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I. INTRODIJCTION

‘l’heestablished methods] for estimating shock W:]VCdiffraction
loading on simple structures do not differentiate between two- and
three-dimensional geometries. A shock tube study performed at the Ill<l,

by Taylor2 has indicated that significant differences exist in the shock
wave diffraction loading - time histories for such structures.

Subsequent to Taylor’s shock tube study was the completion of a
study at the Los Alamos Scientific Laboratory involving the development

o
by Prachta of a three-dimensional,transient, viscous flow hydrodynamics
computer program, BAAL, originally designed to calculate the late-time
effects of atmospheric nuclear explosions. The program was modified to
permit the inclusion of obstacles, allowing the computation of obstacle
surface pressure - time histories for blast loading studies. To explore
the possibility of using this hydrocode to determine diffraction loadin[!
on simple structures, the Ballistic Research Laboratories contracted
with the Los Alamos Scientific Laboratory to perform a test calculation

4
which could be compared with experimental data. (;entryet al simulated

2
one of Taylorfs three-dimensionalshock tube experiments with a BAA1,
computer run. This experiment involved a one-dimensional, steady shock
wave, of 34.475 kPa (5.0 psi) overpressure, striking a three-dimensional
rectangular parallelepipeds.2127 m wide, .1062 m high, and .0762 m deep,
with the shock traveling in the direction of measure of the depth.
Ambient conditions prior to shock arrival were a temperature of 288.16
Kelvin (lSC), a pressure of 101.325 kPa (14.696psi), and no flow. Since
the BAAL computation was to be compared to the shock tube measurements,
steady flow was specified behind the shock wave.

1
“Design of Structures to Resist the Effects of Atomic Weapons,” U.S.
Army Corps of Engineers, EM 1110-345-413 (1 July 1959).

2
Taylor, W. J., “A Method for Predicting Blast Loads During the Diffrac-
tion Phase,’rThe Shock and Vibration Bullet-in,NR.42. Part 4 of 5,
Shock and Vibration Center, Naval Research Laboratoq, Washington, D. [’.,
p. 135 (January 1972).

3
Pracht, W. E., “CalculatingThree-DimensionalFluid Plows at All Sy~eck
with an Eu_Lerian-LagrangianComputing Mesh,” LA-UR-74-1137, V?’lil)e?r::iih{

of California, Los Alamos Scientific Laboratory, Los Almos, Nm Mexim
(July 1974).

4
Gentry, R. A., Stein, L. R., and Hirt, C. W., “Three Dimensional Comp?,ttJ}’
Analysis of Shock Loads on a Sinple Strwctuxe,ftBRL CR 219, U.S. Am.?
Ballistic Research Laboratories, Abe?deen Proving Ground, MD (March 1975).
AD# BO03208L.
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The BAAL computer code has the general capability of solving the
following system of differential equations in their integral form.

where

ap_+~=o,
at

j

apui a

( )

*

at ‘T
Pui u. - p..

J 1] = gip

J
>

P..= - p6ij +$Ae
lJ kk ‘ij + ‘eij )

(1)

(2)

(3)

aui
e
ij=— ,>,

ax.
(4)

J i

and

apE a

(

aI
X+T

PujE - P..U. - MB —
J

lJ 1 ax.
J )

= ‘Ujgj ‘
(5)

where

E= i2 + I .!jU (6)

The stress tensor is represented by pij, wherein p is the scalar pressure,

and A and P are the viscosity coefficients. The term gi represents the

gravitational acceleration,which is neglected here; E is the specific
total energy; I is the specific internal energy; 6ij is the Kronecker

delta. The heat conduction term in the energy equa~ion is written as a
spatial gradient in I, multiplied by viscosity P and an input coefficient
B.

The BAAL computations for the shock tube model calculation, and for
the S-280 Electrical Equipment Shelter calculation reported here, were
made using the above set of differential equations in their integral form,
with one major modification. The Navier-Stokes equations, Eqs (2), (3),

*
For the calculation reported here, the Navier-Stokes equations have
been replacedby the inviscid EuZer equations, uith the adckdfeatw
of an artificial viscosi~ being introduced whenever the fZczJluwkrgoes
a deceleration.
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and (4), have been replaced by the inviscid Euler c{luations, with an
artificial viscosity significantly larger than real viscosity being
introduced for purposes of numerical stability in regions of high dccclcr-
ation. The artificial viscosity computed under this criterion is mani-
fested as a simple addition to the scalar pressure. No shearing stresses
are calculated. Free slip flow is specified at all boundaries.

