


      ■■   ■  '■    ■     ; ■      ,■■■■-.-■.■■■ ■         

-   , . - ,.,.-....- ■.i^^::/^:y::':;:?^%'--::-[-:r 

The views and conclusions contained in this document are those 

of the authors and should not be interpreted as necessarily representing 

the official policies, either expressed or implied, of the Advanced 

Research Projects Agency or the U. S. Government. 

äütti 



w.^.» —j.^-^«». »--T^^. ..■■..^—... ...ro*«?,.!      JiBji^j.iniiui.iyi ,j in   i "tw ,■  T '.y% iWJ>I.Wf«^i||«RLlRJ,WHM(»MJ»l*Wt.'^^A|. 

^swr-^sr*: ■- ■:..«»»■- 

,. ;:,^^:'v.Vl:.W' 

.-TNrT.A LIFTED 
SECURITY CL»5SIFlCATI0H OF  THIS PAGE flW.«. D«l» Bnl.r.d) 

(i 

REPORT DOCUMENTATIOH PAGE 
I  REPORT NUMBER 

2. OOVT ACCESSION NO. 

lt_.TlI.tJlJsiiSiMlW-. 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3. RECIPIENT'S CATALOG NUMBER 

S, TYPE OF REPORT & PERIOD COVERED 

Final Report   '. 
MICROSTRUCTURE ANALYSIS.     \^        ^      z/lS/lf - 8/15/75 

Volume'! * //t/ft 
The Origin of Ocean Fine Structure^ y 

I?,    AUTHORfi; 

/' 
'A Girard A./Simons 

(/S 
.- 

6. PERFORMIMC 0«G. REPORT NUMBER- 

PSI-TR-36 
8. CONTRACT OR OR ANT NUMBERfoJ 

NdOÖ14-75-C-0927 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 

Physical Sciences Inc. 
18 Lakeside Office Park 
Wakefield,  MA   01880 

11,    CONTROLLING OFFICE NAME  AND ADDRESS 

Office of Naval Research 
Department of the Navy 
A^lincrfnn,   VA   22217 

10, PROGRAM ELEMENT, PROJECT. TASK 
AREA & WORK UNIT NUMBERS  _„„ ,' 

/USl PAI Or de r mkrZ 961 

U     MONITO^NG A.'.NCY NAME  S   AUURESS()< d.l/.,.n, ^J^on^n^^.J 
15.    SECURITY CLASS, (ol (hi» report.) 

Unclassified 
IS«     DECLASSIFICATION/DOWNGRADING 

SCHEDULE 

7 

16.    DISTRIBUTION  STATEMENT (ol Ihl. R.porl) 

Unlimited distribution 

17      DISTRIB 
UTION STATEMENT fo, ,>,. .-„r.c, ,n,».d in »..OJO. H „.»».n. /rcn R.por.; 

w Vv,^y  ■   ..^-^ -  ^4——/" 

IS. SUPPLEMENTARY NOTES 

,9. KEY WORDS (Contlnu. on  »v.». .la. U n.c.»^ ^ '<«"'">' "" '""* """"^ 

Internal Waves 
Inertial Waves 
Ocean Fine Structure 
Ocean Microstructure 

■i0.    ABSTRACT rCon„nU. on ,*. » n.c».^ =5 <d.n.,>y b? Mo,> nuW6.0 

t>       The horizontal and vertical length scales of ocean fme 
structure appear to correlate to the corresponding wavelengths of 

could Lm Tcnkle structure from inertia, waves:   dynamic breatag 
Uhiar instabilities,,  static breaking (inverted dens.tv prptüeKtra^ - 

4 
•*• 
/-.) 

_Q      FORM      l^jL.   EDITION OF  1 NOV 65 IS OBSOLETE UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (**•* »'" ErW. N OF THIS PAGE JWl« 

3i 1 iö 

iMiÄto.-.    



■""- ■ •■■-"•-- " n'»^-?-'":--^™™." <>,'»-"■-'■-«»■■■,'  ."■■■^■.»»•"«■...■■.i.iMi .   i     .^-~--. 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGEflWi«n D«(« Bnfnd) 

!\ verse steepening (resonance) and longitudinal steepening (self steepenmg 
of waves riding on their own velocity fields).    Each mechanism has been 

^   assessed.^n-the basis of the available data/.   Of the four mechamsms 
proposed,  dynamic wave breaking^* shown to be the most probable 
mechanism brwhich inertial waves form fine structure.    Tins ™^™f 
is distinct from that of '»billow turbulence'1 due to an unstable,   horizontally 
propagating gravity wave.    An inertial wave is a vertically propagating 
Transverse wave.    The transverse velocity field of the wave is a hori- 
zontal shear layer and it is the instability of the shear layer that is the 
proposed source of fine structure. 

r^4 

/ 
i f 

N 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGECtWi«! Dmtm Enttred) 



WIIMWW'VniVWimWf« VKuaii^.^ ',.< ijni". ' p> . — "-i 

PSI TR-36 

MICROSTRUCTURE ANALYSIS 

FINAL  REPORT 

VOLUME I 

THE ORIGIN OF OCEAN FINE STRUCTURE 

SEPTEMBER 30,   1975 

ARPA Order Number 

Program Code No. 

