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A PERTURBATION SOLUTION OF ROTOR FLAPPING STABILITY

Wayne Johneon®

U.S. Army Alr Mobility R&D Laboratory
Moffett Field, Callfornia 94035

Abstract

The stability of the flapp'ug motion of a single blade
of a helicopter rotor is examined using the techniques of
perturbation theory. The equation of motion studied 1s
linear, with periolic aerodynamic coefficlents due to the
forward speed of the rotor. Blade pltch feedback pro-
portional to both flapping displacement and flapping
rate is included. Four cases are considered: small and
large advance ratio, and small and large Lock number,
The solution of this problem demonstrates the informa-
tlon which may be obtalned using perturbation techniques.
This paper discusses malnly the results of the analysis
rather than the mathematics of thelr derlvatlon, with
primary emphasls on the eigenvalues (l.e., root loci)
as Indicators of the system stability and response. The
small advance ratlo results in particular are very useful,
being valld out to an advance ratio of about 0.5, It is
concluded that perturbation theory 18 a powerful matka-
matical technlque which should prove very useful In
analyzing scme of the problems of helicopter dynamics.

Nomenclature

Kp flap proportional feedback gain

KR flap rate feedback gain

Mp aerodynamlic moment due to fiapping
displacement

Mé aerodynamic moment due to flapolng rate

M 0 aerodynamic moment due to blade pitch

LHP left -hand plane

RHP right -hand plane

LHS left-hand side

RHS right-hand side

Re r~a] part of a complex number

Im Imaginary part of a complex number

g flap motion degree of freedom

Y blade Lock nuaber

A elgenvalue or root of the system

U rotor advance ratio (forward speed divided
by rotor tlp speed)

¢*Research Sclentist

v rotating natural frequency of flap motion
(centrifugal and structural stiffening), non-
dimenslonallzed with rotor rotational speed

¥ rotor azimuth angle, measured from
downstream
O() "the order of"
(—) conjugate of a complex number
Introduction

This paper considers the application of perturbation
techniques to helicopter rotor dynamics. Perturbation
theory has been well developed ln recent years, but has
not found much applicatlon to rotary wing problems,
Classically helicopter engineering has made usc of the
same perturbation theories that fixed wing engircerirg
has, fer example lifting llne theory and engineering beam
theory (both require a large blade aspect ratio). Another
classlcal example is actuator disk theory (a large number
of blades is required). These theories were developed on
an intuitive basis however, and the more rigorous mathe-
matlcal techniques of perturbation theory have not yet
found widespread use for rotary wings. The classical
applicatlons are largely for aerodynamic prohlems; the
mathematics of those problems can be very complicated
however because the equations involved are highly non-
linear partial differential equations. The treatment of
dynamic problems can be more tractable since only
ordinary dlfferential equations are involved. Problems
with constant coefficient linear differentizi equations can
be solved exactly with well established methods, so for
these problems the extra effort of perturbation theory
may not be justified. On the other hand for problems
with time varving or nonlinear differential equations the
only solution procedure generally applicable is the
numerical integratlon of the equations of motlon. How-
ever, purely numerical solutions are not entirely satis-
factory for obtaining an understanding of the physical
character of the system, or for fcrmulating general
design rules. Furthermore, an analytic solutlon for the
general case would be difficult to obtain (if possible at
all) and would be so complex as to be hardly better than
the numerical solutlon. The only systems that can be
practicably handled analytically are those involving
linear constan: coefficlent differential equations, Per-
turbation techniques are avallable which are methods to
study time varying or nonlinear systems such that at
each step in the analysls only llnear constant coefficient
equatlons must be handled. Tline varying or nonlinear
differentlal equations are characteristic features of
helicopter dynamics and aerodynamics, primarily due
to the rotatlon of the wing. Thus the posslbilitles for
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the use of perturbation theory in rotary wing problems
are very extensive.

This paper considers the stability of the flapping
motion of a single blade of a helicopter rotor. This is
a single degree of freedom, second-order system, with
analytic aerodynamic coefficients. The governing equa-
tion is linear with time varying coefficients; it is given
below.
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and the three regions are defined by

region (i): O<pusinyp < u

region (ii): -1<usiny< 0

region (iii): -p<usinp< -1

This is the homogeneous equation for small perturbations
of the flapping motion of the blade about an equilibrium
state; the derivation of this equation may be found in the
literature.(!) B is the degre: of freedom representing
the blade flapping motion perturbation. The equation is
nondimensionalized with the rotor speed, so the time

variable is the azimuth angle ¢ . » is the rotating
natural frequency (nondimensionalized with the rotor
speed) of the flapping motion, which may be greater
thau 1.0 for flapping hinge offset or cantilever root
restraint of the blade. ¥ is the Lock number, defined
by v = pacR‘/lb (p is the air density, a the two-
dimensional lift curve slope, ¢ the blade chord, and R
the blade radius); i}, isthe equivalent mass of the
flapping motion, given by the integral over the span of
the square of the mode shape of the flapping motion
weighted by the mass per unit length of the blade; for
the rigid flapping motion of an articulated blade, the
mode shape is proportional to the radial distance from
the hinge, and so lj, is just the moment of inertia of
the blade about the flapping hinge. Kp is the flap
proportional feedback gain, better known as tan 84; Kg
is the flap proportional feedback gain. A feedback law
A0 = -K B - Kpf has been used (A@ is the biade
pitch change due to fiapping feedback control). u is i{he
rotor advance ratio (forward velocity divided by rotor
tip speed). The coefficients M,, M, , and Mo are the
aerodynamic forces on the blade, hence their muitiplica-
tion by v and their dependence on u . The three
regions for the coefficients reflect the influence of the
rever se flow region of the rotor disk. In region (i)
there is normai flow over the entire blade span; in
region (iii) reverse flow over the entire span; and in
region (ii) normai fiow outboard of r = - usin ¢ and
reverse flow inboard. Region (iii) is encountered oniy
if 4 > 1, The aerodynamic coefficients were ob-
tained using a rigid blade motion, and should properly
be changed some to handle a blade with cantilever root
restraint. However, the major effects of a cantilever
root on the dynamics of the system are due to changes in
v and Y (both are increased, v to 1.15 say and Y

to about 5/3 the Lock number based on the rigid mode
inertia). Since these are free parameters in the
anajysis this formulation of the probiem should give
reasonabie resuits for all rotors.

