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Section I. INTRODUCTION 

The mallaunch of free rockets continues as a significant problem. 
Each new system, i.e., each new launcher/rocket combination, possesses 
unique characteristics which must be analyzed and understood before the 
performance of the system can be predicted or optimized.  The analyses 
which are conducted are usually both analytical and experimental.  Simple 
physical models of the actual system are usually devised and mathematical 
theories of how the system will behave are constructed on the bases of 
such physical models.  The behavior of a launcher/rocket system predicted 
by such a theory is normally compared with experimental data.  By doing 
this, improvements in both the theory and the design of the system can 
usually be made.  Furthermore, once a theory which predicts the behavior 
of a system or class of systems is devised, analytical experiments using 
the theory often give impetus to the development of radically new systems. 

The work reported herein represents a first step in developing a 
theory for the dynamical behavior of free rocket launch systems.  As 
such, the results of this study should be useful in the ways previously 
mentioned.  In particular, this study appears to be the first in which 
the motion of rocket/launcher systems during the detent, guidance, tip- 
off, and free-flight phases of the complete flight is considered. 

Studies of various aspects of free rocket launch dynamics have 
already been made [1,2,3].  Because of the advances in computational 
methods and simulation of dynamic systems in general it is important 
that such a study be conducted.  This report is a contribution in this 
regard. 

In Section II, a simple physical model for a single-round 
launcher/rocket system is described.  This model includes the effects of 
many factors which contribute to mallaunch of free rockets and possesses 
enough flexibility to allow for addition of the effects of other factors. 

Differential equations, the solution of which provides a description 
of the motion of the system, are derived in Section III using the 
Eulerian vector approach.  The vector equations which are obtained are 
converted to matrix equations amenable to digital solution by using 
modern matrix/vector algebra.  As a result of such conversion, the burden 
of performing much of the algebra involved i'n computing derivatives of 
the dependent variables may be placed on the digital computer. 

Section IV provides descriptions of some of the methods used in 
implementing the digital program.  In particular, the manner in which 
spin torque and thrust profiles are generated, matrix algebra is per- 
formed and the integration of the equations is carried out are explained. 

Typical results obtained using the digital computer program (Fortran 
IV computer code) are presented and discussed in Section V and a summary 
and conclusions based on the study are presented in Section VI.  The 
appendices are descriptions of the input needed for the program and a 
listing of the computer code. 
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Section II. PHYSICAL MODEL FOR THE SYSTEM 

a. General Comments 

The physical model adopted for the current study is described 
in this section.  The model is fairly general in that it allows for 
rotational motions of an arbitrary, rigid-body launcher and arbitrary 
(six degrees of freedom when not constrained by the launcher and five 
degrees of freedom when constrained) motion of the rocket which is 
modeled as a constant mass rigid body. The model includes the effects 
of: 

1) Thrust malalignment. 

2) Large initial launch angle (elevation). 

3) Mass unbalance (both static and dynamic) of the rocket. 

4) Flexibility of the launcher/rocket interface. 

5) The detent force. 

6) Gravity tipoff. 

7) Variable spin and thrust programs. 

8) Friction. 

Figure 1 is a graphical depiction of the complete model.  In that 
figure is shown a rocket of mass m, which rests upon a launcher of mass 
M.  The rocket is connected to the launcher by mechanical devices which 
rigidly constrain the rocket's relative motion along the prescribed line 
of flight (through a detent device which is assumed to act at the rear 
rocket support) and flexibly constrain relative pitch and yaw motions of 
the rocket.  The system of two rigid bodies adopted for the model has up 
to nine degrees of freedom, with eight during the detent phase. 

In the following sections, the launcher and rocket models are 
treated separately and relevant definitions are given. 

b. Launcher Model 

The launcher model may be represented by the single rigid body 
shown in Figure 2.  This body has three degrees of rotational freedom 
about the fixed point 0 which, in general, does not coincide with the 
launcher's center of mass C .  The coordinate system* OXYZ, which is 

Li 

inertial and has its Z-axis directed vertically down and its X-axis 

*A11 coordinate systems used or referred to herein are dextral, 
orthogonal systems. 
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Figure 2.  Launcher physical model. 

directed parallel to the horizontal projection of the desired flight 
path of the rocket, and the C_x_.y_.z_ system, which is fixed in the 

Li     Li     Li     Lt 

launcher, are also shown in Figure 2.  The stiffness and damping of the 
launcher are assumed to be concentrated at the point 0, exerting a 
torque, T  , about the point.  The mass distribution of the launcher may 

be arbitrary, but is assumed to be known. 



The springs, which are shown connecting a rocket to the launcher, 
are intended to model the flexibility characteristics of the parts of the 
launcher and the rocket which couple the two, i.e., the launcher/rocket 
interface.  After detent release the springs translate parallel to the 
x-axis with the rocket and exert forces in the y - and z -directions at 

the points f and a.  Also, frictional forces resulting from sliding con- 
tact of the shoes (or other connecting devices) are assumed to act, 
opposing the sliding motion.  Finally, gravitational effects predicated 
on a flat earth model are included. 

In Figure 3, the vector R locates the launcher's center of mass and 
R and S  together locate the point a, which lies on the centerline 
—    —a 
(geometric) of the missile and the y z plane which contains the aft 

Li  J_t 

shoes.  Furthermore, Mg is the launcher weight vector. 

c.  Rocket Model 

The rocket model which was adopted for this study is shown in 
Figure 3.  The rocket is assumed to be a single rigid body of constant 
mass, m, and the mass distribution of the rocket is assumed to be 
arbitrary.  The forces which are considered to be acting on the missile 
are the thrust, the rocket's weight, forces transmitted by the springs 
which connect the rocket to the launcher, frictional forces, the detent 
force (which acts at a), and external forces, such as pressure forces due 
to rocket plume impingement on the launcher and aerodynamic forces. The 
torques which act on the rocket include those due to the above forces and 
the spin torque generated by a spin motor or other device and frictional 
torques in the spin bearings (or tube reactions in a tube-type launcher).* 

In Figure 3, the vector u + S + R locates the rocket's center of 

mass, which does not necessarily lie on the rocket's geometric axis of 
symmetry.  The C x y z  coordinate system is fixed in the rocket, and J m nrm m ' 
the vectors £f    and £    will be used in following sections in the deriva- 

tion of equations of motion. 

*A nonspinning rocket model with the shoes modeled as springs has been 
briefly studied in Reference 4. 
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Section III. EQUATIONS OF MOTION 

a.  General Comments 

All derivations of equations of motion for dynamical systems 
in which relativistic effects may be ignored are based on Newton's laws 
of motion.  Sometimes these laws are applied directly, an approach which 
we term "Eulerian." Other times the dynamicist may use the formalism of 
the Lagrangian and Hamiltonian* approaches in applying Newton's laws 
somewhat indirectly.  The choice of approach, or method of attack, is 
somewhat arbitrary depending on the type of constraints, the purpose 
for which the equations are being obtained, the prejudices of the analyst, 
etc. 

When the constraints on a fairly complex dynamical system are holo- 
nomic, Lagrange's equations are often used because this allows the con- 
straints to be more or less automatically satisfied and because, once the 
kinetic energy and generalized forces have been formulated, the rest of 
the derivation is essentially mechanical. 

The Lagrangian approach has drawbacks, however.  For example, the 
second-order differential equations which are obtained thereby are often 
intricately coupled and very complicated and the algebra involved in the 
derivation, although mostly mechanical, may be extensive.  Furthermore, 
if the system model is changed in some manner, it may be necessary to 
repeat a large portion of the derivation. 

The Eulerian approach's major drawback is probably the difficulty 
of including the effects of constraints into the equations.  However, 
the Eulerian approach is straightforward and, in the author's opinion, 
offers more flexibility than the Lagrangian approach, especially when 
modern vector/matrix methods are used to convert vector equations of 
motion to matrix equations which are to be solved numerically on a digi- 
tal computer.  Hence, the Eulerian approach was adopted for the deriva- 
tion which follows in Subsections III.c through Ill.f. 

As a prelude to the derivation, some comments on vector/matrix nota- 
tion are made in Subsection Ill.b. Next, in Subsection III.c, Newton's 
laws are applied to obtain the governing dynamical equations in first- 
order form.  The kinematical aspects of the launcher/rocket system are 
treated in Subsection Ill.d, while the effects of constraining the 
rocket's motion during the detent phase of launch are discussed in Sub- 
section IlI.e and explicit expressions for the external forces and torques 
acting on the rocket and the system are determined in Subsection Ill.f. 

