CONTRACT REPORT NO. 291

ENERGY APPROACHES TO STRUCTURAL VULNERABILITY
WITH APPLICATION OF THE NEW BELL STRESS-STRAIN
LAWS

Prepared by

J. G. Engineering Research Associates
3831 Menlo Drive
Baltimore, Maryland 21215

March 1976

Approved for public release; distribution unlimited.

USA BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22151.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.
Energy Approaches to Structural Vulnerability with Application of the New Bell Stress - Strain Laws

Joshua E. Greenspon

J G ENGINEERING RESEARCH ASSOCIATES
Baltimore, Maryland 21215

USA Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

US Army Materiel Development & Readiness Command
5001 Eisenhower Avenue
Alexandria, VA 22333

Approved for public release; distribution unlimited.

This report summarizes the various ways in which energy absorbed by a structure can be used in vulnerability studies. Three approaches are explained and mathematical relationships given for each. An extensive presentation is given of a simplified variational approach with applications shown for beams and plates. Finally the new Bell Stress-Strain Laws are applied to compute energy and plastic deformation in beams and plates.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF ILLUSTRATIONS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>II. ENERGY THEORIES IN VULNERABILITY</td>
<td>8</td>
</tr>
<tr>
<td>A. Energy approaches in general</td>
<td>8</td>
</tr>
<tr>
<td>B. Direct energy equalization</td>
<td>8</td>
</tr>
<tr>
<td>C. Asymptotic approximation</td>
<td>8</td>
</tr>
<tr>
<td>D. The Variational approach</td>
<td>9</td>
</tr>
<tr>
<td>III. MATHEMATICAL DETAILS OF THE ENERGY APPROACHES</td>
<td>9</td>
</tr>
<tr>
<td>A. Direct energy equalization</td>
<td>9</td>
</tr>
<tr>
<td>1. General equations</td>
<td>9</td>
</tr>
<tr>
<td>2. The experimental approach</td>
<td>10</td>
</tr>
<tr>
<td>3. The theoretical approach</td>
<td>13</td>
</tr>
<tr>
<td>4. Checking the theory</td>
<td>13</td>
</tr>
<tr>
<td>B. Asymptotic approximation</td>
<td>13</td>
</tr>
<tr>
<td>C. Variational approach to the blast problem</td>
<td>14</td>
</tr>
<tr>
<td>1. General equations</td>
<td>14</td>
</tr>
<tr>
<td>2. Form of the solution for a long shell</td>
<td>15</td>
</tr>
<tr>
<td>3. Interpretation in terms of conventional P - I isodamage curves</td>
<td>16</td>
</tr>
<tr>
<td>IV. VARIATIONAL SOLUTIONS FOR BEAMS AND PLATES</td>
<td>17</td>
</tr>
<tr>
<td>A. General background</td>
<td>17</td>
</tr>
<tr>
<td>B. Plastic deformation of cantilever beams</td>
<td>17</td>
</tr>
<tr>
<td>C. Plastic deformation of uniform simply supported beams</td>
<td>23</td>
</tr>
<tr>
<td>D. Plastic deformation of uniform simply supported plates</td>
<td>24</td>
</tr>
<tr>
<td>V. APPLICATIONS USING THE BELL STRESS - STRAIN LAWS</td>
<td>28</td>
</tr>
<tr>
<td>A. General background</td>
<td>28</td>
</tr>
<tr>
<td>B. Application to one dimensional problems - bending of beams</td>
<td>30</td>
</tr>
<tr>
<td>1. Moment curvature relationship</td>
<td>30</td>
</tr>
<tr>
<td>2. Calculation of energy absorbed in elastic - plastic deformation of beams</td>
<td>34</td>
</tr>
<tr>
<td>3. Calculation of permanent sets under impulsive loading</td>
<td>36</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Applications to two dimensional problems - bending and stretching of</td>
<td>41</td>
</tr>
<tr>
<td>plates</td>
<td></td>
</tr>
<tr>
<td>D. Bell's theory and the variational method</td>
<td>47</td>
</tr>
<tr>
<td>E. Possibilities for other applications of the Bell Theory</td>
<td>47</td>
</tr>
<tr>
<td>APPENDIX I. COMPUTER PROGRAM FOR THE BEAM USING BELL'S LAW</td>
<td>49</td>
</tr>
<tr>
<td>APPENDIX II. COMPUTER PROGRAM FOR THE PLATE USING BELL'S LAW</td>
<td>53</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>56</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>58</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fragment Isodamage Curve with no Blast Effects</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Blast Isodamage Curve with no Fragment Effects</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>P - I Diagram for Rigid - Plastic Model</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Conventional Isodamage Curve</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Permanent Set in Cantilever Beams Under Impulsive Loading</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Conventional Isodamage Curve for 6061 - T6 Aluminum Cantilever Beam (h = .051", L = 12")</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Time at Which Maximum Deflection Occurs</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Time at Which Maximum Deflection Occurs (large values of p/f)</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>Nondimensional Solution Curves for Plates Under Large Plastic Deformation</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>Moment - Curvature Relationships for Beams Made from 6061 - T6 Aluminum</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>Energy Absorbed in 6061-T6 Aluminum Simply Supported Beams</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>Permanent Set in Simply-Supported Beams</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>Total Deflection in Simply Supported Beams</td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td>Maximum Strain vs Maximum Deflection in the Simply Supported Beam</td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td>Stress-Strain Curve for 6061-T6 Aluminum According to the Bell Theory</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>Energy Curve for Simply-Supported Aluminum (6061-T6) Plates in Accordance with the Bell Theory</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>Plastic Deflection Curves for Aluminum Plates According to the Bell Theory</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>Octahedral Shear Strain vs Deflection Parameter (Strain is near plate center)</td>
<td>45</td>
</tr>
<tr>
<td>19</td>
<td>Octahedral Shear Stress - Octahedral Shear Strain for 6061-T6 in Accordance with the Bell Theory</td>
<td>46</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The complete history of the experimental development of solid mechanics in general and plasticity in particular is traced in the treatise of Professor James F. Bell,1 published in 1973. The practical developments in plasticity are rather recent, most of them occurring after 1920. The first complete books on plasticity in English were published by Prager and Hodge2 and Hill3 as recently as the early 1950's and to the writer's knowledge, the first and only book devoted completely to dynamic plasticity was published by Cristescu4 only eight years ago. The field of dynamic plasticity is therefore relatively new compared to dynamic elasticity which is several hundred years old.

The vulnerability of structures depends upon how much deformation they can take and still remain serviceable. Vulnerability implies plastic deformation and failure. Therefore in order to handle the vulnerability problem a knowledge of plastic deformation of structures is a prerequisite. Most of the Army work in vulnerability has of necessity been empirical because the state of the art in plasticity theory has not kept up with the necessities of practical Army problems. The classical theories of plasticity developed over the past twenty or thirty years up to the early 1970's are difficult to apply and leave something to be desired in the way of accuracy in describing material behavior. A summary of the significant vulnerability-oriented calculations for simple structures is contained in a recent paper by Westine and Baker.5 It is only recently that Bell6 has developed a new experimentally based general theory that can be applied readily to general large deformation plasticity problems of the type contained in vulnerability studies.

It is the purpose of this report to present the practical vulnerability-oriented approaches using plasticity theory and then introduce some calculations which are based upon Bell's new theory.

Superscripts refer to references listed at the end of the report.
II. ENERGY THEORIES IN VULNERABILITY

A. Energy approaches in general

The capacity of a structure to absorb energy can be a very useful concept in assessing its vulnerability. Three energy type approaches that have led to fruitful results in vulnerability problems are the variational approach, the asymptotic approximation, and the direct energy equalization. All three use the plastic energy absorbed in the structure under a given configuration called the failure configuration or the mode of failure. This energy absorbed will be denoted by \(V \), where \(V \) is a function of the geometry of the structure, its material properties and the deflection component in the direction of the load. These three approaches will be discussed in the order of increasing complication. The objective of all the approaches is to compute the final plastic deflection distribution of the structure as a function of an impulse, load or energy magnitude. Knowing this deflection we can then be in a position to judge whether or not this deformation will constitute a failure.

