Research and Development Technical Report
ECOM-7060

COMPARISON OF NVL MODEL AND FOUR CONTRACTOR MODELS
FOR MINIMUM RESOLVABLE TEMPERATURE (MRT)

January 1976

Approved for public release; distribution unlimited.

ECOM
UNITED STATES ARMY ELECTRONICS COMMAND . FORT MONMOUTH, N. J.
Destroy this report when no longer needed.
Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.
A comparison among MRT models for thermal systems is made. Four IR contractor models are compared to the NVL model. Basic assumptions and subjective parameter choices are examined and the differences are shown. Validation of the NVL model is documented against eight parallel and serial-scanned systems.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILLUSTRATIONS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>NVL MODEL</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>TI MODEL</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>HAC MODEL</td>
<td>5</td>
</tr>
<tr>
<td>V</td>
<td>HRC MODEL</td>
<td>7</td>
</tr>
<tr>
<td>VI</td>
<td>SENDALL MODEL</td>
<td>8</td>
</tr>
<tr>
<td>VII</td>
<td>COMPARISON</td>
<td>9</td>
</tr>
<tr>
<td>VIII</td>
<td>VALIDATION</td>
<td>11</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HAC TOW System MRT</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>TI TOW System MRT</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>HAC TINTS System MRT</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>TI PINDTS System MRT</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>HRC CHAPARRAL System MRT</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>TI Common Mod FLIR System MRT</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Navy Common Mod FLIR System MRT</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>DISCOID 525 System MRT</td>
<td>20</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subjective Constants in the MRT Models</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Relationship Among the Various MRT Models</td>
<td>10</td>
</tr>
</tbody>
</table>
COMPARISON OF NVL MODEL AND FOUR CONTRACTOR MODELS

FOR MINIMUM RESOLVABLE TEMPERATURE (MRT)

I. INTRODUCTION

Minimum resolvable temperature (MRT) has been nominated by the infrared community as the true measure of system performance. It is assumed, and there is partial experimental data to support the contention, that MRT directly relates to field performance, especially recognition performance. Hence, a main effort in any performance prediction capability is to predict MRT, and many infrared houses attempt to do this. This paper compares the MRT models from several sources.

The models considered are those of NVL,1 Hughes (HAC),2 Texas Instruments (TI),3 Honeywell (HRC),4 and Sendall.5 Each model will be given and the underlying assumptions stated. The models will not be derived. The four contractor models will then be compared to the NVL model. Finally, the NVL model predictions are compared to several system measurements of MRT, and conclusions are thus made on the validity of this approach.

II. NVL MODEL

The form of all equations for MRT is essentially the same. The equations differ only in the choice of subjective constants. In order to show this, the basic MRT equation used by NVL will be used as the standard form for all of the others so that comparison can be facilitated. This MRT equation for vertical bars with 7:1 aspect ratio is:

\[
MRT \left(f_x \right) = \frac{x^2}{4 \sqrt{14}} \left(\frac{S}{N} \right)_{D} \frac{NEAT}{MTF(f_x)} \left[\frac{\Delta Y \left(f_x \right) Q \left(f_x \right)}{\Delta f_{m} F_{R} t_{E} \eta_{ow}} \right]^\frac{1}{2},
\]

3 Appendix to “(U) Proposal to Supply a Tank Thermal Sight (TTS) for the M60A1 Tank,” prepared for NVL, April 1975 (Confidential).
where \((S/N)_{th}\) is the threshold signal-to-noise ratio necessary to recognize a bar in the four-bar pattern, \(MTF(f_x)\) is the device and eyeball MTF at target frequency \(f_x\) (cycles/mr), \(NEAT\) is the peak-to-rms noise equivalent temperature difference, and:

\[
\begin{align*}
\Delta Y &= \text{vertical detector angular subtense} \\
\eta_{ov} &= \text{overscan ratio} \\
\Delta Y/\eta_{ov} &= \text{raster scan spacing} \\
v &= \text{scan velocity in mr/sec} \\
\Delta f_n &= \text{noise equivalent bandwidth} \\
F_R &= \text{frame rate per sec} \\
t_E &= \text{eye integration time} \\
Q &= \int_{-\infty}^{\infty} S(f) H_D^2 H_T^2 H_E^2 df_x \\
S(f) &= \text{normalized noise power spectrum from detector} \\
H_D' &= \text{device MTF after detector to display} \\
H_T &= \text{target spatial filter function} \\
H_E &= \text{eyeball MTF.}
\end{align*}
\]