*Usually the Hamiltonian approach is reserved for use when the system 
is conservative. 



b.   Vector/Matrix Notation 

In deriving equations of motion for complex dynamical systems, 
vectors, although not completely indispensable, are very nearly so. 
Vector differential equations cannot, of course, be directly programmed 
for numerical solution; however, one may transform such vector equations 
in equivalent matrix equations in which matrix operations isomorphic to 
vector operations, such as multiplying a row matrix times a column matrix 
to get the result of a vector dot product, are used. Moreover, by using 
matrix operators isomorphic to vector operators, much algebra may be 
avoided by the analyst and passed on to the computer. 

As an example, we consider the vector equation of motion for a point 
mass m moving under the influence of an external force F in a coordinate 
system Oerjt which has a fixed origin 0, but is rotating with angular 
velocity w and angular acceleration u as shown in Figure 4. 

Figure 4. Geometry for the point mass motion example, 

The equation of motion may be written in the vector form, 

mr = mtr" + (l>xr + 2wxr+oj x(w x r) ] = F   , (1) 

10 



where 

r = i &1 +  T]e2 + £e3   , (2) 

u) = w^ + we2 + w3e3   , (3) 

r = ieL + T!e2 + |e3   , (4) 

and the unit vectors e. rotate with the 0|T)£ system.  Equation (1) holds 

regardless of the system in which F is expressed.  For example, we may 
write F as 

F = FXI + FyJ + FZK   , (5) 

where I, J, and K are nonrotating unit vectors associated with the iner- 
tial system OXYZ (Figure 4). 

To write Equation (1) in an equivalent matrix form, we must first 
express each term in the same basis; i.e., each vector term must be 
expressed in terms of the same unit vectors.  If C is the direction 
cosine matrix such that 

(6) 

then 

- = Fl el + F2 e2 + F3 e3   ' (7) 

where 

(8) 

11 



Using the same notation for column matrices and the vector counter- 
parts, e.g., 

r  = and F = (9) 

we may write 

oo 
m(r + u r + 2w r + OJOJT)  = C  F (10) 

where the tilde above a vector denotes a certain skew-symmetric matrix 
formed from its components.  To illustrate the tilde notation, we 
consider [5] 

u) = 

0 

to„ 

•«, u,2 

•U> 

-u2 U1 

(11) 

Upon multiplying w times the column matrix r, we find that the elements 
of the product column vector are the components of wxr in the (i, j, £) 
basis. 

T ° Returning to Equation (10), solving it for _r and defining (u v w) =x 
(where T denotes the transpose), we obtain 

(u v w)T = - (£> r + 2wV + wo5r) +-C=F (12) 

and, of course, 

0    /      NT 

r = (u v w) (13) 

as the equations which govern the motion of m (assuming that w and CJ are 
known). 

The usefulness of vector-matrix conversion is now evident.  General 
digital computer subroutines can be written to form tilde matrices from 
vectors and multiply matrices and hence evaluate the right-hand side of 
Equation (12), which will be a column matrix.  Thus, the equations of 
motion of a complicated dynamical system do not have to be completely 
reduced to scalar form by hand to program them. 

12 



The advantages of using a digital computer to perform a great deal 
of the algebra are many, but two of the foremost ones are that mistakes 
in algebra (especially minus signs) may be avoided and that the programm- 
ing statements may be more concise, hence avoiding programming errors. 

In what follows, we will use the tilde notation just explained as 
well as (1) an underline for either a vector or a column matrix, (2) a 
double underline for a second-order tensor or a square matrix, (3) a 
superscript T to denote the transpose of a matrix, and (4) a superscript 
-1 to denote the inverse of a square matrix.  Three other convenient 
definitions which will be utilized are 

1 0 0 

I = 0 1 0 

0. 0 1 
1   _ 

"I 0 0 

Sis 0 0 0 

0 0 0 

(14) 

(15) 

and 

E23 = 

0 0 o" 

0 1 0 

p 0 1_ 

(16) 

c.   Dynamics 

The approach used in obtaining the equations of motion of the 
launcher/rocket system is as follows.  First, the vector equation 
governing the rotational motion of the system about 0 is obtained.  When 
the rocket separates from the launcher, certain terms may be dropped 
from this equation to obtain the governing equation for the launcher 
alone.  Second, the equations for rotation and translation of the rocket 
are developed.  Two forms of the equation of rotational motion of the 
rocket are developed, since during detent and tipoff it is convenient to 
sum moments about the point a on the rocket centerline (Figure 2). 

(1)  System Rotational Motion.  Consider Figure 5 in which the 
system of launcher plus rocket is depicted as two rigid bodies.  Figure 5 
shows the vectors R, S , and u, which serve to locate the centers of mass 

-  -a     — 

13 



Figure 5. Geometric description of position vectors 

of the two bodies, and the generic position vectors _oT and _p to ele- 

ments of mass in the launcher and rocket, respectively, from their mass 
centers. 

By definition, the angular momentum of the system about 0 is 

2 =  / (R + o^) X (R + _gL) dM +  / (R + Sa + u + pj 

M m 

X(R+S  + u + n ) dm —  —a  —  —m (17) 

The expression for H may be simplified by using the definition of the 

center of mass of a rigid body.  We have 

JpLdM=     Jj 
M M 

pL dM =      / pL 

M 

(18) 

14 



and 

J pm 
dm = Jh pm dm = 0 (19) 

m m 

and, since R, R, S , S , u, and u do not vary during the indicated inte- 
^     3.  a 

gration over the masses, we may simplify Equation (17) to obtain 
Equation (20): 

/. 
H    =MRXR+      lpTXpTdM + m(R +  S     + u) 
—o J —L       —L —       —a 

M 

X(R+S     + u)   +      In    X  p    dm 
—      -a      - I -t:m      -m U (20) 

Let _w and ft denote the angular velocities of the launcher and rocket, 
respectively, so that 

A. = - x PL (21> 
and 

Pm = 
n x Pm   • (22) _m  —  _m v  ' 

By substituting Equations (21) and (22) into Equation (20), it may be shown 
that 

H =T,  •cj + m(R+S +u)X(R + S +u) + I  • 0.       ,      (23) 
—o  -L/o  —    -  —a  —    ^-  —a  —   =m  — 

where I , and I are the inertia dyadics of the launcher with respect -L/o    -m ' r 

to point 0 and the rocket with respect to its center of mass C . 
m 

The time rate of change of H , H , is equal to the external torque 
about 0, T .  Explicitly, 

o 

H=IT,  • u+ux L,  .tu+ m(R + S + u) -  =L/o  _  -  =L/o  -    -  -a  - 
1J 

• •     • • 
x(R + S+u) + I  -fi+^XI '  n , (24) _ _a _  =m - _  =m _ 

L5 



where we have assumed that I , and _y are expressed in the launcher basis 

and  I     and ft  in the rocket basis.       Equation (24) is   the basic  equation 

governing the rotational motion of the system about 0. We must, however, 
consider the rotation and translation of the rocket before we can solve 

o o 

Equation (24) for _ui (in matrix form), since u may be present implicitly 

in the third term during the detent phase, we  also point out that in 
Equation (24) and in certain equations which follow a small circle above 
a vector and an L or m underneath it indicates the derivative of the 
components only of such a vector expressed in the launcher (L) or rocket 
(m) basis. 

(2)  Rocket Rotational and Translational Motion.  Considering 
the rocket only, its equation of rotational motion may be expressed as 

o 

i   • ft + ft x i   • n • T , , (25) =m      —      —       =m      —      —m/cm m 

or as 

I       ft + ftXI-ft = -uX m(R + S    + u)  + T   , 
=m   —      -       =      —        — —      — a      —        —m/a 

m 

(26) 

where T ,„     and T , are the torques on the rocket about its center of 
—m/C     —m/a m 

mass and about a, respectively. 

The translation of the rocket's center of mass is governed by the 
equation, 

(! + I + «) - P    , (27) m 
—  —a  —'   —m 

where F  is the external force on the rocket.  More explicitly, we have 
—m 

*That is, I_ ,  = I    iTiT - I    L j_ - I     i k - I   J-k ' =L/o   xTxx  L L   xTy_  L
JL   x_ zT       xTyT

J 

L"L     "  " "LyL     L L XLZL XLyL L X 

+  I jTjT   -   I jTkT   -   I kT iT   -   I ki    +  I lekT   and 
yLyL L L yLZL     L  L XLZL L  L yLZL L  L Z

L
ZL  ^  L 

^     /\     /\ 
U = U), i + w»i, + w.k , with similar definitions for I  and ft. 
-   1 L   2JL   3 L' =m    - 

16 



o o 

i  w XR+wX(wxR)+S     +  2  UX   S    +u  X  S 
-      - -      - a ~ a     7       ~a 

~r L 

+ wx (wxs ) + fixu + nx (nxu) 
a.       ~~ 

m 
*m (28) 

Equations (24) through (28) may be used in a variety of ways.  What 
we really want to achieve, of course, is a consistent set of equations 

o   o       oo 
which may be solved for u>, ft, and S . 