Name of Contractor: 

Effective Date of Contract: 

Contract Expiration Date: 

Amount of Contract: 

Contract Number: 

Principal Investigator: 

Telephone Number: 

Scientific Officer: 

tCCESSiOTJ ; 

ÜTIS 

Title: 

2961 

5E10 

Physical Sciences Inc. 
18 Lakeside Office Park 
Wakefield,   Mass.    01880 

February 15,   1975 

August 15,   1975 

$51,081.00 

N00014-75-C-0927 

Girard A.  Simons 

(617)  245-7400 

Office of Naval Research,   Code 212 
800 North Quincy Street 
Arlington,  Virginia  22217 
Attn:   Cdr.  Donald D.   Pizinger 

Microstructure Analysis 

.; -. 

E; ME wmwiMMWISiWW 

Sponsored by 
Advanced Research Projects Agency 

ARPA Order No.   2961 

Ht-k    "■    '  -  _ _ ...: ._.._* ..^'.„^^^^ A* •:.*,.iuw\.-± .■ L...». ..Jr*täiiau-»i3äi 



'■: ■ 

FOREWORD 

Volume I  of the Final Report deals with Ocean Micro- 
structure and Volume  II  deals with Laser Sensor Technology 
Assessment. 
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ABSTRACT 

The horizontal and vertical length scales of ocean fine structure 
appear to correlate to the corresponding wavelengths of inertial waves 
(internal waves whose motion is dominated by Coriolis forces).    A priori, 
there are four possible non-linear mechanisms that could form ocean 
fine structure from inertial waves:    dynamic breaking (shear instabilities), 
static breaking (inverted density profile),   transverse steepening (reson- 
ance) and longitudinal steepening (self steepening of waves riding on their 
own velocity fields).    Each mechanism has been assessed on the basis of 
the available data.    Of the four mechanisms proposed,  dynamic wave 
breaking is shown to be the most probable mechanism by which inertial 
waves form fine structure.    This mechanism is distinct from that of 
"billow turbulence" due to an unstable,   horizontally propagating gravity 
wave.    An inertial wave is a vertically propagating transverse wave. 
The transverse velocity field of the wave is a horizontal shear layer and 
it is the instability of the shear layer that is the proposed source of fine 

structure. 
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I.    INTRODUCTION 

1- 8 
Field observations        have revealed that the ocean's density profile 

possesses an internal  structure consisting of a series of thin,   laminar  "sheets" 

of high density gradient separated by "steps"   of only moderate gradient.     An 

idealized    "fine structure" is  represented schematically in Fig.   1.     Only Woods' 
1 2-! 

observation   reveals the more distinct step-like structure.    Later observations 

illustrate more irregular profiles with a fine structure of height H and a super- 

imposed microstructure on a length scale small with respect to H.    One of the 

more irregular profiles is illustrated in Fig.   I which is reproduced from Gregg, 

Cox and Hacker.       The recording demonstrates temperature gradient as a 

function of depth.    The "spikes" in the temperature gradient correspond to the 

"sheets" of high gradient and the small scale structure in the temperature 

gradient represents the  microstructure which is actually present in the "steps" 

of the idealized fine structure. 

The "step height" H  and the lateral extent of the observed structure 

varies widely over the range  of mean density gradient indicated in Table I.     The 

observation time refers to the time spent taking soundings at various lateral 

locations whereas the  point persistence time refers to the time duration between 

soundings at a given lateral location.    The term persistence need not necessarily 

imply that the same  structure remained for the duration of the persistence time. 

It is always possible that a second similiar structure occupied the same point 

at a later time. 

Various mechanisms have been proposed to explain the observed 
9 10 

phenomenon.     These mechanisms consist of double diffusion,     interleaving, 

dynamic breaking of internal gravity waves     due to shear instabilities and the 
12 

static breaking of internal waves      due to the associated density inversions. 

1- 
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This paper is not intended to be a  review or assessment of the proposed 

mechanisms.     What ve wish to do is to investigate the possibility that 

internal waves are responsible for the generation of fine structure.    Due 

the the sparse amount of data available,   we can only attempt to determine a 

mechanism which is at least not inconsistent with data.    Hereafter,  the 

terms consistent and apparent correlation shall be used to infer that the 

data does  not demonstrate otherwise. 