These simplifications to the Navier-Stokes equations were deemed
expedient because of the large cell sizes dictated by practical computer
time and storage limitations. The active computational flow field grid
for the shelter calculation consists of 6750 cells, not counting boundary
cells, but including those cells occupied by the ‘awidth shelter. The
cells were of varying sizes, with the smallest cell dimension at the
shelter boundary being approximately 0.14 m. This smallest cell dimen-
sion is estimated to be several times larger than any boundary layer that
could develop on the shelter during the shock diffraction phase. The use
of the Navier-Stokes equations with a no-slip boundary condition would
have resulted in unrealistically large computed boundary layers. A similar
situation exists for the shock tube model calculation.

Both computations involved a relatively weak 34.475 kPa (5.0 psi)
overpressure shock wave in air. Hence, the polytropic equation of state

P =PI (y-1) [7)

with

Y = 1.4

was used to calculate the scalar pressure.

Comparisons between the computed and experimentally measured press-
ure - time histories at three points each on the front and back faces of
the model are made in Reference 4. Agreement is excellent for all three
points on the front face of the model. The theoretical peak reflected
overpressure is 78.54 kPa (11.39 psi). The peak experimentallymeasured
overpressure, averaged over these three points, is 75.8 kPa (11.0 psi),
approximately 3% below the theoretical peak overpressure. This excellent
agreement of the experimentally measured peak with the theoretical peak
implies that the experiment yielded accurate data and is a valid standard
against which the calculated values may be compared. Using this experi-
mental standard, the following comparisons may be made.

The peak overpressure calculated using the BAAL computer code is 75.
kPa (10.9 psi), occurring at approximately 50 IJSafter the theoretical
arrival of the shock wave at the front face, and equal to the experiments
overpressure for that time. At 200 US, the computed average overpres-
sure is 1% higher than the experimentally measured average overpressure,
6% lower at 400 us, 3% higher at 600 US, and 3% higher at 800 us.

9



Agreement between the experimentallymeasured average overpressure
and the calculated average overpressure for the three points on the back
face is good, but not as good as that for the front face. For purposes
of this comparison, zero time is defined as that time at which the theore-
tical shock wave reaches the plane of the back surface of the shelter.
The computed average overpressure for the three points on the back sur-
face is 21% lower than the experimentally measured overpressure at 100 us
after this redefined reference time, 6% lower at 200 PS, equal at 300 us,
15% higher at 400 US, 4% higher at 500 US, and 6% higher at 600 us.
Shortly thereafter, it was determined that reflected signals were return-
ing from the mesh boundaries, causing spurious pressure rises, and the
computation was stopped. There were no experimental measurements made on
the top or side faces.

II. S-280 ELECTRICAL EQUIPMENT SHELTER CALCULATION

The agreement between Taylor’s2 shock tube experiment and the BAAL
computer simulation led to the running of a second problem with BAAL,
also under contract to the BRL. The results of this second computation
are reported here. The three-dimensionalrectangular parallelepipeds
for this computation is a full scale S-280 Electrical Equipment Shelter
as shown in Figure 1. The shelter dimensions are width X = 3.6200 m,
depth Y = 2.1720 m, and height Z = 2.1085 m. The shelter is sitting on
the ground with its largest face, defined here as the front face, oriented
so that it is normal to the velocity vector of the oncoming one-dimensional
shock wave. A one-half width shelter was used in the computation, taking
advantage of the existing plane of symmetry. The active computational
flow field consisted of 6750 cells, not counting boundary cells but in-
cluding those cells occupied by the one-half width S-280 shelter. The
one-half width S-280 shelter occupies 7 cells in the X direction, 9 cells
in the Y direction, and 7 cells in the Z direction. The cells are of
variable size. The upstream end of the computing mesh is 6.27 m removed
from the front face of the shelter, and the downstream end of the com-
puting mesh is 12.16 m removed from the back face of the shelter. The
top of the computing mesh is 6.34 m removed from the top face of the
shelter. One side of the computing mesh, the reflective plane, is
coincident with the symmetry plane down the depth of the shelter, and
the other side of the computing mesh is 6.20 m removed from the side of
the shelter. The computation was started with the shock at the front
face, as was the computation for the previously discussed shock tube
model.

