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A PERTURBATION SOLUTION OF ROTOR FLAPPING STABILITY 

Wayne J ohne on* 

U.S.   'rmy Air Mobility RfrD Laboratory 
Moffett Field. California 94035 

Abstract 

The stability of the flapr'^ motion of a single blade 
of a helicopter rotor is examined using the techniques of 
perturbation theory.   The equation of motion studied is 
linear, with periodic aerodynamic coefficients due to the 
forward speed of the rotor.    Blade pitch feedback pro- 
portional to both flapping displacement   (AH) and flapping 
rate is included.    Four cases are considered:  small and 
large advance ratio, and small and large Lock number. 
The solution of this problem demonstrates the informa- 
tion which may be obtained using perturbation techniques. 
This paper discusses mainly the results of the analysis 
rather than the mathematics of their derivation, with 
primary emphasis on the eigenvalues (i.e., root loci) 
as indicators of the system stability and response.   The 
small advance ratio results in particular are very useful, 
being valid out to an advance ratio of about 0.5.   It is 
concluded that perturbation theory is a powerful matt ■ - 
matical technique which should prove very useful in 
analyzing some of the problems of helicopter dynamics. 
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Nomenclature 

flap proportional feedback gain 

flap rate feedback gain 

aerodynamic moment due to flapping 
displacement 

aerodynamic moment due to flapning rate 

aerodynamic moment due to blade pitch 

left-hand plane 

right -hand plane 

left-hand side 

right-hand side 

ml part of a complex number 

imaginary part of a complex number 

flap motion degree of freedom 

blade Lock nui.iber 

eigenvalue or root of the system 

rotor advance ratio (forward speed divided 
by rotor tip speed) 

f rotating natural frequency of flap motion 
(centrifugal and structural stiffening), non- 
dimensionalized with rotor rotational speed 

$ rotor azimuth angle, measured from 
downstream 

0(   ) "the order oP' 

(   ) conjugate of a complex number 

Introduction 

This paper considers the application of perturbation 
techniques to helicopter rotor dynamics.   Perturbation 
theory has been well developed in recent years, but has 
not found much application to rotary wing problems. 
Classically hebcopter engineering has made us«  of the 
same perturbation theories that fixed wing engiroering 
has, for example lifting line theory and engineering beam 
theory (both require a large blade aspect ratio).   Another 
classical example is actuator disk theory (a large number 
of blades is required).   These theories were developed on 
an intuitive basis however, and the more rigorous mathe- 
matical techniques of perturbation theory have not yet 
found widespread use for rotary wings.   The classical 
applications are largely for aerodynamic problems; the 
mathematics of those problems can be very complicated 
however because the equations involved are highly non- 
linear partial differential equations.   The treatment of 
dynamic problems can be more tractable since only 
ordinary differential equations are involved.   Problems 
with constant coefficient linear differpnt'ii equations can 
be solved exactly with well established methods, so for 
these problems the extra effort of perturbation theory 
may not be justified.   On the other hand for problems 
with time varying or nonlinear differential equations the 
only solution procedure generally applicable is the 
numerical integration of the equations of motion.   How- 
ever, purely numerical solutions are not entirely satis- 
factory for obtaining an understanding of the physical 
character of the system, or for fcrmulating general 
design rules.    Furthermore, an analytic solution for the 
general case would be difficult to obtain (if possible at 
all) and would be so complex as to be hardly better than 
the numerical solution.   The only systems that can be 
practicably handled analytically are those involving 
linear constant coefficient differential equations.   Per- 
turbation techniques are available which are methods to 
study time varying or nonlinear systems such that at 
each step in the analysis only linear constant coefficient 
equations must be handled.   Time varying or nonlinear 
differential equations are characteristic features of 
hel'copter dynamics and aerodynamics, primarily due 
to the rotation of the wing.   Thus the possibilities for 
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the use of perturbation theory In rotary wing problems 
are very extensive. 

This paper considers the stability of the napping 
motion of a single blade of a helicopter rotor.   This Is 
a single degree of freclom, jecond-order system, with 
analytic aerodynamic coefficients.   The governing equa- 
tion is linear with time varying coefficients; It is given 
below. 
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ani1 the three regions are defined by 

region (i):     0 < /i sin * < *> 

region (11):    - 1 < M sin * < 0 

region (ill):   -M<Msin*<   -  1 

This is the homogeneous equation for small perturbations 
of the flapping motion of the blade about an equilibrium 
state; the derivation of this equation may be found in the 
literature.(D   ß Is the degre'. of freedom representing 
the blade flapping motion perturbation.   The equation is 
nondimenslonalized with the rotor speed, so the time 

variable is the arimuth angle # .   i> is the rotating 
natural frequency (noodlmenslonalired with the rotor 
speed) of the flapping motion, which may be greater 
thai» 1.0 for flapping hinge offset or cantilever root 
restraint of the blade,   y  in the Lock number, defined 
by V ^ pacR4/lb (p is the air density, a the two- 
dimensional lift curve slope, c  the blade chord, and R 
the blade radius); lb  is the equivalent mass of the 
napping motion, given by the integral over the span of 
the square of the mode shape of the napping motion 
weighted by the mass ptr unit length of the blade; for 
the rigid flapping motion of an articulated blade, the 
mode shape is proportional to the radial distance from 
the hinge, and so  1^   is just the moment of Inertia of 
the blade about the flapping hinge.   Kp   is the flap 
proportional feedback gain, better known as tan   d3 ;  KR 

is the flap proportional feedback gain.    A feedback law 
AS  =  -K_0   - KR0 has been used   (Afl     is the blade 
pitch change due to flapping feedback control),   n  is Ihe 
rotor advance ratio (forward velocity divided by rotor 
tip speed).   The coefficients   Mfl,   Mfl ,   and Mfl   are the 
aerodynamic forces on the blade, hence their multiplica- 
tion by y and their dependence on fi .     The three 
regions for the coefficients reflect the influence of the 
reverse now region of the rotor disk.   In region (1) 
there is normal flow over the entire blade span; in 
region (ill) reverse now over the entire span; and in 
region (11) normal flow outboard of r = - )i sin *  and 
reverse now inboard.   Region (ill) is encountered only 
if M   >  1 .     The aerodynamic coefficients were ob- 
tained using a rigid blade motion, and should properly 
be changed some to handle a blade with cantilever root 
restraint.   However, the major effects of a cantilever 
root on the dynamics of the system are due to changes in 
v and y (both are increased,   v to 1.15 say and Y 
to about 5/3 the Lock number based on the rigid mode 
inertia).   Since these are free parameters in the 
analysis this formulation of the problem should give 
reasonable results for all rotors. 

This equation has been studied numerically in 
recent literature, primarily in the context of Floquet 
theory, (2) which must be used because the aerodynamic 
coefficients are periodic in  <l> it n 4 0 .    However, 
purely numerical solutions are not very satisfactory for 
obtaining an understanding of the physical characteristics 
of the system, or for formulating general design rules. 
An analytic solution for this equation in its general form 
would be difficult to obtain (if possible at all) and would 
be so complex as to be hardly better than the numerical 
solution.   Time varying or nominear differential equa- 
tions are characteristic features of helicopter dynamics 
and aerodynamics, primarily due to the rotation of the 
wing.   The only solution procedure generally applicable 
to such problems is the numerical integration of the 
equations of motion.   In particular cases, when there is 
some parameter which is either small or large, the 
techniques of perturbation theory may be used to obtain 
analytic solutions.   Thus it is appropriate to apply the 
techniques to the study of rotor flapping stability. 
Perturbation theory has been well developed in recent 
years (e.g., Refs. 3 and 4), but has not yet found wide- 
spread application to rotary wing problems.   This paper 
considers an example of such an application. 



