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1.  INTRODUCTION 

The overall objective of the program reported on here is to develop 
current injection technology for threat and lower-level system 
electromagnetic pulse (EMP) assessment. In general, a current injection 
system creates a transient current on a system penetration by means of a 
point source or sources coupled to the penetration either directly 
(resistive) or reactively (capacitance or inductive). This type of 
simulation is useful whenever other simulation techniques are inadequate 
or unrealizable from the standpoint of either peak amplitude or area of 
illumination. 

One condition that must exist for this type of simulation to be 
valid is that in the event of an actual EMP, distinct points of entry 
excite sensitive circuits with induced signals that are due 
predominantly to electromagnetic responses of external conductors; 
consequently, it is assumed that interior electromagnetic fields within 
a system/subsystem enclosure do not contribute significantly to circuit 
upset or damage. If this assumption is not valid, it is still possible 
to obtain useful information from the direct-drive technique, but the 
data reduction becomes far more complex. Therefore, the discussion here 
is limited to when exterior coupling phenomena dominate the system 
response. Also, to accurately or adequately drive a system penetration, 
a greater understanding of the free-field coupling mechanisms is 
required than is necessary for free-field simulation. That is, before a 
system penetration can be driven, a description of the EMP coupled 
waveform and its distribution along the penetration must be obtained 
from either low-level free-field testing or analytical predictions. 

In addition to these caveats regarding proper use of current 
injection, it is necessary also to demonstrate a relationship between 
the threat response of a system and that due to a current injection 
technique. To establish such a relationship, the system penetrations 
are divided into two cases, shielded and unshielded. A general approach 
for each of these cases is outlined, and then, because of the complexity 
of the problem, the shielded case is analyzed in more detail. 

2.  APPROACH 

2.1 Unshielded Case 

Typical examples of unshielded penetrations are incoming or 
outgoing ac power lines, deliberate antennas, and unshielded control or 
communication cables that  are exterior to the system structure.  In 



figure 1, the unshielded system penetration has an impedance Z. looking 

into the system from points A and B and an impedance Z looking away 

from the system. If the impedances Z. and Z are reasonably well 

behaved with respect to some reference conductor, G, and there is no 

significant coupling to the penetration further into the system, then 

the transient current, i(t), may be directly injected on the penetration 

using either a Thevenin's or Norton's equivalent source as shown in 

figure 2.  For most unshielded cases, the Norton's equivalent should be 
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Figure 1.  A system with an unshielded penetration. 
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Figure 2.  A Thevenin's (a) and Norton's (b) equivalent 
injection system. 



used, because most transient high-voltage sources are an open circuit, 

except when discharging,  and by definition,  the Thevenin's voltage 

source, V , must be a short circuit when  shut down.  This open-circuit 

condition before and after discharge would unload the system at the 

penetration and possibly damage it.  If, however, the load on the system 

is not critical,  then a Thevenin's equivalent may be useful, because it 

offers a higher efficiency over a Norton  equivalent source.  In order 

not to  load the system improperly, the current source, i , must have an 
9 

internal impedance much greater than the parallel impedance of Z.  and 

z
out  

for a11 frequencies of interest,  so a larger source is required 

than for the Thevenin system.  However, this inefficiency allows greater 

freedom in adjusting the source waveform, since a shaping impedance, Z , 
s 

may be placed across the source without affecting the system because of 

the isolation impedance, Z ,  as shown in figure 3.  The current source, 

i , of figure 2 is simulated in figure 3 by the voltage source, v , and 

the coupling impedances,  ZT and Z .  Also, the use of a Norton source 1      s 
eliminates the need for physically altering the system,  since it is 

necessary only to connect the source between points A and B. 
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Figure 3.  A current injection system for unshielded penetrations. 



If no reference conductor is readily associated with the 
penetration, then it may still be possible to inject current on the 
penetration in one of two ways. As one way, a reference conductor could 
be added from the desired drive point to some ground point further into 
the system. However, care must be exercised in doing so, because it is 
possible to alter the system characteristics drastically (at least for 
the penetration of interest). Another, more preferable, technique 
involves inductively coupling the current with a ferrite core or similar 
transformer device, as shown in figure 4. The major advantage of this 
type of drive is that it is not physically connected to the system. 
This loose coupling, however, also makes the driver inefficient, and it 
is difficult to regulate the injected current waveshape. 

SYSTEM 
'(t) 

*~Z IN 

INDUCTIVE 
COUPLER 

PENETRATION 

OUT 

Figure 4.  Inductively coupled injection system. 