The system \(NE\Delta T\) is given by:

\[
NE\Delta T = \frac{4 F^2 \sqrt{\Delta f_n}}{\sqrt{N} \pi A_d^{1/2} \tau_o \int_{\Delta f} D_{\lambda}^* W_{\lambda}' d\lambda},
\]

where

\[
\begin{align*}
F &= \text{optical F number} \\
A_d^{1/2} &= \text{square root of detector area} \\
\tau_o &= \text{optical transmission} \\
\tau_a &= \text{atmospheric transmission} \\
D_{\lambda}^* &= \text{specific detectivity in dewar} \\
W_{\lambda}' &= \text{temperature derivative of blackbody radiation} \\
\Delta f_n &= \int_{-\infty}^{\infty} S(f) H_D'^2 df \\
&= \pi/2 (1/2 \tau_o) \text{ for white noise and RC roll off}
\end{align*}
\]
\[\tau_d = \text{detector dwell time} \]
\[N = \text{number of detectors in series}. \]

The signal-to-noise ratio \((S/N)_D\) must be determined from experimental results. NVL experience has found that \((S/N)_D = 2.25\) gives optimum agreement between the measured and predicted results. The other assumptions in this model are:

- area of noise integration is the total bar area = \(L \cdot W = 7 \text{ W}^2\)
- eye integration time \(t_E = .2 \text{ sec}\)
- sampling effects are ignored
- system MTF includes eyeball.

This model will be compared to laboratory measurements after the other models have been described. In these descriptions, the nomenclature of the NVL model shall be used to prevent the proliferation of symbols for the same quantity.

III. TI MODEL

The TI model is given by:

\[
MRT(f_x) = (S/N)_D \left[\sqrt{\frac{T_r}{t_E}} - \left(\frac{2\Delta \theta}{\sqrt{7}} \right)^{Q^{1/4}} \right] f_x \frac{\Delta \Delta T}{\text{MTF}(f_x)},
\]

and

\[
\Delta \Delta T = \frac{F^2}{\sigma T_o^3 \bar{\tau} D_{\Delta p}^*} \left(\frac{1}{2 \tau_d A_d} \right),
\]

where

\[\sigma = \text{Stefan – Boltzmann constant} \]
\[T_o = \text{background temperature} \]
\[\bar{\tau} = \text{average optical transmission} \]
\[D_{\Delta p}^* = \text{peak } D_{\Delta}^* \]

\[\Gamma = \frac{\pi}{4\sigma T_o^3} \int_0^\infty \frac{\tau_o(\lambda)}{e_o} \frac{D_{\Delta p}^*(\lambda)}{D_{\Delta p}^*} W_\lambda \, d\lambda \]
\(\tau_0 (\lambda), \epsilon_0 = \text{optical and peak optical transmission} \)
\(T_F = F_R^{-1} \)
\(\Delta \theta = \Delta Y \cdot \Delta X \) (horizontal detector angular subtense)
\(\Omega = Q/f_x \) with \(H_E = 1.0 \)
\(\text{MTF}(f_x) = \text{device MTF at target frequency } f_x \).

The assumptions behind this model are:

- no overscan in IR field
- area of noise integration is the total bar area
- \(t_E = 0.2 \text{ sec} \)
- \((S/N)_D = 6\)
- no sampling effects
- MRT corresponds to 95% of bar recognition
- \(Q \) usually calculated with white noise assumption.