The internal wave solutions are briefly reviewed in Sec.  II.   To avoid 

ambiguities,   let us adopt the notation that inertial waves are internal waves 

in which the Coriolis forces play a dominant role.    Inertial waves propagate 

"almost" vertically with a frequency related to the earth's rotational fre- 

quency.    On the other hand,  gravity waves are Jnternal waves which are 

dominated by buoyancy while Coriolis forces play a secondary role.    In 

Sec.   Ill,   the length scales of internal waves are compared to those of the 

fine structure and it appears that only inertial waves can be responsible for 

fine structure.    This  suggests that a mechanism by which inertial waves 

could form fine structure is inherent in the difference between inertial 

waves and gravity waves.    One such mechanism is shown to be the shear 

instability of the wave.    Inertial waves are much less stable to the Kelvin 

Helmholtz instability than are gravity waves.    Other mechanisms are sug- 

gested which could transform the inertial wave into fine structure but they 

are shown to be considerably less probable than dynamic breaking.    This 

strongly indicates that shear instabilities are the mechanism by which 
11 

inertial waves form fine structure.    Previous investigators     have proposed 

that shear instabilities lead to ocean fine structure.    However,   their concept 

of "billow turbulence" due to a horizontally propagating gravity wave is quite 

different from the present concept of an unstable,  vertically propagating inertiaj_ 

wave.    A physical description of the proposed model and its distinction from 

"billow turbulence" is given in the Conclusions. 
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II.    INTERNAL WAVE SOLUTIONS 

The mathematical description of internal waves is a classic 

oceanographic problem.    For wave frequencies near the earth's rotational 
(13) 

frequency,  the Coriolis forces must be included.     Phillips gives an 

account of the wave solutions in the presence of Coriolis forces but that 

solution is carried only as far as obtaining the wave dispersion equation. 

The wave solutions for the velocity and density are necessary in order to 

relate ocean fine structure to internal waves.    Hence,  we must expand on 

Phillip's results.   The details are given in Appendix A and only the highlights 

of the model and solutions are discussed here. 

We adopt a locally orthogonal system on the surface of a rotating 

earth.    The earth's  rotational frequency is  Q/2 and the coordinate system 

is illustrated in Fig.   3.    The momentum equations include buoyancy,  vis- 

cosity,  and the Coriolis forces.    The flow is assumed to be incompressible, 

that is,  the convective derivative of density is zero.    The incompressible 

continuity equation is used to close the set of equations in pressure, 

density and velocity.    To obtain a solution to the dynamic equations,  we 

assume that the only velocities are those due to the internal waves and we 

shall expand the density and pressure into a static and wave contribution: 

D  = P    + P     (z) + P     (x,   y,   z,   t), 
OS w 

(1) 

and 

p = p    -p    g^ + p    (z) + pw (x,   y,   z,   t) , 
^ O O s w 

(2) 

where the superscript ~  denotes a dimensional quantity. 
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The static density gradient must be specified "a priori".    Hence 

we assert that 

l-^ fSJ 

T^   =    ■   B     Pr,' O   Z 0 
(3) 

where 0    is the reference density at ~ = 0.    The value of 0 is expressed in 
o 4 

units of inverse length and has values between 10     /m in the summer 

thermocline and 10"6/m in the deep sea.    The density gradient is related 

to the Brunt Väisäla frequency,   N,   by 

N (il)l/2 (4) 

where g is the acceleration of gravity. 

In developing internal wave solutions,  we introduce the following 

dimensional variables: a,  the wave frequency; l^,   the horizontal wave 

number; k   ,   the vertical wave number and u  ,   the fluid velocity in the 
v P 

horizontal direction.    These dimensional quantities are used to define four 

dimensionless parameters: 

*%/        "* .rv* 

e = u   k/a 
P   H 

(Wave Amplitude), 

h  =  B/k (Static Ap/p Across Wave), 

md 

5    = k   /k 
v H     v 

Re      =  p    a/|ik 
WO V 

(Vertical/Horizontal Length Scale), 

(Wave Reynolds Number). 

Under the assumptions that N is a constant,  S «  1 (linearization),   A «  1 

(Boussinesq approximation)   and Re     » 1 (Inviscid),  the dispersion 

equation becomes 

-9- 
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~2 ~2 
a     ^   N (5) 

where a is a unit vector In the direction of wave propagation.    For 6v « 1, 

Li  becomes 
(\  =   k  +  O (6    i)   +   O (6    j). 

Clearly,   for 6   «  I,  the internal waves propagate almost vertically. 

The connection between ocean fine structure and this type of internal wave 

is yet to be established but the discussion will be restricted to this limit. 

The simplified dispersion equation becomes,  for 6v « 1, 

~2        ~2  c   2       ~ 2 
a    =  N    6      + n 

V 3  ' 
(6) 

where Q     = Q sina , 0 2n radians/12 hours and <> is the latitude. 

