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SUMMARY

A
tThis is the final technical report on a study of finite amplitude attenua-
tion }hat has becin performed under Contract N00039-75-C~0263, Program Code
5G10, ARPA Order 2910. "The program objective has been to determine by
experimental and theoretical means the limitations imposed by finite amplitude
attenuation on the performance of parametric sonars. The results are intended
for use in assessing the potential of parametric receivers and transmitters in

military applications.

The axial response of the parametric receiving array has been calculated
in two ways. The first is by use of a one dimensional model in which the
secondary signal levels are predicted from weak shock theory. The second
is by numerical evaluation of the scattering integral solution in which finite
amplitude attenuation is introduced by means of a taper function dorived from

the one dimensional solution.

An experiment has been performed in which the axial secondary signal
level as a function of pump source level was measured. These data agree with
the theoretical results, but the agreement is not conclusive because the maxi-
mum pump source level was not sufficiently high. However, a comparison
with data from another investigation confirms the theory for cases when the

receiving hydrophone is well in the farfield of the pump. 7__,

Comparison with a set of experimental results for which the interaction
was almost entirely in the pump nearfield indicates that, unlike the farfield
case, the nearfield behavior may be quite different from that predicted by the
present theory. Caution is therefore advised in applying the present results
to nearfield interactions.
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In addition to the parametric receiving array work, several parametric
transmitting array taper functions have been compared in the context of
numerical evaluations of the scattering integral. A mean taper function is

derived from weak shock theory and is compared with the others.

In all cases the results are surprisingly similar to those obtained
using the model g:ven by Mellen and Moffett.
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LIST OF SYMBOILS

Piston radius

Harmonic coefficient (Fourier sine series)
First derivative of B1 with respect to its argument
Small signal sound speed

Directivity function

N-1

Intensity

Bessel function of order n

Pump frequency wave number t»)olc0
Secondary frequency wave number

Signal frequency wave number

Distance from signal source to pump
Pump acoustic pressure at range R0
Acoustic pressure at sum (+) or difference (-) frequency
Signal acoustic pressure at receiver
Composite pressure signal

Range

Dummy variable of integration

Effective source radius

Rayleigh distance (area/\)

Retarded time

Absorption coefficient at pump frequency; absorption coefficient
at mean primary frequency.
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Absorption coefficient at signal frequency

Sum of absorption coefficients at two primary frequencies
Absorption coefficient at secondary frequency
Nonlinearity coefficient (1 + B/2A = 3.5 for water)
Ratio of signal amplitude to pump amplitude at r,
Ratio of signal amplitude to pump amplitude at range r
Peak particle velocity Mach number

Azimuth angle coordinate; also phase.

Angular location of first null of beam pattern
Wavelength

Static density of medium

Distortion parameters

Bek r,

ws/wo

Angular sum or difference frequency

Pump angular frequency

Angular frequency of signal

Difference angular frequency

Carrier angular frequency
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1.0 INTRODUCTION

This is the Final Technical Report under Contract N00039-75-C-
0263, Program Code 5G10, ARPA Order 2910. The program objective has
been to determine, by experimental and theoretical means, the limitations
imposed by finite amplitude attenuation on the performance of parametric
= sonar. The main emphasis in this work has been on the parametric receiving
array which, in contrast to the parametric transmitting array, has received
i.: only a small amount of previous attention so far as finite amplitude attenua-

tion is concerned.

The axial response of the parametric receiving array has been
modeled in two ways. The first model consists of a one dimensional wave
undergoing time domain distortion to produce sum and difference frequencies
as it propagates from the pump projector to the receiving hydrophone. In
the second model, the parametric receiver is represented as a volume source
of sum and difference frequencies that scatter from each point in the inter-
action volume and are summed at the receiving hydrophone. In the latter
model the finite amplitude attenuation is introduced by means of a taper

function derived from the one dimensional model.

{ With the introduction of a simple correction to the one dimen-
sional model to account for nearfield diffraction effects, the two models

agree quite well with each other. The experimental results for cases when

the receiving hydrophone is well in the farfield of the pump are also in close
agreement with the theory. There is, however, evidence that the taper model
used may not be adequate for describing the effects of finite amplitude attenua-
tion in the nearfield of the pump. There, the loss due to saturation (based

on the only available set of experimental data) appears to be considerably

less than expected. This agrees with the results of an alternative taper

function that is simply equal to the fundamental component amplitude in

the saturating pump signal.

o The taper function d=rived herein is based on farfield considera-

17 tions and is believed to be realistic. While it is tempting, based on the
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apparently different behavior in the nearfield to combine the two types of
taper, this has not been done owing to the lack of theoretical justification
and the availability of only a single source of nearfield data. Thus, appli-
cation of the theory presented here for the axial response of the parametric
receiving array should be restricted to cases in which the receiving hydro-

phone is well in the farfield of ti.2 pump.

The experimental portion of this investigation produced data for
the axial response of the parametric receiving array that agrees well with
the theory as calculated by the methods described herein. However, efforts
to produce a pump signal of sufficient intensity to make the results regard-
ing the effects of saturation conclusive were unsuccessful. It has, therefore,
been necessary to rely on results obtained by other investigators for valida-

tion of the theory.

As a secondary task of the present investigation the parametric
transmitting array was modeled by use of numerical evaluation of the volume
scattering integral with inclusion of a taper function capable of accounting
for finite amplitude attenuation as a fui:ction of source amplitude, range &nd
angle relative to the acoustic axis of ths.: projector. The model was so con-
structed that a variety of taper functions could be used for comparison
purposes in addition to the one derived in this report. Several such taper
functions are compared both as to their mathematical form and as to their
performance in the scattering integral evaluation. The performance of the
model with the taper function derived in this report is tested by comparison
of computed results with experimental data obtained by Mellenbruch and
Muir1 for the case of a parametric array reflected from a pressure release

surface a short distance from the projector.

The technical body of this report is organized into two major
sections following the introductory material in Section 1.0. Section 2.0
contains the treatment of the parametric receiving array including theory,

experiment, comparison with available data and conclusions. Section 3.0

deals with finite amplitude effects in parametric transmitting arrays.

ro
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The “nical body is now preceded by a brief review of the
background of tt. rametric array.
1.1 Background

The parametric array had its beginnings about 1960 with the

theoretical work of Westervelt.z’ 3 Westervelt's analysis showed that if a
sound wave consisting of two discrete high frequencies could be confined

to a narrow, collimated beam, the two components would interact to produce
a sound wave at the di.ffererice frequency. This is the basis of the parametric
transmitting array. He showed that the directivity of the difference frequency
sound wave far from the interaction region, would depend only on the attenua-
tion at the primary frequencies and on the difference frequency wave number.

The interaction region is limited by the attenuation at the primary frequencies.

In addition to the assumption that the primary beam acted as a
line source, Westervelt assumed that the primary wave attenuation was
adequately described by linear theory (i. e., that the amplitude was not so
high that finite amplitude attenuation became a factor). Early experimental
results confirming Westervelt's theory were published by Bellin and Beyer. 4
Westervelt also observed that a higi frequency pump could be made to function
as a receiver by nonlinear interaction with a low frequency signal. This is

the basis of the parametric receiving array.

Numerous authors have extended the basic parametric trans-
mitting and receiving array theories to describe more realistic geometries
and to account for high amplitudes. There have been two basic approaches
to handling geometry. The first is to approximate the interacting signals
as one dimensional propagating waves (see, for example, Refs. 5 and 6).
The second is to perform a three dimensional integration as was done by
Muir and Willette. 7 The latter approach is the more general but is less
amenable to extension to account for finite amplitude effects. It has, in

fact, been the former approach that has been used almost exclusively in

dealing with finite amplitude effects.
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Very little work has been done in analyzing finite amplitude

etfects in parametric receiving arrays. Experimental data showing satura-
tion in parametric receivers have been published by Berktay and Al—Temimi8
and by Konrad, Mellen and Moffett. 9 A theoretical model was presented
by Bartx:amlo for cases when both pump and signal are plane waves. Other

geometries have not been dealt with.

Other work related to the parametric receiving array has been
done by Fenlonllin addressing a multiple frequency parametric source.
Schaffer and Blackstock12 also performed related work in their study of

modulation of an intense high frequency signal by a low frequency signal.

Finite amplitude effects in parametric transmitting arrays have
been dealt with by Mellen and Moffett,lsMerklinger, 14 Bartram and
Westervelt,15 and Penlon.lG’ 17
were utilized although Merklinger did formulate the problem in more generality.