With a little algebraic manipulation, this MRT formulation can be put in the same form as the NVL equations. Also, approximations such as

\[
\int_0^\infty D^* \omega d\lambda \simeq D^* \int_{\Delta \lambda} W^*_\lambda d\lambda
\]

must be made. Then, the TI equations become:

\[
\text{MRT}(f_x) = (S/N)_D \frac{\pi}{2 \sqrt{14}} \frac{\text{NEAT}}{\text{MTF}(f_x)} \sqrt{\frac{\Delta Y \cdot f_x Q}{\Delta f_e t_E F_R}},
\]

and

\[
\text{NEAT} = \frac{4F^2 \sqrt{\Delta f_e}}{\pi \tau_0 \tau_s A_d \int_{\Delta \lambda} D^* \omega W^*_\lambda d\lambda},
\]

where \(\Delta f_e = \frac{1}{2} \tau_d \). If all inputs are identical and if the various methods of carrying out such integrals as \(Q \) and \(\int D^* \omega W^*_\lambda d\lambda \) give equal results, then the only difference between models is the constant difference due to \((S/N)_D, \Delta f_e, \) and \(\pi/2 \sqrt{14} \); using these differences then:
The pertinent equations for the HAC model are:

\[
\text{MRT}(f_x) = 5.5 \frac{\text{NEAT}}{\text{MTF}(f_x)} \left[\frac{\Delta f_n'}{\Delta f_n} \times \frac{\xi}{\rho} \times T_F \right]^{\frac{1}{2}}
\]

and

\[
\text{NEAT} = \frac{4F^2 \sqrt{\Delta f_n}}{\pi \tau_o \sqrt{\NA d D^*} \partial W/\partial T}
\]

where

- \(\Delta f_n = \pi/2 (\frac{\xi}{2} \tau_d)\) for white noise
- \(\partial W/\partial T = \int_{\Delta \lambda} \partial W_{\lambda} / \partial T \, d\lambda\)
- \(\text{MTF}(f_x) = \) device MTF
- \(\Delta f_n' = vQ\)
- \(\xi = \) scan spacing = \(\Delta Y/\eta_o\)
- \(\rho = \) bar width
- \(5.5 = \pi^2/8 (S/N)_D 1/t_E^{\frac{1}{4}}\)

HAC analysts employ the NEAT equation in the MRT expression to give
\[\text{MRT}(f_x) = \frac{5.5}{\text{MTF}(f_x)} \sqrt{\frac{\Delta f_n'}{f_x}} \frac{1}{D_o \rho} \sqrt{\frac{\alpha \beta}{\Delta \theta \eta_{AZ} \eta_{EL} N_d}} \frac{1}{\tau_o \sqrt{\eta_d}} \]

\[\times \sqrt{\frac{1}{\pi D_{\lambda}^{**} (\text{AVG - IDEAL}) \partial W / \partial T}} \]

where

- \(D_o \) = lens diameter
- \(\alpha, \beta \) = horizontal and vertical fields of view
- \(\eta_{AZ}, \eta_{EL} \) = azimuth and elevation scan efficiencies
- \(N_d \) = total number of detectors

\[\sqrt{\eta_d} = D^{*}/D_{\lambda}^{**} \text{ (AVG - IDEAL)/2F} \]

\(D_{\lambda}^{**} \text{(AVG-IDEAL)} = \text{average } D_{\lambda}^{*} \text{ for } 2\pi \text{ FOV and } 100\% \text{ quantum efficiency.} \]

The assumptions are:

- eye integrates over square area of height equal to bar width
- \(t_E = .1 \text{ sec} \)
- \((S/N)_D = 1.4 \)
- 33\% probability of bar recognition
- sampling effects ignored
- \(\Delta f_n = \pi/2 (1/2 \tau_d) \).