B. Direct energy equalization

In this approach the energy absorbed by the structure is equated to the energy directed toward the structure either from an explosion or from a series of fragments. The main difficulty with this approach (once \(V \) is known for a given failure configuration) is the estimation of the energy given to the target by the explosion or fragments. For blast, in several past reports, the writer has taken this explosive energy to be the energy flux (energy per unit area) in the explosive wave multiplied by the projected area of the target facing the explosion. For fragments, assuming that perforation takes place, the energy absorbed by the structure is computed by subtracting the residual kinetic energy of the broken up fragments after perforation from the initial kinetic energy of the approaching fragments.

Since this estimation of blast energy does not include any interaction effects between target and blast wave it is therefore bound to be in error. Nevertheless it has led to a basic understanding of the role of energy in predicting the form of the isodamage curves. At the present state of the art, we are at the stage where this approach can and should be considerably refined.

C. Asymptotic approximation

The asymptotic energy approach has been formulated by Westine and Baker in a very recent report and can be considered one step more
complicated than the direct energy equalization approach discussed above. They equate the energy absorbed in the structure to two separate characteristic energies of the loading in order to narrow down on the damage characteristics. The first of these characteristic energies is the kinetic energy imparted to the structure for short duration impulsive loads. The second characteristic energy is the work performed by the peak load moving through the distance that the structure deforms. Thus two extremes or asymptotes for the energy imparted to the structure are calculated. One of these is in the very short time impulsive loading regime and one is in the long duration quasi static regime. In this way the damage characteristics are approached from both ends of the loading spectrum.

D. The variational approach

In the energy equalization approach no account was taken of the interaction of the blast load with the structure so loading distribution and timewise effects were neglected. In the asymptotic approach some account was taken of the load distribution but time-wise effects were only considered in a limiting way. In the variational approach both time-wise effects and load distribution characteristics are included. The variational equations for a structure with a given failure configuration were derived in a previous report\(^1\). For a given failure configuration the system reduces to a single equation for the lateral deflection which is composed of an inertia term depending upon the mass distribution, a stiffness term depending upon the plastic plus elastic energy absorbed in the given configuration and a loading term which is dependent upon the pressure distribution over the structure. The equation, in general, is nonlinear in the deflection, therefore this approach, even though more accurate in principle than the ones described in Sections B and C, can be considerably more complicated if higher order terms in the deflection are involved. There are a number of practical cases, however, which only involve up to quadratic terms in the deflection and these will be discussed later in this report.

III. MATHEMATICAL DETAILS OF THE ENERGY APPROACHES

A. Direct energy equalization

1. General equations

The writer has proposed\(^7\) using the following energy equation for predicting the isodamage characteristics of structures:

\[
E_f = \frac{P I}{2 \rho c_o} + \frac{1}{2} n \frac{V^2 M}{A}
\]

where \(E_f\) = energy density (energy per unit area) which is absorbed by the target structure in undergoing a certain degree of damage

\[\text{Equation 1}\]
\[P = \text{side on pressure in the blast impinging on the structure} \]
\[I = \text{side on impulse in the blast impinging on the structure} \]
\[\rho_0 = \text{mass density of the ambient air} \]
\[c_0 = \text{sound velocity in the ambient air} \]
\[n = \text{number of fragments hitting the target} \]
\[V = \text{velocity of the fragments at the target} \]
\[M = \text{mass of each fragment which hits the target} \]
\[A = \text{effective area over which the damage takes place} \]

If we multiply equation [1] by \(A \) we obtain

\[E_{\text{total}} = \frac{P \cdot I}{c_0} \cdot A + \frac{1}{2} n \cdot V^2 \cdot M \] \[[2] \]

\[E_{\text{total}} = E_{\text{blast}} + E_{\text{fragments}} \] \[[3] \]

The above relations state that the total energy absorbed by the structure undergoing a given level of damage is equal to the blast energy plus the energy imparted by the fragments. The rationale and physical principles behind this relation are discussed thoroughly in the earlier reference.\(^7\) If there are vaporific effects, i.e. if the fragments perforate the structure, hit an internal component or another piece of structure and produce internal pressure because of melting and vaporization, equation [2] still holds because it is tacitly assumed that all energy from the blast or fragments is absorbed by the structure and vaporific effects just represent a conversion of fragment kinetic energy into heat.

2. The experimental approach

Relation [2] can be applied in two ways. The first way is to use an experimental approach. A test must be performed on the structure to obtain one point on the damage curve, i.e. perform either a blast or fragment test to obtain a given level of damage on a structure. If a pure fragment test is performed, then the result can be plotted as a point on the V-M curve as shown in Figure 1.
With n fragments each of mass M hitting the target at velocity V the energy imparted to the target will be

$$E = \frac{1}{2} nMV^2$$ \[4\]

So the isodamage curve is described by the equation

$$V = \sqrt[3]{\frac{E}{\frac{1}{2} n M}}$$ \[5\]

This isodamage curve is shown as the curve in Figure 1 drawn through the experimental point. The value of E given by equation\[4\] is taken as the total energy necessary to do damage of the given level. If blast effects were present then we could describe the blast energy as $\frac{PIA}{2\rho_0 c_0}$. Then the fragment energy necessary to afflict the "same damage level"* would be

$$E_f = E - \frac{PI}{2\rho_0 c_0} A$$ \[6\]

The isodamage curve for the fragments would then be described by

$$V = \sqrt[3]{\frac{E_f}{\frac{1}{2} n M}}$$ \[7\]

* This has been put in quotes since fragment damage and blast damage do not always afflict the same type of damage.
Similarly if a blast test were run on the structure to do damage at a given level, this point could be plotted on a blast isodamage curve as shown in Figure 2 below.

\[
E_{\text{frag}} = 0
\]

Fig. 2 Blast Isodamage Curve with No Fragment Effects

The energy for doing damage at the given level is given by

\[
E = \frac{P I}{2 \rho_o c_o} A
\] \[8\]

So the isodamage curve is given by the relation

\[
P = \frac{E}{\frac{I}{2 \rho_o c_o} A}
\] \[9\]

This curve is shown as the solid line in Figure 2. Now if fragments were present their energy would be described by \(\frac{1}{2} n M V^2\) and the blast energy necessary to do the same damage would be

\[
E_B = E - \frac{1}{2} n M V^2
\] \[10\]

The new isodamage curve for blast would then be given by the relation
3. The theoretical approach

The second way to apply the basic equations is to calculate the total energy under a given failure pattern at a given damage level. Several earlier references contain methods for computing blast damage, the most complete presentation being given in Reference 9. Fragment damage and blast damage occurring after fragment damage is discussed in Reference 11. The energy necessary to do fragment damage can be computed from the equation

\[
P = \frac{E_B}{I} = \frac{1}{2\rho c_0 A} \]

Eq. (11) is a perforation equation in which \(n \) is the number of fragments hitting the target, \(M \) is the fragment mass and \(V_{xn} \) is the ballistic limit velocity (i.e. the minimum velocity necessary to perforate the target - see Ref. 12). The energy necessary to do a certain blast damage is given in Reference 9 for various patterns of failure. The pattern of failure must be assumed in advance.

4. Checking the theory

The formulas in the previous sections can be validated by using existing data on damage of structures. The way to achieve this is to construct the isodamage curve by using a single data point from an existing test and then checking to see if other points fall along the same curve. To check the theoretical approach of computing the energy absorbed, the energy can be computed by assuming a given pattern of failure, constructing the isodamage curve from this, and then checking experimentally to see if the pressure and impulse or velocity and mass values fall along this curve for equivalent damage.