In all cases, quasi one dimensional models

The treatment of finite amplitude attenuation in parametric arrays
is generally based on one dimensional models and often on theories originallv

formulated for single frequency sources. Useful theoretical treatments of

18,19

single frequency sources have been given by Blackstock. A numerical

solution for spherical waves of arbitrary spectrum has been given by Fenlon.20

Single frequency waves from piston sources have been studied by Merklinger,

Berktay and Safar,21 Shooter, Muir and Blackstock,22 Lockwood,zs’ 24

Muir and Blackstock,25 and Browning and Mellen.26

Lockwood,

Experimental data that demonstrate the performance of various
experimental parametric transmitters have been reported by Muir and Willette,7
Muir and Blue,27 Merklinger,14 and numerous others. One specific experi-
ment that is quite valuable for verifying the detailed behavior of a parametric
transmitting array theory is the phase reversed parametric array experiment
reported by Mellenbruck and Muir.1 There a parametric array was retlected
from a pressure release surface at a range of four yards. The reflection
caused a return of energy from the harmonics to the fundamental component

of the carrier signal, thereby supposedly prolonging the interaction and in-

creasing the efficiency. The expected efficiency increase was never measured.
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A theoretical attempt by Lockwood28at describing the phase reversed array
disclosed a weakness in the concept on which the model used was based
and led to the development of the taper function model described in Section

3.1 of the present report.
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2.0 PARAMETRIC RECEIVING ARRAY AXJAL RESPONSE

The prediction of fini e amplitude behavior in the parametric
recerlviag array is, in the present work, basad on analysis of the time
domain distortion of a composite wave that initially consists of an intense,
monochromatic pump wave and a low amplitude signal wave. As the com-
posite wave travels, distortion components are produced by the modulation
of the pump wave by the signal wave and of the signal wave by the pump

wave, the latter being generally a small effect.

The distortion components of interest, i.e., sum and difference
frequencies, are generally close in frequency to the pump signal, and in
the pump farfield they travel with the pump wave. On the other hand, dis-
tortion signals produced in the pump nearfield are subject to diffraction.

It is because of these nearfield generated signals that a purely one dimen-
sional model does not, in general, adequately describe the axial response

of the parametric receiver.

The geometric spreading of the secondary signals is handled
by two different methods. First, the one dimensional model derived in
Section 2.1 is corrected, as described in Section 2. 1.1, by a simple geo-~
metrical factor that approximately compensc<tes for diffraction in the near-
field. Then in Section 2.2 a second model is described wherein the geometry
is dealt with rigorously using the scattering integral approach. Here the
finite amplitude effects are handled consistent with the one dimensional
model by use of a taper function derived in Section 2. 2.1 by differentiating

the one dimensional solution.

The results are compared with experimental data of other investi-
gators in Section 2.3. Then in Section 2.4, the experimental work performed
in the present investigation is reported. Finally, the conclusions presented

in Section 2.5 bring the discussion of the parametric receiving array to a

close.
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2.1 Weak Shock Thenry Formulation of Parametric
Receiving Array Axial Response

In the first quarterly progress reportzgof this investigatioa a deri-
vation was given of a math model . f parametric receiving array axial response.
The signal was assumed to be a plane wave and the pump was assumed to be
a one dimensional psc e, cylindrical or spherical wave. Of primary in.erest

are the plane and spherical wave formulations.

The derivation, as given, suffers from two problems. First, the
secondary frequencies are shown to be produced by modulation of the pump
by the signal and also by modulation of the signal by the pump but in the
latter case the secondary frequencies produced appear to propagate with the
signal. Actually, when the pump is spherical it modulates the signal along
a spherical wave front and the interaction products should spread spherically,
not as the plane wave signal. This fact, which is apparent from the scatter-
ing integral formulation, means that, even in this simple geometry, deter-
mination of the parametri. receiving array axial response is not a one dimen-
sional problem. The cecond problem is that in attempting to account for
absorption by using modified weak shock theory, the absorption at the
secondary frequencies cannot be correctly represented and must be introduced

at the end of the derivation in ad hoc fashion.

The derivation as now presented is made rigorous by stipulating
that the signal frequency be much smaller than the pump frequency, in which
case the sum and difference frequencies are approximately equal to the pump
frequency. The result of modulation of the signal by the pump may now be
ignored. Two additional changes are introduced in the present derivation.
The signal is assumed to spread with a large but finite radius of curvature
and the signal is assumed to suffer no significant loss due to absorption

within the region of interaction.

With the stated assumptions, the pump and signal wave field

is given hy
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" where A® = Bk j _p____ dx (2)

represents the total retardation of the phase of a given wavelet resulting from
the integrated effect of the disparity between the phase velocity and the small

signal sound speed (group velocity).

Equation (1) may be rewritten with the substitutions

| n
o -

13 v - pz I' e , (3)
ePoco ro
| H
r-r,
y = o (t- —5 , (4)
o
$ = y+.9¢ , and (5)
B ' L+r
- r = ctim
6([‘) - 60 r L+r ) ) (6)
o
as V=sin@+56(r) sin Q¢ . (7)

The formulation given above departs from the Earnshaw solution
for the phase distortion of finite amplitude waves by the inclusion of the
{ absorption term. However, when absorption is included in this manner the
continuous portions of a wave containing shocks may be described as in
weak shock theory (Biackstock, Ref. 18) with the result that the high and

L
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low intensity results are matched in a single solution. Now,

4
r n
r -a (x-r)
= L -0 o o
Ad Be,o ﬁ¢/ (x 2 dx sin ¢
o
\
(8)
r ]
. L-l-rl
+6o L+x dx sin 295 ;
o
so, letting
. T
o o (- ro)
o = Be ko = e dx , (9)
r
o
r
L+ ry
and o =Be k, o v dx (10)
s
one obtains the expression for ¢ as
0=y+csin¢+ossinQ¢ . (11)
(Basv on reasoning given in Ref. 24, it may be that for long receiver ranges
e, in Eq. 9 should be replaced by Za'o. Normally, however, the difference
is very small and for the present the form given is satisfactory.)
It is now observed from Eq. (11) that
!@—yls cto . . (12)

Now, if £ (o + cs) < 1, the maximum phase error incurred by replacing ¢ by
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y in the last term of Eq. (11) is 1 radian. Thus, the substitution can be
made without appreciable effect on the solution and the interaction com-
ponents may be obtained from Eq. (7) with @ given by

¢=y+osin¢+assinQy. (13)
With the substitution
y' o= y + o sinfy , (14)

Eq. (13) becomes
@ = y+osin@ . (15)

Then the first term of Eq. (7) assumes the form of the Earnshaw solution.
Weak shock theory as formulated by Blackstocklamay now be applied. The

solution expressed as a Fourier series is

[+ o]

sin @ = ZBH (o) sinny' (16)

n=1

where the values for Bn (o) are those derived by Blackstock.18 Eqs. (15)
and (16) may be substituted into Eq. (7) to give an explicit solution in terms

of y' as
o0 Q0
= ; ' i ' v '
v z Bn (o) sinny'+6(r) sinly'+o n Bn(o) sinny . (17)
n=1 n=1

It is now necessary only to extract the sum and difference fre-
quency components which will be the coefficients of sin (1 + Q) y. With
the substitution of Eq. (14) into Eq. (17) and with the assumption that o_
is small and further, that 6 (r) oy is negligible, it is possible to write

0 00
V= z Bn (o) sin n (y+aS sin 2y) + 6(r) sin R |y+o Z Bn(o) sinnyl. (18)
n=1 n=1

10
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The only terms of the sums in Eq. (18) that significantly affect
Thus, discarding

L 1]

the sum and difference frequencies are the n = 1 terms.

the rest we have

V= Bl(o) sin (y+crs sin Qy) +6(r) sin Q (y+o Bl(o) sin y)

Equation (19) may be thought of as the sum of two broadband FM signals.

second represents the modulation of the signal by the pump.

Equation (19) may be written in exponential notation as

-iy -iossinQy
- V=RegiBl(o)e e

t

-iQy -iQoBl(o)siny

+ 8(r) ie e

Then, using the Fourier Bessel expansion we obtain

Selecting only the m = £ 1 and k = + 1 terms that give sum and

ws =

v = By(a ], (o) {sin (1+9Q) y-sin(l-9) ]

iky

difference frequencies and returning to real notation, we obtain

H
-

+ 6(n) N [Q oBl(o)} Lsin (1+9Q) y+sin(l-) y]

The first term represents the modulation of the pump by the signal and the

1

SE— : .
e o :
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(19)

(20)

(21)

(22)

11
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It is now apparent that if §2 << 1, the second term above may be neglected
in comparison to the first. Thus, the result of modulation of the pump by
the signal is retained and the result of the modulation of the signal by the
pump, with its geometrical inconsistency,is discarded. The result for the

sum and difference frequencies becomes

V, = Bl(a) Il (as) sin(l1+Q)y . (23)

A similar result was obtained by Schaffer and Blackstocklzfor the case of an
intense low frequer.cy modulating a l¢:7 amplitude high frequency. However,
in the present case it has been possible to include the effects of shocks in
the pump wave through the B1 term derived from weak shock theory.