This equation has been studied numerically in
recent {iterature, primarily in the context of Floquet
theory, (2) which must be used because the aerodynamic
coefficients are periodic in ¥ if u # 0. However,
pureiy numerical solutions are not very satisfactory for
obtaining an understanding of the physical characteristics
of the system, or for formulating general design rules.
An analytic solution for this equation in its generai form
would be difficult to obtain (if possibie at all) and would
be s0 compiex as to be hardly better than the numerical
solution. Time varying or noniinear differentiai equa-
tions are characteristic features of helicopter dynamics
and aerodynamics, primarily due to the rotation of the
wing. The oniy solution procedure generally appiicable
to such probiems is the numerical integration of the
equations of motion, in particular cases, when there is
some parameter which is either smail or large, the
techniques of perturbation theory may be used to obtain
analytic solutions., Thus it is appropriate to appiy the
techniques to the study of rotor flapping stability.
Perturbation theory has been well developed in recent
years (e.g., Refs. 3 and 4), but has not yet found wide-
spread appiication to rotary wing problems. This paper
considers an exampie of such an application.



All the details of the mathematical analysis are pot
appropriate for this paper. The mathematical techniques
are not very sophisticated actually; there are some
tricks to be learned, but the standard ones work for
most systems, including this one. 3,9 However the
mathematics can be rather long and cumbersome,
especially when the higher order solutions are sought.
Furthermore it is not maintained that the differential
equation studied is a true model of rotor dynamics;
nonlinear aerodynamics and coupling with pitch and lag
motions are certainly very important. The purpose of
this pape. s not to describe the mathematical details
of perturbation techniques or to present a study of true
flapping dynamics. Rather it is intended to demon-
strate what information can be o'stained by the perturba-
tion techniques, and to explore the methods which are
most useful for rotor dynamies, so helicopter engineers
will be able to decide whether to use these techniques
with more complicated or more realistic systems,
Therefore only an outline of the method is presented,
with primary attention to the results obtained. For
more details of the analysis the reader is directed to
Rel. 5.

For the [lapping equation there are two parameters
which may be used for perturbation quantities: the
advance ratio u and the Lock number Y . Then there
are four cases to be considered: small and large u ,
and small and large Y . The dynamic problem con-
sidered here is the question of rotor flapping stability.
The stability of the motion is determined by the roots
or eigenvalues of the system (there are two for this
second order equation) and so most of the results wi.'
be concerned with the roots. The equation considered is
linear; perturbation theory is used because the aero-
dynamic coefficients are time varying (specifically,
periodic) for forward flight, i.e., when u is greater
than zero. Each of the four cases for this problem will
be considered in turn below, First however, brief dis~
cussions will be given of the perturbation techniques
used and the behavior expected of the eigenvalues of a
periodic system.

Perturbation Techniques

Fundamental to perturbation theory is the existence
of some parameter which is either very small or very
large; for the moment represent the small parameter
(or the inverse of the large parameter) by €. In the
present problem, it is desired to find the roots of the
system, which means investigating a solution which is
uniformly valid over long time periods. The appro-
priate perturbation technique is the method of multiple
time scales. This method assumes that the behavior
of the system may be investigated over several time
scales, ‘n = ¢N®$. Thetime scales §_ are all
assumed to be of the same order ; then for ‘l = ¢y the
actual time $ must of order € -1, i.e. very large
comparea to the basic scale ¥, = $. The derivative
with respect to $ becomes then

- = a4 +€—L

2.5
o

+ €
8&2

80 the use of these time acales amounts to an expansion
of the time derivative as a series in ¢ Next the
dependent variable is expanded us a series in €

p=po“’o“’1"’z"") "‘91"'0' LRI I

where the terms Py, B, etc. are ail assumed to be the
same order, and depend on all the time secales. In addi-
tion, all free parameters (e.g., v and Y f[or the small
g case) are also expanded as series in € . These series
for B, d/d¥ and the [ree parameters are substituted
into the equation of motion, and all terms of order € n
are collected and separately equated to zero. giving the
o™ equation. With the above expansion of d/d .
these equations are partial differential equations now.
The requirement that all ﬁn be of the same order for
the long time scale behavior of the motion is crueiai to
obtaining the solution of the partial differential equations.
It leads, [or certain values of the [ree parameters, to
eritical regions characterized typically by a reduetion

of the stability of the system. The method of multipie
time scales is used for the small yu and smail Y eases.
Details of the method, and its use for these two cuses,
may be found in Refs. 3 and 5.

Often an equation of motion is such that in the limit
€ = 0 the order of the differential equation is reduced.
The large Y und large u ecases are of this type; for
example letting ¥ = » results in a [irst order equation
(just the RHS of Eq. (1)), which is independent of Y.
Such problems are called boundary iayer problems, since
they are characterized by narrow regions in which the
solution changes greatly. The solution outside such
regions may be found by use of a substitution of the form
B = exp([" pdd) [ollowed by an expansionof p asa
series in € :

ST .
P =Pt

x n *po*cpl*..

This main solution is not valid in certain narrow trunsi-
tion regions or boundary layers. A basie part of this
perturbation technique is methods to obtain solutions
through the transition regions, so that it is possible to
mateh one main solution to another on the other side of
the transition region, or to boundary eonditions at the
base oi the boundary layer. The matehing procedure is
so fundamental to the analysis of boundary-iayer types
of problems, that it gives the technique its name: the
method of matched asymptotic expansions. Details of
the method and its application may be found in Refs. 3,
4, and 5. Again, for stability problems the behavior of
the solution over long time perious is of interest; the
method of matched asymptotic expansions is used to
construct such a solution, from which the eigenvaiues of
the system may be found.

The methods of perturbation theory are best de-
scribed by example. Since the mathematics involved
can be Jong, espe .ally for higher order solution~, a
detalled deseription of the procedures will not be given
here. The -:ader is directed to Ref. 5 for the detailed




consideration of the rotor flapping equation. When first
learning the techniques, the reader might want to con-
sider simpler equations as examples, and these may be
found in Refs. 3 and 4.

Periodic Systems

The root loci of a constant coefficient system typi-
cally exhibit behavior in which two roots start as com-
plex conjugates, mev* the real axis, and proceed in
opposite directions along the real axis. The existence
of periodic coefficients in the differential equatiuns of
motion generulizes this behavior so that it can occur at
any ImA = n/rev or n+1/2/rev, not just at Imx = 0.
The property of the solution that allows this behavior is
the fact that the eigenvectors are themselves periodic
(instead of constant as for a constant coefficient system).
The analysis that demonstrates that periodic systems
show this behavior is cailed Floquet theory. Thus the
foifowing behavior of root loci is characteristic of
periodic systems. If the parameter being varied. for
example the advance ratio u , issuch that at u = 0 the
svstem is not periodic, then the roots start out as com-
plex conjugates. As u increases, the periodicity of the
system increases, and the roots move toward n/rev
(or n + 1/2/rev) lines (remaining complex conjugate
pairs though). At somc criticai u the foci reach
ImA = n/rev, and then for still larger u the frequency
remains fixed at n/rev whiie the reai part of one root
is decreased and that of the other is increased. The
root being dcstabilized usually crosses into the RHP
for some up . indicating the system has become unstabie
because of .he influence of the periodic coefficients.

