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FOREWORD

Volume I of the Final Report deals with Ocean Micro -

~tructure and Volume II deals with Laser Sensor Technology
Assessment,
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ABSTRACT

The horizontal and vertical length scales of ocean fine structure
appear to correlate to the corresponding wavelengths of inertial waves
(internal waves whose motion is dominated by Coriolis forces). A priori,
there are four possible non-linear mechanisms that could form ocean
fine structure from inertial waves: dynamic breaking (shear instabilities),
static breaking (inverted density profile), transverse steepening (reson-
ance) and longitudinal steepening (self steepening of waves riding on their
own velocity fields). FEach mechanism has been assessed on the basis of
the available data. Of the four mechanisms proposed, dynamic wave 2
breaking is shown to be the most probable mechanism by which inertial
waves form fine structure. This mechanism is distinct from that of
"pillow turbulence'’ due to an unstable, horizontally propagating gravity
wave. An inertial wave is a vertically propagating transverse wave.

The transverse velocity field of the wave is a horizontal shear layer and
it is the instability of the shear layer that is the proposed source of fine
structure.
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I. INTRODUCTION

Field observationsl-8 have revealed that the ocean's density profile
possesses an internal structure consisting of a series of thin, laminar ''sheets"
of high density gradient separated by '"steps' of only moderate gradient. An
idealized ''fine structure'' is represented schematically in Fig. 1. Only Woods'
observation1 reveals the more distinct step-like structure. Later observations
illustrate more irregular profiles with a fine structure of height H and a super-
imposed microstructure on a length scale small with respect to H. One of the
more irregular profiles is illustrated in Fig. 2 which is reproduced irom Gregg,
Cox and Hacker. 6 The recording demonstrutes temperature gradient as a
function of depth. The ''spikes'' in the temperature gradient correspond to the
'""'sheets' of high gradient and the small scale structure in the temperature
gradient represents the microstructure which is actually present in the "steps"
of the idealized fine structure.

The ''step height'' H and the lateral extent of the observed structure
varies widely over the range of mean density gradient indicated in Table I. The
observation time refers to the time spent taking soundings at various lateral
locations whereas the point persistence time refers to the time duration between
soundings at a given lateral location. The term persistence need not necessarily
imply that the same structure remained for the duration of the persistence time.
It is always possible that a second similiar structure occupied the same point
at a later time.

Various mechanisms have been proposed to explain the observed
phenomenon. These mechanisms consist of double diffusion, ‘ interleaving,
dynamic breaking of internal gravity waves11 due to shear instabilities and the

. . : 12 . N .
static breaking of internal waves  due to the associated density irversions.
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This paper is not intended to be a review or assessment of the proposed
mechanisms. What we wish to do is to investigate the possibility that
internal waves are responsible for the generation of fine struccure. Due
the the sparse amount of data available, we can only attempt to determine a
mechanism which is at least not inconsistent with data. Hereafter, the
terms consistent and apparent correlation shall be used to infer that the
data does not demonstrate otherwise.

The internal wave solutions are briefly reviewed in Sec. II. To avoid
ambiguities, let us adopt the notation that inertial waves are internal waves
in which the Coriolis forces play a dominant role. Inertial waves propagate
lalmost'' vertically with a frequency related to the earth's rotational fre-
quency. On the other hand, gravity waves are internal waves which are
dominated by buoyancy while Coriolis forces play a secondary role. In
Sec. III, the length scales of internal waves are compared to those of the
fine structure and it appears that only inertial waves can be responsible for
fine structure. This suggests that a mechanism by which inertial waves
could form fine structure is inherent in the difference between inertial
waves and gravity waves. One such mechanism is shown to be the shear
instability of the wave. Inertial waves are much less stable to the Kelvin
Helmholtz instability than are gravity waves. Other mechanisms are sug-
gested which could transform the inertial wave into fine structure but they
are shown to be considerably less probable than dynamic breaking. This
strongly indicates that shear instabilities are the mechanism by which
inertial waves form fine structure. Previous investigators11 have proposed
that shear instabilities lead to ocean fine structure. However, their concept
of '"billow turbulence'' due to a horizontally propagating gravity wave is quite
different from the present concept of an unstable, vertically propagating inertial
wave. A physical description of the proposed model and its distinction from

tbillow turbulence' is given in the Conclusions.
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II. INTERNAL WAVE SOLUTIONS