B. Asymptotic approximation

As an alternative to solving the details of each problem, Westine and Baker have developed a procedure using the absorbed plastic energy to compute the asymptotes for the impulsive and quasi-static regions. They determine these asymptotes by equating the internal plastic work (or strain energy) first to the kinetic energy imparted to the structure to get the asymptote for the impulsive loading regime and then to the work performed by the peak force to get the asymptote for the quasi-static regime. Let \(V \) be the plastic energy absorbed (or internal work). This value of \(V \) is given for cylindrical shells by eq. [82] and Figs. 22-27 of the writer's 1970 report and for lifting surfaces by eq. [44] - [46] and Table 2 of his 1971 report. Equating this energy absorbed, \(V \), to the kinetic energy imparted to the structure for the impulsive loading regime, the impulse per unit area, \(I \), is given in terms of the energy by the relation
\[I = \sqrt{\frac{2\mu}{\int f(A)\,dA}} \] \tag{13}

where \(f(A) \) is the impulse distribution on the structure and \(\mu \) is the mass per unit area of the structure.

In the quasi-static loading regime the work done by the peak load is

\[W = \int_A P(A) \, w(A) \, dA \] \tag{14}

Equating this to \(V \) we obtain for the quasi-static region

\[V = W \] \tag{15}

(\(V \) is a function of the deflection \(w \))

where \(P(A) \) is the spatial load distribution and \(w \) is the lateral deflection. Some special cases for both axisymmetric and non-axisymmetric collapse of cylindrical shells were considered by the writer some years ago.13

C. Variational approach to the blast problem

1. General equations

There is another approach to the damage problem which looks closer at the individual structure and follows the damage mechanism as it occurs. This approach can best be illustrated by an example. Consider a shell subjected to an enveloping blast. By using variational principles as given in an earlier report10 the equation for the plastic radial deflection, \(w \), of a cylindrical shell under non-axisymmetric loading can be written

\[w = w(t) \, f_w(A) \] \tag{16}

where \(f_w(A) \) is the spatial distribution of deflection over surface \(A \) and \(w(t) \), the timewise part of the deflection, satisfies

\[\dot{w} \int_A \mu f_w^2(A) \, dA + \frac{\partial V}{\partial w} = \int_A P(A,t) \, f_w(A) \, dA \] \tag{17}

or written in more familiar single degree of freedom notation

\[m_e \ddot{x} + R_e(x) = P_e(t) \] \tag{18}

where \(w_o \) has been replaced by \(x \) and

\[m_e = \int_A \mu f_w^2(A) \, dA = \text{the generalized mass} \]

\[f_w(A) = \text{distribution of deflection} \ w \ \text{over surface} \ A \]

\[R_e(x) = \frac{\partial V}{\partial w_o} = \text{the resistance (elastic or plastic) - it can be approximated by a power series in} \ x \]
and

\[P_e(t) = \int_A P(A,t) f_w(A) \, dA \tag{20} \]

where

\[P(A,t) = P_0(A) f(t) \]

\[P_0(A) = \text{spatial load distribution} \]

\[f(t) = \text{timewise load distribution} \tag{21} \]

\[\mu = \text{mass per unit area of structure} \]

2. Form of the solution for a long shell (see Ref. 10)

For a perfectly plastic material in which \(a/L < 1, w_0/a < 1 \) (\(a = \text{shell radius}, \ L = \text{shell length}, \ w_0 = \text{deflection} \))

\[\frac{\partial V}{\partial w} = \frac{\sigma}{s} h L \frac{2}{\sqrt{3}} \int_A f_w(A) \, dA \tag{22} \]

where \(h = \text{shell thickness}, \ \sigma_s = \text{yield stress in pure tension} \). If we further limit the discussion to exponential timewise loading (i.e. \(P(A,t) = P_0 f(t) = P_0 f(A) e^{-t/T} \)), then the equation of motion [18] takes the same form as eq. [1] of the paper by Westine and Baker, \(^5\) i.e.

\[P e^{-t/T} - f = m x \tag{23} \]

where

\[P = \int_A P_0(A) f_w(A) \, dA = \int_A P_0 f_p(A) f_w(A) \, dA \tag{24} \]

\[f = \frac{\sigma}{s} h L \frac{2}{\sqrt{3}} \int_A f_w(A) \, dA \]

\[m = \int_A \mu f_w^2(A) \, dA \]

The solution curve is exactly the one shown by Westine and Baker \(^5\) as Figure 2 of their paper with the above parameters which depend upon the deformed shape, \(f_w(A) \), the spatial load distribution, \(f_p(A) \) and the other physical characteristics of the shell. This curve is shown in Fig. 3.
In this curve

\[I = \int_0^\infty p e^{-t/T} dt = \int_0^\infty p_o e^{-t/T} dt \int f_p(A) f_w(A) dA \]

\[X = \text{maximum deflection (i.e. } (w_o)_{\text{max}}) \]

3. Interpretation in terms of conventional P-I isodamage curves

An interpretation of this scaled P-I curve as it relates to damage problems is certainly in order here. This curve (fig. 3) really gives the solution to the plastic problem in nondimensional form. For a given set of values of \(P, f, I, m \) we can obtain the value of \(R^2/Xmf \) resulting from a certain value of \(P/f \) and then calculate the value of the maximum deflection, \(X \), from this result. The conventional isodamage curve is a plot of pressure vs. impulse as shown in Figure 4.

```
Fig. 4 Conventional Isodamage Curve
```

The conventional curve of Figure 4 is obtained from the nondimensional solution curve of Figure 3 as follows:

a. Choose values of \(P/f \) from Fig. 3 and calculate \(P_o \) from the relations
\[P = f(P/f) \quad \text{and} \quad P_o = \frac{P}{\int_A f_p(A) f_w(A) \, dA} \quad [26] \]

b. Pick off values of \(\frac{I^2}{X \text{mf}} \) from Fig. 3 corresponding to the particular values of \(P/f \) selected in "a" above. Compute \(I \) from the relation

\[\frac{I^2}{X \text{mf}} = \text{Value obtained from curve} = \bar{I} \quad [27] \]

Assume \(X \) for a given damage level, thus

\[I_o^2 \left[\int_A f_p(A) f_w(A) \, dA \right]^2 = \bar{I} X \text{mf} \]

Therefore

\[I_o = \frac{\sqrt{\bar{I} X \text{mf}}}{\int_A f_p(A) f_w(A) \, dA} \quad [28] \]

Note that the conventional isodamage curve calculated in this way (as contrasted with that shown in Section IIIA) will not have zero asymptotes, i.e. it will give infinite pressure for some finite value of impulse instead of infinite pressure for zero impulse. Likewise it will give infinite impulse for some finite value of pressure instead of infinite impulse for zero pressure. This is therefore a more accurate way to obtain the isodamage curve for blast on a given structure if the load distribution is known.

IV. VARIATIONAL SOLUTIONS FOR BEAMS AND PLATES

A. General background

The general form of the variational equation is given by equation [18]. If the resistance function, \(R_e \) is a constant then the equation takes the same form as the simple Westine-Baker equation (i.e. eq. [23]). For these cases the curve of Westine and Baker (i.e. Fig. 3) can be used as a nondimensional isodamage curve as long as the proper interpretation is given to each of the terms.