The wave solution for the density is 

w 
(p    e'B/t ) exp (i I,), (7) 

ind the wave function £  is given by 

T  = cTt + k    x + k    y + k    z, 
h x y v 

where ^ and k    are the wave numbers in the x and y directions respectively. 
XIn ordlr to obtain solutions for the fluid velocity in the x and y 

directions,  we utilize the limits suggested by Eq.   (6).    The frequency 

a consists of a contribution due to gravity.  N2 &/,  and an inertial contribu- 

tion, $  Z.    The dominance of the buoyant term gives rise to gravity waves 

whereal the dominance of the Coriolis forces leads to inertial waves. 

-10- 

    



For Gravity Waves (N 6    >Q3),   the solutions become 

and 

a = N 6  , 
v 

u     = -1 (k   /kTT) u    exp (i § ). 
w x     H      p 

v     = -i (k   /k    ) u    exp (i  £ )> 
w y     H      p 

(8) 

(9) 

(10) 

where 
~  2     ~  2       ~   2 
k      + k       =   k      ■ 

x y H 

r*j *w 

For Inertial Waves (Q 0 > N 6   ),  we obtain 
3 v 

a = Qi , 

u    = -u   (k   /k    + i k  /k   ) exp (i]"), 
w p    y    H x    ti 

(11) 

(12) 

and 

v    = -i u      (k  /k_T + i k   /k   ) exp (i^). 
w p    k  y     H x     H 

(13) 

An arbitrary sum of the plane wave solutions over all positive and 

negative wave numbers is a solution to the equations of motion if and only if 

£ is much less than unity.    However,   due to the transverse nature of the 

waves,   situations do exist where the nonlinear terms are identically zero 

and the solutions are valid for arbitrary e.    Two such solutions correspond 
(14) 

to the single plane wave and the Resonant Triad. Using one plane wave 

and choosing the time and horizontal location such that the wave amplitude 

is a maximum,  we express the total density profile for arbitrary S, 

11- 
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(P-0 
ß X    p 

V     o 

=  -   z/X     + 
g 

ZTT" 
sin 

2n z 

where Xv is 2TT/k   ,     Eq.   (14) is illustrated in Fig.   4 for e   = 1.     The density 

profile illustrates an "order one" wave superimposed on the mean density. 

However,   some distortion (steepening or breaking) of that wave must occur 

before it can explain the field observations.    The density profile for e = 2 

is demonstrated in Fig.   5.     Regions of the density profile are statically 

unstable.    Such regions could overturn or flatten to form steps separated 
(12) 

by high gradient sheets. This does,  however,   require waves of very large 

amplitude.     We shall seek a mechanism that could transform waves of 

much smaller amplitude into fine structure.    It will be shown that the most 

probable mechanism is the dynamic breaking of inertial waves. 

12. 
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III.    COMPARISON OF FINE STRUCTURE DATA 
WITH INTERNAL WAVES 

While we are not yet able to demonstrate that internal waves 

actually generate the ocean fine structure,  we have several constraints 

on the waves which must be consistent with observation.    Otherwise, 

they will never be capable of explaining the origin of the fine structure. 

We will now compare the fine structure length scales with those of internal 

waves,   and then isolate the most probable mechanism responsible for 

generating the fine structure from the internal waves. 

If internal waves cause fine structure.   Figs.  4 and 5 suggest that 

X    will correspond to the step H.    Furthermore,  we assert that X    ,   the 
v n 

horizontal wavelength,  will correspond to the lateral extent of the fine 

structure.    Therefore, 

Step Height 5     ag —        -   -    . 
v  "   Lateral Extent 

(15) 

The field observations of 5    are compared to the internal wave solutions 
v 

in Fig.   6.     While there is insufficient data to suggest a definite correlation, 

the data that is available does appear to correlate to inertial waves.   This 

suggests that the mechanism responsible for generating fine structure may 

be inherent in the difference between inertial and gravity waves.    That 

mechanism will be shown to be the dynamic stability of the wave. 

There is a multitude of mechanisms that one could consider as a 

candidate for transforming inertial waves into fine structure.    Basically, 

they can be classified into two major categories: stable and unstable. 

Internal waves may be driven unstable by a density inversion,   more 

commonly referred to as a static instability,  or by a dynamic instability. 

A primary example of a dynamic instability is the Kelvin-Helmholtz,  or 

-15- 
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shear instability.    Stable waves may be capable of generating fine struc- 

ture through their nonlinear interaction with the velocity fields induced 

by the waves.     This mechanism can be divided into two classes: transverse 

and self steepening.    Transverse steepening simply refers to situations 

where resonance occurs: two or more plane waves interact through their 

transverse velocity fields.    Self steepening refers to the influence of a 

higher order longitudinal velocity field.    Such a velocity field would 

transport fluid in the direction of wave propagation and cause self 

attenuation of the wave.    These four mechanisms may be summarized 

as follows: 

1) The dynamic breaking of a single wave due to shear instabilities. 