When the HAC NE\(\Delta T \) equation is reduced to the NVL form, we get

\[\frac{\text{NE}\Delta T_{\text{NVL}}}{\text{NE}\Delta T_{\text{HAC}}} = \sqrt{\frac{\Delta f_n (\text{NVL})}{\Delta f_n (\text{HAC})}} \left[\int_{\Delta \lambda} D_{\lambda}^{*} \frac{\partial W}{\partial T} d\lambda \right] \approx \sqrt{\frac{\Delta f_n (\text{NVL})}{\Delta f_n (\text{HAC})}} \]

The MRT equation can be reduced to the standard form so that

\[\text{MRT}(f_x) = \frac{\pi^2}{8} \left(\frac{S}{N} \right)_D \sqrt{2} \text{ NE}\Delta T \frac{\Delta Y \vee f_x Q}{\text{MTF}(f_x)} \sqrt{\frac{\Delta Y \vee f_x Q}{\Delta f_n F_R t_E \tau_{ow}}} \]
and assuming equal NEAT's,

\[
\frac{\text{MRT}_{\text{HAC}}}{\text{MRT}_{\text{NVL}}} = \left\{ \begin{array}{cc}
\frac{\pi^2/4}{\sqrt{14}} \frac{(S/N)_D}{1/\sqrt{t_E}} & \sqrt{\frac{Q(\text{NVL})}{Q(\text{HAC})}} \\
\sqrt{\frac{2}{\pi^2/8}} \frac{(S/N)_D}{1/\sqrt{t_E}} & \end{array} \right. \\
\Rightarrow \sqrt{\frac{Q(\text{NVL})}{Q(\text{HAC})}} \approx .429.
\]

V. HRC MODEL

The HRC performance equations are:

\[
\text{MRT}(f_x) = \frac{3}{\sqrt{\Delta f_n}} \frac{\Delta Y}{\eta_{ov}} \frac{f_x}{\text{MTF}(f_x)} \frac{1}{\sqrt{t_E}} \frac{\sqrt{\Delta X}}{\tau_d},
\]

and

\[
\text{NEAT} = \frac{4 \sqrt{ab}}{\Delta X \Delta Y D^* (\lambda_p) \sigma T \frac{\partial W}{\partial T} D^2 \sqrt{N}},
\]

where \(a\) and \(b\) are detector sides in cm. The assumptions are:

- \((S/N)_D = 4.5\)
- \(t_E = .2\) sec
- \(Q \approx f_x\)
- Only applicable to serial scan systems. As in the other models,

\[
\frac{\text{NEAT}_{\text{NVL}}}{\text{NEAT}_{\text{HRC}}} = \sqrt{\frac{\Delta f_n(\text{NVL})}{\Delta f_n(\text{HRC})}} \left[\int_{\Delta \lambda} D^*_{\lambda p} \frac{\partial W}{\partial T} d\lambda \right] \approx \sqrt{\frac{\Delta f_n(\text{NVL})}{\Delta f_n(\text{HRC})}}.
\]

The MRT expression can be put in the standard form if we replace \(f_x\) with \(Q\) and \(\Delta X/\tau_d\) with \(v\). Then

\[
\text{MRT}(f_x) = \frac{3}{\text{MTF}(f_x)} \frac{\Delta Y f_x Q}{\Delta f_n F R t_E \eta_{ov}},
\]
Finally, there is Sendall's model. We do not intend to write out the entire expression for the MRT since it looks so unlike any other model in form. Hence, it would take too much space to define all the new expressions. However, it is identical to the previous models. The derivation starts from the same signal-to-noise expression as the NVL model:

\[
\frac{\text{MRT}_{\text{NVL}}}{\text{MRT}_{\text{HRC}}} = \frac{2.25 \pi^2/4 \sqrt{14}}{3 \sqrt{f_x}} \approx .495.
\]

VI. SENDALL MODEL

The remaining assumptions behind this model are:

- \((S/N)_D = 2.8\)
- \(t_E = .1\) sec
- noise integration over area of bar
- no sampling effects
- white noise assumed.

