 100 conductors and 100 frequencies would require,
at a minimum, 2,8 hours! Of course, additional time will be required for
matrix multiplications (as well 2as the computation of Y and Z and diagonali-
zation of l[g) as indicated in (70), (71), (72) and (73). This could be quite
substantial since n® multiplications are required to multiply two "full'" nyn
matrices which is precisely the number of operations required to invert an
nyn matrix which is "full" [49].

Using the matrix chain parameter formulation in (71) and (73) has an
additional advantage over (70). It allows a straightforward incorporation of

incident electromagnetic fields into the solution. Consider (4) and (8) where
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the effects of an incident field are included as distributed sources along the

line, _Y_S(x) and_Is(x). From (8) and (31), define equivalent sources

A o

Yo = (o (530 V(0 + 8,050 L0} ax (74a)
0

A By

OE Qo{gam,?c) V00 + Baa(S 01 (0} ak . (74b)

One can modify (71) and (73) to include these sources by simply adding_‘ls(f,)
to the right-hand side of (71b) and (73b) and replacing —Y.S! with l’x' ﬁ’s(f.) +
&_fs(x) on the right-hand side of (71a) and {(73a). This is quite obvious

since (8) shows that for x = £ and Xq 0, I(£) is increased by_fs(i) and V(£
is to be increased by _ifs(il) over the case without incident field ilJumination,
From the boundary conditions (69b), Ve MsE) - %x_l_(ﬁi), then XS on the right -
hand side of (7la) and (73a) is to be decreased byifs(.?,) - %8-3-.;”‘) and I(9) is
to be increased by_i\s(.t) in (71b) and (73b). Thus equations (71) and (73) are

qQuite easily modified to consider incident fields and the final equations

become [26]
[Zg 822(8) - Zp 85,(8) 2 - & ,(8) + §1(8) Z5] 1(0) = (75a)
13,100 - Zg $4(DI ¥, - V¢

A A
+V (5) - Zg 1 (D)

A
10 = 2,0(0 X + {82l - 2,0(9 2,1 10) + 1 () (75b)
or [18]
1, - Jaguo zg- 8,00 e (0 25 - g0} 100) = - 8,0 ¥, (16a)

- {82000 Zg - 2240} 82,0 Y

-67-




gk

' 8ey(8) Y (9) - B0y () 2 1,(0)
1O = 8D Y, + (2228 - 8000 ZJ 1) +1(8) . (76b)
A more detailed discussion of efficient incorporation of the boundary condi-
tions is given in [26].
The equations in (75) become particularly simple for the multiconductor
line in Fig. 2a consisting of (n+l) perfectly-conducting wires in free space

illuminated by an incident electromagnetic field. It is shown in Appendix

C that (75) reduces for the case of Fig., 2a with incident field illumination

to
[cos(8s) {Zg + Zg} + jsin(sD) {zc +z, 22 7 }1100) = (77a)
- Vg +[jsin(88) Zg Z¢ + cos(aD) 1] Y, |
(inc)
(‘£ A . . A -1 A A
¢ C {lcos (a(s- 80 1+ jsin(a(s-4) 2o 201 B, (b} ad
.
(inc) _1. linc
- E(D + {[cos(es)gn +jsin(gg) Zg Z_'] E\(0)
1(£) = - jsin(BD) ZG V, +[cos(8S) 1, + jsin(8D) Zg Zgl L(0) (77b)

{(inc)
- £
- chl xo {sin(e(.t-:?))gl (4) I dx
-1 (inc
-iZe {sin(@.ﬂ)Et(O)

(inc)  (inc) (inc)
where Ez(x), Et(,t) and _Et(O) are nyl column vectors with the entries in the

i-th rows given by

(inc) ing) (inc)
[Ec"‘”i - £ ifuw. x) - Ela(o'X) (77¢c)
{inc diO (inc)
[gt(.\',))]i = Q Eti (8., £ dg, (77d)
0
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(inc) 4.4 (inc)
E©)] = e &, 0) de (17e)
~t 1 Jo i 1 1

for i=l,---,n. é::u: dio' x) and P.L.;n.c()o, x) are the components of the incident
i

electric field intensity vector in the longitudinal (x) directiun along the

axis of wire i and wire 0 respe«tively. The terms ]:%:m(éx, 0) and é::’?%‘x’ iy}
are the transverse components (lying in the y, z plane) uof the incident elec-
tric field intensity vector at x = 0 and x = § respectively along the contour
§.l between wire i and wire 0. The contour gi is a straight~-line path between
wire i and wire 0 and perpendicular to these wires. The entries gand Z-
are the wave number and characteristic-impedance matrix respectively
with 8 = 2~/%, % = Vv/f, v = l//l-JT-é_v and -%C = \;E. The corresponding solu-

tion for Fig. 2b is also discussed in Appendix C,

4,1 Lumped=Circuit [terative Approximations

In deriving (4), 'electrically short" A x sections of the line were con-

sidered and since the line was assumed to be uniform, all Ax gections wiil

be identical. ReqQuiring that the Ax sections be "electrically short"” for all

frequencies, the transmission line equations in (4) are obtained in the limit
as Ax +0. Alternately, one can construct lumped-circuit models for the
line consisting of N identical sections of length £/N so that each of the sec-

tions would in itself be "electrically short', e.g., the section would be no

more than, for example, 1/10 of a wavelength long for the frequency urder
consideration. Note that since §£/N is assumed to be "electrically short"

and the cross-sectional dimensions of the line are assumed to be "electri-
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cally small" so that transmission line theory applies, then a lumped-circuit

Jun—a

representation of this portion of the line is valid., Perhaps the m>re common

models of the transmission line are the lumped-circuit iterative approxima-

tions which use this philosophy. Models are shown for (n+l}-conductor lines

in Figure 1l as the lumped I' model, lumped"' ny ‘el, lumped Pi (n) model
{

and lumped Tee model. The lumped “Vsection is similar to the circuit in

Figure 7 but with Ax replaced by &N, The lumped T section is the opposite,

i.e., the capacitance and conductance elements appearing at the end of the

lumpedq section appear at the beginning of the lumped T section. The lumped
Pi section is similar to the lumpcdr.lsection but has half the values of the

capacitance and conductance parameters placed at the beginning and at the

end of the sectiun, The lumped Tee section is again similar to the lumped

'—lsection but has half the values of resistance and inductance (self and
mutual) elements placed at the beginning and at the end of the section. The
lumped I model has been used in the program STRAP [36]; the lumped Pi
model has been used in the program IVEMCAP [34], and lumped Pi and Tee
models have been used in power transmission line studies [9].

The 2nx 2n chain parameter matrix of a section of line oi length £/N

characterized by any of the lumped iterative approximations can easily be

shown in terms of Z and Y to be (see Appendix D)

{1.} {-zem}
M !

O Hexem) e yzemd)

(LumpedT) (78a)
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Lumped-circuit iterative models of multiconductor

transmission lines {(cont.).

Figure 1l.
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Lumped-circuit iterative models of multiconductor

transmission lines (cont,),

Figure 1l.
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i_+zyxems} {-zem}

g, =| T (L dr) (78b
Sl ofwemy o ay [T |
[ {1, s 172 zvem?) fzem}
& = {L d Pi) (78c)
~k _{-XWN) - 1/4 XZX(S/N)G} {ln +1/2 XE(‘WN)Z)}J umped Pi c
- . .
{1n+172 2y} {208/ - 1/4 Z Y 2003}
3k = . (Lumped Tee) (78d)
 {xem} fLorexzemd} |

These models are referred to as lumped-circuit iterative approximations
since the overall matrix chain parameters for the line of length £ and N
sections (all of the same type) is quite obviously § = (gk)N, i.e., multiply
the chain paraiieter matrices in (78) together N times, since the chain para-
meters for each section only relate the voltages and currents at the two ends

of each section as

Y@ [t || G -
—I (%'g) gk'-?l 2,1(22 <§N— Ve

3

where each submatrix $1.14,, &332, 3keys ¥y0p 18 nyn and corresponds to
submatrices in (78) and k =1, 2, ---, N.

Generally an N section lumped-circuit iterative approximation is solved
(the boundary conditions or ftermination-networks are incorporated) as
strictly a lumped, electrical circuits problem with circuit analysis Hrograms

such as ECAP, SCEPTRE, TRAFFIC, etc. [53]. The node-voltage equations

~-75-
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or loop-current equations of the network of N sections with termination-

In deriving (80) from (69) and (79), use is made of the relation

-1 -1
fces Ikia Bgy 7 Iker T e (82)

IERE AT HT e

networks are written and solved via these programs. It is possible to write,
for example, the node-voltage equations directly from the matrix chain )
parameters without employing a circuit diagram, Using (69) and (79), one
can straightforwardly obtain (see Appendix D)
- -1 [~ - r -
Xl 1h 2lneccece o0 o) Braa XoYo ]
A * 3
, -lan X »ls'on n~n : X(s/N) ngl
n~n L. * ‘ .
- . . . . . = . (80) 1
T R . .
. - <A N-1 ; {
. * '-1~n X Ln !< N . ngl
220 0 S La¥na ) (X | Bae s |
where 1 ]
%o = Zg (81a) |
te= 23 ) |
‘ Y, = {2),(13 XO - 21(11} (8lc) i
! Yoo {o.,+8 . 8., s (814 |
) ~ T 12kv1 T Xky g Ak22 Ak12 ) 1
_ -1 i
" YN+ = {3k12 Yg- 31(13 ,?.kza 2,1(19 . (8le) 1
I'::
|
i
i,
!

which one can readily verify from the partitioned forms of the chain

i

parameters in (78). In fact, this relationship can be shown to be true in

T

L

general for any lumped, linear, reciprocal 2n-port characterized by the

i
!
|
%
|
{
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chain parameter matrix in (79) by writing (79) from the nodal-admittance -

e

matrix characterizing the 2n-port and invoking synimetry of this nodal
admittance matrix via reciprocity.

In (78a), (78b) and (78c), 31;'11, =« (N/£) %‘1 and in (78d) Ef(ia: {l,n +
1/4 XNZ(.S/N)?‘}'1 {—(N/.t)g" 1}. Therefore when writing the node-voltage
equations in this fashion, it appears that the inverse of the per-unit-length
impedance matrix, ~Z, is required., The inverse of .‘Z‘ is needed when
writing node-voltage equations strictly from a circuit diagram when mutual

inductances are present [53]. However, one can show from (78) that

-1 t

. Bic12 Bkoz Ky = Bkas (83)

‘ A
which can be used in forming l{ and ZNH in (80) as

: t

X=- {!ku * 2k==} (84a)
- t

Int1 7 {f.kxﬂ Yo~ ,‘hgu} . (84b) 1

Thus the inverse of Z is not needed when writing the node-voltage equations

in this fashion as in (80).

It should be noted that the formulation in (80) provides an additional
method of obtaining the exact, distributed-parameter solution for V{0) and
V(£). For example, taking N=1 and using the distributed maltrix chain
parameters 3“, 312, 331, and 2“ from (31) and (32) one obtains a set of

2n equations in the 2n unknowrs, V(0) and V(£), which can be solved for the

exact, distributed-parameter solution instead of using (70), (71), (72) or (73).

For the distributed case, one can also show &, Q;g $,,%,,= Q;é (see (40)).

i
In addition, one can show that 2122923;3 = 3“ (see (40))) and this can be

/a -77-




used in forming YNII in (81). Thus, for the distributecd case, (80) becomes

1 )
{4p %o - Yo} “n yon 1Y Zoll’o (85)
: -1 = 1

) Ln {4 2 - g0} |y W Z'y

and (85) may be explicitly solved for V(0) and V(£) as was done in obfaining

N (73) from (72). Note the similarity of (85) to (72),

% An important consideration in using the lumped-circuit iterative approxi-
Ei mations is that to obtain correlation with the distributed-parameter formula-
tion described by (4) (which these models are intended to approximate), each
i section must be electrically short and therefore the number of sections used

to represent the line must be increased for increasing frequency. For an

(n+l)~conductor line with N sections, (N+l)n simultaneous, complex equations

in terms of the node voltages, V(0), V(£/N),---, V(L) must be solved at

each frequency as is evident from (80). For N>1, i.e., using more than one

section to represent the entire line, the equations become sparse (large

— e it }

number of zero entries) which is clear from (80) and the fact that each
section interacts directly with only its two neighboring sections. This high

degree of sparsity can be used to drastically reduce the storage and compu-

tation times over that which would be required if the nodal-admittance

. matrix were treated as ''full'' and no advantage taken of the zero entries.
JIIV‘

o A L | e o

These considerations are implemented in the program, TRAFFIC [£3],

amm i

é Even if only one section were used to represent the entire line, i.e., N=],

(80) shows that 2n complex equations in 2n unknowns must be solved at each

# frequency. However, these equations can be solved explicitly for V(0) or
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X(.t) so that for N=1 a minimum of n simultapeous equations in n unknowns,
V(0) or V(£) need be solved, In obtaining the solution of the distributed-

parameter, transmission line equations directly rather than approximating
the line with lumped-circuit iterative models, ure is also required to solve