The Small u Case

The smali parameter in this case is the advance
ratio 4 . Setting u = 0 gives the hover case; the time
variation of the aerodynamic coefficients is removed and
the roots are easily obtained. To order “2 the reverse
fiow region may be ignored, and the expressions for
Mg. Mp, and M, in region (i) may be used for all ¥.
To obtain the roots it is necessary to find a solution
v.iid over long time periods; thus the appropriate per-
turbation technique is the method of muitiple time
scaies. This method involves considering the behavior
of B when ¥ is of order 1. of order ¥+, of order
u'2 , etc. P is expanded as a series inu:

B =8 +ub

2
+ o o 0
0 uhy

1

and the method yields a solution uniformly vzlid for all
¥. v and Y are also expanded in u:

2
Yy =¥ .
o tHEY T,

0

This is done because it is the characteristic of systems
with periodic coefficients that for certain values of
Vo and 'Yo there are stability degradation regions

described by boundaries in v, and 'Yl (or vy and 75,
etc.). The case KR = 0 will be considered first.

Order 1 Results

To order 1 the roots are the hover roots, given by

Yo 2

y v, \?
0 0

= o — - — 2
Ao % 'Vv v K <]6) @)

and its conjugate. The variation of these roots with ¥
for v =1 andsevcral Kp is shown in Fig. 1 (the
u = 0 loci).

Order u Results

To order u the roots for most v_and ¥ _ are
0 0
stiil the hover roots:

*)

. _ Y \/2 Y _‘Y'
A=y v = - v VT Ky - ()

%))

To this order therc is no effect of the periodic cocffi-
cients. The exception is when ImAy = 1/2 (the
frequency of the hover root is near 1/2/rev) i.e. Yo
and 7, such that

, Y v, \2
2,0 0 L
Yo * 8 Kp <16> 3 &0

There is then a critical region, with a boundary described
by the foliowing equation.

Y Y v <v 2
0 1 Y 0
g L 22k
2% (s 2 > 6 t2e Vs "p>

(3)

This equation describes a narrow band, of width Ow) .
about ImA, = 1/2 (which by Eq. (4) may bc considered
a lineof v as a function of 7). Outside the critical
region there Is an O() change in the frequency whiie
the real part of the root is unchanged from the hover
root. Inside the critical region the frequency is fixed

at 1/2/rev while there is an O{) change in the damping.
This behavior is iliustrated by thc¢ ;1 = 0.1 foci in Fig. 1.
The maximum stability change occurs at v, = 'Y] 0
(i.e. when v and 7Y are such that the frcquency of thc
hover root is exactly 1/2/rev), where the root is

Y Y 2
./ 0 0
A—2-161y24]+(8-4Kp> (6)

The criticai region is a region of stabiiity degradation,
not of instability; the maximum reduction (and enbhance-
ment) in the dimping is
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which i{s an O() small reduction. The system remains
stable because of the large hover damping. Fig. 1 shows
typical root loci for varying ¥ , with 4 = 0 and

p = 0.1. The point D on the hover locus (Kp = 1) is
where the locus crosses ImA = 1/2. As u increases,
since this point is at the center of the critical region it
receives the maximum stabllity change, and so is pulled
out to the point B. In terms of the Y locus, as ¥ in-
creases and the hover locus nears ImA = 1/2, the root
has an Ow) change in the frequency, pulling the locus
toward ImA = 1/2. When the locus crosses into the
critical region the frequency has just reached 1/2/rev,
and the root locus is at the point A. For still larger Y
the frequency remains fixed while the real part of one
root decreases and that of the other increases. When

Y reaches the value for which the hover root has a fre-
quency of 1/2/rev, the locus is at the center of the
critical region; there the roots have their maximum
stability change (which 1s O()) so the locus is at the
point B. As 7Y increases more, the locus moves
toward the other boundary of the eritical region. The
locus reaches that boundary at the point C, and for

still larger ¥ the frequency is no longer fixed at 1/2/
rev; rather the real part of the root is the same as the
hover value, while there is an O() change in the
frequency which decreases in size as Y increases.

For stlll larger Y the locus is again identical (to order
u) wo the hover locus.

Figure 2 shows typical root loci for fixed Y and
varying u . The circle the locus starts from is te ¥
locus for hover ( = 0) and the appropriate Kp The
Y for each locus may be found from ReX at u =« ,
since for the hover root ReX = - ¥/16 . As u in-
creases from zero, for the roots near Imx = 1/2
there I1s an O(u) change in the frequency pulling the
root toward ImA = 1/2; while the damping remains
fixed at the hover value. The locus reaches ImA = 1/2
for a corner u which corresponds to the boundary of
the critical region. For larger u , frequency remains
lixed at 1/2/rev while one branch of the locus moves to
tha left (dec.uvased stability) and the other to the right
(Increased stability). This behavior of the u loci is
characteristic of roots of a system with perjodic
coefficlents.

Order yz Results

2

To order u“ the roots for most vo and '70 are

y 2 2 Y
A = o I -
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and its conjugate. Thus away from ImA = 1/2 or1 the
roots are just the hover roots with an 0042) change in
the frequency. There are two effects ot u; the first
corrects the term ¥/8 Kp in the hover frequency to
properly account for the ave rage of KpM,. The
second effect, that in the last term of the frequency, is
entirely due to the periodic aerodynamic coetiicients;
this is the first effect of the periodic coeffieienti seen
in the analysis, except for the critical region near

ImA = 1/2. Typical root loci for varying u are
shown in Fig. 2. These are the loci that are not near
ImA = 1/2 or 1; the frequency change is small even
at 4 = 0.5. Eq. 8 may also be used for the branches
of the root loci on the real axis when the quantity under
th-- uyquare root sign is negative (i.e., for ¥ farge
excgh). There are two real roots then, the (+i) in the
{equency becoming (+1). A point on the iocus of
special interest |s where one braneh of the locus on the
real axis crosses into the RHP, i.e., becomes un-
stable (as in Fig. 1). The criterion for this divergenee
boundary is A = 0, or to order u2:

2
Y

(y + )Yk - - 02 210(1) "%
H7ghp = 7 °

The effect of u on the RHS (due to the periodie co-
efficients) dominates that on the LHS (due to the average
of KpM,) for ali valuesof 7 and v. Thus the eritical
vafue of negative Kp, beyond which the focus ifes in
the RHP, is actually increased by increasing u . The
criterion from the hover case is conservative then;

this is the opposite of the conclusion that wouid have
been reached from a eonsideration of the averaged co-
efficients only.