Assuming equal NE\(\Delta T\) and bandwidth calculation, then
VII. COMPARISON

The comparison among the five models discussed above can be put in a tabular form. Putting all MRT equations in the form

\[MRT = A \frac{NE\Delta T}{MTF} \sqrt{\frac{\Delta Y \cdot f_x \cdot Q}{\Delta \lambda \cdot F_R}} \]

where

\[A = (S/N)_D \times t_E^{-\frac{\lambda}{t}} \times F \]

(F is a function of \(\pi\), bar length, etc), then Table 1 illustrates the differences between the subjective constants in the various models. If \(NE\Delta T\), \(Q\), and \(\int D^\lambda \cdot W^\lambda d\lambda\) calculations are carried out the same by all modellers, then these subjective differences reflect the total constant differences between the models.

The indication from Table 1 is that the NVL predictions should give optimistic results compared to all the other models by a factor of approximately two. This will be discussed further in relation to the comparison to measured data later. First, we need to analyze the various calculation differences among the various modellers.

<table>
<thead>
<tr>
<th>Table 1. Subjective Constants in the MRT Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>NVL</td>
</tr>
<tr>
<td>HAC</td>
</tr>
<tr>
<td>HRC</td>
</tr>
<tr>
<td>TI</td>
</tr>
<tr>
<td>Sendall</td>
</tr>
</tbody>
</table>
Table 2 shows a more detailed comparison of the five models. The first row refers to the philosophical difference among the models as to the area over which the eye is a spatial integrator. The second row describes how the noise-filtering term Q is treated. Note, however, whereas three models treat Q exactly, not all have an eyeball MTF included nor use non-white noise. The third row shows the comparison of the D* integral for calculations with a real system. The contractor model numbers were obtained from proposals and private communications. The TI vs NVL difference is probably due to an input of D* vs wavelength difference. The exact form of D has not been readily obtainable from TI. Different spectral distributions can obviously cause significant variations in the area under the curve.

The last two rows in Table 2 refer to the noise bandwidth calculation and an exact MRT calculation. Again, contractor calculations were obtained from proposals and the NVL calculation was normalized to 1.0. The \(\Delta f_n \) calculation is only significant when talking NEAT since it cancels in MRT.

| Table 2. Relationship Among the Various MRT Models |
|---------------------------------|-----------------|----------------|-----------------|-----------------|-----------------|
| | Sendall | TI | HRC | HAC | NVL |
| Integration Area | Bar | Bar | Bar | Square | Bar |
| Q | White Noise | Exact | Q = f_x | Exact | Exact |
| Eyeball | No | No | No | No | Yes |
| MRT Probability | – | 95% | 90% | 33% | Threshold |
| \(f_{\Delta \lambda} D_\lambda W_{\lambda} d\lambda \) | – | .68 | .92 | 1.0 | 1.0 |
| \(\Delta f_n \) | – | \(\frac{1}{2} \tau_d \) | \(\frac{\pi}{2} (\frac{1}{2} \tau_d) \) | \(\frac{\pi}{2} (\frac{1}{2} \tau_d) \) | Exact |
| MRT | – | 1.03 | 2.95 | 3.06 | 1.0 |

The difference between NVL and HAC and HRC is due mainly to the subjective-constant differences shown in Table 1. The closeness of the TI and NVL predictions is due to the nullifying effect of the D* integral. Whereas, the subjective constants differ by two, the NEAT calculation cancels much of that difference.
VIII. VALIDATION

The results shown in Table 2 indicate that the NVL predictions should be significantly more optimistic in prediction of system MRT than the other models. This is largely reflected through the subjective constants in Table 1. In order to determine if the NVL constants should be increased, this model was exercised to predict MRT performance for eight widely different systems which have been measured at NVL over the last few years. They are the HAC and TI TOW’s (AD), HAC and TI TINTS (AD), HRC CHAPARRAL, HAC DISCOID 525, TI Common Mod FLIR, and NAVY Common Mod FLIR. Figures 1 through 8 show the comparison between measured and predicted results for these eight systems. The X’s represent measured data and the solid line represents the predicted data. The dotted line is a prediction based on a measured MTF for each system. This was done to show the effects of the MTF error in prediction. The effect of using predicted vs measured MTF must be determined before a modification in threshold signal-to-noise is made. The difference between predicted and measured MTF is not unique to NVL. Most contractor predictions are better than measured transfer functions.