2.2  Shielded Case 

The most common type of shielded penetration is a multi- 
conductor cable with an external metallic shield or a standard coaxial 
cable. This type of penetration is analyzed here in the absence of 
terminal system/subsystem enclosures. Because of the physical size of 
most terminal enclosures, electromagnetic scattering by these obstacles 
and the resulting contributions to responses of interconnecting cables 
cannot be included in the transmission line approach used here. 
Furthermore, when the penetration to be driven is a shielded cable, it 
is usually necessary to inject current on the external shield, rather 
than the internal conductors, because either the internal response is 
not known or the number of internal conductors is too large to consider 
driving them. Threat-induced signals in terminations of internal 
conductors can be adequately simulated via point-source excitation of 
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the external shield, but doing so is complex, because coupled internal 
signals depend on the distribution and propagation of the external 
driving current. Therefore, the objective of this study is to describe 
induced internal signals due to a distributed source and the 
corresponding signals due to a point source. Correlation of such 
signals shows the adequacy of a direct-drive technique in simulating 
free-field induced responses for at least this basic case and gives 
insight to its applicability to more complex systems. 

Transmission line theory is used to define the currents and 
voltages of interest in both cases. This approach has some limitations 
in the free-field case, but an exact solution for the external current 
and voltage would probably not alter the results significantly. 

Transmission line theory is briefly outlined below. Then a 
circuit parameter model of the external cable shield is presented, along 
with a technique for measuring the parameters. The shielded model and 
transmission-line theory is then used to obtain general solutions for 
the two cases of interest. 

A transmission line has length I with a series impedance 
Z = R + ju)L and shunt admittance Y ■ G + j^C per unit length such that 
its characteristic impedance K = (Z/Y)1* = [ (R + jo)L)/(G + JCDC)]1* and its 
propagation constant r - (ZY) ** = [ (R + jwL)(G + jft>C)]5" a + jß. if this 
line is terminated in an impedance Zj at X = 0 and an impedance Z2 at 
X = I and the line is excited at a point X = £ by a series generator of 
zero impedance (fig. 5), then from Schelkunoff,* the current, Ij , and 
the voltage, V1# at any point along the line is 

Il(x,£) = [K cosh Tx + Zx sinh Tx]   x 

[K cosh T(Z  -  £) + Z2 sinh T (£ - £)] /D, x < £ 

= [K cosh TC + Zx sinh T£]   x 

[K cosh H* - x) + Z2 sinh T (£ - x)]/D, x > £ 

Vi(x,£) = -K[K sinh Tx + Zj cosh Tx] x 

[K cosh T(l  - O   + Z2 sinh r (I -  C)l/Df x < £ 

= K[K cosh TC + Zj sinh T£] x 

[Ksinh r(Ä - x) + Z2 cosh r (£ - x)l /D, x > £     (1) 

1S.  A.  Schelkunoff,     Electromagnetic      Waves,       D. Van Nostrand    Co., 
New York   (1943) . 



where 

D = K   [(K2+ Z!Z2)   sinh  VI  + K(Z2   +  Zx)   cosh  Ti]. 

•t 
o 

Figure 5.  A transmission line excited by a series 
generator of zero impedance. 

Similarly, if the line is excited by a shunt generator of 
infinite impedance, as in figure 6, the current, 12» and the voltage, 
V2, at any point along the line is given by 

I2(x,£) = K[K cosh Tx + Zx sinh Tx] x 

IK sinh T(i  - S) + Z2 cosh T(l  - £)] /D, x < £ 

= -K[K sinh T£ + Zx cosh T^] x 

[K cosh T(£ - x) + Z2 sinh T(l  -  x)]/D, x > £ 

V2(x,5) = -K2[K sinh Tx + Zj cosh Tx] * 

[K sinh r(£ - £) + Z2 cosh r (A - £)] /D, x < £ 

= -K2[K sinh r£ + Zl   cosh rci x 

[K sinh T(l  - x) + Z2 cosh H* - x)]/D, x > £. 

(2) 

10 



Figure 6.  A transmission line excited by a shunt generator 
of infinite impedance. 

These solutions for the discrete case can be used to determine 
the response due to a distributed excitation by integrating over the 
source region, as shown in equation (3). 

xl 
Kx) =   J E(S)Ii(x,£) dC +  / 

l 

X2 *2 
J(S)I2(xf£) d£ 

xl xl 
V(x) =    J ElOV^x^) dC + f J(C)V2(x,C) d£ (3) 

x2 x2 

where E(£) is a series electromotive force per unit length and J(£) is a 
shunt current per unit length distributed over the interval xj, x2. 
These integrals are used with the following models to define the 
responses for each case. 

2.3 Cable Shield Model 

Consider a conductor of radius r with a single coaxial  shield 
a 

of thickness t and inside radius r, , as shown in figure 7. 
b 
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ß7.9 2*2 

Figure 7.  A conductor with a coaxial shield of 
thickness t. 

The transfer impedance of a solid shield is given by 

Shelkunoff2 to be R = n/2iT fr,(r + tY]2 sinh a t, where n ■ ja)p2/
a' 

ö = (JWVI292) ' w = 2lTf/ f is the frequency, and g2 and y2 
are the con~ 

ductivity and permeability of the shield, respectively. 