The mathematical description of internal waves is a classic
oceanographic problem. For wave frequencies near the earth's rotational

(13

frequency, the Coriolis forces must be included. Phillips gives an
account of the wave solutions in the presence of Coriolis forces but that
solution is carried only as far as obtaining the wave dispersion eqguation,
The wave solutions for the velocity and density are necessary in order to
relate ocean fine structure to internal waves. Hence, we must expand on

Phillip's results. The details are given in Appendix A and only the highlights

of the model and solutions are discussed here.

We adopt a2 locally orthogonal system on the surface of a rotating
earth. The earth's rotational frequency is ?7/2 and the coordinate system
is illustrated in Fig. 3. The momentum equations include buoyancy, vis -
cosity, and the Coriolis forces. The flow is assumed to be incompressible,
that is, the convective derivative of density is zero. The incompressible
continuity equation is used to close the set of equa‘;ions in pressure,
density and velocity. To obtain a solution to the dynamic equations, we

assume that the only velocities are those due to the internal waves and we

shall expand the density and pressure into a static and wave contribution:

o =0 t0g (z) +o (x v, 2 t)s (1)
and
'p=po~pog5+ps (Z)+pW (X: Y, Z, t), (2)

where the superscript ~ denotes a dimensional quantity.

PRECEDING PAGE BLANK—NOT FIIMED {
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The static density gradient must be specified "a priori'. Hence

we assert that

~

aps ~
:"BQ, (3)

07 o

where Eo is the reference density at z = 0. The value of Bis expressed in
units of inverse length and has values bFetween 10_4/m in the summer

-6 . ! . :
thermocline and 10° /m in the deep sea. The density gradient is related

~

to the Brunt Viisila frequency, N, by

~ ~ e 1/2
N = (gB) (4)
where E is the acceleration of gravity.
In developing internal wave solutions, we introduce the follnwing
dimensional variables: 5, the wave frequency; kH, the horizontal wave
nurnber; Ev’ the vertical wave number and Tlp, the fluid velocity in the

horizontal direction. These dimensional quantities are used to define four

dimensionless parameters:

€ = Ep TEH/E (Wave Amplitude),
A = Fs'/'fcfv (Static Ap/p Across Wave),
6v = ﬂH/i (Vertical/Horizontal Length Scale),
v
and
Re = o 5/ . (Wave Reynolds Number).
w o) v

Under the assumptions that N is a constant, € << 1 (linearization), A << 1
(Boussinesq approximation) and ReW >> 1 (Inviscid), the dispersion

equation becomes

-9-




2

—)
'52=K1252/(1+é“>+(5-ﬁ>, (5)
v v

A . .
where U is a unit vector ‘u the direction of wave propagation. For & << 1,
v
A
U becomes

A A A A
L=k+0( i)+O0(®

v

Clearly, for § <<1, the internal waves propagate almost vertically.

v
The connection between ocean fine structure and this type of internal wave
is yet to be established but the discussion will be restricted to this limit.

The simplified dispersion equation becomes, for & <<1,
v

where 53 = Q sina., 0 = 21 radians/12 hours and « ig the latitude.

The wave solution for the density is

3 = eB/K)exp (1), (M

w 8]

~

and the wave function { is given by

[ =0t + kxx+kyy + kvz,
where k and ky are the wave numbers in the X and’;f directions respectively.
In order to obtain solutions for the fluid velocity in the x and;
directions, we utilize the limits suggested by Eq. (6). The frequency
O consists of a contribution due to gravity, ﬁz 6v2, and an inertial contribu-
tion, 532. The dominance of the buoyant term gives rise to gravity waves

whereas the dominance of the Coriolis forces leads to inertial waves.