All systems except the DISCOID 525 show reasonable agreement between prediction and measurement. (There is no measured MTF for the NAVY Common Mod FLIR.) The obvious conclusion to be drawn from these results is that the NVL choice of constants does not give an optimistic prediction by a factor of two. On the contrary, the measured MTF predictions imply that possibly a reduction in the signal-to-noise constant is necessary to agree more closely with the bench data. It should be noted at this point that the MRT measurements made at NVL are not very different than those made at other installations. In fact, MRT measurements appear to be quite close from laboratory to laboratory.

The agreement for the TI systems could be better if the \(D^* \) function of wavelength is much different than the one used (as is suspected). It is believed that the spectral \(D^* \) is broader than NVL used, hence the NEAT should be lower and the MRT consequently reduced.

Before any further work is done on forcing a closer agreement between predicted and measured data, the error associated with the measurement technique must be quantified. MRT is a subjective measurement; and, as such, one expects some degree of variation between observers. NVL is presently conducting an investigation of this aspect by measuring MRT at various DOD laboratories and possibly some contractor laboratories in order to measure the differences between observers at the respective facilities. Hopefully, we shall be able to then associate error bars with this measurement.
Another problem area connected with the prediction technique is the input uncertainty. Since very accurate and detailed information is needed to make a prediction, uncertainties about such things as detector characteristics can lead to relatively significant errors in the prediction. NVL is trying to attack this problem by obtaining several IR systems which can be disassembled in order to measure the component MTF and noise characteristics. Predictions can then be made on a very accurate input data base.

It is assumed that the input data problem is at least part of the poor agreement for the DISCOID 325 prediction. One of the problems is, however, the large difference in predicted and measured MTF. Although all predicted and measured MTF’s are different, the difference is magnified in this case by aperture correction in the DISCOID 525. The agreement between the measured MTF modified MRT (dotted line) is in relatively good agreement with the data.

In conclusion, it has been shown that all MRT models are essentially the same in form with theoretical differences and subjective constant differences. The NVL constants are significantly different from all others; however, laboratory data bears out this choice of constants. Any change indicated would move the agreement with other models even farther apart. Experimental work is being undertaken in order to quantify the measurement errors and input uncertainty before a final analysis is made on the applicability of these models to MRT prediction.
Figure 1. HAC TOW System MRT.
Figure 2. TI TOW System MRT.
Figure 3. HAC TINTS System MRT.
Figure 4. TI PINDTS System MRT.
Figure 5. HRC CHAPARRAL System MRT.
Figure 6. TI Common Mod FLIR System MRT.
Figure 7. Navy Common Mod FLIR System MRT.
Figure 8. DISCOID 526 System MRT.
DISTRIBUTION FOR NVL REPORT ECOM-7050