L m     — 

Using Equations (26) and (27), Equation (24) can be rewritten in 
the form, 

SL/O 
w+wxi,     •   u> +   (R + S    +u)XF    + T   , 

—       —       =L/o      — —      —a      — —m      —m/cm 
T   , (29) 
—o 

which is a suitable equation for u>, if F  and T ,  do not include con- 
m/C m 

straint forces and torques;  whereas, if they do, & will also appear in 
those forces and torques.  We shall consider constraints on the rocket 
and their effects on the forms of the equations of motion in 
Subsection Ill.f. 

Before considering the kinematical aspects of our problem, we note 
that |jx>| should be very small for most launchers so that we may drop the 
term u> X I_ .  • U from Equation (29) and similar terms which appear in 

Jj / o 

Equation (28).* 

d.   Kinematics 

Kinematics is a subject area which deals with the problem of 
describing position, velocity and acceleration in terms of geometric 
variables.  In our case, we will use kinematical principles to (1) express 
_w and ft in terms of Eulerian angles and their derivatives, (2) obtain an 
alternate equation of motion for the rocket's center of mass, (3) derive 
equations for the time rates of change of X, Y, and Z, the inertial 
coordinates of C , (4) obtain equations defining the orientation of the 

rocket with respect to the launcher, and (5) develop the transformation 
matrices needed to convert the dynamical (and some kinematical) equations 
to the (l,3,fc) (inertial), (£ j ,tc^), or (^m»Jm>^m) basis. 

*These terms have been retained in the computer code, 

17 



(1)  Launcher Orientation and Angular Velocity.  The orienta- 
tion of the launcher may be defined by the set of Eulerian angles (QL, 

QL,a: ) shown in Figure 6. The rotation sequence of 2-3-1 was chosen so 

Figure 6.  Launcher orientation. 

that large values of the elevation angle oc   may be easily incorporated. 

It is assumed, however, that QL and <X are small angles so that 

cos QL - cos OC   ot  1, sin Ot.  =* a      and sin a ^ GC  .     With this assumption, 

the direction cosine matrix which relates the (I,J,K) and (i ,j ,tc ) 
/s/s/sX /N/V^X Li       Li       L, 

bases;   i.e.,   (i J  k )     = B(I  J K)     is 
L   L   L 

18 



B e 

COL a„ -sa„ 

a sou - aca l       a sa   + a oca 

Sau -a. CO. 

(30) 

where  the   shorthand   notation S = sin and C = cos has  been used. 

4N /s A 
The components  of _w =  w    i    + OJ„  j    + u    k  ,  may be  expressed  in 

the   forms, 

w1 = a   - a2 sa3 
(31a) 

w2 = a2 caca   + a sc^ (3lb) 

and 

(xu = -acasa   + aca (3lc) 

Since  the a.   are  required  to be  small  and a    and a.  are  small  also, 

"l * ai • 
(32a) 

u>2- a2 
(32b) 

and 

W3^a3 
(32c) 

or 

(33) 

(2)  Rocket Orientation and Angular Velocity.  Because the 
rocket is assumed to be connected to the launcher by springs, the 
orientation of the rocket relative to the launcher as well as its 

19 



inertial orientation should be known.  We also require knowledge of the 
rocket's angular velocity relative to the launcher, since the springs 
possess structural damping characteristics. 

The inertial attitude of the rocket may be defined by a 3-2-1 
sequence of Eulerian angles denoted by \|f, 6,   and <t> , respectively, and 
displayed in Figure 7.  The matrix Q which defines the transformation 

Figure 7.  Inertial orientation of the rocket. 
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A A A /\ S\     •s. 

from the (I J K) basis to the (i j k) basis is, in rotation matrix form, 

C  = 

10.0 

0       C<t> S<J> 

0       -SO       CO 

ce      9    -se 

o 1     o 

se      o    ce 

C\|r Sijr o 

-St C\|/ o 

o o       1 

(34) 

and   the components   of  ft =  ft-   l    + ft0   i    + ft_  k    may be  expressed   in the 
- — im^mJm 
forms, 

ft.   = 0   -  y\r se (35a) 

ft   = e co + t ce so (35b) 

and 

ft_ = -e so + t ce co (35c) 

Equation (35) may be used to obtain 

0 = ft + (ft SO + ft CO) tan 

= ft2 co - a3s o   , 

(36a) 

(36b) 

* = 

ft SO + ft CO 

ce 
(36c) 

Since only the angle t may be assumed to be small, Equation (36) may not 
be simplified. 

The rocket's orientation relative to the launcher-fixed C x y z 
L L L L 

system may be defined by the Eulerian angle set (6„ ,e„,e..) .  These angles 

are depicted in Figure 8.  The rotation sequence is the same as that for 
the set (t,e,0) but both 0 and 0„ may be assumed to be small.  By using 

the angles 6.  we may form a matrix ^ which specifies the transformation 
A  •'A   A  . A   A   A 

from the (iT,jT,k) basis to the (i  j  k ) basis.  Explicitly, 
L L L m m m 
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*•-«- 

Figure 8. Orientation of the rocket relative to the launcher. 

5;JC01 + 02
S01 

e3se1 + e2ce1 

63 

C0, se, 

•S01 Ce 

(37) 
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The angular rates 0. are related to Q,  and w by the equation, 

a - A u) = 

°l  -   03 S02 

?2C01 +  0;}C02S01 

?2s©1 + e3 ce2 ceL 

(38) 

Since 0- and 0 are small, 

A OJ « 

1       0 

0       C0L S0L 

0       -S0 C0 

p      -n 
wl 

w2 

.W3 

(39) 

so  that 

?   - a   + (n2S0   + nee. - w )tan 0   - w 

?2 =*  fi2  C0X   -   Oj  S01   -   w2 

(40a) 

(40b) 

and 

a2 s©1 + n3 C0L - w3 

eel (40c) 

Assuming  that  0„   is  appropriately small, 

"V 
52 

~ 

s. 

nl" wl 

fl2ce1 - n_se   - u 

n2S0L + a3c0. - w_ 

(41) 

Equations (30), (33), (34), (36), (37), and (41) are sufficient to 
connect the rotational motions of the system with the physical world 
through geometry.  We still need analogous equations for the translational 
motion of the rocket. 
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Let the velocity V of C be expressed as 
—    m     r 

V = U i +Vj +Wk —     m     m     m (42) 

We then may write 

V = V + Q X V (43) 

Since 

F 
V = =2 
—   ra 

v = a x v + — —  —  —   m 

(44) 

(45) 

A matrix form of Equation (45) is 

= -a v + A — 
 = m 

(46) 

• A   /\   <N 

if we assume that F is expressed in the (iT,jT,k_) basis. —m L  L L 

The velocity of C may also be expressed in the form, 

V=XI + YJ + ZK (47) 

and it then follows from the definitions of A, B, and C that 

X U u 

Y T     T 
= |     A V = cT V 

Z w w 

(48) 

Because we also want to know the vector S , we let 
—a 

S = XT  i_ + YT  j. + ZT  L -a   L  L   L  JL   L  L (49) 
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X. = x. + s. (50a) 

YL =YL  +52    • 
a    a 

o 

(50b) 

and 

ZL = ZL  + &3   ' 
a    a o 

(50c) 

where X  , Y  , Z   are initial values of the indicated variables, and 
Li l-i XJ a    a    a o    o    o 

consider Equation  (28).     We  thereby obtain  the matrix equation, 

= —  - to   (R + S   ) m      I a &
1&2&3J    "  =   -  - "  ^   -fl-fiJ*     '   (51) 

We now have dynamical and kinematical equations for the system when 
there are no constraints, since Equations (25) and (29) are then uncoupled 
as far as w amd Q  are concerned.  Thus, Equations (25) and (29) can be 
solved for the matrix equivalents of these vectors and the results sub- 
stituted into Equation (51) when there is no detent constraint.  However, 
when the rocket is constrained by the detent force, which we assume acts 
through the point a, Equations (25) and (29) are, in general, coupled, 
and equations which account for this fact must be obtained for that 
phase of the launch.  We also need to convert the remaining equations 
for rotational motion into appropriate matrix equations and to obtain 
expressions for the forces and moments.  These things are done in the 
next two subsections. 