2) Breaking of a single wave by static instabilities. 

3) Transverse steepening (resonance) by several non-parallel 
plane waves. 

4) Self steepening of a single plane wave by a higher order 
longitudinal velocity. 

In addition to the mechanisms listed above,   one could consider the 

simultaneous effect of the sum of any two,   three or four mechanisms. 

However,  this may be considered over-ambitious at this point in the 

development of a fine structure model. 

Let us now assess each of the four possible mechanisms: 

The dynamic   stability of the wave  is measured by the  Richardson 

number   J. 

ZÄ 
l4 /{4): 
Ö Z /   \ö z / 

2 2    2 
= 6       (1 - e cos z)/e    cp , 

V 
(16) 

where 

cp = a/N. 
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For J >  1,   a shear instability is always  stabilized by the  stratification 

whe-reas for 0 < J < 1,   the wave is unstable,   provided that the Reynolds num- 

ber is  sufficiently large.    A negative Richardson number corresponds to a 

statically unstable wave.    This occurs when e > 1 and was illustrated in 

Fig.   5.    Subsequently,  the discussion of dynamic stability will be restricted 

to e < l. 

For gravity waves,  ^P  = 6^    If e < 1 it follows that J > 1 and the 

waves are dynamically stable.    We will now show that inertial waves are 

dynamically unstable.    This basic difference in dynamic stability will 

explain why fine structure apparently correlates only to inertial waves. 

Inertial waves correspond to 6v < Cp.    Hence,  the Richardson 

number is less than unity for e < 1.    The critical value of the wave 

amplitude necessary to induce unstable wave motion is obtained from 

Eq.   (16) for J = 1. 

e     .   = 6   N/n 
cnt        v 3 (17) 

The critical values of the inertial wave amplitude are illustrated in 

Fig.   7.    Wave amplitudes between 5 x 10"2 and 0. 5 are required to explain 

available data. Hence,  dynamic instabilities would occur at lower wave 

amplitudes than would static instabilities  (e*l).   The mechanism would also 

explain why fine structure seems to accompany only inertial waves. 

The Richardson criterion for wave instability has been satisfied. 

However,  a Reynolds number constraint must also be satisfied before we 

can state that the inertial waves which correspond to fine structure are 

unstable.    Since an inertial wave is a vertically propagating transverse 

wave,   it creates a horizontal shear flow of velocity u    and thickness 
~ - 1 P 
(M    .    The stability of such a flow is measured by the flow Reynolds 

number Re ,   where 

■■:-.;. 
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Re, 
D     u 

0     P 

\X k 

(18) 

The transition value of Re   is a function of the shape of the fluid velocity 

profile.     For pipe flow and boundary layers,  the transition Reynolds 

number is 2300 and 2700,   respectively.        Free shear layers have an 

inflection point in their velocity profile and are less stable than pipe and 

boundary layer flows.    The transition Reynolds number for a free shear 
17 2 layer      is of the order of 10 to 10   .     Using the more restrictive value,  we 

assert that the flow is unstable when 

Re    >  10   , 

or,  using the definition of e, 

*^i        f**j 

\    \     > 
v    H 

100 (2TT)2 V 

e a 
(19) 

A 2 rv ~ 
where V = 2 x 10'    m   /sec and 0=0..    Instability will occur at a value of £ 

corresponding to e .    Using e fore,  Eq.   (19) becomes 
cnt cnt 

T   > HH 
(gß) 

1/4   ' 
(20) 

In addition to the constraint imposed by Eq.   (20),   the entire analysis 

requires that the mean motion be undamped.    This was expressed as 

-20. 
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Re     >   1, 

or 

X     > 
v 

2TT Vv 

V^T 
(21) 

The constraints imposed by Eqs.   (20) and (21) are illustrated in Fig.   8. 

All fine structure data corresponds to dynamically unstable waves. 

This strongly indicates that shear instabilities are the mechanism by 

which inertial waves form fine structure.    A mechanism utilizing shear 

instabilities was originally proposed by Woods and Wiley.       However,   the 

present concept of unstable horizontal shear layers driven by vertically 

propagating inertial  waves is quite different from Wood's concept of 

"Billow Turbulence" driven by gravity waves which propagate horizontally 

along density "sheets". 

The second mechanism by which inertial waves may form fine 

structure is the static breaking of the wave due to a density inversion. 

This process was illustrated in Fig.   5.    Large amplitude waves raise 

the heavier fluid to a position above the relatively lighter fluid.    Static 

instabilities then break the wave and a staircase density profile results. 

While this is a reasonable postulate,  it fails to explain why fine structure 

seems to correlate only to inertial waves.    In addition,  and most funda- 

mental,  the mechanism requires wave amplitudes an order of magnitude 

greater than those necessary to induce Kelvin Helmholtz instabilities. 