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Addressee</th>
<th>No. Copies</th>
<th>Addressee</th>
</tr>
</thead>
</table>
| 12 | Defense Documentation Center
ATTN: DDC-TCA
Cameron Station (Bldg 5)
Alexandria, VA 22314 | 2 | Air Force Avionics Laboratory
ATTN: AFAL/TSR, STINFO
Wright-Patterson AFB, OH 45433 |
| 1 | Director
National Security Agency
ATTN: TDL
Fort George G. Meade, MD 20755 | 1 | AFSPCOMMCCEN/SUR
San Antonio, TX 78243 |
| 1 | Office of Naval Research
Code 427
Arlington, VA 22217 | 1 | Armament Development & Test Center
ATTN: DLOSL, Tech Library
Eglin Air Force Base, FL 32542 |
| 1 | Director
Naval Research Laboratory
ATTN: Code 2627
Washington, DC 20375 | 1 | HQDA (DACE-CMS)
Washington, DC 20310 |
| 1 | Commander
Naval Electronics Laboratory Center
ATTN: Library
San Diego, CA 92152 | 1 | OSASS-RD
Washington, DC 20310 |
| 1 | Commander
US Naval Ordnance Laboratory
ATTN: Technical Library
White Oak, Silver Spring, MD 20910 | 1 | Commander
US Army Training & Doctrine Command
ATTN: ATCD-SI
Fort Monroe, VA 23651 |
| 1 | Commandant, Marine Corps
HQ, US Marine Corps
ATTN: Code LMC
Washington, DC 20380 | 1 | CDR, US Army Materiel Development & Readiness Command
ATTN: DRCMA-EE
5001 Eisenhower Ave
Alexandria, VA 22333 |
| 1 | HQ US Marine Corps
ATTN: Code INTS
Washington, DC 20380 | 1 | CDR, US Army Materiel Development & Readiness Command
ATTN: DRCRD-FW
5001 Eisenhower Ave
Alexandria, VA 22333 |
| 1 | Command, Control & Communications Div
Development Center
Marine Corps Development & Educ Command
Quantico, VA 22134 | 1 | Commander
US Army Training & Doctrine Command
ATTN: ATCD-F
Fort Monroe, VA 23651 |
| 1 | HQ ESD (XRRI)
L. G. Hanscom Field
Bedford, MA 01730 | 1 | |