All the deUlla of the mathematical analysis ere «at 
appropriate for this paper. The mathematical technique« 
are not very sophisticated actually; there are some 
tricks to be learned, but the standard ones work for 
most systems, Including this one. •3'4'   However the 
mathematics can be rather long and cumbersome, 
especially when the higher order solutions are sought. 
Furthermore it Is not maintained that the differential 
equation studied Is a true model of rotor dynamics; 
nonlinear aerodynamics and coi^ling with pitch and lag 
motions «re certainly very important.   The purpose of 
this pape.   s not to describe the mathematical details 
of perturbation techniques or to present a study of true 
flapping dynamics.   Rather it is intended to demon- 
strate what information can be o rtainetl by the perturba- 
tion techniques, and to explore the methods which are 
most useful for rotor dynamics, so helicopter engineers 
will be able to decide whether to use these techniques 
with more complicated or more realistic systems. 
Therefore only an outline of the method is presented, 
with primary attention to the results obtained.   For 
more details of the analysis the reader is directed to 
Ref. 5. 

For the flapping equation there are two parameters 
which may be used for perturbation quantities: the 
advance ratio ß and the Lock number  V   .   Then there 
are four cases to be considered:  small and large  ft , 
and small and large V .   The dynamic problem con- 
sidered here <s the question of rotor flapping stability. 
The stability of the motion is determined by the roots 
or eigenvalues of the system (there are two for this 
second order equation) and so most of the results wil' 
be concerned with the roots.   The equation considered is 
linear; perturbation theory is used because the aero- 
dynamic coefficients are time varying (specifically, 
periodic) for forward flight, i.e., when n  is greater 
than zero.   Each of the four cases for this problem will 
be considered in turn below.   First however, brief dis- 
cussions will be given of the perturbation techniques 
used and the behavior expected of the eigenvalues of a 
periodic system. 

Perturbation Techniques 

Fundamental to perturbation theory is the existence 
of some parameter which is either very small or very 
large; for the moment represent the small parameter 
(or the inverse of the large parameter) by c .   In the 
present problem, it is desired to find the roots of the 
system, which means investigating a solution which is 
uniformly valid over long time periods.   The appro- 
priate perturbation technique is the method of multiple 
time scales.   This method assumes that the behavior 
of the system may be investigated over several time 

The time scales  4    are all scales,   ^    - c n 'f' 
assumed to be of the same order; then for i'i     f ip  the 
actual time  ip  must of order «~* , i.e. very large 
comparea to the basic scale ^0 = ♦ •    The derivative 
with respect to  ip becomes then 

so the use of these time scale« amounts to an expansion 
of the time derivative as a series in e   .    Next the 
dependent variable is expanded as a series in  e   . 

o'V V   2 ■ ) <wv-> 
where the terms  PQ,  ß,.   etc. are all assumed to be the 
same order, and depend on all the time «cales.   In addi- 
tion, all free parameters (e.g.,   f and  y for the small 
M   case) are also expanded as series in   € .   Those series 
for ß .   -I M *    and the free parameters are substituted 
into the equation of motion, and all terms of order ' 
are collected and separately equated to zero, giving the 
KH")   equation.   With the above expansion uf  d i|</ , 
these equations are partial differential equations now. 
The requirement that all  ?    be of the same order for 
the long time scale behavior of the motion is crucial tu 
obtaining the solution of the partial differential equations. 
It leads, for certain values of the free parameters, to 
critical regions characterized typically by a reduction 
of the stability of the system.   The method of multiple 
time scales is used for the small n   and small  V   cases. 
Details of the method, and its use for these two cases, 
may be found in Refs. 3 and 5. 

Often an equation of motion is such that in the limit 
« = 0  the order of the differential equation is reduced. 
The large  V and large n   cases are of this type; for 
example letting  v -» •   results in a first order equation 
(just the   RHS of Eq. (1)), which is independent of >. 
Such problems are called boundary layer problems, since 
they are characterized by narrow regions in which the 
solution changes greatly.   The solution outside such 
regions may be found by use of a substitution of the form 
ß ■ explfr pdt)   followed by an expansion of  p   as a 
series in « : 

1 
— P , n   -n «P, 

_d_ 
d* 

+ « 
»#, + t 2 -ä_ 

This main solution is not vilid in certain narrow transi- 
tion regions or boundary layers.   A basic part of this 
perturbation technique is methods to obtain solutions 
through the transition regions, so that it is possible to 
match one main solution to another on the other side of 
the transition region, or to boundary conditions at the 
base ot the boundary layer.   The matching procedure is 
so fundamental to the analysis of boundary-layer tvpes 
of problems, that it gives the technique its name:   the 
method of matched asymptotic expansions.   Details of 
the method and its application may be found in Refs. 3, 
4, and 5.   Again, for stability problems the behavior of 
the solution over long time perious is of interest; the 
method of matched asymptotic expansions is used to 
construct such a solution, from which the eigenvalues of 
the system may be found. 

The methods of perturbation theory are best de- 
scribed by example.   Since the mathematics involved 
can be long, espe   ally for higher order solution", a 
detailed desciption of the procedures will not be given 
here.   The - ■ader is directed to Ref. 5 for the detailed 
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consideration of the rotor (lapping equation.   When first 
learning the techniques, the reader might want to con- 
sider simpler equations as examples, and these may be 
found In Reis. 3 and 4. 

described by boundaries In v.  and V.   (or v2 and r;. 
etc.).   The case K,        o will be considered first. 

Order 1 Results 

Periodic Systems 

The root loci of a constant coefficient system typl- 
ctlly exhibit behavior In which two roots start as com- 
plex conjugates, nu-v* the real axis, and proceed in 
opposite directions aloiw the real axis.   The exisu;nce 
of periodic coefficients in the differential equations of 
motion genei^lizes this behavior so that it can occur at 
any  \m\ - n/rev or n+l/2/rev, not just at 1mA - 0. 
The property of the solution that allows this behavior is 
the fact that the eigenvectors are themselves periodic 
(instead of constant as (or a constant coefdcient system). 
The analysis that demonstrates that periodic systems 
show this behavior is called Floquet theory.   Thus the 
following behavior of root loci la characteristic o( 
periodic systems.   1( the parameter being varied, (or 
example the advance ratio  \i ,   is such that at ^      0   the 
svstem is not periodic, then the roots start out as com- 
plex conjugates.   As M   increases, the periodicity o( the 
system increases, and the roots move toward  n/rev 
(or n ♦ l/2/rav) lines (remaining complex conjugate 
pairs though).   At some critical M   the loci reach 
ImX ■ n/rev,   and then (or still larger \i  the (requency 
remains (Ixed at  n/rev   while the real part o( one root 
is decreased and that o( the other is increased.   The 
root beinv destabilized usually crosses into the   RHP 
(or some v. .   indicating the system has become unstable 
because of .he influence of the periodic coefficients. 

The Small u  Case 

To order 1 ihe roots aie the hover roots, given by 

xo = -T64 'V'o 4-rKP "Vw -r^)        (2) 

Kp   is shown in Fig. 1 (the 
and Its conjugate.   The variation of these roots with V 
(or    v ■ 1   and several 
M   = 0 loci). 