For this reason,  static wave breaking will be considered a "low 

probability" candidate for the source of ocean fine structure. 

-21. 
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Transverse steepening or resonance was the  third possible 

mechanism by which inertial waves could form fine structure.    If the 

fine structure were created by the transverse resonance of perpendicular 

waves,  then the persistence time of the fine structure would be of the 

order of 1/a or,  for inertial waves,  a few hours.    The fine structure 

data base (Table I) illustrates persistence times of the order of days. 

Thus,  to explain fine structure with resonance,  we would have to assume 

that both ovservers (Refs.   2 and 7) obtained their measurements an 
(7) 

integral number of wave periods apart.    Hayes et.   al.        obtained their 

data at 280N.    This corresponds to a wave period of 24 hrs.  and would 

require three wave periods to be consistent with observation.    Howe and 

Tait       worked at 340N,  or 22 hr.  wave periods.    Hence,  to explain 

"persistence times" of 33 hrs. ,  we would have to invoke a resonance 

phenomenon occuring at the wave half period.    While this is all possible, 

it does  not seem highly probable.    In order to explain fine structure on 

the basis of resonance we must invoke large wave amplitudes (6 w 1). 

Inertial waves of that amplitude are dynamically unstable and incapablj 

of undergoing a reversable energy exchange with other waves.    Hence, 

resonance should also be considered to be a "low probability" candidate. 

The fourth proposed mechanism is the self steepening of a plane 

wave due to a longitudinal velocity contained in the higher order terms 

of the dynamic equations.    Such a mechanism requires that 

u 
w 

Grad  I £ 0, 

where Uw is the fluid velocity vector. For longitudinal,  or acoustic sound 
, ►■ 

waves,   U      '   Grad X  is an order S term.    Since inertial waves are,  to 
w 
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lowest order,  transverse waves,   self steepening can be no greater than 
2 

an S    effect.    This is consistent with the self attenuation of surface waves. 
(18) ~   2 ~2 ~ 

The dispersion equation yields a (1 + k       a   ) term where  a  is the wave 
~     ~    .^    ~   2 ~2 2 

amplitude.  Since a« u  /a,   k       a    becomes S   .    Hence,   self steepening 
-2 p H 

requires S   ' cycles to attenuate the wave.    The maximum value of e that 

w e can use to estimate the steepening time in £     .    because all waves 
cnt 

corresponding to £ > £      .,  are unstable.    The steepening time T   ,  becomes 
cnt s 

T       =    2TT/(£ 0    ) 
s cnt      3 

or 

2nn. 

b     gB 
V 

I f 

Estimates of the self steepening times are illustrated in Fig.   9.    Values of 

T    as large as 100 days are required in order to be consistent with data, 
s 

It is difficult to believe than an inertial wave would not encounter several 

first order effects during this time period.    These encounters would tend 

to destroy any coherence of the postulated mechanism.    Hence,   self steep- 

ening may also be considered "low probability". 

Of the four mechanism proposed,  dynamic wave breaking is the most 

probable mechanism by which inertial waves form fine structure.    The 

wave length scales and the wave stability criterion are consistent with 

observation.    However,   it still remains to be demonstrated that a dynamically 

unstable inertial wave actually forms fine structure. 
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IV.    CONCLUSIONS 

j  ■ 

The preceding analysis has made an apparent correlation between 

ocean fine structure and inertial waves.    A priori,  there are four possible 

nonlinear mechanisms that could form ocean fine structure from inertial 

waves: dynamic breaking (shear instabilities),   static breaking (inverted 

density profile),  transverse steepening (resonance) and longitudinal 

steepening (self steepening of waves riding on their own velocity fields). 

Each mechanism has been assessed on the basis of the available data.    Of 

the four mechanisms proposed,   dynamic breaking is the most probable 

mechanism by which inertial waves form fine structure.    The length scales 

of the wave and the stability criterion are consistent with observation. 

The static breaking of internal waves would require much larger wave 

amplitudes than does dynamic breaking.    Hence,  the concept of static 

instabilities becomes academic since these waves are already dynamically 

unstable.    Resonance phenomenon would also require larger wave amplitudes 

than does the postulate of dynamic breaking.    Thus,   resonance cannot occur 

because inertial waves of the required amplitude are dynamically unstable. 

The possibility of self steepening has also been assessed.    Estimates of 

the self steepening times for stable (low amplitude) inertial waves are of 

the order of IQ2 days.    This is clearly a long time for an inertial wave to 

avoid other first order effects which could destroy the coherence of the 

mechanism.    Hence,   self steepening is a weak possibility compared to 

that of dynamic wave breaking. 