2n simultaneous equations in 2n unknowns through a solution of (70), (72) or

(85) or n equations in n unknowns through a solution of (7la) or (73a) and the

number of simultaneous equations which must be solved need not be

increased with increasing frequency as is required with the lumped-circuit

iterative approximations,

%\ Incident fields may also be incorporated into the solution via the lumped-
%‘\ circuit iterative approximations. Define from (8)
V(kE/N) (ke 1) v(DE g kE/N v (3
= BS/N, O /N) v Uy ak
I(k&/N) - (k-1)& oo ’ A
( X /N) (k-1)£/N 1%
(86) ;
N [w® D) gkx/w v, (%)
= Qk +
~ (k=1)& - A A
Ll‘ M ene/n [ L00] 9=
. - (k-1)E =~
for k = 1, 2,--~, N since it is assumed that § (k&/N, /N) T § for elec-

trically short sections. Thus, for electrically short sections, the lumped-

circuit iterative models can logically be modified to include incident fields

by adding appropriate voltage and current sources to the beginning of each

section as indicated by (86). The pode-voltage equations in (80) will be

e - A, o D

modified by adding appropriate additional forcing functions to the right-hand

side vector and the coefficient matrix will remain unchanged.
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The question of convergence of the lumped-circuit iterative approxi-
mations to the distributed-parameter solution is difficult to answer quanti-
tatively., A preliminary indication can be obtained by observing the con-
vergence of the overall chain parameter matrix for an N section represen-

. N
tation, _S

" to the distributed-parameter chain matrix (or state transition

matrix), $. The state transition matrix & £) (equations (31), (32)and (33)

with x = £ and Xy = 0) can be expanded into an absolutely convergent

infinite series as shown in (34) as

(87)
~n n~n nln -2 £ zY nn £2 nfn -2Y2 £
(S = + T'"' + X + 5T + o
nfgn Ln 2 n~n nQn X % 'X,é,vy ngn

Expanding the chain parameter matrices for the lumped iterative approxi-

mations in (78) one obtains for the lumped r-, model:

An nln ndn "2 £ 22n nln
g = + T+ ok (88a)
~ 0 1 -Y 0 0 Y Z
n~n ~n ~ n~n n~n ~~
and for the lumped I' model:
- "I . —
[l,n nln Ex,gn -& rff Y nln
- K9 g3
8 = 1 Nt (%) (88b)
:]gn ,},n-J ‘_-X n,gn h_l'l'*o-'n nrgnJ
and for the lumped Pi model:
1 0 0. -2 ZY 0 0 0 (88c)
~1 1~ 1 ~ ~ ~ ~ n~n n~n ~Y
[T I TN R E2 /22 + 1y
01 .Y 0 0 YZ -YZY 0 N
n~n ~n ~ N~ n~n ~ o~

~ o~~~ D)

and for the lumped Tee model:
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ln naen n’n -Z zY non $ ngn -4YZ I
& - 4 L 1/2(-1\-!)2 + ”“T\f)s
On In -Y 0 nln YZ nfn nfn *
(88d)
Note

that for N = 1, i.e., one section ig used {0 represent the entire line,
the lumped Pi and lumped Tee models appear to be better approximations to
the distributed solution, §(f) in (87) than do the lumped ' and lumped 1
models in t¢ sense that the first three terms of (88c) and (88d) are identi-
cal with tue first three terms of §(f) and the fourth term is only partially
the fourth term in i(.&'). In the expansions (88a) and (88b), only the first
two terms agree with the first two terms of 3(.?.) and the third term partially
agrees with the third term in }(%).

There are cortain other lumped approximations which at first glance
seem to be not included in this discussion but are, in reality, versions of
luimped-circuit iterative models using only one section to represent the
entirc line and with certain circuit elements neglected [35]. In addition,
with these approximations the capacitive and inductive coupling are com.

puted independently of each other and added together which is generally only

valid for weakly-coupled lines (see reference [30], pp. 287-291).
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V. THE PER-UNIT-LENGTH PARA METERS

Derivations of the per-unit-length parameters of internal resistance and
internal self inductance, i.e., the entries in R, and ) which account for
skin effect associated with imperfect conductors are well known for solid,
round-wire conductors and are found in numerous texts '2, 3, 30). These
internal parameters are derived by assuming that the currents interna) to
the conductors are symmetric with respect to the centers of the conductors,
However, for closely-spaced conductors, this assumption may not be valid
since proximity effect can alter the internal current distributions (see
reference '40], Chapter 9).

The de- ivations of the per-unit-length external parameters, i.e., the
entries in G, L and C, assume all (n+l) conductors are perfect conductors
and are more invelved especially for close conductor spacings., These
parameters generally only exist in clesed form for the simple cases of two-
conductor lines in homogeneous media in Fig. 4 consisting of two bare wires
in an infinite, homogeneous medium in Fig. 4a (reference [55], pp. 133-136),
onc bare wire irn an infinite homogeneous medium above an infinite ground
plane in Fig. 4b (reference [55], pp. 183-185), and one wire within a circu-
lar shield which is homogeneouuly filled with a dielectric in Fig. 4c (ref-
erence [55], pp. 125-133).

Having accurate values for the entries in the per-unit-length parameter

matrices, especially the external inductance and capacitance matrices L and

C, is obviously important in obtaining accurate solutions and the per-unit-
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length parameters must be obtained even when using lumped-circuit itera-
tive approximations discussed in Section 4,1, It is impourtant to remember
that with the assumption of TEM modc propagation on the line, the trans-

verse fields at each x along the line satisfy a static distribution and taere-

fore the per-unit-length external parameters, i.e., entriecs in G, L and

.
CJ.
~ ~

are obtained as the solution to a two-dimensional static fields proble:n [39],
This also is implied in the inhomogeneous medium case under the '"quasi-

TEM mode' assumption,

5.1 The Per-Unit-Length External Parameters {or Lines in a Homogencous
Medium

The per-unit-length parameter matrices, S' 'I: and 9 for lines immers-
ed in a homogeneous medium possess the important properties given in (44),
LC=CL=ue}l and LG=GL=uol . Itcanbe shown [54] that, for a
homogeneous medium, each of these matrices is related tu an nyn matrix,
K, which is independent of the parameters of the medium and dependent

only n the cross-sectional structure of the line as

,9 = €.-I§ (89a)
G=0K = (0/e) C (89b)

- -1 -1 .
'I::—- UE = e C . (89&)

For two-conductor lines in a homogeneous medium, the per-unit-length
parameters in the transmise¢ion line equations in (1) are obtainable, exactly
in closed form even for close conductor spacings where proximity effect
produces a nonuni‘orm charge distribution around the conductor peripheries
55], The matrix £ in (89) becomes a scalar K and the parameters in (1)
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become ¢ = ¢K, g = 0K, = UK'I.

For two wires in a homogeneous medium in Fig., 4a, the per-unit-length

capacitance becomes [56]

2T ¢

3 . (90)
cosh™? [(d“- r:,l- rfvo)/(z ol wo )

Cc =

For widely-separated conductors, (90) can be approximated by [3]

¥ ——gr— (91)

where gn is the natural logarithm. For identical wires withr . =1r =r ,
wl w0 w

(91) yields less than 5% error for (d/r ) >5 [55, 56]. For the case of one

wire in a homogeneous medium above an infinite ground plane as in I'ig, 4b,

the per-unit-length capacitance becomes [55]

C = P
-1
cosh (h/rw)

. (92)

and for (Zh/rw) > 5, (92) can be approximated by [55]

cNe

— 93)
gn (Zh/ry) (

For the case of one wire within and centered on the axis of a circular shield

C =

which is homogenecusly filled with a dielectric as in Fig. 4c, the per-unit-

length capacitance becomas [55]

- 2ne
= __°ne . 4
4n (rs/rw) (94)

In all of the above cases, ¢ = ¢ Kand K is easily identified, In addition,

Uy K 'and g = oK. For Fig. 4a and Fig. 4b, e= ¢, and 0= 0.
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The parameters for lines consisting of more than two conductors are,
in general, not obtainable in closed form for closely-spaced conductors and
numerical approximations must be used. These techniques generally fall
into two classes; the methud-of~-moments techn:qQues [56-62, 22, 66.-68] or
imaging techniques [63, 64, 65]., A particularly successful technique is the
use of harmonic expanvion functions to describe the charge distribution

around the conductor peripheries [56,57].

Consider the system of (n+l) bare wires in Fig, 2a, With the moment

method using harmonic expansion functions, the free-charge distribution,

py» 4 round the cross~sectional perimeter of the i~th conductor per unit of
length in the x direction is described as a Fourier scries with vespect to a
cylindrical coordinate system at the center of the i-th conductor as shown in

Fig. 12a, {.e.,

A-l Bi
) = o4 . . 08 . X . i : Q5
p; (6 a0 1 ‘]]Zjl Ay, ©OS M+ xn>"-:l b,y 8in mA; (95)
i=0,1,mm,n.

The absolute potentiaﬁ qsp (rp, 6 ), atan arbitrary point P located al a
)J

radius rp and angle Gp shown in Fig., lda due tu this charge distribulion over

the i-th isolated conductor is [56,57]

r - {a. o 1{g.) 48 (96)
PR p 4m ¢ i0 SO i i :

(=8
D
U

i 2m B 2 _
+n§:1aim g cos(m(-'-)'l) I(Gi) (16-l +ni’:1 b-lm KO sin(mg;) 1(91\ (!Gi}

l. The term "absolute potential' refers to the potential with respect to infin-
ily and the reflerence potlential terms are omitted in (96). This is valid
for a systeim with zero net charge and is demonstrated in Appendix F,

-85-

o

e e e a - b e Tt 2

e it f o an o b M  an adm



LT o 2N S T TSGR TR

xR

KIgEY

YA A SR XA G IS NPRTA v

The parameters for lines consisting of more than two conductors are,
in general, not obtainable in closed form for closely-spaced cor tuctors and
numerical approximations must be used. These technijues generally fall
into two classes; the method-of-moments techniques [56-62, 22, 66-68] or
imaging techniques [63, 64, 65]. A particula: successful technique is the
use of harmonic expansion functions to describe the charge distribution
around the conductor peripheries [56,57].

Consider the system of (n+l) bare wires in Fig. 2a. With the moment
method using harmonic expansion functions, the free-charge distribution,
P> around the cross~sectional perimeter of the i-th conductor per unit of
length in the x direction is descriked as a Fourier series with respect to a
cylindrical coordinate system at the center of the i-th conductor as shown in

Fig. 12a, i.e.,

04 (9.1) = aiO + m?::l &, vOs me.l + mz=1 bim sin in (95}
i=0,l,~~-,n,

The absolute potential} Qsp (rp, ap), at an arbitrary point P located at a
radius rp and angle ep shown in Fig. 12a due to this charge distribution over

the i-th isolated conductor is |56,57]

2
_ 1 e\
¢y(rpe 80) = - 7= {ai0 go 1(e,) d6, (96!
'Afi 2m By 2r 3
+n”>1d:l aim So cos (m@,;) 1(8;) d@i +n§:1 bim -QO sin(m@;) 1(8;) d6, },L

l. The term '"absoclute potentiul' refers to the potential with respec! to infin-

ity and the reference potential terms are omitted in (96)., This is valid
for a system with zero net charge and is demonstrated in Appendix F.

-85~

|

A AT amai ) L i a S et . S TEN I wv. e e L

R, I E A it T i RTINS —. e L - oo LT

il ¢ e

[P

L e i AP

PRI W IR T




i-th conductor
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é‘ Figure 12. The geometry cf the charge distribution problem.
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where I(Oi) i {l;i i - ".rp roi cos (8; - pr}rwi. These integrals

can be evaluated in closed form yielding |56, 571 (Sce Apvendix E )

m+l
Ty In (rp)\ Ay rvf,. ) cos(m@_)
R = ea. P T & b . [
¢p(rp Gp) %10 ( e /  m=l *im ( 2mert (97)
(m+l) |
B; Tori sin(m@_)
+ T b P
m=l im \ 2me r™ ) .

P

Associated with each conductor in Fig. 2a there are A, + B, +1]un-
knowns; the expansion coefficients a, , a, , b, in (95). These unknowns
i0 im im

wili be determined by enforcing the boundary conditions that each conductor

(including the reference) is at an absolute potential ¢;» i=0, 1,---n. A total

n

of 'Zo(Ai + B.l + 1) match points will be chosen on the (n+l) conductors at
i=

which the potential due to all charge distributions in the system (including

the charge distribution on the conducter associated with the match point)
n

will be enfiorced. This results in a set of 'ZO(Ai + Bi +1) equations in
1=

the same number of unknowns and can be written as [56,57]
Po=o (98)

n
where p is a vector of length ,FO(Ai + B.l + 1) containing a ( of the unknown
1=

- . ) _ . . . -
expansion ccefficients a;q, a, ., b, and ¢ is a vector of the assuined con

ductor potentials as

-87-

é
)
!
|
]
i

el e




ST T S

o

T AN T T

I AR

e [ " - - - T T S I R YA, Y W W

pr . - pu -
30 ®;
%i1 %5
2= *ia, e (99)
b
b, )
- - L. -

where qu is the potential of the j-th conductor at each of the chosen match

points on that conductor surface, Inverting P in (98), one may write

p=plyg (100)

From the solution in (100) for the expansion ccoe ‘icients, the total free
charge on the i-th conductor is [56, 57]
2m

Q Di(ei) i dBi (101)
0

9

-~
e rwi 3.LO

and an (n+l) y(n+l) ''generalized' capacitance matrix  niay be written as
pa Yy

[ .
9 <:oo gOI ¢0n )
. = 910 ., M . (102)
qh_l cno crre Cnn %n .

ke

In (102), note that [C]ij 2 cij = qi if the excitations are chosen as d’j =1

with all other potentials chosen zero, i.e., ajp =0,p #j, and i, j=0,1,«--,n.

~88-
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However, {rom (101), q = 2rr . a,

wi 2i0° Therefore, to find Cij simply add

LA

all elements of E‘l in (100) which are in the row associated with 4., and the

10

o

columns assocciated with qu and multiply the result by 2~ r ‘ [56,57]). From
w

L energy considerations, one can show thaté is symmetric, i,e., éij = éji

(s8).