e.  Constraints and Matrix Forms of the Equations 

The detent force is assumed to be the only "hard" constraint 
on the rocket's motion; i.e., it is the only constraint that completely 
prohibits motion.  This force, which, of course, varies in magnitude and 
direction during spinup and thrust buildup, is, as stated, assumed to 
act through the point a, and to prohibit motion of the rocket in the 
x direction. This constraint may be defined mathematically as 

a 
(52) 
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and 

KL  -0 
a 

(53) 

during detent.  If we let 

F  = F —m 
ex 

+ F  + F 

where F   is the resultant of the external forces on the rocket (mclud- —m 
ex 

ing those due to gravity, thrust and the rocket springs), F  is the 

detent force and F  is the frictional force, then Equations (52) and 
_mF 

(53) are satisfied if 

• 2 m u X (6  j + 6„ k_j - mH X (Q.  X u) 
-m 

L  ex 

+ mu X ft + m(R + S ) X w - F  +F 
a   L  _mD 

-m ,] ' V ° (54) 

The detent force has only an x -component in our model, thus 

F I   2 m u) X \£>2  j    + &     k   \ +raflX   (ft X u) 

1       -    ) m(R +S)Xco-muXH-F -F #iT) 
"a        I m     ^ex      _mFj Lj 

(55) 

The rocket will start to move in the xT-direction when 
Li 

F -   2 m OJ X   (&„   j.   + &„  k)   -  m n X   (Q. X u) 
-m — /     L J ~ 

ex 

+ m(R +S   )   X   u+muXfi 
^-      -a. - ~     - 

L m 
> F 

max 

+ 
"•f 

(56) 

Inequality (56) may be used as a check to determine when detent release 
occurs. 
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Consider now Equations (26), (27), (54), and (55).  Combining these 
equations, we obtain * 

=m 
r °  -1 ft  -  u X    m(R + S   )   X U   *   i 

m L L -I 

uXmuXft-ii+ft 
*- m J 

xi   • n 
=m      — 

2m[- X ('2 3L + 63 *J u X (2 

+ m[ftX (ftXu)]   • JL \\ + Im/a> (57) 

as the equation of rotational motion of the rocket before detent release, 
In a similar manner, we obtain for the launcher, the equation, 

IL/o • „ - (R + S 
Jj 

-L  ^ + V 

X [m(u X JJ) • ij iL = -(R + Sa) X |2m^ X (^ ^ + 63 kj] 

• iL + »[n x (ft x u)] • iLJ iL - (R'+ sa) x j^F^ - j^ JL 

+ (\x'\^] + T  - T , —o  —m/a 

Equations (57) and (58) may be combined to form the matrix 
equation, 

•u A E„. F   + T ,  - ft I  • ft 
— = =23 —m    —m/a  — =m  — ex 

(58) 

=11   1     =12 

" 0   ~ 
ft 
m 

0 

L 

= 

=21         =22 -(R + S ) E0„ F   -AT,  + T 
^   —a       =/ i  —m      =  —m /a   — 

ex m/a  —o 

•2 m u A E. OJ E00 SQ - m u A E, A
T ft ft u 

~ " ^   ~    L      ~ = 

•2 m (R + S ) E. u) E00 S  - m (R + S ) E, AT ft ft u 
^~  —a  -1 — -15 -ra ~a    =1 =     ~. 
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/\  «N  >\ 
where we have assumed that T ,  is expressed in the (i ,i ,k ) basis and 

—m/a mm m 
T and F in the (iT,jT>10 basis and where —o    —m L L L 

J,,=I -muAE, A u =11  =m    —==i=— (60a) 

J-2 = -m u 4 |  (R + S ) (60b) 

J21 = -m (R + S ) |x A
T u = J^2 (60c) 

and 

=22 S =L/o " » © + Sa) Bl (R + Sa) (60d) 

Hence, by inverting the matrix, 

J = 
=11 

=21 

=12 

=22 

and premultiplying Equation (59) by J's inverse', L, we get 

(61) 

L,,   T    + L10  TT =11 —m       =12 —L 

L01   T    + L00  TT = 21 —m       =22 —L 

(62) 

where T and T  are defined such that 
-m    —L 

o 
n 
m 

T 
—m 

o 
CO 

L ^L 
-                        - -                    •    * 

J  (63) 
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The inverse of J may be determined by inverting only 3x3 matrices, 
which can be easily done, explicitly. The formulas for computing the 
L.. are [6] 

hi 

=22 

= Ull " =12 =22 =2l] 

= ^=22 " =21 =11 =12J 

(64a) 

(64b) 

=12 == "=11 =12 =22 (64c) 

and 

=21 == "=22 =21 =11 (64d) 

The matrix equations of motion for post-detent phases are 

I  ) = -0I  a + T ,„ =tn ~"   — —m •"   m/i_.m 
m 

and 

|(R + Sa) + =L/o —      — o  = —m/Cm 
T ~ 1 
A u A •m 

where 

F = F   + F 
_m  ~mex  "%• 

(65a) 

(65b) 

Equations (30), (33), (36), (37), (41), (46), (48), (51), and (62) 
or (65) are those required to simulate the motion of the system.  However, 
F , T / .and T must be defined before these equations may be solved, 
-m -m/a'    ~o n J 

Such definitions are given in the following subsection. 

f.   Forces, Torques, and Equilibrium 

(1)  Forces and Torques on the Rocket.  The forces which act on 
the rocket were assumed, for the purposes of this study, to be (1) the 
force due to gravity, F   (a flat earth is assumed), (2) the thrust force, 

mg 
F  , (3) the detent force, F^, which has previously been discussed, 
~mT ~D 

(4) a frictional force which opposes the rocket's motion parallel to the 
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x -axis, and (5) the forces F^ and F  in the fore and aft springs which 
L -fs     as 
couple the rocket to the launcher.  Explicit expressions for these forces 
are derived in what follows. 

(a)  Gravity Force.  The gravity force on the rocket is 
mgK so that in matrix form (in the \>3T>\    basis) 

F  = B 
—m 

0 

0 

mg 

(66) 

where g is of course the local acceleration of gravity. 

(b)  Thrust Force.  The thrust force F  is obtained by 
  —10- 

assuming that the thrust F  is rocket-fixed and is misaligned with the 

x -axis only a small amount.  As shown in Figure 9, the angular thrust 
m 
malalignment angles are denoted by a  (a rotation about a line parallel 

to the y -axis) and a  (a rotation "essentially" about a line parallel 
m z 

to the z -axis, 
m 

Figure 9.  Thrust vector definition. 

The magnitude of F  is denoted F, so that, 

Fm^Fi + a.    Fj  -a Fk 
—T     m   z  Jm   y   m 

(67) 

From Equation (67), it follows that, in matrix form, 

4, = A IT -n^  -  T (68) 
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(c)  Spring Forces.  The forces in the springs which couple 
the rocket to the launcher are assumed to be linear functions of the 
relative displacements and velocities in planes parallel to the y z -plane 

Li     J-i 

of the points f and a, measured, of course, from their undeformed posi- 
tions in these planes.  Thus, the force in the aft springs is (matrix 
form) 

F  = -C 
—as   =a 

"0  " "0 

62 -K 
a &2 

IAJ k. 
(69) 

where C and K are damping and stiffness matrices, respectively. 

To determine the force in the forward springs, we consider Figure 10, 
From this figure, we conclude that 

-fs   =f 

ro ' "0 " "0   " "0 

62 
+ 4a §2 1 • =f' &2 

+ 4a 92 

b3J kJ kJ l63 

,    (70) 

<La'L + (vLa0
+62)iL+(*La0 + 63)kL 

Figure 10.  Displacements of points f and a. 
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where , 

— fa 

0  0 

0  0 

0 
fa 

0 

-i 

o 

fa 
(71) 

and i  is a negative number, since it is the x -component of I, which 
la m — ta 

lies on the rocket centerline and is directed from f to a. 

(d)  Frictional Force.  Guidance mechanisms, such as rails 
and shoes, inherently are friction producers.  The frictional force on 
the rocket opposes motion and in our model is assumed to act only parallel 
to the x-axis.  Since the spring forces, F, and F  , act perpendicular 

L rs     as 
to the xT~axis, it is assumed that the frictional force's magnitude is 

(IF  I + F, ), where a  is a friction coefficient.  The direction of M-V l_E. as •fs 
the frictional force is assumed to be in the -x -component of the 
rocket's weight.  Therefore, 

^F = -,(iifsi + nasiX . (72) 

(e)  Torque About C .  The torque about C  is due to the 
 m m 

thrust, the springs, and friction. Explicitly, in vector form, we have 
for center-shoe-type rocket guidance, 

T^  --(u-iF)XIT- (u+ifa) XFfs 
m 

uXFas   -   (-u- Jfa±   Pf  JL)   X^|Ffs|iL 

(-U+ PQ JT> 
X ^lloJ h    +   C1 - ^c)I Ja JL as' L s —s 

(73) 

where p and p are the distances to fore and aft rails, respectively, 

from the rocket centerline and the signs on p and p are determined by 
r     a 

the signs of the y -components of Ff and F ^ so that the frictional 
J_i IS        do 

forces act on either the right (+) or left (-) side of the rocket at the 
fore and aft shoe positions.  Also, in Equation (73), £   , a vector from 

r 
a to a point on the line of action F may be expressed as, 
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—F   F m   y Jm   z 
(74) 

where a    and o    are normally much less than the rocket's diameter and 
y    z 

represent the amount of linear thrust malalignment.  Finally, u  is the 
spin-torque friction coefficient and T  is the spin torque. 