Order (i   Results 

To order n   the roots (or most   v    and >     art- 
still the hover roots: 

1 ■ *o * '»i ■ - Te 'V'2-X- ©' 
•t) 

To this order there is no effect o( the periodic coe((i- 
cients.   The exception is when  lmX0  -   1/2   (the 
(requency of the hover root is near 1 /2/rev)   I.e.   v^ 
and  Vf,  such that '0 

'o * T KP - \~ä)      T (4) 

The small parameter in this case is the advance 
ratio \i. .    Setting n = 0  gives the hover case; the time 
variation of the aerodynamic coefficients is removed and 
the roots are easily obtained.   To order ix    the reverse 
flow region may be ignored, and the expressions for 
Mß ,   MA ,  and   Mg   in region (i) may be used for all   4- . 
Ti obtain the roots it is necessary to find a solution 
v illd over long time periods; thus the appropriate per- 
turbation technique is the method of multiple time 
scales.   This method involves considering the behavior 
of ß when  ^   is of order 1. of order M  ' .   o( order 
»'- ,   etc.   ß   is expanded as a series In n: 

P K0       M    1 ^     2 

and the method yields a solution uniformlv vclld (or all 
$ .    v and  y  are also expanded in  M : 

2 
*   -\* ^l^   y2* 

ß v 
1 

2 
M     "n 

This is done because it is the characteristic o( systems 
with periodic coefficients that (or certain values o( 
V(.   and V.   there are stability degradation regions 

There is then a critical region, with a boundary described 
by the following equation. 

v.-^-'O^-W-Cr-^)2 

(5) 

This equation describes a narrow band, o( width O(u) . 
about ImXQ =1/2   (which by Eq. (4) may be considered 
a line o(   i*   as a (unction o( "V ) ,   Outside the criMcal 
region there is an   0(p)  change in the (requency while 
the real part o( the root is unchanged (rom the hover 
root.   Inside the critical region the (requency is lixed 
at l/2/'rev while there is an  0(^1)   change in the damping. 
This behav lor is illustrated by the (i » 0.1 loci in Fig. 1. 
The maximum stability change occurs ** "i " ^i     0 

(i.e. when   v and V are such that the (requency of the 
hover root is exactly 1/2/rev), where the root is 

X   = -r l« 24 V        \ 8 
4 K. (6) 

0 

The critical region is a region o( stability degradation, 
not o( instability; the maximum reduction (and enhance- 
ment) in the dtmping is 



\       /max 

"(T'-S) 

.*   /77T 
3 * \    0        8 + 4 

«7) 

which is an  0(^1)  small reduction.   The system remains 
stable because of the large hover damping.   Fig. 1 shows 
typical root loci (or varying Y ,   with M     0  and 
M ■ 0.1.   The point  D  on the hover locus (Kp ■ 1)  is 
•vhere the locus crosses  ImX ■ 1/2 .    As n  increases, 
since this point is at the center of the critical region It 
receives the maximum stability change, and so is pulled 
out to the point B.   In terms of the >   locus, as T in- 
creases and the hover locus nears ImX = 1/2 ,   the root 
has an  Ctyi)   change in the frequency, pulling the locus 
toward  ImX « 1/2 .     When the locus crosses into the 
critical region the frequency has just reached 1/2/rev, 
and the root locus is at the point A.   For still laiger > 
the frequency remains fixed while the real part of one 
root decreases and lhat of the other increases.   When 
>   reaches the value for which the hover root has a fre- 
quency of 1/2/rev, the locus is at the center of the 
critical region; there the roots have their maximum 
stability change (which is 0(^)) so the locus is at the 
point B.    As   >  increases more, the locus moves 
toward the other boundary of the critical region.   The 
locus reaches that boundary at the point C , and for 
still larger Y the frequency is no longer fixed at 1/2/ 
rev; rather the real part of the root is the same as the 
hover value, while there is an  0(^)  change in the 
frequency which decreases in sise as  V increases. 
For still larger Y the locus is again identical (to order 
M) to the hover locus. 

Figure 2 shows typical root loci for fixed Y   «nd 
varying n .   The circle the locus starts from is t'.e  Y 
locus for hover (p = 0) and the appropriate  Kp       The 
Y for each locus may be found from  Re X at n ■ « , 
since for the hover root  ReX = - Y/16 .    A a  >i   in- 
creases from zero, for the roots near   ImX =1/2 
there is an  O^i)  change in the frequency pulling the 
root toward   ImX = 1/2 ; while the damping remains 
fixed at the hover value    The locus reaches  ImX ■ 1/2 
for a corner M  which corresponds to the boundary of 
the critical region.   For larger ft , frequency remains 
h ed at 1/2/rev while one branch of the locus moves to 
th" left (dec. cased stability) and the other to the right 
(increased stability).   This behavior of the »i   loci is 
characteristic of roots of a system with periodic 
coefficients. 

2 
Order M    Results 

To order n2 the roots for most  V    and  Y0 are 

» -  - ^ +  I ♦  (1  + -••Is 

-(a) 1  - 
2 

2 
8"   " 

Y 

a •s» 
2 

•<Kp 

M 

Vl6y 

2 
2 

■ V 4v i 

4J 

1 — 
2 

(S) 

and its conjugate.   Thus away from  1mA     1/2 or 1 the 
roots are just the hover roots with an  o^ J)   change in 
the frequency.   There are two effects oi n ;   the first 
corrects the term  Y/8 Kp  In the hover frequency to 
properly account for the average of  Kp M g .    The 
second effect, that in the last term of the frequency, is 
«ntlrely due to the periodic aerodynamic ^oeti.'cients; 
this is the first effect of the periodic coefficient) seen 
in the analysis, except for the critical region mar 
ImX = 1/2 .    Typical root loci for varying p   are 
shown in Fig. 2.   These are the loci that are not near 
ImX ■ 1/2 or 1;  the frequency change is small even 
at fi ■ 0.5 .    Eq. 8 may also be used for the branches 
of the root loci on the real axis when the quantity under 
tb   jquare root sign is negative (i.e., for Y  large 
e.>-.jgh).   There are two real roots then, the   (-M)   in the 
: equency becoming   (*1).   A point on the locus of 
special interest is where one branch of the locus on the 
real axis crosses into the   RHP ,  i.e., becomes un- 
stable (as in Fig. 1).   The criterion for this divergence 
boundary is   X = 0 ,  or to order n2 : 

d  * .2^K, 
8    P 

1  +M 
16 Ufi' 

i¥ 
(9 

The effect of ^  on the  RHS   (due to the periodic co- 
efficients) dominates that on the LBS (due to the average 
of KpMp) for all values of Y and v .   Thus the critical 
value of negative  Kp .   beyond which the locus lies in 
the   RHP ,   is actually increased by increasing   M .  The 
criterion from the hover case is conservative then; 
this is the opposite of the conclusion that would have 
been reached from a consideration of the averaged co- 
efficients only. 