Surface loadings for a whole shelter are reported here. Initial
conditions and shock overpressure are the same as for the calculation
involving the smaller shock tube model. The shock tube model does not
scale directly to the S-280 shelter. As before, steady flow is specified
behind the shock, simulating zero decay blast wave conditions for maximum
diffraction loading for that shock overpressure. The time required for
the shock to travel the depth of the S-280 shelter, hereafter referred to

as the shock traversal time, is slightly over 5.6 x 10-Ss.
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The data tape, available from the BRL on request, includes over-
prcssure - time histories for each computational flow field cell that
has one of its faces coincident with the front, top, back, or side face
of the S-280 shelter. The tape also includes a time-history of the
resultant force due to overpressure for each entire face, and the effec-
tive point of application for that force. Other flow field data are not
presently available. Although the data are presented as if those over-
pressures were computed directly on the shelter surface, they are actually
computed at the respective flow field cell centers, which are displaced
from the shelter surface by one half of the cell dimension in the I, .J,
or K direction. Figures 2a, 2b, and 2C show
grid spacings, and the cell centers at which
histories are computed and tabulated.

III. DISCUSSION

the S-280 shelter surface
surface overpressure - time

The pressure - time histories for the surfaces of the S-280 shelter
as calculated by the BWL program appear to be quite good in general,
although there are no direct experimental data available for comparison.
There is, however, one apparent anomaly that appears consistently through-
out the pressure - time histories of the BML computations for both the
three-dimensional shock tube model and the S-280 shelter. Around those
model or shelter corners where the flow undergoes a 90 degree expansion,
the BAAL program computes unexplained, often sharp, pressure increases
seen when comparing the overpressure for the next-to-last flow field
cell at the model surface to that for the last flow field cell at the
surface prior to the corner. Specifically, the affected rows and columns
are the top row of cells on the front face, the last column of cells on
the front face, the last row of cells on the top face, and the last column
of cells on the side face. These pressure increases are on the order of
10 to 30 percent, using the calculated overpressure for the next-to-last
cell in any given case as the basis for comparison. Since it can reason-
ably be expected that in general there should be a further drop in pres-
sure at these corners rather than a rise, the actual overpressure at
these corners may be significantly less than the calculated values.
Figures 3a through 3h show a sequential pressure - time history for the
fourth row of cells up the side face (the cell centers being at approxi-
mately 2/3 of the shelter height), a typical illustration of this anomaly.
Shock smearing in the relatively large computational flow field cells
is also readily evident.

The cause of this pressure increase has not yet been established,
nor has a correction factor been established for modifying these corner
effects if, as suspected, they are caused by difficulties in the computa-
tional algorithm being utilized. The overpressure data available on
magnetic tape is stored as it was presented to the BRL by LASL, with no
modifications except for a simple change of units. Resultant force due
to overpressure and the effective point of application for each entire
shelter face were calculated at the BRL using the overpressure data.
These were added to the data tape for the user’s convenience.

11
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Figure 4a shows the time history of the resultant force due to ovcr-
pressure on the front face of the shelter, obtained by making a ccl] area
weighted integration of the overpressure on the front face at each point
in time,

N

F=

l{ereAi is the cell area, Pi is

x Ai Pi . (8)

i=l

the overpressure associated with that

cell, and N is the number of cells on the front face. Figure 4b shows
the Z location of the effective point of application of the resultant
force due to overpressure on the front face, obtained by summing cell
area weighted moments,

z
eff =

N

x Ai Pi Zi

i=l
N

.

z Ai Pi

i=l

Here Zi is the measure of length from the ground to the i
th

cell center,

and the other variables are as defined above. It was expected that
Figure 4b would show more of a bias of Zeff toward the ground level at an

earlier time than is indicated, since the high pressure should persist
longer there. This apparent lack of bias may be due to the high pressure
anomaly in the top row of cells. Figures 5a and 5b, 6a and 6b, and 7a,
7b, and 7C show similar data for the top, back, and side faces, respec-
tively.

Figure 8a shows the average overpressure - time history for both the
front and back faces. The average overpressure for a given face is cal-
culated by

N

.xAi P.
1

P=l; 1
.

x
Ai

i=l
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‘l’lll.~.]oscst;~p])ro:]chof the two c~]rvcsto one another occurs at appr{Jxi-
-2II);ltcly1.9 x 10 s (approximately3.4 shock tr,avcrsaltimes) after shock

:lrriv:~lat the front face. At this time the average ovcrpressurcs arc
quite close to the incident shock ovcrpressure of 34.47S kPa, with the
front face approximately 11% higher and the back face upproximatcly 4%
lower. The front face average overpressure then rises with time during
the rest of the computation, indicating an over-rcli[:vingof the reflected

ovcrpressure, occurring around the 1.9 x 10-2s mark. This apparent over-

rclief and subsequent pressure rise has also been observed experimentally.2

Figure 8b shows the average overpressure for both the top and side faces
versus time. These curves arc nearly identical up to approximately

6.0 x 10-5s, roughly the shock traversal time. At this time, both curves
peak at approximately the incident shock overpressure. This is to be
expected, as this represents a loading of the top and side faces equal
to the incident shock overpressure as the shock travels down the shelter.
‘1’hereafter,the average overpressures for the top and side faces oscillate
slightly out of phase with one another just below the incident shock over-
pressure. These oscillations are probably due t.otransient waves in the
computational flow field.