Previous investigators     have proposed that shear instabilities lead 

to ocean fine struc^re.    However,  their concept was that of "Billow Turbu- 

lence" driven by gravity waves which propagate horizontally along density 

"sheets" (discontinunities in the vertical density profile).    These gravity 

ii 

• 27- 

JJJ««**.-    - •■ 

'       PBECEDim PAGE BLANK-HOT FIIÄD 



ipr--:V^r-v--i- ■•■■>^!;.^-.i.--.-.i..--^:;;::•■:■,:■ 

waves break,  rnix and form the fine structure.,    The mechanism is illustrated 

in Fig.   10ao    Figure 10b illustrates the present concept.    A vertically 

propagating inertial wave generates a horizontal shear layer0    The shear 

layer is dynamically unstable and appears to break,  forming the fine 

structure.    The wave length scales and stability criterion are consistent 

with fine structure observations.    However, it still remains to be demon- 

strated that a dynamically unstable inertial wave actually forms fine 

structure. 
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APPENDIX A 

INTERNAL WAVE MODEL 

Consider an orthogonal coordinate system on the surface of a 

rotating earth as shown in Fig.   3.    The  rotation vector is denoted by 

ft  where ~  denote_s a dimensional quantity.    The coordinate system is 

chosen such that fi  has no component in the y direction.    Hence. 

f 

(A-l) 

where 

n Z TT radians 
12 hours 

The low Mach number motion associated with the ocean may be 

treated as incompressible.    Hence,   the Lagrangian derivative of density 

is zero. 

DP 
DT 

= 0 (A-2) 

The equation of continuity then simplifies to 

where 

v - u = o , 

U=ui   +  vj+wk. 

(A-3) 

(A-4) 

The momentum equation includes the influence of the Coriolis forces; 

ÖU   + Q xÜ +  (Ü • V) u   + -^yp + gk = vv    U, 
öt 

(A-5) 

A-l 

;.:■:■..■■■■■■ ^   .^■r:.,^^.:' 



where V is the kinematic viscosity and g is the acceleration of gravity. 

Equations   (A-2),   (A-3) and (A-5) represent three equations in the 

density p,  pressure p and the velocity U.    To obtain a  solution,  we expand the 

dependent variables into a  static and wave contribution: 

t^f *sd 

P   = P0 + Ps (z) +  Pw   (x.  y,   z,   t), (A-6) 

p  = Po   -   Po  g   Z  + ps   (Z)  +  pw  (x,   y.    z,    t). 

and 

/■srf r*s rs*        tsj        r*      es* 

u = u     (x,   y,   z,   t), 
w 

v = v     (x,   y,   z,   t), 
w 

'NP* i**t f*j        f^i        r\s      rs* 

w = w
w (x,  y,  z. t), 

(A-7) 

(A-3) 

(A-9) 

(A-10) 

where we have restricted the analysis to zero mean shear.   The only veloci- 

ties are due to the wave contribution. 

Setting all wave contributions equal to zero,   we obtain the hydrostatic 

relationship between p    and p   , 
s s 

f 

z-z 
OS ^ fs* 

P   (z) g. s 

The density profile in a static sea will be specified "a priori".    Hence,   we 

assert that 

dp 

ß    P    . o 

where Po  is the reference density at z = 0.    The value of ß   is expressed 

in units of inverse length and has values between 10"4/m in the summer 

thermocline and 10     /m in the deep sea. 

A.2 
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Substituting Eqs.   (A-6) through (A-10) into (A-2),   (A-3) and (A-5), 

we determine the equations of motion for the wave contribution: 

öp 
w ^s^ *ss 

ör p    ßw   +(u   ■r)p    =o, 
o w w w 

(A-11) 

Ü 
and 

w 
0, 

w ■^er +  n  x U    +   \U 
0 t w        \  w 

V    U 
w 

+ vP   +P   gk = ^r   u . 
w        w w 

(A-12) 

(A-13) 

where |i is the viscosity. 

We define the reference lengths as the inverse wave numbers in the 

horizontal and vertical directions: 

~        _~ H     r   -1 
Xref = yref    ''   ZTJ  '"    H    ' 

and 

>~< v       ^   -1 
Z        r     ~   T^     -  k 
ref        2TT v 

The horizontal fluid velocity is normalized to u  ,  an arbitrary velocity 

which will be related to the wave amplitude. 

u     r   =   v     ,   = u 
ref ref p 

The continuity equation suggests that the reference velocity in the z direction 

is 

w      ,    = u    k    /k   . 
ref p    H     v 
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The reference time is the inverse frequency,  which will be determined from 

the wave equations. 

t        = 1/a 
ref 

The linear form of Eq.   (A-ll)  suggests the reference density. 

D    , = vi   p    B k   /a k   . 
ref p    o       H        v 

In the vertical momentum equation,   it is not clear whether the vertical 

pressure gradient should balance the buoyancy, or the Coriolis force. 

Hence,  we normalize the pressure by the buoyant terms 

Pref  =  QPoUpa/kH' 

but introduce the ordering parameter Q which must be determined. 

