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PREFACE

This book contains the Proceedings of the Fourth Conference on the Numerical Simu-
lation of Plasmas held at the Naval Research Laboratory, Washington, D.C. on the
2nd and 3rd of November 1970. The conferences on the Numerical Simu'aiion of Plasmas
were used in the past to disseminate progress in the state-of-the-art of plasma simula-
tion and specific applications of computer experiments to plasma physics. The first
conference was kheld in 1967 at the Collzge of William and Mary; the second was held
in 1968 at the Los Alamos Scientific Laboracory and the third at Stanford University
in 1969. At the time of the Fourth Conference, the field reached a highly sophisticated
degree of maturity and won the acceptance of the general Plasma Physics Community.
The number of presentations reiated to plasma simulation at APS Meetings of the Plasma
Physics Division has been exponential since 1963. Eight percent of the total papers
presented at the 1970 APS Meeting were in the field of numerical simulation. Most of
these papers were oriented toward the application of numerical methods to the solution
and understanding of physical phenomena. Therefore, the decision was taken at the
Third Simulation Conference at Stanford to restrict the papers presented at the Fourth
Conference to numerical techniques rather than the application of such techniques to
plasma physics. It was further decided that the papers should be more comprehensive
even though this would reduce the number of papers which could be presented orally
at a two-day conference. The selection of papers for oral presentation at the Conference
was based on the detailed, #xtended abstracts submiited by the authors. These extended
abstracts provided the basis for evaluating proposed presentations in light of the two
objectives of the Conference. The ultimate objective of the Conference was to present
the state-of-the-art to which plasma simulation has evolved. An auxiliary goal was to
make available to the general community a set of proceedings encompassing all aspects
of the field and providing the researcher with a working reference and the graduate student
with guidelines in this area of research.

The Conference was comprised of four sessions. The first sessicn was composed of
ardvanced numerical models and programming methods for computer representation of
plasmas. The second session, designated computational sciences, was comprised en-
tirely of invited papers which dealt with numerical techniques in fields other than plasma
physics. The third session dealt with numerical methods for the solution of plasma models
other than particle simulation. The fourth session included the theory of particle simula-
tion as well as detailed optimization techniques.

It is felt that this Proceedings provides a reasonably complete and detailed exposi-
tion of the current state of numerical plasma simulation and will be useful to both the
novice in the field and the professional.

We wish to extend our thank. to the authors and participants who made the 1970
Conference a success. We are grateful to Professors C. K. Birdsall and . M. Dawsen
for their assistance in selecting the format of the Conference. We wouid like to acknowl-
edge the help and assistance provided by the Management of the Naval Research Lab-
oratory in the hosting of this Corference, anJ especially, the superb efforts of the Tech-
nical Information Division in the preparation of these Proceedings. In addition, we would
like to acknowledge the help and assistance of Mrs. Tena M. Mason and Mrs. Melba
0. Doorosky in organizing the Conference without which the Conference could not
have been held, as well as their efforts in prodding the editors in the preparation of manu-
scripts.

Jay P. Bonis, EpiTOR
July 19, 1971 RaMy A SHANNY, EDITOR
Naval Research Laboratory
Washington, D. C.
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Relativistic Plasma Simulgtion - Optimization
of a Hybrnid Code

3. P. Bons
Naval Research L.thoratory
Washington, D.C.

I. INTRODUCTION

This paper contains the description of a plasma-simulation program.
CYLRAD, for two-dimensional systems ¢f charged, fully relativistic particies
with fully retarded, self-consistent clectric and magnetic fields. The geouxiry
of the basic physical system is r-z cylindrical, so tne elemental charges are
azimuthally symmetri- rings, but the methods generalize to other geometries
and to three dimensions quite easily. Two and three dimensional calculations
on such e complete plasma model would havc bLesen rather impracticel on the small,
slow computers of previous generations; therefore, only recently has the pro-
blem of finding efficient, accurate, numerical models for solving this problem
been much more than an academic exercise. The larger and faster machines

presently available make these calculations possible today, however, and the
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soaring costs of high-technology plasme experiments make them necessary. Thus,
the author Lopes that CYLRAD will be of interest.

Many important problems in astrophyxics, plasma physics, high energy
accelerator physics and electronics can be approached camputationally by
following the orbits of a great number of representative simulation particles
under the interactions of their self'-consistent slectrostatic and electromagnetic
forzes. These self-consistent fields are often augmented in real problems by
additional forces caused by charges and currents which are external to the
domain of interest. Electrostatic calculations in plasms codes with time

indepenuent applied electric and megnetic fields have been used,]"&"5

for example,
to study electrostatic streaming instabilities and magnetic contaimment problems.
It bas long been realized that self-consistent magnetic fields would have to be
calculated, as well as the electrostatic fields, to have an adequate description
of many important plasma physics problems. Although the self-consistent electro-
static forces dominate in some non-charge-neutral systems, there exist many regimes
where self-consistent electromagnetic effects cannot be igre-::d.
Two rather different circumstances can occur in pisspa problems which
are essentially charge neutral. In one class of problcus fairly large, approxi-
rately divergence-free currents are present; the magnetic fields and induction
el ctric fields which arice can then be camparable to or larger than the residual
electrostatic fields caused by deviations fram charge neuirality in the p.l.asma.k’5
In another class of charge-neutral problems there need be no large plasma
currents and yet electramagnetic effects contribute significantly to the plasma
behavior, for example, through radiation effects or anisotropy instabilitiesié”{ 8
In many cases the approach of non-equilibrium plasma to thermal equilibrium is
determinc . predominantly by relatively weak electromagnetic effects rather than

the strouger electrostatic phenomena simply because non-equilibrium plasmas,
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which are electrostatically stable, are often unstable to one of the electro-
magnetic modes. Problems of these two types are often those in which induction
electric fields are important but where the transverse displacement current ‘s
not the dominating term in Ampere's law. This induction model, where the magnetic
vector potential satisfies the Zoiscon Equation, ¥#A = ?- d , is usually cslled
Darvin's node1.9 Electromagnetic radiation is not present but the induction
electric field is retained so that low-frequency electromagnetic plasma phenamena
such as Alfven waves will be properly described.m’n

In a third class of problems, the particles are fully relativistic. The
magnetic and electric energies are then comparable, even in non-charge-neutral
systems, In this class of problems the self-consistent electromagnetic radiation
can also be important. Although there are many problems where the particles are
relativistic but where radiation can be neglected, and many problems where radia-
tion interactions are important but where the particles are non-relativisti-~,
the usefulness of a plasma simulation program which handles both relativistic
particle effects and a fully time-dependent electramsgnetic field is assured.
Intended applications 2o» CYLRAD are relativistic-electron-beam generation and
propagation, electron-ring-accelerstor design, transmission line transformer
design, and basic plasma studies.

In CYLRAD all three camponents of the electric field and all three

components of the magneti: field are advanced forward in time from the evolvant
Maxwell Equations,

%E

&:'chg-h"i, (1a)

o

Ft-'.c'v-x's-’ ()
5
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using a fully reversible algorithm which easures that the consti.utive Maxwell

Equaticns,

I

*E *®h4np, and (28)
Yy B =0, (2b)

are satisfied to computer round-off accuracy at each timestep. Here E and B
are the vector electric and magnetic fields respectively, J and p are the
current and charge densities, and ¢ is the velocity of light. Azimuthal symm.try
gives simple conditions on E, B, J and p at the axis and perfectly-conducting
metallic boundary conditions are presently being applied at a finite radius
R @ (NR + 5) *6r to give a tractable, bounded s;-tem. The system is periodic
in the Z direction with a replication length of Z = NZ*6Z.

The relativistic Newton Equation for each particle using the Lorent:

force in the laboratory frame of reference,

P\
+
o¢

218
[ ]
El e

XB (53)

=]

completes the specification of the system. Here q and m; are the particle

charge and rest mass and the velocity V is related to P, by
b il 30 B (3b)

Notice that the rest mass hus been extracted from the definition of P. An
accurate, reversible single-pass rz2thod Tor integrating thesa particle equatiouns
is presented which gives the correct parcicle orbits in the simple limits. This
algorithm tekes special account of the cylindrical geumetry ¢0 that orbits passing

through the axis can be integrated without loss of accuracy.

WA 2 st
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The algorithm described here is more flexible than those given pre-

vious]ylz’h’6

and reduces to previous algorithms in special cases. This algoritlm
retains the advantageous property of being fully reversible while decoupling the
prescriptions for current and charge-density apportionment, Thus, an electro-
static caleu/stion can be recovered by setting c and J to zero in Egs. (1la-1b)
and various charge and current algorithms can be tested to optimize the playoff
between accuracy and running-speed. The method is computationally fast because
expensive divergence-conservative cv.rrent12’6 algorithms can be bypassed., Further,
several timesteps of the electromagnetic field quantities can be performed, for
each particle timestep, without destroying the reversibility of the algorithm.
Thus, particle pushing, which is at best an expensive process, need only be done
once every few timesteps when the particles satisfy Vth << ¢ and wpe << ¢/bx.

In this paper the main emphasis has been placed on numerical techniques
with the aim of showing how the various aspects of program optimization can be
balanced in constructing a fairly general plasma simulation code. The CYLRAD
Jsrogram falls into the category of a hybrid code, one which contains features of
voth fluid and particle calculations. In CYLRAD the partial differential Maxwell
Equations are solved by finite difference techniques while the particle equations
of motion are integrated using techniques specially devised for performing fast
perticle trajeciory calculations,

The discussion of the methods breaks similarly into two parts, the
solution of the Maxwell Equations with arbitrary sources J and p, and the integra-
tion of the particle equations of motion with arbitrary forcing fields. 1In
Section II, the details of the Maxwell-Equation integration are given and analyzed.
Appendices A, B, and C discuss important cide issues related to solving the
Maxwell Equations, Poisson-solver programs are discussed briefly in Appendix A.
In Appendix B, generalizations to other geometries, t¢ three-dimensions, and to

implicit difference schemes are considered. Anpendix C generalizes the discussion

Y B e
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to cover the case where the dielectric constant of the medium €(z,r), is not
constant and where the boundary conditions are camplicated. Section III describes
the details of the fully reversible particle integration. Section IV contains a
discussion of merging thece two major parts of the code. A method is presented
for integrating the particles over a much longer timestep than is possible for
the electromagnetic fields while keeping the overall algorithm fully time rever-
sible. Section V describes of a few simple test calculations performed to test

the code and to point out the various computational properties of the method.
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II. SOLUTION OF THE MAXWELL EQUATIONS WITH ARBITRARY SOURCES

In this section the particular staggered-leapfrog integration of the Maxwell
Equations (1a-2b) used in CYIRAD is described in detail assuming that the charge
density p (r,z,t) and the three components of the current J (r,z,t) are arbitrary
but given functions. These sources need not satisfy the charge-conservation
condition, Eq. (4), exactly. The CYLRAD algcrithm corrects for any discrepency
between p and J as related by Eq. (4) so we are considering, for the moment, just
a general purpose Maxwell-Equation solver. The alrorithm given here decouples
the charge-and-current-apportionment prescriptions for added efficiency, con-
venience, and flexibility. The discussion concerned with relating these source

terms to the particles is deferred until Section IV.

Professor O. Buneman of Stanford has pointed out the camputational advan-
tages of employing a reversible, fully-causal formulation for the electromagnetic

field equations. 12,15

He argues that the digital computer is basically a causal
device, procezsing information in a determministic way, and one will find com-
putational physics an easier discipline if this is kept in mind. MHe further
argues that reversible algorithms which mirror the reversibility properties of
the classical manybody problem should be used in the numerical calculations.
Whatever other misbehaviors may be present, certain types of instability and
other systematic inaccuracies will be absent. Modern ~omputers are specially
suited to simple, very fast calculations so it is easier and usually more
profitable to use simple, clean, low-order algorithms and a highly refined mesh
rather than complicated high-order schemes and coarser meshes. The former
course conforms more closely to the "mentality" of modern computers than the
latter and considerably shortens the lead time to results. In other words it is
often better to use brute force subtly in camputational physics rather than to
try to be brutsl in the use of subtlety since the essence of high-speed computers

is brute force .2h
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The numerical algorithm suggested by Buneman fcr solving the Maxwell
Equations in three-dimensional Cartesian coordinates automatically ensured the

consistency condition

%%+z-£-o ) .

by carefully choosing a current-accumulation algorithm tc complement the NG-]E’IA’]'E’16
cherge-interpolation algorithm, Professor Buneman further suggested a relatistic
particle~pushing algorithm to ensure that V for the simulation particles could never
exceed c, the velocity of propagation of waves in the Maxwell Equatio's. Although
Buneman realized that this algorithm would be useful for solving problems where
electromagnetic modes interact strongly with plasma, he also pointed out that an
artificially small value of ¢ could be used to bring the various time and length
scales in the plasma closer together for computational convenience. This is much

in the spirit of choosing a 100:1 mass ratio, for instance, in electrostatic

calculations.

A recent applicatian of these ideas6’ has generalized the charge apportion-
ment to bilinear interpolation and specialized the calculation to two dimensions.
The CYLRAD code solves the Msxwell Equations in a 2-D azimuthally symmetric,
perfectly-conducting, metalic cylinder but the basic algorithm is applicaonle
for three dimensions and for other geometries.

A staggered-leapfrog scheme23’39 is used to advance B and E causally in a

fully space- and time-centered way. Figure 1 shows the entire time line for
CYLRAD with the electromegnetic field integration and the particle integration
separated, We are primarily interested in the field integration here, the upper
portion of the figure. The electric and magnetic fields are specified at different
times to ersure time centering and the currents are assumed to be known at the

magnetic field times. The 2lectric field is integrated forward from t = -36t to

10
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CYLRAD TIME INTEGRATION
CENTERED AND REVERSIBLE

Bo B
MAGNETIC
8- B-vz; B 8 8 B
FIELD = 1“! il i R
i ELF.EgIg'cE-s E-2 E4 Eo E Ex E3

THREE RADIATION
TIME STEPS PER
PARTICLE STEP

) J——
[ ]

i
]
i
!
]
|
|
SOURCES Yt fo  dn ot

PARTICLES

p - W,
-

I 1
Va2 Xo Vi

="

Figure 1, Time centering in CYLRAD, The field
and particle variables are specified at times such
that the temporal integration is fully reversible,
centered, and second-order accurate,

CYLRAD GRIDS x EnBrJdr O E6,B4U8
0 EzBzJ: @ p, ¢

e Zmax

Figure 2. The four interlaced meshes in CYLRAD, By
fully centering the meshes consistent definitions of the
finite-difference operators allow full second-order ac-
curacy (except near the axis).

11
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t = -20t using the magnetic field and current specified at t = -5/26t to compute
the right hand side of Eq. (1a). The magnetic field is then integrated forward
one timestep from t = -5/20t to t = -3/20t using E_, to compute the right hand
side of E3. (1b). This leapfrogging of E and B can then be repeated indefinitely
to give the mmerically-computed time evolution of the electric and magnetic
fields. Since E and B are both needed at the same time for energy diagnostics

on the fields and for particle pushing, B o 1s computed at t = 0, for example,

in a fully centered way by averaging B (t + 1/20t) and B (t - 1/26t). This is
dore by integrating B forward only half a step on exit from the field-integration
wubroutine when ¢ = O in the figure. B is then integrated forward another half
step on entry to this routine prior to performing the leapfrog integration for
the next few timesteps. This reduces the storage required since B and B can

reside in the same matrices in the computer memory.