The nyn external capacitance mat¢rix, C, used in the transmission line

e equations in (4), (6) and (7) where potentials Vi' i=l,---,n are defined with

respect to the zero-th conductor chusen as reference instead of absolute

potentials, n\j, can then be obtained directly fromé . To lo this, note
i

M i - e

that chocsing the zero-th conductor as reference, V-l = (8; - ¢g)s i=l,-=--,n

and the transmission line capacitance matrix G becomes ]
1 Cy ™" Cin Yl
{ . = . . . (103)
K d, Cn1 ----- Cn.n Vi
A [ = ’!
where [g]ij & Cij for i, j=1,---, n, %
Since the system is electrically neutral, we have 3
2 (104 1
G ia % o) ‘
and the potentials V, with respect to the reference ccenductor become
Thus (102) can be written as
n n
- = - A}
AN Cor Vi + coz PR N A (roCond #o
q =C v +C Vo, + «-- +¢ v ”’(?C ) @ (106)
. . n
'{ ° _ i [} 3 !
L an =€ v+ Cov, 0 v C v 4 (% C e . .
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A dding all equations in (106) tcgether we obtain

= (mgocml>v <m§‘ VZ 4 - +( T émn)vn (107)
+( r’zl. é n t +--- +m§;ocnm)¢0

m=0 Om m 0
or
n n
, -1 [‘mz;oemk’ Vk]
g n n *
tZO [m}io czm]

(108)

Substituting (108) into the last n equatiors in (126) and arranging thesc last n

equations in the form of (103) yields the entries in the per-unit-length trans-
mission line capacitance matrix C as

(c -C _c (m chmy (m-"O mJ)

(109)
u

7 &

£=0 (miio zn./

1J[£ £m>_J <m20¢im>(m%0 11_1J> .
(z.go m?;o é:zm>

Note that the denominator of (’19) is simply the suni of all the elements of

C . The numerator of (109) can be written as

o~

C er m-0¢9m] C ( =0 m_]> ij (m-o ) (110)

m# i m#j

<m Qéxm> (m =0 my) ciz

m#j m#i
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i
{
n n n n {
- [ v .5 v A i
- Cij L2=0 m=0 C /im m-=0 cmj m=0cim °Cij_l i
m#i m#j ‘

— —/

Ty

sum of all terms 'mc ex-ept those in the i-~th
row and j-th column.

- (mxéoéim> (m’iocmj) .

TR,

m#] m#i i
* - (-

sum of all sum of all |
terms in terms in the

the i-th j-th column of é
row of Q except ci~ -
except cij J

Therefore, Cij can be written as

) Cij (Mo - M- M 'eij) - M M )
ij = My

where

1
MO = Sum of all terms ine

iM = Sum of all terms in the i-th row of¢vexcept Cij 1

Mj = Sum of all terms in the j-th column ofgexcept c‘:i

. 3

J

For two conductors (n=1) (ill) becomes

c = ql/Vl

(112)

C‘ll COO - cOl clo

Coo +€o1 * élo +&

-9l
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This result for n=l is also obtained in reference 158}, pp. 211-213, :

This numerical technique can also be applied to the systems in Fig. 2b

s by replacing the ground plane with the conductor images having equal but

3 opposite charge distributions. As an example, consider the system of n

AR
aaha

bare wires above an infinite ground plane in Fig. 2b. Replacing the ground

R Wt

plane with images results in Fig. 13. Note that the orientation for 6, on the

image of the i-th conductor is the same as the orientation for 6; on the i-th

a1

conductor however, the charge distribution on the i-th conductor image is
& -p, (-ei). Also, note that the potential of the i-th image conductor is taken
to be -¢;. By symmetry and the use of irnage digstributions, the voltage of

the i-th conductor with respect to the ground plane, V,, is equal to ¢, since

the potential diilerence between the i-th conductor and its image is ¢, - (=)=

_ - a ol < o i o 2o MO

2¢;. Therefore, we only need to enforce the potential 4, at match points on

5 —

the n conductors above tae ground plane due to all charge distributions 1u the

i
’ system (those on the n wires and on the n image wires). Thus a set of
n

'Zl (Ai + Bi + 1) equations can be written as in (98)., However, these equa- ;
1=

A Tl

iy tions will differ from those in (98) in that the expansion coefficients for the
I

zero-th conductor (the ground plane), 330" *0m’ bOm' will not be included

e

i in the vector P and the potentials ¢, will not be included in the vector ¢.

n n
These vectors will be of length 'Zl(Ai + B.l + 1) instead of '20 (A.l + B, +1).
1= i=

Furthermore, we may replace ¢; in ¢ by Vi‘ Inverting P we then may obtain

the entries in the transmission line capacitance mairix directly without the

o e e B meteith

need for (11') since b = Vi. Therefore, Cij is simply the sum of all elements

«92.
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aru the use of image distributions.
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in '13‘1 which are in the row associated with aio and the columns associated

wivh qu = Vj multiplied by 2 T i for i=l, ---,n and j=1l,---,n.

Consider the case of n wires within a circular shield shown in Fig. 2c.

Rather than imaging the conductor charge distributions across the shield
boundary, one may expund the per-unit-length free-charge distributions
around the n conductor peripheries in a Fourier series and also expand
the per-unit-length free-charge distribution around the intarior periphery of
the shield. Note that in this case, the voltages of the n wires with respect
to the shield, V;, will be V; = ¢; - ¢g. Thus (l1) can be used to obtain S.

Note that for all these cases, once (is determined, [, and G are
obtained through (89) as L =uveg'1 and G = (9/¢) C. For Fig. 2a and
Fig. 2b, ¢ = ¢y and o = 0.

[t is also possible to obtain closed-form approximations for ¢, L. and
* under the assumption that the conductors are widely spaced and these
formulas represent the predominant method of computing the entries in
these per-unit-length matrices [55, 57) If it is assumed that the wires in
Fig. 2a are sul.iciently separated so that the charge distributions around
the wire peripheries are constant, i.e., proximity effect [55, 56, 57, 58 ]
is not a factor, then only one expansion function is needesd in (95), ajg. In
this case there are only (n+l) unknowns , a;g, i=0, l,---,n. Further=-
more, since the wires are assumed to be widely spaced,then r_ in (97)
can be taken to be d;,, djO or dij’ whichever is appropriate, when compu-

ting the contribution to the potential of a conductor due tn the charge on

-94-
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: . another conductor. When computing the contribution to the potential of a

~onductor due to the charge distribution on its boundary, the match point

I AN S cr e

is taken on the conductor surface, i.e.,, rp=rwi. This assumption of

s Ry i

widely-spaced conductors has been consistently used in the power trans-

mission area [ 3, 4, 13, 55, 57 |and is generally valid if the smallest

I PRSP

ratio of wire separation tc wire radius is on the order of 5 or greater

[ 55, 56, 571}

o A - ade)

5

Consider Fig. 2a. Assume as an approximation that the (n+l) wires

o e

in Fig. 2a are sufficiently separated such that the per-unit-length charge

S

distributions around the wire peripheries are constant with each wire

bearing a per-unit-length total free charge i

e o < b

q; = 2nryi 23, (113)

NI

and

pi (8;) = ajq

T T T

(i14) j

for i=0, 1, ---, n. Because of the assumed large separations, this is 1

equivalent to replacing the wires with filamentary line charges [55].

i T T T TAT T
davazh

Since the wires are assumed to be widely separated so that the assumption

of a constant charge distribution around each periphery is valid, i.e.,

proximity effect [55]is not a factor, then we may choose match peoints for

e T e K

the potential at the centers of the conductors rather than at some point on

TN TR S

the periphery. However, for a match point on the conductor surface

bearing the charge under consideration, we take the match point on the

conductor surface, i.e., Tp = Ty in (97).

, -95.




From the previous results and (113), we may then write (utilizing the

first term in (97))

¢0 P.n(rwo) Ln(dlo)c P .f,n(dn()) qo
B 2n(dyg) £n(ryy ) £n(d)p) ’ q,
. = .1 ’ . . . ]
[ Y ZTTe ¢ . 4 [
. : * ' ' .
Bn 4n(dpg)e o o o ¢ o opn(yy) dn
L - b = -
Applying (105) to (115) results in a typical equation
Vi =di- dp
o1 { (d- ) A\ q.
=« {enf%ig ag +--- 4 an froi) g (116)
e Fwg Tio
a: : d.
te-e tn (L Vq: + ~a-tynf D qn}
for i, j=1, ~--, n. Applying (104) to (116) yields
Vi =._1 {_-- +tnfTwitwo } q; + -- (117)
2rre (a ioaio l
-= + 4n iufm)) qj +--+ £n dinrlym qn}
di0djo ng i
Comparing (117) to (103) shows that
1 d-2
C'l A in _Q_" 1
[K; ]11 Zﬂe I‘Wil‘wo) (1 83.)
[€]i; = 5= ¢n (d"OdJ'O ) (118b)
i 2re rwodij
for i, j=1, ----- s N
-96-
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Thus the per-unit-length inductance matrix is from (89)

din 2

[L'a]ii = ue [Q-ljii: ?U;r 4n *witw0 (119a)

(119b)

(Lli; = we (€2 )i =—2¥5L_ zn(
i#j iij i
for i, j=1, ---, n. Note that for Fig. 2a, ¢ = ¢, u = uy and 0 = Q.

Similarly, large-separation approximations can be obtained for the

case of n wires above an infinite ground plane in Fig. 2b., Consider

Fig. 13 and assume that the wires are separated sufficiently from each

other and the ground plane so that the per-unit-length charge distributions

around the peripte .~3 of the 'wires and their images are constant and given

by (113) and (114) fo¢ i-I, ---, n. Again, due to tne large-separation approx-

imations; we may take the match points at the centers of the conductors
when computing the contribution to the potential due to the charge distri-

bution on another conductor and take the match point on the conducter

periphery when computing the contribution to the potential of this conduc-

tor due to its own charge distribution. From Fig. 13, a typical equation

for the i-th conductor may be written as (again using only the first term
in (97))
(120)

¢: = Vi = eeecta; rwitn(rwi) rwim(?_hi)} +
1 1 10 e -

%
e ey (TR, TRy
€

1 . fani ‘ dif
‘ZFE‘{"' T 1"n(x"'Gi") Fo- ta;dn (Hij) +"}

for i, j=1, ---, n where d{} is the center-to-center separation between the

i-thwire (j-th wire) and the image of the j-th wire (i-th wire) given by

-97-
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CH

\ (h{ + hj)? + dj;® - (hj=hy)?

(121)
= J dij + 4 hihj .
Comparing (120) io (103) and using (89), we obtain
re. -1 U 2hi 22
(Llii= ue (& Ji=g5 tn o (122a)

Ll =uelC-t]; =4 (122b)
i J; ue g 1”3 "W n('adj_)

for i, j=l, -=--, n. Note that for Fig. 2b, €€y, U= uv and 0=0,

Large-separation approximations may also be obtained for the system

of n wires within a circular shield in Fig. 2c. We assume that all n wires

are sufficiently separated from each other and the shield so that the wires

may be replaced by filamentary line charges, The circular shield

(assumed to be perfectly conducting), may then be replaced by filamentary
line chargz images. Each filamentary line charge has an image on a
line joining the line charge and the center of the shield and is at a dis-
tance of r§/r; from the shield center where rg is the shield radius and
ri is the radial distance of the i-tli wire from the shield center [58]. One

can then straightforwardly derive, by superposition

xr
(ST =q—-—1 l
49 =7 9 9410 ---» 0= 0

1 2_,..2
:Z—ﬂc in -—-—-—rs r\'—'
i T's Tywi

1 - - v - e - -
32_] ’q' 1,'-'1.1. :qno

=—— {n { _J. U’L )2 + rg¥- 2rjrirg® cos@;
Zme rj)* + ry* - 2riry” cos b

J
where eij is given in Fig. 2c.

(123a)

(€™ i

(123b)
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To derive (123), consider an infinitesimal line charge of radius r

bearing a total per-uait-length free charge q, The potential at a point

r 2r,, with respect to the line charge surface as reference is (see reference

[58], page 92)

q
V= - 4n (rr ) . (124)
2me,, w
Equation (123a) can then be derived from Fiz. 4a with (124) and g = 0 as
J
q. 2 2
_ i rs/ Ti) - Ty (rs /Ty Ts T's = T
V. = in S L - £n + In fr————
1 ZWQV { ( rwi rwi rw.l
q, r2 - 1‘12 (125)
= 3 in —— e
Tey rssrwi .

Equation (123b) can be derived from Fig. 14b by making use of the result in

(124) and the law of cosines, With q; =0, we obtain

q, d ds d 4y
Vi = Ln(—z-\j -zn( 2)-£n 1)+in(—l )
Tey T wj T wj Twi T wj
/

" (126)
- 3; d2 d1
£n | —e———
Zrre,, dz 9 .
Utilizing the law of cosines, one may obtain
>,'<2 2 3 —
d; = rs2 + rg /rj) 2 - (er /rj) cos eij (127a)
2 2 2 2 2
dZ =r; + <rtl /rJ- ) - (Zrirs /rj) cos Gij (127b)
:::2 ~ 2 2 .
d1 =T + rj - (errj) cos 913 (127¢)
2 2 2
df = 4rg - (2rir;) cos 6;; - (127d)

Substituting (127) into (126) yields (123b),
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5.2 The Per-Unit~Lexlgth External Parameters for lL.ines in aan Inhomo-
geneous Medium

~

Derivations of the entries in G, I.and ¢ for the lines in Fig. 3 are
complicated by the inhomogeneity of the surrounding medium introduced
by the interface between the dielectric insulations and free space. The
inhomogeneity is introcduced through the permittivities and conductivities
of the insulations sinca the dielectric insulations are characterized by
free space permeability, uy. Therefore, the per-unit-length external
inductance matrix, [, can be found as £:=uve‘£51 where 9'1 is determined
as in Section 5.1 with the dielectric insulations removed and may be ob-
tained accurately with moment methods and harmonic expansion func-

tions or may be approximated for large conductor spacings by (119), (122),

or (123).