To order u2 there {8 a critical region when
Ion =1, f.e., when
2
Y Y
2 0 ‘o
vo + 8 l(P - <16> 1 (10)

The behavior of the loci near the critical region is
similar to that near Im\y = 1/2, except that now
changes are 0042) , not O@) . The boundary of the
critical region is described by a relation between v,
and ¥, with v; = ¥, = 0; the critical region is thus



a narrow band, of width O@2), sbout ImA - 1.. In-
side the critical region the frequency is fixed at ImA =1
with an O@?) change in the damping. The maximum
reductiou '~ enhancement) of the damping Is

% {f3e- o)
1
IR

which is an 00;2) small reduction in the large hover
damp‘ng. Figs. 1 and 2 show typical root loci near
ImA = 1 for varying ¥ and u .

Flap Rate Feedback

The use of flap rate feedback, Kp # 0, does not
change the behavior of the solution quantitatively. The
hover root becomes

y
2 Y
Yo * 8 Kp
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) [;g (U KR)] 2} (12)

and there are critical regions about ImAy = 1/2 and 1
again. The critical region boundaries and stability de-
gradatlon depend on Kp now. It is necessary that
KR > -1 for the hover root to be stable, but Kg > 0
will be the usual case anyway.

Y - u Plane

The results of the small u analysis may be used to
plot lines Jf constant ReA and ImA on the Y-u plane.
Typical results are shown in Figs. 3, 4, and 5 for
¥=1,0 and Kp = 0, 0.1, and -0.1, respectively.
The critical regions apyear in the Y-y plane as regions
in which ImA is constant (at 1/2/rev or 1/rev); they
are indicated in the figures by the circled values of
ImA (the region where Im»> = 0 is where there are two
real roota, not a critical region). These figures are
interpreted as follows. A horizontal line is a llne of
constant ¥, and so as u varies It gives the corre-
sponding values of ReA and ImA just as a p root locus
does. Simllarly a vertical line is a constant p line, ~
and soglves A as a function of ¥ justasa Y root
locus does. For example, conslder a horizontal line in
Fig. 3 (Kp = 0) with Y=28,1ie., Y/16 =0.5. As
@ increases, the line remains parallel to the ReA =
constant lines so ReA remains fixed at the hover value.
The ImA = 1/2 region comes closer to the horizontal
line as pu increases, which means that ImA moves
toward 1/2/rev. Eventually the vonstant Y line crosses
into the ImA = 1/2 reglon; then ImA is fixed at 1/2/
rev while for each point In the region there are two
values of RelA, glving the damping for the two branches

(one more and one less stable than the hover root). This
behavior is just that seen already in the u locl (Fig. 2).
Figs. 3, 4, and 5 inay be compared with similar ones In
Ref. 2, which were constructed from numerical calcula-
tions; on the basis of this comparison, the 0012) ana-
lytic resulta are quite accurateupto u = 0.5 or so.
There is some disc repancy between the results for the
ImA = 1 region however, particularly with Kp = -0.1,
although the change in scale (Refl. 2 shows results out to
# = 2.5) exaggerates the difference. For v exactly 1
the analytic results indicate no critical region If Kp < 0;
but only a slightly larger (for example v = 1.01) is
necessary to get a sizable critical reglon with Kp = -0.1
(see Fig. 5). The analytic results show the v = 1 case
is a very sensitive one for small ¥ and small o

and it is unllkely that a numerical calculation could treat
the case accurately. Of course an actual rotor wiil ai-
ways have » at least slightly greater than 1, so the
numerical calculations are probably reliable then;
furthermore, the discrepancy may also be an indication
that for very small ¥ the analytic results (to order u2)
are not valid out to as large a u as they are for more
reasonable Y . In any case this discussion illustrates
the kinds of problems th1. may be hidden in a purely
numerical solution; they can only be found and studied
by analytic procedures (which at least teil where to look
for problems).

The Small ¥ Case

The small parameter in this case is the Lock num-
ber Y. Setting Y = 0 removes all the aerodynamic
terms, and the roots are A = tiy forall u. The
method of muitiple time scales is used to obtain solu-
tions uniformly valid for all ¥ . The time scales con-
sidered are of order 1, of order y-1, etc. P ias
expanded as a series In ¥ (B =85 + YB; + . . .)and
sois w(v =V, + Yy +...). Theadvance ratic
u is not smail now, and the reverse {low reei~~ nusi Ce
considered.

Order Y Results

If v #n/2 for any integer n (i.e. ImA, not
equal to a multiple of 1/2/rev) the root to O(y) is

0
where MB' Mo. and Mg are the averages of the aero-~

dynamic coefficients around the azimuth. For the co-
efficients considered here, M2 = 0 for all u. Flap
rate feedback only effects (to order ¥ ) the damping; the
real part of may be written

K
B RARY —R
ReA = (—2-) Mg (1 ¢ -Mg/Mg (14)

The ratio —Mo /MO determines the relative effect of
KR : this ratio is shown In Fig. 6 as a function of u.




This paramete™ is a positive number, wiiich varies little
with u (from1af u =0 to1/2 at u =, with most
of the change beicw u = 1) . The negative of this ratio
gives a critical Kg, since it is necessary that

Kp > Ky = u°m° in order that the system be

cr?
stable torlmtall Y (to O(y) and with % ¥ n/2).
For I% = 0 the rootis

A= - % (-eug) + iv[l *——f(”’) (15)

The herodynamic coefficients -aux and eMg are
alwa rs positive; they have the value 1 for u = 0 and are
asymptotic to (8/3mu and (16/37)u, respectively,

for large u ; these coefficients are shown in Fig. 7.

The root loci for varying v and varying u are
shown in Fig. 8 for Kp =1, Kg =0, and v=1;
the locus for Kp = -1 is obtained by reflecting this
locus about the ImA = ¥ line. The locus for Kp = 0
is difficult to plot since ImA = » forall ¥ and u (to
order Y): it may be visualized by projecting the
Kp = 1 loci onto theline ImA = v. These loci should
be compared with the small Y portions of the curves in
Fig. 1, which are for small u. In Fig. 8, the Y locus
for agiven u startsout at A = {v always, and is a
straight line with slope

8ImA KP 1

ST T 0,0
-MB/MG

which varies from -Kp /v to -2Kp /v for u from
0to » (see Fig. 6 for -MQ /M2 ). The step size on
the Y locus, for a unit change in Y/14, is

Vst) () )

which varies from

Vie (kp)?