Figure « shows the four staggered spatiel meshes used in the CYLRAD program,
Staggering the meshes in this way ensures that spatial centering, and thus second-
order accuracy, 28 meintained throughout the bu"k of the mesh. This, coupled with
complete time centering, ensures that full reversibility is also retained. The
meshes extend from 1Z = 1 to NRl. The allowed region for the particles extends
fromz =0 to 7 and fromr = 0 (the axis) to r = R ax (the wall) as marked in
the figure. The r and 8 fields (x and O) meshes) have IR = 1 at the axis and
IR = NR1 half a cell outside the wall of the metallic cylinder. The Z and scalar
fields (O and O mesh points) have IR = 1 half a cell past the axis and IR = NR1

right at the cuter metal wull. The boundary conditions at the axis are then

E,(1,4)

L]
o
"

Br(lyj), (53)

H
o

EB(I,J) =0= Be(l,J),
9(1,3) x 9(2’3)’

12
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60(1,J) = 69(2,J),
Bz(l::j) = Bz(znj): and

E,(1,3) = E,(2,3).

(5a)

At the outer limits of the mesh (the radial factors are defined by Eq. (8))

p(NR1,j) = irrelevant,

6¢(NRL,j) = 0, (50)
E,(NRL,j) = 0,

BZ(NRI,j) = computed normally,

E_(NRL,3) = E_(NR,3)* = /' ,

B.(NR1,J) = -B (MR,J) ,

Eg(NRL,[) = -E(MR,J), and

Bg(MRL,J) = Be(NR,J)* r-/r+ .
The siguificance of 8¢ will be brought out shortly.

Periodic boundary corditions on % are assumed (see Appendices A,B,C) so
columns IZ = 1 and IZ = NZ2 are replicated from columns IZ : NZ1 and IZ = 2 respec-
tively., These extra columns are used as guardiines, a technique also used on the
MRHYDE staggered leapfrog mesh26 s to simplify the calculation throughout the in-
terior of the mesh. The value of NZ = NZ2-2 must te a power of 2 in CYLRAD to
satisfy the fast-Fourier transform Poisson solver but NRl is arbitrary. The mesh

spacing is uniform in both r and z but the mesh intervals 6r and 0z are arbitrary.

Figure 2 could apply equally well to a Cartesian grid but the boundary con-
ditions at the axis, Equations (S5z), would have to be replaced by some other
set appropriate to say a metal wall, In Cartesian coordinates it is easy to
show that the usual centered difference operators defined on the mesh of Fig, 2

satisfy the usual vector differential relations

' YxA =0, (6)

13
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px !D¢ =0, and
(6)

Be =9 v 6.

The maintenance of <ese relations in the difference analogues of the differential
operators is essential if the distinction between transverse and longitudinal
fields, vital to the solution of Maxwell's equations, is to hold properly in the

numerical solutions. This separation is used throughout CYLRAD.

Since we 4o not wish to have divergence of B deviate from zero, for instance,
if initially set to zero, the divergence of the curl operator, ZDx, must be
jdentically zero in Faraday's law, Eq. (Ra). This condition, when satisfied,
has the further consequence that the transverse and longitudinsl parts of the
electromagnetic field can be decoupled in the difference as well as the dif-
ferential Maxwell Equations when the dielectric matrix € = constant. That is,
the Y—D x B term in Ampere's Law, Eq. (la) cannot ccntribute to the longitudinal
part of E either. To insure this, the divergence operator V_ has been chosen in

._D
a difference form to ensure that ZD J (ZD x A) is identically zero for any vector

field A whatsoever.

To ensure these relations in cylindrical coordinates, I have defined

(ZD¢)I‘(1’J) z Mi+lnj)6r'¢(ihj) > (73)
(ZD¢)Z(1’J) = 9_1 i;;]) ‘;ZQ (inj'l) » (7b)
Ox ), (1,0) = Ay (4,341) -A,(1,9) | (7c)
- 8z
9. xA)(1,3) TA (1,) - A (1,§-1)
8 r r
[
’ (1a)
Az(i+lsd) - Az(isd) H
- 8r
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(O xA),(1,0) = rjhg(1,3) -rjAg(1-1,3)

ry Or (Te)
(T A)(5,3) = £ (1,0) -rjA_(1-1,5)
r, or
(7£)
+

Az(i,3+1) -Az(i,j)
bz *

The subscript D refers to "difference" operator. Throughout the rest of this
peper the indices i and j will be used for IR and IZ respectively. These
variables will be indexed as on their respective grids in Fig. 2. The indices

+ -
on the radial factors ri, r, and ry have the following meaning:

r, = (i-3/2)ér,

e r+8r/2, and (8)
r, #=r.+6r/2, an

T ER, - Srfe .

It is an easy matter to verify relations (6) using Eqs. (7) and (8). This of

course, requires the definition,

2
v, 0(1,0) = r, @ (141,0)-2r, 8 (1,4)+r, @ (1-1,4)
r. ére

(9)

+ 8(i,,%1)-20(1,5)+e(i,4-1)
§z2
The step-by-stzp leapfrog integration of the Maxwell Equations can thus be

written symbolically as

E(1,3,t = 8) = E(1,5,t=0) + c&t[znxg(t = bt/e)] (1,3)

(10)
b J{i,j,t = 8t/2) , and

B(1,,t=3/2 6) = B(L,3,6 = 0/2) - ebegpE (b= 00) ] (1) . (w)
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This basic integration scheme has been tested thoroughly in Symbolic Algol
and discussed elswhere.a'5 39 It has the following dispersion relation (in Cartesian
coordinates),
wbt bl k Ox c28t7 . KOV (12)
e e o i ol
and thus the stability condition,
6x2 82
82 < ?/ (1+ F)’ (13)

because it is an explicit algorithm. lLong wavelength modes propagate effectively
at ¢ but there is a numerical dispersion of modes due to the finite-difference
approximations used. The shortest mode which can be represent on the mesh

has wavelength 2 cells. Here kx6x =, for instance, and the dispersion, as
shown in Fig. 5, for one dimension, is a maximm. The short wavelength modes are
slowed down below the speed of light artificially. In one dimension, with

cbt/6x = 1, this dispersion car be minimized but in two dimensions, there are
always badly dispersed short wavelength modes. In all (stable) cases, however,
the modes are non-diffusive so the mode amplitudes remain unchanged in time.

The electromagnetic part of the CYLRAD code is therefore completely energy con-

servative in this sense.

Appendix B considers extensions of the CYILRAD electromagnetic field integrator
to other geometri:s, to three dimensions, and to other difference schemes. 1In
Appendix C the inclusion of a spatially varying dielectric matrix is discussed.

By including a matrix (1/€)(i,J) defined on the @ mesh (and averaged onto the other
3 meshes, much more general problems including Cerenkov radiation and metal bounda-
ries can ve included with a minlmum of effort because the €¢-metal boundaries are
computed exactly as all other points. The cansal, conservative formulation of the
Maxwell Equations employed here makes this especially easy and ensures that the
boundary conditions arc satisfied for all time.

The question of the current source terms in Egs. (Za) and (10) mvst be settled

16
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now. In physical problems the continuity equation,

>
=ty d=o, (1%)

must always be satisfied. This ensures that every charge in the system

has come from somewhere physically and will be going somewhere physically. It
seems sensible, therefore, to ensure this condition in our fin‘te-difference model
for Maxwell's Equations. Since our divergence operator has alrealy been specified,
Eq. (14) gives a numerical consistency conditicn between p and J. We have no
reason to suspect that p(r,z,t) and the longitudinal part of J(r,z,t) satisfy

this numerical condition since we are treating these sources as arbitrary inputs,
suitably discretized, to a field integration algorithm. In practical plasme
applications where ¢ and . come from particleslz’s, this condition: can be enforced
at some computational expense by considering current fluxes through space-time
cell boundaries. 1In the general case, where boundary conditions may be compli-
cated however, the continuity equation must be used specifically to correct the
input sources. This frees the input to allow vector fields of p and the longi-
tudinal current J " vwhich are only approximately consistent. In pure Maxwell-
Equation calculations for instance, analytic forms for p and J can be used with-
out worrisome consideration of consistency. In plasma calculations the current
and charge-apportionment algorithms can be conpleteiy decoupled for simplicity,
generality, and computational efficiency. Tnsis allows one to greatly speed the

calculation of particle trajectories, by far the slowest part of the relativistic
plasma simulation.

Of course extra work must be performed elsewhere to ensure Eq. (14) Sut
this loss is small compared to the gains realized. To enforce consistency, either

the charge density or the current must be modified. Since only tine currents

17
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NUMERICAL DISPERSION
CURVES FOR CYLRAD

—— THEORY
'\ ——— EXPLICIT
+\ s2xx |[MPLICIT

0 w/4 w/2
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Figure 3, Dispersion relations for explicit
and implicit integration of Maxwell's Eq-
uat’ ns with fluid-like plasma represented
by 4 constant wp. The theoretical modes
are shown for comparison,
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appear in the dynamical Maxwell Equations and since the charge density is a
zeroth moment while J is a first moment, it is natural and physically sensible
to modify the longitudinal current to be consistent with the given charge density.

This is done through the Poisson Equation,
g-E® I (15)
rather than through the continuity equation. The given currents give rise to an

electric field via the leapfrog scheme, which has both a transverse and a longitu-
dinal part. Thus

5‘(t+6t) -E (1) = -UmSt i‘(t*ﬁt/'é) (16)

can he solved for E‘(tﬁ'ﬁt), actually calculated simulianeously with a transverse

parv. If.we call this field E*, for the moment,
ZD. E*= Lmpe # Lnp Qamn

because of the assumed inaccuiacles in i‘ The corrected field E is found by

subtracting the difference gradient of a correction potential é¢ from E*. Thus

§'§'-‘_7D6¢ . (18)
It is easily seen that

9 60 ®kmp -9 Er (29)
forces

9. E®bme .

It must be stressed the 8¢ (1,]) 18 only a correction potential, not the full
electrostatic potential. The major portion of the longitudinal part of E is found
from integrating Ampere's law; only discrepancies between J and % apperr in 8¢,
The boundary condit: ns on 8§ ¢, which are implied by Eq. (19), depend
on the boundary condit. ns satisfied by E*. In CYLRAL, Ez' is zero on the metallic

wall at r ® R, aud therefore 69 = 0 at the vall is both simple and correct. If,
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as is possible using complicated current algorithms, the continuity equation in
difference form is automatically sutisfied, 8¢ is zero throughout the system. If
on the other heud, the deviations from consistency are of t..c order of truncation
errors in the finite difference scheme, as will be the case for the fairly efficient
current-charge algorithm used for the particles in CYLRAD, small, acausal longitu-
dinal correction fields will be felt throughout the cystem. These fields propagate

with infinite speed across the system but are generally bery srall.

The Maxwell Equation solver described nere, even without sellf-consistent
particle orbits pramises to be very useful in transformer, waveguide, and antenna
calculations. Analytic or empirical current fields can be specified and the ra-
diation fields can be found. Appendix C, as mentioned earlier, allows extension
of these field calculations to much more complicated geometrics where the dielectric
constant is an arbitrary function of position. The program is completed when equa-
tions for the plasma particles have been added to the system. The next section
treats integration of the relativistic equations of motion of charged particles
in given E and B fields. These particles will then be totalled on the mesh to get
selt'-consistent currert components and charge densitivs, uced as sources in the

solution of Maxwell's equations,
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III. THE CYLRAD PARTICLE PUSHER

The relutivistic equations of motion for a point perticle of rest mass

L and charge q in a given electric and magnetic field are

ae(t) 4 ! 2 > St

= TF E (X(t),t) +@ 1#+PP(t) /e (20,
ax(t)

—— = Y(t), (21)

where P = y(l-ve/c2)%. This definition of P will be noted to differ from the
usual relativistic particle momentum by the factor of n, which has been extracted
so that P reduces to V in the Galilean limit. A finite difference algorithm to
integrate these equations should satisfy three basic criteria:

1) accuracy,

2) speed,

3) simplicity.
Several algorithms for the non-relativistic case with arbitrary E and B fields
have been used previously; a camperison of these has been performed by Carl
Wagner of MRL.°C The most used of these is the reversible, so-called "implicit"
algorithm where E end B are given at t, when the particle position X is specified,

and vhere V is integrated forward one timestep from V, at t-6t/2 to Vy ot t+ét /2.

The new velocity is found by solving the 3 x 3 system of equations
(Vg = Vg)/t5 =SB+ (Vy * Vi x B (22)
Here O and N have the mnemonic meaning "0ld" and "new" respectively. This method
is characterized by the time-centered V x B term using the average of the new
and old velocities. The name "implicit" arises because VN is involved implicitly
in the right-hand side. B
This method has several niceproperties which make it quite attractive:

1) The algorithm is reversible., The particle trajectory cam, in
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principle, be retraced if time is reversed in the code. This neglects
of course, computer round-off errors.
2) The usual electrostatic leapfrog algorithm is recaptured when B=0.
3) When E ® 0, the particle moves in a non-drifting circle and the radius

of the crbit is constant. By dotting (3) with (VN + VO) 8t one finds

B My T Y (25)
showing that IVNl = |VC| in the absence of an electric field.

L) The energy gain, by (4), is just E * SZ, as would be cxpected on
physical grounds.

5) The frequency of the finite timestep cyclotron gyration can be corrected
by the standard tan afa correction51 so that the particles themselves
execute the classical orbits at precisely the correct gyrofrequency.

An additional criterion which can be satisfied is:

6) Simplicity an® hence speed. The implicit algorithm can be made

acceptably fast if programmed carefully. Solving Eq. (22) by a 3 x 3

matrix inversion is not the fastest way, as shown shortly.

The orbits generated by the implicit algorithm even ia the case of constant
E and B are not exact but can be improved to give the correct E x B drift by
modifying the electric field vector, as well as the magnetic field. to include
corrections for the finite~difference features of thc algorithm. This can be
done in another, simpler, way. As long as |§_x gj < 82, these exists a frame of
reference in which the electric field is zero. By subtracting the velocity

%-chg/fwMNEamgamemhﬂﬂat%ewnmtmﬂkkpmhhm

we get the following "E xB" algorithm for advancing the velocity.

Wihtw (2h)

22
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e

L.g, ._6.2. <Xa+1ll) xB (plus tan Ol/a)s (24)

v
=

The advantages of the E x B over the implicit algorithm are that exact

cycloidal orbits, without modifications t¢ the electric field can be obtained

E
as a cell quantity and so (24) can be made somewhat faster than (22). The

in the limit where E and B are constant. Furthermore, V. can be precomputed

method (24), for all its physical appeal, suffers a serious defect. When
|§ X §| > B? there is no frame of reference where E is zero but B can be trans-

formed away Thus a wholly different algorithm is reeded when VE >c, Still a

thizd algorithm would be required when VE 2 ¢, These problems arise in practice
when the magnetic field is zero and thus pose serious problems, for instance,

when configurations with neutral points, lines, or planes are being considered.

There exists a third variation of the implicit particle pushing algorithm
which possesses advantages of both the implicit and E x B methods and can be made
somewhat faster than either. In addition, it generalizes conveniently to the
fully relativistic egnuations (1) whereas direct solution of Eq. (22) in the
implicit algorithm does not. The algorithm is basically three-step in nature:

a6t
+ A
iR

fo<

(J<

V. * G (4 ) x B (using tan afa), (25)

. 3%

V=V E.
A = a =

By applying half the electric field before the magnetic field rotation and
half afterward, the algorithm becomes fully reversible and yet the inagnetic
interaction can be treated in the absence of an electric field. This latter
fact iz very important wnen one generalizes to the relativistic Eq. (20).