The reference variables are used to define the following dimension- 

less parameters: 

#s*       fV «%* 

e = u   k/a 
P   H 

(Wave Amplitude), 

A = ß/k (Static Ap/p Across Wave), 

"w /%* 

and 

6    = k   /k 
v        K     v 

Re     = p    a/lik 
wo V 

(Vertical/Horizontal Length Scale), 

(Wave Reynolds Number). 
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^n.   o^0 nnrTYialized to  N.    the Brunt Väisälä fre- The frequencies  a   and Q   are normauzea LU  IN, 

quency,  which is assumed to be constant. 

N    =   g  p 

cp a/N 

t =n/N 

The equations of motion for the wave contribution are non. 

dimensionalized.    The statement of incompr essibility becomes 

 *. w     + e   (U     • Vp) =   0, 
öt w w w 

(A-14) 

where V=   6     ^-  i+  6,. TT- J +— k 

v  bx 'v   äy   J      öz 

ind U     -    —   i +     —   J   + Ww k 

V 
w 

W      '} 

V 

such that u   • V = o (i; 
w 

The equation of continuity is expressed as 

V • u    = o , 
w 

(A-15) 

and,   expanding  p, 

_P_   =  A =   1   - Ä z +  Ae pw . 

P 
w 

o 
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the x,   y,   and z momentum equations become,   respectively, 

A cp w -> -» 
r—  +  ecp(U     ' V) U     - «o v at w        '    w       3    w 

+ cp   Q    ^ x      lRewl w 

(A-16) 

and 

cp 
öt 

+ ecp(u    • V ) v    +w^u    - o  w. 
w w       3   w        v   1 

w 
w 

^w       /  cp     \   „2 

2  c   2 w 
cp    6 + e 6  2 cp   (U   • V)v    + w  6   cp 

v ot V w W 1    V w 

+ Qcp2 ^ + 52P    =62(f-)r2w 
^        öz vw        v\Re/ w 

Linear Solution 

(A-17) 

(A.18) 

In the limit of e « 1,   A « 1 and Re    »  1,  Eqs.   (A-14) through (A-18) 
w 

(13) 
are a linear system.    From Phillips we know that w     possesses a wave 

solution where the frequency is given by 

a2= N26  2/(l+6  2) + (n- h2. 
V V 

(A-19) 

A-6 
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where l-i is a unit vector in the direction of the wave propagation, 

A A A A 

1-1=6. 6    i + 6_6    j + k, 
1    v Z     v 

where 

^w *** 

1        x     H 

6_ = k  /k 
2      y    H 

and 

61    +62    =1. 

The linear wave solution for w     is w 

w     = A exp (i I), 
w 

where A is an arbitrary constant and £  is given by 

^ = t + 6   x + 62y + z. 

From Eq. (A-14),   the density is obtained from the vertical velocity, 

p     = - i A exp (i l). 

In the limit of 6    < 1,  Eq.   (A-19) yields the nondimensional frequency, 

2      r   2       r*     Av2 
cp    =6      + ((JU • |a    . 

v 
(A-20) 

Eq.   (A-20) indicates that there are two limits in which the momentum equa- 

tions must be solved for u   ,   v    ,  and p   .   Those limits depend on the relative 
w      w w 

—       A 
size of 6    and (uu •  |i),  the buoyant and inertial frequencies respectively, 

v 
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For Gravity Waves (6    > (UJ *  [X)),  the   solutions become 
' v 

v 

and 

Q = l, 

p     = A exp (i !,), 
w 

u     = - 6. A exp (i^), 
w 1 

v     = - 6^ A exp (i£). 
w 2 

For Inertial Waves ((ID •  |a) > 6   ),  the solutions are 

Q« 1, 

cpsu^, 
A' 

and 

u     = i (6^ + i 6.) A exp (it,), 
w 2 i 

v     = - (5^ + x 6J A exp (i^). 
w Z i 

The inertial solution of the vertical momentum equation yields dif- 
2 

ferent results for p     depending upon the relative size of 6v and cp  . 
w 

Physically,  the different solutions arise due to the   relative size of the 

buoyant and Coriolis forces. 

For Inertial Gravity Waves (buoyancy balances pressure),  we obtain 

and 

cp   < 6    < cp, 
v 

,2.2 
Q = 6     /cp  , 

v 

p     = A exp (i ^). 
w 
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For Pure Inertial Waves (Coriolis force balances pressure),  we obtain 

6    < «P  i v 

0 = 6, 
v 

and 

- i 
w 

(—1(6., + i 6J A exp (i^), vv  2     1 

The regimes of (ß,  6   ) space appropriate to gravity waves,   inertial gravity 

waves and pure inertial waves are illustrated in Fig.   (A-l).    The solutions 

appropriate to each regime were given above. 
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Fig.  A-l       Internal Wave Regimes 
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