In dimensional notation the magnitudes of the sum and difference

pressure signals become

n
_ 2 s ~% (c- ro)

IPiI e E Bl(o) ]l(os) e (24)
Normally, o is small so that the sma’l argument approximation of the Bessel
function is valid and one may substitute

~ O Be kg 50 ¢ L+r
I (os) = 5 = 5 (L + rl) n _I:_-I-_I‘; . (25)
If the reference distance Iy is taken to be the receiver location, thenr = I -
Furthermore, if L is large the value of o reduces to the plane wave signal
result
~ 5 (r-
o, = Beko 3 (r ro)
(26)
~ e}
~ Be ko of
The low amplitude limit of Eq. (24) is then
12
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n
r Bek & -a (r-r
P!=Pczeo\¥ = reo( o)
e o o r | 2
n
w Bp;p F 5 -a (r-r)
. _o 132 {oi m@ © o , (27)
2p_c e |
o o

wh-.ch agrees with the results of Berktay and Shooter30and Berktay and
Al—Temimi8 for the cases n = 1 and n = 0, respectively, except that here

w, and @, have been approximated by Wy and a .

2.1.1 Use of the Weak Shock Theory Results to Calculate Parametric

Receiver Amplitude Response - The expressions derived in the previous

section may be used to calculate the amplitude response of parametric receiv-
ing arrays that have interaction volumes either entirely in the pump nearfield
or predominantly in the pump farfield. For intermediate cases where the
receiver is in the farfield of the pump but there is a significant contribution
from the nearfield, the plane wave and spherical wave solutions may be
combined. However, it is necessary to correct the nearfield portion to
account for spreading of the secondary signals. This is done by adding to
the spherical wave solution the plane wave solution multiplied by the factor

O __ gx +j dx , (28)

where the quantities (R- Ro) are replaced by Ro in the event that R- Ro > Ro .
Similar factors were derived in Ref. 29 for the nearfield of the parametric

transmitting array.

The two terms of the factor represent the portion of the nearfield
beyond one Rayleigh distance from the receiver, the contributions from which
undergo spherical spreading, and the portions within one Rayleigh distance
which do not. The initial factor 1/R cancels the range dependence of the

plane wave solution which is, in effect, replaced by the quantity in brackets.

13
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The farfield contribution is calculated by using the spherical
wave solution with a source radius of Ro and an initial distortion based on

the value of ¢ calculated at Ro for the nearfield distortion.

1 1 2.2 Scattering Integral Evaluation of Parametric
; i Receiving Array Axial Response

= Because the determination of the secondary signal amplitude in a

L8 parametric receiving array with a piston pump transducer is not generally a
problem involving only one vspatial dimension, it is often desirable to use
the scattering integral approach. In order to account for saturation effects
it is then necessary to insert a taper function into the integral. Such a

taper function is now derived.

2.2.1 Taper Function Derivation - It is tempting to use the pump funda-

mental harmonic coefficient Bl(c) as the taper function because this would
make the source strength density proportional to the local pump amplitude.
However, that approach would not include the diminishment of the secondary
signal due to pump saturation as seen in the weak shock solution. There-
fore, the alternative approach of deriving the taper function from the weak

shock result is adopted.

The finite amplitude taper is calculated from the weak shock

solution by taking the range derivative of the high intensity solution to obtain
- the one dimensional source strength density and then dividing by the low

amplitude source strength density to normalize the result. Since only the

high intensity taper is desired the spherical wave solution is range normalized

before differentiating.

The two expressions (neglecting absorption) are, from the pre-

vious section with @ = as = 0, for the plane wave region of the pump,

2
? & P, = P, ¢, eBl(o) Il(os) : (29)

E’ ; and for the spherical wave region of the pump

14
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B, 38 & “re 31(0) Il(GS) ,

where

T &
% BEko o

and o is given by

o =Be ko r
in the plane wave region, and by
- [ ]
o= Be kORO g_l+,Qn(r/R0)
in the spherical wave region.
By differentiating the above expressions for P, and (r/rOPi)
with respect to r, and normalizing the plane and spherical wave results

by the respective low intensity limits, the two taper functions are obtained

and are written,

ik e e
p do
for a plane wave, and
1
B = By -I'B1 (o) o,

for a spherical wave.

The above taper functions are used in the numerical evaluation
of the scattering integral as discussed in the next section. They differ
from the simpler approach of using Bl(o) as the taper function in that they
include the "absorption" of the secondary signal by the saturating pump.

It is noted however that the tapers were derived under the
assumption that the pump and the secondary signals were propagating in a

one dimensional fashion. Inthe case of a nearfield generated secondary

(30)

(31)

(32)

(33)

(34)

(35)

15



signal, which undergoes diffraction in passing to the farfield, it is not clear
that the above tapers are valid. This question will be discussed further in
the light of published experimental results in Section 2. 3.

22 Numerical Evalnations of the Scattering Inteqral - The use of

numerical volume integration in combination with the finite amplitude taper

function is now described. The programming stems from a modification of the
parametric transmitting array program utilized in this study which is, in turn,
a modification of the Muir-Willette program. Because this investigation deals
with describing axial response no attempt has been made to include oif-axis
response in the programs. However, the inclusion of the taper function in

a program that handles off-axis geometries would be quite straightforward.

Actually, two different programs have been developed to evaluate
the scattering integral. In the first, a volume integration over two coordinates
is performed. In the second, closed form, high wave number approximations

are used to reduce the solution to a single integration along the axis of the

pump.

The geometry on which the programs are based is shown in Figure
1. It consists of a spherical wave signal source at an arbitrary distance
(usually long) from the receiving hydrophone and a pump, assumed for con-
venience in programming to be a circular array with a plane wave nearfield
and a spherical wave farfield. The nearfield of the pump projector is taken
to be a collimated plane wave with an abrupt transition to spherical wave

at the Rayleigh distance (area/\) and an accompanying 90° phase shift.

The volume is formulated in cylindrical coordinates in the near-

field and in spherical coordinates in the farfield. The integral expression

for the axial secondary pressure is

16
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where Tp is the nearfield taper and Ts is the farfield taper given by Eqs. (34)
and (35) respectively. The signal projector to field point ranges are

| Ry, = Varofed® (37
and

Y122 1oL cos @ (38)

~
1]

while

R Vit c-m2 | (39)

1

is the source to field point range in the nearfield, and

R = '\/—;2+r'2—2rr' cos @ (40)

is the source to field point range in the farfield. The lower limit in the range

integration is I the shadow length of the pump transducer given by

in’
r 2 area/Xs )

min

The basic parametric receiver program utilizes a two dimensional
integration of the above equation. Unfortunately, the phase variations of the
integrand are so rapid at high pump frequencies that it is extremely difficult

R

i3 and expensive to obtain convergence of the integral.
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To overcome this difficulty a high wave number approximation of
the @ integration and an approximate closed form x integration have been
incorporated into a second version of the program. This single integral program
has been found to give equivalent results to those of the double integration

but with considerably improved convergence.

The angle integration is approximated as follows: let

- R+ iksRS

P
27, (k_a si
1¢=f I S Ehll & sin® d¢ . (41)

koasin¢ R

o

Provided that

k [ VL2+r2 +2Lr cos ¢°; = (L+r)] «~ 1, (42)

S

it is permissible without loss of accuracy, :o let

RS T L+ . (43)
Then, with the substitution

the integral may be written

R(d,,)
ik (L+r') 2], k asin@® -aR+ik R gp
I¢ - ¢ k,a sing °© T (45)
R(o)
where § is regarded as a function of R.
Integration by parts now gives
19
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" R(_)
[, = -2 o o e
¢ rr '] k, a sin ) ik
|R(O)
R(d,,) .
1 4 12h (k_asin@) -aR| i
T drR k. a sin g € ¢

R(o)

dR

The second term could be repeatedly integrated by parts but would only pro-

duce terms of higher order in k;l . Consequently, it is neglected and since

the first term is zero at the upper limit, the integral reduces to

+ik (L+r')
~ e S _ai(r- r')

ik i(r—r')
I,-= e =
¢ rr ik

+

The above approximation is valid for

k
TN —9
kir b ki(ki RO)

The x integration in the nearfield is represented by

a . .
f e-aiRlﬂkd:RlilksRsl % A5

I =
R’

X
(o]

With the approximation

R,T L+ ,

sl

the integral may be evaluated analytically.