~10-
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~

For Gravity Waves (N év >53), the solutions become

’5 - ﬁ 6 ’ (8)
v

U.W Si=1 (kx/kH) up eX‘p (1 é)’ (9)
and

T, BT e D g
where

k = .

L HES=F

~

For Inertial Waves (Q3 > N év), we obtain

o =0, (1)
GW = -Ep (féy/iH x i'féX/EH) exp (i7), (12)

and
$W= il 'Gp ("y/iH + 1IX/%H) exp (7). (13)

An arbitrary sum of the plane wave solutions over all positive and
negative wave numbers is a solution to the equations of motion if and only if
€ is much less than unity. However, due to the transverse nature of the
waves, situations do exist where the nonlinear terms are identically zero
and the solutions are valid for arbitrary €. Two such solutions correspond

(14

to the single plane wave and the Resonant Triad. Using one plane wave
and choosing the time and horizontal location such that the wave amplitude

is a maximum, we express the total density profile for arbitrary €,

-11-
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where ’Xv is ZTT/EV. Eq. (14) is illustrated in Fig. 4 for € = 1. The density
profile illustrates an '"order one' wave superimposed on the mean density.
However, some distortion (steepening or breaking) of that wave must occur
before it can explain the field observations. The density profile for € = 2
is demonstrated in Fig. 5. Regions of the density profile are statically
unstable. Such regions could overturn or flatten to form steps separated
by high gradient sheets. (12) This does, however, require waves of very large
amplitude. We shall seek a mechanism that could transform waves of

much smaller amplitude into fine structure. It will be shown that the most

probable mechanism is the dynamic breaking of inertial waves.

-12-
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III. COMPARISON OF FINE STRUCTURE DATA
WITH INTERNAL WAVES

While we are not yet able to demonstrate that internal waves
actually generate the ocean fine structure, we have several constraints
on the waves which must be consistent with observation. Otherwise,
they will never be capable of explaining the origin of the fine structure.
We will now compare the fine structure length scales with those of internal
waves, and then isolate the most probable mechanism responsible for
generating the fine structure from the internal waves.

If internal waves cause fine structure, Figs. 4 and 5 suggest that
’Xv will correspond to the step ﬁ Furthermore, we assert that 'XH’ the
horizontal wavelength, will correspond to the lateral extent of the fine
structure. Therefore,

_ __Step Height
v — Lateral Extent '

(15)

The field observations of 5v are compared to the internal wave solutions

in Fig. 6. While there is insufficient data to suggest a definite correlation,
the data that is available does appear to correlate to inertial waves, This
suggests that the mechanism responsible for generating fine structure may
be inherent in the difference between inertial and gravity waves. That
mechanism will be shown to be the dynamic stability of the wave.

There is a multitude of mechanisms that one could consider as a
candidate for transforming inertial waves into fine structure. Basically,
they can be classified into two major categories: stable and unstable.
Internal waves may be driven unstable by a density inversion, more
commonly referred to as a static instability, or by a dynamic instability.

A primary example of a dynamic instability is the Kelvin-Helmholtz, or

-15-
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shear instability. Stable waves may be capable of generating fine struc-
ture through their nonlinear interaction with the velocity fields induced
by the waves. This mechanism can be divided into two classes: transverse
and self steepening. Transverse steepening simply refers to situations
where resonance occurs: two or more plane waves interact through their
transverse velocity fields. Self steepening refers to the influence of a
higher order longitudinal velocity field. Such a velocity field would
transport fluid in the direction of wave propagation and cause self
attenuation of the wave. These four mechanisms may be summarized
as follows:
1) The dynamic breaking of a single wave due to shear instabilities.
2) Breaking of a single wave by static instabilities.

3) Transverse steepening (resonance) by several non-parallel
plane waves.

4) Self steepening of a single plane wave by a higher order
longitudinal velocity.

In addition to the mechanisms listed above, one could consider the
simultaneous effect of the sum of any two, three or four mechanisms.
However, this may be considered over-ambitious at this point in the
development of a fine structure model.