A braided shield has two additional transfer parameters that 

have to be combined with the transfer impedance, R , given above. The 

longitudinal transfer impedance, Z , for a general cable is 
i 

Z  = R + JOJL 
T    s      s 

where L  is the inductance/meter length of the shield.  The 

transfer admittance, YT, is 

lateral 

where C  is the capacitance/meter length between the inner conductor 
H 

and an external reference conductor other than the shield. The assumed 

lossless dielectrics involved (inside and outside the shield) account 

for the purely reactive lateral transfer admittance. The parameters 

needed to calculate the solid shield transfer impedance, R , are usually 

2S. A.  Schelkunoff, The      Electromagnetic      Theory      of        Coaxial 
Transmission    Lines    and    Cylindrical     Shields,     Bell     System    Technical 
J. 13   (October 1934). 
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well defined, but it is not possible to accurately calculate the 

inductive, L , and capacitive, C , terms needed for braided shields. 

Therefore, it is necessary to determine these two parameters 

experimentally. 

A current,  i ,  on the outside of the shield creates a 
s 

distributed series electromotive force, 

E(£) - Z i (£) = (R + juL \i U) 
T s     \ s     s/ s 

which excites the inner conductor  according to equations (1) to (3) . 

Similarly, any external voltage,  V (£) ,  appearing between  the  cable 
s 

shield and some reference conductor behaves as a shunt current source, 

J(0'  with the relationship 

J«) = vLvs(5) = JUcHVs(5) . 

The external voltages and currents need to be defined.  Since the cable 

driver technique uses a point  source  at  some point along the cable,* 

equations (1) and (2) give the external voltage and current directly for 

any type of source.  The coaxial cable driver  to be  considered has a 

point voltage source, V , at one end of the line  (x = 0).   Therefore, s 
the current, i (x), and voltage, v (x), along the line are 

s s 

i (x) = V KxlKi cosh Tl(fL  - x) + Z2 sinh Tl(i  - x)] /Dl s      s 

v (x) = V KifKi sinh Tl(l  -  x) + Z2 cosh Tl(i  - x)] /Dj        (4) 
s      s 

where the subscript is added to K, r, and D to differentiate between the 
external (1) and internal (2) lines. 

For a distributed excitation, the integrals in equation (3) 
must be used to define the external voltage and current along the line. 
Equivalent series voltage and shunt current sources are defined by use 
of the incident electric and magnetic  fields.  Solutions  for the 

13 



internal current in both types of excitation may then be obtained by use 
of the external voltages and currents and the source models defined 
above. 

3.  COAXIAL CABLE DRIVER 

3.1 Transmission Line Solution for Internal Current 

The coaxial cable driver may be modeled with two separate 
transmission lines (fig. 8). Line ABDC is made up of the outside shell 
of the driver and the external cable shield. Line ABDC has a 
characteristic impedance of Kj and a propagation constant of 

rl * «1  + jßi- 

Line BDFE is made up of the external shield and the inner conductors and 
has a characteristic impedance of K2 and a propagation constant of 

T2 = a2 + jß2« 

x = 0 

. J <£ > 

Jt 
•E(£ , 

'.? 

i. (x) 
x  1 

it (x) = i(1 (x) + i|? (x) 

Figure 8.  Circuit model of a coaxial cable driver. 
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V is the impressed source voltage,  and  i  and v  are the external 

transmission line current and voltage caused by V .   E(£)  and J(C) are 
5 

distributed series electromagnetic  field and  shunt current sources 

causing internal currents i.  and i. ,  respectively.   The  distributed 

electromagnetic field, E(£), is produced by  the  sheath current,  i , s 
flowing on the shield, which has a transfer resistance, R (ft/M), and braid 

s 
inductance, L (h/M), as defined earlier.  Therefore, 

E(C) = -is(5)(Rs ♦ J«*.,) = 'Vs(5) = -ZTK 
+ \)- <5) 

But since the internal coupling is small, 

i8(0«     -igU), 

.*. E(C)* Vg(C) ' 

The distributed shunt current source, J(^), represents the coupling of 

the propagated driver voltage, v , through the holes in the braided 

shield as suggested by Frankel,3 VanceZ1 and others. The coupling 

through the holes in the braid has the characteristics of capacitance C 

(per unit length) between the inner conductors and the external driver 

shell: 

J(S) = -RvlO. (6) n  g 

35. Frankel, Terminal Response of Braided-Shield Cables to External 
Monochromatic Electromagnetic Fields, Harry Diamond Laboratories TR-1602 
(August  1972) . 