The variable of integration is transformed to R 1 by the relation

(46)

(47)

(48)

(49)

(50)

(51)
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Then, Rl(a)
3 ] - .
- e1ks(L+r) afiR1+ 1kj:R1 "
X € 1

Rl(o)

e e (52)

ik (L+r') ‘r (-a,+ ik )Va + (r-1")? (-afi+iki)(r—r')]

With a'i treated as small compared to ki, the result becomes

I =-& e - e . (53)

j‘ks(LJrr.) —afi(r—r') l> ik a2 + (1"-r')2 iki(r—r')
X iki < L

The above expressions used to reduce the integration to a single
range integration, have produced excellent results. Because of the con-
vergence problems already noted, the single integration program is believed
to be inherently more accurate than the double integration version, at least

for pump frequencies much higher than the signal frequency.

The scattering integral and one dimensional models give nearly
the same results, demonstrating that the handling of the finite amplitude
taper is consistent. The scattering integral approach is, of course, more
accurate in handling geometry. With the reduction to a single integration
the scattering integral computer program is very fast and inexpensive to use.
Results obtained using the single integration program are compared with

available experimental results in the following section.

2.3 Comparison of Theoretical Results with Experimental
Data of Cther Investigators

Only two sources of experimental data showing the effects of
pump saturation on parametric receiver axial response have been identified.
One source is an article published by Berktay and Al—Temimiswhich contains
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secondary amplitude response curves for a pump frequency of 2850 kHz and
several different signal frequencies. In this experiment, the receiving hydro-
phone was placed at the approximate nearfield collimation distance of the
pump transducer. The other source is experimental data obtained by Konrad,
Mellen and Moffett. P

Earlier efforts by the present author to compare theory with the
data reported by Konrad, Mellen and Moffett led to confusion because even
the low amplitude data did not agree with any available theory. After the
discrepancies were brought to the attention of the authors, Moffett concluded
that a better estimate of the hydrophone sensitivity could be made. He did
so and was kind enough to provide revised data3,2 not only for the originally
reported experiment which used a 620 kHz pump and a 44 kHz signal, but
also for experiments performed at the same time using two additional signal
frequencies, 30 and 13.5 kHz. It is the revised data that are discussed here.

Thedretical calculations were made using the scattering integral
approach detailed in Section 2.2.2. Finite amplitude effects were accounted
for by use of the taper function defined in Section 2.2.1. The data so
obtained are represented by the solid curves in Figures 2 through §.

Figure 2 shows the comparison with a typical data set from Berktay
and Al-Temimi. Figures 3 through 5 show comparisons with data of Konrad,
Mellen and Moffett for two different ranges, 5.3 m and 9. 1m, and three
different signal frequencies. The data for the 44 kHz signal frequency re-

place the ones originally reported.

Figure 2 shows a definite disagreement between theory and
experiment for the data of Berktay and Al-Temimi, although the theory does
fit the low amplitude data. Barring experimental error these data indicate
that the present taper function results in too much loss due to saturation for
the interaction in the nearfield of the pump. The data actually agree closely
with the theory given by Bartram which gives similar results to what is
obtained by the present methods if the taper function is taken to be equal

to the fundamental component amplitude of the pump signal, rather than using

the taper function derived in Section 2. 2.
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Figure 3. Comparison of Theory and Experimental Data of Konrad,
Mellen and Moffett (Refs 9 and 32). Pump Frequency
= 620 kHz, Signal Frequency = 44 kHz, Source to
Hydrophone Range = 21.5m, Ro = 3.25m, Signal Level
at Hydropaone = 16%.2 dBre 1 pPa

(a) Pump to Hydrophone Range = 5.3m
(b) Pump to Hydrophc :e Range = 9.1m
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In contrast to the Berktay, Al-Temimi results the Konrad, Mellen
and Moffett data support the present theory quite well. Figure 3, which
gives the 44 kHz signal frequency data, shows excellent agreement at the
9. 1m hydrophone range and good agreement so far as curve shape is con-
cerned, but a 7 dB offset at the 5.3 m hydrophone range. Because the offset
does not appear in any of the five other data sets it is undoubtedly the result
of some bias error in the experiment. Figure 4 shows quite good agreement

between theory and experiment for the 30 kHz signal frequency experiment.

It is interesting to note that for either range, if the 44 kHz data
are overlayed on the 30 kHz data and allowed to move vertically, the two
sets may be made to line up almost perfectly. That is, the experimental
saturation curves have the same shape. This shape represents slightly less
saturation than the theory, particularly at the 5.3 m range, but the agreement
is considered quite good. Here, particularly at the 9. 1m range, the present
theory gives a much better fit than one that uses the fundamental component

amplitude as the taper.

Figure 5 gives the data for a signal frequency of 13.5 kHz. These
data show a shape considerably different from that of the other sets. Since
only the signal frequency was changed,and there is no known reason for
this to appreciably affect the shape of the saturation curve, it is believed
that the difference may have been caused by the electronics. Tharefore,
considerably more weight is placed on the excellent fits obtained in the
44 kHz and 30 kHz data.

It is concluded that the data of Konrad, Mellen and Moffett
generally support the theory presented in Section 2.2 but that the Berktay
and Al-Temimi data do not. Th# derivation of the theory is based on the
assumption of farfield propagation and the possibility exists that the near-
field may, in general, exhibit a different type of behavior. This may account

for the different behavior evidenced in the Berktay, Al-Temimi data. This

possibility will be discussed further in Section 2.5.
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2.4 Experimental Measurement of P rametric
Receiver Amplitude Response

Insofar as directivity rieasurements are not required in the study
of amplitude response, it is possible to set up a well aligned and controlled
experiment in a tarx. Such an experimental arrangement was effected in the
AMETEK test pool and is shown schematically in Figure 6. A3.8x11l.4 cm
pump transducer was used, operating at a frequency of 700 kHz. Typical
beam patterns for this projector are shown in Figures 7 and 8. A 50 kHz
signal source was position‘ed at one end of the pool 7.9 m behind the 700 kHz
pump. The narrow beam pump projector was driven by a 200 watt power
amplifier from Scientific System Technology, Inc. The pump signal and
intermodulation products at 650 and 750 kHz were received by an E-8 hydro-
phone at a distance of 3.7 m from the pump. The 50 kHz signal was quite
intense by comparison with the usual situation in parametric receivers.
Consequently, it was quite easy to separate the sidebands from the pump
by narrow band filtering. The pump was operated in a pulsed mode, a com-
promise necessitated by the transducer design. However, the precaution of
using a long enough pulse to ensure the gate sidebands being well below
the secondary signals was taken. A 4 ms pulse proved to be adequate and

was used.

The narrow band filtering was accomplished by passing the com-
posite signal into a Hewlett-Packard Model 310A wave analyzer set on a
bandwidth of 200 Hz. The output signal was passed to standard calibration
equipment and measured on a logarithmic plotter. The pump and the sum
and difference frequencies were measured by peaking the wave analyzer
response on each frequency in turn. The measurements were made absolute
by passing a 4 ms pulse of known amplitude at 700 kHz through the signal path.

Only one set of data were obtained before the transducer failed
due to being overdriven and efforts to build a second unit were unsuccessful.
The experimental data are shown in Figures 9 and 10. Figure 9 shows the
pump fundamental component amplitude response. The solid curve is theory
(Ref. 24). These data are quite consistent and show a definite nonlinearity

28
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at high source level in agreement with theory. Figure 10 shows the secondary
frequency amplitude data. Although these data are not as consistent as those
for the pump, agreement with the theory is indicated. The solid curve is
basad on the one dimensional theory (Section 2. 1). Also shown on the plot
are points calculated by the scattering integral method.

in the experimental measurements the source level of the 50 kHz
signal was 190.5 dB re 1u4Pa at 1 m. This was determined by pulsing the
source and measuring the amplitude prior *o the onset of reflections. In
the actual parametric receiver experiment the signal was continucus and
considerable standing waves were present. In spite of this the data agree
with theory based on the free~field source level. The receiving array is

insensitive to reflections not collinear with the pump.

2.5 Conclusions: Parametric Receiving Array Finite Amplitude Taper

Two modeis for predicting parametric receiving array axial
response have been derived. One is based on a one dimensional weak shock
theory model with a simple correction for nearfield geometry. The other is

based on the scattering integral approach.