B. Plastic deformation of cantilever beams

Westine and Baker have computed the plastic strain energy of a cantilever beam. This energy, \(V \), is

\[V = \frac{\pi \sigma_b h^2 w_o}{16 L} \quad [29] \]
where \(\sigma_y \) = yield stress

\[b = \text{width of beam} \]

\[h = \text{thickness of beam} \]

\[L = \text{length of beam} \]

\[w_0 = \text{maximum tip deflection} \]

Using a deflection shape of \(w = w_0 \left(1 - \cos \frac{\pi x}{2L} \right) \) [30]

The resistance function, \(R_e \) for this case turns out to be

\[R_e = \frac{\partial y}{\partial w_0} = f = \frac{\pi \sigma_y b h^2}{16 L} \] [31]

The generalized mass, \(m_e \) is

\[m_e = \int \mu f_w^2(A) \, dA = b \int_0^L \rho h \left(1 - \cos \frac{\pi x}{2L} \right)^2 \, dx \] [32]

For a uniformly distributed load the generalized loading function is

\[P = P_0 \int_A f_p(A) f_w(A) \, dA \quad f_p(A) = 1 \] [33]

Thus

\[\frac{P}{f} = \frac{P_0 \left(0.36 b L \right) 16 L}{\pi \sigma_y b h^2} \]

and

\[\frac{I^2}{X m f} = \frac{I_0^2 \left(0.36 b L \right)^2}{X \left(0.23 b \rho h L \right) \frac{\pi \sigma_y b h^2}{16 L}} = \frac{I_0^2}{\rho \rho h w_0 \sigma_y h^2} \] [35]

So the curve of \(P/f \) vs. \(I^2/X m f \) converts for a cantilever to a curve of

\[1.83 \frac{P_0}{\sigma_y} \frac{L^2}{h^2} \quad \text{vs} \quad 2.88 \frac{I_0^2}{\rho h w_0 \sigma_y h^2} \] [36]

Cantilevers made from 6061-T6 aluminum which were 12 inches long and .051 inches thick were tested at BRL.14 For this material \(\sigma_y = 40,000 \, \text{psi}, \quad \rho = .000255 \, \text{lb. sec.}^2/\text{in.}^4 \). The asymptotes of the isodamage curve are calculated directly as follows:
For the impulsive loading regime \(\frac{I^2}{X m f} = 2.0 \)

so \[2.88 \frac{I^2}{\rho h w_o \sigma_y} \frac{L^2}{h^2} = 2.0 \]

therefore \[\frac{w_o}{L} = 1.44 \frac{L}{h} \left(\frac{I_o}{h \sqrt{\rho \sigma_y}} \right)^2 \]

For the quasi-static loading regime \(p_o / f = 1 \)

so \[1.83 \frac{p_o}{\sigma_y} \frac{L^2}{h^2} = 1 \quad \text{or} \quad \frac{p_o}{\sigma_y} = 0.54 \frac{h^2}{L^2} \]

The value for the quasi-static regime checks with the Westine-Baker value since they take account of the deflection distribution in their calculation of the quasi-static asymptote. The value calculated for the impulsive regime does not check since they omitted the effect of deflection distribution on the Kinetic energy. If the energy principle is derived from the variational equation, it is found that

\[\int p_e(t) \, dx = \int r_e(x) \, dx \]

where

\[p_e(t) = \int P(A,t) f_w(A) \, dA \quad r_e(x) = \frac{\partial V}{\partial x} \]

Under these circumstances the result for the impulsive loading region is

\[W_{p_e} = \frac{H_{me}^2}{2 m_e} \]

where \(W_{p_e} = \text{strain energy absorbed by the structure (internal work done by the structure)} \)

\[H_{me} = \int_0^T p_e(t) \, dt \quad \text{(the generalized impulse)} \]

\[m_e = \int A \mu f_w^2(A) \, dA \quad \text{(the generalized mass)} \]
Under these circumstances \(\frac{\pi \sigma_y b h^2 w_0}{16 L} = 0.56 \frac{I_0^2 b L}{2 \rho h} \)

so \(\frac{w_0}{L} = 1.42 \left(\frac{I_0}{h \sqrt{\rho \sigma_y}} \right)^2 \frac{L}{h} \) \[42\]

As is shown in Figure 5 this correction gives results which fit the data somewhat better than the Westine-Baker curve at lower permanent sets.

![Figure 5: Permanent Set in Cantilever Beams under Impulsive Loading](image)
The nondimensional isodamage curve for the cantilever is then found by replacing the ordinate and abscissa of Figure 3 by

\[1.83 \frac{p o}{\sigma_y} \frac{L^2}{h^2} \quad \text{and} \quad 2.88 \frac{I_o^2}{\rho h^2 w_o \sigma_y} \frac{L^2}{h^2} \]

respectively.

The conventional isodamage curve for this cantilever is shown in Fig. 6.
Fig. 6 Conventional Isodamage Curve for 6061 - T6 Aluminum Cantilever Beam (h=0.001”, I=1.2”)

Impulse asymptote for 0° permanent set

10° permanent set

20° permanent set

Pressure asymptote (for all permanent sets)

10 psi - msec.
There are several basic principles which can be learned from this example. Firstly, the isodamage asymptote for pressure is a constant for the perfectly plastic beam, i.e. it is independent of the level of damage. Secondly, the asymptote for impulse is dependent upon the damage. The pressure asymptote really defines a collapse pressure for the beam under static loading.

C. Plastic deformation of uniform simply supported beams

For the case of a perfectly plastic simply supported beam of rectangular section the strain energy is given by

\[
V = \frac{8 M_Y w_o}{L}
\]

where

\[
M_Y = \frac{\sigma_Y b h^2}{4}
\]

yield moment

\[
b = \text{width of beam}
\]

\[
h = \text{thickness of beam}
\]

\[
L = \text{length of beam}
\]

Thus

\[
f = \frac{\partial V}{\partial w_o} = \frac{8 M_Y}{L}
\]

The generalized mass is (using a deflection shape of \(w = w_o \sin \frac{\pi x}{L}\))

\[
m_e = \int \mu f_w^2(A) \, dA = b \int_0^L \rho h \sin^2 \frac{\pi x}{L} \, dx
\]

\[
A = \frac{1}{2} \rho h b L
\]

For a uniformly distributed load the generalized force is

\[
P = P_o \int f_p(A) f_w(A) \, dA
\]

\[
f_p(A) = 1
\]

For this case

\[
P/f = \frac{P_o (.64 b L)}{\frac{8 L}{\sigma_Y h^2}} = \frac{P_o L^2}{\sigma_Y h^2}
\]

\[
I^2/X m f = \frac{I_o^2 (.64 b L)^2}{w_o (.5 b L \rho h)} \frac{8 \sigma_Y b h^2}{L}
\]

So the curve of \(P/f\) vs \(I^2/X m f\) converts for a simply supported beam to a curve of

\[
\frac{P_o L^2}{\sigma_Y h^2} \text{ vs } \frac{I_o^2}{\rho h w_o \sigma_Y h^2}
\]
The asymptote for the impulsive loading region is

\[\frac{I_o^2}{\rho h w_0 \sigma_y} \frac{L^2}{h^2} = 2 \]

So \(w_o = .2 \left(\frac{I_o^2}{h \sqrt{\rho \sigma_y}} \right)^2 \frac{L}{h} \) \[49 \]

In the paper by Westine and Baker\(^5\) their \(2 \ell = L \) so that the above value comes very close to their value. The slight difference is probably due to the fact that the shape was considered here in computing the kinetic energy. The asymptote for the quasi-static regime is given by

\[.32 \frac{P_o}{\sigma_y} \frac{L^2}{h^2} = 1 \]

or \(\frac{P_o}{\sigma_y} = 3 \left(\frac{h}{L} \right)^2 \) \[50 \]

which is exactly the value given by Westine and Baker.\(^5\)

D. Plastic deformation of uniform simply supported plates

For the case of simply supported plates: Westine and Baker\(^5\) find that the strain energy is given by (assuming a perfectly plastic material and plate dimensions of \(a, b, h \) - width, length, thickness respectively)

\[U = \sigma_y h^2 w_o \left(\frac{b}{a} + \frac{a}{b} \right) + \frac{4}{\sqrt{3}} \sigma_y h^2 w_o \]

\[+ \pi^2 \sigma_y h w_o^2 \left(\frac{b}{a} + \frac{a}{b} \right) + \frac{4}{\sqrt{3}} \sigma_y h w_o^2 \] \[51 \]

The terms linear in \(w_o \) represent bending terms and those quadratic in \(w_o \) arise from tension in the middle surface of the plate.