To order n 
ImX^  =   1 .   i.e.. 

there is a critical region when 
when 

• K - fe/ (10) 

The behavior of the loci near the critical region is 
similar to that near  lmX0 = l/2 , except that now 
changes are 0(^) , not O^i) .    The boundary of the 
critical region is described by a relation between   "_. 
and Y2 with »j ■ ^ ■ 0 ;  the critical region is thus 
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a narrow band, of width OOi2),  about ImX     l-.   In- 
side the critical region the frequency is fixrd at ImX ■ 1 
with an 0(n2)  change in the damping.   The maximum 
reduction     ■J enhancement) of the damping is 

s4GM (U) 

which is an  ()(u )   small reduction in the large hover 
damr'ng.   Figs. 1 and 2 show typical root loci near 
ImX ■ 1 for varying V  and M • 

Flap hate Feedback 

The use of flap rate feedback,   KR / 0 . does not 
change the behavior of the solution quantitatively, 
hover root becomes 

The 

- Ti i1  + S)  +   l 

TA****) 

^S 

(12) 

and there are critical regions about  1mA0  =1/2 and 1 
again.   The critical region boundaries and stability de- 
gradation depend on  KR now.   It is necessary that 
KR > -1  for the hover root to be stable, but K^ > 0 
will be the usual case anyway. 

y - H Plane 

(one more and one leas stable than the hover root).  This 
behavior is Just that seen already in the M   loci (Fig. 2). 
Figs. 3, 4. and 5 may be compared with similar ones In 
Ref. 2, which were constructed from numerical calcula- 
tions; on the basis of this comparison, the O^i2)   ana- 
lytic results are quite accurate up to »i  - 0.5 or so. 
There is some discrepancy between the results for the 
ImX ■ 1  region however, particularly with Kp ■ -0.1. 
although the change in scale (Ref. 2 shows results out to 
H * 2.5) exaggerates the difference.   For  v exactly 1 
the analytic results indicate no critical region if Kp <   0; 
but only a slightly larger (for example  v - 1.01) is 
necessary to get a sizable critical region with  Kp ■ -0.1 
(see Fig. 5).   The analytic results show the v  =  1 case 
is a very sensitive one tor small > and small   K    , 
and it is unlikely that a numerical calculation could treat 
the case accurately.   Of course an actual rotor will al- 
ways have   v at least slightly greater than 1. so the 
numerical calculations are probably reliable then; 
furthermore, the discrepancy may also be an indication 
that for very small  > the analytic results (to order p2) 
are not valid out to as large a M  as they are for more 
reasonable  V .    In any case this discussion illustrates 
the kinds of problems thv. may be hidden in a purely 
numerical solution; they can only be found and studied 
by analytic procedures (which at least tell where to look 
for problems). 

The Small Y Case 

The small parameter in this case is the LOCK num- 
ber > .    Setting  y = 0 removes all the aerodynamic 
terms, and the roots are X  = tif for all n .    The 
method of multiple time scales is used to obtain solu- 
tions uniformly valid for all ^ .    The time scales con- 
sidered are of order 1, of order Y~* . etc.   P  ij 
expanded as a series in Y   (P = PQ * ^l  + •   •   •* and 
so is    v {v = VQ * yv 
M   is not small now, 
considered. 

.).    The advance ratio 
and the reverse How r**** 

The results of the small M   analysis may be used to 
plot lines jf constant   ReX and ImX on the y-n  plane. 
Typical results are shown in Figs. 3, 4, and 5 for 
v = 1.0 and Kp = 0, 0.1 ,  and-0.1. respectively. 
The critical regions apj -ar in the V-j»   plane as regions 
in which  ImX  is constant (at 1/2/rev or l/rev); they 
are indicated in the ilgures by the circled values of 
ImX (the region where  Im> = 0 is where there are two 
real roots, not a critical region).   These figures are 
interpreted as follows.   A horizontal line is a line of 
constant Y ,   and so as M   varies It gives the corre- 
sponding values of  ReX and ImX just as a M   root locus 
does.   Similarly a vertical line Is a constant n   line, 
and so gives X   as a function of Y Just as a Y   root 
locus does.   For example, consider a horizontal line in 
Fig. 3  (Kp = 0)  with T •= 8. i.e.,  Y/16 = 0.5.    As 
H  increases, the line remains parallel to the   ReX ■ 
constant lines so   ReX   remains fixed at the hover value. 
The   Im \      1/2 region comes closer to the horizontal 
line as n  increases, which means that ImX  moves 
toward 1/2/rev.   Eventually the constant Y  line crosses 
into the ImX ■ 1/2 region; then ImX is fixed at 1/2/ 
rev while for each point in the region there are two 
values of  ReX , giving the damping for the two branches 

Order  Y  Results 

If  f0 4 n/2   for any Integer n   (I.e.    lmX0 

equal to a multiple of 1/2/rev)   the root to  On) 
not 
If 

X = o (Ma sS ♦  iv 1   - 
2f 

K Kp M9
0 I 

(13) 

.0 
where   Mg .   Ma .   and  Mg are the averages of the aero- 
dynamic coefficients around the azimuth.   For the co- 
efficients considered here,   M"       o  for all it .   Flap 
rate feedback only effects (to order Y ) the damping; the 
real part of may be written 

ReX ■«)-! 0 ,   0 
-Mp/Mey 

(14) 

The ratio  -Ma/M^ determines the relative effect of 
KR;  this ratio is shown in Fig. 6 as a function of n . 



This paramete - la a poaltlve number, wuich vartea fittle 
with n  (Irom 1 a* M ' 0  to 1/2 at «i • •,   with noat 
of the change below fi - 1).    The negative of this ratio 
Kivea a critical    KR ,  since it la necessary that 

KR  > "R " 
crlt 

stable for amall 

MJ/M; In order that the system be 

For 
y (to O(y) 

the root's 
and with  IL ^ B/2) . 

y 
16 (--1) ♦ if 4^("0 (15) 

The lerodynamic coefficients  -8MA  and  8M.   are 
alwa s positive: ihey have the value 1 for >i =0 and are 
aaymptotic to   (8/3r)M   and   (16/3*)M .   respectively, 
for large J ;   these coefficients are shown in Fig. 7. 

The root loci for varying y  and varying n   are 
shown in Fig. H for   Kp       1  .   KR      0 ,  and   I» ■ 1S 
the locus for Kp - -1 is obtained by reflecting this 
locus about the   ImX ■  "   line.   The locus for  Kp - 0 
is difficult to plot since  1mA  ■  v for all  >   and JI   (to 
order Y);  it may be visualised by projecting the 
Kp = 1   loci onto theline  ImX » ».    These loci should 
be compared with the smalt   V portions of the curves in 
Fig. 1, which are for small n .   In Fig. 8, the Y  locus 
for a given M   starts out st   A - !•> alwaya, and is a 
straight line with slope 

«ImA 
9ReA 

-M./Mj 

which varies from  -Kp/f   to  -2Kp/i'  for  u   from 
0 to «   (see Fig. 6 for  - M5   M^ ) .     The step siie on 
the  V  locus, for a unit change in Y/lfi ,  is 

("?)' • MV.J 

for *i  from 0 to 1 to «,   respectively.   The ß   locus 
for a given V  starts out virtually from the ^      o   line, 
and is asymptotic to the ^ ~ *  line, with the step size 
on the locus for a unit chaise in ß  increasing as n  in- 
creases.   For reasonable M  the locus does not vary 
much from the small M   results.   An  0(y)   analysis 
can only obtain the slope of the V   locus st Y = 0 ,   so 
the locus is a straight line, aa found above; to find the 
curvature effect it is necessary to go to order Y2 .    The 
significance of the curvature (order Y2)  may be judged 
from a comparison of the  Y  loci of Fig. 8 (all n . small 
Y)   and Fig. 1 (small |i ,  all Y);    on this basis the 
small  y  results should be limited to Y/ie   less than 
0.2.   On the basis of neglect of the curvature effects 
alone the results might be accepted to higher Y ,   but 
the   OfY)   results will also be limited by the effects of 
the critical region, which will be examined next. 