*♦£. F. Vance, Comparison of Electric and Magnetic Coupling through 
Braided-Wire Shields, TM 18, Air Force Weapons Laboratory, Kirtland Air 
Force Base,  Albuquerque,  NM  (February 1972). 
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This is an approximation, because the shunt generator is really 

a function of the difference between the propagated driver voltage, v , 

and the internal cable voltage, v., but the coupling is small, so that 

v - v. » v 
gig 

V [Ki cosh Ti(i  -  £) + R2 sinh Tj (£ - £)] 

V«— V« = 'd \ 1 s <7) 
(K| + RxR^; sinh Yxl  + 1^ (RX + R2j cosh rx£ 

KjV [Ki sinh Tl(i  - £) + R2 
cosn rl(* " £)] 

v (C) - -7-^ r r  •        (8) 
y      [KY  + RiR2j sinh TXZ +  lq y^ + R2)  cosh Tli 

ii*M   = " /   E(S)Ii(x,£) d£ 
1        o 

VsZT, 
[K2 cosh T2(£ - x) + Z2 sinh T2 (I  - x)J K2DjD2 

•/        A!(C)Bi(5)   dC 
0 (9) 

+ [K2   cosh T2x +  Zi   sinh T2x] y£    A1(5)B2(C)   dc|, 

where 

Ai(C) - Kj cosh rx(Z - C) + R2 sinh Tl(i  - £) 

Bi(C) ■ K2 cosh r2£ + Zx sinh r2£ 

16 



where 

B2(£)   = K2  cosh  r2(£   -  S)   +  Z2   sinh  T2U  -  S) 

Di   =(KI   +  RiR2)   sinh  T^  +  Kj (RI   +  R2)   cosh  I^Ä 

D2  =(K2   +  ZiZ2)   sinh  T2fc     +  K2 (zj   +  Z2)   cosh  r2fc 

r* r£ (10) 
ii2

U)   * Jo   3{^12(*>0 dt =     -ja)CH   7o v   (5)I2(x,£)   dC 

jh)CHKlVs RK2 cosh T2U  - x) + Z2 sinh r2 U - x){ 
DlD2  ' U ' 

•y*  A2(C)C1(C) <*£ -|K2 cosh T2x + Zi sinh T2x 

■jT* A2(C)C2(C) de], 

A2(£) ■ K! sinh Tx (Ä - £) + R2 cosh rx(Ä - £) 

Ci(C) = K2 sinh T2C + Zx cosh T2£ 

C2(€) = K2 sinh r2(£ - £) + Z2 cosh r2(Ä - £) 

After the integration and collection of terms, the general 
solution for the internal current at x = I is found to be 

i.(A) = i. <*) + i. U) 
i      ij      i2 

V Z_  f    (sinh r £  sinh r £l 

17 



+ K2Q 
1 - cosh V i         1 - cosh r £ 
 s     D_ 

- ZiP 
i - cosh r £  I - cosh r £) 

s D I 

- ZiQ 

(sinh T £   sinh T  £) 
s D I (11) 

^CHK1VSK2 

2DXD2 ZlQ 

sinh r £  sinh r £l 
s D 

(1 - cosh r £  1 - cosh T £ 

 ; — + v  

- K2Q 
(1 - cosh T £    1 - cosh r £ 
 s D 

- K2P 
5inh T £    sinh T £)1 

where 

P = K2 cosh T^ + R2 sinh Tll 

Q = K2 sinh Txl  + R2 cosh T^ 

r = rl + r2 

Fn - Fl " r2 • 
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The shielding effectiveness transfer function of a cable is defined as 
the ratio of the internal current at x ■ i to the external current at 
x ■i with the external line terminated in its characteristic impedance 
at x = I (R2 = K^. This definition is useful in determining the 
relative shielding quality of different cable shields by use of 
experimental techniques to obtain the transfer functions.5 Also, some 
insight into a testing technique to determine the reactive shield 
parameters may be gained by examining the general solution for the 
transfer function given in equation (12). 

General solution at x = I and Kj = R2: 

i.U) 
i   

i U) 
8 

[ZT 
+   Ju.CHK2Ki] 

<K2 

<r, - r2)t   J l + l> - W| (r. ♦ r2)t J\ 
~2 [(K2 + ZlZ2) Slnh Vl1   +  K2(Z1 + z?> COüh r2*] (12) 

If  the  line  length, I  ,  is very  small  compared  to  the  wave- 
length, X. = 2TT/G.* so that r. Ä, = 0, then 

sinh r2£ + 0 

cosh r2£ -*• 1 

e i  - e 
z 

Pi - r2)£ " 
x 

/i* . e-^ i 

(T\  * r2) * 

5i?. Gray and R. McCue, Shielding Effectiveness Tests on Typical 
Access Facility Telephone Cables, Harry Diamond Laboratories TM-73-3 
(July 1973) . 
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and equation (12) simplifies to 

i. (A)    (Zm + jwC^KiZiU 
_-i  = . i_T  H l   V (13) 
i U)      Zx + Z2 s 

The two coupling parameters may be separated by proper choice of the 
internal terminations Zj and Z2. If Z^ is set equal to zero, then the 
transfer function becomes simply 