Let \(w \) be given by

\[w = w_o \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} \] \[52 \]

The terms in the variational equation are then

\[m = m_e = \int \int _0^a \int _0^b \rho h \sin^2 \frac{\pi x}{a} \sin^2 \frac{\pi y}{b} \ dx \ dy = \rho \frac{h a b}{4} \] \[53 \]

\[P = P_e = P_o \int \int _0^a \int _0^b \sin \frac{x}{a} \sin \frac{y}{b} \ dx \ dy = P_o 4 \frac{a b}{\pi^2} \]

The variational equation becomes

\[m_e w_o + \frac{\partial V}{\partial w_o} = P_e \dot{f}(t) \]

so

\[m \dot{w}_o + f_1 w_o + f = P \ddot{f}(t) \] \[54 \]

Again using the typical exponentially decaying pulse

\[\ddot{f}(t) = e^{-t/T} \] \[55 \]

We obtain

\[m \ddot{w}_o + f_1 \dot{w}_o = P e^{-t/T} - f \] \[56 \]
where \[f_1 = \frac{\pi^2}{4} \sigma_y h \left(\frac{b}{a} + \frac{a}{b} \right) + \sqrt{3} \sigma_y h \]

\[f = \sigma_y h^2 \left(\frac{b}{a} + \frac{a}{b} \right) + \frac{4}{\sqrt{3}} \sigma_y h^2 \]

This is a linear differential equation, the solution of which is as follows:

The initial conditions are \[w_0(0) = \dot{w}_0(0) = 0 \]

Thus \[p_1 = \sqrt{f_1/m} \]

\[w_0(t) = \frac{1}{m p_1} \int_0^t p e^{-\tau/T} \sin p_1(t - \tau) \, d\tau \]

Integrating, we obtain

\[w_0(t) = \frac{p_1 T}{m p_1} \left[\frac{\sin p_1 t - p_1 T \cos p_1 t + p_1 T e^{-t/T}}{1 + (p_1 T)^2} \right] \]

The maximum deflection, \(X \) is determined from the criterion that \(\ddot{w}_0 = 0 \) when \(w_0 = (w_0)_{\text{max}} \) \((= X) \)

i.e. when

\[\frac{P}{f} \frac{p_1 T}{m} \left[\frac{\cos p_1 t + p_1 T \sin p_1 t - e^{-t/T}}{1 + (p_1 T)^2} \right] = 0 \]

The lowest value of \(t/T \) which satisfies this equation gives the time at which the maximum deflection will occur. If we let \(\alpha = p_1 T \) then the above equation becomes

\[\frac{P}{f} \alpha \left[\frac{\cos \alpha t/T + \alpha \sin \alpha t/T - e^{-t/T}}{1 + \alpha^2} \right] = 0 \]

where

\[\alpha = p_1 T = T \sqrt{f_1/m} \]

The minimum values of \(t/T \) which satisfy this equation are plotted as a function of \(P/f \) for various \(\alpha \) in Figs. 7, 8. The deflection can then be written as

\[X \frac{m \alpha}{P T^2} = \left[\frac{\sin \alpha t/T - \alpha \cos \alpha t/T + \alpha e^{-t/T}}{1 + \alpha^2} \right] \]

\[= \frac{1}{\frac{P}{f}} \left(1 - \cos \alpha t/T \right) \]
Fig. 8: Time at which maximum deflection occurs

(Large values of P/f)
In order to compare the results with the Westine-Baker results (for \(\alpha = 0 \)) we plot \(P/f \) as ordinate and \(I^2/Xmf \) as abscissa. The resulting curves are shown in Figure 9a for various values of \(\alpha \). Note that for \(\alpha > 0 \) there is no vertical asymptote as found by Westine and Baker for \(\alpha = 0 \). The horizontal asymptote for nondimensional pressure remains the same for all \(\alpha \). Figure 9b contains the same solution curves plotted with a different abcissa. This figure illustrates how increasing \(\alpha \) increases the stiffness of the plate. The parameter \(\alpha \) is a measure of the tension in the middle surface of the plate. The solution curves are general and can be applied to any system in which the energy can be expressed as a quadratic function of the deflection.

V. APPLICATIONS USING THE BELL STRESS-STRAIN LAWS

A. General background

For about a decade Professor James F. Bell of the Johns Hopkins University has been developing techniques and producing extensive experimental stress-strain data on many materials under uniaxial loading for both the static case and the dynamic case involving high rates of strain. Recently he has also made extensive studies on biaxial loading in the static regime. Most of Bell's work which is applicable here is contained in two recent references. He has developed both deformation and flow laws for alloys under uniaxial, shear, and biaxial loading. In the present report the writer will illustrate the application of Bell's Laws to both one and two dimensional cases of structures under impulse loading.

The one dimensional tension-compression stress-strain law given by Bell for plastic deformation is

\[
\sigma = \begin{cases}
E \varepsilon & \text{if } \varepsilon < \varepsilon_y \\
\sigma_y + C \sqrt{\varepsilon - \varepsilon_y} & \text{if } \varepsilon_y < \varepsilon < \varepsilon_c \\
\sigma_\alpha \sqrt{\varepsilon - \varepsilon_c + \frac{\varepsilon_N}{\lambda_N}} & \text{if } \varepsilon > \varepsilon_c
\end{cases}
\]

In the above equations

- \(\sigma \) = tensile or compressive stress
- \(\varepsilon \) = tensile or compressive strain
- \(E \) = elastic modulus
- \(\sigma_y \) = yield stress
- \(\varepsilon_y \) = yield strain
- \(\varepsilon_c \) = critical strain (given by Bell)
- \(C = \lambda_3^{3/2} m^{3/2} \beta_g \) given by Bell
- \(\varepsilon_N, \lambda_N \) = parameters given by Bell
Fig. 9 Nondimensional Solution Curves for Plates under Large Plastic Deformation

9a. Nondimensional Isodamage Curves

9b. Nondimensional Deflection Curves
Each of the parameters given by Bell is associated with a particular physical phenomena of the material as explained in Bell's previous work. There is an analogous one dimensional shear law which follows the same form as the one dimensional tension-compression relation.

For biaxial stress Bell gives as the deformation law

\[
T = \begin{cases}
E \frac{\Gamma}{\gamma} & \text{if } \gamma < \gamma_y \\
T_y + \frac{c}{\gamma} + \frac{\Gamma}{\gamma} & \text{if } \gamma_y < \gamma < \gamma_c \\
\lambda_N \Gamma + \frac{\Gamma}{\gamma} & \text{if } \gamma > \gamma_c
\end{cases}
\]

where \(\bar{c} = \frac{\gamma^3}{2} \), \(\gamma^3/2 \) \(\gamma \)

where

\[
T = \sqrt{\frac{1}{3} \left(\sigma_x^2 + \sigma_y^2 - 2 \sigma_x \sigma_y + 3 \tau_{xy}^2 \right)} = \text{octahedral shear stress}
\]

\[
\Gamma = \sqrt{2 \left(\epsilon_x^2 + \epsilon_y^2 + 2 \epsilon_x \epsilon_y + \frac{\gamma_{xy}^2}{4} \right)} = \text{octahedral shear strain}
\]

All the parameters involved in the above equations are given by Bell and explained thoroughly in his treatise and his many earlier papers.