The computation of the entries in Gintroduces some conceptual dif.

ficulties for the inhomogeneous medium cace, Consider the computationof

G for static excitation (reference [39] Chapter 6). The transverse con-
-

duction current density JT, is related to the transverse electric field,

- -+ -+
€1, in each dielectric as %r = g4, &1« The boundary conditions on the
i

-
potential function ¢ where P = -grad ¢, is thatetanmust vanish over the

conductor surfaces (perfect conductors are assumed for this computation)
and the derivative of ¢ normal to the dielectric-free space boundaries
must vanish at the boundary (see reference 39] chapter 6). The latter

-
requirement insures that the normal component of T is zero at .aese

-101-
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boundaries, i, e. no currecnt flow intc the free space medium, The con-

sequence of this is that if none of the dielectric insulations touch ¢ach
other or the zrouand plane or circular shield, then Gcomputed for static
conditions with a straightforward application of the above boundary con-
ditions would be identically zero since 10 conductive path between the
conductors would exist for nontouching dielectrica, However, dipole
relaxation effects will nevertheless produce certain losses even for a
transverse field distribution and nonstatic excitation since the trans-

verse displacement current will have a portion in phase with the transverse

electric field. Therefore, equivalent shunt conductances should be de-

termined to represent these non-static losses.

Assuming perfect dielectrics, however, one can compute the en-

tries in C in a straightforward fashion. A moment method of solution

with harmonic expansion functioas as in Section 5.’ can be used for this

problem [56, 57] Consider the system of (n+l) dielectric-insulated

wires in Fig. 3a. Represent the bound-charge distributions at the di-

electric-free space boundaries with Fourier series as [56, 57

A A
b )4 4 o +x b sinme (128)
a )= i0 _aim Co8S m i N im Sin m i
101 W m-=) m=l i=0, 1, ==-, n,

Represent the charge distributions at the conductor-dielectric boundaries

(which is total charge, bound plus free for this case) with Fourier series

as in (95). The contributions o the potential and electric field at a point

P in Fig. 12b due to each of the components of the charge distributions

are given in Table I with respect to Fig. 15 [56,57].
«102-
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TABLE [

Contributions to the Potential and Electric Field at a Point P in Fig. 15

due to Harmonic Expansion Functions on a Circular Boundary.

Expansion
Function

cos mQ,

sinmeb

Contribution to the
Potential at P

Contribution to the
Electric Field at P

ry ;_‘
€vlp
+1
(rp/r )"

2R {cos mg_2
Zey p

-‘
+sin mBDG}

m+l -
(_rb.iﬂ’)_ {sin m@p r

2ev
-+
-COS man}

BTt o SR i AU o e

P
Expansion Contribution to the Contribution to the
Function Potential P Electric Field at P
N
1 _Ib 4n (l'h) 0
€v
m m-1
r., CcOSs mf (r /rb) . -
L D -
cos mBy Zeom (rp)T-1 -z—fv-—-— {cos mA, T
- 8in m&da
™ gin m§@ fn-l
sin méy, :P—_‘% \ _ (rp/xy _ -
2¢g, m(ry) -Z-—-——ism mg,r
€v
+cos megag
b
(b) rp <rb
-103-

4

e e e e AR i e bt il
s A s o




e e . YT T W T gy ¥ S——

e ———— T

— Y

S -
f R L

The geometry for Table I,
-104-

Figure 15,

Y —

B it

T S APy N S PSP Sy G ela e ot At R e KL

Lt ¢ o A . e o S i3 e v .
i S et e e g T p R 2 ST e S L Dt AN




o 'Wlﬁﬂm k) —

K]

T L e S N 8

) [
3
b
9"
%
X

i
%

Thus there are 2 + A, + Bi + Ai + ﬁi uitknowns associated with each
wire, aj0, 3ims Dj ;io' ;imv f:im. The boundary conditions will be
enforced by requiring that the potential on the i-th conductor due to all
gsource distributions be #; and the normal component of the displacement
vector due all scurce distributions be continuous at the dielectric-free
space boundarizs. Generally 1+A; + B; match points are selected on the
i-th conductor and 1 + Ai + ‘1\31 match points are selected on the interface
between the i-th dielectric and free space., The component of the total
electric field (from all source distributions) normal to and just .~side
the dielectric-free space surface at each match point on this surface is
multiplied by ¢; and set equal to the product of ¢, and the component of
the total electric field (due to all source distributions) normal to and just
outside the boundary at this match point. A set of igo (2 +A; +B; + A + fil)

simultaneous equations can be written to enforce these conditions as

(56,57 ]
ﬂ
P --‘f‘-- = _--?.- (129)
o L 0

-l

where p and ¢ are defined in (99) and_'éis a column vector of the expansion
coefficients in (128} arranged as in p and 0 is a column vector of zeros of

n ) A
length izo (1 +4; +B;\

4

Inverting P in /129), one can obtain [56, 57]

..

(130)
- - = P"l -

ISTRAE-Y
1

POy

PR

o s e e Rk e el et

i it n el

A s et

b

apat ..




The total free charge on the i-th conductor (which defines the general- ’ “

ized capacitance matrix) is given by [56,57]

A Zﬂ Z'r'r q
A = q; +9q; = S a (8;) rwi 46, +S bi(Gi) (ryi + ti) d6; (131) '
0 0

4
= Zﬂl‘wi a;g + 2 (1'“"l +4 )aiO

i ——

since q; is the total charge at the conductor-dielectric boundary which is
the sum of the total free charge and bound charge with the bound charge

being identical in magnitude but opposite in sign to the bound charge on the

dielectric-free space snrface, Qi, i. e., q; = qg; - Qi, and t; is the thick-

el .l S T b s skt

ness of the i-th dielectric. The generalized capacitance matrix can be
written as in (102) where q; in (102) is replaced by qg; from (131). By !

: using the excitation asj =], pr = 0,p #j, [gjij equals the sum of two terms,

b One term is 2rmrry,; multiplied by the sum of all elements in P~! which are

i
i
i

. in the row associated with a;5 and columns associated with daj and the
2
: other term is 2m (ry,; + t;) multiplied by the sum of all elements in B!

4
é which are in the row associated with éio and the columns associated with

¢>j [56,57} The entries in the n yn per-unit-length capacitapce matrix, G

) used in the transmission line equations can then be straightforwardly ob-
5 tained from the (n+l) y (n+l) generalized capacitance matri:,, Q , as in

E (111),

: Typical computed results for two dielectric-insulated wires ai

shown in Fig. 16. By symmetry, the coefficienis of the terms in (95) a:.il

(128) are zero, i, e. by, = 0 and sim = 0. Therefore the expansion func-

k ~-106-
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Compnuted results for two dieleztric-insulated wires,
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tions on each boundary consist of the constant term and only cosine terms.
Similar results for a 5-wire flat pack cable are shown in Fig. 17.

Selected entries in the first row of the generalized capacitance matrix,
COOD eOl’ toz, 603, CO4 are shown, Again by symmetry, the sine ex-
pansion functions are not included since the coefficients of these terms will

be zero for wires in a linear array such as flat pack cables,

These results can be extended to include the case of n wires ahove

an infinite ground plane in Fig. 3b in the following manner. Consider

the set of n dielectric-insulated wires above an infinite ground plane shown

in Fig. 18, To treat these cases, we replace the ground plane with a cor-

responding set of image wires., The i-th wire image is at a distance of

h; below the ground plane., Each image wire is identical to its correspond-
ing wire above the ground plane and the potential of the i-th conductor
image is -¢;. The charge distributions around the i-th conductor and
i-th dielectric-free space boundary are denoted by 0; (6;) and &(ei),reSpec-
tively. The charge distributions on the corresponding boundaries of the
image wires are identical in magnitude but opposite in sign to those of the
corresponding wires above the ground plane, i.e. -p;¢6;) and -B.l(-el).
The charge distributions p; and % are again expanded into Fourier series.
A set of simultaneous equations in terms of the unknown expansion
coefficients in p; and bi can again be formulated to enforce the boundary

conditions on the potential of the i-th conductor and the continuity of the

normal components of the displacement vector at the dielectric-free space

-108-
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the image distributions.

insulated wires above a ground plane and
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boundaries of each wire due to all charge distributions in the system

(the distributions on the wires and their images), By symmetry and the
n A A

use of image distributions,we only need to write ¥ 1(2 + A{+B; +Ai+B.1)
1=

equations to enforce these boundary conditions on only the original n wires

PETURPPONY

above the ground plane. Once these equations are solved, the per-unit-
length transmission line capacitance matrix, C, can be directly obtained
as before since, for this case, ¢;=V; where V, are the transmission line
voltages with respect to the ground plane as shown in Fig. 18. Thus for
this case as for Fig. 2b, there is no need to reduce the genevalized capa-
citance matrix to the transmission line capacitance matrix via (l11),

The per-unit-length transmission ]’ : inductance matrix, L, can be

A St il A AL M (AL, A Pt T el S s S

obtained accurately by repeating this solution with the insulation dielectrics
removed and using (89} as indicated in Section 5.1 or using the large-scpara-

tion approximation in (122).

The solution for n wires in a circular shield in Fig, 3¢ can be c¢b-

P

tained in the same fashion as discussed in Section 5.1 for the case of j

Fig, 2c.

The above discussion of the solution for C assuming perfect dielec-

trics indicates a method for incorporating dielectric loss and therefore

SR ki

obtaining an equivalent per-unit-length conductance matrix, G, to repre-

sent these losses. If each dielectric permittivity is considered to be

complex, i.e., ¢ = e - jci . j(Odi/w) then (129) can be formulated as

above with the only difference being that P will now be complex. In

-111-
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A A
particular, the lastl + A, + B; rows of P will be complex., Thus the ny n

complex,capacitance matrix can be obtained as above as = C‘R +jCy so '
that jull = juCg - w® Gy and the imaginary part of G can be identified as

G=- w Cqe The real part, SR’ is identified as the usual capacitance ma-

trix and will of course not be the same as the matrix which would be com-

puted assuming a perfect dielectric,

lLarge-separation approximations can also be obtained in a fashion

similar to Section 5,1 by requiring that the separation between all wires

be large enough so that the charge distributions around the dielectric-free

|
?.
%
i
;
|
;
!
*.
1

¥ space boundaries and the conductor-dielectric boundaries are essentially

constant, However, this is generally not the problem of interest since

=
s daat O e Gl A o

wires are closely-coupled in densely-packed cable bundles and flat pack

3 and ribbon cables and it is to be expected that the charge distributions

s N = el v

b around the boundaries will exhibit large variations.

P

. However, to illustrate the application of the technique, the per-unit-

length capacitance betwecn two dielectric-insulated wires which are widely

f;:‘;[."‘ [ e e A

H
separated will be derived. Consider the case of tvo dielectric-insulated %

r wires shown in Fig. 19, Because of the assumption of large separations, g

we may assume that the charge distributions around the conductor-dielec-

{ tric boundaries and the dielectric-free space boundaries are constant,

Therefore, only four expansion terms are needed in (95) and (128), 200>

P gy

A
ag0r 319 i .

10 To facilitate the derivation and provide an upper bound on

the per-unit-length capacitance, we will take the match points at the

-112-
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selection of the match points,
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Figure 19. A two-wire line and the
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boundaries on a line joining the centers of the wires as shown in Fig. 19,

From the previous results and Table I, one may obtain

¢y = = 3gp (rwo z:(rwo)) -ajg ( Twl tn(d-ryg) ) (132a)
€v

_300 (rwottg) an (ryg + to)) "alo ( (Fwl + t) £n (d-rwo))

ev ev

8 = 'aoo(rwo L:v(d-rwl)) -aj0 ( er'::, (Ty) ) (525)
'hoo( (Fyyg + to)evzn (d-rw1)) A ( (Tgy + tl:. i (ryy * ) )
v
300 ((:wo (ero-1) ) _agg ( ray (€ro=l) (132¢)
w0 T t0) -(-a_—-ﬂw-a-:}(—))—
too () ho (fEiwlesh ) .
ago ( %‘i%g;—":l-t'l—?-) -ajo ( (:1%1(_??11)-_12 } (132d)

n
o

4, ((er+ to) (‘*rr“)) o (1)
(d-ry] - &)
where €9 = %9/ €v and €, = €17 €.
These equations may be solved for numerical values of the parameters
as outlined previously., However, in literal notation, the solution is quite
complicated. Therefore, to simplify the solution and obtain a closed form

expression for the per-unit-length capacitance, we will assume that the

wires are identical, i.e.,

-114-
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L4

Y0 = Twl = T'y

tg =t =t
€0=€1=e
pr=€/€v ®

(133a)
(133b)
(133¢)

(133d)

With this assumption we may take the charge distributions on wire 0 to be

identi:al to the charze distributions on wire 1 by symmetry.

ql f errw al0
Qg = 2 gaq0

= -q
A A
1 =4m rw ) 2y
40 2

Ty 4+ t) 200
q

Substituting (133) and (134) into (132) yields

- 1 in rvw \ in l‘w +t )
% Tey { (a:?w et (‘c!-_i'"

1 in 'd-r w K d-r
= e + 0 W A
¢1 ZT‘I’QV { K Tw ) q ( T t) q }

(e-D) 4 _(ex-1) ) ' (6r -1)
(rgtt)  (drg-t) ] ¢ (detgg- t)

((x=b , fr__-ﬂ_)“

(ex =1
\ (d-rw -t {ry, *t)

{d-ry, - t)
Note that (135a)and (135b) show that

% = - 9
and (135¢c) and (135d)are identical. Therefore

v

31~ ¢
20, .
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Furthermore,

(134a)

(134b)

(134¢)

(1344)

(135a)

(135b)

l ——
m)) 4=0 (135¢)

1

Ty 0

) 4 = 0. (135d)

(136)
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Note also from (131) thatqg = q +51 and therefore
Q=q-4 - (138)
Substituting (138) into (135b) and (135c) with (137) yields

v=;1--{ tn(.“:iw.) qf+l,n(1'w ) 4 1 (139
€y Tw rw+t )

)

and

A

. {140
er(d-ry -t) 140)

Substituting (140) into (139) yields the per-unit-length capacitance as

=9
~
2z 12 €v
- 1) d r,. +t - 141
f.n( ) (Cr(d- Ty~ t) m(-::,—-) ( )

Asg a check on this result, note that for ¢,.=1 and t=0, (141) reduces to
(91) for identizal wires and large separations such that d-r, = d.