Let us now assess each of the four possible mechanisms:

The dynamic stability of the wave is measured by the Richardson

15

number J,

~ ~ Lo 2
-2 3 2
J= = __% (-%) = 6v (1 -¢€ cos z)/"32 CPZ, (16)
0 dz dz
o
where
® = 0/N
=

o




For J > 1, a shear instability is always stabilized by the stratification
whereas for 0 < J <1, the wave is unstable, provided that the Reynolds num-
ber is sufficiently large. A negative Richardson number corresponds to a
statically unstable wave. This occurs when € > 1 and was illustrated in
Fig. 5, Subsequently, the discussion of dynamic stability will be restricted
to e < 1,

For gravity waves, ® = év. If € <1it follows that J>1 and the
waves are dynamically stable. We will now show that inertial waves are
dynamically unstable. This basic difference in dynamic stability will
explain why fine structure apparently correlates only to inertial waves.

Inertial waves correspond to év < ®. Hence, the Richardson
number is less than unity for € <1, The critical value of the wave
amplitude necessary to induce unstable wave motion is obtained from

Eq. (16) for J = 1.
N/ (17)

The critical values of the inertial wave amplitude are illustrated in
Fig. 7. Wave amplitudes between 5 x 10_2 and 0.5 are required to explain
available data. Hence, dynamic instabilities would ‘occur at lower wave
amplitudes than would static instabilities (¢=1). The mechanism would also
explain why fine structure seems to accompany only inertial waves.

The Richardson criterion for wave instability has been satisfied,
However, a Reynolds number constraint must also be satisfied before we
can state that the inertial waves which correspond to fine structure are
unstable. Since an inertial wave is a vertically propagating transverse
wave, it creates a horizontal shear flow of velocity :;p and thickness
(iv)- . The stability of such a flow is measured by the flow Reynolds

number Ref, where

-18-
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ey

Re, = ——F | (18)

The transition value of Ref is a function of the shape of the fluid velecity
profile. For pipe flow and boundary layers, the transition Reynolds
number is 2300 and 2700, respectively. o Free shear layers have an
inflection point in their velocity profile and are less stable than pipe and
boundary layer flows. The transition Reynolds number for a free shear

2
layer” is of the order of 10 to 107, Using the more restrictive value, we

assert that the flow is unstable when

Re > 10
ef ,
or, using the definition of €,

v 5 100 (217)2'\7

y | 1
xv H 1)

€so
~ -6 2 - . ;
where vV =2 x10 m /secando= 03. Instability will occur at a value of €

, i € . i € . € .
corresponding to crit Using o i for €, Eq. (19) becomes

K s ZOTTVGg

i e = 1E

” (20)
(g8)

In addition to the constraint imposed by Eq. (20), the entire analysis

requires that the mean motion be undamped. This was expres sed as

-20=




or

The constraints imposed by Egs. (20) and (21) are illustrated in Fig. 8.

All fine structure data corresponds to dynamically unstable waves.

This strongly indicates that shear instabilities are the mechanism by
which inertial waves form fine structure. A mechanism utilizing shear
instabilities was originally proposed by Woods and Wiley. = However, the
present concept of unstable horizontal shear layers driven by vertically
propagating inertial waves is quite different from Wood's concept of
"'Billow Turbulence' driven by gravity waves which propagate horizontally
along density '"'sheets''.

The second mechanism by which inertial waves may form {ine
structure is the static breaking of the wave due to a density inversion.
This process was illustrated in Fig. 5. Large amplitude waves raise
the heavier fluid to a position above the relatively lighter fluid. Static
instabilities then break the wave and a staircase density profile results.
While this is a reasonable postulate, it fails to explain why fine structure
seems to correlate only to inertial waves., In addition, and most funda -
mental, the mechanism requires wave amplitudes an order of magnitude
greater than those necessary to induce Kelvin Helmholtz instabilities.