B. Application to one dimensional problems—bending of beams

1. Moment curvature relationship

In the classical theory of elasticity the bending moment, \(M \), in a beam is given in terms of the curvature, \(K \), of the beam center line by the relation

\[
M = E I K
\]

where \(E \) is the modulus of elasticity of the beam material and \(I \) is the area moment of inertia around the neutral axis. This relation is derived from the basic assumption that plane sections remain plane after deformation, i.e. that the strain is given by

\[
\epsilon_x = z K = z \frac{\partial^2 w}{\partial x^2}
\]

where \(z \) is the distance from the center line to any fiber within the depth of the beam. Thus the bending moment is given by

\[
M = \int_A b(x,z) \sigma_x z \, dz
\]

where \(b(x,z) \) is the width of the beam (which could be a function of the depth \(z \) and the longitudinal dimension \(x \)). For
a rectangular beam of constant section (width 2B and depth 2H)

\[M = 2B \int_{-H}^{+H} \sigma_x z \, dz \] \[\sigma_x = E \epsilon_x = E z \frac{\partial^2 w}{\partial x^2} \]

but

\[M = \frac{4}{3} EH^3 \frac{\partial^2 w}{\partial x^2} = EI \frac{\partial^2 w}{\partial x^2} \quad \text{where} \quad I = \frac{4}{3} BH^3 \]

Thus

\[M = \frac{4}{3} EH^3 \frac{\partial^2 w}{\partial x^2} = EI \frac{\partial^2 w}{\partial x^2} \]

In the theory of perfectly plastic solids the perfectly plastic moment, \(M_o \), is defined as the bending moment obtained when the cross section of the beam is entirely in the plastic region, thus for a rectangular beam

\[M_o = 4B \int_0^H \sigma_y z \, dz = 2B \sigma_y H^2 \]

where \(\sigma_0 \) is the yield stress of the material in pure tension. The moment curvature relation for an elastic-perfectly plastic solid rectangular beam will then be as shown in Figure 10.

If the Bell theory is employed then we must concern ourselves with the three regions enumerated by Bell. For a rectangular beam it is found that

a. For \(\epsilon \ll \epsilon_Y \)

\[M = 4B \left(\int_0^H z^2 E K \, dz \right) \]

So

\[\frac{M}{BH^2 \sigma_y} = \frac{4}{3} \frac{E \epsilon}{\sigma_y} \]

\[-31- \]

b. For \(\epsilon_Y \ll \epsilon \ll \epsilon_t \)

\[M = 4B \left\{ \int_0^{\epsilon_Y} \frac{\sigma_y z^2}{\epsilon_Y K} \, dz + \int_{\epsilon_Y}^{H} z \left[\sigma_y + C (Kz - \epsilon_Y)^{1/2} \right] \, dz \right\} \]

So

\[\frac{M}{BH^2 \sigma_y} = 4 \left\{ \frac{1}{3} \left(\frac{\epsilon_Y}{\epsilon} \right)^2 + \frac{1}{2} \left(1 - \left(\frac{\epsilon_Y}{\epsilon} \right)^2 \right) \right. \]

\[+ \frac{2}{15} \frac{C \left(2 \epsilon_Y + 3 \epsilon \right) \left(\epsilon - \epsilon_Y \right)^{3/2}}{\epsilon^2 \sigma_y} \]
c. For \(\varepsilon > \varepsilon_c \)

\[
M = 4B \left\{ \int_0^\sigma_y \frac{z^2 \, dz}{\varepsilon_y} + \int \frac{z \left[\sigma_y + C(Kz - \varepsilon_y)^{1/2} \right] \, dz}{\varepsilon_y} \right\}
\]

\[
+ \int H \frac{z \left[Kz - \varepsilon_c \right]^{1/2} \, dz}{\varepsilon_c}
\]

\[
\frac{M}{BH^2 \sigma_y} = 4 \left\{ \frac{1}{3} \left(\frac{\varepsilon_y}{\varepsilon} \right)^2 + \frac{1}{2} \left(\frac{\varepsilon_c^2 - \varepsilon_y^2}{\varepsilon^2} \right) \right. \\
+ \frac{2C \left(2 \varepsilon_y + 3 \varepsilon_c \right) \left(\varepsilon_c - \varepsilon_y \right)^{3/2}}{15 \varepsilon^2 \sigma_y} \\
+ \frac{2C \left(2 \varepsilon_c + 3 \varepsilon \right) \left(\varepsilon - \varepsilon_c \right)^{3/2}}{15 \varepsilon^2 \sigma_y} \\
- \frac{2C \left(2 \varepsilon_c + 3 \varepsilon_c \right) \left(\varepsilon_c - \varepsilon_c \right)^{3/2}}{15 \varepsilon^2 \sigma_y} \left\}
\]

where

\[
\bar{\varepsilon}_c = \varepsilon_c - \varepsilon_N/\lambda_N
\]

\[
C = \lambda_N^{3/2} m^{3/2} \sigma_y
\]
The moment curvature relation as predicted by the elastic-perfectly plastic theory is compared to that predicted by the Bell theory for 6061-T6 aluminum in Figure 10. Note the smooth transition predicted by the Bell theory from the elastic through the elastic-plastic regions and finally into the completely plastic regime.

2. Calculation of energy absorbed in elastic-plastic deformation of beams

The elastic energy absorbed in the bending deformation of beams can be written as

\[U_e = \int_0^L \frac{M^2}{2EI} \, dx \] \hspace{1cm} [76]\]

where \(M \) is the elastic moment, \(E \) the elastic modulus, \(I \) the moment of inertia and \(L \) the beam length. For a rigid plastic material the plastic energy absorbed can be written

\[U_p = \int_0^L M_o \frac{\partial^2 w_2}{\partial x^2} \, dx \] \hspace{1cm} [77]\]

For an elastic-plastic material such as dealt with in the Bell Law the energy absorbed is given by

\[\epsilon_m \]

\[U = \int_V \left[\int_0^L \sigma \, d\epsilon \right] \, dV \] \hspace{1cm} [78]\]

but

\[\epsilon = z K \]

\[d\epsilon = z \, dK \] \hspace{1cm} [79]\]

so

\[U = \int_0^L \int_0^{(zK)_{\text{max}}} \int_0^L 4B \int_0^{(zK)_{\text{max}}} \sigma \, dz \, dK \, dx \] \hspace{1cm} [80]\]

If we consider the case of a simply supported beam (i.e. one where the bending moment and deflection are both zero at the ends of the beam) and assume a deflection pattern as follows:

\[w = w_o \frac{16}{5} \frac{x}{L} \left(\frac{L^3}{L} - 2Lx^2 + x^4 \right) \] \hspace{1cm} [81]\]

(this corresponds to the deflection pattern under a uniform load) then the energy can be computed as a function of \(w_o/L \) (\(w_o \) being the maximum center deflection of the beam and \(L \) being the length of the beam).

Figure 11 gives the results of this energy calculation. A sixteen point Gauss Quadrature was used to calculate both integrals shown in eq. [80]. The computer program that was used to make these computations is shown in Appendix I of this report. Note that for small elastic deformations \(U \) varies as \((w_o/L)^2 \) whereas for the larger \(w_o/L \) it varies linearly with \(w_o/L \). This has very interesting and simplifying consequences in the variational equation as shown in Section IVB. The results obtained by Westine and Baker for the rigid - perfectly plastic material are also shown in Figure 11.