A suitable matrix form for T ,_  (rocket basis) is —m/C 
m 

T ,n     = ~(u - O F - (u + i. ) A F,  - u A F —m/C     ^-  —F —T   ^-  —fa = —fs  - = —as m 

+ (u +lfa   " Pf) u|Ff 1(100) 
•fa  £f fs 

+ (S " pa) ull^KlOO)" + (1 - u8) Ts (75) 

where 

£f " ± H 

0 0 1 

0 0 0 

-10  0 

(76) 

-Ba = * Pa 

0 0 1 

0 0 0 

-10  0 

(77) 

(f)  Torque About a.  The torque on the rocket about point a, 
T / , may be simply expressed in the matrix form, 

T,  =T,_  +uAF 
—m/a  —m/C   — = —m 

m 
(78) 

(2)  Torque on the System.  The torque T  is that about 0 due 

to external forces on the system of launcher plus rocket.  We assume 
that the only external forces acting on the system are those due to 
gravity, the rocket's propulsion system and the launcher supporting 
structure which is modeled as pitch, yaw, and roll torsional springs. 
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It is assumed that the natural frequencies of the launcher's vibra- 
tion in pitch, yaw, and roll are known. We designate these natural fre- 
quencies (undamped) by UJ  , W  , W  , respectively, and the associated 

\       \       \ 
damping ratios by £  , £  , and t  . We also assume that the launcher 

yL  ZL      XL 
equations of motion can be written as 

iT a + cT a + KT a =  f 
=L o —  =L —  =L —  — 

(79) 

where f may be a nonlinear function of OC =  (Oi    0l~ Gt )     and its deriva- 

tives and any other of the variables which define the system motion, and 
also as 

so that, 

a =  2 

t 0 0 u)     0     0 
n 
XL 

0 w     0 
n 
yL 

0 

a 

+ 

10 

u 

111 

a = I, , f -  =L/o — 
(80) 

CT " IT / =L  =L/o 

2r  u   o 
^xT  n 
L  XL 

ir     w    o 
yT 

n 
L   yL 

2f   u) 
^zT  n L  z. 

(81) 
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and 

h h/o 

U) 

xT 

0) 

(0 

(82) 

are the launcher damping and stiffness matrices. 

The torque about 0 may now be expressed in the matrix form (launcher 
basis), 

1 = -C a -  K^ a + (R + S  AT u Aj B mg + R B Mg 

+ (R + S + AT i_ A ) AT F,„ + AT T    . (83) 

\—  -a  = —F =/ = -T  = —s 

(3)  Equilibrium Considerations.  It is assumed that initially 
the system is in equilibrium under gravity and elastic structural forces. 
It is further assumed that the small elastic displacement of the rocket 
relative to the launcher may be neglected in determining the equilibrium 
orientation of the launcher, but that the equilibrium orientation of the 
launcher should be used in computing the rocket's relative equilibrium 
displacement. 

(a)  Launcher Equilibrium.  Let Of denote the orientation  a       _0 

vector of the launcher when the launcher springs are not deformed and 
let oc    denote the change in a which will result in a balance in the 

spring and gravitational forces.  The equilibrium condition then is 

i(R+S +u)B _g + MRB .g - K^ a 
3. C " ~"6 Li 

a (84) 

where, without loss of generality, it is assumed that A = | initially 
and where for small la 

'-e1 

B = -a    B + B 
=e   —e =o  =o (85) 

with B  denoting the matrix B in the undeformed state, 
=o       b = 
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By using Equation (85) in Equation (84) , we obtain 

[m(R + S + u) + MR] (lP"g) " K ) a = Z    ,     (86) 

where 

Therefore, 

Z = -[m(R + S    +  u) + MR] B  g    . (87> 
•a      ~ —    =o — 

a 
—e 

KL - [m(R + Sa + u) - MRj (BQ £)   ^ (88) 

and the initial value of a = a + a . 
—  —o  —e 

(b)  Rocket Equilibrium.  Since the rocket may translate 
in the y - and z -directions (x —motion constrained) as well as rotate, 

Li I i Li 

two vector equilibrium conditions must be satisfied; i.e., the sum of 
the forces acting on the rocket must be zero and the sum of the torques 
about a point on the rocket, say point a, must also vanish. 

Summing forces, we have 

F^ +F  +mB  g=0 (89) 
— fs  —as    =e —  — 

and  summing  torques  about  a,   we  find  that 

"ifa Ifs + m u fie g  =  0 . (90) 

It   follows,   from Equations     (89) and   (90),   that 

ifa Ias = -m(u + ifa)Be g        . (91) 

Let 

mgb  = m(u + ifa)Be  g . (92) 

Then, the equilibrium values of 5  and B  are 

-mgb 

e   fa a„» 
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and 

mgb. 

x.. k 
fa  a 22 

(94) 

where x,. i = Hr    and k   and k   are the elements of K indicated by 
fa m  —fa     a2„     a„„ =a 

the subscripts. 

Once &„  and &  are known, 6       and 6      may be obtained fr 
e      e e      e 

om 

-c, 

YLe       k 
fa  f 33 

(95) 

and 

9 
3    2 u e  xf k 

fa  f 22 

(96) 

where c„ and c„ are the indicated elements of 

c = m £.    B  g - i. Kr —    -fa =e —  -fa =f 
(97) 

g.  Rocket Inertia Matrix 

The centroidal inertia matrix of the rocket, I , is obtained =m 
by assuming that the principal centroidal inertia matrix, I  , is known. 
Let ~Pm 

m 

'l 
0 0 

0 l2 
0 

0 0 I 

(98) 
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and let 

D 3 (99) 

denote the matrix required to transform from the C x y z system to the n m m m m 
principal system C x y z  (Figure 11).  Then, I  is given by 

m p p p =m 

I - D I  D =m  = =p = 
m 

(100) 

Figure 11.  Rocket-fixed and principal coordinate systems. 
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which, neglecting squares and products of u„ and u , explicitly is 

I -~ 
=m 

U3(1i - i2)    -^2al - i3) 

u3(IL - I2)    I2 

V1! - V   ° 

0 

I, 

(101) 

Since we may express I as 

=m 

xx 
•I    -I 
xy    xz 

•I    I 
xy   yy yz 

-I    -I    I 
xz    yz   zz 

(102) 

it follows from Equations (101) and (102) that 

I  oc 1  , I  --n„(I„ - I,) 
xx   1    xy  *j 2   1 

I  * I. , I  * ^ (I  - I ) 
yy   2    xz  ^2 3   1 

I  - I, and I  ^ 0 
zz   3     yz 
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Section IV. SIMULATION METHODS 

a. General Comments 

The equations which govern the motion of the system have been 
completely defined except for the magnitudes of the spin torque and 
thrust.  Since the manner in which the time variations of these quanti- 
ties is generated is more of simulation topic, it is therefore treated 
in this section.  This section also discusses matrix manipulations used 
in generating the right-hand sides of the time derivatives of the state 
variables and the method of integration used to solve the set of 27 
differential equations. 

b. Generation of Spin Torque and Thrust 

The magnitudes of the spin torque and the thrust are generated 
for computational purposes in the same manner; hence, we will describe 
the procedure for the thrust magnitude, F. 