For this reason, static wave breaking will be considered a '"low

probability' candidate for the source of ocean fine structure.
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Transverse steepening or resonance was the third possible
mechanism by which inertial waves could form fine structure. If the
fine structure were created by the transverse resonance of perpendicular
waves, then the persistence time of the fine structure would be of the
order of 1/’5 or, for inertial waves, a few hours. The fine structure
data base (Table I) illustrates persistence times of the order of days.
Thus, to explain fine structure with resonance, we would have to assume
that both ovservers (Refs. 2 and 7) obtained their measurements an

(7)

integral number of wave periods apart. Hayes et. al. obtained their
data at 28°N. This corresponds to a wave period of 24 hrs. and would
require three wave periods to be consistent with observation. Howe and
Ta.it(z) worked at 34ON, or 22 hr. wave periods. Hence, to explain
"persistence times' of 33 hrs., we would have to invoke a resonance
phenomenon occuring at the wave half period. While this is all possible,
it does not seem highly probable. In order to explain fine structure on
the basis of resonance we must invoke large wave amplitudes (¢ = 1).
Inertial waves of that amplitude are dynamically unstable and incapabl«
of undergoing a reversable energy exchange with other waves. Hence,
resonance should also be considered to be a ''low probability' candidate.
The fourth proposed mechanism is the self steepening of a plane

wave due to a longitudinal velocity contained in the higher order terms

of the dynamic equations. Such a mechanism requires that

B

U - Grad { # 0,
i ,

U

where ﬁw is the fluid velocity vector. For longitudinal, or acoustic sound

waves, U * Grad { is an order € term. Since inertial waves are, to
W ¢
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lowest order, transverse waves, self steepening can be no greater than
2 _ . . .
an € effect. This is consistent with the self attenuation of surface waves.

(18)

The dispersion equation yields a (1 +k ZZ) term where a is the wave

H

~ ~ ~ ~ 2 ~2 .

amplitude. Since a = up/o, kI_T a becomes € . Hence, self steepening
-2 i

requires € cycles to attenuate the wave. The maximum value of € that

we can use to estimate the steepening time in ecrit because all waves

~

corresponding to € > € i 2Fe unstable., The steepening time T , becomes
(hy S

or

Estimates of the self steepening times are illustrated in Fig. 9. Values of
;S as large as 100 days are required in order to be consistent with data.
It is difficult to believe than an inertial wave would not encounter several
first order effects during this time period. These encounters would tend
to destroy any coherence of the postulated mechanism. Hence, self steep-
ening may also be considered '""low probability''.

Of the four mechanism proposed, dynamic wave breaking is the most
probable mechanism by which inertial waves form fine structure. The
wave length scales and the wave stability criterion are consistent with
observation. However, it still remains to be demonstrated that a dynamically

unstable inertial wave actually forms fine structure.
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IV. CONCLUSIONS

The preceding analysis has made an apparent correlation between
ocean fine structure and inertial waves. A priori, there are four possible
nonlinear mechanisms that could form ocean fine structure from inertial
waves: dynamic breaking (shear instabilities), static breaking (inverted
density profile), transverse steepening (resonance) and longitudinal
steepening (self steepening of waves riding on their own velocity fields).
Each mechanism has been assessed on the basis of the available data. Of
the four mechanisms proposed, dynamic breaking is the most probable
mechanism by which inertial waves form fine structure. The length scales
of the wave and the stability criterion are consistent with observation.

The static breaking of internal waves would require much larger wave
amplitudes than does dynamic breaking. Hence, the concept of static
instabilities becomes academic since these waves are already dynamically
unstable. Resonance phenomenon would also require larger wave amplitudes
than does the postulate of dynamic breaking. Thus, resonance cannot occur
because inertial waves of the reguired amplitude are dynamically unstable.
The possibility of self steepening has also been assessed. Estimates of

the self steepening times for stable (low amplitude) inertial waves are of
the order of 102 days. This is clearly a long time for an inertial wave to
avoid other first order effects which could destroy the coherence of the
mechanism. Hence, self steepening is a weak possibility compared to

that of dynamic wave breaking.