V*>    V    (Rs *  ja)Ls)* 
i8(l) " " Z2        Z2 

(14) 

which allows L  to be determined, since R is well defined, as stated 
s s 

earlier.  If the line is match terminated at both ends so that 

Z\   = Z2 = K2 , 

then the capacitive parameter,  C , also may be determined experimen- 
tally: H 

iAW     (ZT + jwCHK!K^ < 

isU) 2K2 
(15) 

3.2 Experimental Verification of General Solution 

To verify the general solution, shielding effectiveness tests 
were conducted on a cable with a braided shield that exhibited both 
types of reactive coupling. A 1-m length of the cable was used to 
determine the coupling parameters, and a 30-m length was driven for 
comparison with a calculated response. This cable had 25 internal 
conductors, some with separate inner shields, and was designed for the 
Pershing Missile System. The internal conductors and their shields were 
soldered together at each end of the test cables, to simulate a coaxial 
cable as required by equation (12). The external braid of this cable 
was woven at an angle of 30 deg from the axis and had an optical 
coverage of 70 percent.  The dc resistance of the inner bundle and the 
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external shield was measured to determine the actual conductivity of 
these nonsolid conductors.  The characteristic impedances K1  and K2 and 
the velocities of propagation of each line were determined with 
time-domain reflectometry.  Time-domain data were collected with a wide 
bandwidth oscilloscope, and frequency spectra of the two currents were 
obtained by use of a spectrum analyzer and a repetitively pulsing, 
capacitive discharge source.  The frequency spectra were reduced to  the 
desired transfer functions by a Hewlett-Packard 9830 calculator with a 
digitizer and plotter.   The 1-m cable transfer functions are given in 
figure 9  (p 22) .  By these curves, the external  braid  inductance, 
Ls, was found to be 8.15 x 10~

10 H/m, and the capacitive coupling param- 
eter, CH, was calculated to be -4.5 x 10"13 F/m.   The negative  capaci- 
tance indicates an error in the original choice of current directions. 

The experimental and calculated cable-driver responses of a 
100-ft length of the same cable are given in figures 10 and 11 (p 23,24). 
The minimum occurring around 0.5 MHz in the 100-ft transfer function 
is due to an interaction between the inductive and capacitive cou- 
pling terms and does not occur in the calculated result if only an 
inductive shield representation is used. This effect indicates the 
importance of determining both types of reactive coupling. The 
nearly rectangular pulse at the beginning of the time history is due 
to the difference in propagation velocities on the inside and out- 
side of the cable. The correlation between the experimental and cal- 
culated response is believed to be sufficient to allow the use of 
calculated responses in comparing point source excitation with free- 
field responses. 

4.  FREE-FIELD SOLUTION 

4.1 Transmission Line Solution 

A conductor of length i and radius a is over a real earth at 
some height, h, which is illuminated by a horizontally polarized plane 
wave, as shown in figure 12. 

(16) 

The resultant fields (incident plus reflected) in the xy plane are found 
by Klebers6  to be 

E  _ ,  - E , Jl + Re"
JkArl xy(<i>)    O(ü3) L    H     J 

H     /   x  = E   /   x ft "  R*,e"JkArl sin   (\J0/Z xy(cu) O(OJ) L H J vy//   o 

6J.  Klebers,  Time Domain Analysis of the Electromagnetic Field in the 
Presence of a Finitely Conducting Surface,  MERDC   (29 January 1969). 
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where 

*H 
* -  1 + 

2  sin   j\jf) 
-  approximate reflection 

Er " Jaa/moP coefficient 

k = co/c, Ar = 2h sin (^) , $    is  the angle of incidence, Z  is the free 
space impedance (377 ohms), and e = £ /e . ° 

r   go 

Kl lObOohrm 
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Figure 9.  Shielding effectiveness curves for 
shield parameter definition. 
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Figure 10.  Experimental response of a 100-ft cable due 
to coaxial driver excitation. 
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Figure 12.  A conductor illuminated by a horizontally 
polarized wave. 

The effective  driving  fields  are  the  electric  field, E , 
P 

parallel to the conductor and the magnetic field, H , perpendicular to 
n 

the conductor.  In the time domain, these fields are 

E (x,t) - E(t-f) cos (0) U(t-f) 

H (x,t) = H(t-t') cos (0) U(t-t') 
n 

(17) 
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where t' = (x/c) sin (9) cos (ty) is the time delay along the line due to 

the wave propagating with the speed of light, c. Transformed into the 

frequency domain, 

E (X,W) = E M   cos (6) e-3(>/
c> sin <e> COS <*>]» 

P       xy 
(18) 

H (x,urt = H  (03) cos (6) e~j t(x/c) Sin (6) COS W^  ' 
n       xy 

The perpendicular magnetic field, H , may be converted to an equivalent 
n 

parallel electric field by means of a coupling impedance,  Z  = ju>L , 
c      c 

where L is the inductive field coupling parameter defined by 

Frankel3 to be 

L = u a ((h/a)2 - l)^ , 
CON ' 

for a single wire'over ground.  Therefore, the total equivalent electric 

field, E , driving the conductor is 

E (x,co) = E (x,w) + jwL H (x,w) 
*        p en 

= [(Ep(o0 ♦ jwyMo,))] cos e e'jcx sin (6) cos ("') 

= ET(aJ)e-
jix Sin (6) COS (+} (19) 

and this field may be used to determine the current and voltage along 
the line by use of equation (3). 