Iv. CONCLUDING REMARKS

.
Comparison of the overpressure - time histories measured by Taylorz

4
with those generated by Gentry et al using the BAAL computer program
indicates that the possibility now exists for supplementing experimental
data on simple three-dimensionalshapes with computational simulations
of actual flow conditions, if it is done carefully and with a full under-
standing of the limitations of the computationalprogram being used.

The report by Gentry et a14 concerning the shock tube model computation
indicates excellent agreement between the computed and experimental ovcr-
pressure - time histories for the front face. The peak reflected over-
pressure computed on the front face of S-280 shelter is essentially equal
to the theoretical peak reflected overpressure. Taken together, these
observations imply that the BAAL computation for the front face loading
of the S-280 shelter is an accurate simulation of the loading to be
expected under actual conditions. As noted earlier, the computed over-
pressure - time histories of the top and side faces of the S-280 shelter
agree well with expectations on theoretical grounds, and thus may also
be regarded as accurate. The only obvious discrepancies in the over-
pressure - time histories for the front, top,
pressure anomalies at those corners where the
expansion.

As indicated previously in the report by

and side faces are the
flow undergoes a 90 degree

Gentry et a14, the BAAL
computation for the overpressure - time history on the back face of the
shock tube model did not agree as well with experiment as did that for
the front face of the model, particularly at late time near the edge of
the model. This is not surprising. For a target of this general shape

13



with this type of loading, it is to be expected that viscous effects
will be most pronounced on the back surface. Because of practical com-
puter time and storage limitations, it was necessary to use a computa-
tional grid with relatively large cell sizes. This was also the case
for the S-280 shelter computation. For both computations the smallest
cell dimensions were significantly larger than any boundary layers that
would be generated under actual flow conditions. Thet-ewas also con-
siderable numerical diffusion of the shock wave in these necessarily
large grids. As a consequence, the addition of the viscous terms in
the Navier-Stokes equations would add only complexity and additional
computational time to the computer solution, but not accuracy. For these
reasons, the Navier-Stokes equations were replaced hy the inviscid Euler
equations, using artificial viscosity for numerical stability. Since
the computation for the shock tube model did not simulate viscous effects,
it is understandable that the computed pressure - time history for the
back face did not agree as well with experiment as did that for the front
face. These difficulties are not unique to BML, but rather are common
to all simulations of high Reynolds number flow.

For the same reasons, it can be expected that the computational
predictions for the pressure - time history on the back face of the S-280
shelter will also be found at variance with experimental measurements,
once they are made. Nonetheless, the pressure - time histories presented
here, as computed using the BAAL computer program, represent the best
estimate to date of the shock diffraction loadingon an S-280 Electrical
Equipment Shelter.
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APPENDIX

A magnetic data tape has been prepared containing the results of
the BAAL computation for the shock diffraction loading of a steady,
one-dimensional, 34.475 kPa (5.0 psi) overpressure shock wave on an
S-280 Electrical Equipment Shelter. Copies of this tape are available
upon request. Send tape requests, referring to this document, to:

Director
Ballistic Research Laboratories
Aberdeen Proving Ground, MD 21005
ATTN: AMXBR-TB, Mr. R. E. Lottero

The data tape contains two general sets of information. The first
set consists of 102 lines of alphanumeric data describing the numeric
data to follow. The alphanumeric data is written co that the tape can
serve as a self-contained, clearly interpretable document. When the
tape is used as a numeric data source, these 102 lines of alphanumeric
data may be skipped, going directly to the first line of numeric data.

The second set of information contains the numeric data, all per-
taining to the loading on an S-280 Electrical Equipment Shelter caused
by a 34.475 kPa (S.0 psi) steady shock wave. There are cell center
overpressures for each flow field cell that has a face coincident with a
shelter face for each of 23 points in time. Also included are resultant
force due to overpressure for each entire shelter face, and the effective
point of application of that force. The 23 points in time represent approx-
imately every fifth computational cycle. The computational time stepping
was implicit.

The data is written in a card image format. The tape is 7 track,
800 BPI, even parity, BCD code (IBM 1401), unlabeled, with 80 character
lines, and a blocking factor = 1.
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