Both models have weak shock theory as the basis for predicting
saturation effects. The main result of the weak shock theory anralysis is
that the pump signal is distorted by finite amplitude effects. At the same
time each distortion component of the pump signal is frequency modulated
by the signal frequency. As the pump fundamental component, which is the
only one resulting in sum and difference frequencies, attenuates, the side-
bands are also attenuated. Thus, in the scattering integral approach, the
taper function is not a positive definite quantity but may become negative,

representing a diminuation of sideband energy due to pump saturation.

This view of parametric receiving array taper seems physically
reasonable, at least for one dimensional propagating waves. It is supported
experimentally by the results of Konrad, Mellen and Moffett and by the
experimental results obtained during the present investigation, although the

pump amplitudes obtained in the latter work were not hgh enough to make

the results really definitive.
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The present taper theory applied to the pump nearfield gives

recults that sharply disagree with data prescnted by Berktay and Al-Temimi.
Because application of the theory to the nearfield is not so readily justifiable
as its application to the farfield, this disagreement is taken as an indication
that the theory should only be applied to cases in which the receiving hydro-
phone is well in the pump's farfield. The data that do support the theory are
from experiments i~ which the receiving hydrophone was well in the farfield

of the pump.

The data of Berktay and Al-Temimi tend to support the hypothesis
that the taper in the nearfield should be the amplitude of the pump fundamen-
tal component as a function of range. It is tempting to speculate that this
may, in fact, be the nearfield taper and that this should be combined with
the present farfield theory to give a more comprehensive model. The present
author has refrained from doing this because the justification would be purely
empirical and there is only one available supporting experiment. Should any
additional nearfield data become available the cuestion of what taper applies
to the nearfield should again be addressed. In the meantime the present
model is believed to adequately describe the axial response of parametric

receivers in which the receiving hydrophone is well in the farfield of the pump.

34




L L

LR

g e i

3.0 TAPER FUNCTIONS AND THE FARAMETRIC TRANSMITTING ARRAY

The scattering integral approach has been the principal method
of predicting parametric transmitting array performance, whether Iy numerical
volume integration or by approximating the integral by some simpler form. In
this approach the concept of a taper function is useful because it enables the
finite amplitude effects to be described in terms of a range and amplitude

dependent diminuation of the source strength density.

Taper functions have previously been applied successfully only
to simplified integration models - for example, the Mellen and Moffettlsmodel.
It was the objective of the present work to apply the taper concept to the full
volume integration approach. It would then be seen whether,by more detailed
account of geometry and inclusion of the directivity factor in calculating the
taper function, the results would differ significantly among various taper
functions and whether they would differ from the results obtained by Mellen
and Moffett.

Several taper functions have been compared, including a new one
derived using weak shock theory. It should be noted, however, that none of
the taper functions considered includes account of possible higher order inter-
actions that may cause the secondary frequency to be depleted at extremely
high amplitudes. Such effects are included in a one dimensional model pro-
posed by Fenlon.17 That model is compared with the results of Mellen and
Moffett in Ref. 13 wherein it is shown that significant differences are expected
at extremely high amplitudes. In order to include these higher order inter-
actions in the scattering integral approach it would be Aesirable to derive a
taper function from the Fenlon results in a manner similar to the treatment of
the parametric receiving array in the previous sections. However, that is

beyond the scope of the present work.

In Section 3. 1 the derivation is given for a taper function based

on a time domain theory for difference frequency generation given by Merklingerl.4

Because the taper is based on the primary intensity it will be referred to as the
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"Intensity Taper Function." As mentioned in Section 1.0, the phase reversed
parametric array data of Mellenbruch and Muirlare useful for trying out a
taper function concept. Therefore, the phase reversed version of the taper

function is also derived.

Numerical results are compared with the phase reversed data in
Section 3.2. In Section 3.3 several of the proposed taper functions are com-

pared. Results of parametric array calculations are compared in Section 3. 4.

3.1 Derivation of the Intensity Taper Function

Merklingerl4has shown that the source function for secondary
radiation in the lower sideband is proportional to the time derivative of the
total intensity under the modulation envelope. The difference frequency
source function is obtained by extracting the Fourier coefficient at the dif-

ference frequency
T
dl
qq © f 5 cos ydy , (54)
o

where
vy mw. t-2) . (55)

The intensity variation in the envelope is assumed to be unaffected
by the presence of the lower sideband. Therefore, if the primary spectrum
consists of two frequencies of equal amplitude, I(y) may be calculated from
theory for an initially monochromatic wave at the carrier frequency of
intensity amplitude Io(y). Thizs4is done using a modified form of weak shl%ck
theory described by Lockwood ™ 'in which the ordinary weak shock theory
solution for B, (o) is used, with o for directive spherical waves replaced by

r
; -2« (x—ro)

o =BeD(9)kro '; € dx , (56)
J

r
(o]

X
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and the fundamental component amplitude Bl(o) multiplied by e
The problem of obtaining I(y) for the ordinary and the phase reversed para-
metric arrays is now reduced to finding appropriate weak shock theory

expressions for the intensity variation as a function of o .

The intensity in an initially sinusoidal wave without reflection
is obtained by assuming that continuous parts of the wave are described by

<
1]

sin @, where

=
i

wc(t—x/c)+osin0 = y+osin@ . (57)

The dependence of the total intensity is then

T
p
Icc J sin2 @ dy
o
o
=2 (osin-9) sin @ cos ¢ d¢
6 (58)
min
2 .3 T . 2 l . min
T e - — + - - ——en
g @ Sl ¢m1n+ 2 * ﬁmin =l wmin et wmincoS wmin 2 1
where ﬁmin is a solution of
ﬁmin = ¢ sin wmin . (59)
It is convenient to normalize the preceding expression to a zero distortion
value of unity. Then we have
B o el samd L _o
i = 1+~ osin ¢m1n+ — sin ﬁmin cos ¢min - sin ¢min' (60)
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An expression for the intensity in an initially sinusoidal wave
with reflection at a range corresponding to o = o, is now derived. It is
assumed that after inversion straight lines remain straight. Otherwise,

continuous parts are described by

V = sin@®, where
¢ = y+ op sin @, and (61)
op = 0- Zcr

We redefine amin as the shock phase corresponding to the shock that forms
subsecuent to reflection; amax is the phase corresponding to the pre-reflection
p—t - 1 ] : 2 : 7r
shock, ¢max T ¢minr (Note that the time origin bas been shifted by

to put the new shock in the usual place.)

We now have the intensity given by

v .J e ’ 42
.2 ,f b T _- |
IOCI sin” § dy + sin@_ . ',,—_—ywi;y)} dy
J J O
y(@ o) y(@ .0
) ¢ -0
max _ 1 _. 2 _ "min 1 _. 2 E
T T2 7 50" 8™ Tt 7SI By (62)

3 .3
sin ¢max sin wmin

i i i and . is
The normalized expression in terms of amax ¢m1n
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2 , 2 2 _ . 2
* 37 "min sin mmin+ 3n (r mmax) St 0max
< . . :
In case mmax = Gmin , the preceding expression breaks down. The straight
segment corresponding to the pre-reflection shock overtakes the zero and
a sawtooth is formed instantly. The normalized intensity turns out to be
12
1. 2 sin Gmax iy 54)
17 3 s +o emd ) (64
e T = ¥Ymax™ % S0 max)

The present taper function (Eq. 60) is compared with other proposed
taper functions in Section 3.3. First, however, results computed using the
taper function {(Eqs. 63 and 64) are compared with experimental data for the

phase reversed parametric array.

3.2 Numerical Results - Phase Reversed Parametric Array

The numerical integration program of Muir and Willett7has been
cast into a form that accepts a finite amplitude taper function. The taper
function which is, of course, amplitude dependent, is calculated as a
function of the angular coordinate so that the directivity pattern of the
primary radiation weights the amplitude. Thus, the axial taper is much
more extreme than the taper at, for example, the -3 dB points.

Several methods of accounting for nearfield saturation effects
have been tried. The best results have been obtained by treating the near-
field as a collimated plane wave out to the Rayleigh distance. The ex~
pression for o is given in Eq. (70) of Section 3.3. It is interesting to note
that if spherical wave theories are used the same nearfield distortion

(assuming @R << 1) may be obtained by letting r_ = Ro/e .
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As a preliminary calculation to check out the program and the
taper function derived in Section 3. 1, theoretical curves were calculated
to compare with the phase reversed parametric array data of Mellenbruch
and Muirl. The results are shown in Figure 11. The data are for a 14 kHz
difference frequency produced by a source operating at 424 and 438 kHz
and reflected at a range of 4 yards. Results using a less sophisticated
theory were previously reported by Lockwood. 28 The present results agree
considerably better with experiment than the previous ones did. However,
the agreement at the highest amplitudes is not as good as had been hoped
for. Anomalous nearfield effects are suspected as the reason.