3S. Frankel, Terminal Response of Braided-Shield Cables to External 
Monochromatic Electromagnetic Fields, Harry Diamond Laboratories TR-1602 
(August  1972) . 
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The earth can be assumed to be a reasonable approximation of an 
infinitely conducting surface such that the conductor and its image in 
the earth may be treated as a two-wire transmission line. This line has 
an impedance 

Kx = 0.5(Z/Y)^ =  0.5 ((R + jü)L)/ju)c) 2 , 

terminations Zj and Z2 at x = 0 and I, respectively, and a velocity of 
propagation, v-^ . The variation in propagation velocity of the cable 
with height aboveground was empirically determined by measuring the 
current at the center of a 40-ft unterminated cable for various heights 
above- and belowground due to illumination by the Biconic Simulator at 
the Woodbridge Research Facility of the Harry Diamond Laboratories. 
This simulator consists of a dipole antenna that is driven in the time 
domain by a Marx generator at a biconical center feed section. A 
radiating dipole antenna is formed by extending cylindrical arms from 
the bicones. The experimentally determined propagation velocities are 
shown in figure 13.  This curve was represented by the function 

(l + 1/(er)
2 + (X " V(er^tanh (4.4h - 0.449)) vi = 0.5C 

and is  also presented in figure 13 (p 29).  This representation makes 
the propagation velocity frequency independent.  However, this is not an 
unreasonable approximation when the cable is aboveground,  since losses- 
have only a second-order effect on the velocity 

(. • ♦. [>- & (f- fiV 

The external current along the conductor is found to be 

E((D)M(X) i (x,w) 
S DX 

rxr -        /fa) sin   (6)   cos   (»)\ 
' J0 [Ki  cosh fjC + z2 sinh TjCje J\ c P d£ 
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E(fa))N(x) 
Dl 

t ./Co sin (8) cos Qf,U 
•/ [KI cosh r^Ä - C) + ZX sinh IV* - £)] e J\ c       T dg 

E(o)) 
2D! 

Kj cosh r^Ä - x) + Z2 sinh T^A - x) 

(20) 

|Ki cosh T1X + Zi sinh TlX 

r, -je-        " r1+ jß' 

where 

M(x) = Ki cosh Tl(i  - x) + Z2 sinh Tx(£ - x) 

N(x) = Ki cosh Tjx + Zj sinh fjx 

Di = KI[(KI + ZiZ2)sinh T xl  + Kx (Zx   + Z2) cosh I^ä] 

ß' = u) sin (6) cos (ifO/c. 

28 



CALCULATED      

EXPERIMENTAL      X      X 

I I I L J I I 1 

CABLE HEIGHT (m) 

Figure 13.  Propagation velocity as a function of cable height. 

A similar solution is obtained  for 
internal current is then found by use of  the 
current solutions and the following integration: 

the external voltage, vs(x,u)). 
external  voltage 

The 
and 

ii(x,a)) =/  [zT±8(C#w)I1(XrC) - jo)CHvs(C,ü))I2(x,C)] d£ (21) 

where Ii(x,£) and l2(x,£) have been defined earlier. The solutions for 
the internal currents are not presented here because of their bulk. 
However, they have been programmed (FREFLD) along with the external 
current solution and field definition for a threatlike incident field 
(double exponential representation) to run on a PDP 11/40 computer. 
Time-domain solutions are obtained with the same numerical inverse 
transform as used for the coaxial driver solution. 

4.2  Experimental Verification 

To validate the results of the program FREFLD, calculations 
were made for several cable conditions for which experimental results 
existed. Most of the experimental data were collected by use of the 
Biconic antenna. Many of the differences between theory and experiment 
seem to be attributable to the fact that the calculations were made with 
an idealized double exponential incident field, which is, at best, a 
rough approximation of the field radiated by the Biconic Simulator. 
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The external current at the center of a 40-ft cable was 
calculated for two different heights aboveground. The results along 
with the experimental data are given in figures 14 and 15. Although the 
calculated waveforms do not exactly duplicate the measured responses, 
they do exhibit the same general trends, such as the increase in the 
effective length of the cable and attenuation as the cable is closer to 
the earth. 