The discussion of the  O(Y)   analysis has so far 
only been concerned with the baalc roots, meaning the 
roots away from the influence of a critical region.   In 
the smsll  Y case, the criterion for being away from a 
critical region la that 
this mav be written 

VQ + (n/2)   for any integer 

' (f)   ■ o (fj 

i.e., the rotating natural frequency may not be a distance 
of order  Y/16   from  n/2/rev.   Since   f   is almost al- 
ways juot above 1/rev this criterion is seldom fulfilled, 
and the critical regions may be expected to dominate the 
root loci behavior for small Y .   Furthermore, if  Kp 
is large enough positive or negative, thi basic locus will 
also cross  ImA   ■  3/2   or  1/2   for   Y/ie   still small 
(see Fig. 8), so these critical regions may affect the 
loci even if the  ImA   =   1   region does not. 

If y.   =   n/2   for some integer  n .   there arise 
critical regions, with behavior of the root loci similar 
to that encountered already in the small  ^   case.   The 
case   KE 0  will be considered first.   The critical 
region boundary is given by 

which varies from 

V1 + (vr 
•S»«) v.  = - -r-1 M: 

1 21/" 

2v M; - i^S * s M, 

IV- • ? (v)2 
where 

.2» 

MP  =    ^ /       M| 
.« d* 

MR) 

fr-V1 'MV') 
and similarly for  Ma  and  M9   (i.e., the nth harmonic 
in a complex Fourier series representation of the 



aenylynuntc coefficient«).   This equaOon describeB a 
band of Width  0(>)   about  1mA • n/2 .   The maximum 
stability chance occurs at fj - - {KJ>/2VQ) M^ .   that la 
at the center of the critical region, where the basic root 
(Eq. 15) would cross  ImX ' »Q ' n/2 .    There the root 

I"- 

Jk 0    ß M, 

(17) 

Outside the critical region there is an order V change 
in the frequency of the basic root with no change in the 
damping.   Inside the critical region the frequency is 
fixed at n/2/rev  while there is an onler  >  change in 
the dampln»?.   The damping of the basic root is itself 
O(Y)  however, so in contrast to'he small M  case, the 
critical region can here lead to a^mal instability, not 
just stability degradation. 

The root loci for small  V show the behavior ohar- 
acteristic of periodic systems, and familiar from the 
discussion of the loci for the small n case.   For some 
^i  or > the locus will cross into the critical region. 
The maximum stability change inside the critical region 
occurs at the center, which is where the basic root 
locus (e.g..  as shown in Fig.  8) would have crossed 
ImX = n/2 .    Whether the center is ever reached de- 
pends on the parameters involved  (Kp , " , "V, u) ■    For 
the  O(Y)  analysis, the locus has a slope proportional 
'JO Kp . ao for   | Kp |    not too small the locus will 
probably cross some  ImX  - n/2   line with   • '16   etill 
small (e.g., in Fig. 8 where  Kp      1 .  the loci cross 
the  ImX = 3/2 line).   If Kp = 0  however, there is no 
')(-■ i  change in the frequency, so  ImX ■  v for all *i 
and   "• .    Then the locus will never reach the center of 
the critical region (cross  ImX - n/2)  unless  f = n/2 , 
in which c-si- the locus is always at the center.   More 
generally, if   | Kp|   is very small, the locus will not 
cross ImX ■ n/2  until >/16  is so large as to be out- 
aide the range of the order V analysis.   An Ofv ) 
analysis would change significantly the conclusions about 
whether the center of the critical region is reached under 
certain conditions, particularly for small   |Kp|   when 
the  oo")  change in the frequency is more important 
than the 0(V)  change.   For example. Fig. 1 indicates 
that with v slightly greater than 1 the > locus (for 
small (i ) would never cross ImX = 3/2 for Kp = 1 
while it would always cross ImX ■ 1 for Kp - 0 ,   just 
the opposite of the corclusions indicatad by the O(Y) 
results (Fig. 8).   In any case, since the maximum 
stability change occurs at the center of the critical 
region, it is useful to examine it as a worst possible 
case, which may perhaps be approached but never 
reached for certain values of  f  and  Kp . 

Considering the n   root locus again, the maximum 
chaise in the damping from the value of the basic root 
is given by the real part of Eq. 17.   The contribution 

from the basic root damping.   (y/2) Ma .   is always nega- 
tive (Fig. 7): as for the small M  case It is O(y) , but 
here that means the basic damping is small.   In fact it 
Is the same order as the critical region contribution, so 
the destabiliaad root may be actua.lv unstable, rather 
than Just a small perturbation from the basic damping 
as for the small n  case.   The behavior of the locus 
depends on the relative effects of  M? and the nth har- 
monics of the aerodynamic coefficients under the square 
root In Eq. (17).   For most cases the critical region 
effect dominates, so that as n   increases it eventually 
reaches a critical value, at which point (for the case of 
maximum stability change) one root crosses into the 
RHP.   i.e.,   becomes unstable.    From Eq. 17. it follows 
that increasing   Kjj, (Kp  either positive or negative) 
always increases the effect of the critical region   which 
means decreasing the critical n   for which the root 
becomes unstable.   Thus the critical tt  i» * function of 
I Kp I  , for each of the critical regions; this function 
may be found from Eq. (17) by setting  ReX  - 0  (the 
requirement for crossing the   ImX  axis).   Since the 
aerodynamic coefficients are rather complex functions 
of n , it is more convenient to find the critical   | Kp I 
as a function of n : 

crit 
0 p 

(18) 

This may be regarded as a maximum   | Kp I   for a given 
H ; for larger   {Kp |   the locus is In the RHP at that n . 
These boundaries of   |Kp|   vs.   n  are shown in Fig. 9 
for  ImX  ■ 1/2 ,  1 .   and 3/2 .     With the exception of 
the roots near  ImX   =1/2 with M  above 0.5 or so. 
Fig. 9 shows the criterion on    j Kj,     is not very 
stringent,   t ig. 9 shows also that near  ImX  ■  i   the 
roots are always stable, regardless of   ß ,    if 
I Kp |   <   J2 ; the loci may be expected to be near 
ImX  ■ 1   for zero or smJI   Kp .    In terms of the  ^ 
locus, this means that as p  increases the locus does 
not cross into the  RHP .    Just after the locus crotMtes 
the critical region boundary, the effect of the critical 
region is seen and one branch moves to the right and 
the other to the left (as do the loci in Fig. 2).   As M 
increases further however, the lamping of the basic 
root (which is always stable, and increases with u ) 
eventually dominates the'effect of the critical region, 
and the root which wa' becoming less stable turns 
around before reaching U'e RHP .  So for still larger ,; 
both branches of the lociu "ill be moving to the left, 
i.e. becoming more stable as  (i   increases.   For the 
root loci near ImX  = 1/2 or 3/2 ,   the effect of the 
critical region-remains dominant, and so one root 
eventually crosses into the RHP as fi   is Increased. 
The critical u  is considerably lower for  ImX =1/2 
than for   ImX   ■ 3/2 .     This points out an undesirable 
feature of negative pitch flap coupling,   Kp < 0 ;  not ao 
much that it reduces the critical |i ■ but rather that it 
moves the basic root nearer to ImX = 1/2 . 