Values of F at times when derivatives are needed are obtained by 
assuming that the thrust profile is piece-wise linear.  In the present 
version of the simulation program, four values of the thrust magnitude, 
F., j = 1,2,3,4, at times t , j = 1,2,3,4, are used for this purpose 

(Figure 12). When T. - t < t. n, the value of F is found from 
J       J+l 

F = V(VrFj)(t- V(Vi" V     •        (103) 

For t < t  (in the computer code, T5 = t., T6 = t , ... T9 • t_), F - 0 

and for t > t , F = 0. 

c. Matrix Algebra 

The matrix operations which are needed to generate the deriva- 
tives used in the integration process are (1) multiplication of a 3 X 3 
matrix times a 3 X 1 matrix, (2) multiplication of two 3x3 matrices, 
(3) generation of a "tilde" matrix from a 3 X 1 matrix, (4) inversion 
of a 3 X 3 matrix, and (5) matrix addition, subtraction and transposition. 
Matrix subtraction, addition, and transposition are carried out directly 
when necessary during the computations by using DO loops.  The other 
operations, or manipulations, are carried out in separate subroutines, 
all of which are very straightforward because all elements of the result 
are calculated explicitly even in the matrix inversion.  For completeness, 
the algorithms of the subroutines MATXV (3x3 times 3x1), MATMPY 
(3X3 times 3x3), TILDE (form 3x3 matrix from 3x1), and MATINV 
(inverse of 3 X 3) are given as follows:t 

tThese operations are, of course, well known. 
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Figure 12.  Thrust magnitude versus time. 

MATXV 

Input: 

A = 

all  a12  a13 

a21  a22  a23 

a31  a32  a33 

(104) 

Operations: 

W - Z a k vk, k = 1,2,3, j = 1,2,3 
(105) 

Output: 

w = 

~wl" 

w2 

_W3_ 

(106) 
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MATMPY 
* 

Input: 

TILDE 

A = 

all  a12  a13 

a21  a22  a23 

a31  a32  a33 

(107) 

B = 

bll  b12  b13 

b21  b22  b23 

b31  b32  b33 

(108) 

Operations: 

Output: 

*-2 a., b 
lk kj 

k=l 

(109) 

D = C = 

Cll  C12  C13 

C21  C22  C23 

C31  C32  C33 

(110) 

Input: 

X    l^i ^9 ^"\) (in) 

Output: 

X = 

0 
"X3 X2 

X3 
0 -X 

"X2 Xl 
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MATINV 

Input: 

A = 

all  a12  a13 

a21  a22  a23 

a31  a32  a33 

(U3) 

Operations: 

D  an   (a22 a33 - a.^ a^) 

+  a12 (a31 a23 - a^ a33) 

+ a13 (a21 a32 - a31 a22> (114) 

11 (a22 a33 
a32 a23)/D 

12 (a32 a13 a12 a33)/D 

13 (a12 a23 
a22 a13)/D 

21 (a31 a23 
a21 a33^D 

22 (all a33 a31 a13)/D 

23 (a£1 a13 all a23)/D 

31 
(a2]_ a32 a22 a31)/D 

32 (a31 a12 a32 all)/D 

33 (all a22 
a12 a21)/D (115) 

Output: 

B ,  DET = D 

Inversion of the 6x6 matrix J has already been discussed in 
Subsection Ill.f. 
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d.  Integration Method 

Various methods may be used to solve sets of first-order 
ordinary differential equations. The most popular type of self-starting 
algorithm is, however, the Runge-Kutta, and a fourth-order algorithm of 
this type was chosen for use in this study. 

The fourth-order algorithm is basically as follows [7]: 

Given the state vector x (a 27 X 1 matrix in this case) at time t 
and the time derivative functions f. (x,t); i.e., 

x = f(X,t)   , (116) 

1) Compute: 

wL = f(x(t),t)At   . (117) 

where At is the step size. 

2) Compute: 

Uj = x(t) + v^/2  . (118) 

3)  Compute: 

4)   Compute: 

5)  Compute: 

6)  Compute: 

7)   Compute: 

w2 = f (u^t + At/2)At (U9> 

u2 = x(t) + w2/2   . (120) 

w3 = f(u2,t + At/2)At .                (121) 

u3 = x(t) + w3  . (122) 

w4 = I(u3,t + At) At   . (123) 

8)   Compute the new state vector, x(t + At), from 

x(t + At) = x(t) + (wx + 2w2 + 2w3 + w,)/6  .      (124) 

By redefining t to be t + At and x(t) to be x(t + At) , one may repeat steps 1) 
through 8) until t is as large as desired, or until one of the elements of x has 
attained a certain value. 
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Section V. SIMULATION RESULTS 

a. General Comments 

As a check on the theory and the computer, several test runs 
were made using data which, it is emphasized, do not represent any actual 
launcher/rocket system, but some of which does correspond to physical 
data for the AERO Wind Sensitivity Rocket currently awaiting tests by 
the US Army Missile Command [8].  The data used to obtain the results 
presented here are given in the appendix as an example of the input 
needed for the computer program. 

Only a few of the more interesting plots which were obtained during 
this study are presented in the next subsection. 

b. Discussion of Some Typical Results 

Plots of various variables are shown in Figures 13 through 28. 
The plots were made and are exhibited to illustrate the capabilities of 
the program and also some of the effects of the mallaunch factors: 
(1) detent force, (2) mass unbalance, and (3) thrust malalignment. 

Five simulation runs were made.  These were obtained in the follow- 
ing manner: 

1) Run 1 — No detent force, mass unbalance, or thrust malalignment 
were included. 

2) Run 2 — A detent force of 1800 pounds (maximum magnitude) was 
applied. 

3) Run 3 — The detent force of Run 2 was retained and a mass 
unbalance caused by rotating the principal axis of the rocket through 
anangle uo = 0*00001* radian (about the y -axis) was included. 

4)  Run 4 — The detent force was retained and a thrust malalign- 
f 

y 
ment due to a = 0.0001* radian was included. 

5)  Run 5 — The detent force, mass unbalance of Run 3, and thrust 
malalignment of Run 4 were all included. 

Figures 13, 14, and 15 show the time histories of the launcher roll, 
pitch, and yaw angles, respectively.  Since the launcher is relatively 
stiff and massive (compared to other possible launchers), the disturbing 
influences of mass unbalance and thrust malalignment on the launcher 
motion are negligible compared to the effects of the detent force. 

*This is relatively small compared to values which may be expected, 
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Note that holding the rocket during spin-up caused a noticeable varia- 
tion in launcher roll and yaw.  However, noticeable is probably a 

-3 
misnomer if angles of less than 10  radians are considered negligible. 
The detent force has a noticeable effect on roll, pitch, and yaw, being 
sufficient to cause a pitch angle difference of about 0.00005 radian 
(amplitude). 

Figures 16 and 17 show the body-fixed (missile-fixed) angular 
velocity components ft. and fi as functions of time.  The thrust comes 

on when <t> - 3.66 radians and the missile leaves the launcher when 
<t> ~ 13.25 radians, and abrupt changes in the slopes of Q~ and Q,    are 

noticeable at these values of <t> . The choice of mass unbalance and thrust 
malalignment happened to be such that they tend to cancel each other 
until the thrust cuts off when * = 28 radians. Even after thrust cutoff, 
the mass unbalance effects persist, but for Run 5 the oscillations in 
0,    and ft are of smaller amplitude than their Run 3 (mass unbalance only) 

counterparts. 

The variables f2„ and 0.    are plotted in Figure 18. This figure is 

a little cluttered, but the almost identical traces for the last four 
runs until the rocket leaves the constraint of the launcher can be seen. 
After leaving the launcher in Run 3, a circle* centered at (-0.00105, 0) 
is described, indicating a bias in angular rate ft_ of -0.00105 rad/sec. 

During Run 4, smaller circles located approximately at (0.0008, 0) and 
(0, 0) are described.  The combined effects of mass unbalance and thrust 
unbalance result in the curve labeled 5 which ultimately (after thrust 
cutoff) produces the small circle with center at (-0.00105, 0). 

Figures 19 and 20 illustrate the behavior of the missile pitch rate 
and yaw rate for the five cases.  The oscillations in 6  and \Jr for Runs 3 
and 4 are clearly 180° out of phase (as they should be) and for Run 5, 
the effects of mass unbalance and thrust malalignment almost cancel out 
until thrust cutoff. 

Pitch rate is plotted versus yaw rate in Figure 21.  The curves 
shown are similar to those in Figure 18, but the ellipses described 
after launch by the curves for Runs 3, 4, and 5 are observed to wobble; 
i.e., the curves do not close as those of Figure 18.  This is due to 
long-period changes in 8  and \jr resulting from the small difference in 
the spin rate and the rate of precession.  This difference divided by 
the spin rate is approximately I    /I    (assuming I    =  I   ). v ^ x x  y y v       yy   z z ' mm 'm'm JmJm    m m 

"'Note the scale difference in Q„  and 0,    which result in circles rather 
than ellipses on Figure 18. 
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Curves showing rocket pitch angle versus rocket yaw angle are pre- 
sented in Figure 22.  The deviation due to thrust malalignment is much 
less than that due to mass unbalance for the values of u„ and CC    used. 