21
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Addressee</th>
<th>No. Copies</th>
<th>Addressee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>US Army Research Office-Durham</td>
</tr>
<tr>
<td></td>
<td>US Army Missile Command</td>
<td></td>
<td>ATTN: Dr. Robert J. Lontz</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-RR</td>
<td></td>
<td>Box CM, Duke Station</td>
</tr>
<tr>
<td></td>
<td>Dr J P. Hallowes</td>
<td></td>
<td>Durham, NC 27706</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Armament Command</td>
<td></td>
<td>HQ MASSTER</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSAR-RDP (Library)</td>
<td></td>
<td>Technical Information Center</td>
</tr>
<tr>
<td></td>
<td>Rock Island, IL 61201</td>
<td></td>
<td>ATTN: Mrs. Ruth Reynolds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fort Hood, TX 76544</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
<td>1</td>
<td>USA Security Agency</td>
</tr>
<tr>
<td></td>
<td>US Army Combined Arms Combat Development Activity</td>
<td></td>
<td>ATTN: IARD</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATCAIC-IE</td>
<td></td>
<td>Arlington Hall Station</td>
</tr>
<tr>
<td></td>
<td>Fort Leavenworth, KS 66027</td>
<td></td>
<td>Arlington, VA 22212</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Logistics Center</td>
<td></td>
<td>US Army Tank-Automotive Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATCL-MA</td>
<td></td>
<td>ATTN: AMSTA-RW-L</td>
</tr>
<tr>
<td></td>
<td>Fort Lee, VA 23801</td>
<td></td>
<td>Warren, MI 48090</td>
</tr>
<tr>
<td>1</td>
<td>Commandant</td>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td></td>
<td>US Army Ordnance School</td>
<td></td>
<td>US Army Air Defense School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSOR-CTD</td>
<td></td>
<td>ATTN: C&S Dept, Mal Sci Div</td>
</tr>
<tr>
<td></td>
<td>Aberdeen Proving Ground, MD 21005</td>
<td></td>
<td>Fort Bliss, TX</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Intelligence School</td>
<td></td>
<td>US Army Combined Arms Combat Development Activity</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSID-CTD</td>
<td></td>
<td>ATTN: ATCCACC</td>
</tr>
<tr>
<td></td>
<td>Fort Sill, OK 73503</td>
<td></td>
<td>Fort Leavenworth, KS 66027</td>
</tr>
<tr>
<td>1</td>
<td>Commandant</td>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Engineer School</td>
<td></td>
<td>US Army Yuma Proving Ground</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSE-CTD-DT-TL</td>
<td></td>
<td>ATTN: STEYF-MTD</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060</td>
<td></td>
<td>(Tech Library)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yuma, AZ 85364</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal</td>
<td></td>
<td>US Army Arctic Test Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: SARPA-TS-S #59</td>
<td></td>
<td>ATTN: STEAC-PL</td>
</tr>
<tr>
<td></td>
<td>Dover, NJ 07801</td>
<td></td>
<td>APO Seattle, 98733</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>CO, US Army Tropic Test Center</td>
</tr>
<tr>
<td></td>
<td>Frankford Arsenal</td>
<td></td>
<td>ATTN: STETC-MO-A (Technical Library)</td>
</tr>
<tr>
<td></td>
<td>ATTN: (Dr. Wm. McNeill) PDS</td>
<td></td>
<td>Drawer 942</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19137</td>
<td></td>
<td>Fort Clayton, Canal Zone 09827</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>USASA Test & Evaluation Center</td>
<td></td>
<td>US Army Logistics Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: US Army Research Office-Durham</td>
<td></td>
<td>ATTN: ATCL-MA</td>
</tr>
<tr>
<td></td>
<td>ATTN: CRDARD-IP</td>
<td></td>
<td>Fort Lee, VA 22801</td>
</tr>
<tr>
<td>No. Copies</td>
<td>Addressee</td>
<td>No. Copies</td>
<td>Addressee</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 1 | Directorate of Combat Developments
US Army Armor School
ATTN: ATSB-CD-AA
Fort Knox, KY 40121 | 2 | Chief
Ofc of Missile Electronic Warfare
Electronic Warfare Lab, ECOM
White Sands Missile Range, NM 88002 |
| 1 | Commandant
US Army Inst for Military Assistance
ATTN: ATSU-CTD-OMS
Fort Bragg, NC 28307 | 1 | Chief
Intel Materiel Dev & Support Ofc
Electronic Warfare Lab, ECOM
Fort Meade, MD 20755 |
| 1 | Commander
US Army Missile Command
ATTN: DRSMI-RE
(Mr. Pittman)
Redstone Arsenal, AL 35809 | 2 | Commander
US Army Electronics Command
ATTN: DRSEL-MS-TI
Fort Monmouth, NJ 07703 |
| 1 | Commander
US Army Systems Analysis Agency
ATTN: (Mr. A. Reid)
DRXSY-T
Aberdeen Proving Ground, MD 21005 | 1 | TACTEC
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201 |
| 1 | Commandant
US Army Signal School
ATTN: ATSN-CTD-MS
Fort Gordon, GA 30905 | 1 | Commander
US Army Electronics Command
ATTN: DRSEL-PL-ST
Fort Monmouth, NJ 07703 |
| 1 | Commander
US Army Tank-Automotive Command
ATTN: AMSTA-RHP
Dr. J. Parks
Warren, MI 48090 | 200 | Commander
US Army Electronics Command
Night Vision Laboratory
ATTN: AMSEL-NV-VI
(J. Ratches)
Fort Belvoir, VA 22060 |
| 2 | NASA Scientific & Tech Info Facility
ATTN: Acquisitions Branch
(S-AK/DL)
PO Box 33
College Park, MD 20740 | 2 | Commander
US Army MERADCOM
ATTN: DRXFHB-JJ
Fort Belvoir, VA 22060 |
| 2 | Advisory Group on Electron Devices
201 Varick St, 9th Floor
New York, NY 10014 | |
| 1 | Ballistic Missile Radiation Anal Ctr
Env Research Inst of Michigan
Box 618
Ann Arbor, MI 48107 | |