3.3 Comparison of Various Taper Functions

Fenlon”has given a list in consistent notation of several taper
functions that have been proposed by various authors for use in conjuncticn
with quasi one dimensional geometrical models. Those from Fenlon's list

that apply to the farfield of the parametric source are now compared.

First, it is noted that all of the functions in the list may be

expressed in the form

-1/2
. 0\2
1+(7; _] (65)

i
T =
L
provided that ¢ be appropriately defined. The form of Eq. (65) was proposed
independently by Mellen and Moffett13a11d by Merklinger14as an approxi-
mation of the fundamental component taper given by Blackstock.18 Equation
(65) is compared with the Blackstock result in Figure 12, which also shows,
for a comparable definition of o, the taper function derived in Section 3. 1.
From Figure 12 it appears that the differences among the three functions are

not great.

The expressions for o appropriate for the various authors' treat-

ments of Eq. (65) are now discussed. The Mellen—Moffett13form is given by

o= o sinh-1 (r/ro) g (66)
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Figure 11. Reflected Parametric Transmitter. Reflector at 4 yd.
Difference frequency level data from Mellenbruch &
Muir (Ref. 1).
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The Merklinger, Mellen and Moffett33taper function, hereafter referred to
for brevity by the name of the first authcr only, is given by Eq. (65) with

= S S — SN
/ r rl

r -dar' ., 21" . .,
c=crieqr°{e°gr{-]e°gr—'. (67)
<
r0

r
o

Two taper functions due to Fenlonleare the Fenlon Taper Function and the

Modified Berktay, Leahy Taper. The appropriate forms of o are, for Fenlon,

-

@l
o = oolEl(qr ro)—El(aTr)}e . (68)

and for Modified Berktay, Leahy,

o = o [El (aTro) - 131 (aTr)] . (69)

Here, El(-) represents the exponential integral. Equation (69) is equivalent

to the o used in the taper function derived in Section 3.1 (Eq. 56).

The results of evaluating Eq. (65) as a function of r/ro with o
given variously by Egs. (66), (67), (68), and (69) are shown in Figure 13.
This comparison was made for a case when ao ro was small (a'o r,= - 001).
Also, for the Mellen-Moffett calculation the value of r, was taken to be
twice the value used in the others. It will be seen that there is very little
difference between the results of Egs. (67) and (68). The results of Eq. (69)
are so nearly identical to those of Eq. (68) that they have not been shown.
The results using Eq. (66) are nearly the same as the others except for small

and large values of r/ro .

For larger values of ao r, the disparity among the various forms

increases. However, it is likely that the predominant taper will be absorp-

tion in cases when there is a significant difference.
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A I 3.4 Comparison of Parametric Transmitting Array
Calculations Using Various Taper Functions
In the previous section the relative amplitudes of several taper
functions were compared. The taper functions considered were identified
as the Mellen-Moffettl? Fenlonl,ﬁmodiﬂed Berktay-Leahyl,6 Merklinger?:3
and intensity taper functions. It was noted that all except the last may be
represented by the same function or a single parameter called o. It is the
g definition of o that distinguishes the various tapers. The values of the
taper function in the farfield were compared for a particular set of parameters
il for various theories excluding the intensity taper, and it was concluded

that the differences among them were quite small.

The results of using the various tapers in the same numerical
volume integration program are now compared. As a basis for comparison
we have taken the parametric scaling curves given by Mellen and Moffett.
These curves are the solid lines in Figure 14. A single value, 50, of the

4 downshift ratio and a wide range of values for scaled source level and for
(2« Ro)-1 were chosen. Each taper function except the one derived in the
present investigation was defined in two ways; with and without directivity

taken into account in defining off-axis values of o.

The Merklinger and Fenlon ¢'s are as defined in the previous
report with directivity included by replacing o by ooD(G). The modified
Berktay-Leahy o is the same as the expression used in the intensity taper

function, which is

\ I s f e dx E= RO
J o

{ o = < | (70)
: . e-aTRo T e-a'T X
A = + D(8) A S5 dXJ r> RO

¢ | T .

‘ (o]
e The version without directivity, of course, has D(8) = 1.
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As an initial comparison the low amplitude data for (2 RO)— L 1,
10, 100 and 1000, are ploited as squares (CC]) in Figure 14. For the source

level utilized all of the taper functions give the same results. It is interest-

ey Bl e

ing that the numerical integration gives virtually identical results to the
i Mellen- Moffett model at low amplitude, with the exception of the point
3 * corresponding to (22 Ro)-1 = 1, which falls about 3 dB above the solid curve. l

i The higher amplitude results for the modified Berktay-Leahy and
the intensity taper functions are also shown in Figure 14. This comparison
demonstrates the difference in results between the two functional forms of
the taper theories, with the same 0. A difference of about 3 dB is apparent
in each of the cases shown. Tha modified Berktay-Leahy results without
directivity appear about 1.5 dB lower than the results with directivity,
except for the nearfield limited case. The results discussed above are all

within about 3 dB of the Mellen-Moffett results,

A set of rather surprising results was obtained by using the

original Mellen-Moffett taper function in the numerical integration. The

calculated parametric efficiencies were within 1 dB of the original model's

results. These data are not shown in the figures.

The same data points were run using the Fenlon and the Merklinger
[ taper functions. Unfortunately, the results using these tapers are not

directly comparable with those discussed above because they are b "ed on
spherical wave theories and do not account for nearfield taper. T

results could have been made to fit the results of ot! »* nodels by a,propriate
choice of the effective source radius r,- The result: «iid indicate that the

Fenlon and Merklinger results were within ahout 1 dB of each other.

It may be concluded that the parametric transmitting array
scattering integral is tolerant, with only minor differences in results, of
vast differences in approach and in degree of approximation of both geometry

o and of the taper funciion. With all of the results lying within 3 dB of each
i - - other it would be quite difficult to determine by direct experiment which of
the approaches gives the best results. As was notad in the previnus section
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however, an adaptation of the intensity taper function to the reflected para-
metric array produced much better results than the present author's earlier

adaptation of the Mellen-Moffett theory.

It should be noted that all of the data used in the above compari-
sons applied to range points well in the farfield of the interaction volume.
This condition, which is required for validity of the Mellen-Moffett model,

is not necessary in the volume integration approach.

3.5 Conclusions - Parametric Transmitting Array Finite Amplitude Effects

The results reported in Section 3.0 indicate that the simple geometry
model proposed by Mellen and Moffett gives res ults almost identical to those
obtained by volume integration, when the same taper function is used. They
also demonstrate that accounting for absorption and directivity in defining
the taper function associated with nonlinear effects makes very little difference
in the results. On the other hand, the manner of describing nonlinear effects
in the nearfield and, in spherical wave theories, the choice of the effective

source radius I, make substantial differences in tne results.

The effects of higher order interact ons have not been addressed

in the present work. These would be expected to be important only at extremely

high intensities.
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4.0 RECOMMENDATIONS FOR FUTURE WORK

The results of the present investigation point to a clear require-
ment for additional experimental work. It is unfortunate that the objectives
of the experimental portion of this work were not fully realized because of
the surprisingly low efficiency of the pre™ TS that were built. These
objectives should be pursued further.

A definite requirement exists for concentrating on nearfield
saturation effects, both in the parametric receiving array and in the para-
metric transmitting array. In the case of the parametric receiving array
there is a fundamental question yet to be answered regarding the form of
the source strength taper in the nearfield. The data presently available
suggest that the nearfield and farfield behavior may be distinctly different.
The theory presented herein agrees well with farfield data but departs
drastically from nearfield data. Additional nearfield data are required to
check the one presently available source and to form the basis for a possible

composite model that would include both nearfield and farfield effects.

In addition to further investigation of nearfield effects, addi-
tional work on the parametric transmitting array should address deriving
a taper function that accounts for higher order interactions. Such a taper
function would be useful because of the flexibility that the scattering inte-

gral approach permits in accurately describing various geometries.

49

k|




- 1 B e O b b D . il o Gl sl oDl n oo -

A & TR T P

e o . "
-

i M L i

5.0 ACKNOWLEDGEMENTS

- S e

- The author wishes tc thank R. Simmons and C. Wyant for trans-
- ducer fabrication and E. Johnson and R. Simard for their assistance with
the experimental work. The technical assistance of the late H.D. Fyffe

is also acknowledged.

The cooperation of the Applied Research Laboratories, the
University of Texas at Austin is greatly appreciated. Computer programs
written by the late J. Willette were supplied by J. Shooter of ARL and were
used extensively in the present work. The author is grateful to T. Muir for i
T making available data on the phase reversed parametric array and for an

extensive technical correspondence.