Previous investiga.tors11 have proposed that shear instabilities lead
to ocean fine structre. However, their concept was that of ''Billow Turbu-
lence'' driven by gravity waves which propagate horizontally along density

nsheets'' (discontinunities in the vertical density profile). These gravity

=27=




e

waves break, rnix and form the fine structure, The mechanism is illustrated
in Fig. 10a. Figure 10b illustrates the present concept. A vertically
propagating inertial wave generates a horizontal shear layer, The shear
layer is dynamically unstable and appears to break, forming the fine
structure. The wave length scales and stability criterion are consistent

with fine structure observations, However, it still remains to be demon -
strated that a dynamically unstable inertial wave actually forms fine

structure,
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APPENDIX A

INTERNAL WAVE MODEL

Consider an orthogonal coordinate system on the surface of a
rotating earth as shown in Fig. 3. The rotation vector is denoted by

{0 where ~ denotes a dimensional quantity. The coordinate system is

chosen such that Q has no component in the y direction. Hence,

2 ~ N\ ~ I
Q =allm 0 Sy e
3
where 5
‘6‘ _ 2T radians
12 hours

The low Mach number motion associated with the ocean may be

treated as incompressible. Hence, the Lagrangian derivative of density

is zero.

o

D
D

|

el

The equation of continuity then simplifies to

<l

20

clld

where
A ~ N

-3
U=ui+v;+wk

The momentum equation includes the influence of the Coriolis forces:

—-z+QxU+(U'V)U+-— p +t ek =YV H,
ot o]
A_l

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)




where V is the kinematic viscosity and g 1s the acceleration of gravity.
Equations (A-2), (A-3) and (A-5) represent three equations in the

densityg, pressure E and the velocity U. To obtain a solution, we expand the

dependent variables into a static and wave contribution:

~ ~ ~

0=b P @+ &Y, (A=6)
P=p, -8 z+p, ()+p, &5 %D, (a-7)
T = Tiw x, v, 7, 1), (A-8)
pe :“v’w (x, v, 7, t), (A-9)
and wew_ (x5 %0, (A-10)

where we have restricted the analysis to zero mean shear. The only veloci-
ties are due to the wave contribution.
Setting all wave contributions equal to zero, we obtain the hydrostatic

relationship between Es and Es

3p
S _ ~ ~ ~
5'2' - pS( ) g
The density profile in a static sea will be specified ''a priori'. Hence, we
assert that
2%
S _ ~S ~
a.\z, e B pO’

where Eo is the reference density at; = 0. The value of E is expressed

in units of inverse length and has values between 10'4/m in the summer

thermocline and 10-6/m in the deep sea.




Substituting Eqs. (A-6) through (A-10) into (A-2), (A-3) and (A-5),

we determine the equations of motion for the wave contribution:

0P .~ o~ 2 2 A
=7 - P, B wot(U - V)P, =0, (a-11)
- -
v u =0, (A-12)
w
and
-
aﬁ > - - S\ - — >
~ W ~ ~ ~ ~ ~ ~ o~ ~ ~ AN ~~2~
p-—-a-ac-+QxU+ U v/]U + vpPp +p gk=MyY U, (A-13)
t W W w w W

wherel:f is the viscosity.

We define the reference lengths as the inverse wave numbers in the
horizontal and vertical directions:

and

fx_ig-l
ref 21 v °

~
A —

The horizontal fluid velocity is normalized to f! , an arbitrary velocity
which will be related to the wave amplitude.

~ ~ ~
u = v =u

ref ref P

The continuity equation suggests that the reference velocity in the %z direction
is

ref up kH/kv'

w



The reference time is the inverse frequency, which will be determined from
the wave equations.
t = W

ref

The linear form of Eq. (A-1ll) suggests the reference density,

ref P o H v

In the vertical momentum equation, it is not clear whether the vertical
pressure gradient should balance the buoyancy, or the Coriolis force.