Whan the algorithm in (25) is used, it is easy to show that the implicit result

23
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is recovered. When the magnetic field B is zero, the usual electrostatic leap-

2 _y2 +y) « Bt
frog method is recovered so that V\© - V ° = (Y! _\_12) — E.

Since the -orrect cyclotron frequency can be achieved by corrections to B,
the solution arising from Eqs. (25) must be judged samewhat superior to the
other methods mentioned because it is faster. It is made fast using the two-
step rotation procedure given above, rather than the usual 7 x 3 linear-equation

reduction, to solve for Xi given L (with E absent). This is done by setting

V=aVvy +fV xB,
- T U O S
VoY +fV xB (26)
S A a2z -
tang-s—t-lBl

vhere & ——‘%‘f-—— and £ = 21‘1/(1 + fiBz).

In practice 9 is expanded up through fourth order and evaluated very ef‘iciently
giving roughly single-precision round-off-sized truncation errors on the IBM 560/91

where 6 to T digits can be kept through most calculations.

Figure 4 shows the geometric interpretation of this method in the plane
perpendicular to B. The pure magnetic push over timestep 8t with constant B is
really a rotation of \_12 in the velocity space by the angle p = wcﬁt = :—:t- |8|.

The correction factor r1 ensures that !2 is displaced an angle of exacily B/2

fram "Lx even though !2 does not lie on the orbit circle beacuse it has the "rong
magnitude. v1 x B does point 1‘r<:|'n_\11 through !s because the angle has beun
bisected, however, £o the magnitude correction r2 ensures that foV, x B stops exactly
on ya. It should be fairly clear that the amount of work involved computationally
is much less than required to solve Eq. (22) directly even with E® O. The two-
step "half E" algorithm, which is shown in Eq. (25) requires in fact about 35§

fewer operations than the implicit push.

24
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B = 8t qB/mc

VELOCITY SPACE ROTATION

L =Sty T vl

AXiS

CONFIGURATION SPACE ROTATION

Figure 4, Geometric interpretations of the
particle pushing algorithm. Both the con-
figuration space and velocity space portions

of the algorithm contain energy conserving
rotations,
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When the relativistic equations are being solved, the relativistic mass must

be used in expressing the factor £ Thus 391;— _cf__ where P is the
1 Sme Vo2 + R -

relativistic momentum ( over my ) replaces V in the previous arguments. Pro-
vided that F# is constant, therefore, the relativity merely amounts to a re-
normalization of the magnetic field. This is the great advantage of the "half E"
algorithm, By separating the electric and magnetic interactions in the relativis-
tic generalization of Eqs. (25), P,°® P,® bas been assured and thus F* inside the

square root,

/_C_
=+ ’

which is used in the magnetic field renormalizetion, can be treated as constant
over the timestep and evaluated explicitly. Except for this square root factor,

the relativistic and classical integrations zre the same.

Actually, in the course of updating the particle position as well as its
velocity, three more square roots must be taken, one to retrieve the laboratory
velocity fram P and two to correct for cylindrical coordinates, a problem dis-
cussed below. To handle these four square roots in the optimized code (they
take about 15% of the particle-pushing time in the Fortran version of the code),
a special hand-coded PIZ60 program has been written which requires no power series
expansions to start. A table look-up process on the floating point exponent and
the floating poin* fraction is used to get a very good starting value for a
simple iteration which doubles the number of significant figures every cycle,
This roviine requires ~ 3 usec per square root and thus uses only 40% of the time
taken by the system square root. One pays for this with a table of over 1000
words, a fairly small price on the IBM 360/91.

The integration of P from t - gt- tot + -23 constitutes only half of the

particle-pushing algorithm. Integration of X fromt to t + 8t iz accomplished

26
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a8 follows in Cartesian codes:

X(t * 86) = X(t) + 0ty(t + 5Y) . (27)

In the relativistic case V(t + éﬁ) is determined, as mentioned above by taking a
square root, an annoying but not prohibitive procedure. What is more comstricting
i the cylindrical coordinate system in which we must operate. In Cartesian
coordinates X executes circular motion in constant B with zero E and moves with
the proper parabolic motion when E is constant and B zero. Great difficulties
arise fram the angular momentim accelerations of the charged rings in the r-6
plane of a cylindrical system. At the axis, for instance, there is a cubic
singularity 12/r® when the angular momentum is nonzero. Furthermore, we would
like to preserve helical orbits (circular in the r-0 plane) for single particles
in a constant axial magnetic field. The algoritim given below accomplishes this
in a very simple and therefore etricient way by focusing on the Cartesian-cylin-
drical transformations. Therefore singularity and circularity problems are com-
pletely bypassed.

We need only consider the perpendicular plane and are given Vr and V9 ’
defined at t + éﬁ , with which we must advance r and 6. Since the basic enzatz
is azimuthal symmetry, however, only the radius r of the charge rings is given
as no O variation is permitied. We are free, therefore, to focus on the ring
element at € = 0, as shown in Figure 4b., The particle traversec the straight
line slement V &t from r, to ry. At the starting point V, ® V_and vy ® Ve

Since these velocities continue constant throughout the time interval 8t, we

have:
x2 A + Vrot 0
(28)
Ya = Veﬁt .
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The initial radius is r,. The final radius r, is given by
r, ® 4&;2 + 2 (29)

The optimized square root is used of course. During the next timestep r, becomes
r, and is again assumed to lie along the x axis. The matter does not end here.
Since r has rotated an angle @, the resolution of V along © and & must be changed
at the end of the timestep even though thz actual velocity of each ring element

is constant over the zntire interval &t. The transformation used is simple,

<t
]

= cosa + V sina ,
I I 8

(o)

Ve =-Vr1 sina + \Ie1 cosQ

where sina = Yz/r2 , cO8CQ = xl/r.‘, . The only problem arises when a "particle"
stops exactly =, ivhe axis, In this case, we can arbitrarily set cosa = 1 and
sina = 0, This makes all momcntum radial which it would have to be for a
particle to stop on the axis.

Stringent tests of this entire technique h~ve been performed. Energy is
conserved exceedingly well wi:zen E is zero because the particles execute perfect
circular motion about a constant axial magnetic field. It is obvious, in this
respect, that transformation {30) is energy conserving. It is; also clear that
the algorithm is fully reversible, a property generally conaidered good in particle
pushers.

The data fcrmat of the coordinates and velocities for each ring is floating
point although the positions are treated in fixed-point insofar as area weighting
is concerned. The DIC method of area weighting is used,16 a fixed-point tech-
nique particularly well suited for use when the multi le-mesh feature of the
field definitions is taken into account. Normal bilirn:ar area weighting of E,

B, J and p is used but four distinct meshes and hence four distinct sets of

28




‘ ' Relativistic Plasma Simulation

weights are needed. (The currents are also being treated NGP, as discussed
elsewhere.) By using DIC, these weights are precomputed for a finite set of

M , X Mr subcells with each computational cell. Mz and Mr are powers of 2 8o

that the subcell numbers are represented as log,M, and log,M sequential bits

| in the fixed-point representations of z and r respectively.

In actual use, of course, the accuracy of the particle-equation integra-

tions is not perfect. The method is fully second order, due to the time centering
and reversibility and thus the well established guidelines for particle pushers
must hold as discussed in Section IV. Thus Ot should be chosen sufficiently
suall that wcbt and mp&t are considerably less than unity. One also expec'l:e33 »34,35
that the code will misbehave when )&D and c/mpe are lengths considerably less than
one cell. From preliminary runs, as discussed in Section V, the greatest errors

l seem to arise from interpolating particle wource terms and field quantities to

‘ and from the cylindrical mesh.

The initial Fortran version of the particle pusher used 145 psec of computer
time per particle oa the 360/91. A highly optimized PI360 version has been
written which is computationally identical but which requires only 95 usec per
particle. The savings result from special computational t;echn:lquesls’16’2h’25
vhich can be written effectively only in machine code, Shifts, rather than fix

and float operations, can be used to sort out the cell and subcell numbers for

instance., It is felt that even greater improvementes can be made by increased

use of fixed-point operations.

Although the PI360 version is highly machine dependent, similar techniques
would be profitable on other machines with a greatly different structure. Of

particular importence in particle pushers is the one-pass aspect of the overr.sl

i ko

algorithm. An entire timestep can be performed with only a single reference to

fakans
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the particle tables, .7 external mass storage is being used for the particle
table, the relatively exnensive transfer times to and from disc, say, need only
be paid once per timestep. In the present example, magnetic disc transfer times
per particle are about 65 psec for reading and writing, quite comparable to the
particle-integration time. Since these transfers can be overlapped with each
other and with the one-pass integration of particles in ‘the CFU as well, optimal.
use is being made of the camputer. Even when direct core residence time is not
being charged as CPU time for I/O transfers, as is the case on the IEM 360/91,
total program residence time must be considered. If, for example, overlapping
were not possible, the running of a 1 hour CPU job would require roughly 3 hours
of wall time, If the program filled core (as these jobs often do), nonoverlap-
ping (or a poor compute-transfer balance, cauld mean that two thirds or more

of the CPU computing power was being wasted. Since computer centers are also
aware of this possibility, it is not surprising to see that most charging algori-
tims charge by the core request as well as the CPU time used. Thus jobs which
£ill core usually pay for the whole machine since fractional utilization of the

CPU is no longer a factor.
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IV, MERGING THE FIELD INTEGRATION WITH THE PARTICIE INTEGRATION

In Section II a rather general algorithm was given for numerically integra-
ting the Maxwell Equations forward in time to determine the three components
of E and the three components of B on the two-dimensional r-z mesh with all values
being specified at the same point in time, In Section III an optimized, ef-
ficient algorittm is given for integrating the relativistic charged-particle equations
of motion given E and B fields on a uniformily spaced r-z mesh. To camplete

specification of the entire CYLRAD algoritlm, the prescription for merging
these two phases of the calculation is now discussed in more detail.

Interpolating E and B from the mesh to the particle position is carried

through according to the usual area-weighting, or bilinear interpolation

algoritin 258 Although the mesh 1s basically cylindrical, this part of the
calculation is carried out as if the mesh were Cartesian. At the axis, where

¥

3

.

5 problems with the metric will be most cevere, Er’ Ee, Br’ and 13e vary linearly

£ anyway so the calculation will be accurate. The z components of E and B

, typically vary quadricatically away from the axis so the straight area weight-
ing will only be accurate to zero order in these two cases.

The calculation of the sources is currently being carried out in the

usual charge-and current-sharing approximation as on a Cartesian grid but

e T

several extra degrees of freedom are permitted the physicist here, Even though

the charge and current densities are required in Maxwell's Equations, the CYLRAD

particle pusher gives the total charge and total currents in each cell.

Presently this total charge and current is being divided by the exact cell

L re T T

volume but this part of the calculation can be modified in many ways. Averaging

over several adjacent cells could reduce spuriocus fluctuations, for example,

In area weighting to determine the fields and sources, the geametric inter-

i pretation 1s that of an azimuthally symmetric ring with rectangular cross-section
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expanding and shrinking as it moves on the mesh. The ring extends from

r-8r/2 to r+0r/2 in radius and from z-8z /2 to z+8z/2 along the axis, Although
rmore than half of the ring's charge, if of uniform density, lies outside r, the
simple area weighting prescription does not take this into account. To treat
this properly, the radius r, used in camputing the sources must be somewhat

larger than r in crder that simple charge sharing have nr. systematic error.

It is easy to show that

r, = Jra +3 (1)

forces the usual charge sharing to allocate tae correct proportion of charge
inside and outside of the particle radius r since r, is the center-of-charge
radius of the extended ring (The improved square root routine is used here).
One also hes the possibility of employing k-space smoothing'>*'0

Fouler analyzing in the z direction. This would not improve the radial varia-

of pand J by

tion at all but would be helpful where the radial varistion is smoothed by
other means. Thus finite sized particles’ocould be used easily in Cartesian
codes, Perhaps then the NGP algoritim for charges and currenis could be used
with sufficient accuracy.

It bas been menticned that the DIC,}0%°37 or Discretized Interpolation
in Cells, method has been used for all the bilinear interpolations and charge
sharing, In this program each cell is thought of as subdivided into an array
of 16x16 subcells. For each subcell the four weights for the cell corners are
precalculated as if the particle were at the center of the subcell, Thus the
particles are effectively calculated Nearest Grid Point in the subcells rather
than the major cells. These weights are stored in a table and "looked wp"
when needed by a very fast algorithm rather than recalculated each time.
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DIC is particularly useful in CYLRAD where four distinct meches must be
treated 8o that the same set of weights camnot be reused for all the com-
ponents of Eand 3 or J and p. A table of weights is calculated for each mesh
and all can be referenced by locating the particle om one of the meshes. The
present particle pusher, in optimized form, takes 95 wsec/particle of which
about 30€ is area weighting, If direct recalculation of all of the weights
were performed, approximately four times as much work would be done ca the area
weighting thus doubling the CPU time required per particle,

A glance at Figure 1 shows that the current J is specified at the velocity
time, half way between the two position times at the beginning and the end of
the timestep, To ensure centering, therefore, the current must be area
weighted twice; half of the current is apportioned before the position is up-
dated (but using the new velocity) and half of the current. using the same
velocities, is apportioned to ihe new position at the end of the timestep,

In addition to centering J and thus keeping the algoritim fully reversible, a
sort of aversging s being perforard which wili help greatly in smoothing
fluctuations which are highly enhanced in this nurericel plasma due to the
paucity of particles in a Debye sphere relative to most real plasmas,

Figure 1 shows the entire timeline for CYLRAD with particle as well as
field times indicated for a case where 3 radiation steps are performed for
every particle iimestep. The ¢:\|r:'¢u1;._7_,/2 is used in each of the 3 rediation
steps integrating E ,'_i toxo,'n' « These latter ficlds are then perfectly
centered to integrate V , /! / and hence X from Xo ’0! The ablility
to perform fully reversible multiple field timesteps for uch particle
timestep is very important to the optimization. In Section II the stebility
eriterion for the field integration was given. This means, in practice, that
light can traverse only half a cell or less per timsstep. Even for extremely
relativistic particles, two or three radiation steps could elapse between

particle steps thus speeding up the code by a factor of two or three. In
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non-relativistic plasmas the situation is even worse and decoupled timesteps

are even more necessary, An average particle traveling at O.1lc would need 20

timesteps or 80 just to cross a single cell regardless of )‘d or "be

When the presence of the particles are included in the stability analysis

in a simple way, one finds the dispersion relation,

. A28t 2 k_Ox
sin? 30t = cT8t sina(.x )
= 6x 2 g

(32a)

252
L 282 . o k, bx Wpe Ot
2 sin®| o
6y 2

for the case of one particle step for each radiation step. Eq. (32a), in the

long wavelength limit, reduces to the correct physical dispersion relaticu,

of = w 29432, (3)
pe

Since s8in? ( C. 26 t) cannot exceed unity for a mumerically stable mode, we now
have a much more stringent stability conditioa on 6t ,

1 > ¢ + @ “’Fez. (33)
6t2 6x2 6y 2 '

In - dense plasmas “’pe2 will dominate. Then §t < m—:—; for stability.
Wher the density is very low, we approach the previous reszult. 1n all cases,
however, the presence of plasma acts to require a shorter timestep for
stability and hence makes multiple timestepping more attractive,

Bmpirically, multiple timestepping has been found stable and otheiwise
numerically well behaved. There is some evidence, although not conclusive, from
early runs that multiple t{imestepping reduces the emission of bremsstrahlung
fr'm particle ¢ ‘lisions, This is very much to be desired in a numerical model
where collision frequencies are too large anyway due to the relatively small

number of particles which can be followed. Dispersion relations can be found
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analytically but they are extremely complicated even in the case of only 2 or 3
radiation steps per particle step, In same of the simpler limits, however,
the dispersion relation has been solved with the result that the algorithm

is numericelly stable as expected.