As a final illustration of these methods, we will compute the entries in
the per-unit-length transmission line capacitance matrix for the case of two
dielectric-insulated wires above an infinite ground plane. In order to sim-
plify the procedure and to obtain closed-form expressions for these quanti-
ties, we will assume that (1) both wires are identical and are at the same
height above the ground plane, and (2) the wires are separated sufficiently
from each other and the ground plane soc thai we may assume constant charge

distributions around the conductor and dielectric boundaries, i.e.,
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qp = 2rr A, (142a)
:11 = 2m rd;m (rg =1y t1t) (142b)
4y = 27r_ayg (142¢)
‘:z = Z"rd;ZO (rg=r,tth - (142d)

The ground plane will be replaced by images as shown in Fig. 20. We
A A
choose the match pointsl, }, 2, and 2 on a line joining the two wires

(other cloices are of course possible),

Applying the results of this section and utilizing symmetry we only
A
need to write constraint equations at match points 1 and 1, The equation for

the potential at 1 becomes (see Table I)

q = -"ZLT?GV { Ln(rw) q,l + in (rd) &1 (14 3)

+ gm(d-r)qz + m(d-r )4,
+ gn(d)(-q) + fn(d))(-qy)

+ () ap) + 2nldy)-dp) |

A
The distances dl’ dl’ d, and 312 in Fig. 20 are given by

dy=/4nd +r 2 (144a)

A
d, San? 4 2 (144b)
d, -/an? ¢ @ r,)? (144¢)
A
d, =&12 +(d-rg)? (144 d)

The equation for the continuity of the normal component of the displace-

ment vector at f becomes (see Table I)

L ¢ ) - q, m——re— (145)
1 N “w"
€,Td CHE e (d-1y) 2 e {d-r 2
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Figure 20. A two-wire line above a ground plane and the selection
of the match points.
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- er{;.:rd g+ - (;_rd) - €v(‘;'rd’ 9,
. 6:51;_ rld ) (-qp) + e—v-al-l—(-g%) (-q,)

ev§2 _EZ @2

—,
[+
o ¢t
n =
o7
S
n
L
n
\.—-1-)
*

Collecting terms, (145) can be written as

1 _  *d % . %rT4q q
T4 (d))2 g @2 1 (146)
1 Ta Ta A

1 (d-rq) ¢r e (d-ry)
o oTe— o+ Sy I S— ) 9
(@ 1g) & @ty @)

N ! s (d-r ) + € epldery) )a = 6
(d-T4) (8,)2 d-ry ~ @,z /72 .

Since the wires are assumed to be sufficiently separated from each

other and the ground plane, we may make the following approximations:

d, ¥ 2h (147a)

4, ¥ 2n (147b)

d, x/an? +42 (147¢)
b a*
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der, %

d

d
d

G

T STy O T FETE T R T

(147d)

(147¢e)

(1471)

Utilizing these relations in (143) and (146) we obtain (V1 = ¢y)

2me,, Vi =

{ (e - 1)(751%

{

[y

) o ¢ m(@) 4,

(g‘) 9z * 4 (i) qz}

1)} q1+{(er'1"T+—}qA1

{(ez-m ((%'*')2 - ‘dl_>} k)

{(er 1)((d*

4,

(148a)

(148b)

The total free charges on the conductors are given by

qf1

q

f2

=q +
qﬁl

A
=q +§
2

2

(149a)

(149b)

Therefore (148) (along with similar equations at match points 2

A

and 2) may be written as

\r
Znev v

and -

1
2

]

1

|}

(A 3]
L.B A ]
C :
LD

D A
c] N
1

(A-C) (B-D)]

1 '—U Oj

_(B- D) (A-C)_‘

-

G H &1
H | |q

2d

(150)

(151)
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o e e Ty e TR 33 e ol el i oot A oy AT M e T T L1
B 21 o A T s AL i NI TR TG AR Qi g Bt Tt v g

B I N 0, Rttt W siis s v a e
%
£

) _|e H U | , | E-® (F-H] Jq
S H G 9y, (F-H) (E-G}| |4,

where from (148)

A= gn (_g& (152a)
w
g
B = 4n (—- (152b)
d
C=in (Zh ) (152¢)
ry
D= B (152d)
r 1
E = (e_-1) (_.E‘ -
_ d 1
F=-(c -9 _ . _L 152f
r ((d*)z d ( )
r
G= (e.-1) -9 +.L
SR T A (152g)
H=F . (152h)

The variables q1 and q, can be easily eliminated from equations (150) and
(151) since D=B and H=F and the result is

V1= 1 C D . (~-0) G H qq
v,] Zme, (o c EB-3 |H G a, (153)

Therefore the entries in the inverse of the per-unit-length trans-

mission line capacitance matrix are given by

- o {0 53 e

- 1 (Zh rq ry - T4 i _L
Iy {m ﬁ—) e m('%—)) ((er il rd)}
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(-], = L p . £:-C) H} (154b)
~ 2rey (E-Q) |
1 a*\  (&.-1)T ( r (a* 2_42 , 1
=s~~4%in (—-) In (—-d-> ———L—z— i
2re, { d €, Ty d(dx*) %
i
: for i, j=1, 2 and d" is given by i
& !
T a* = Van? + ¢® . (155) i
¥ 3
4 K
For this case, we assumed that (1) the two wires are identical, { i
;
% (2) they are at the same height above the ground plane and (3) the wires i %
'
are sufficiently separated from each other and the ground plane such that ; %
the assumption of constant charge distribution is valid, When these assump- f
tions are no longer valid, the expression for the entries in 9'1 or ¢ cannot :
f{ be easily obtained in closed form and a digital computer must be used. 1
s i
;&, The expressions in (154) for the entries in C-! will be used in a later ‘
publication in the analysis of certain experimental data for which this j
o
I‘ approximation is reasonably accurate. It should be noted that an approx- {
’é imation for cyp for this specific example has been obtained in [33] although
E{ the derivation is not presented and evidently relies on certain empirical 1
‘ data,
b
| |
!
E A
]
1
|
é;‘;
+ o
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Vi. SUMMARY

A complete and unified discussion of multiconductur transmission line
theory has been presented. The general solution of the problem under the
assumption of TEM mode propagation in the case of a homogeneous medium
or quasi - TEM mode propagation in the case of an inhomogeneous medium
has been presented along with parameter derivations and lumped-circuit
approximations, If losses can be neglected, then it appears to be as efficient
to solve the transmission line equations directly and incorporate the termina-
tion networks through the solution of (70), (75) or (76) as it is to use lumped~
circuit iterative approximations described in Section 4.1, The matrix chain
parameters for the distributed-parameter approach can be easily obtained in
closed form suitable for numerical computation so that "abruptly' nonuniform
lines can be handled and the per-unit-length parameters must be obtained for
either the distributed-parameter or the lumped-circuit iterative approach,
When solving the transmission line equations directly,one is not required to
solve an increasingly-large (although sparse) set of equations for increasing
frequencies when the line is not electrically short as is required with the
lumped~circuit iterative approximstions, For rthe homogeneous-medium case,
a lossy dielectric can also be included with no additional computational dif-
ficulties, Lossy conductors will also present no additional computational
problems for the homogeneous-medium case if the n conductors are assumed
to be identical, When losses cannot be neglected in the case of an inhomo-

geneous medium, the question becomes more difficult to answer since
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diagonalization of YZ, which is required in a direct solution of the trans-
mission line equations, is, in gencral, required to be performed at each
frequency and ie not necessarily guaranteed except in the case of cyclic
symmetry matrices which assume certain structural symmetries of the
line as described in Section 3.3, For this case, it may be preferable to use
one of the lumped-circuit iterative models for frequencies where the line is
electrically short, e.g., &< 1/10 A, and approximate the line with only one
section, i.e., solve (80) with N=1, For frequencies such that £> 1/10)‘ , it
may be preferable to solve the transmission line equations directly rather
than increasing the number of lumped-circuit sections to approximate the
line since no quantitative criterion for determining the required number of
sections for a given approximation accuracy can evidently be obtained.
Numerical techniques for obtaining the per-unit-length parameters for
bundles of closely-coupled,dielectric-coated wires as well as large -

separation approximations for wires in a homogeneous medium are also

given,
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APPENDIX A

The purpose of this appendix is to demonstrate certain important pro-

b

perties of the TEM mode assumption given in Section II. An appropriate ‘

reference for these results is [40]. :

The first objective is to show that, for the TEM mode of propagation,
the transverse electric field vector and transverse magnetic field vector

satisfy the same spatial distributions as static (DC) fields at each x along

the line. The electric field intensity vector and the magnetic field intensity

vector for the steady state and sinusoidal excitation are written as

+ P
Bix, v, 2, t) = B(x,y,2) "

L e Sk AT s - o Fada . aoadarete e o3 R RS Q7o

-+ + jpt .
and H(x,vy, z,t) = H(x,vy,2) e respectively where

+ -+ -+ - \
Blo,y, 9 =By X4 By J + B, 2 (A-1a) 1
- _ - “ a - |
H(x, y, z) —Hxx+Hyy+sz (A-1b) ;

+ . : . . .
and x,vy, z are unit vectors in the x,y and z directions respectively. Assum-

ing the TEM mode of propagat’>n, E, = Hy =0, thec field vectors are entirely

transverse to the x direction and are denoted as

. i il e LR S

-+ -+ -+ s
Er(x,y,2) = EY y+E; = (A-2a) :!
i - -+

HT(x, v,2) = I—Iy y+H, = . (A-2b)

Lt T

Now consider the general (n+l)-conductor, uniform transmission line in

L
Fig. la :onsisting of (n+l) perfect conductors in a linear, isotropic and

homogeneous medium., Faraday's law and Ampere's law become for the

L i

TEM mode of propagation (in the source-f{ree medium)




o iicas

i

T

1

-+ . -+
VX Ep = - jou Hp (A-3a)

- . -+
vX He (0 +jwe) Ep (A-3b)

where the medium may be lossy through the effective conductivity ¢ which
includes ohmic conductivity and dipole relaxation losses and ¢ refers to the

real part of the complex permittivity.

Separating the curl operator into a transverse and a longitudinal com-

ponent as
3 » 3 2+ 3
7= (”.__ + 2z ) + A-4
y 5 iz *=% ( )
| J
v
vT
and applying to (A-3) we obtain
nd d o . -
Vp X Ep +55-(xX Er) = - jawH Hr (A-5a)

2 d 4+ o : =
vp X Hp + 5= (X X Hp) = (0 + jwe) Ep - (A-5b)

-+ -+
However, 91 X En and VX Hy are vectors in the x direction only. There-

fore we have by matching components

-+
Vp XEp =0 (A-ba)
3 o ¢ . 2
3x (XX ET) = - joMd Hp (A-6b)
pry
VT X HT =0 (A-6C)
d_ (2w o -
~- (XX Hy) = (0 + joe) Ep . (A-6d)
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-+ -+
Note also from v*D = p and V. B = 0 so that

- p
‘ VOET = VT. ET = -—€- (A...7a)
-9 -+
v*Hp = 9peHp =0 (A-T7b)

(since Ex = Hy = 0) where p is the free-charge density in the surrounding

PYeE e v e T i A SN ol

medium (which will decay to zero with time constant ¢/0). Therefore,

e s e

equations (A-6a), (A-6c¢), (A-7a) and (A-7b) show that the transverse field

el

- -+
vectors E1 and Hp satisfy the same spatial distributions as static fields in

any transverse plane (y, z) at each x along the line.

A, W S

This may be more easily seen if we write Faraday's law and Ampere's

. - -»
law in integral form by applying Stokes' theorem to v XE = - jyMH and

e ke e e A

-+ -
- YXH=(n+jne) E + 7 as

- n > <
& E‘d£=-jwu§H-da (A-8a)
c s .

& i e A aAT6S. s ok P

&ﬁ- af = g T.a 4 (04 jwe) Q E.dl (a-8b)
c g s

where C is a closed contour enclosing the open surface S, Taking C to be a

P CTPeTEY Ny WS

contour in the transverse (y, z) plane denoted by C_, and S to be a flat

YZ

{
]
surface in the transverse plane denoted by Syz which is bounded by Cyz then ;
(A-8) becomes 3
:
§> (Ey dy + E dp + Ey dx) = - ju Q Hy dy d, (A-9a) V

Cyz SYZ

. 3
O (Hyd +H d +Hy 0=\ Tgdpd, to+jwe) ( Egdyd, (a-9b) o
Cyz Syz yz
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where N is any source current in the x direction penetratis: :SY L. However,

under the TEM mode assumption E, = Hy = 0 and (A-9) becoures

~ -
§ (Ey d_+ E, dz)=§ ET* (Zdz+ydy) =0 (A-10a)
C C

vz vz

d

J\; dv d, (A-10b

& B g
= 3 3 =
igCYZ(HY dY + Hz dz) = HT (2 dZ + y dy) . Syz 5

Cyz
-+ -+
which are of course indicates that ET and Hy are no longer coupled together
s is the case for static electromagnetic fields.