Hence, we normalize the pressure by the buoyant terms

ref Q Po upc/kH’

but introduce the ordering parameter Q which must be determined.

The reference variables are used to define the following dimension-

less parameters:

€ = :p 'EH/E (Wave Amplitude),
A= E/Ev (Static Ap/p Across Wave),
6V =k */Kv (Vertical/Horizontal Length Scale),
and
Re =p O/dk & (Wave Reynolds Number).
W e v



NS

-5 ~
The frequencies © and () are normalized to N, the Brunt Viaisidla fre-

quency, which is assumed to be constant.

NZ ~
N™ =g @
©w=0/N
- 2~
w =Q/N

The equations of motion for the wave contribution are non-

dimensionalized. The statement of incompr essibility becomes

bp - e
. G e Wome= b (A-14)
2t Y te (Ug Pw d
-
d A 3 A a A
=6 = — j+t5 k
where \% 6v bx1+ 6v ByJ+Bz
- b A i A A
e g = 2 i+ = j+w Kk
w ® 6 W
v v
- -
such that U, Va0 [l) -
The equation of continuity is expressed as
- -
VU =0, (A-15)

w

and, expanding 5,

B - p=1 -az+ hep, >

Po



the x, y, and z momentum equations become, respectively,

du .
W =2 i
Al g P (U0 = A @
ot w

-Ww, V
w 3w

3p . .2 (A-16)
w
+ Q —5—;{—_<Re >V uw,
w
dv r
| = e =
Al T + € (U V)v +w3uW 6vw1ww
A-=17
5 . ’ (4-17)
T dy : Re v V!
w
and
Ow
A cpzéz —-VY-+€62cp (G Viw +w b Qv
v ot v v
(A-18)
op 2
+Qcp2——-—w+ézp NN (. P
dz v v ReW W

Iinear Solution

In the limit of e<< 1, A < 1 and ReW » 1, Egs. (A-14) through (A-18)
(13)

are a linear system, From Phillips we know that w,, possesses a wave

solution where the frequency is given by

e el évz) + 8 02, (A-19)

v
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T

A
where |1 is a unit vector in the direction of the wave propagation,

L2 B8 Gad e e

M= 1v1+2v3+ ’
where

8 = k [y

=% /k

5, Y/H
and

2 2

61 +62 =8l

The linear wave solution for W is
w,, =8 exp(i $)s
where A is an arbitrary constant and { is given by

§=t+61x+6zy+z.

From Eq. (A-14), the density is obtained from the vertical velocity,

NS iAexp (i¢)

In the limit of 6v <1, Eq. (A-19) yields the nondimensional frequency,

0¥ =8 %4 @ 0)°. (A-20)

Eq. (A-20) indicates that there are two limits in which the momentum equa -
tions must be solved for uw, vw, and ‘pw. Those limits depend on the relative

— A
size of & and (w + {), the buoyant and inertial frequencies respectively.
v
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L

5| A
For Gravity Waves (6V> (w* M), the solutions become

p_ = A exp (if),

u_ = 61A exp (i),
and
v = - 62 A exp (1¢).

w

For Inertial Waves ((-Ll). ' Cl) >§ ), the solutions are
v

Q1

P = Wss

) A exp (i§),

u :i(62+i61

and

v == (62 +'1€>1)A exp (1¢).

The inertial solution of the vertical momentum equation yields dif-
ferent results for P, depending upon the relative size of év and ® .,
Physically, the different solutions arise due to the relative size of the

buoyant and Coriolis forces.

For Inertial Gravity Waves (buoyancy balances pressure), we obtain

2
B h, SNy
v

2
@86 Ifo;
v
and

p = A exp (if).




For Pure Inertial Waves (Coriolis force balances pressure), we obtain

2
5 <o,
v
Q=5%,
v
and wl
Bl = E-; (62+161)Aexp(1§)-

~

The regimes of (B, év) space appropriate to gravity waves, inertial gravity
waves and pure inertialwaves are illustrated in Fig. (A-1). The solutions

appropriate to each regime were given above.
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