The author is especially indebted to W. Konrad, R. Mellen and
M. Moffett of the New London Laboratory, Naval Underwater Systems Center
for making available revised data and additional unpublished data from their
1971 parametric receiving array experiments. Special thanks to M. Moffett
for his efforts in reviewing the aforementioned data and for many helpful

discussions and criticisms of our work.

i For assistance in preparation of this report, the author thanks
]J. Lucy who typed the final manuscript and R. Boyd who prepared the graphics.
Thanks also to R. Day for his careful review of the draft.

S

50




R

B T

i0.

11.

i 12.

REFERENCES

Mellenbruch, L.L. and T.G. Muir, "Experiments on Phase Reversed Shock
Propagation and Parametric Generation," J.Acoust. Soc. Am. S5, 429(a) (1974).

Westervelt, P.J., "Scattering of Sound by Sound, " J.Acoust. Soc. Am. 29,
934 (1957).

Westervelt, P.J., "Parametric Acoustic Array, " J.Acoust. Soc. Am. 35,
535 (1963).

Bellin, J.L.S. and R.T. Beyer, "Scattering of Sound by Sound, " J.Acoust.
Soc. Am. 32, 339-341 (1960).

Berktay, H.O. and D.J. Leahy, "Farfield Performance of Parametric Trans-
mitters, " J.Acoust. Soc. Am. 55, 539 (1974).

Fenlon, F.H., "On the Performance of a Dual Frequency Parametric Source
via Matched Asymptotic Solutions of Burgers' Equation, " J. Acoust. Soc. Am.
55, 35 (1974).

Muir, T.G. and J. G. Willette, "Parametric Acoustic Transmitting Arrays,"
J.Acoust. Soc. Am. 52, 1481 (1972).

Berktay, H.O. and C.A. Al-Temimi, "Virtual Arrays for Underwater Reception, "
J. Sound Vib. 9, 295 (1969).

Konrad, W.L., R.H. Mellen and M. B. Moffett, "Parametric Sonar Receiving
Experiments, " NUSC Tech. Memo. PA4-304-71 (9 Dec. 1971).

Bartram, J.F., "Closed Form Expression for the Source Level of a Finite
Amplitude Parametric Array," J.Acoust. Soc. Am. 53, 383(A) (1973).

Fenlon, F.H., "An Extension of the Bessel-Fubini Series for a Multiple-
Frequency CW Source of Finite Amplitude, " J.Acoust. Soc. Am. 51, 284 (1972).

Schaffer, M.T. and D.T. Blackstock, "Modulation of a Simall-Signal Wave
by a Finite-Amplitude Wave of Lower Frequency, " J.Acoust. Soc. Am. 57,
573(A) (1975).

51




o

= et

i
»

g

B e L S o Ul e . el R e o L i B il e e e e T £5

13

14.

15.

16.

17.

18.

19.

20.

21.

22

23.

Mellen, R.H. and M. B. Moffett, "A Model for Parametric and Sonar
Radiator Design, " NUSC Tech. Memo. PA41-229-71 (1971).

Merklinger, H. M., "High Intensity Effects in the Nonlinear Acoustic Para-
metric Array, " PhD thesis, Univ. of Birmingham, Birmingham, England (1971).

Bartram, J.F. and P.]. Westervelt, "Nonlinear Attenuation and the Para-
metric Array, " J.Acoust. Soc. Am. 52, 121(A) (1972).

Fenlon, F.H., "Approximate Methods for Predicting the Performance of
Parametric Sources at High Acoustic Reynolds Numbers, " Finite Amplitude
Wave Effects in Fluids, L. Bjérnd, Ed., Proc. of the 1973 Symposium,

Copenhagen.

Fenlon, F.H., "Parametric Scaling Laws, " Final Report under Contract
N00014-74-C-0214, Westinghouse Res. Labs.

Blackstock, D.T., "On Plane, Spherical and Cylindrical Sound Waves of
Finite Amplitude in Lossless Fluids," J.Acoust. Soc. Am. 36, 217-219(L) (1964).

Blackstock, D.T., "Propagation of Plane Sound Waves of Finite Amplitude
in Nondissipative Fluids," J.Acoust. Scc. Am. 34, 9-30 (1962).

Fenlon, F.H., "A Recessive Procedure for Computing the Nonlinear Spectral
Interactions of Progressive Finite-Amplitude Waves in Nondispersive Fluids, "
J.Acoust. Soc. Am. 50, 1299 (1971).

Merklinger, H.M., H.O. Berktay and M. H. Safar, " Finite-Amplitude Losses
in the Field of Real Transducer, " Finite-Amplitude Wave Effects in Fluid
L. Bjérné, Ed., Proc. of the 1973 Symposium, Copenhagen.

Shooter, J.A., T.G. Muir and D.T. Blackstock, "Acoustic Saturation of
Spherical Waves in Water, " J. Acoust. Soc. Am. 55, 54 (1974).

Lockwood, J.C., "Two Problems in High-Intensity Sound. I. Finite Amplitude
Sound Propagation in the Farfield of Nonuniform Sources. II. The Diffraction
of N Waves by a Circular Aperture in a Plane Baffle, " PhD thesis, Mechanical
and Aerospace Sciences Dept., Univ. of Rochester (July 197 1). Also issued
as ARL Tech. Report No. 71-26 (ARL~-TR-7 1-26) (July 1971) (AD 740-498).




-

-

24.

25.

26.

27.

28.

289.

30.

31.

32.

33.

34,

35.

AT R ————

e i e

Lockwood, J.C., "Approximate Time Domain Sclution for Finite Amplitude
Spherical Waves in an Absorbing Medjum, " Tinite Amplitude Wave Effects
in Fluids, L. Bjérnd, Ed., Proc. of the 1973 Symposium, Copenhagen.

Lockwood, J.C., T.G. Muir and D.T. Blackstock, "Directive Harmonic
Generation in the Radiation Field of a Circular Piston," J.Acoust. Soc.
Am. 53, 1148-1152 (1973).

Browning, D.G. and R. H. Mellen, "Finite-Amplitude Distortion of 150 kHz
Acoustic Waves in Water," J. Acoust. Soc. Am. 44, 644 (L) (1968).

Muir, T.G. and J.E. Blue, "Experiments on the Acoustic Modulation of
Large Amplitude Waves, " J. Acoust. Soc. Am. 46, 227 (1969).

Lockwood, J.C., "Theoretical Perforinance of a Parametric Array with
Phase-Reversed Primary Radiation," J. Acoust. Soc. Am. 55, 429(A) (1974).

Lockwood, J.C., "Investigation of Finite Amplitude Attenuation, Quarterly
Technical Report N>, 1," under Contract N00039-75-C-0263, ARPA Order
2910, Prograin Code 5310, AMETEK, Straza Div., El Cajon, Ca. 92020
(June 1975).

Berktay, H.O. and J.A. Shooter, "parametric Receivers witl Spherically
Spreading Pump Waves, " J. Acoust. Soc. Am. 54, 1056 (1973).

Lockwood, J.C. and D.P. Smith, "Investigation of the Increase in Para-
metric Efficiency due to Bubbles, " AMETEK, Straza Div. Tech. Report. No.
11-1354E-74-1 (1974).

Moffett, B. M., Private Communication (Jan. 1976).

Merklinger, H. M., R.H. Mellen and M.B. Moffett, "Finite-Amplitude
Losses in Spherical Sound Waves," J.Acoust. Soc. Am. 53, 383(a) (1973).

Barnard, G.R., J.G. Willette, j.]. Truchard and J.A. Shooter, "Parametric
Receiving Array, " J. Acoust. Soc. Am. 52, 1437 (1972).

Berktay, H.O. and T.G. Muir, "Arrays of Parametric Receiving Arrays, "
J. Acoust. Soc. Am. 53, 1377 (1973).

53

E 1



36.

37.

38.

39.

40.

41.

Berktay, H.O., "Parametric Amplification by the Use of Acoustic Non-
linearities and Some Possible Applications, " J. Sound Vib. 2, 462 (1965).

Berktay, H.O., "Possible Exploitation of Nonlinear Acoustics in Under-
water Transmitting Applications, " J. Sound Vib. 2, 435 (1965).

Truchard, J.J., "A Theoretical and Experimental Investigation of the

Parametric Acoustic Receiving Array," ARL Tech. Report No. 74-17 (1974).

Moffett, M.B., "Parametric Radiation Theory," NUSC Tech. Memo No.
PA4-234-71 (1971).

Berktay, H.O. and C.A. Al-Temimi, "Scattering of Sound by Sound, "
J. Acoust. Soc. Am. 50, 181 (1969).