Thus we may uniquely define the voltage of the i-th ceonductor and the

~urrent associated with the i-th conductor as

-+ -+
Vi(x) = - XC-I Eq ¢ df (A-115)

6y
I-l(x) =, él HT « dyg (ALY

A
where G, and C; are shown in Fig. 1lb as contours in the transverse pline o,

L]
» particular x along the line,
The second objective is to demonstrate that for (r+l) perfect conducte: -
noemogeneous medium, the peor-unii-"ensth indudiange o0 .
' » U eapacilance matris, 00 aud pereaniisionae s g
e tisly the bnportant relations @r7en in (o4), Fron ool
cmay obtain by taking the partial dorivative of cr ol arne e v s
. —’ . .
- v and taking the curl of x with each equaticn,
T
~iE -
R T AL, R S SR W R e SRS
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-

>3 Hr = (jwHo - w?ue) Hy (A-12a)
X - . -+

2 ET* (juHo - w?ue) Ep . (A-12b)

From equation (19) assuming perfect conductors

d2
o7 L) = Y Z 1{x) = (juGL - w?CL) I(x) (A-13a)
d2
37 Y00 = ZY Vi) = GulG - LG V) . (A-13b)

Performing the operations indicated in (A-1l}) on (A-12) one obtains two sets

of n equations

d2
3= L (%) = (jwuo - wfue) I;(x) (A-14a)

2

= Vi (%) = (jwuo - w?ue) Vi(x) . (A-14D)

Arranging these for i =1, ---,n as in (A-13) shows, by matching real and

imaginary parts, that

LG=GL=yol, (A-15a)
LC=CL=yel ] (A-15b)
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, APPENDIX B 1
The purpose of this appendix is to demonstrate the derivation of the 3, a
b ;
, multiconductor transmission line equations in (4), (6) and (7) from the per- ;
] .
?l unit-length lumped equivalent circuit in Fig. 7. ; :!
; Utilizing Kirchoff's voltage law counter-clockwise around the loop con- : ;
& it
( sisting of the i-th conductor and the zero-th conductor in Fig. 7 yields - ;
| n |
Vi(x + Ax) - VSi(x) 8x + juw £; AxT; + k§0 Jomyy Ax Ty (B-1) !
k#i i
lrg 8x +jwle B0 1 - Vilx) |
( i
- (rcO Ax T+ juw lco &x) Ig - jwiq ax Io
{ i
T Ij = 0 |
& - Jomya AX Iy = . ,
i k=1 kO k . 1
: !
This equation can be rewritten as 1
j J
—: Vl(x + AX) - \'.(X) . n . ‘
AX =~ Jwd I - ks-:‘=0 Jwiyg I (B-2) b
K#i |
< (r_ +tjwt )1
s
i
+(r. +jwe_ )1
( : n . o
tiwlg g + Y jwmyg Iy |
k=1 ’
+V, (%)
i
g -130-




. and the current in the reference conductor satisfies

n
. IO = - E? Ik (B-3)

Substituting (B-3) into (B-2) one obtains

ket -

Vilx + Ax) - Vi(x) (B-4)
AX S - lei Ii - _]w(-m-lo Il -0 4 -mio In + mil Il+"‘ +min In)

- (l'ci + jmlci) Ii

+ (l‘co +jmlt0 tiwlg)= I = eces )

+ Vg (x)

L ot M Kl e AL SR s Mt b oo e a1 Mokl o el ke e

which may be rewritten as

Vi(x + Ax) - Vi(x)
Ax

== reg tiwbe) +iwly - Jwmyg - jumig +jwmyy) I) (B-5)

2k e bk

-0 0 (rci + jmﬂci +jwli + rcO + jwlco +jw£0

- jwmio' J(l)mlo) Il- e 4

+ Vsi(x)

Arranging these equations for i=l, ---,n and taking the limit as Ax + 0 yields |

Ty . s i i e
1

{4a) and the per-unit-length impedance matrix, Z, can be separated as in

~
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(62) with the entries given in (7a), (7b). (7c).
The derivation of the second transmission line equation, (4b), proceeds

similarly, Utilizing Kirchoff's current law for the i-th conductor in Fig. 7,

we may write
L(x + &%) = [(x) - (g;q 8% +jwe;y Ax) V(x + px) (B-6)

n
- kEI (g 8% +jweyy Ax)(Vi(x + 8x) - Vilx + x))
k#i

+ Isi(x) Ax

PR raseeearT e LTI E Gk

which may be rewritten as

— = (g + jweyy) Vy (x + Ax) (B-T)

s Lol SACIT b« e ma S

n
k#i

RO

Foee kg e Vo (x4 M)+ Isi(x)

R

Arranging for i=l,~---,n and taking the limitas Ax + 0 yields (4b) and the
per-unit-length admittance matrix, Y, can be separated as in (6b) with the

entries given in (7d) and (7e).
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The purpose of this appendix is to derive the expressions for the per-

unit-length equivalent sources in (5) which are induced by an incident elec-

tromagnetic field on the uniform transmission line in Fig. 2a consisting of
{(n+l) perfect conductors in a lossless, homogeneous meuium (see Fig, C-1).
The expression for the currents induced in termination networks given in

(77) will also be obtained. The solution for Fig. 2b is also discussed.

A A AT il e N AL b

The solution for the special case of a two-conductor line (n=l) was

§
]
obtained by Taylor, Satterwhite and Harrison in f20] and later in a more 5
convenient form by Smith in '21]. The solution for the case of a uniform :
ﬁ plane wave incident on a three-conductor line in the transverse direction ,3
2 ¢
& . (perpendicular to the system's longitudinal (x) axis) with the electric field i
f intensity vector polarized parallel to the line axis was obtained in [24]. !
E Procedures for extending this result to multiconductor lines were indicated, “
E It is convenient to consider the effects of the spectral components of |
the incident field as per-unit-length distributed sources along the line [26].
3
: The sources appear as series voltage sources and shunt current sources as ;
{ indicated in Fig. C-2 for an '"'electrically small" Ax section of the line, The
_ multiconductor transmission line equations may then be derived for the 3
k Ax subsection and are given in equation (4). The termination networks are .
; given in the form of generalized Thevenin equivalents as in equation (69) and
E the solution for the termination currents is given in equation (75), Substitu-
E ’ ting the expressions for the matrix chain parameters given in (49) into (75)
;‘ for this case of
b -133.
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perfect conductors in a lossless, homogenevus medium (free space)

described by €, and b, we obtain

rcos(8 {20 + 25} +iminten {zc+2g2c 1211000 - (C-1a)
- Vg +[jsin(as) Z, gc-l + coa(g D) 1.1 Vg

A A
+ V(8 - Z, 119

19 = - jsin(pf) 2l v, +Tcos(p 1, +j sin(p ) zo! zlu0)  (c-b)

A
+15(8)

where the wave number is g = 21/), A\ = v/f, y=1Mlije, = 3 x 108 m/sec,

The characteristic-impedance matrix Zc becomes

and _’;’8(2) and_is(m are obtained by substituting {49) into (74) as
A (3 | N A .. A A } A
AACEAY {cos(8(2-2) ¥ () - j sin(p(2- ) Zc 1,0 [ ak (C-3a)
A C&{ Ay A .. A -1 A } A 3b;
I 8 = Yo cos(B (£~ x}} I (x) - j sin(g(£- X)) Z5~ V (x)] dx . (C-3bj

Solution of (C-l1a) for the termination current vector, I(0), reguires the
solution of n complex equations in n unknowns (Ii(O)). Once (C-la) is solved,
(C-1b) yields the termination currents_l(.t) directly,

Although the equations may appear formidable, they are in a compact

form and can be straightforwardly programmed on a digital computer.
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Furthermore, the form is not restricted to any particular value of n. The

only difficulties are in determining L and determining yfs amd_i‘s (which
require that we determine V (x) and_[s(x)). The determination of the equiva-
@ lenut sources Vsi(x) and Isi(x) induced by the incident field will be the next

é} objective.

.,ia“

TS

C.1l. Determining the Equivalent Induced Sources

In order to determine the equivalent induced sources, Vs (x) and Is (x),
i i

consider Figure C-1. The method used in [20] can be adapted here in a

R T SRR RN T T

similar fashion. Faraday’s law in integral form becomes

- >,

§ E-af =-jus, | H.Ra (C-4)
) "G S
. where S; is a flat, rectangular surface in the x,y plane between wire i and

wire 0 and between x and x + Ax as shown in Figure C-1. The unit normal n

(o T O AT IR, RO AT e

A . -, . . . .
is n = z where z is the unit vector in the z direction,

M-

da = dx dy and C, is a
contour encircling S; in the proper direction (counter-clockwise according to

the right-hand rule), Equation (C-4) becomes for the indicated integrationl

d.

5 i0

\ IR, (v, x+a%) - B, (v, 0)]dy (C-5)

: 0 i i

%

. Sx-}-Ax

: -\ [E4 (d, %) - E, (0, x)]dx

; x fi 10 4

x+AX diO

. =-jumy (7 Hy by, dy ax

x o i

l. In integrating from y=0 to ysd,;, we are implicity assuming that r . and
rwy are much less than djg, i.e., the wires are sufficiently separated so
: that they may be replaced by filaments.
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where E; is the component of the total electric field (incident plus scattered)
i

transverse to the line axis and lying along a straight line joining the two

conductors, i.e., Et = Ey; Ez is the component of the total electric field
i i

along the longitudinal axis of the line, i.e., El- = Ex; aud Hn' is the com-
i i
ponent of the tota]l magnetic field perpendicular to the plane formed hy the

two wires, i.e., H.L =H ,
ni z

Defining the voltage between the two wires as

40
vix) =- \ CE, (y.x)dy (C-6)
.10 1
then
dv; (x) 1 cdio
~ —— =lim —— g IE, (y,x+8x) - E, (v, x)]dy (C=17)
X Ax t. t. .
Ax+0 0 i i

The total electric field along the wire surfaces is zero since we assume
perfect conductors. (One can straightforwardly include finite conductivity

conductors through a surface impedance as was done in [20]). Therefore

(C..5) hecomes in the limit as Ax+(

dvilx) " Kdio
= juM,

dx

H_ (y, x)dy . (C-8)
i

The total magnetic field is the sum of an incident and a scattered field:

Hni(*/., x) = H (y, %) (C-9)
(scat) {inc)
= Hz(y,x) + Hm(y, %)
\Wv-mu-ud Qsstrinsmgmnnisasnss
scattered incident
-158-
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‘ . and the scattered field here is produced by the transmiseion line currents.
The scattered flux passing between the two conductors per unit of line leng _
is directly related to the scattered magnetic field and the per-unit-length %
inductance matrix, L, as ; ,
b ~ < E
(scat) .d; (scat) f i
E ®.(x) = "g Uy Hy, (y, x)dy P
1 0 1 b
I;(x) .
,“1:,. Iz(x) " »
= - ] - 3
1 (2,0 229 AN I (C-10) -
. b
£ | Intx)] bl
K7 .
{‘ where zij = \Y-L]ij' Substituting (C-10) and (C-9) into (C-8) and arranging for ‘ 4
f ~ :
i=1, ----, nyields _ ; g
N ]
: :
. © .d (inc)
Ve +jetied = Ly w00y (C-11)
5 . 0 ' i
H y
- - ‘
\1 and the source vector _Ys(x) in (4) is easily identified by comparing (4a) and
4 (C-11).
o For transmission line theory to apply, the cross-sectional dimensions
of the line (wire spucing, etc.) must be electrically small, i.e., Bd;y <<
k and Bdij << 1, Thus the result indicates that the voltage, V_ , induced in
& i
“, the loop between the i-th conductor and the zero-th conductor and between x -
[ .
!, and x+Ax is equal to the rate of change of the incident flux penetrating this
:k "electrically small' loop which, of course, makes sense.
L -129.
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npeve's law yields

3H. 2H
E, =< ! [ = ——3-] (C-12)
Jwev 3z dx .

EY will consist of scattered and incident field components and is written as

Eti(v. x) = EY(Y. x)

(C-13)
(scat) (inc)
= Ey(y, x) + Ey(y, x)
w \q—l
scattcred incident
Substituting (C-12) into (C-6) we have
(scat) (inc)
v e S0 g (g ady = de L L AP
AX) = - s X = o= -
1 So Y Y y jw ev 0 ax dx
(scat) (inc)
- 3H (y,x)  3H(y, x)}
- d .
32z dz y
Utilizing (C-10) we obtain
V.(x) = 1 d [2 £ L. 11(x) (C-15
¥ = - e & i1 Y20 w7 fyplllx -15)
v Vv
[scat) .
. - § x dy - S E, (y,x)dy .
JU) €v o az . 0 i

If we assume that the currents on the wires are directed only in the x

direction i.e., (there are no transverse components of the currents on the
(scat)

wire surfaces), then Hy(y,x) = 0 and (C-15) becomes
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Vl(x) = -

1 a [
Touye 9x {‘11' Ligs === ‘in]_“")}

diO (inc)

\ Eti(y. x)dy
0

(C-16)

Arranging these equations for i =1, ~--, n we obtain the second transmission

line equation

: . -1 . -1
I(x) + jwH e L7 V(x) = - jwu e L

-

* (inc)

Et. (Yv x) dY

1

(C-17)

-

Utilizing the important relation for a homogeneous medium, C = M€y, L,'l in

(C-17) we obtain by comparing (C-11) and (C-17) to (4)

Xs(x) = jw le

Ig(x) =-jwC

"

[ .