Th» UM of fUp rat« (oedback.   KR / 0 ,   reault» in 
ho qualitative cliai)«M in the behavior of Uw loci.   KR 

la however a useful deslfn parameter; It may be used 
for example to raise the critical »i   or   IK- |  . 

Evaluation of the Order >  Results 

Numerical calculations were msde of the n   root 
loci for moderate and small values of Y .    Ou the basis 
of a "omparison of the numerical and analytic results. 
it Is concluded that the small Y analysis to order >   is 
useful only for truly small   > . e.g., > = 2 or 3 
(Y/16 ■ 0.2 or so).   Problems are encountered with 
both the basic roots and the effects of the critical region. 
The basic root to order  y neglects the curvature of the 
V locus, which is especially Important for zero or 
small  Kp ,  since th>>i the change of 1mA   for small y 
is due more to  O(v-)  terms than to the O(Y)  term. 
The damping of basic root is 0(7)   always, no matter 
what order the analysis is carried too; for example the 
0(fi2)   results give   Re A   ■ -  Y/16   for all  > .   However 
while basic damping is 0(>). the contribution to the 
damping due to the critlcsl region will have terms that 
are  0{y2).    Thus for large enough >  the conclusions 
in the di «ussion atove of the effects of the critical 
region on the u   root loci will not be valid, since they 
depend on the basic and critical region damping being of 
the same order in   V .   In particular, the behavior of the 
locus in which the root being destabilized by the critical 
region turns around and becomes more stable due to the 
eventual dominance of the basic damping is not possible 
except for very small Y,  for which 0(Y2)  effecta are 
li. fact negligible.   Indeed, It was found in the numerical 
ralculations that with Y = 6 (Y/16 = 0.375. which Is 
not very small),    v near 1, and   Kp   zero or small so 
the root is near l/rev, that the n   locus does not turn 
around but rather eventually crosses into the   RHP.   The 
stability boundaries given In Fig. 9 are only valid then 
for truly small values of   Y/16 . 

Order Y     Results 

To order >' 
is (with  KR ■ 0) 

the basic root, valid for •»    ^ n/2 

Y    0 

2 

Y 0 
„ 2    P    e 
2i/ 

h j/ 
(vr -•.I (19) 

As reported above, there is no 0(Y2) change Jn  ReX 
and the <)(>-)  change in the frequency is dominant for 
small  Kp ,   indeed for  Kp      o  the only chsnge in 
ImX   is  0(Y2).   The  0(Y2)   results would significantly 
alter the plots of the basic root loci shown In Fig. 8. 

first-order system that does not depend on Y .   This 
system gives one real root, which is Independent of 
and valid for Y ■ •.   The reduction of order of the 
equation at T • * is a characteristic at a boundsry- 
layer type of problem.   This characteristic means that 
one of the roots goes to - ■• as Y goes to « .    The two 
roots mav be found by use of the following substitution. 

P   =  exp     f     Y Pj P0   +  > P-l A4 

This substitution gives two solutions, from which the two 
roots are obtained as (for   Kp   -   0) : 

2»    M 

S--SÜ   ^"'U/ 
2* 

o{y-*) (20) 

.2» 2* M. 

*2 -yhl  V* + KPM ^d# 

oiY-M (21) 

Thus there are two real roots, one  (\.,)   approach- 
ing   - •» as Y  increases to • (Mg  is negative), and the 
other   (>   )   approaching a constant.   This behavior of 
the   Y   : jot loci is expected from the small  M   results : 
Fig.  1 shows that for large enough   >' the locus is on the 
real axis, I.e. there are two real roots, one approaching 
- •» and the other -Ku for  Y  —   ■> To lowest order 
\^   does not depend on Y .   because it represents the 
balance of the aerodynamic damping and the aerodynamic 
spring only.   The value of Xj/(-Kp)   for varying p,   and 
y ■ •,   Is shown In Fig. 10; the movement show, takes 
place eniirely on the real axis in the \   plane.   As for 
the small n  case (Fig. 1) the root on the real axis is in 
the   LHP If Kp   >  0  and in the   RHP - unstabie - if 
Kp <  0 .    The value of A ,   (-Kp)   varies froni 1 to 7/8 
for *i   ^ 0 to •» .   with most of the change between 
M = 0.5   ami n   ■  1; thus there Is little variation of the 
root with n   (to order I In Y),   The size of the   0(Y"1) 
term in  A j   is indicated by the result for pi « 0 .   which 
is easily obtained (since the aerodynamic coefficients are 
constant then) as 

The Large  Y Case 

The small parameter In this case is the Inverse of 
the Lock number.  T'1 .   For Y  very large, the aero- 
dynamics dominate the system.   For Y = «> the inertia 
and centrifugal spring terms are negligit.le, leaving a 

1 
y/i6 

*s" o(y-2) 



To lowest order \.,   ta -  O/lfi)   ^(-HM" ) .    The 

aerodynamic coefficient .8M? is given In Fig. 7.  For 

u •- 1 it haa the value -SM? ■ 1 ♦ n'/»; for large 
M it is asymptotic to (8/3)r)M . This root becomes in- 
creasingly negative aa > increases, and also aa M 

increases. The order 1 term in \ la the negative of 
the lowest order term in \ ^ ; thus the behavior of this 
term is also given by Fig. 10. 

The solution for the roots is not valid If MQ = 0  for 
any i .    When Mß  la amall, the assumptions made 
about the order of terms in deriving the solutions are 
violated; this may be inferred from the expressions ob- 
tained for the roots by the continual appearance of MQ 

in the denominator of the integrands (Eqs. (20 and (21). 
There is a narrow tranaition region, of width  Ofy-2'^) , 
about any points where  Ma =0,  i.e., where the 
damping goes through zero.   As it happens, however, 
MQ( iji, H)   is a negative quantity which never reaches 
zero,    rhus for K, 0  there arc no transition regions 
or boundary layers,  and the solutions obtained from the 
substitution for ß are uniformly valid over the entire 
azimuth. 

Flap Rate Feedback 

When   Ko ■ 0 ,    there are no boundary layers or 
transition regions because  MQ <   0   always.   With flap 
rate feedback,   Klt  '  o ,   the same expressions for the 
main solutions for p  are obtained as for Kj^ = 0 , ex- 
cept that  MO  is replaced by  Mß - KR Mg .     The aero- 
dynamic coefficient  -   (Mß - K^ M«)   can become nega- 
tive over regions of the disk for certain combinations of 
H  and K|{.   that is, there iiia^ be negative damping 
over part of the azimuth range.   When such regions of 
negative damping exist it means there must be transition 
regions about the points where the damping goes through 
zero.   Since Eqs. (20) and (21) for A^   and X2   were 
derived on the basis of no transition regions, th jse ex- 
pressions for the roots (with  Mß  replaced b ,■   Mß - 
KRM„)   are not valid when there is negative damping 
over any part of the disk. 