3

o5 (hf

e\t (ko)

for u¢ from0tol to =, respectively. The u locus
for a given Y starts out virtually from the u = 0 line,
and s asymptotic to the u =« line, with the step size
on the locus for a unit change in u increasing as u in-
creases. For reasonable u the locus does not vary
much from the small u results. An O(Y) analysis
can only obtain the slope of the ¥ locus at Y = 0, so
the locus is a straight line, as found above; to find the
curvature effect it is necessary to go to order Y2. The
significance of the curvature (order Y2) may bc judged
from a comparison of the Y loci of Fig. 8 (all u, small
Y) and Fig. 1 (small g, all v); on this basis the
small Y results should be limited to ¥/16 less than
0.2. On the basis of neglect of the curvature effects
alone the results might be accepted to higher ¥, but
the O(Y) results will also be limited by the effects of
the critical region, which will be examined next.

The discussion of the O(Y) analysis has so far
only been concerned with the basic roots, meaning the
roots away from the influence of a critical region. In
the small Y case, the criterion for being away from a
critical region is that ¥, ¥ (n/2) for any integcr n:
this may be written

e., the rotating natural frequency may not be a distance
of order Y/16 from n/2/rev. Since v is almostal-
ways just above 1/rev this criterion is seldom fulfilled.
and the critical regions may be expected to dominate the
root loci behavior for small ¥ . Furthermore, if Kp
is large enough positive or negative, the basic locus will
also cross ImA = 3/2 or 1/2 for Y/16 still small
(see Fig. 8), so these critical regions may affect the
loci even if the ImA = 1 regfon does not.

If Yo = n/2 for some integer n, there arisc
critical regions, with behavior of the root loci similar
to that encountered already in the small u case. The

case Kp =0 will be considered first. The critical
region boundary is given by
L I
) ERS So kM,
2 2
1 n 2 n
* 2uo\/ Mg - tygMg |+ Ky Mol
(16)
where
2
N _1_/‘ -iny
M‘3 o ) Mpe dy,

and similarly for M: and Mg (f.e., the nth harmonic
in a complex Fourier serfes representa‘ion of the



aerodynamic coefficients). This equation describes a
band of width O(Y) sbout ImA = n/2. Tbeuuximum
stability change occurs at V| = - (Kp/2yp) M‘ that Is
at the center of the critical region, where the basic root
(Eq. 15) would cross ImA = Vg = n/2 . There the root
e

2

2 n2
‘Kp MO

an

2% 0 1 n
*3 “ﬁ*v— \/Ilp-lvol(;

0

Outside the critical region there is an order ) change
in the frequency of the basic root with no change in the
damping. Inside the critical region the frequency is
fixed at n/2/rev while there is an order ¥ change in
the damping. The damping of the basic root is itself
O(7Y) however, so in contrast to the small u case, the
critical region can here lead to a.wal instability, not
just stability degradation.

The root loci for small ¥ show the behavior char-
acteristic of periodic systems, and familiar from the
discussion of the loci for the small u case. For some
4 or Y the locus will cross into the critical region.
The maximum stabilily change inside the critical region
occurs at the center, which Is where the basic root
locus (e.g., as shown in Fig. 8) wouid have crossed
ImA = n/2. Whether the center is ever reached de-
pends on the parameters involved (Kp, v, ¥, u). For
the O(Y) analysis, the locus has a slope proportional
“w Kp . sofor |Kp| nottoo small the locus will
probably cross some ImA = n/2 line with 7/16 still
small (e.g., in Fig. 8 where Kp = 1, the locl cross
the ImA = 3/2 line). If Kp = 0 however, there is no
O(Y) change in the frequency, so ImA = » for all u
and Y. Then the locus will never reach the center of
the critical region (cross ImA = n/2) unless vV = n/2,
in which case the locus is always at the center. More
generally, if |Kp| is very small, the locus will not
cross ImA = n/2 until Y/16 is so large as to be out-
side the range of the order Y analysis. An 00’2)
analysis would change significantly the concluslons about
whether the center of the critical region is reached under
certain condmons particularly for small |Kp| when
the O(‘Y ) change in the frequency is more important
than the O(Y) change. For example, Fig. 1 indicates
that with v slightly greater than 1 the Y locus (for
small u) would never cross ImA = 3/2 for Kp =
while it would always cross ImA =1 for Kp = 0, just
the opposite of the conclusions Indicated by the O(Y)
results (Fig. 8). In any case, since the maximum
stability change occurs at the center of the critical
region, it is useful to examine it as a worst possible
case, which may perhaps be approached but never
reached for certain values of ¥ and Kp .

Considering the u root locus again, the maximum
change in the damping from the value of the basic root
is given by the real part of Eq. 17. The contribution

from the basic root damping, (v/2) llg. is always noga-
tive (Fig. 7); as for the small u case it is O(y) , but
here that means the basic damping is small. In fact it
ls the same order as the critical region contribution, so
the destabilized root may be actuaily unstable, rather
than just a small perturbation from the basic damping
as for the small u case. The behavior of the locus
depends on the relative effects of and the nth har-
monics of the aerodynamic coeffici under the square
root in Eq. (17). For most cases the critical region
effect dominates, so that as u increases it eventually
reaches 2 critical value, at which point (for the case of
maximum stability change) one root crosses into the
RHP, i.e., becomel unstable. From Eq. 17, it follows
that increasing K either positive or negative)
always increases me eﬁoct of the criticai region. which
means decreasing the critical u for which the root
becomes unstable. Thus the critical u is a function of
IKp| , for each of the critical regions; this function
may be found from Eq. (17) by setting ReA = 0 (the
requirement for crossing the ImA axis). Since the
aerodynamic coefficients are rather complex functions
of u, it is more convenient to find the critical IKpl
as a function of u :
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This may be regarded as a maximum |Kpi for agiven
u; for larger |Kp | thelocluuintheRHP at that u .
These boundaries of |Kp| vs. u are shown in Fig. 9
for ImA =1/2, 1, and 3/2 . Wlth the exception of
the roots near Im\A\ = 1/2 with u above 0.5 or so,
Fig. 9 shows the criterionon |Kp| i not very
stringent. Iig. 9 shows also that near ImA = 1 the
roots are always stable, regardless of u , if