The date siructure of CYLRAD follows that of P POWEReS

closely, The grid
quentities, 11 in mumber (3 E's, 3 B's, 3 J's, p, and 1/¢ ), are all kept in
fast core storage as single precision floating point numbers. Given 330K
words, certainly aveilable on an IBM 360/91, we have 30K words/matrix, This
is 120 x 256 in resolution, The particles are stored in an arbitrary number
of records of fixed length which can reside either in core or on an external
1/0 device. The program is transparent to the actusl mde of the record
storage so the program runs identically on small in-core systems and large
out-of-core systems,

Figure 5a, shows the structure of each record, The first 15 words of
each record contain pertinent information about the particles in the record
such ag charge, mass, the speed of light, &t, 6r, 6z, etec. The first word
of the record heading contains the mumber of particles in the record., All
records have the same number of varticles, NPART.

Following the heading are NPART disposition bytes, ome for each particle
in the record. The disposition byte can have any one of 256 values, each in
principle specifying a different specific action to be taken tor the corres-
ponding particle. At present O means the particle is to be integrated
novmally and any other value means that the particle is to be ignored, Some
particles could be integrated for a while without contributing to the sources.

Others could have their charge varied slowly, for example.

Following the disposition bytes, actually held in NPART /4 words, are

5% NPART words containing the positions and velocities for each particle.
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5a. DATA STRUCTURE Sb. INITIALIZATION

RECORO HEADING RECORD ! RECORC 2
16 WOROS OR, DZ, MASS, ETC.
3 1ZMAX COLS.
[ N
NPART/d OISPOSITION BYTES- RMAX
i WORDS 1 PER PARTICLE /
1 RMAX
L_' ROWS
POS!TIONS ANG MOMENTA \
RST
SeNPART FIVE WORDS FCR EACH 28T
OF THE NPART DIFFER- o -
MAKDS I0FF ZO0FF
ENT PARTICLES
|

—— w — e AX|S o mem— - e

TOTAL RECORC LENGTH (WORDS) {RMAX® | ZMAX = NPART

16 ¢+ NPART/b& # SeNPART

Figure 5, Record data structure of CYLRAD, (a) The organization of
sach record with heading, disposition bytes, and particle coordinates
and momenta. (b) Record initialization of particle locations. Uniform
density cylinders, slugs, and tubes can be initialized,
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The order is z, r, P, Py, P for each particle. The momenta (divided by rest
mass) are in real physical units but the positions are carried i1. cell units
to aid in locating the particles on the grid in fixed point.

The records of particles can be grouped into larger units crlled classes.
The classes could comprise different species of say n records each but their use
is somewhat more general. It is convenient to consider electron: in oppositely
directed beams as being in different classes, for example, since the kinetic
energy and momenta of each class are printéd ocut as well as the total kinetic
energy and the total momenta of the system., Different classes cculd also have
different q values but the same q/mo value in order to pack rather finely certain
important regions of phase space.ho’hl

In initializing the positions and velocities of the particles, the record-
class structuce is also useful. All records in a class, using the present
initializer, are given the same drift and thermal velocities, these six num-
bers teing specified as data for each class., The positions of the particles
within a class are initialized as shown in Fig. 5b. The charge density arising
from each record is nearly constant over a cylinder extending from RST to RMAX
and from ZST to ZSTH+IZMAX*DZ where IZMAX is an integer factor of NPART. The
number of particles distributed radially fram RST to RMAX for each value of IZ
is IRMAX = NPART/IZMAX. After each record in the class, 2ST (Z start) is incre~
mented by ZOFF (Z offset). Thus continuous cylinders, hollow cylinders, full
tubes of plasmas, slugs, and point blobs can all be initialized with the same
program, This capability covers most of the simple configurations of interest
including homogeneous plasmas, streaming instabilities, E layers, and eleciron
beam drift tubes and thus helps to optimize a programmer's time by minimizing

reprogramming.
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V. TESTS OF CYLRAD

Several ofthe test problems used to check out various facets of the CYLRAD
program are described in this section and the results\are given. The tests
performed to date have been quite comprehensive but the testing phese is still
incomplete. Simulation with plasme in the system has only recently been achieved
and much remains to be done with diagnostics, radiation levels, and stability,
The tests chosen for discussion here will be described in chronological order.

The first part of the program written wes the main program with data struc-
ture, loop logic, and provision for data buffering. This framework was largely

copied from the PPOWER progra.mg5

and thus has been thoroughly tested and used
extensively. To this fremework was added the Maxwell Equation integrator without
provision for source terms. Figure 6 shows selected computer output of the
Transverse Magnetic cavity modes from one of the test runs. The system was

initialized at t =0 by setting all fields to zero except for E_, and B,.

9 e
These two components were made nonzero only in a small torus as shown in the
first picture for Be.
As noted in Appendix B, TE and TM radiation separates conveniently in the
code as well as in real wave-guides. Thus the field camponents (E o B'r, Bz)
and (Be, E,, Ez) remain totally decoupled in the code. The code was run with
only Ee nonzero and then with only Be nonzery proving that TE and TM are actually
decoupled in the code.
In Fig. 6, the initially iocalized radiation spreads out at velocity c
until it £i11s the cavity. The eigenmodes excited then continue to oscillate
independently. Since Maxwell's Equations are linear, perhaps the most important
tests of this phase of the calculation were the energy and divergence checks.
Without sources v «E and ¢ + B are both zero to camputer roundoff as they
should be, for runs lasting thousands of timesteps. The energy in the system

is conserved to about 0.034 over the same length of time with no observable
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Figure 6, Transverse magnetic cavity modes. An initially localized
distribution of By(r,z,t=0) (all other fields zero) was released and
follcwed in time. Energy conservation holds to a few hundredths of
a percent with an infinite conductivity rnetallic wall,
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systematic trends. This is reasmable because the staggered leapfrog ccheme

is marginally stable and becéuse the wave equations are linear and the eigen-
modes of the cavity are orthogonal numerically as well as physically. The small
fluctuations observed are due, in fact, to the small incompatibilities between
the energy-calculating algoritim and the actual congerved amplitudes of the
modes, The enesgies of TE and TM fields are conserved separately as expected,

The Poisson sclver is described in Appendix A. Several severe tests were
conducted separately and then the subroutine tv-as inserted into CYLRAD., The
most severe test performed in CYLRAD had J set by a randem number generator and
p set to zero at each time step. The divergence of E was printed out before
and after the Poisson solve. Since CYLRAD forces the longitudinal part of
E to be consistent with p, v + E should be zero affer the Poisson solve in
this test. In the runs, the magnitude |¢ ¢ E! Azopped by roughly 5 orders of
magnitude, This is about the best one could expect taking the roundoff-error
figures for the Poisson-solver accuracy into account,

The pexiinle pusher was then written and tested separately in a number of
simple applied fieldr, Figure 7 shows the radius versus time curves for four
particles in a constant axial magnetic field, Thc electire ficld is zero in
this case, Fach particle hal identically the same axial and perpendicular
energy but the particles were started at different radii, As can be seen in
the figure, all particles have exactly the same frequency. Tuis frequency,

furthermore, is given correctly by

e - A (34)
O W p24e2

to roughly machine roundoff because of the E’E.’Q@ correction described in
Section III. The particles were initialized so that each started at a different
radius or in a different direction, One of the particles looped around the

axis so that its radial excursion apparently differs from that of the other
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CYLRAD PARTICLE ORBITS

Figure 7. Radius versus time for four particles
at fixed momentum in a constant axial field. The
electric field was chosenzero. The diameter and
period of the four orbits are identical, The par-
ticles are executing off-axis circular orbits as

theoretically predicted.
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particles but this is not actually the case, If the effective negative r posi-
tion is marked, as shown by the dashed lines in the figure, all particles can be
seen to have orbits with the same diameter,

One of the particles passes through the axis during each orbit. The two
components of the perpendicular momenta are shown in Figure 8 for this parti-
cle, The radial momentum changes discontimously (drawn lineerly) over one
timestep and the agimuthal momentum has a cusp. Even for this particle the
energy is conserved out to machine roundoff in the absence of electric fields.
The ability to treat orbits accurately near the axis for beam problems was one
of the reasons for choosing to solve the momentum equation directly rather than
to utilize conservation of angular momentur® to get V o from A,

A radial, linearly increasing electric field was applied to this particle
and the test performed again. Energy is not conserved exactly in this case
because the electric field was not self-consistent, but the orbit was
periodic and did return to the initial energy when the particle returned to the
axis, The main feature of this test was the presence of an azimuthal Ex B
precession of the orbit which appeared as expected. During these various
particle tests, the source matrices calculated were printed out and checked in
detail to ensure that the area-weighting algorithm works properly.

The particle pusher was then inserted into the CYLRAD code and the entire
program was tested on the increasing-current run whose results are shown in
Fig. 9. A colum of charge was initialized along the full length of the axis
exterding out to a finite radius less than the tube radius and then accelerated
slovly along the axis by an applied non-electromagnetic force, Initially only
the radial electrostatic electric fields were present plus a low level of
cavity modes included to tickle any instabilities, if present. In this
problem the acceleration was sufficiently slow that a quasi-static azimuthal

magnetic field could be expected to develop where B, varies as r inside the

8
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PARTICLE MOMENTA VS TIME

C =20 P2 = 0.2 Py
27WE' X299 PR=40 ------- Py
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Figure 8, Radial and Azimuthal Momenta for a particle passing
through the axis of the cylinder. The orbit is exacily periodic
and energy conserving even though Pr reversesdiscontinuously
as the particle passes through “he axis.
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charged cylinder and drops off as 1/r outside the cylinder., The mass of the

particles in the charge cylinder was taken so large that no appreciable radial

expansion took place from the radial electrostatic field during the course of
i the run.

In the figure, rBe(r) is plotted at three equally spaced times after the
beginning of the mm. The gquantity rBeﬁr) should vary quadratically out to the
beam radius and then should be constant outside this radius. The theoretical
curve is shown for the peticle current at t = 150, The numerical data from one
29-point radial sine is also shown for comparison. The agreement is excellent.
The levels of rBe(r) seem to be getting closer together as time goes on. This
occurs because of the relativistic saturation of V at c; only the quantity
y/:ﬁ-vz/ce is being accelerated uniformly.

Two other features of this particular test will be of interest., The radia-
tion fields .enerated when the char jed beam is accelerated would normally rattle
about in the cylinder forever were it not for the radiation-absorbing layer

included in the calculation, This layer extends over two cells in radius, shown

f cross hatched in Fig. 9, and along the full length of the sysiem. The electric
] ! fields in this region are knocked down at each timestep as they would pe in a
resistive mediun. Thus the radiation energy which devciops does not continue
indefinitely. During the course of the run the transverse electric energy, which

does not interact with the beam at all, decreases by two orders of magnitude due

ORI

to the absorption.

The second feature of the calculation is the presence of an €-metal wall two

cells inside the real wall of the cylinder. Appendix C discusses the inclusion

Y T

of a spatially varying dielectric constant in CYLRAD. This allows more complicated

physical problems to be handled where the radiaticn propagates through a spatially-

44




G

{2

S S T

Relativistic Plasma Simulation

150

100

(CYLRAD CURRENT TEST

c=20 8t=05
S5 STEPS TO |

AArapapaabdab a080000,
'y

[} 1 A

=750 ----
t=150.0 0 000
1=225.0 ass

Al

—
15 20 25

0
(IR-1) ——

Figure 9. Azimuthal mnagnetic field of a slowly
accelerated charged cylirder, The solid line
shows the theoretical magneto-static field which
would prevailatt= 1500 if the charged cylinder
were moving at constant velocity,
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varying, frequency independent dielectric medium (Cherenkov radiation could be
treated for instance). An important 1se for this flexibility is the case for
€ * ®, 4hich is really treated as 1/¢ = 0. As noted in the appendix, the code
treats this as a metallic, perfectly-conducting boundary condition. Thus com-
plicated metal boundarys can be included quite easily by reducing the valves in

the 1/( matrix from 1.0 to 0,0 in regicas which are supposed to be metal.

In the test shown by Fig. 9, the outer wall of the calculation was taken to
be two cells of this €-metal, explairing the two points at zero near the outer
radius. This €-metal conserves energy properly and does not contribute ‘o the
divergence of E or tue divergence of B. These convenient propertie.. are all made
possible by the fully causal treatment of the Maxwell Equations embodied in the

code.

A final series of tests are being ccnducted in which the cylinde~ is filled
uniformly with electrons and with a smeared cut ion background. The particle
distribution is initially random in velocity with all fields zerc except the
electrostatic field caused by initial discrepancies from charge neutrality.

These tests were designed to check overall energy conservation and the bremsstrah-

lung radiated from the particle collisions, The plasma temperature was low, taken
5o that nk% ~ 15, and the particles were initialized so that there wer- conly 2

. per cell on average. These conditions give fairly high collision times &nd fluc-

| tuation and therefore fairly fast bremsstrahlung thermalization. Furthermcre,
because the fluctuation levels are high, conservation of total «nergy in the

code should be all the mcre difficult to achieve. In typical runc the energy

was conserved to petter than 1% over LOO wp'1 when rrea weighting was used on

all fields and sources. When LGP was used on the currents, however, with all
other quantities area weighted, the energy conservation disappeared entirely.

Errors of 500* were recorded for the same length run., The large NGP error
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is explained when cne realizes that no k-space smoothing to the sources or fields

is being applied as in electrosiatic SS.muhtions.zs

Electromagnetic collision {themmelization) times go roughly like (m/wp)""

times the corresponding electrostatic times., In simulation plasmas, mnk‘;‘; is

%, | a rule-of-thumb electrostatic collision time. In the present case, therefore,

E i J.somp'1 is a good estimate of the Coulomb collision time. Since there are at

‘ i most a few modes in the system tested (dimensions 16 cells x 29 cells), the very
3 shortest wavelengths, which are the slowest modes to thermalize have (W/WP)2 & 10.
’ Thus bomp" is a reasonable estimate for the bremsstrahlung thermalization time,
% in good agreement with the computer simulation.

When several timesteps for the fields are taken for each particle timestep,
k the bremsstrahlung radiation rate became considerably slower. Thus the ability

to take multiple timesteps waz found to improve the physical properties of the

simulation as well as the computatioral properties, This effect clearly results

E i because radiation arises fram orbit deflectionc. When the orbits suffer fewer
E deflections, eveir though of larger amplitudes, the radiation at short wavelengths

will saturate more slowly.