The next set of data (fig. 16) demonstrates the effect of the 
angle of rotation, 9, between the incident electric field and the axis 
of the cable. These calculations were made for a 1500-ft cable that was 
terminated in a slightly inductive short to earth at each end. Internal 
current was calculated by use of a solid shield found to be 
representative of that used in telephone systems.5 The internal 
termination at x = 0 was a matched impedance (Z3 = K2)/ and at x = I, 
the calculation point, the inner bundle was shorted to the shield. The 
external current peak amplitude increased considerably, whereas its 
duration decreased (due to a shortening of its electrical length) as the 
angle of rotation varied from broadside to near end-fire illumination. 
This effect was found in scale-model measurements for similar con- 
ditions. The solid-line graph in figure 17 plots the measured ini- 
tial current peaks relative to the peak at broadside incidence. Also 
shown (with x's) are the relative calculated peak amplitudes, 
including some additional angles not shown earlier. The internal 
current peak increases only slightly and then decreases with 
increasing angle of rotation. 

A set of field measurements was made on the same 100-ft cable 
that was used to validate the coaxial driver work. The Biconic antenna 
was used to illuminate the cable with a O-deg angle of rotation 
(0 = 0 deg) and a 7-deg incidence with the earth (i|; = 7 deg) . The cable 
was supported at 1 m aboveground, and the measurements were made with 
both open- and short-circuit terminations at each end: 

Zj ■ Z2 = 0 and Zi = Z2 = °° . 

The external current was measured  at  the center of the cable, and the 
internal current was measured with both ends matched terminated: 

Z3 = Zt+ = K2 . 

5i?. Gray and R. McCue, Shielding Effectiveness Tests on Typical 
Access Facility Telephone Cables, Harry Diamond Laboratories TM-73-3 
(July 1973) . 
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Figure 14.  Experimental responses of cable at different 
heights aboveground. 
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Figure 15.  Calculated responses of cable at different 
heights aboveground. 
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Figure 16.  Calculated currents for different angles 
of rotation. 
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Figure 17.  Relative peak amplitude as a function of angle 
of rotation. 

These measured responses and the corresponding calculated results are 
presented in figures 18 to 21.   The two results do not correlate 
exactly, but the calculations represent the experimental responses 
enough to allow use of the code to determine where cable-driver and 
free-field responses diverge.  They do so especially since most of the 
differences are probably due to error in representing the external 
shield terminating impedances Zj and Z2.  The internal responses erred 
the most at or after a reflection was seen in the shield current  (time 
shift about 50 ns between the two response points, is at 1/2       and  i^ 
at I).  With the short-circuit  termination, the problem lies in defin- 
ing the inductance of the ground straps used and the impedance of the 
grounding stakes.  For the open-circuit termination, there is a capaci- 
tance to ground from the 1-m aluminum box used on the  measurement 
end to house the instrumentation.  This box was removed when the exter- 
nal current was measured. 
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Figure 18.  Experimental responses with cable shield 
unterminated. 
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Figure 19.  Calculated responses with external shield 
unterminated. 
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Figure 20. Experimental responses with cable shield 
terminated to the earth. 
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Figure 21.  Calculated responses with cable shield terminated 
to the earth. 

Therefore, considering these uncertainties in external 
terminating impedances and the error due to the field representation 
used, the correlation between the experimental and calculated responses 
is sufficient to validate the code for its use here. 

38 



5.  CABLE DRIVER VERSUS FREE FIELD 

5.1 Calculated Comparison 

In the previous sections, a general cable shield model was 
presented, and transmission line solutions for both types of excitation 
were developed and validated. These solutions are now used to obtain at 
least an initial idea of how well, if at all, a point source injection 
system simulates the response of a shielded cable illuminated by an EMP. 

Internal current must be calculated for both excitations, with 
the same internal terminations and the external current waveforms as 
similar as possible. Since the coaxial-driver solution treats only an 
overdamped, capacitive-discharge driving source, the free-field 
calculations have to be limited to conditions that produce a double 
exponential, external-current waveform. The condition necessary to 
produce this response is broadside incidence with both ends of the cable 
terminated in idealized short circuits to the earth. 

Calculations were made  for three different lengths, 2, 5, and 

8 m, of the braided-shield cable.  The external current for the coaxial 

driver was adjusted to match the external  current of the  free-field 

calculation.    The  internal  current  responses  with  both  ends 

match-terminated are given in figures 22 and 23.  The peak amplitudes 

for  each  excitation  are  about  the  same,  but the durations  are 

consistently longer for the cable-driver calculation.  This difference 

is caused by the  fact that the current due to the driver is propagated 

from one end of the cable to the other, and the current due to the free 

field occurs simultaneously along the line.  The pulse duration, T , for 

the  free-field calculation varies proportionately to  the one-way 

propagation time of the internal line, T ~ £/v2.  The driver pulse 

duration,  T , is proportional to the sum of the internal and external 
c 

transit times, T (1/vi + l/v9H. The internal current response at 

each end of the cable is identical for the free-field calculation, but 

quite different for the coaxial driver, as shown in figure 24. This 

difference is caused by the difference in phasing for the two 

excitations.  Similar calculations were made  for an 8-m solid-shield 
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Figure 22.  Calculated internal current responses of braided- 
shield cable for free-field excitation. 
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Figure 23. Calculated internal current responses of braided- 
shield cable for coaxial driver excitation. 
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Figure 24.  Calculated internal current response at other end 
of 8-m braided-shield cable for coaxial driver excitation, 

cable, and the responses are given in figures 25 and 26. Here, the much 
greater high-frequency attenuation of the solid shield caused the 
internal responses to be far less sensitive to the phase differences 
of the external current. 