IKpl < J2 ; the loci may be expected to be near
ImA =1 for zeroor smiil Kp. Interms of the u
locus, this means that as u increases the locus does
not cross into the RHP . Just after the locus crosses
the critical region boundary, the effect of the criticai
region is secn and one branch moves to the right and

the other to the left (as do the loci in Fig. 2). As u
increases further however, the -lamping of the basic
root (which is always stable, and increases with u)
eventually dominates the’effect of the critical region,
and the root which wa? hecoming less stable turns
around before reaching v'e RHP . So for stiil larger u
both branches of the locus rifl be moving to the left,
i.e. becoming more stable as u increascs. For the
root loci near ImA = 1/2 or 3/2, the effect of the
critical regionr remains dominant, and so one root
eventually crosses into the RHP as u is increased.
The critical u is considerably lower for ImA = 1/2
than for ImA = 3/2. This points out an undesirabie
feature of negative pitch flap coupling, Kp < 0; not so
much that it reduces the critical u , but rather that it
moves the basic root nearer to ImA = 1/2,

T



The use of flap rate feedback, Kg ¥ 0, results in
8o qualitative changes in the behavior of the loci, Kgp
is however a useful design parameter; it may be used
for example to raise the critical u or IIS,I .

Evaluation of the Order Y Results

Numerical calculations were made of the u root
loci for moderate and smail values of ¥ . Ou the basis
of a comparison of the numerieal and analytic results,
it Is concluded that the small Y analysis to order Y is
useful only for truly small 7, ¢.g.. Y =2 or 3
(Y/16 = 0.2 or s0). Problems are encountered with
both the basic roots and the effects of the critical region.
The basic root to order Y neglects the curvature of the
Y locus, which is especially Important for zero or
small Kp , since then the change of ImA for small ¥
is due more to O(Y2) terms than to the O(Y) term.
The damping of basic root {8 O(Y) always, no matter
what order the analysis is carried too; for example the
O@?) results give ReA = - 7/16 forall Y. However
while basic damping is O(7), the contribution to the
damping due to the critical region will have terms that
are O(v2). Thus for large enough 7 the conclusions
in the discussion akove of the effects of the eritical
region on the u root loci will not be valid, since they
depend on the basic and critieal region damping being of
the same order in Y. In particular, the behavior of the
locus in which the root being destabilized by the critiecal
region turns around and becomes more stable due to the
eventual dominance of the basic damping is not possible
except for very small ¥, for which 0(v2) effects are
fi. fact negligible. Indeed, it was found in the numerical
calculations that with ¥ = 6 (¥/16 = 0.375, which is
not very small), v near 1, and Kp zero or small so
the root is near 1/rev, that the u locus does not turn
around but rather eventually crosses into the RHP. The
stability boundaries given in Fig. 9 are only valid then
for truly small values of Y/16 .

Order 72 Results

To order ¥ the basic root, valid for Yo £n/2,
i8 (with K = 0)

v ,,0 { y 0
A=—M, +iv ]l + K. M
2P 5,2 PO
2 2
72 0 2.0
. a_vi My ¢ (Kp/v) M, } (19)

As reported above, there is no 0(72) change dn ReA .
and the 0(72) change in the frequency is dominant for
small Kp. indeed for Kp = 0 the only change in

ImA is O(y2). The O(Y2) results would significantly
alter the plota of the basic root loci shown in Fig. 8.

The Large Y Case

The small parameter in this case is the inverse of
the Lock number. Y~!. For ¥ very large, the aero-
dynamics dominate the system. For Y = « the inertia
and centrifugal spring terms are negligihle, leaving a

first-order system that does not dependon ¥ . This
system gives one real root, which is independent of

and valid for ¥ = « ., The reduction of order of the
equation at ¥ = e {s a characteristic of a boundary-
layer type of problem. This characteristic means that
one of the roots goesto -» as ¥ goes to . The two
roots may be found by use of the following substitution.

v 1
B = exp [ Yp_l*po*-;:p_l4...d¢

This substitution gives two solutions, from which the two
roots are obtained as (for KR = 0):

27 M 2
- 1 0 11
Al"'%ﬂj -M-“‘yzu[
i) 0
M K. M M, - K 2
y2_ 418 P o) | B P 6
a¥ M. M
A p WM ‘37- —dy
p
+ oly™) (20)
2 27 M
1 1 0
A =Y — M, d¢ + K — d¥
2 21r[o g P21rfo -MB
. oly™Y) 21

Thus there are two real roots, one (i,) approach-
ing -« as 7 increases to « (M, is negative). and the
other (») approaching a constant. This behavior of
the Y :oot loci is expected from the small u results;
Fig. 1 shows that for large enough Y the locus is on the
real axis, i.e. there are two real roots, one approaching
- = and the other -Kp for ¥ - o, To lowest order
A, does not depend on ¥ . because it represents the
balanee of the aerodynamic damping and the aerodynamie
gpring only. The value of Ay/(-Kp) for varying u . and
Y = =, {ig shown inFig. 10; the movement show". takes
plaee eniirely on the real axis in the A plane. As for
the small u case (Fig. 1) the root on the real axis is in
the LHP if Kp > 0 and in the RHP - unstable — if
Kp < 0. The valueof A,/(-Kp) varies from 1to 7/8
for u = 0 to =, with most of the change between
u=0.5 and u4 = 1; thus there is little variation of the
root with u (to order1 in ¥). The size of the O(v-})
term in A, is indicated by the result for 4 = 0. which
is easily obtained (since the aerodynamic coefficients are
conatant then) as



To lowest order A, is - (Y/16) 2(—8 Mg) . The
aerodynamic coefficient -8 Mo is given in Fig. 7. For
u £ 1 it has the value -BMfg 1 + u'/8; for large
u itis asymptotic to (8/3x)yu’. This root becomes in-
creasingly negative a8 Y increases, and also as
increases. The order 1 term in A_ is the negative of

the lowest order term in A ; thus“the behavior of this
term is also given by Fig. 10.

The sojution for the roots is not vaiid if Mé =0 for
any ¥ . When Mj is smaii, the assumptions made
about the order of terms in deriving the solutions are
vioiated; this may be inferred from the expressions ob-
tained for the roots by the continuai appearance of M;
in the denominator of the integrands (Eqs. (20 and (21).
There is a narrow transition region, of width O(‘)"2 ) .
about any points where M, = 0, i.e., where the
damping goes through zero. As it happens, however,
M";( ¥.u) 18 a negative quantity which never reaches
zero. Thus for KR = 0 there are no transition regions
or boundary jayers, and the solutions obtained from the
substitution for B are uniformiy valid over the entire
azimuth.