The field energy saturation levels sre also fairly well explainred for these

b tests. In the cas: of NGP currenis one would expect roughly %kT of energy for
each field component at each grid point. Here T is the temperature at equilibrium,
One also expects %k? energy in kinetic motion for each particle. Since there are
2 particles per cell in these runs, the NGP field energy at saturation should be
roughly twice the kinetic energy. The actual ratio observed was about 3, When
area weighting is used, wavelengths shorter than sbcut 4 cells are strongly

| supressed; that is, three fourths of the modes are largely inoperative. This

! means that kinetic energy should be twice the field encrgy, a ratio clcse

o the 50‘ numter given by Fig. 1C.
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Figure 10, Radiation of Bremsstrahlung by
a non-equilibrium plasma in CYLRAD. The
electromagnetic field (initially zero) ap-
proaches equilibrium, as estimated by equi-
partitionarguments, as wpet approaches 450.
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VI. CONCLUSIONS

The two dimensional relativistic plasma simulation program CYLRAD has been
described in some detail. Two main modules have been developed, the general pur-
pose r-z cylindrical Mexwell-Equation solver, and the relativistic particle pusher.
The overall algorithm is fully time reversible. In several instances, alternative
algorithms have been mentioned and the reasons for each choice given. General
criteria of simplicity, flexibiiity, accuracy, and efficiency have been balanced
in each of the algorithm choices. The paper has stressed the numerical aspects
of the CYLRAD program in order to show first, how such a program can be constructed
to be both flexible and efficient, and second, how the interplry between partial
differential finite-difference techniques (fluid codes) and particle techniques
can be n rged in the development of & hybrid code. These techniques will fand
application throughout computational physics. In incompressible flocw ihe vor-
ticity can be discretized, for example. Or in the study of galactic evolution,
the gas clouds could be followed in an MHD approximation while the stars could
be followed as particles.

Several of the ideas presented here may be of special interest.

1) Separation of the longitudinal and transverse contributions of the

currents to the electromagnetic fields has been previously recc>gnized.3 3

The
method given in Section II and Appendix A is both flexible anl efficient.

2) A spatially varying dielectric matrix is allowed. The correct boundary
conditions are automatically satisfied everywhere even when € + ®, thus quasi-
metallic or dielectric obstacles and walls can be pleced arbitrarily in the
cavity.

3) A method for accurate iutegration of the particle orbits near the axis
of symmetry is given. Thus axis crossings can be handled smoothly without singu-

larity.
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L) The relativistic mass correction is performed in a simple, reversible,
energy-conserving menner. This integration method is to be contrasted with
algorithms where V and Y are advanced independently.

S) The completed plasma-simulation algorithm, including the solution of the
Maxwell Equations and the relativistic particle pusher, allows the fields to be
advanced on a shorter timescale than the particles. This increased freedom has
been found to reduce collisional effects as well as improve program efficiency.

€) The completed plasma simulation algorithm is fully space-centered and
fully time-reversible. Tnus a host of problems, which might otherwise occur,
can be avoided.

Proposed calculations on the IBM 360/91 computer (~ 400K words of 32 bits
each of useable fast core memory) can ve performed on a 50 x 512 mesh at less
than 2,0 seconds per 3 radiation steps plus Poisson solve, Using 11 grids, then,
of 25K points each still leaves plenty of core for program, diagnostics matrices,
and particle buffers. By stretching the computational cells 3:1 in the axial
direction, systems with a 30:1 aspect ratio can be treated easily. The running
tine for this problem, assuming 4 particles per spatial grid point is 12 seconds
(100K particles x 100 p.sec/particle + 2 seconds for fields). In physical units

this is about one wp'l of real time per minute of CPU time.
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Appendix A - Poisson Solvers

In this paper, the constitutive Maxwell Equation,

v+ E=bUnp, (a-1)
is ensured by an auxiliary calculation rather than by choosing one of the
conservative charge-current algprithms.6’12 The many advantages of this are
discussed in Section II. One disadvantage is that a Poisson equation must be
solved. This Poisson equation,

Vo8 = ¥ .E -inp, (a-2)

generates a correction potential &(r,z), whose gradient is subtracted from
E* to ensure that

E =E* -3¢ (a-3)
satisfies Eq. (A-1). Calling the right hand side of Eq. (A-2) S(i,j), consistency
of the difference analogues to the differential operators necessitates using the

+ =
S5-point Poisson approximation (ri s Typ I, are defined in Section 1I),

b

ry 8¢ (141, ) - 2r, 88 (1,§) + r] 8 (i-1, §)

r, 6r°

1 (A-k)
+ 8¢ (1,041) - 28¢ (3,4) + 8¢ (§,j-1) =€ (1,]) ,

822

fori=2,5 ..., NRand j = 2,3 ..., N21., Here we again use i as the radial
index IR and j as the axial index 1Z. The boundary conditions on §¢ are

8¢ (1,j) =6 (2,j) from azimuthal symmetry and 5¢ (NR1l,j) = O because the
outer wall is considered to be perfectly conducting. This second condition is
true only because Ez‘, the electric field from the staggered leapfrog integration

of Maxwell's Equation., satisfies E * (NR1,J) = O already.

It is clear from Eq. (A-4) that S(1,j) are not used. Thus p is effectively

discarded at these pcints even though the charge=sharing algorithm does attribute




e did ok i

Boris

some charge to these cells. At the axis all of this charge is used, however,

in going from a charge matrix to a charge density matrix. At the wall, the
charge lost can be attributed to & numerical indeterminacy principle which states
that all charge within half a cell, 6r/é, of the wall connot be distinguished
frae the cancelling image charges in the wall, which also lie in the same
computational cell. Thus this charge cen have no effect un the longitudinal

fields in the system.

In CYIRAD, Eq. (A-l) is solved directly without iteration by a combin-
ation fast Fourier-transform reduction in the z direction and a double sweep
metrix inversion of the tridiagonal equations for the resultant Fourier harmonics,
After Fourier transforming each row of S in the z direction, we need only coun-
sider individual harmonic terms of the form 6¢K (1) exp (2n iKj/NZ). Sub-

stituting into (A-4) gives

+ -
3 Ty o A
X | — 6¢K (i+1) - 26¢K(i) - ¢K(1-1)]
6r° ry ri
(A-5)
4 sin® nk/NZ 6¢K(1) = sK(;).
6§22

Solving the tridiagonal system of Eqs. (A-5) for 1 = 2,3 ..., NR gives a matrix
of 6¢](to overvrite SK' These harmonics are then Pourier synthesized to give

the final result, 6¢ (1,j).

5

The fast-Fourier-transform method was developed h; the author at Culham1
and has been in use for over a year at NRL in the PFOWER electrostic simulation
codeau’es. Every effort has been made to make the code efficient and accurate.
With the FFT subroutine in assembly language and the tridiagonal solver in
Fortran, a 128 by 128 system can be Poisson solved in cylindrical coordinates

in .48 seconds on the 390/91. The tridiagonal sclver is presently being ccded
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in PL360, a symbolic assembly languege for 360 computers, and is being

modified to solve two harmonic equations simultaneously. The estimated Poisson-
solving time for the 128 by 128 system will then be about .35 sec. For compar-
ison, a single radiation timestep leapfrogging E and B forward takes about .20
sec. in Fortran. Thus the field integration pert of the CYLRAD code will be
slowed by about 504 if 3 radiation steps are performed for every pariicle step
(Poisson solve). This 50% slow down of the field integration is small, however,
when particlc integration times are considered as well. With only 2 particles
per cell, we have over 30,000 particles to integrate every timestep. This is 3
seconds per timestep for particles, .6 second for fields, and .35 second for a
Poisson solve. Thus the Poisson solve costs at most 10% of the cycle time, By
contrast, the conservative charge-current algorithm, except for possibly knotty
problems at the boundaries, would allow us to do away with the Poisson solve
entirely but would roughly double the particle integration time. Thus the

Poisson solve method saves a factor of akout 2 overall.

As a special case, the conservative charge-current prescription could be
used in the CYLRAD algorithm resulting in 8¢ (1,J) = O to computer roundoff error
everywhere in the region of calculation. Since single precision is only 6 figures
or so on the 360 computers, however, it seems quite likely that some form of
"divlergence cleaning” would still be necessary every 1000 timesteps or so. The
divergence of B in CYLRAD is zeruv to only about 4 or 5 places, for example, since
roundoff errors accumulate over a few thousand iimesteps of the radiation fields.

Thus it may be necessary to use such a divergence-cleaning routine for B as we.il.

It 1s advantageous to calculate in single precision as much as possible
since the useable core storage is then effectively doubled. Therefore close
error checks on the Poisson tolver have been performed. The test cases were on

small 16 x 29 systems and on larger 128 x 128 systems. In the former caze

53



Boris

28 =S to about 5 figure accuracy; in the latter case, tc about b figures.
As ¥ 3¢ is typically only a few percent relative to E*, however, the actual
error in the physical fields, in the worst cases would only be a few parts per
million.

Other methods of Poisson solving would suffice for this problem, of course,
since the consistency conditions for the difference analogues of the vector

differential operations prevent the use of Poisson coefficient smooth.'mg]'s’16

immediately. Bunemnle, Hockney1 ’20, Golub and Nielson21 all have direct
methods for Poisson solving which may be adapted i~ this problem. 1In addition,
the classical iteration meth0d822 , could also be applied but at a large expense,
The Fourier method seems more flexible than these methods and is of comparable
speed and so has been used here. The Fourier method also generalizes conveniently

to other geometries and to three dimensicns since harmonic analysis in the ©

direction (or X, Y, Z) as well as the Z direction is allowed.
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Appendix B - Generalizations of the Maxwell Equation Solver

Since the particle-pushing algorithm treats one particle at a time and
only five coupled ordinary differential equations must be solved, generali-
zation of the algorithms given or suggested here to different geometries or to
three dimensions will be quite straight forward. Modification of the Maxwell-
Equation algorithms including the Poisson Solver used here presents a far more
difficult problem from a practical viewpoint. This Appendix considers Maxwell-
Equation Solvers in other than r-z cylindrical coordinates and gives vari-
ations on the staggered leapfrog integration algorithm which have special pro-
perties for various applications. I consider first the integration of the
Maxwell Equations using an implicit rather than an explicit formulation of the

partial differential equations,

An implicit difference equation is one in which the time derivative terms
include the quantity being solved for at the new time. For the Maxwell Fquations

we write, in analogy with Eqs. (10-11),

E(erst) = £(1) + S 0] < p(e) + v B(t+s)|

2
(B-1)
bt J(t+6t/2),
B(t+8t) = B(t) - c—g—t— [\_72 x E(t) + v, X g_(t+5t)]. (B-2)

In these vector equations the desired fields E(t+8t) and B(t+6t) appear explicitly
on the left hand side and implicitly on the right. When the finite difference
operators VD are expanded, a complicated coupled system of equations is

obtained which must be solved either directly or iteratively. These equations

can be decoupled into 2 three-component sets in either of two manners. Equation
{B-1) can be substituted into the right side of (B-2) and {B-2) into the right
side of (B-1) to obtain second-order spatial equations for E{t+8t) and B(t+6t)

separately.
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Alternatively, the Transverse Electric (Ii!eBrBz in r-z cylindrical and
Transverse Magnetic (BeErEz in r-z cylindrical) modes can be decoupled in solving
(B-1) and (B-2). This decoupling is hoth convenient and physically reasonable in
2D systems, In testing the present version of CYIRAD the distinction between
TE and TM radiation has been rigorously maintained and each set of cavity modes

has been checked for energy conservation and numerical stability independently.

The dispersion relation for Equations (B-1l) and (B-2), when the spatial

derivatives are all fully staggered in Cartesian coordinates, is

25,2 2:.2 25,2
2 c2bt > c= bt 2 8= (B-3)
tan? wbt/2 = g2 sin kx6x/2 + 5% sin ky6y/2 + .“.‘DL_

This dispersion relation differs from that found earlier, Eq.(32a), by the conver-
sion of the sin® term to tan® with no other change. This means that the stability
condition found earlier, because the right side of Eq., (32a) could not exceed
unity for any wave vector, can be relaxed. In the fully jmplicit algoritbm

under discussion here, marginally stable oscillatory solutions exist for

any 6t because tan® ranges from zero to infinity. The dispersion properties

of this method are as bad as for the cxplicit algorithm, however, as can be

seen in Figure 5 for a one-dimensional case with low plasma density. Thus the
implicit algorithm, if used with substantially longer timesteps than allowed by
the explicit stability condition, will suffer unacceptably large numerical dis-

persion in physically interesting wavelengths.

The more appropriate regime for use of the implicit formulation is in
coordinate systems having a singularity. Polar cylindrical coordinates is a good
example and will be considered briefly. The method also generalizes easily to
r-9-z systems since the z coordinate is particularly easy to treat and Cartesian
systems, x-y and x-y-z, are even simpler. Figure 11 shows an appropriate r-9

grid whose major difference from Fig. 2 is the ncn-staggering of meshes in 8,
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A MESH FOR POLAR
COORDINATES
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Figure 11, An r-6 mesh for the implicit
integration of Maxwell's Equations. No-
tice the interchange of 4 and z coordinates
radially relative to the CYLKRAD Mesh,
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labelled by m.

sttt g

definitions (assuming their use in m-space for 8 w:riations):

, (7 ¥),(i,m) = p 1O - Y1) ,
E (9 M )gltm) = & 222

+ -
(r, A (1) - r, A_(i-1)) .
(v, * 8) (i,m) =i—i = Lr +%Ae(i),

(9pxA) (1,m) = & B a (i),

vy

i
(A (1) - A (i-1))
‘ (.V_Dxﬂ)e(i,m) =.8 -2 or & ’
: 2 r, A {it1)-r A (1))
!rl (vaA)z(l,m) - z[ %7( i+1'e = ;"o ) ;i:_'FAr(i)] ,
== i
+ -
; . ¥ (it1)-2r, ¥ (i)*r, ¥ (i-1)
9,2 ¥ (1,m) = i—.[rl 632 i ]- z—}r Y1) .
1

where the radial factors are defined as

ri+ = (i-1) or '
r, = (13/2) br,
ri- = (1‘2) 5r .
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This added complication is removed because a fast Fourier transform of (B-1) and
(B-2) in © is to be performed to decouple the radial variation from the azimuthal
variation. This transform allows derivatives in © to be taken analytically in

m-space and does not couple adjacent m values. The TE (Ez » B, Be) and T™M (Bz,

Er’EO) equations therefore become tridiagonal systems in r for each 6 harmonic

To pursue this in greater detail, consider the following difference-operator

(B-4)

(B-5)

(B-6)

(B-7)

(8-8)

(B-9)

(B-10)

(B-11)
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Here "m" can be replaced by any particular finite difference analogue, say

—’%ﬂ’ for the 8 derivative if desired.
When these definitions are substituted into (B-1) and (B-2), the following

two systems of tridiagonal finite-difference equations are obtained

&=

B, (t¥5t,1) = [Br(t,i) = 5,,51 (bxg(t))r(i)] S l;;j:} E_(t+t,1),

By (t+6t,1) = [Be(t,i) - cg—t (ang(t))e(i)]
cbt

YT (Ez(t.+6t,i) - Ez(t+6t,i-l)) 5

E_(t+6t,1) -[E (t,i) + - ¢S (vag(t))z(i) - lméth]

4 cbt i Be(t-r6~t,i+l) =\ Be(t+6t,i) -
2:? or -
cbt (t+6
- '2—!‘:.;.- imB (¢ t,i)
for Transverse Electric modes ard
] E_(t¥6t,1) = [E (t,1) + c“(v xB(t)) (1) - hnawr]
i + cbt +6
: 2—!_-? im Bz(t t,i),
1 (8-13)

Ee(t+6t’i) = [Ee(t 1) + &% cbt (vaJ_3_(t))e(i) S lmétJe]

] 5t
1 o %E [Bz(t+6t,i) - Bz(t+6t,i-l)] -
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B,(tH8t,1) = [Bz(t,i) -% (vag(t)) z(1)]
oot | Fis1 B (t+bt,1+1) - r, Eg(t+st,1)
Tery or (B-13)
+ % 1nE_(+5t,1)
1

for Transverse Magnetic modes. In both the TE and the TM cases the equations

to be salved can be reduced to a single scalar tridiagonal system. For example,
in Egs. (B-12) for TE radiasticn, the equations for Br(tﬂt,i) and Be(t+6t,1)

can be substituted into the equation for Ez(t+6t,1). Once the resultant scalar
equation is solved, Br(t"'bt,i) and Be(t+6t,i) can be found explicitly by sub-
stitution. This algorithm has the disadvantage of requiring Fourier transforms,
in 8, of all the field variables. Longer time steps can be taken, however. This
algorithm alzo suffers in that the dielectric matrix technique mentioned earlier
and discussed in Appendix C cen only be used in axially symmetric configura‘ions.
There is the compensation that Fourier smoothing techniques can be applied in 6
and somewhat coarser 8 resolutions can be allowed than would be possible using

an unsmoothed finite-difference approach.