The differences observed in the calculations indicate that the 
adequacy of any point source injection system depends on the type of 
cable shield being driven. It also suggests that the performance of an 
injection system could be improved by making the phasing of the external 
current closer to that caused by free-field illumination. It may be 
made so by use of several distributed point sources along the line, 
rather than just one, as considered earlier. 

5.2 Multiple Point Source Injection System 

The same 100-ft braided-shield cable that was used in the 
free-field experiments was also driven by an injection system 
inductively coupled to the shield via multiple outputs. The cable was 
tested in the field with the same terminations as those in the test with 
the Biconic Simulator.  The inductive coupler  is a transformer made up 
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Figure 25.  Calculated internal current response of 8-m solid 
shield cable for free-field excitation. 
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Figure 26.  Calculated internal current responses at each end of 
8-m solid shield cable for coaxial driver excitation. 
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of a square ferrite core that is split in the middle, a one-turn primary 
winding that is driven by a capacitive discharge source, and a one-turn 
secondary winding that is the cable to be driven. This type of system 
was used because of the ease in connecting the couplers to the cable. 
Also, this type of coupler behaves as a series voltage source along the 
cable, whereas most other types of physically obtainable coupling 
methods would act like shunt current sources. The major disadvantage of 
this type of coupling is that both efficiency and secondary waveforms 
depend very much on the secondary impedance. It is possible to control 
the secondary response somewhat by use of different types of core 
material. The type of core material available for this test would only 
couple a narrow (~30 ns) pulse onto the cable shield due to its high 
impedance (>300 ohms). This narrow pulse width affected the test 
results, since it was not possible to couple the desired waveform, but 
with this problem uncovered, it is possible to factor it out of the 
results. 

Five separate coupling units were used with a spacing of 25 ft 
along the cable. These units were driven by one source through 50 ft of 
50-ohm coaxial line each. The external and internal responses for both 
external termination conditions are given in figures 27 and 28. Unlike 
the single source driver, the internal current response was the same at 
each end of the cable. The narrow current pulse induced by each coupler 
was the reason for the jagged response. The overall envelopes for the 
open-circuit termination, though, are very close to those seen for* 
free-field illumination (fig. 18). However, the waveforms for the 
short-circuit termination do not agree as well with the free-field 
data (fig. 20). The short-circuit condition has a greater dependence on" 
the late-time characteristic of the driving field. Therefore, the 
comparisons would probably be improved if a better core material were 
used. If some imagination is used to smooth out the first half of the 
internal waveform, some similarity with the free-field response may be 
seen. The free-field response is basically a rectangular pulse followed 
by a narrower pulse due to the sheath current reflection from the 
inductive ground straps. This response also occurs in the cable-driver 
experiment, but after the smaller pulse, the external current pulse is 
very different from the free-field case. 

In comparing the relative amplitudes of the free-field and 
multiple driver responses, it is difficult to obtain an exact ratio of 
the internal current to the external current for the cable-driver 
experiment because of its jagged waveform. However, using average 
values for the driver-excited currents indicates that the driver 
responses are about 30 percent lower than the free-field currents. 
Better inductive couplers may improve this situation, since the 
calculated comparisons with near-identical external waveforms were very 
close. 
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Figure 27.  External currents for multiple output driver excitation. 
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Figure 28.  Internal currents for multiple output driver excitation. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

Some basic design techniques have been explored for point source 
simulation of EMP-produced currents on both shielded and unshielded 
system penetrations. A high-impedance, shunt-current generator was 
found to be the most advantageous method of point-source exciting simple 
unshielded penetrations. A more extensive study of shielded cable 
excitations was found to be necessary. A general shield coupling model 
was presented and used in obtaining transmission line solutions for 
cable responses due to point-source and distributed-source (free-field) 
excitation of the external current. These solutions were verified with 
various experimental data and then used to determine some basic areas of 
applicability of point-source injection simulation. 

The validity of this type of simulation was found to be very 
dependent on the type of shield involved (solid or braided), but not 
sensitive to the length of the penetration. A multiple-output, 
inductively coupled injection system was postulated to increase the 
viability of point-source simulation for braided-shield cables. 
Experimental results showed that this technique improved the 
distribution of the external current along the cable shield, thereby 
better simulating an actual EMP. Some basic problems need to be 
examined to determine the most efficient type. Also, the transmission 
of energy to the couplers from the source would need to be improved, 
since the coaxial lines used in these experiments leaked enough energy 
to cause unwanted excitation of the test cable. Once these problems 
were resolved, then a system level validation of the technique would be 
required before it could be generally applied. 
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