(C-18a)

(C-18b)

The shunt current sources in_ls(x) are therefore a result of the line voltage

induced by the incident electric field being applied across the per-unit-length

line-to-line capacitances which, of course, satisfies our intuition,

|
|
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C.2. Solution for _\f_s(x) and_ls(x)

A

A
The final problem remaining is to obtain simplified versions of V_ and

-Is in (C-3) to be directly used in (C-1). First consider the determination of

A
Xs(x). Substituting (C-18) into (C-3a) yields

A £
. A
Vs(£) = Jwl, Qo {cos(ﬁ(lﬁ-x))

d.
0
{sin(s(-t- %)) § ’

From Faraday's law we obtain

Substituting this into (C-19) yields

A £ A
V0 = Qo{cos(aw-xn

i(y,;“c)dy }d:‘é (C-19)

(inc) (inc)
(inc) dE,, 3E,
=t ol Tl (C-20)
i quv BY ox
. -
{inc) .t (inc)
Ey (o8 - E, 0.0 }dﬁ (cC-21)
o . ' -1 -
g d .(inc)
- g {COS(B(I.-JA()) Q 10 aEti(Y'ﬁ) dy } dx
0 0 dx
b * -
-42-
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£ a. ..
PN {sm(a(x-in g 0 Ei‘?ﬁ’&) dy } ad
‘0 0 .

| . .J

et e de b MR o o

Utilizing Leibnitz's rule,(C-21) is equivalent to
p=

(inc) : (i)

£
V(9 = So{ cos(p(s- ) | B, (dig.d) - E, (0,%) }dA (C-22)

Ty ISR PRRCE RN
TR REET SR A r
e ool ) o e

*

£ d., “(inc)

a A i0
r - ?o -S-’n‘— {COB(H:-X)) Ro Etl(y,i) dy } dﬁ

L

b * J :

o ot B

e RIT

b and this may be written as

(inc)

[/
i ‘Xs(.t) = Q {cos(s(.t-?:)) Ezi(dm,i) - Eti(o,ﬁ) } ak (C-23)
"0

. L4 !
diO (inc) de
; : - g E; (y,8) dy | +cos(BS) Q E, (y,0) dy
. 1 i

e el




A
Similarilyls (£) may be obtained as

£
A
100 = - jz -1 go {ain(s(.t-?:)) Ey (digr %) - E‘i(o,i‘) }d& (C-24)

L ’ _J |
|
d ) (inc) !
iz -1 : 4
- ch {sin(e.t) g 0 Et (y,0) dy } . .
. , i
0. i L
N
L J %
: ) ) A A 'i
=3 The important Quantity in (C-1la) is L(x) - gx JIg(&). Combining (C-23) 1
'8 o
14 and (C-24), this becomes ; j
: f
E 5
: A A £ A A 1
l Y, (&) - Z: 1,08 = QO{fCOB(B(S-x))}‘n + ] sin(B(£- x) Ze EC- 1 (C-25)
‘i - = — i
! B . i
: . . ;
X . ° L
| (inc), {inc) d, {inc)
1 - A A i0
L X E, (0. %) - E, (0,4) } ak - ? E, (y, £) dy
- L] 1 < o L] 1
S . J L . —
2§ ,
3 j
-
: o7
-144. '
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1 diO (inc)
+ [cos(g.t)ln +j sin(g &) 5: EC- ] S Et'(y,O) dy

Note that the equivalent forcing function on the righthand side of (C-1a),
A A
L(S) - gsls(.t), given in (C-25) is simply determined as a convolution of
differences of the incident electric field vector along the wire axes,
vinc) (inc)
Ez-(diO"‘) - E‘_(O,x), and a I'near combination of integrals of components of
i i
the electric field vectors at the endpoints of the line which are transverse to
(inc) (inc)
the line, E, (y, £) and E, (y,0). This is, of course, precisely the resuit
i i
obtained by Smith [21] for two conductor lines. Substituting (C-25) into {C-la)

and setting V= 0 x -Y-O = 0 , i.e., no independent sources in the termina-
n- n

tion-networks, one can verify that the result reduces for two-conductor lines
(n=1) to the result given by Smith [2]] since Ze, ES’ 50 become scalars for
two-conductor lines and (C-la) becomes one equation in only one unknown
I{(0). X or uniform plane wave illumination of the lire (which is usually the
case of interest), (C-25) reduces to a much simpler form although the result
allows for the more general case,

The final equations for the line currents then become (substituting (C-25)

into (C-1))

rcos(es){go +Zg } +j sin(g £) {gc +Zg gc'lgo }]_1(0) = (C-26a)
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S
|
- -1 A
- Vgt Tisins9) Zg 2o + cos(89) 1, Vg 3
1 (inc)

; + Q {rcos(a(s- 4)) 1, +j sin(s (2- &) zg 2 M ot -
:
(inc) 1 (inc) ; :
- E(© + {lcos(sH 1_ +; sin(p ) Zg 25N E© ) L
N ' } 3

T

1 1 i i

: e =-jsin(B2) 2™ Vg +leos(B 1, +jsin(BE) 2.7 21 10)  (C-26b) i g
‘ s (inc) I
( froma e 20 Jo

0 P
; (inc) E 3
- JZC {sm(s&) E (O)} -
= (inc)  (inc) (inc) 1
i where _E_z(x), __E_t(.t) and Et(O) are n y 1l column vectors with the entries in the :
i-th rows given by '5
(inc) (mc) (inc) '

; [E,®)];=E_ (d;5,%) - E, (0,x) (C-26c¢) ‘

o 4 i Col
i (inc) diy (inc) P
ke [Ey(2)], = E,(g,%) de, (C-264) O

=t T e i C

J ‘0 o

3 (inc) diO (inc) i dﬁ

3 (E, 0], = g E, (g;,0) dE. (C-26e) b

] R i ! |
3
; fori=1, ----, n which are equations(77). 1
A word of caution in the interpretation of the notation is in order. 2
. y
b '
Although it should be clear from the derivation, the reader should neverthe-
(inc) .
‘i" less be reminded that the integration path for the component E, \isinthey }
L i
: direction when the i-th conductor is concerned, When other conductors are . §
5
{ concerned, the integration path is a straight line in the Y,z plane which é
) i
i
3

R T A e PP I L SRR LSRN L P
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4

joins the conductor and the zero-th conductor and is perpendicular to these

two conductors, This is designated as §; in (C-26) and replaces the y vari-

able for the path associated with conductors i and 0. The notation may be

cumbersome but the idea and implementation is quite simple.

C.3. The Per-Unit-Length Inductance Matrix, L

~

One final calculation remains; the determination of the per-unit-length
inductance matrix, L. Ordina.ri‘ly this is a difficult calculation as discussed
in Section V., However, if we assume that the conductors are separated
sufficiently such that the charge distribution around the periphery of each

conductor is constant, then the conductors can be replaced by filamentary

lines of charge., Typically, this will be quite accurate if the smallest ratio

of conductor separation to wire radius is greater than 5 [56). In this case,

the entries in La are shown in Section V to be

2
1 8! diO
= - =T v
L) = My JC 1, s tn (o) (C-27a)
wi  wl
d., d,
L =y fer ¥ g m (02 (C-27b)
~ ~ bad . L)
i?é w0 “ij

For closer conductor spacings, proximity effect will alter the charge distri-

butions from constant ones and numerical approximations must be employecd

to find L. as was discussed in Section V.
The entries in the per-unit-length inductance matrix

for large wire spacing given in (C-27) can be derived in an alternate manner
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which more clearly illustrates its relation to the total scaitered flux passing

(scat)
between the wires, The matrix L relates the scattered flux ¢ passing

between the wires to the wire currents as

= —— - - -
(scat)’
% w0 VIR P I O
(Scat) . . . .
2 = . = . . . (C-ZS)
(scat)
L. n _J -lnl v LnnJ bIn. -
L

The respective entries are determined as

¢(s(:.at:)

E ﬁ |11’ =emm Ly, L e IS0 (C-29a)
(‘scat)

fa?J: —I-;- 'Il’ =me= Liop Ly == In =0 (C-29b)

and Z" = ziio

ij Large wire separations are asgsumed so that the wires may be

replaced by filaments of current,

Consider Fig., C-3a. The magnitude of the magnetic field intensity

vector due to [, on wire i at a distance r > r; away {rom wire i is

I
Hr = pye- (C-30)

and the total flux passing between wire i and wire 0 due to both currents is
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Ij @ dgj

I djo \\
| \r
\
R = O E
-H, H,
— ~
0
(b)

Figure C-3,

The problem geometry for the calculation of the
in the per-unit-length inductance matrix,
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(scat) d. d.
. Wi i0 ) 0
6, = { S Loars S Lo (C-31)
Twi T %0
u 2

)

Thus Lii is easily identified 2s in (C-27a).

Vi gn ( dip
Zn Twi Fw0

Consider Fig. C-3b. The portion of the flux mi(scat) passing between

wire i and wire 0 due to -Ij in the reference conductor is as above
(scat) u_l

i0 Y3 tn (——dio )
2% rwo

(C-32)

and the portion of the flux passing between wire i and wire O due to I, in the

j-th conductor can be found to be

dio =d;g (p - fp)
,uVRHdp=_}i‘£1_{§ Y — 0—— dp }(C-33)

2 2
+
em I 2 g4 )2 .
0 i0

(scat)
¢ij =

- po
Combining (C-32) and (C-33) we obtain
(scat) (scat) (scat) uls d..d
6 oy to. =Xl g (J0i0) (C-34)
1 i) 2m .r
1) w0
since
2 2 2
dij = go + (d.lo - po) (C-35a)
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; ;
¥ i
i ]
P L2 -g 2 2 _35 Do
t d_]O §o + pg (C-35Db) ; 1
. and L is easily identified asgiven in (C-27b). ‘
i
C.4., Computed Results ]
i
1
To show the simplicity of the result and indicate its equivalence to the i
{
result obtained by Harrison in [24], Example 1 considered in [24] will be 5
computed by this method. Three wires all of radius 10"3m lie in the x, ¥ %4
plane as shown in Figure C-4. A uniform plane wave with an electric field i
intensity magnitude of 1V/m is propagating in the y direction and 5008 i
(purely resistive) loads connect each line to common nodes. The various |
{
distances in Figure C-lare d;, = 10-&m, dZO =2 x IO'Zm and dj, = lO-Zm. ;
A - Z, and Z£ can be easily shown to be ]
' 1000 500
: . Z£= go =
: 500 1000 . ;
|
N The characteristic-impedance matrix, using the values for the per-unit-
length inductance matrix given in (C-27), becomes
tn(100) £n(20)
d Z_ =uL =60 ;
‘ £n(20) 4n(400) | 1
1 (inc) :
ug E, = 0 in (C-26) and the electric field intensity of the wave is !
iy 1
‘% (inc) )
43 = - JRY t
i Ey,x) = E e
4
A -15]-

e -

-y

A——-

>
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— s i uf
e g
N I

50083 -——4=im

1,(0)
v §*
5008 1.(0)
P—W——*——; @
| V|(O)
50080 3

]r 1,(0)+1,(0)
|, ©
-(1,l00+1,(0))

Uniform Plane WO ™ Fwi Mg+ m
4 Wave Propagating

in + y Direction

* .
Ey=lV/m &71BY

Figure C-4.

The geometry for the example.
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From this, one can determine

(inc) (inc) 2
_ -jslo" |
Ell(dIO’x) - Ezl(o,x) = e -1 :
3
(inc) (inc) . _2 {
- .-j2plo i
B, (0 %) - £, (0,%) = -1 . ;
1
Two frequencies are considered in [24] in terms of g &; pL=1.5, p&= 3.0. i
Equations (C-26) with the above items were programmed on an IBM 370/165 ;
3
computer in double precision arithmetic., @ The execution time (cpu time) i
k|
]
was .01 seconds (1/100 sec) and the results are 4
f !
f]10(0)1= 1. 7662556E - 5A [5(0)=70.77° i
BL=15 Y [[(0)] = 9.0756083E - 8A _/_11<0) =.13,9° ;
L|12(0)1= 1.7671218E - 5A {12(0)= -109.52°

1,(0)]= 5.4543875E - 54 {10(0) = 9.845° j
BL=3.0 1 [[(0)] = 7.7363155E - 7A {11 (0) = -75.8°
o
[[,(0)]= 5.4608110E - 5A I,(0) = -170.96° %
1

The computed results obtained by Harrison' method and given in [24] are
]
ixo(O)l = 1,766E - 5A i

BL=1.5 L, (0)] =9.076E - 8A

TR

( 112(0)| =1, 767E - 5A

ot .

, -153. {




i
A,
:

p o e gy b = - =TT NCAR b

[10(0)] = 5,454E - 5A
BL= 3.0 [11 (0)]|= 7.736E - 7A

]12(0)1 = 5,461E - 5A

The results computed by this method are exactly those computed by

Harrison's method in [24]. However, with this method only 2 simultaneous

equations in the 2 unknowns, 11(0) and IZ(O)’ are required to be solved

(IO(O) = -II(O) - IZ(O)). Harrison's method required the solution of 10 simul-
taneous equations in 10 unknowns. Furthermore, Harrison's method was
restricted to uniform plane wave illumination of the line with the wave inci-

dent perpendicular to the line. Since Zg¢= Z, for this example and since the

uniform plane wave is propagating broadside to the line, I(0) = I1(J).

C-5. Extension of the Method to Wires Above a Ground Plane.