In 3D cylindrical and in 2D and 3D Cartesian coordinates similar equations
are obtained. In each case the implicit equations can be solved directly with-
out iteration by Fourier transforming in all but one of the dimensions and then
solving the resultant scalar tridiegonal equation ty a two-sweep Geussian reduc-

tion as used in the CYLRAD Poisson solver.

The Fourier harmonics labelled by k in the z direction and by m in the 6
direction can be treated "exactly" in the following sense: The sin® terms on
the right hand side of Eq. (B-3) get replaced by the corresponding amalytic
derivatives. Thus, if Fourier analysisz were usel for both the x and the y

derivatives in Eq. (B-3), one would have (for Cartesi: 1 coordinates)
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tanfwbtfe _ 2, 2 2 2
—F@WL F(kE+xP) + 0. (B~14)

The only dispersion remaining arises from the finite timestep used in the integra-

D e B

tion. This result suggests a fully dispersionless integration of the Maxwell
Equations in Cartesian systems where Fourier analysis is possible in all direc-
tions. Rather than using a finite difference integration in time, giving rise

to a dispersion relation like Eq. (B-ll4), the correct dispersion relation

W = cz(kxz + kyz) (B-15)

i T o e

can be used to advance the phese of each of the Fourier harmonics analytically.
When this is done, no numerical dispersion is present, only the aliasing which
occurs because a finite discrete representation of an essentially continuous
system cannot be avoided. This method of dispersionless integration would allow
mich more accurate treatment of short wavelengths and would permit much longer

% runs with strong phase coherence of waves in systems where (8-15) applies.

The treatment of the plasma sources would be somewhat more camplicated than
indicated above in Eq. {B-15) and would involve the charge-current con-
siderations mentioned earlier in connection with the CYLRAD algorithm. These
problems are all handled quite easily and accurately in kespace however. One
such problem arises in the form of a numerical inaccuracy because the socurce
i(t*ét/e) will be assumed constant over a timestep when advancing the amplitude

and phase of the (kx,k ) mode. The (k ,k ) component of J must actually be re-
En(kx,ky) 6t /2
Ta(kx,ky) 0t/2

duced by about sin to reduce this inaccuracy. This is

o-iwt -iwbt/2

Just the factor by which %_k£5t ‘-Io dt differs frum go. e , the value

of the current at the center of the timestep.
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Aprendix C - Spatially Varying Dielectrics
The general purpose Maxwell Equation solver discussed in Section II can be

generalized very 3imply to include the presence of a spavially varying dielectric.
The properties of this dielectric medium are assumed to be time and frequency

inderendent. The pertinent Maxwell Equations became

dp*
3 T CVxB - bmy, (c-1)
3B
™ = CYx [ pfel, and (c-2)
D= bmp (c-3)

The superscript * in Eq. (C-1) indicates that the D* contains, in pirinciple, error
components in the longitudinal field due to discrepancias between p and J as
discussed in detail in Sections II, IV, and in Appendix A. These error components
can still be elimirated using the Poisson Equation arising from (C-3), as before,
with simple boundary conditions on 8¢, regardless of the spatial distribution of
dielectric, €(r,z). In CYLRAD the quantity 1/€(r,z) is stored in a matrix
defined at the © mesh of Fig. 2. The values of % on the other meshes are found

by interpolation from the stored values when needed.

D

thus v, + B ® O is siill assured. Furthermore D, (longitudinal) arises only

The term D/€ is found by a multiply inside the difference cperator V. x and

from J 1 88 required by physics although —Dt (trensverse) can arise in part from
J, through coupling caused by the 1/€ tem in Eq. (C-2). The usual boundary
conditions _ll“ continuous, D continuous, at a dielectric interface with no
surface charge are also preserved in the staggered leapfrog solution of the

finite-difference Maxwell Equations. Thus a very complicated elliptic boundary
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value problem is solved in an essentially simple manner by solving the causal,

hyperbolic, time-dependent physical equations.

The quantity _D/€ is the electric field, of course. When _E_" is not contin-
uous across a dielectric interface, the curl of E is also non-zero so & burst
of radiation is emitted through time variation of ti.e magnetic field. This
source of b_B/bt turns off when the boundary condition ie satisfied, The method
is sufficiently flexible to allow perfectly-conducting metallic boundary condi-
tions to be simulated. By setting 1/€ = 0 in some region, the electrir fields
in that region are brought to zero. The longitudinal displacement D does not
even see these complicated €-metal regions, however, so a very simple set of
boundary conditions is retained for the Poisson Equation ard the difference-
formula integration, The importance of being able to solve the wave equations
with arbitrary dielectric media in the calculation cannot be overstated. Very
complicated problems become easily tractable., Cherenkov radiatimn of particles
traveling through dielectric media at velocities faster than the lighi velocity
in the medium can be studied in a detailed way for quite general dielectric-
particle configurations., Complicated dielectric wave guide and transformer
problems became tractable. Most important of all is the ability to treet radi-

ation and plasma in fairly arbitrary metallic containe:rs.

When € approaches infinity in a dielectric, the medium imitates metallic
behavior because the polarization charge becomes almost totally free to move
and therefore moves as would the equivalent conduction charges in a metal. If
a point charge is imbedded in an €-metal, for instance, the "metal" polarizes
and all the charge from the point particle appears at the surface of the €-metal
region since E is zero inside. Further, since the equilibrium §1 must be con-

tinuous across the €-metal bounding surface, and since E is zero inside, the
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electric field leaving the €-metal will become perpendicular to the surface when
all the radiation fields from initial transients have been damped away. This
means that very complex electrostatic problems, as well as time-dependent electro-

magnetic problems can be solved quite trivially by CYLRAD.

The equations can undoubtedly also be generalized to treat problems where

a spatially varying w(r,z), the permeability, is included. In many cases it

may be necessary, in fact, to run the entire problem with a false value of p
in order to scale the electric and magnetic fields in a convenient way so that
7 w = w iate. =

the scale length ¢/l e and ADe vth/ - will not be too dispeiate. An equi

valent way of looking at this is to rescale ¢ or to decouple the electrostatic

and electromagnetic masses of the particle.
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Bit-Pushing and Distribution-Pushing Techniques
for the Solution of the Vlasov Equation*

K. R. Symon, D. Marshall, and K. W. Li
Department of Physics
University of Wisconsin

Madison, Wisconsin

ABSTRACT

In a bit-pushing program a plasma is simulated by manipulating a pattern
of bits in the computer memory representing the pattern of particles in phase
space. The method is analyzed and compared with conventional particle-
pushing techniques. In a distribution-pushing program the particle distribu-
tion function is modified according to the leap-frog equations of motion for
the particles. Algorithmsare developed for accuracy and efficiency. Sample
results of both kinds of programs are presented. Results are presented from
a one and one half dimensional distribution pushing program simulating a plasma

beam emerging from a circular hole.

* Work supported by the Atomic Energy Commission.
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I. INTRODUCTION

In this paper we present two approaches to the comuier simtation of
plasmas which have been investigated as ways of econonizini On memory Storage
space and time required for the solution, In order to illustrate the method,
we will consider primarily one dimensional problems. Programs utilizing these
methods for one and one half and two dimensional problems are m;der development,

We wish to find the behavior of a system of particles of a single species

moving according to the equations:

ij = vj, \'lj - a(xj), . . Q) .

where xj, vj are the coordinate and velocity of the jth particle and the
acceleration is given by

a(xj) = ae(xj) + if‘j K(xj-xi), ) )

where K(x) is the force (per unit mass) between t;vo particles a distance x

apart, and where ae(x) is the acceleration due to the extarnally applied

force, If any, on a particle at position x. The force kernel K(x) may have
various forms depending upon the particular problem to be simulated, Typical

examples are shown in Fig. 1. For the case of a Coulomb force between plane

K K
] o2
0
X
zueo enet——

vﬁ&,

K
d
X
(a) (®) (cs
Fig. 1. Forms for the force kernel K(x).
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charged sheets, the kernel has the form shown in Fig, 1(a), where ¢ is the
charge density per unit area and y is the mass density per unit area. If we
take the charged sheets to ,hgve a finite thickness d, then the abrupt step
becomes nodified.ns shown in Fig. 1(b); thif is al;o the form for the force
kernel associated with the cloud in cell model in one dimension. If we are
dealing with & beam of particles of finite cross-section, the kernel will

have the fqr, shown in Fig. 1(c), where the force falls off at large distances
as 1/x2 if the beam is in empty space, and falls off exponentially if the beam
is confined betwesn conducting walls. We will assume that the plasra is con-
tained within a length L along the x-axis, -4L < x < %L, We will take
periodic boundary conditions, that is we will assume that for every particle
in this interval there is an identical particle at the same relative point

in every other interval of length L along the x-axis. For this reason it

will usually be convenient to choose a kernel of the form 1(c) for which the
force between two particles falls to zero before they reach a distance L apart.

The energy integral for the above equations is

2
E=Z ). “+ZvV(x)+ z v, (x;-x;) (3)
309 7570 G patrs 1,3 P34

where the external and pair potential energies are given by
X 0 b
V) = - [ 3,00 ax, @

x
Vp(x) = -I K(x) dx. (5)

1f we use the coulomb kernel 1(a) for a large number of charge sheets distri-

buted with a density x(x) per unit length, then the electric field is given by
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£m = B [ xeext) k) ax, (®)

and we can show that the thzrd term on the right in Eq. (3) reduces to the

usual formula for the electrostatic potential energy:
% ” KGOK(x') V) (x-x') dxdx’ = I % € (x) dx )

The Vlasov equation corresponding to this problem is

EevEiamE-y, ®)
g(x) = ae(x) + [I K(x-x') £(x',v') dx'dv'. 9)

The linear dispersion relation for waves of wave number k, frequency w is

readily shown to be

2

W ag/av
1*T[w_vdv=0, ) .(10)
where g(v) is the unperturbed velocity distribution,

£ a V) = xgv), J g(vdv = 1, (11)

unperturbe

where k is the number of particles per unit length along x, and where

2
k= LkK. (12)

w
We have assumed that the kernel K(x) is an odd function of x and have expanded
it in a Fourier series:

K(x) = T ZI(k sin kx . (13)
k=2mn/L

For the coulomb kernel 1(a; for plain sheets, kKk has the constant value

KK, = czll.uco. (14)
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and w is independent of k and is just aqual to the plasma frequency

mkz = %2 = lcoz/ueo = nez/leo. (15)

For finite thickness sheets, the Fourier coefficients of the kernel have the
value (14) for long wavelengths, but approach zero for wave lengths shorter
than the thickness d. For the kemel 1(c), the quantity kKk falls to zero
for both iong and short wavelengths; we may in this case define th: plasma
frequency by the formula (12) for the value of k for which klf.k is a maximum.
Throughout this paper we will assume that the motion of the particles
may be computed by using the standard leap-frog algorithm, We divide the time

axis into intervals t according to

t, =nt. (16)
The positions x are to be calculated at integer time points t and the
velocities v at half integer time points. The leap-frog advancement algorithm

is then

Yoy Viney * A0gn)Ts
a7

Game1 T Sn Yy neg®

II. BIT-PUSHING PROGRAMS

Let us divide the fundsmentcl period L along the x axis into J intervals
each of length h, (L = Jh,, Let us likewise choose a maximm and minimum

velocity v which are relevant to a particular problem, and let us

sax’ Vain
divide the interval (v“x - lin) into I intervals each of length g,
(vm T Ig). The intervals h and g are to be chosen sufficiently

small so that they represent the maximum precision with which we care to
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specicy the positions and velocities of the particles. The phase space for
the problem is now divided up into IJ cells. We may locate any particle by
specifying the cell in whict its position and velocity are located. Con-
versely, we may describe the particle distribution by specifying the cells
which are occupied by purticles,

In a bit-pushing pro;iram, a rectangular array of 1J bits is reserved in
the memory, each bit correlated with a cell in the rectangular phase space.
A cell which is occupied by a particle is denoted by a one bit. A zero bit
denotes an unoccupied cell. This pattern of bits is then pushed according
to the leap-frog algorithmg (17). At a half-integer time step, each row
corresponding to a particular velocity is advanced in the x direction by an
appropriate increment vt. At an integer time step, each column correspondin
to a particular position is advanced in the velocity direction by an increment
at. Some time can be saved in the computation by utilizing the fact that at
a given time step all bits in a given row or column are advanced at the same
time and by the same number of intervals. Even more time could be saved in

a computer whose logic is well suited to pattern manipulation. Since the same

J intervals along the x-axis are used in calculating the acceleration field,
no interpolation or area weighting is required.

4 We have found it convenient to align words in the phase-space memory
bank along the velocity direction. That is, a complete word corresponds to
a group of phase cells having different velocities at a single position x.
The velocity increments at an integer time step can then be accomplished
simply by a series of shifts. Pushing a row in the x direction at a half-
integer time step rejuires an individual examination and manipulation of each

bit on present computers. Such an examination is in any case required to
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perform the sum appearing in Eq. (2) for the self field. In order to facili-
tate the caiculation of this sum, we store in a linear array of J words the
number of particles in each x interval (the density). When a row is to be
shifted at the half-integcr time step, we scan along the row, noting those
poiats at which there is a change from a zero to a one or from a one to a zero
bit. The appropriate succeeding bits are corrected and at the same time the
corresponding densities are corrected. Thus if we encouater a sequence of
empty or full cells we need make no changes until we come to the end of the
sequence. At each half-integer or integer time step the increment vt or at
is calculated according to the algorithm (17) and rounded off to the nearest
integer number of position intervals h or velocity intervals g, for each row
to be moved. If the round is unbiased and if the remainder is discarded, a
random error of h/y"§ or g// 8 (rms) is made in the position or velocity at
each half-integer or integer time step. This error can be reduced by
accumulating the rounded off remainders for each row and column and adding
the accumulated remainders to the calculated increments at the next time step.
A particie which stays in a given row at a particular velocity then suffers
no net position error during successive position increments until it is shifted
to another velocity row, whereupon it suffers an rms position increment h//6 .
This procedure reduces the round-off error considerably in those cases where
increments in position or velocity per time step are of the order of or less
than one interval h or g. There is little improvement when the increments are
many intervals per time step.