Flap Rate Feedback

When Kp = 0, there are no boundary iayers or
transition regions because M; < 0 aiways. With fiap
rate feedback, Ky # 0, the same expressions for the
main solutions for  are obtained as for Fg = 0, ex-
cept that My is replaced by M"; - KRr MO . The aero-
dynamic coefficient - (M3 - Kp ) can become nega-
tive over regions of the disk for certain combinations of
u and KR thatis, there mua, be negative damping
over part of the azimuth range. When such regions of
negative damping exist it means there must be transition
regions about the points where thc damping goes through
zero. Since Eqs. (20) and (21) for Al and A, were
derived on the basis of no transition regions, thcse ex-
pressions for the roots (with My repiaced b/ Mg -
KrM,) are net vaiid when there is negative damping
over any part of the disk.

The criterion for the existence of transition regions
is that there be negative damping on some portion of the
disk, i.e., - (Mé - Kp Mg)< 0. M"; is always
negative; My is usuaiily positive, but may be negative
on the retreating side for large enough u. If KR is
too large positive, the negative values of Mg on the
retreating side eventuaily dominate M"; as u 1isin-
creased, 8o there wili be negative damping on the re-
treating side; if KR is too large negative, KyrMy
eventually dominates Mg on the advancing side and
there wiii be negative damping there if u is lurge
enough. Quantitative vajues of maximum and minimum
KR as a function of p are given in Fig. 11. For the
cases with negative damzp)ng there wiii be transition
regions (of width O (v~ 3)) near where Ms-KpMyg =
0, which greatly compiicates the anaiysis. For these
cases it is also expected that there wiil be other prob-
lems, inciuding numericai computation problems,
physical controi problems, and large fiapping ampli-
tudes. Thus while a region of negative damping doe3
not necessarily mean there is a tlapping instability, it
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does mean that there are many problems — ana-
lytical, computational, and physical - so requiring
'(Mé - KRM,) > 0 isa reasonable design criterion.
This criterion provides a maximum and minimum

for a given u . The {imits of Kr from this rue are
much easier to obtain than actual stability boundaries;
and Fig. 11 shows that although conservative, it is not
a serious restriction for u jess than 1 or 2. For large
# it is a serjous limitation, indicating that My (fiap
moment due to biade pitch) is not very good for fiapping
rate feedback then, Although the derivation of this ruie
has been based on the farge Y case, the criterion of no
negative damping has nothing to do with ¥, and so
shouid be a reasonabie criterion for all Y. Indeed the
criterion Kg > -1 for p = 0 is the same as from the
smaii u case, where it is a true stability criterion,
and valid for all 7V,

The Large u Case

The smali parameter for this case is the inverse of
the advance ratio, u'l For u very large, the aero-
dynamics again dominate the system. However, for
KR = 0 the damping is Ou) while the aerodynamic
spring is O(u2) ., with the resuit thatat y — « the
acrodynamic spring must be balanced by the inertiai
forces in order to obtain an equation with the proper
order of terms. Thus thc equation to lowest ordcer in
u takes the form

. . 2
B+ uCp)B +u Kw)p=0 (22)

The soiution of this equation is either a rapid sinusoidal
osciltation with frequency of O(u), ora sum of ex-
ponentiais with time constants of O(u~ly., depending
on whether the aerodynamic spring is negative or posi-
tive (the criterion is a bit more complicated realiy, but
that statementwiii dc for the present discussion). The
aerodynamic spring changes sign in thc middie of the
advancing side and again in the middie of the retreating
side, and at each point there is a transition region (of
width O(u'z/s) ) across which the solutions must be
matched. There arc alsc transition regions (of width
O(p'2/3) ) between the advancing and retreating sides
of the disk (near ¥ = 0 and 180°) through which the
sofution must be matched; near these points the aero-
dynamic spring is very smalii, aithough it does not
changc sign. In generai, near any point where the aero-
dynamic spring is very smalii, the assumption that aii
terms in Eq. 22 are of the same order is vioiated, and
there must be a narrow transition region about such a
point. In this problem there are four such points,
dividing the disk into four regions, each with its own
main solution. These main sofutions may be obtained
using the substitution

oo (1

This substitution givcs the main soiution (to order p
as follows,

¥

1
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where
£ =%|sin¢| (5% Ising| - cosy - Kpsin'l')
1 Y
g = % (Icosw - Kp siny - -‘;i—zsinw)

s* 1 on the advancing side

r
l- 1 on the retreating side

and C, and C, are constants (f £ <0 then C; is
complex and C, = C;) . There is a main solution of
this form for each of the four outer regions of the disk;
the solutions are matched through the four transition
regions (giving the two constants on one side in terms of
the two on the other side) by the standard techniques of
perturbation t.heory.3'5 By this procedure the transient
solution for given initial conditions may be constructed
around thc entire disk. Floquet theory then gives a
quadratic equation for the two roots as follows.

<A2: + p%)z <A21r + p%’)
e - 2b \e + 1

=0
(24)
where h is a functionof pu, Y, and Kp. The solu-
tion for the roots is then
Y 1 -1
-pﬁtﬁcosh b + ni forb >1
Y 1 -1
A= < -patii,—r—cos b + ni for-1<b<1
Y 1 =1 i
K g 1acosh Ibl*i+ni forb< -1

where n is some integer. This result shows the
typical behavior of the roots of periodic systems. For
Ibl < 1 thedamping is fixed at -u (Y/6m) with a
change due to b in the frequency; for b > 1 the fre-
quency is fixed at n/rev with a positive and negative
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change due to b in the damping; for b < -1 the
frequency is fixed at & +1/2/rev with a positive and
negative change in the damping. The critical region
boundaries are givenby b =1 and b = -1.

The general character of the critical regions and
instability boundaries in the ¥ - u plane, as obtained
from the solution of Eq. (24), is sketched In Fig. 12.
Because u is large, it happens that | b| is much
greater than 1 almc 51 1lways, so the critical regions
dominate the behav... of the roots. The sign of b
changes regularly however; b must of course go through
zero then, but it does so very quickly, so there is only
a very narrow band between thc ImA = n/rev and thc
ImA = 1 + 1/2/rev regions in which |b| < 1. When
Ibl < 1, thc real partof A is -u (Y/6r), i.c., the
root is stable for all u and Y ; thus therc must always
be a band of stability surrouaiding the transition from
n/rev to n + 1/2/rev. These characteristics are
illustrated in Fig. 12. The locus between the critical
regions has a rather fine structure which would be
difficult to obtain numerically. A root locus for varying
Y or u (a vertical or horizontal secticn in Fig. 12) in
the vicinity of a critical region boundary would in quick
succession move from the RHP (:astable) to thc LHP
(stable) with frequency fixed at n/rev, rapldly move
from ImA = n/rev to ImA = n+1/2/rev in the
RHP with damping given by -y (Y/67) (which would
bc nearly constant because the critical region bcundaries
are so close), and then move froin the LHP into the RHP
with frequency fixed at n +1/2/rev.