* where \(V \) denotes an integral over volume and \(\epsilon_m \) is the maximum strain

-34-
Fig. 11 Energy Absorbed in 6061-T6 Aluminum Simply-Supported Beams

\[\frac{V}{BH^2} = \frac{\sigma_y}{\Delta} \]

- Rigid Plastic Theory
- Boll Theory

\[h = 2H \quad \text{width } b (=2B) \]

into paper

\[L \]
3. Calculation of permanent sets under impulsive loading

The total deflection (not the permanent set) of the beam under an impulsive load can be computed by the relation given in Section IV, i.e.

\[W_{p_e} = \frac{2}{m_e} \]

where \(H_{me} = \int_0^T p_e(t) \, dt \) (the generalized impulse)

\[m_e = \int A \mu f_w^2(A) \, dA \] (the generalized mass)

\[W_{p_e} = U = \text{energy absorbed (a function of } w_0/L) \]

The program given in Appendix I is used to perform this computation. The results for the simply supported beam using the Bell Theory to compute the energy absorption are shown in Figure 12. The permanent set for a given impulse is computed as follows:

a. For a given value of impulse in Figure 13 pick off the value of \(w_0/L \) (this corresponds to the total deflection)

b. Compute the maximum strain in the center of the beam as a function of the center deflection (this curve is plotted in Fig. 14). At a given \((w_0/L) \) center there is a corresponding value of \((\varepsilon_m) \) center.

c. Go into the stress-strain curve of Figure 15 with this value of \((\varepsilon_m) \) center and draw a line parallel to the elastic line at this strain. This corresponds to the unloading path from the maximum strain. Where the line hits the horizontal axis corresponds to the permanent strain.

d. Go back to the \(W_0/L - \varepsilon \) curve and obtain a corresponding value of \(W_0/L \) for this permanent strain. This will correspond to the permanent set (or permanent deflection).

e. Plot the impulse parameter originally chosen vs. this permanent set parameter as shown in Fig. 12.

Experimental points obtained from previous references are shown on this plot. Indications are that this theory gives good results.
Fig. 12 Permanent Set in Simply-Supported Beams

- Experimental Points

- Bell Theory

- Impulse per unit area applied to beam
- Thickness of beam
- Mass density of beam material
- Yield stress of material in pure tension

\(i_n \sqrt{\rho y} \) vs. \((\sigma_0/L)_{perm.} \)
Fig. 13 Total Deflection in Simply Supported Beam
Fig. 14 Maximum Strain vs Maximum Deflection in the Simply Supported Beam
Fig. 15 Stress - Strain Curve for 6061 - T6 Aluminum According to the Bell Theory

\[\sigma \]

\[\psi \times 10^4 \]

\[0.01 \quad 0.02 \quad 0.03 \quad \epsilon \quad 0.04 \quad 0.05 \quad -40- \]
C. Applications to two dimensional problems - bending and stretching of plates

Problems concerning the plastic deformation of plates involve biaxial stress fields and are therefore an order of magnitude more complicated to solve than one dimensional problems. However the employment of the Bell Theory readily enables solutions to be developed.

The strain energy for a plate in a biaxial state of stress can be written\(^{17}\)

\[
U = \int \left[\int T \, d\Gamma \right] \, dv
\]

[83]

where \(V\) denotes an integral over volume

\[
T = \sqrt{\frac{2}{3}} \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2} = \text{octahedral shear stress}
\]

\[
\Gamma = \sqrt{2} \sqrt{\varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_x \varepsilon_y + \gamma_{xy}^2} = \text{octahedral shear strain}
\]

\[
\Gamma_m = \text{maximum value of } \Gamma
\]

\(\sigma_x, \sigma_y, \tau_{xy}\) = stress components, \(\varepsilon_x, \varepsilon_y, \gamma_{xy}\) = strain components

For a plate whose width, length and thickness are \(a, b, 2H\) respectively the strain energy becomes

\[
U = \int_a^b dx \int_0^b dy \int_{-H}^H dz \int \Gamma_m T \, d\Gamma
\]

[85]

Now introducing the Bell Law for biaxial stress, we have

\[
T = E \Gamma \quad \text{for} \quad \Gamma < \Gamma_y
\]

\[
= T_y + \tilde{c} \sqrt{\Gamma - \Gamma_y} \quad \text{for} \quad \Gamma_y < \Gamma < \Gamma_c \quad \tilde{c} = \lambda^{3/2} \kappa^{3/2} \gamma_s
\]

\[
= \tilde{c} \sqrt{\Gamma - \Gamma_c} \quad \text{for} \quad \Gamma > \Gamma_c \quad \Gamma_c = \Gamma_c - \Gamma_N / \lambda_N
\]

For large lateral deformations of plates the strains can be written in terms of the lateral deflection, \(w\), as follows:

\[
\varepsilon_x = \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 - z \frac{\partial^2 w}{\partial x^2}
\]

[87]

\[
\varepsilon_y = \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 - z \frac{\partial^2 w}{\partial y^2} \quad \gamma_{xy} = \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} - 2z \frac{\partial^2 w}{\partial x \partial y}
\]

Now introduce a deflection function \(f(x, y)\) such that

\[
w = w_0 f(x, y)
\]

[88]
where \(f(x,y) \) is a nondimensional distribution function. Also nondimensionalize the other parameters as follows:

\[
\bar{x} = \frac{x}{a}, \quad \bar{y} = \frac{y}{b}, \quad \bar{z} = \frac{z}{H}, \quad \Gamma = \frac{\Gamma}{\Gamma_m} \quad [89]
\]

So that the strains become

\[
\begin{align*}
\varepsilon_x &= \frac{1}{2} \frac{w_0}{a^2} \left(-\frac{\partial f}{\partial x} \right)^2 - \frac{z}{a} \frac{w_0}{a} \frac{\partial^2 f}{\partial x^2} + \gamma_{xy} = \frac{w_0}{a} \frac{w_0}{b} \left(-\frac{\partial f}{\partial x} \right) \left(-\frac{\partial f}{\partial y} \right) \\
\varepsilon_y &= \frac{1}{2} \frac{w_0}{b^2} \left(-\frac{\partial f}{\partial y} \right)^2 - \frac{z}{b} \frac{w_0}{b} \frac{\partial^2 f}{\partial y^2} - 2 \frac{z}{a} \frac{w_0}{a} \frac{\partial^2 f}{\partial x \partial y}
\end{align*}
\]

The strain energy becomes

\[
U = abHE \left[\int_0^1 dx \int_0^1 dy \int_0^{+1} dz \int_0^1 T \Gamma_m d\Gamma \right] \quad [91]
\]

Now assume that the edges of the plate are simply supported and let the deflection function be given as

\[
f(x,y) = \frac{1}{4} \left(1 + \cos \left(\frac{\pi (x - \frac{a}{2})}{\frac{a}{2}} \right) \right) \left(1 + \cos \left(\frac{\pi (y - \frac{b}{2})}{\frac{b}{2}} \right) \right) \quad [92]
\]

or in terms of \(\bar{x}, \bar{y} \)

\[
f(\bar{x},\bar{y}) = \frac{1}{4} \left(1 + \cos \left(\frac{\pi (2 \bar{x} - 1) \right) \left(1 + \cos \left(\frac{\pi (2 \bar{y} - 1) \right) \right) \quad [93]
\]

The program for computing the energy integral is contained in Appendix 2. A plot of the strain energy as a function of the deflection resulting from calculations using the program is shown in Figure 16. Assuming impulsive loading and equating the kinetic energy to the strain energy (no corrections are made for the shape function as done for the beam since the correction is small for the simply supported case) we can then obtain a relationship between the nondimensional impulse function and the nondimensional deflection.