A similar scheme has been used by Miller and Prendergastl in the simulation
of many-body problems in galactic astronomy. Miller and Prendergast avoid the

round-off error by choosing position, velocity, and time increments so that
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gt = h. All position increments are tRen integral smltiples of h, Miller and
Prendergast quantize the forces so that at is always an integer multiple of g.
The round-off error then effectively appears only in the quantization of the
force. This procedure seems to place very severe restrictions on the choice
of parameters unless a very large nusber of phase cells is used.

A little reflection will show that the following theorem is true:

Theorem. A bit-pushing program with J = 2j position intervals
and I = 2i velocity intervals is precisely equivalent and will
give identical results to a conventional particle-pushing
program in which the positions and velccities of the particles
are stored as fixed-point numbers of i and j bits respectively.
If the same round-off procedures are used in both cases for the
position and velocity increments, then the round-off errors will
also be the same.

If floating point numbers are used for the positions and velocities in the
particle-pushing code then the equivalence is not precise, but it is still
very close if the numbers of significant bits in the positicn and velocity
are j and i. If we assume that the precisions j and i in position and velocity
may be freely chosen, then once they are chosen and once the number of
particles has been chosen, it is eatirely a matter of economy in memory space
and in computing time whether we choose to push bits or to push particles.

The number of memory bits required to store the particle distribution in

a bit-pushing program is

= 21, 18)
Nop (
The number required to store the same information in the corresponding particle-
pushing program is

Npp = Np(in ), (19)
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where Np is the number of particles. So far as memory space is concerned,
the bit-pushing program will be more economical then the particle-pushing

progran when the ratio

N N
“55 = (i+)) ;{1}; (20)

is greater than one. Bit-pushing programs are generally run with a mean

particle density per phase cell N/2'*J of the order of 1/3 or 1/4, and

with i + j of the order of 15 to 20. Under these conditions, the bit-pushing
program is evidently more efficient, as might be expected. Conversely,
particle-pushing programs are normally run with i + j of the order of 50 and

with N of the order 212 or more. Under these conditions, the particle-pushing
program is more efficient, and a bit-pushing program would be out of the question.

We are also interested in comparing the economy of time., The relative
computing time for the two programs depends rather sensitively upon the
computer which is used, and in particular upon the machine-language vocabulary
which is available. One might imagine an ideally flexible computer in which
computing time would be strictly proportional to the number of bits to be
manipulated. Although this ideal is not very closely approximated with existing
comput2rs we will confine our comparison of the two programs to the number of
memory bits which must be reserved in each cuise, and assume that the computing
times required will be at least roughly proportional.

Let us imagine an ideal computer in which the word lcngth is entirely
flexible, For a given total storage capacity Npp in a particle-pushing
program, we are then free to trade off the word lengths i and j against the
number Np of particles to be followed. In most computers this trade off can
in fact to a considerable extent be made by using word packing teciiniques. We

may then ask the question, for a particular problem to be simulated, what is

76




Techniques for Solution of Vlasov Equation

the optimum trade-off among these parrmeters., If we could answer this question,
we could then compare the numbers Npp and Nbp to determine for the optimum
case whether a bit-pushing or a particle-pushing program wouid be more
efficient, Unfortunately, we do not as yet have any satisfactory answer to
this question, The following paragraph presents a prelimin.ry approach.

Let us consider a problem in which the relevant phase space is divided
up into Zi’j cells, (see Fig. 2j). Let us assume that the smallest relevant
phase element for the problem to be simulated, that is the size of the smallest

bundle of particles to be distinguished, is a rectangle of dimensions §v. Let

the entire phuse rectangle be divided into k& elements of area {v, where

L= 26, v - v kv (21)

Let the total time period during which the system is to be followed be T = nr.
1f an unbiased round is used for the position and velocity increments and if
the remainders are discarded, the rms error in position and velocity of a

particle at the end of the calculation due to round-off errors will be

o, = hn%//1;, o, = gn%//'-. (22)

v

vma)+-

min

Fig. 2. Relevant element in phase space.
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The number of bits in the phase element £y must then be at least

Ev/hg > 2/ 6, (23)

if round-off is not to carry a particle out of the element fy. If the
minimm relevant particle density is flin’ and if we wish to determine this
density to within an rms fractional error -, then the minimum number of

particles in the phase element must be

2
Evy = 1/p°. (24)

Let the ratio of the mean overall phase density f to the rinimm phase density
be

Ry = E/€; . (25)

The minimum number of particles which must be followed is then

2
Np = kg Rl/p 0 (26)

If the ratio of the maximum to the mean phase density is
Ry = ¢ /5 27
then the maximum number of phase cells in a phase element £ must be at least

gEv/hg > gvf.ax = RlRZ/pz. (28)

We have then for the required number of phase cells, depending upon whether

we take the limit given by equation (23) or (28) (whichever is great:r),

kon/ 6, for (23), or
= 2 (29)
klRlRZ/p , for (28).

i+j

Correspondingly, the ratio (20) is given by
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6 R
1en, (k&n/ 6), for (23), or
np? 2 (30)

N
fl’.:
P 1 2
ﬁ; 2n2 (k£R1R2/p ), for (28).

If for example we choose p = 1/8, R1 = R2 =2, k=2=8, n= 256, then
Eq. (28) is the appropriate limit, and we find Npp/Nbp = 7, so that the bit
pushing algorithgwould appear to be more efficient in this case. For these
parameters, we find Ev/hg = 256, 2'*J = 16,384, i = j = 7, N, =8, 192 As
the number of time steps to be computed increases, the limit (23) will
eventually prevail, and we can then see from formula (30) that for a sufficiently
large number of time steps the particle-pusining program eventually wins out.
The reader may enter his own numbers and juggle the formulas.

Some preliminary observations of the two stream instability have been
made with the bit pusher.2 The Coulomb kernel (Fig. la) was used, The phase
space was 216 x 216 bits square, for a length of 38 AD. A total of 15,500
particles, approximately one third of the number of cells, were used. The
length of the runs was 9.6 Tp, where Tp = 2nwp'l. In Fig. 3a, b, and ¢ we
shcw total and potential enexpy vs time for three different time steps,
approximately 0.1 Tp’ 0.05 Tp’ and 0.025 Tp. These runs were made on a univac
1108, using approximately one, one and one half, and two minutes of computing
time, respectively, not including time to output xesultg.

Initially all phase cells in velocity rows $19 to t54 were filled, to
give two uniform rectangular beams, and rovs *18 were half filled randomly to
provide a spatial density perturbation of 1.3%. For the large timc step,
note the oscillation in total energy. This has an amplitude of ~1% of the

total enerqy, or v20% of the variations in potential energy. The oscillation
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is caused by truncation error, and its amplitude is proportional to 12. As
the time step is reduced, he oscillation disappears and a steady growth in
total encrgy appears, This growth is due to increasing round-ofi errors,
and is proportional to the number of time steps. The round-off also causes
an apparent damping of the nonlinear oscillations, for the smallest time step.
As the round-off errors accumulate, the potential energy is reduced due to a
"smearing" cf the density. At the same time, “smearing" in velocity space
causes the kinetic energy to increase. The sum of these two effects appears
as a growth in total energy. The time step 0.05 Tp represents the best compro-
mise between truncation and round-off errors.

Methods of removing the order TZ truncation error are now being investi-
gated, If this error were removed, a larger time step could be used,

resulting in further reduction of round-off errors,
111. DISTRI1BUTION-PUSHING ALGORI THMS

Let us assume that for a particu'ar problem to be simulated, the leap-

frog algorithm(17) with an appropriately chosen time step has adequate accuracy.

Let us then replace the actual system of particles moving according to Eqs. (1)
by a system of leap-frogging particles moving according to Eqs. (17). The
Vlasov equations describing the behavior of a system of leap-frogging particles

are

fren, (V) = £ (x,v-a ()T),
(31)

3 fn§l(x,v) = fnoa(x-vT,v),

where a(x) is given by Eq. (9, ind the subscript refers to the time (lq. (16)).

p—
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We have now sepavated the problem of discretizing the time, a problem which
is presumably reason.hly in hand and need receive no further consideration
in the present treatmen:.. from the problem of following a very large number
of particles whick is stiil with us in Eqs. (31) and which is by no means so
well in hand, We assume then that if we can find a satisfactory way of
solving Eqs. (31), the result will be a satisfactory solution of the Vliasov
Eq. (8) correspording to the differential equations (1).

In order to find a computer simulation method for Eqs. (31), we must
first choose a way of specifying the distribution function f(x,v) by means
of some finite set of numbers which can be stored in the computer. We assume
that a set of parameters has been chosen suited to the problem to be simulated,
the number of parameters being large enough to specify in adequate detail the
distribution function f(x,v), and small enough to be stored in the computer
memory (104 words for example). We assume further that a rule is given where-
by to any particular set of values of these parameters, there corresponds a
specified function f(x,v). As an example, a suitable set of basis functions
may be chosen in terms of which to expand the function f(x,v), and the coef-
ficients of perhaps 104 terms in this expansion may be taken as the parameters
to be stored. Since a complete set will contain an infinite number of basis
functions, in order to specify uniquely the function f(x,v), it will be
necessary in addition to give some termination rule whereby from the 1()4 given
coefficients the remaining coefficients in the expansion may be determined. A
common rule, though not a necessary one, is simply to truncate the series,
that is, to specify that the remaining coefficients are to be taken as zero.
A second method of choosing the paiameters is to set up a grid of perhaps 104

poin*s in the x,v phase space and to choose as the parameters to be specified
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the values of the function f at these grid points. Again the function f(x,v)
is not uniquely specified by these values until we have given an interpolation
rule vhich specifies the function at all points in the phase space. Note that
we are requiring that a specific function f(x,v) be uniquely specified by a
particular set of values of the parameters chosen. Since there are only a
finite number of parameters, the set of functions which may be so specified
will by no means include all possible functions, or even all continuous or
analytic functions, but will be instead a particular family of functions
specifiable by the given finite set of parameters according to the given rule.

A function belonging to this set we will call a representable function.

Although not every possible distribution function is representabie, if the
method of representation has been well chosen, then presumably for any dis-
tribution function f(x,v) whica might occur in the problem to be simulated
there is a representable function which is sufficiently close to it, in the
sense that the two functions would lead to the same present and future behavior
of the system so far as the phenomena to he studied are concerned and within
the required accuracy. It is in this sensc that we have rcquired that the
representation method chosen be suitable to the problem to be simulated.

Since a satisfactory experiment must produce repeatable results, and
since the number of parameters which would need to be controlled in an experi-
mental situstion in order to repeat the experiment is probably considerably
less than the information storage capacity of a modern computer, wec may at
least hope that suitable methods of representation in the above sensc can
indced be found. This plausibility argumcnt is not an existence proof; it
might for example turn out that in order to know whether two distribution

functions are sufficiently close to be represented by the same representable
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function, we would need already to have solved the simulation problem, In
any case it would seem that the method we are suggesting provides a very great
degrec of flexibility. It even includes the particle-pushing methods, since
one possible choice of parameters would be to choose, either at random or
othervise, a finite sample of the particles in the system to be followed and
to specify the positions and velocities of this set of particles. The dis-
trihution function could then be defined by regarding these at any given
moment as a random (or otherwise) sample in the set of all particles, From
this point of view, particle-pushing does not appear to be very efficient,
since because of statistical fluctuations the precision with which we can
define the distribution function is considerably less than if we used the
swme number of parameters in an expansion schexe or an interpolation scheme
between grid points.

Let us assume that at a particular time t, ve have stored the values of
a set of parameters which specify then a particular distribution function
fn(x,v). The first of Eqs. (31) then specifies uniquely the distribution
function which follows at time tn.¥. Unfortunately, if fn(x,v) is a repre-
sentable function, then in general fm;,(x,v) is not necessarily also repre-
sentable, 1t is possible to find representation schemes in which the second
of Eqs. (31) leads from one representable function to another, hut it is
almost certainly impossible to find a representation scheme in which each of
these equations leads from one representable function to another, We do not
know of a proof of this impossibility, 'ut it is clear that if such a repre-
sentation scheme exists, then we can find exact solutions of Eqs. (31) valid
for all times, an unlikely picce of good luck except foz very specialized

problems. We are faced therefore with the problem of choosing a suitable
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representable function with which to replace the function given at any par-
ticular time step by the formulas (31). 1f the representation we have chosen
is suitable in the sense defined above, then it should be possible to find a
suitable replacement rule. Either of Eqs. (31), together with a replacement
rule, will lead to an advancement algoritim for converting the parameter values
at a given time to the parameter values at a time !yt later, The best replace-
ment rule will be some sort of compromise between the requirements of accuracy
and speed of computation.

It is just in the replacement rule that an approximation enters into the
distribution-pushing schemes. (Recall that we have already disposed of the
spproximation involved in the lea - frog algorithmitself). Note however that
the approximstion is one whiin is completely within our contrul. Equation
(31) tells us precisely wiat the new distribution function should be. The
replacement rule tells us with precisely what function we have r -placed it.

We therefore know at each time step precisely what error we have made in the
distribution function. 1f, for example, we require that the replacement rule

be such that it at least preserves the total number of particles, then the
representable replacement distribution may be obtained from the correct dis-
tribution given by Eq. (31) by moving each particle from its position in the
latter distribution to its position in the former, (The set of particle dis-
placements required is of course not uniquely determined, but there is presumably
a set of displacements for which the rms displacement is a minimum.) We may

then say that the particles in the distribution-pushing algorithm move according
to the Eqs. (31) but in addition suffer at each time step a small error displace-

ment, The characteristics of the crror displacements can be determined by
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studying the replacement rule. One might try to minimize the rms error dis-
placement in choosing the replacement rules, although this goal seems to lead
.n practice to rather formidable algebraic problems. Alternatively, one may
place certain plausible physical requirements and certain convenient computa-
tional requirements on the replacement rule, sufficient to determine the
advancement algorithm.

1t has been the authors' admittedly somewhat limited experience that
the numerical analytic methods of developing difference equations fcr approxi-
mating the Vlasov equation (8) lead to errors whose physical nature and zon-
sequences are often difficult to determine, although of course the magnitude
of the errors at any given time step is known. In contrast, our experience
with the development of algorichms following the distribution-pushing philosophy
has been that one usually has considerable physical insight into the nature
of the approximations being made. We have indeed had very few surprises;
methods which we predicted in advance would have unacceptable errors indeed
turned out to have such errors, and more important, methods in which these
errors were supposed to have been removed indeed turned out te produce satis-
factory results. A study of the replacement problem, or of the representation
problem which preceeds it, usually leads to an insight into the nature of the
errors involved in any given procedure and into ways in which these errors can
be reduced. We wiil give an example below.

1t can be shown t it the grid interpolation schemes and series expansion
schemes are essentially the same in the following sense. Given on the one hand
any set of N grid points in the phase plane and an interpolation rule which
defines the function f.«,v) everywhere in terms of its values at these N grid

points, and given on the other hand a set of basis functions in terms of which
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a function f(x,v) can be expanded, we can find a corresponding termination
rule which tells us, given N coefficients in the series, how to find the
remaining coefficients., The correspondence is such that the set of repre-
sentsble functions is the same in both cases. The choice between the two
methods is thea a matter of mathematical and computational convenience. In
this paper we will confine ourselves primarily to grid interpolation repre-
sentation schemes. Although more general grid arrangements are under study
and have advantages for many kinds of problems, we will confine ourselves
here to rectangular grids of points. Let us take a rectangular array of N=1J
grid points located at the positions given by all combinations of the following
values

xj = jh, jwl,..., J,

-y . . = l
v D + ig, 1 Lsleore » Iy (3

= f
Vaax * Vmin * de g .