Fig. 12 shows that for a given u thc system Is
stable for a largc enough Y . Positive K, is stabiliz-
ing, tending to decrease the size of the instabiiity regions;
negative KP is destabilizing in this scnse. Thc rotating
natural frequency of the flap motion, v, docs not cnter
the high u case to order pg (thc acrodynam.c soring
dominates the centrifugal spring until order p,); this
is consistent with the fact the critlcal regions dominatc
thc high u behavior, so tie frequcncy is fixed at a
multiple of 1/2/rev.

A comparison of these analytlcal rcsults with thc
rcsults of numerical calculations indicates that thc high
u solution is good down to u = 2.5 or so. Thus
numerical calculations are required to join thc loci
from u = 0.5t02.5 say (for Y nclthcr small nor
large). The behavior theorctically predicted for the
locus at large u (in particular the rapid movements
between ImA = n/rev and n +1/2/rev, and perhaps —
for Y not too large — between RHP and the LHP)
actually does show up in the numerical calculations of
the stability; such behavior of a numeric?! solution
might be questioned without the perturbation solution to
provide a guide to what to expect. It is unfortunate that
the boundary of the instabllity region for Y/16 of order
1 is first encountered at moderate (around u = 2.25
for small Kp; sce Fig. 12) and 8o cannot be obtalned
by perturbation techniques (to the ordcr explored anyway).
Because of the small time constant in the mair solution
(of order 1:"1) and the four transition regions (of width
O(p'z"") , a numerical calculation of the roots for truly
large u would be difficult; the perturbation theory
handles these singular problems analytically, and thc



calculations that remain are nonsin‘,ular, short, and
simple.

A Comparison With Numerical Results

Shown in Fig. 13 are lines of constant ImA and
ReA , for ¥ =1 and Kp = 0, based on numerical
caiculation of the eigenvalues of equation (1) using
Flnquet theory (this figure is taken from Fig. 3 of Ref.
2), t.!qure 13 should be compared with the analytic
results of Fig. 3 (small u) and Fig. 12 (large pu).
The smail u results are good out to about u = 0.5,
which is an excellent range, inciuding ail the opereting
conditions of most helicopters. The large u results
are valid above u = 2.5 or so, which is also a good
range for the perturbation theory. The first high u
instability lob¢ f Fig. 12 can be seen in Fig. 13,
appearing between u = 2.0 and 2.5

Application of Perturbation Techniques to Helicopter
Dynamics

This section returns to the question of whether
perturbation techniques might be profitably applied to
realistic dynamic systems than the one considered hcre.
As part of the answer, consider what these ‘eehniques
will not do: obviously they cannot give results for cases
where there is no parameter that is either small or
large, for exampie when ¥ =16 and u = 1. How-
ever, the four cases considered together cover a good
deai of the ranges of u and Y, and with primarily
analytical results. For many helicopters the smalil u
case wiii be quite satisfactory alone. What the tec!.-
niques can do also includes:

(a) Since they give analytic solutions they provide
more insight into the problem, as well as specifie de-
sign criteria for the system; this feature is particularly
important for nonlinear or time- varying systems, which
have properties much different from those of eonstant
coefficient, linear systems.

(b) Perturbation methods can find, and handle,
cases that are very scnsitive to the parameters, or that
are difficult to solve accurately by numerical methods.

.c) . The methods provide more insight into the
ra‘ner uausual behavior of the solution of periodic
systems, by showing explicitly how the periodic eo-
efficients modify the transient solutions and why they
give the root loci their characteristic behavior in the
critical regions.

(d) Finaily, even if the techniques are not used to
find the complete solution, it only takes a littie work to
find out where the problems are (e.g., critieal regions
and transition regions) and what the order of things is,
which information would be of invaluable help in the
numericai analysis of a system.

The extension to more degrees of freedom or more
realistic aerodynamic coefficients would certainly make
the analysis more complicated. In generai however any
study — analytic, computational, or experimental — of a
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system becomes more complicated as the accuracy of
the modeling of the true system increases, and perturba-
tion techniques are not expected to be an exception to
this rule. Regardless of the system being studied, the
position perturbation techniques occupy between simple
linear analyses and compiex nonlinear numerical calcula-
tions makes them a very powerful tool for providing both
exact solutions and increasing understanding of problems
in rotor dynamics.

There are many problems in rotor dynamics in-
voiving nonlinear or periodic coefficients to which per-
turbation techniques might profitably be applied. Some
additionai work might be done with the fiapping dynamics,
considering for exampie several biades responding to a
gust or to shaft motion. The coupled pitch/fiap or flap/
lag dynamics of a single blade are other important
problems of rotor dynamics to which perturbation theory
might usetully be applied. Whiie the perturbation solu-
tion for small u will probably be of most interest,
there will likely arise problems where other parameters
are also useful. As long as a reasonabie model is
chosen for the system, und as much effort is given to the
interpretation of thc solution as to its derivation, per-
turbation techniques should prove quite useiul in provid-
ing information about these problems, and many others
in rotor dynamics ard ac.odynamics.

Tais paper has provided exampies of thc informa-
tion about dynamic systems which may be obtained using
the methods of perturbation theory. The techniques havc
proved very useful for the problem studied. It should
not be concluded however that the techniques used for
this problem are all therve is to perturbation theory;
there are many more metuods that have not been touched
on here. Perturbation theory is a powerfui, and yet not
very sophisticated, mathematical technique which shouid
prove very useful in analyzing some of the problcms of
helicopter dynamics.
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Fig. 7.

The averages of the aerodynamic
coefficients, which give the roots
for small 7.
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The Kp vs. p boundaries for stability

in the center of the critical region, based
on the small Y results (to order ¥); for
roots near ImA =

1/2, 1, and 3/2.
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critical region boundaries and stability
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of one root i8 positive, i.e. unstable.




Rexr0

Fig. 13. Lines of constant ImA and ReA, based on
numerical calculation of the eigcnvalues
(from Ref. 2); v =1, Kp = 0;

ImA, — — — — ReX; circled values of
ImA indicate areas in which ImA is
constant.
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