Consider the system of n wires in free space above an infinite
ground plane shown in Fig. 2(b). The result for (n+l) wires given in (C-26)
can be extended to this case with the following observations. Consider Fig.
C-5. Clearly we may apply Faraday's law in (C-4) and the previous devel-
opment to the flat,rectangular surface in the x,y plane shown in Fig. C-5b
between the ground plane and the i-th wire and between x and x+4x. This
flat,rectangular surface S; lies in the x,y plane. Equations (C-26a) and

(C-26b) will again be obtained. Equations (C-26c), (C-26d) and (C-26e) be-

come for this case

(inc (i (inc)

)
[Ey00)s = £y, thy%) - Eg, (0, %) (C-36a)
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Figure C-5,

Mualticonductor lines above a ground plane.
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B

(inc) th (inc)

B, ()] =\, Eg (8,9 dg (C-36b)
~(inc) (.hi (inc)
[E, (0)); = \o Ef (8i»0) dE; (C-36c¢)

where §; is a straight-line contour in the x,y plane between the position

of the ground plane, y=0, and the i.th wire which is perpendicular to the

ground plane, i.e. § =y. This is indicated in Fig. C-5a.
(inc)
0 (h;, x) is the component of the incident electric field parallel

(inc
to the axis of the i-th wire at y=h; and E,,

E

(0, x) is the component of the

incident field parallel to the ground plane directly beneath the i-th wire,

Egnc) is the component of the incident electric field parallel to gi and

directedin the +y direction.

The per-unit-length inductance matrix, L, can be obtained in a
fashion sirnilar to Section C. 3 by determining the scattered magnetic flux
passing through the surface S; beiween the i-th wire and the position of the

ground plane~{the ground plane is replaced by image wires) and is given

in (122) as

(L] ==Y tn (Zhi) (C-37a)
2m .

Twi
Q. ¥
L], 2Y 4n (dff ) (C-37b)
T S - 1]
i4j

for i, j=l, =~-, n where

4% = /d..;' + 4h.h, (C-38)
ij 1] 1]
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APPENDIX D

The purpose of this appendix is to derive the simplified form of the

nodal-admittance matrix for the lumped-circuit iterative approximations
given in (80) and the forms of the matrix chain parameters given in (78).

To derive the first equalion in (80) consider the equations for the termin-

ation-networks in (69):
V) =y_0 - 50_1(0) (D-1a)
v =V

g tZg 1O (D-1b)

and the matrix chain parameter equations for the lumped-circuit iterative

models given in (79) for a line of N sections:

A (1;':) = da X (k' ) a2 L (%3) (D-2a)
1(Es) =, v ¢ p,, 1) L
For the first subsection rewrite (D-1a) as

10) = ¥, ¥, - Y, V(0) (D-3)

whee Y5 = go-l and substitute into (D-2a) with k=1 to yield

V(E/N)

u

Bia1 YO + &, (Yo Vy - Yo V0) (D-4)

G - B2 Yo YO + 84, Yo Yy

which is the first equation in (80).
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To derive the last equation in (80), rewrite (D-1b) as

1(8) = Yo V() - Yg Vg (D-5) .
]

#" where sz gél. Substitute this into (D-2b) for k = N to obtain

e e s i e Ui e

Yo V) - Yo Vo=81 V (Eﬁl' -‘) t B2l (‘N:':xl -‘:) . (D-6)

Substitute (D-2a) for k = N into (D-6) to obtain

(D-7)
821 ¥ —N-’) + ’kZZ{\kIZ Yo - & ~k12 5 -(N- )}

et e e At

Yo Vis)- Ve Vg

which can be rewritten as

1
fi21 - G2z Bz B }X(HI%I' g) + {822 Bd2- Xs Jy = - xo vg (0-8) : ‘

However, one can easily prove the identity in (82)

]

-1 -1 .

f B - Bez Baz Ban ¢ - G (D-9) ;
% 1
( associated with the forms of the lumped iterative matrix chain parameters 1
i !
‘ in (78). Therefore, substituting (D-9) into (D-8) and multiplying on the left ‘
by -8, ,, vields the last equation in (80). 1

The derivation of the intermediate equations proceeds similarly.

I
|
i
|
}
|
& Substituting (D-2b) for k=m into (D-2a) for k=m+l yields

o

Writing (D-2a) for k=m as

(m+1

£) = ~kuv( £) +a, {,.,kZIY.k Le) v g,,1 ( s)} (D-10)

i
-158-

. e ot v s e e
g RE—




? 1@ = o Y(R 9 - &b s .‘.’_(Ef\'}l g)
' and substituting into (D-10) yields
{ a2 Bxa1 - Bz Bze 40 b ) _\_,(Lnﬁ:}_ £)
H G * B oo 8 Bt Y ( £)

-vl"-ﬂx)

Again substituting the identity in (D.9) into (D-12) we obtain

VL) (bt bz bor G JY @) v (@ s) - o

which is the form of any of the intermediate equations in (80)

(D-11)

(D-12)

(D-13)

In addition, it can easily be verified from the forms of the matrix chain

parameters for the lumped-circuit iterative mwodels given in (78) that

Yaz Jez T szz baz
or
1
a2 Y2z Yz < b .

(D-14a)

(D-14b)

Substituting (D-14b) into (D-8) (along with the identity in (D-9)) and substi-

tuting (D-14b) into (D-13) along with {D-4) yield the final nodal-admittance

matrix equations in (80):

(a2 Yo = By YO+ VE/N) = By, ¥

~0 C
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"L kzz) X(N‘c) + V("""N J =
Tle) + s v, - & .
Baz Xg - Yop) VO =8, ¥ Vg

for m=1, ----, N-1,

The forms of the matrix chain parameters for the lumped-circuit

iterative approximations given in (78) can be derived in the following

manner.

For the lumpad '7 model, the terminal equations are (see Fig. 1ll(a))

v -v(Ers) -z (%) L&) (D-162)

(ir«“)"‘(}:“s)-‘f(f:) Y.(‘I%"-“) . (D-16b)

Equation (D-16a) corresponds to the first matrix chain parameter equation

in (78a). Substituting (D-16a) into (D-16b) yields

L(5e)=-x(Dyte) + {1 rxs b3t

which is the second matrix chain parameter equation in (78a).

(D-17)

For the lumped T" model, the terminal equations are (see Fig. 1l(b))

v(55)- v(59) - 2@ 1 (59

2 (D-18a)
L(Ee)s-rE)w () + 1(XLs) (D-18b)

Equation (D-18b) is the second matrix chain parameter equation in (78b)

Substituting (D-18b) into (D-18a) yields
v (%) ML 2 (P () 2 () LR o)

which is the first matrix chain paramater equation in (78bj.

For the lumped Pi model, the terminal equations are {sec Fig. ll(c))
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(D-20Db)
1 £ / k
-3 1 (§) vise)
Equation (D-20a) is the first matrix chain parameter equation in (78c). Sub-

stituting (D-20a) into (D-20b) yields
3

(39 {-1($)-3221F) } (5 (D-21)
+{Ln+'lz'¥» (N) }-\N £)

which is the second matrix chain parameter equation in (78c).

For the lumped Tee model, the terminal equations are (see Fig. 11(d))

v(§ ) (%) -5 2(5)L{5e) (D-22a) i}
1

L&) L @) (0-220

RRACIHC DRRSMETEINCD '
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Equation (D-22b) is the second matrix chain parameter equation in (78d).

Substituting (D-22b) into (D-22a) yields
W5 9 ={L+7at (%)z} v(%re) (D-23)

(-2 F ez ()

which is the firat matrix chain parameter equation in (78d).
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APPENDIX E

The purpose of this appendix i3 to provide jusiification fer umitting
the reference potential terms in the potential expressions in Chapter V.
Consider Fig. E-1(a) in which infinitesimal line charges lie on a cylindrical
surface of radius r_. The potential QD(rp, Op) with respect to the potential
reference point due to cne of the line chargee is (reference [58], pp. 91-92)

=°)\ jp E-l
%, Bp) = 3= m(dr) (E-1)

where the distances from the line charge to the potential and reference

points are given by

2 _ 2 2 : . .
dp = rp + Ty - errw cos (6« 80) (E-2a)
df = rrz + rw2 - 2r. rycos (8- 6,) . (E-2Db)

If the cylindrical surface supports a per-unit-length charge disiritution of

the form
A B

-— ?\ -~ Y .
0(6) = a, +m’=l a_ cos myg + r%:l bm sin mA (E-3)

§
then the potential q)p(rp, ep) can be obhtained as the limiting case uf an

infinite number of infinitesimal line charges with appreoriate weighting

given in (E-3) as [56]

@p(rp.ep) = %i_(; KZ" in (_gn‘)rwdﬂ (E—‘})
0 r
A

) 2 I
by B .
- ¥ M=1 Qo a,, cos m@ fn dr)rwdb

1 B ZTT fd
. v} .
- -é:e-lz;;l So bm sin mg fn k?lf:) xwde
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Figure E-l. The geomeiry for the derivation of the potential expression.
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¥
. Substituting the expressions for dp and dr given in (E-2) into (E-4) yield
integrals which can be evaluated in cloced form. The result is [56]
@p(rpp ep) = ao DO (rpl 9 » rw ) - a0 DO(rro er, rw) (E-S)
c
+rr213=l { amen (rp" ep’ r )' a D (rr ’ r’ r )}
=
+nZ:,=1 1bm Dy {1y, 8, ,rw) -b Drn(rr' P T )}
where
~r inr
- = _r *r. > r
Do(r.pn epp rWy = e P w
Ty N Ty (E-6a)
A rp,; !‘w
* (r.. )m+l
’ 2w o cOos m@y, rp > Ty
Zem(rp)
¢ d: (rpn 6 ] rw) = (E—6b)
(ry)™
: Tom(r_)m-1 cos my  TpS Tw
, W
y
;
' m+i
,n Zem (rp)m sin m§, T, *Tw
l' (r 1] e ) r ) (E‘.{SC)
i .in)_T el sin m@ r & r .
' 2em (rw)i’ - P P w
) The third argument in the expressions of (E-6) will designate the radius
1 of the boundary supporting the charge distribution., The terms Do(rr' ﬁr, rw).
;\ chn(rr,, 6y, T ) and Ds (ry, Aps Ty) ) in (E-5) are the reference potential

terms which were omitted from the poliential expressions in (96) and (97).
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Consider a typical system of (ntl) wires shown in Fig. E-1(b)
bearing per-unit-length charge distributions of the form
Ay B;
p;(8;) = a;, +n?él a;,, cos mé; + x;a:l b, Sin mg; (E-T)

fori =0, 1, ~~=-, n, A typical expression for the potential at a match

point on the i-th conductor in Fig. E-1(b) is ‘

8; =300 Dp ( Tpo» 800 Tw) - 200 Dy (*x0» Or0, Two) (E-8)

c C

+ - .

rr??:l {aom D (¥po- epO' *w0)* 30m DPm (g, 010 rwo)} =

7 { .
* % 1Pom Pm %50 " 8po’ *wo) “Pom Pmf™r0’ Pro’ *wo )J

ta;o Do (ryi» 8510 fyi ) ~ajg Do (1 » Op» Igi)

+Z){

c Q
-a, .
Lm m wx’e Wl) m)Dm(rn‘pn’r )}
Bl

8
e l{bxm m! Twi ’ep‘s’ Twi ) 'bmem( SRR rwi) }

4 ccmacema.

+a‘0 DU( J lepJn rWJ’ ‘a'Jo DO (rrj lerjv er)

.} C
+ D 0 ,r, ) ea DS (r.,8 }
o {om m{Toj *8pj» i) “AmPinlTrj » Orjp Tuy)

L‘] ( D® (p .0

el IJm m' pj

i’ rw_] ) 'bijm(rrj ' erj' rwj) }




. If we allow the reference point for the votentials to move to infinity,

the reference potential terms for the a; Ccos mQ.l and bim sin m9i terms,
c

. S .
i. T . ., Y . and D r . L, T, o to zero for i=0,1,-~--,n
€ Dm( ri 'erl’ wx) m( ri 'grl' wx) g 4 '

as is clear from (E-6b) and (E-6c). In addition, if the total per-unit-length
charge nn the system of (n+l) conductors is zero, then the reference poten-
tial terms due to the constant expans:on terms ao i.e., DO (rri’ 81 » rwi)'
ma-, also be removed for all i=0,1,---,n. This can be shown in the following

manner. The total per-unit-length charge on the i-th conductor is

— ﬁzTT -
q, = go o, (8) r_ . d6; (E-9)

=2n . a,
Twi i0

and the portion of the potential expression in (E-8) consisting of the refer-

ence potential terms due to the constant charge expansion terms is

T . R it AN o rn . st T K M WA 1 R K L. it i B oo il mi | tellin it

--- «apggDg (rpg, OBp0s Two) =---- (E-10)

=== =+i0 Do (rpis Bpj s ryyg) -=--

wmn AR et

--- -3jo Dy (rrj,Brj,rwj) =----

™M

o

o 2k0 Doy s Brk» Tk .

Utilizing the expression for D0 of the form given in (E-€a), equation (E-10)

can ve written as

il Al

HINE

» (‘rwk n (rpy) ) (E-11)
o “k

€

With the expression for the total per-unit-length charge on the i-th conductor
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given in (E-9), equation (E-1l) can be written as

n
) q. tarrk)
k=0 = 2ne . (E-12) :

Requiring the system to be electrically neutral, i,e.,
n

equation (E-12) can be written as

A o, Lt it

> m(r) 4 > tn (r_)
—( z qk) > + Y q 22Tk
k=1 e k=1 Zre . (E-14)

By combining associated terms, equation (E-14) can be writtenr as

e e i, S

§ ik_ /n T__rrk>
k=1 2rre r0

. (E-15)

As the reference potential point moves to infinity, the distances from the

LR T TR

centers of the conductors to the reference point become equal, i.e.,

TpQ = Fpp = ==== = Tro., and (E-15) approaches zero, Therefore, the

reference potential terms in the potential expressions may be omitted,
Implicit in this is the fact that the potentials, ¢i, are with respect to

infinity, This is permissible as was shown in this appendix only if the

e s | et 3
mmn TR A ottt i R ek L ¢ e, sl

- net per-unit-length charge on the system is zero, i.e.,

3 o

rro Ik =0 . (E-16) |
3 ~i
g |
b“.

g et e AT

sy i N
.
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