2    y 
The coupling of mass unbalance and thrust malalignment is evident in the 
curve for Run 5.  The change in yaw angle is much greater than that in 6 
for the parameters used as is evidenced by Figures 22, 23, and 24. 

A combination of variables often used in deciding on the "goodness" 
of a launch is the square root of the sum of the squares of A0 and \J/. 
This combination is shown as a function of time in Figure 25.  It is 
merely fortuitous that the thrust malalignment detent combination 

resulted in the smallest value of ^(A0)2 + \|/2 a£ the end of the simula- 
tion time, since both mass unbalance and thrust malalignment are normally 
random quantities. 

The variable 6„  is given as a function of time in Figure 26.  Since 

9    is the pitch angle of the rocket with respect to the launcher, the 

time history of 6_ differs in all cases (Runs) from that for A0; i.e., 

6„  includes the launcher pitching motion (0„ » Q  - QL). 

Figure 27 illustrates the climb rate and lateral velocity of the 
rocket's center of mass.  Since the initial elevation angle of the 
rocket QL_ + 0Cn    « 0.093422 radian, the rocket's center of mass will 

20   2e ' 
ascend (this implies the Z becomes more negative), although gravity and 
other factors will slow its ascent slightly. 

The last figure (Figure 28) illustrates the fact that the rocket's 
center of mass drops below the initial aim axis due to launcher's 
pitching down, gravity, and the other effects included in the various 
runs. 
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Section VI. SUMMARY AND CONCLUSIONS 

a. Summary 

The problem of simulating the dynamical behavior of a 
launcher/rocket system during the entire launch, i.e., from a state of 
rest with the rocket on the launch, through the detent, guidance, tipoff, 
and free-flight phases, has been considered.  A physical model of the 
system which includes various factors that contribute to mallaunch of 
free rockets has been described. Dynamical and kinematical equations 
developed on the basis of the physical model have been presented and, 
where necessary, converted from vector to matrix form.  The matrix equa- 
tions have been incorporated in a digital computer code for numerical 
solution.  The computer code has been used to produce preliminary results 
and these have been presented and discussed. 

b. Conclusions 

At the time of the writing of this report, the computer code 
had not been operational for a sufficient period of time to provide the 
data required to reach any major conclusions regarding mallaunch.  The 
code should be useful, however, in future investigations. 

Some conclusions which are already essentially generally known are: 

1) Dynamic mass unbalance is a primary contributor to mallaunch 
of spinning free rockets. 

2) Angular thrust malalignment is also an important mallaunch 
factor. 

3) Dynamic mass unbalance and angular thrust malalignment effects 
may either tend to cancel or to compliment each other. 

The preliminary results obtained indicate that the computer code 
has been properly implemented in its present form.  It should, however, 
be modified to include the effects of aerodynamic forces and moments and 
of time varying rocket mass characteristics during the free-flight phase. 
Such work is planned under an ARD Grant to the author.* 

For plans of future work in this area, the reader may contact the 
author or Dr. James L. Batson, US Army Missile Command, ATTN:  AMSMI-RLH, 
Redstone Arsenal, Alabama 35805. 

'A  post-LRCP grant has been awarded to the author.  The study funded by 
this grant will be conducted at Auburn University, Auburn, Alabama 36830. 
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Appendix 

INPUT/OUTPUT DESCRIPTION 
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CONTROL CARDS AND SAMPLE INPUT 

OMVLT. 
ACCT (PN=COCHRAN, PBC=7294L10000,CC=7800,JN=0001,OP=A2) 
REQUEST(TAPE 20,*PF) 
REWIND(TAPE20) 
ATTACH(FILE,LHDYN,ID=LHJEC,CY=2) 
REWIND(FILE) 
FILE. 
REWIND(TAPE20) 
CATALOG(TAPE20,LHXXXJC,ID=LHXXX,CY=5) 
EXIT. 
0000000000000000000000 

DEMONSTRATION RUN THRUST MAL AND MASS UNBAL   (ALY=0.0001,  MU2=0.0001) 
FINAL TIME DELT MIN DELT IMPRINT  IPLOT 
0.4500 0.0001 0.0001 5000 15 

MISSILE PRINCIPAL INERTIA MATRIX 
0.29 0.00 0.00 

0.00 70.8 0.00 
0.00 0.00 70.8 

MU2 MU3 
0.00001 0.0 

LAUNCHER INERTIA MATRIX 
4800.0 0.0 1600.0 
0.0 16000.0 0.0 
1600.0 0.0 15200.0 

FORE SHOE      STIFFNESS MATRIX 
0.00 0.00 0.00 

0.0 1000000.0 0.0 
0.0 0.0 

AFT SHOE STIFFNESS MATRIX 
1000000.0 

0.00 0.00 0.00 
0.0 2000000.0 0.0 
0.0 0.0 

LAUNCHER NATURAL FREQUENCIES 
2000000.0 

10.0 2.5 
LAUNCHER DAMPING RATIOS 

2.5 

0.1 0.1 
FORE SHOE DAMPING MATRIX 

0.1 

0.00 0.00 0.0 
0.0 600.0 0.0 
0.0 0.0 

AFT SHOE DAMPING MATRIX 
600.0 

0.00 0.00 0.00 
0.0 800.0 0.0 
0.0 0.0 800.0 
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M SM RHOF RHOA ALY ALZ SIGMAY SIGMAZ 
200.0 7.76 0.25 0.25 0.0001 0.00 0.0 0.0 

XLA YLA ZLA MU SPINT  1 SPINT  2 SPINT3 SPINT 
-3.75 0.0 -2.0 0.1 0.0 450.0 450.0 450.0 
Tl T2 T3 T4 T5 T6 T7 T8 
0.05 0.065 0.125 0.1251  0.126 0.146 0.356 0.386 
T9 Fl F2 F3 F4 
0.386 0.0 9350.0 10500 0 0.0 

DETENT SMU 
1800.0 0.001 

U 
5.75 0.0 

G 
0.0 

0.0 0.0 
R 

32.175 

4.0 0.0 
LF 

-2.0 

-0.5 0.0 
LFA 

0.0 

-6.583 0.0 
ALPHAO 

0.0 

0.0 0.10 0.0 
XLA1 XLA2 

0.25 0.25 
I SHOE 

2 
0000000000000000000000 
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Card No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

INPUT   FORMATS 

Format Card No 

7A10 23 

3F10.0 24 

3F25.0 25 

3F25.0 26 

3F25.0 27 

2F10.0 28 

3F25.0 29 

3F25.0 30 

3F25.0 31 

3F25.0 32 

3F25.0 33 

3F25.0 34 

3F25.0 35 

3F25.0 36 

3F25.0 

3F25.0 

3F25.0 

3F25.0 

3F25.0 

3F25.0 

3F25.0 

3F25.0 

Format 

3F25.0 

8F10.0 

8F10.0 

8F10.0 

8F10.0 

8F10.0 

3F20.0 

3F20.0 

3F20.0 

3F20.0 

3F20.0 

3F20.0 

2F10.0 

12 
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CONTROL CARDS AND SAMPLE INPUT 

OMVLT. 
ACCT(PN=COCHRAN,PBC=7294L10000,CC=7800,JN=0001,0P=A2) 
REQUEST(TAPE 20,*PF) 
REWIND(TAPE20) 
ATTACH(FILE,LHDYN,ID=LHJEC,CY=2) 
REWIND(FILE) 
FILE. 
REWIND(TAPE20) 
CATALOG(TAPE20,LHXXXJC,ID=LHXXX,CY=5) 
EXIT. 
0000000000000000000000 
DEMONSTRATION RUN THRUST MAL AND MASS UNBAL (ALY=0.0001, MU2=0.00001) 
0.4500 0.0001 500 15 

0.29 0.00 0.00 
0.00 70.8 0.00 

0.00 0.00 70.8 
0.00001 0.0 
4800.0 0.0 1600.0 
0.0 16000.0 0.0 
1600.0 0.0 15200.0 

0.00 0.00 0.00 
0.0 1000000.0 0.0 
0.0 0.0 1000000.0 

0.00 0.0 0.00 
0.0 2000000.0 0.0 
0.0 0.0 2000000.0 

10.0 2.5 2.5 
0.1 0.1 0.1 
0.00 0.00 0.00 

0.0 600.0 0.0 
0.0 0.0 600.0 

0.00 0.00 0.00 
0.0 800.0 0.0 
0.0 0.0 800.0 
200.0 7.76 0.25   0.25 0.0001 0.00     0.0 0.0 
-3.75 0.0 -2.0    0.1 0.0 450.0    450.0 450.0 
0.05 0.065 0.125   0.1251 0.126 0.146    0.356 0.386 

0.386 0.0 9350.0  10500.0 0.0 
1800.0 0.001 
5.75 0.0 0.0 
0.0 0.0 32. 175 
4.0 0.0 -2.0 

-0.5 0.0 0.0 
-6.583 0.0 0.0 
0.0 0.10 0.0 
0.25 0.25 

2 
0000000000000000000000 
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MENU  DESCRIPTION 

1 - TIME 

2 — DELTA1 = S.. , X -Displacement of point a in launcher basis (X  -X  ). 
i-   Li 11 I. 

a   a 
o 

3 — DELTA2 = S , Y -Displacement of point a in launcher basis (Y  -Y  ). 
Z     Jj Li       LI 

a   a o 

4 —DELTA = &„,   Z -Displacement of  point  a  in  launcher basis   (Z      - Z       ). 
J      Li LI        LI 

a   a 
o 

5 — THETA(l) = Q.t Rocket roll angle relative to launcher axis. 