The criterion for the existence of transition regions 
is that there be negative damping on some portion of the 
disk, i.e.,  - (Mi -  KRMg)< 0.     Mß is always 
negative:   Ma is usually positive, but may be negative 
on the retreating side for large enough M .    If   Kß  is 
too large positive, the negative values of M^ on the 
retreating side eventually dominate   Mß as ^i   is in- 
creased, so there will be negative damping on the re- 
treating side; if K«   is too large negative,   K^Mg 
eventually dominates   MQ on the advancing side and 
there will be negative damping there if n  is large 
enough.   Quantitative values of maximum and minimum 
KJI aa a function of M   are given in Fig. 11.   For the 
cases with negative damping there will be transition 
regions (of width  0(>"^'3))   near where  Mp-KRM^  = 
0 ,   which greatly complicates the analysis.   For these 
cases it is also expected that there will be other prob- 
lems, including numerical computation problems, 
physical control problems, and large flapping ampli- 
tudes.   Thus while a region of negative damping doei 
not necessarily mean there is a liappin8 instability, it 

does mean that there are many problems - ana- 
lytical, computational, and physical - so requiring 
- (M£ - KRM>)   > 0 is a reasonable design criterion. 
This criterion provides a maximum and minimum  K^ 
for a given n .    The HmiU of KR  from this rue are 
much easier to obtain than actual atability boundaries; 
and Fig. 11 shows that although conservative, it is not 
a serious restriction for p   less than 1 or 2.   For large 
M   it is a serious limitation, indicating that  Mß   (flap 
moment due to blade pitch) is not very good for flapping 
rate feedback then.   Although the derivation of this rule 
has been based on the large  V case, the criterion of no 
negative damping lias nothing to do with Y ,   and so 
should be a reasonable criterion for all   >'.   Indeed the 
criterion   KR > -1   for ^i = 0  is the same as from the 
small  )J   case, where It is a true stability criterion, 
and valid for all   V . 

The Large jt  Case 

The small parameter for this case is the inverse of 
the advance ratio,   ß~^ .   For ^   very large, the aero- 
dynamics again dominate the system.   However, for 
KR = 0 the damping is  O^i) while the aerodynamic 
spring is  0((i2) ,   with the result that at n — «  the 
aerodynamic spring must be balanced by the inertial 
forces in order to obtain an equation with the proper 
order of terms.    Thus the equation to lowest order in 
U   takes the form 

ß   -  ^C(*)ß   + n  KU) ß (22) 

The solution of this equation is either a rapid sinusoidal 
oscillation with frequency of 0()1) <   or a sum of ex- 
ponentials with time constants of  0(n*^).   depending 
on whether the aerodynamic spring is negative or posi- 
tive (the criterion is a bit more complicated really, but 
that statementwill de for the present discussion).   The 
aerodynamic spring changes sign in the middle of the 
advancing side and again in the middle of the rctreuting 
side, and at each point there is a transition region (of 
width  0(ji"2'3) )   across which the solutions must be 
matched.   There are also transition regions (of width 
0(ji-2/3) )   between the advancing and retreating sides 
of the disk (near 0   =  0   and 180°) through which the 
solution must be matched; near these points the aero- 
dynamic spring is very small, although it does not 
change sign.   In general, near any point where the aero- 
dynamic spring is very small, the assumption that all 
terms In Eq. 22 are of the same order Is violated, and 
there must be a narrow transition region about such a 
point.   In this problem there are four such points, 
dividing the disk into four regions, each with its own 
main solution.   These main solutions may be obtained 
using the substitution 

ß = exp 7pi <\ii 

This substitution gives the main solution (to order  p ) 
as follows. 

in 
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(23) 

where 

f  =7 lain *l (3^  I Bln^l  -   cos*   -   KpBln*) 

v / 1 y \ 
8   =   6   (l008*   "   Kp Sin*  "   328ln*) 

(+ !   on the advancing side 

I- 1    on the retreating side 

and Cj   and  Cg  are constants (if f < 0 than  Cj   is 
complex and  C» ■ C«) .    There is a main solution of 
this form for each of the four outer regions of the disk; 
the solutions are matched through the four transition 
regions (giving the two constants on one side in terms of 
the two on the other side) by the standard techniques of 
perturbation theory.^-5   By this procedure the transient 
solution for given initial conditions may be constructed 
around thr entire disk.   Floquet theory then gives a 
quadratic equation for the two roots as follows. 

Cx2'*''T. 2b (r *"') + 1 

(24) 

where  b  is a function of n 
tion for ihe roots is toe i 

y,   and  KT The solu- 

y        1 _i 
-u — * —  cosh     b   + ni for b > 1 

6»      2» 

"Y 1-1 
^ =   \   -M T- *  1 TT

-
 cos      b  + ni for -1< b < 1 

6t 2» 

V 1 -1 
-u —   ±—  cosh      I b I  + — + ni   forb<-l er       2» 2 

where  n  is some integer.   This result shows the 
typical behavior of the roots of periodic systems.   For 
I b I   <   1   the damping is fixed at -n (V/eir)   with a 
change due to b in the frequency; for b >   1   the fre- 
quency is fixed at n/rev with a positive and negative 

change due to b In the damping: for b < -1 the 
frequency is fixed at 1. ♦ l/2/rev with a positive and 
negative change in the damping.   The critical region 
boundaries are given by  b = 1  and b = -1. 

The general character of the critical regions and 
instability boundaries in the y - ß plane, as obtained 
from the solution of Eq. (24), is sketched in Fig. 12. 
Because /i  is large, it happens that  I b I   is much 
greater than 1 almc 11 ihvays, so the critical regions 
dominate the behav.„   of the roots.   The sign of b 
changes regularly however;  b  must of course go through 
zero then, but it does so very quickly, so there is only 
a very narrow band between the  ImX   =  n/rev  and the 
ImX   =  ii + l/2/rev   regions in which   lb| <    1.   When 
Ibl <   1,   the real part of A   is  -ft (Y/6ir) ,   i.e., the 
root is stable for all n   and V ;  thus there must always 
be a band of stability surrounding toe transition from 
n/rev  to n + l/2/rev.   These characteristics are 
illustrated in Fig. 12.   The locus between the critical 
regions has a rather fine structure which would be 
difficult to obtain numerically.   A root locus for varying 
y or n   (a vertical or horizontal section in Fig. 12) in 
toe vicinity of a critical region boundary would in quick 
succession move from the RHP ('Jastable) to the LHP 
(stable) with frequency fixed at  n/rev,   rapidly move 
from  ImX   = n/rev  to  ImX   =  n + l/2/rev  in the 
RHP  with damping given by  -n 'V/GTT)     (which would 
be nearly constant because the critical region bcundaries 
are so close), and then move from the LHP into the RHP 
with frequency fixed at  n + 1 /2 /rev. 

Fig. 12 shows thai for a given ti   the system is 
stable for a large enough  > .    Positive  Kp  is stabiliz- 
ing, tending to decrease the size of the instability regions; 
negative  Kp  is destabilizing in this sense.   The rotating 
natural frequency of the flap motion,   u ,   does not enter 
the high ß  case to order  PQ   (the aerodynam.c soring 
dominates the centrifugal spring until order pj);  this 
is consistent with the fact the critical regions dominate 
the high ix  behavior, so toe frequency is fixed at a 
multiple of  l/2/rev. 

A comparison of these analytical results with the 
results of numerical calculations indicates that the high 
ß  solution is good down to ß = 2.5  or so.   Thus 
numerical calculations are required to join toe loci 
from ß = 0.5 to 2.5   say (for V  neither small nor 
large).   The behavior theoretically predicted for the 
locus at large ß   (in particular the rapid movements 
between  Im X = n ^rev   and  n + 1 /2 /rev, and perhaps - 
for y not too larg? - between  RHP  and the   LHP) 
actually does show up in the numerical calculations of 
the stability; such behavior of a numeric?) solution 
might be questioned without the perturbation solution to 
provide a guide to what to expect.   It is unfortunate that 
the boundary of the lnbt<ü)ility region for  V/lG  of order 
1 is first encountered at moderate (arounH ß - 2.25 
for small  Kp;  tee Fig. 12) and so cannot be obtained 
by perturbation techniques (to the order explored anyway). 
Because of the smill time constant in the main solution 
(of order '.'')  and the four transition regions (of width 
0{ß-2 •*), a numerical calculation of toe roots for truly 
large ß  would be difficult; the perturbation theory 
harvlles these singular problems analytically, and the 
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calculations that remain are nonsln ,ular, short, and 
simple. 