We will take the system to be periodic in x with period L = Jh, and we will

assume that the distribution function vanishes for v > L and for v < Vain®
We now show that it is possible to treat separately the interpolation

problem for x and for v, and still achieve a fairly high degree of accuracy.

Let us assume that we have an interpolation 1ule in x which defines the

function f{x,ig) on the horizontal grid lines in the phase space. (See Fig. 4).

ﬂh—*

Fig. 4. Advancement shears the phase space.
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Let us further assume that we have found a suitable advancement algorichm for
the second of Eqs. (31) or the horizontal grid lines, so that we can represent
precisely, or at any rate with sufficient accuracy for our purpose, the function
f(x - ih® ,ih) for any value of i. Let us further assume that we are inter-
polating linearly in v between the horizontal grid lines. The effect of the
second of Eqs. (31) is to produce a linear horizontal shear in the phase

space. The points marked o in Fig. 4 which were initially in the same vertical
line, one at v = ig, the other one at v = (i + 1l)g, will after the shear be

on the same horizontal line but displaced in x by an amount ch, where
a = gr/h, (33)

Consider now the point marked + in Fig. 4 on the line joining the two points
oat v = (i + B)g. The correct value of f at this point after the shear is

to be linearly interpolated between the values fi+1 and fi at the two points
o. This value will be replaced by a value linearly interpolated between the
points directly above and below the point + on the two Lorizontal grid lines,

The error in this process is readily calculated to be

Af =€ - £ to8(l-g)h S(f

corr = repl 9x £ @)

i+l i

where we have kept only the linear term in a Taylor series for f(x) along
the two horizontal grid lines about the points o. If we average the above

result assuming that 8 is equally likely to be any wherc between zero and one,

we find
,
< s ah oo . ohg 3°f
aaidh f AU 4 - ()

If a is not too large, say a < ';, then the error is less than or of the order

of 5% of the difference between the function values at adjacent grid points and
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is therefore presumably of the same order of magnitude as the error involved

in replacing a physical distribution function by a linearly interpolated

function, a replacement which we have assumed above is suitable., It is N
furthermore worth noting that the error (35) vanishes if integrated horizon-
tally aiong any horizontal line or if integrated vertically along a vertical
line in the phase space. Therefore the distribution in x, (If(x,v)dv), and the
distribution in v, (Jf(x,v)dx), are not affected by the error. In particular,
neither the kinetic energy nor the acceleration fields nor the potential

energy are affected by this error. Although the above result was derived
assuming a linear interpolation in v, it is presumably correct in order of
magnitude for any reasonable interpolation rule in v. A similar argument
applies to the replacement problem associated with the first of Eqs. (31).

We therefore direct our attention to the problem of finding suitable replace-

ment algorithm for functions of a single variable x or v, We should keep in

mind however that the Taylor series in x used in the derivation of Eq. (34)
is not generally valid for typical interpolation rules on x, so that the
result expressed by Eq. (35) is only an estimate of the error. Furthermore
the difference between this estimate and the true error will not in general
have the property that its integral along a line parallel to either the x-
or the v-axis vanishes.

Let the period L along the x-axis be divided into sub-intervals of length
h according to the first of Eqs. (32). Let an interpolation rule be given for
finding a function f(x) when its values at the grid points are given. We

define the interpolation function G(x) as the function obtained from the piven

interpolation rule when the function values are specified to be fj = Gjo. As

>

Fig. 5. Interpolation function for linear interpolation.
91
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an exsmple, we show in Fig, 5 the interpolation function for linear .nterpola-
tion. Any interpolated function f(x) can be written in the form
J
f(x) = I ij(x - jh). (36)
j=1
If f(x) passes through the values fj at the grid points, the function G(x)
will have to have the property

G(jh) = Gjo' 37)

It is usually desirable that the interpolation procedure be such that it
yields a horizontal straight line when all the function values f f are equal,

This entails the condition
J

IG(x - jh) =1, (38)
j=1

In view of the periodicity requirement, the function f may be Fourier

analyzed:

f(x) = ¢ 'l\"',’ e 55— - ' (39)
im0

The Fourier coefficients are given by

v 1 J‘m _ 2mifx
F,' * I f(x)e Jh dx = F(I)Gl’ (40)
0

where C, is the Fourier coefficient of G(x) defined by

L

sJh _ 2mitx
G!. = %-I G(x)e Th dx, (41)
-l’Jh

and F, is the Fourier point transform of the function values f.:

j
2nis
J ‘frl'
Z fje 3 (42)
j=1

L

1
F!.I
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f.= I F.e 43)
by
The function F!, is periodic in £ with period J, so that we may restrict
the values of £ to lie within a single period, say from -}J+1 to %J if J
is even, and from -}J+) to 4J-% if J is odd. This is the meaning of the
parentheses around %J in Eq. (43). The parentheses around the subscript ¢
in Eq. (40) remind us that the coefficient F(z) is periodic in £, although
the coefficient Gl, is not. We see that instead of defining the function
f(x) by giving its J values at the grid points and interpolating between
using the function G(x), we could alternatively define f(x) by giving J of
its Fourier coefficients ?!,’ and then using Eq. (40) to provide all of the
remaining Fourier coefficients. We thus see that any interpolation 1le on
a mesh is equivalent to a rule (40) for terminating a Fourier series, in the
sense that both yield the same set of representable functions.

The moments
g 4 £ (x)dx (44)

of an interpolated f(x) are given by the formula

m _ " (k) o k
f = I G h)'f 45
ooy K0T U e b
where G(") is the nth moment of the interpolation function, defined also as

in Eq. (44). It will be useful to record here the moments of the interpola-

tion {unction for linear interpolation shown in Fig. S:

6@, ¢ .o, 6@ . nYs, (46)
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For purposes of illustration, let us consider the simplest possible
approach to the replacement problem. Let us assume that we are using linear

interpolation and that we wish to find a replacement rule for the function
f.(x) = f(x - oh), (47

where we may assume [a| <%, since if a is an integer, we may make the

replacement exactly, simply by setting
£f.=f . (48)
A simple way to obtain a replacement rule would be to set

frj = f.(jh) = £(jh - ah), (49)

so that the interpolated r« ‘lacement function fr(x) coincides at the grid
points with the correct function fc(x) which it is supposed to replace.
It is a simple matter to calculate fri from Eq. (49). 1If a is positive,

the result is

f j = (l-a)fj + af (50)

r j-1°
The function fr(x) is certainly not equal to the function fc(x) which it
replaces. For example, we show in Fig. 6 a sketch of the situation for

the case when f(x) = G(x) and a = 1/3. One can readily verify that the

Fig. 6. Spreading of f(x) with two-point advancement algorism,

94




Techniques for Solution of Vlasov Equation

zeroth and first moments of the function fr(x) agree with those of fc(x),
so that th> total number of particles and their mean positions in the two

distributions are the same. The second morents are however

fc(Z) . f e esoh)dx = f (x+ah) 2 £(x)dx

£, 2ane (D 4 242600 (s1)

! NLG? + D ot o 2anif, + 13%0,
i JJ .j PREE |

f ] J
!
@ _,3r1 e
fr h [6 gfrj ; J frj]
3 J (52)
3 1 Sy b
= h"[(a + P . ¢ Iif. + Ij f£.].
j J j J j J
The difference is
; @ =g B ¢ B2 gqean’, (s3)
If we assume o is equally likely to have any valuc between 0 and %, the
average difference is
£ < w32 . (54)

Since the difference is positive the replacement distribution is more spread
out than the correct distribution fc(x), s is also evident frow Fig. 6.
According to our previous discussion, the distribution-pushing advance-

ment zlgorittm for the second of Eqs. (31) requires us to displace horizontally

the function f(x,ig) along each horizontal grid line by an amount ch = vr = igr.

For each grid line, we use the rule (48) to displace the function by an amount
equal to the nearest integer to a, and then use the replacement rule (50) to

displace the function by the fractional part of a. We follow a similar
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procedure to obtain the algorithm for the first of Eqs. (31) by displacing

the distribution function along the vertical grid lines, Equaticn (54) ther
tells us that the resulting algorithe is equivalent to moving each particle
according to the leap-frog equations and subjecting it in addition to a
random walk at each time step of mms step h//IZ in the x direction and g//I7
in the v direction. Such a random walk leads to an unacceptable spreading

of the distribution function for a reasonable number of time steps unless the
grid spacings are taken unreasonably small.

Since the effect resvlts from the way we are solving the Vlasov equations
(31), and not from the self-field calculation (Eq. (9)), we may study it by
studying a system of particles sudject only to an external force field a,,
without any interaction Letween them. As an example, we have used the above
described advancement algorithm to find the distribution fuaction for an
ensemble of harmonic oscillators.3 A grid of 1J = 91 x 91 mesh points was
taken, The numbers were so .hosen that the orbits in phase space are circles,
with 60 time steps required for one complete cycle. The initial distribution
funccion at t = 0 was taken to be zero at every grid point except the point
a=0, vs=30g. where it had the value 42 (per cell gh)., The results after
15, 30 and 60 time steps are shown in Figs. 7a, 7b and 7c. At each grid point,
we print the nearest integer value to fij’ except that if fij < 0,1, we do not
print anything. As predicted, the distribution function spreads out rapidly.
Already after 15 time steps the maximum value has dropped from 42 to 3. The
distribution after that continues to spread, but more slowly, in proportion
to the square root of the time, Th: center of mass of the dist-ibution moves
correctly around the circle. We offer our apologies for the fact that the
function values are printed sideways on the graphs. It is pcchaps too severe

a test to start with a single non zero function value fij; in Fig, 8 we show
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the initial and final distribution in spatial density after a complete cycle
for an initial distribution dist.‘\buted uniforamly over a vectangle in the
phase space of area 17 h x S g. The spreading is still unacceptably large.
In order to reduce the spreading, let us seek a replacement rule for
the function fc(x) in Eq., (47) which preserves also the second moment., We

will also generalize the interpolation scheme by requiring only that
6 «n, ¢ a0, g2 .03 (s5)

where a2 is some number, which for linear interpolation it 1/6. Let the

replacement rule be

fl“j = f'lfj',..

where the sum over 1 must contain at least 3 terms if we are to preserve 3

(56)

moments. The condition that the zeroth and first moments be preserved in the

replacement is readily shown to be

’31‘: =1, (57)

Lta, = a, (58)

These cnonditions are evidently satisfied by the simple replacement rule (50).
The second moments are calculated in a manner similar to those in Eqs. (51)

and (52), and are

£ )L w3r? - oDyzs, o 2anif, ¢ 53060, (59)

@) | p3ro? it%a) L Ita, L 5yl
f‘_ h“[(o fal + 2!. a,) ’fj * 2!"1 j)f’ . !l:,."j’ fj]

(60)

i

= b3 . leal)lf . 0Lyt o zjzfj].
L j 3 j
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where in the last line we have used Eqs. (57) and (58). The condition that
Eys. (39) and (60) agree i- that

£ 2232 =\ (61)

)
Note that tlis condition is indepcndent of the choice of interpolation function!

An algorithm satisfying Eqs. (57), (58) and (61) will preserve the moments of
the distribution function through the second regardless of the interpolation
scheme used. If a non-uniform spacing of grid points is used, then it is no
longer true that the advancement algorithm 1s independent of the interpolation
rule. A small term depending on the interpolation rule also appears if we
take into account both the x and v dependence of f(x,v) in working out the
i advancement algorithm.
; A similar result applies if we require that higher moments be preserved.
It does‘not appear to us however that there is any particular advantage in
preserving the higher moments, Rather it seems to us that it is desirable
to use as few terms as possible in the replacement rule (56), This nct only
shortens the computations, but it means that changes in the distribution
function at a certain point are affected only by its nrirest neighbors at any
given time step. If our only object is economy in memory space (and tire),
then it would seem that we would want to use as large a grid spacing as
possible. This means that the grid spacing will be of the order of or per-
haps somewhat smaller than the smallest identifiable group of particles in
the phase space. With <uch a large grid spacing, it does not seem plausible
i that either the interpolation scheme or the advancement algoritim near a given
grid point should reach very far from that grid point. If we then keep only

the thiee terms £ = -1, G, 1, Eqs. (57), (58) and (61) have the solutions
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8y =1-d,

a =@l + a), (62)
a_; = -al - a).

Note that the replacement rule given by Eqs. (62) guarantees the pre-
servation of the moments of the distribution function through the second
no. matter what the values of fj may be. .This means that this advancement
rule, starting from any interpolated distribution function £(x) in Eq. (47),
does very much more than simply preserve the first three moments of fc(x).~
For we may resolve the original function f(x) in any fashion into a sum of.
component interpolated functions, and our advancement rule guarantees that
the component replacement functions each have the prozer first three moments.
in this serse, we may say that this replacement rule preserves the number of
particles, the mean position, and the rms spreac of every component part of
the distribution fc(x). If we develop an advancement algorittm for the Vlasov
equations (31) based on the replacement coefficients (62), then whatever the
errors introduced in the distribution in each time step, they cannot corres-
pond to an independent random walk of each particle in the distribution,
since the rms steps in such a walk would have to be zero, Instead, the error
displacements of the particles at each step are correlated in such a way that
although the new distribution is not quite the same as the old, its mean and
standard deviation, and indeed the means and standard deviations of each
component part, are pruserved.

It is evident from Eqs. (62) that except in the special cases a = 0,
%t 1, at least one of the three coefficients will be negative. This means

that it is possible, starting from positive valucs of all xj, to arrive at
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negative values of some of the frj‘ The function fr(x) will then not be a
true distribution function. This is perhaps not surprising, since we have
legislated that the second moment shall not increase under the replacement,
and in fact shall remain constant even under repeated displacements. Yet

it is evident that if we start from a distribution function which has only
one nonzero fj' then unless the advancement algorithm (56) contains only one
term, the replacement functions obtained by repeated application of thc rule
(56) will contain a region of nonzero values which increases in size linearly
with the number of repetitions of the advancement., In the case of the rule
(62), the distribution of nonzero values spreads out one interval h in each
direction at each advancement. The replacement algorithm (62) neatlvy avoids
increasing the second moment of the distribution by inserting negative values
frj on the wings of the distribution. The negative values occur only on the
edges of the distribution function and are small except when there are abrupt
changes in the function f(x). The appearance of negative values can be
avoided altogether if certain restrictions can be placed on the initial dis-
tribution function. In particular it is sufficient, though by no means
necessary, to require that the functirn valuss fj at neighboring grid points
never differ by a factor more than e. (The factor could be as large as 5.8).
There is of course no gusrantee that if we start with a distribution function
which meets this requirement, the advancement algorithmwill never lead to a
function for which it fails. In practice we have found with a program using
a three point advancement algorittm for the Vlssov Eqs. (31) based on the
replacement rule (62) (with always lal < k), that if we start with such a

distribution then only a few very small negative values fij ever arise.
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Tt is interesting to note that if we use parabolic interpolation, then
the above replacement rule leads to a function fr(x) which coincides with the
correct function fc(x) at the grid points. In parabolic interpolation, we
interpolate the function out to h on either side of a given grid point by
passing a parabola through that grid point and the two neighboring points,
The resulting function is in general discontinuous at the »id points. The
interpolation function is shown in Fig. 9. Figure 9 makes it clear why the above
replacement algorithmcan give negative values for frj’ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>