6 — THETA(2) = 0„, Rocket pitch angle relative to launcher axes. 

7 — THETA(3) = 9  , Rocket yaw angle relative to launcher axes. 

8 - ALPHA(l) = a Launcher roll angle. 

9 - ALPHA(2) = a Launcher pitch angle. 

10 — ALPHA(3) =  (X., Launcher yaw angle. 

11 - DDELTA1 = &x 

12 - DDELTA2 = 6„ 

13 - DDELTA3 = &3 

14 — OMEGAXM = ft, , x -component of ft rocket angular velocity. 
L  m 

15 — OMEGAYM = ft., y -component of ft rocket angular velocity. 

16 — OMEGAZM = ft_, z -component of ft rocket angular velocity. 

17 - OMEGAXL = w1 , x -component of _y, launcher angular velocity. 

18 — OMEGAYL = u)0, y -component of u, launcher angle velocity. 
Z     Li 

19 — OMEGAZL = u)«, z -component of u, launcher angular velocity. 

20 - PHI = 0, Rocket roll angle (absolute). 

21 - THETA = 6,  Rocket pitch angle (absolute). 

22 — PSI = t» Rocket yaw angle (absolute). 
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23 — x = X, X-coordinate of C . 
ra 

24 - y = Y, Y-coordinate of C . 
m 

25 — z = Z, Z-coordinate of C . 
m 

26 — u = U, x -component of rocket's velocity. 
ra 

27 — v = V, y -component of rocket's velocity. 
m 

28 — w = W, z -component of rocket's velocity. 

29 - DPDELTA1 = S 

30 - DPDELTA2 = 6 

31 - DPDELTA3 = 6., 

32 - DOMEGAXY = 0 

33 - DOMEGAYM = Q2 

34 - DOMEGAZM = fl 

35 - DOMEGAXL = u) 

36 - DOMEGAYL H U>2 

37 - DOMEGAZL = w 

38 - DPHI = * 

39 - DTHETA = 9 

40 - DPSI = i|r 

41 - DX = X 

42 - DY = Y 

43 - DZ = Z 

44 - DU = U 

45 -DVsV 

46 - DW = W 

73 



47 - DELTA Z = Displacement of C  in the Z1-direction. 
m 

AIM AXIS 

ROCKET ON LAUNCHER 
EQUILIBRIUM VALUE 

INITIAL POSITION OF C m 

48 - DELDZ = Z + U sin(<X,_ + a. ) component velocity of C  normal to 20   2e  .. r   . . J m 
the aim axis. 

49  - DELTHETHA =6-0,    + a„    + A6 2o 2e 

50  - SRSSA =   7A02  \|/2 
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SYMBOLS 

A = 

a 

B 

£a'=f'£L 

Direction cosine matrix (launcher basis to rocket basis). 

Point on rocket centerline at the aft shoes. 

Direction cosine matrix (inertial basis to launcher 
basis). 

Damping coefficient matrices. 

CLXLyLZL 
Centroidal launcher-fixed coordinate system. 

C x y z 
m m m m Centroidal rocket-fixed coordinate system. 

C x y z 
m pyp p 

F 

F 
•as 

Principal, centroidal, rocket-fixed coordinate system. 

Direction cosine matrix (centroidal rocket basis to 
principal, centroidal (rocket basis). 

Magnitude of the thrust force. 

Force in the aft springs. 

F £Fa 
Frictional force at aft shoes 

hi Frictional force at forward shoes, 

Ifs Force in the forward springs, 

-m Force on the rocket. 

F Detent force on the rocket. 

-mF 
Frictional force on the rocket. 

mg 

F 

Gravitational force on the rocket. 

Thrust on the rocket (in launcher basis) 

Thrust (rocket basis) 
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f Point on the centerline of the rocket at the 
forward shoes. 

j* Local acceleration of gravity. 

A A A 
I,J,K Inertial unit vectors. 

I Centroidal inertia tensor or matrix of the 
launcher. 

h/o 

-fa 

Inertia tensor or matrix of the launcher about 0. 

I Centroidal inertia tensor or matrix of the rocket. 
=m 

I Principal, centroidal inertia matrix of the rocket, =pm r  • 

A   A  A 
i ,j ,k Launcher-fixed unit vectors. 

Li   LI   L 

i ,i ,k Rocket-fixed unit vectors, 
mm m 

^ Inertia matrix of the system about 0 during the 
spin up and detent phases. 

K ,K^.,KT Stiffness matrices, 
—a -1 -L 

Vector from point a to a point on the line of 
action of the thrust, F . 

Vector along the centerline of the rocket 
directed from point a to point f. 

M Mass of the launcher. 

m Mass of the rocket. 

OXYZ Inertial coordinate system with origin at the 
launcher pivot point. 

R Vector from 0 to C . 
Li 

S     = xT     iT   + yT      iT Vector  from CT   to a. —a L       L L    JL L 
a a 

+ ZL    \ a 

T > Torque on the rocket about a. 
—m/a M 
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T ,„ Torque on the rocket about C . 
-m/C M m 

' m 

T External torque on the system about 0. 

T Spin torque. 

Tr/„ Frictional torque on the rocket about C . 
-f/Cm m m 

t Time. 

U,V,W Rocket-fixed components of the rocket's velocity. 

A A         A 
u=u,i +ej +ek   Vector from a to C . —   1 m yJm   z m                   m 

V Velocity of the rocket. 

X,Y,Z Inertial coordinates of C 

a = (c^ a2 a3) T 

a ,cc 
y   z 

51'52'53 

6   ,e 
y   z 

^     LY     LZ 

8 

9-^, ©2» ^3 

m 

Greek Characters 

OC tOC ,0C Eulerian angles used in defining the orientation 
of the C x y z system. 

Li     LI     JU LI 

Thrust malalignment angles. 

Displacements of point a from its undeformed 
position. 

Displacements of C  from the rocket centerline. 
m 

Launcher damping ratios, 

Rocket pitch angle. 

Eulerian angles used in defining the orientation 
of the C x y z system relative to the C,x,y,z„ 

mmmm L LI L 
system. 

u Friction coefficient (sliding). 

u Spin bearing friction coefficient. 
s 
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o ,0 Linear thrust malalignment parameters. 

<t> Missile roll angle. 

\|r Missile yaw angle. 

Q • fl, i + Q,n  j        Rocket angular velocity. —   1 m   2 Jm              &          ' 

+ a. k 3 m 

w = u l + w_ j        Launcher angular velocity. 
1 1 J         Z    Li 

Natural frequencies of the launcher. 

Launcher. 

Rocket. 

Initial value or undeformed value. 

Change needed to achieve equilibrium. 

Inverse. 

Transpose. 

Distances from the rocket centerline at points 
f and a, respectively, to the rocket/launcher 
interface (rail, tube wall, etc.) 

Other Notations 

Used above a vector (3x1 matrix), say 0,,   to 
denote the skew-symmetric matrix, 

•°3  a2 

-Q. 

Ql 

+ W3 *L 

*L       ' 
X y 

U) 
nL 

z 

<>L 

<   >m 

()o 

<>e 

o"1 

()T 

pf, P2 

Used above a vector to indicate that the time 
derivatives of only the components of the vector 
are to be taken. 
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Used above a vector or scalar to denote total time 
differentation. 

Denotes a unit vector. 

Denotes a vector or column matrix. 

Denotes a tensor or square matrix. 

Identity matrix (3x3). 

'l      0  0^ 

|1 0  0  0 

0  0  0 

h      0  0^ 

|23 . |0  1  0 

0   0   1 

L,m Used with a vector with a circle above it to denote 
the system in which the component derivative is 
taken; e.g., 

o o 

- • ft. i + ft- j + ft- k and - - u i + io j 
m   lm   2 m   3m    L   1L   2  L 

+ co„ kT m V 
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