A Compartson With Numerical Results 

Shown In Fig. 13 are lines of constant Im A   and 
He A ,   for  c s 1   ml  Kp  ■ 0 ,   based on numerical 
calculation of the eigenvalues of equation (1) using 
Flnquet theory (this figure is taken from Fig. 3 of Ref. 
2).   * 'jun- 13 should be compared with the analytic 
results of Fig. 3 (small p)  and Fig. 12 (large  ß) . 
The small M   results are good out to about M  ■ 0.5, 
which is an excellent range, including all the operptlng 
conditions of most helicopters.   The large n   results 
are valid above ;< =2.5 or so, which is also a good 
range for the perturbation theory.   The first high n 
instability lob«    f Fig. 12 can be seen in Fig. 13, 
appearing between n = 2.0 and 2.5 

Application of Perturbation Techniques to Helicopter 
Dynamics 

This section returns to the question of whether 
perturbation techniques might be profitably applied to 
realistic dynamic systems than the one considered here. 
As part of the answer, consider what these lechniques 
will not do:  obviously they cannot give results for cases 
where there is no parameter that is either small or 
large, for example when > = 16  and (i = 1 .     How- 
ever, the four cases considered together cover a good 
deal of the ranges of /i   and  V ,   and with primarily 
analytical results.   For many helicopters the small jx 
case will be quite satisfactory alone.   What the tech- 
niques can do also includes: 

(a) Since they give analytic solutions they provide 
more Insight into the problem, as well as specific de- 
sign criteria for the system; this feature is particularly 
important for nonlinear or time-varying systems, which 
have properties much different from those of constant 
coefficient, linear systems. 

(b) Perturbation methods can find, and handle, 
cases that are very sensitive to the parameters, or that 
are difficult to solve accurately by numerical methods. 

(c) The methods provide more insight into the 
rptner rnusual behavior of the solution of periodic 
jystems, by showing explicitly how the periodic co- 
efficients modify the transient solutions and why they 
give the root loci their characteristic behavior in the 
critical regions. 

(d) Finally, even if the techniques are not used to 
find the complete solution, it only takes a little work to 
find out where the problems are (e.g., critical regions 
and transition regions) and what the order of things is, 
which information would be of Invaluable help in the 
numerical analysis of a system. 

The extension to more degrees of freedom or more 
realistic aerodynamic coefficients would certainly make 
the analysis more complicated. In general however any 
study - analytic, computational, or experimental - of a 

system become« more complicated as the accuracy of 
the modeling of the true system Increases, and pertuiha- 
tlon techniques are not expected to be an exception to 
this rule.   Regardless of the system being studied, the 
position perturbation techniques occupy between simple 
linear analyses and complex nonlinear numerical calcula- 
tions makes them a very power&il tool for providing both 
exact solutions and increasing understanding of problems 
in rotor dynamics. 

There are many problems in rotor dynamics in- 
volving nonlinear or periodic coefficients to which per- 
turbation techniques might profitably be applied.   Some 
additional work might be done with the flapping dyiiimics, 
considering for example several blades responding to a 
gust or to shaft motion.   The coupled pitch/flap or flap/ 
lag dynamics of a single blade are other important 
problems of rotor dynamics to which perturbation theory 
might useiully be applied.   While the perturbation solu- 
tion for small   p    will probably be of most interest, 
there will likely arise problems where other parameters 
are also useful.    As long as a reasonable model is 
chosen for the system, und as much effort is given to the 
interpretation of the solution as to its derivation, per- 
turbation techniques should prove quite usciul in provid- 
ing information about these problems, and many others 
in rotor dynamics ard aciodynamlcs. 

T.üs paper has provided examples of the informa- 
tion about dynamic systems which may be obtained using 
the methods of perturbation theory.   The techniques have 
proved very useful for the problem studied,   it should 
not be concluded however that the techniques used for 
this problem are all the**"  .n to perturbation theory; 
there are many more metuoJs that have not been touched 
on here.   Perturbation theory is a powerful, and yet not 
very sophisticated, mathematical technique which should 
prove very useful in analyzing some of the problems of 
helicopter dynamics. 
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Fig. 1. Foot loci for varying V . based on the 
small fi results (to order n2); I» ■ I 
and M       0  and 0.1. 

Fig. 2.    Root loci for varying ^ ,   based on the 
small n   results (to order  n~),  "V fixed 
for each locus   (ReX ■ -   T/lG  for 
(i   =  0) 

-t.».-* 

lm»'i 

Fig. 3.      Lines of constant  ImX and   ReX,   based on Fig. 4. 
the small ß   results (to order n );   l» ■  1, 
Kr 0; ImX. ReX, 
circled values of  ImX indicate areas in 
which  ImX is constant 

Lii.es of constant   ImX und   ReX.   bused on 
the small n   results (to order M"I !   K       1 ■ 
Kp   =  0.1;   ImX. ReX, 
circled values of   ImX  indicate treu in 
which  ImX is constant. 

Fig. 5.      Lines of constant  ImX and   ReX,   based on 
the small w   results (to order n2);   v =  I. 
Kp  - -0.1; ImX, ReX, 
circled values of  ImX  Indicate areas in 
which  ImX is constant 

u ,    u 
Fig. 6.   The ratio   (-Mfl/Ma),   which governs the 

effect of  K     and   K     for small   v . 
R H 
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Fig. 7. The averages of the aerodynamic 
coefficients, which give the roots 
for small  V . 

Re» 

Fig. 8.    Root loci for varying  n and V,   based on 
the small >   results (to order 7);   v = I 
and Kp  =  1,   the effect of the critical 
regions i» not shown. 
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Fig. 9.   The  Kp  vs. ß  boundaries for stability 
in the center of the critical region, based 
on the small  V results (to order Y); for 
roots near   ImX =  l/2, 1, and 3/2. 

Fig. 10.   Motion of the root on the real axis for varying 
H ,   Y = «>.   For large   V  there are two real 
roots; Aj   Is the finite real root; the other 
root Is at   X = - «>  for  Y = •« . 

NEGATIVE  DAMPING CN 
RETREATING SIOE 

NEGATIVE   DAMPING ON 

ADVANCING  SIOE 

STABLE 

\(, l/rev)   vv\      \ 

.\   S/VOV ^STABLE 

Fig. 11.   Flap ^-ite feedback required for negative 
damping over part of the rotor disk; 
- (Mi - KnM«)  < 0  (enters into the 

Y case). 

Fig. 12.   Sketch of the characteristic behavior of the 
critical region boundaries and stability 
boundaries for large  n ;    
boundary of region in which ImX is fixed 
at n/rev  or  n+l/2/rev;  
boundary of region in which the real part 
of one root is positive, i.e. unstable. 
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Fig. 13.     Lines of constant  ImX and ReX,   based un 
numerical calculation of the eigenvalues 
(from Ref. 2);   v = 1,   Kp = 0;  
ImX. ReX;  circled values of 
ImX indicate areas in which  ImX is 
constant. 
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