Berktay, H.O. and J.A. Shooter, "Nearfield Effects in End-Fire Line
Arrays," J. Acoust. Soc. Am. 53, 550 (1973).

54

—



i ‘] - R B W s T e

DISTRIBUTION LIST

Co No.

o
¥

= 1 Commander
Naval Electronic Systems Command

e Department of the Navy
Washington, DC 20362
Attn: Code 3204

2 Commander

Naval Electronic Systems Command
Department of the Navy

b Washington, DC 20362
Attn: Code 2703

X 3-4 Commander

Naval Electronic Systems Command
Department of the Navy
Washington, DC 20362

Attn: Dr, Joel Sinsky, Code 320

5-6 Defense Advanced Researcl. Projects Agency
1400 Wilson Blvd,
Arlington, VA 22209
Attn: CDR W, Jordan (TTO)

l 7 Director

] Naval Research Laboratory
Department of the Navy
Washington, DC 20375

I Attn: Code 8150

8 Director
Naval Research Laboratory
Department of the Navy
Washington, DC 20375
Attn: Codz 8151

9 Officer-i.-Charge
i New London Laboratory
Naval Underwater Systems Center
Department of the Navy
| . New london, CT 06320
Attn: M. B. Moffett (Code TD 124)

10 Officer-in-Charge
New London Laboratory
s Naval Underwater Systems Center
} Department of the Navy
W New London, CT 06320
. Attn: W, Konrad
|
-
£ f
H S5 .z




_¥

-

LB

-

B

e

Co

No.

i

12-13

14

15

16

17

18

19

20

21

Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201
Attn: TACTEC

Defense Documentation Center
Defence Services Administration
Cameron Station, Building 5
5010 Duke Street

Alexandria, Virginia 22314

Westinghouse Electric Corporation
Defense and Electronic Systems Center
Baltimore-Washington International Airport
P. O. Box 1693

Baltimore, MD 21203

Attn: A. Nelkin, Annapolis Branch

Chief of Naval Research
Department of the Navy
Arlington, VA 22217
Attn: Code 222

Chief of Naval Research
Department of the Navy
Arlington, VA 22217
Attn: Code 212

Commander

Naval Undersea Center

San Diego, California 92132

Attn: Library (J. Reeves/L. Frai.=dal)

Superintendent

Naval Postgraduate School
Monterey, CA 93940

Attn: Technical Library (H. Medwin)

Superintendent

Underwater Sound Reference Division
P. O, Box 8337

Orlando, FL 32806

Attn: Dr. Joe Blue

Department of Electronic & Electricea! Engineering
University of Birmingham

P. O. Box 363

Birmingham B15 2TT, ENGLAND

Attn: Professor H. O. Berktay

Department of Physics
Chelsea College

London, EMGLAND

Attn: Dr, R. W. B. Stephens

56




e

L 1]

23

24

25

26

27

28

29

30

Fluid Mechanics Department

The Technical University of Denmark
Building 404

DK-2800 Lyngby, DENMARK

Attn: Dr. L. Bjdrng

Physics Institute
University of Bergen
5014 Bergen-U
NORWAY .

Attn: Dr. M. Vestrheim

Defense Research Establishment Atlantic

P. O, Box 1012
Dartmouth, Nova Scotia
CANADA

Attn: H. M. Merklinger

Department of Physics
Brown University
Providence, RI 02912
Attn: Professor R. T. Beyer

Department of Physics

Brown University

Providence, RI 02912

Attn: Professor P. J. Westervelt

Department of Physics

Brown University

Providence, RI 02912

Attn: Professor A. O. Williams, Jr.

Department of Physics
Kalamazoo College
Kalarazoo, MI 49001

Attn: Professor W. M. Wright

Applied Research Laboratories
The University of Texas at Austin
P. O. Box 8029

Austin, Texas 78712

Attn: G. Barnard

Applied Research Laboratories
The University of Texas at Austin
P, O. Box 8029

Austin, Texas 78712

Attn: T. Goldsberry

57

e 1



B e i,

T .

Copy No,

31

32

33

34

35

36

37

38-42

Applied Research Laboratories
The University of Texas at Austin
P. O. Box 8029

Austin, Texas 78712

Attn: J. Clynch

Applied Researci Laboratories
The University of Texas at Austin
P. O. Box 8029

Austin, Texas 78712

Attn: T. Muir

Applied Research Laboratories
The "Iniversity of Texas at Austin
P. O. Box 8029

Austin, Texas 78712

Attn: D. Blackstock

Applied Research Laboratories
The University of Texas at Austin
P. O. Box 8029

Austin, Texas 78712

Attn: J. Shooter

Raytheon Company
Submarine Signal Division
P. O. Box 360
Portsmouth, R.I. 02871
Attn: J. Bartram

Raytheon Company
Submarine Signal Division
P, O. Box 360
Portsmouth, R.I. 02871
Attn: G. Walsh

Raytheon Company
Submarine Signal Division
P. O. Box 360
Portsmouth, R.I. 02871
Attn: R, Pridham

Raytheon Company
Submarine Signal Division
P. O. Box 360
Portsmouth, R.1. 02871
Attn: J. Lockwood

58

& |



e Bl & o e L o

A S s T

ST ————— e

Copy No.

43

44
45
46
47
48

49-50

Applied Research Laboratory
Pennsylvania State University
State College, PA 16801
Attn: F. Fenlon

G. Brigham
R. Day

D. Hollman
R. Simmons

AMETEK, Straza Division
Library

Reserve Copies

59




Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

e ey

INVESTIGATION OF FINITE AMPLITUDE
'ATTENUATION, =

J—— L

rb—w TR
Final Technical Repet.

29 Mar,-31 Dec, W75,

Sl L

7.

AUTHOR(s)

e TOAPEIEREe

James C. /iockwood (

9.

PERFORMIN G ORGANIZATION NAME AND ADORESS

AMETEK, Straza Division
790 Cireenfield Drive
El Cajon, Calif. 97022

\WRQE AN, E£ B
REA & WORK UN

/ program:Code SG10 |
AR

PA Olider-29 14 /

oy~

. CONTROLLING OFFICE NAME AND AODRESS

a

Defense Advanced Research Projects Agency

12 heepo
75 Feb,, 876 |
A BT )

1400 Wilson Blvd., Arlington, Va. 22209

@)493#

60
14, MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 1S. SECURITY CLASS. (of this report)
Naval Electronic Systems Command UNCLASSIFIED
WaShington’ D' C' 1Se. DECLASSIFICATION/UOWNGRADING
SCHEDULE

OISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

. DISTRIBUTION STATEMENT (of the abstract enterad in Block 20, if different from Report)

SUPPLEMENTARY NOTES

. nEeY WORDS (Continue on reverse side if necessary and identity by bfock number)

Nonlinear Accustics
Parametric Receiving Array
Parametric Transmitting Array
Saturation

20,

ABSTRACT (Continue on ; 'verse aside if necessary and identify by block number)

This is the final technical report on a study of finite amplitude attenuation

that has been performed under Contract N00039-7
5G10, ARPA Order 2910.

5-C-0263, Program Code

The program objective has been to determine by

experimental and theoretical means the limitations imposed by finite ampli-
tude attenuation on the performance of parametric sonars. The results are

intended for use in assessing the potential of parametric receivers and trans-

mitters in military applications.

DD ,

FORM
JAN 73

1473

EDITION OF 1 NOV 6515 OBSOLETE

Unclassified

355§ Y e

L/s.'-:cun‘TY CLASSIFICATION OF THIS PAGE (When Date Entered)

4



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entared)

20. ABSTRACT

The axial response of the parametric receiving array has been calculated in
two ways. The first is by use of a one dimensional model in which the
secondary signal levels are predicted from weak shock theory. The second
is by numerical evaluation of the scattering integral solution in which finite
amplitude attenuation is introduced by means of a taper function derived from
the one dimensional solution.

An experiment has been performed in which the axial secondary signal level
as a function of pump source level was measured. These data agree with the
theoretical results, but the agreement is not conclusive because the maximum
pump source level was not sufficiently high. However, a comgAarison with
data from another investigation confirms the theory for cases when the receiving
hydrophone is well in the farfield of the pump.

Comparison with a set of experimental results for which the interaction was
almost entirely in the pump nearfield indicates that, unlike the farfield case,
the nearfield behavior may be quite different from that predicted by the present
theory. Caution is therefore advised in applying the present results to near-
field interactions.

In addition to the parametric receiving array work, several parametric trans-
mitting array taper functions have been compared in tie context of numerical
evaluations of the scattering integral. A mean taper function is derived from
weak shock theory and is compared with the others.

In all cases the results are surprisingly similar to those obtained using the
model given by Mellen and Moffett.
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