This curve is shown in Fig. 17. Using an analogous procedure for obtaining permanent set as was used for beams we go through the following steps:

a. Plot a curve of nondimensional impulse vs. nondimensional total deflection, such as shown in Fig. 17.

b. Plot a curve of octahedral shear strain, \(\Gamma \) vs. nondimensional deflection \(w_0/h \) such as shown in Fig. 18. For the given value of \(w_0/h \) from a, we have a value for \(\Gamma \).

c. Go into the stress-strain curve \(T - \Gamma \) in Figure 19 and obtain the permanent strain by drawing a line parallel to the elastic line at the strain which corresponds to the appropriate value of \(w_0/h \).

d. Go back to Figure 18 to obtain the permanent set value of \(w_0/h \) and plot on Figure 17.
Fig. 16 Energy Curve for Simply Supported Aluminum (6061-T6) Plate. In accordance with the Bell Theory.
Fig. 17 Plastic Deflection Curves for Aluminum Plates According to the Bel Theory

$\frac{i}{\rho d} = \frac{2}{\rho d} \left(\frac{\beta}{\rho h} \right)^4$

- i = impulse per unit area applied to the plate
- $\beta = h/2$ (half the length of the plate)
- ρ = mass density of plate material
- σ_y = yield stress in plate material
- h = thickness of plate

Permanent Set
Total Deflection
Experimental Points
Fig. 18 Orthogonal Shear Strain vs Deflection Parameter
(Strain is near plate center)
Both the nondimensional impulse - deflection values for total deflection and permanent set are shown in Figure 17 with corresponding experimental results obtained from the literature. The indications are that the theory is quite satisfactory in predicting plastic deflections.

D. Bell's theory and the variational method

Once the energy function is computed, a polynomial fit can be made between energy and deflection. For example, in the case of a simply supported plate shown in Fig. 16 the energy takes the form

\[
\frac{V}{a \ b \ H \ E} = A \left(\frac{w}{h} \right) + B \left(\frac{w}{h} \right)^2
\]

\[[94] \]

where \(A = .0009 \), \(B = .0008 \)

These coefficients are somewhat less than those computed from the rigid-perfectly plastic theory presented by Westine and Baker. In any event if a second order polynomial will fit the energy function then all the theory developed in section IV C can be applied to the problem up to the point of predicting the complete isodamage curve.

A practical way to apply the Bell Theory to dynamic problems in plates and shells is first to compute the energy, fit a polynomial in the deflection to this energy function and then apply the variational theory outlined in the earlier sections of this report.

E. Possibilities for other applications of the Bell theory

The problems presented in this section are only a small example of the application of Bell's theory to dynamic vulnerability type problems. There are many unsolved vulnerability problems to which the new Bell laws could be applied to shed light on their solution. One very important problem is the penetration and perforation of structures by projectiles. These perforation problems have only been investigated either empirically or analytically using questionable stress-strain laws. Another problem of great interest is the dynamic behavior of shells. The solution of this problem should be merely an extension of the analysis presented for plates in this report.

-47-
APPENDIX I. COMPUTER PROGRAM FOR THE BEAM USING BELL'S LAW

A listing of the beam program in "BASIC" is given in Table 1. The input parameters are shown in statements 10 - 45, 100 - 210 with their corresponding values given in the DATA statements 480 - 600. The input parameters in the program are given below with the symbols that they represent.

\[
C = \lambda_N \frac{3\lambda}{m} \frac{3\lambda}{\beta_5} = 85000 \text{ psi}
\]

\[
E_1 = \epsilon_c - \frac{\epsilon_N}{\lambda_N} = -0.285
\]

\[
\gamma = \epsilon_y
\]

\[
S = \sigma_y = 40000 \text{ psi}
\]

\[
E_2 = \epsilon_c = 0.01
\]

\[E = \text{elastic modulus} = 10^7 \text{ psi}\]

\[M = \text{number of integration points for the } \bar{X} \text{ integral} = 16\]

\[N = \text{number of integration points for the } \bar{K} \text{ integral} = 16\]

\[H = h/2L = \text{one half the thickness of the beam divided by its length} = 0.0069\]

\[W_1, W_2, W_3 = \text{minimum, maximum, increment in } W \text{ where} \]

\[W = w_o/L \text{ in which } w_o \text{ is the maximum deflection and} \]

\[L \text{ is the beam length}\]

\[G_1, G_2, G_3 = \text{minimum, maximum, increment in } G, \text{ where } G \text{ is the strain value used to compute the stress-strain curve in statements 55-97.}\]

\[X(I), G(I) \text{ are the Gauss locations and weights respectively for the } \bar{X} \text{ integration (locations are in statements 530 - 540, weights in statements 550-560)}\]

\[Y(J), H(J) \text{ are Gauss locations and weights respectively for the } \bar{K} \text{ integration (locations are in statements 570-580, weights in 590-600)}\]

\[U \text{ is the nondimensional energy function } V/\beta H^2 \sigma_y \text{ as shown in the graph of Fig. 11}\]

49
Table 1. Listing of Beam Program

5 DIM X(20),G(20),Y(20),H(20)
10 READ C,E1,Y,S,E2,E
20 READ M,N
30 READ H
40 READ W1,W2,W3
45 READ G1,C2,C3
50 LET Q= 0
55 FOR G=G1 TO G2 STEP G3
60 IF G>Y THEN 72
65 LET S5=E*C
70 GOTO 95
72 IF G>E2 THEN 90
75 LET S5=S+C*SQRT(G-Y)
80 GOTO 95
90 LET S5=C*SQRT(G-E1)
95 GOTO 97
97 NEXT C
100 FOR I= 0 TO M- 1
110 READ X(I)
120 NEXT I
130 FOR I= 0 TO M- 1
140 READ C(I)
150 NEXT I
160 FOR J= 0 TO N- 1
170 READ Y(J)
180 NEXT J
205 FOR K=W1 TO W2 STEP W3
220 FOR I= 0 TO M- 1
230 FOR J= 0 TO N- 1
240 LET F3=(192/5)*(X(I)-X(I)+2)
250 LET K=H*W3*F3*Y(J)
260 IF K>Y THEN 290
270 LET E=(4/3)*E*K/S
280 GOTO 410
290 LET A=(S/3)*(Y/K)+2
300 IF K>E2 THEN 350
310 LET A1=(S/2)-(Y/K)+2
320 LET A2=(2*C*(2*Y+3*K)*(K-Y)+1.5)/(15*K+2)
330 LET B=(4*A+A1+A2)/S
340 GOTO 410
350 LET B3=(S/2)*(E2/K)+2-(Y/K)+2
360 LET D3=(2*C*(2*Y+3*E2)*(E2-Y)+1.5)/(15*K+2)
370 LET F1=2*C*(2*E1+3*K)*(K-E1)+1.5
380 LET F2=2*C*(2*E1+3*E2)*(E2-E1)+1.5
390 LET F=(F1-F2)/(15*K+2)
400 LET B=4*(A+B3+D3+F)/S
410 LET C=Q+G(I)*H(J)*F3*B
420 NEXT J
430 NEXT I
435 LET U=W*G
440 PRINT U
460 LET G= 0
470 NEXT W
Table 1 - Cont'd

<table>
<thead>
<tr>
<th>DATA</th>
<th>85000.£-03, 40000.£-02, 1.00000E+07</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>16, 16</td>
</tr>
<tr>
<td>DATA</td>
<td>6.90000E-03</td>
</tr>
<tr>
<td>DATA</td>
<td>5.00000E-02, 5.00000E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>1.00000E-03, 1.00000E-02, 1.00000E-03</td>
</tr>
<tr>
<td>DATA</td>
<td>5.29954E-03, 2.77124E-02, 6.71344E-02, 122297</td>
</tr>
<tr>
<td>DATA</td>
<td>.191061, .270991, .359198, .452493</td>
</tr>
<tr>
<td>DATA</td>
<td>.547506, .640301, .729008, .803938</td>
</tr>
<tr>
<td>DATA</td>
<td>.877702, .932815, .972237, .9947</td>
</tr>
<tr>
<td>DATA</td>
<td>1.35762E-02, 3.11267E-02, 4.75792E-02, 6.23144E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>7.47930E-02, 3.45782E-02, 9.13017E-02, 9.47243E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>9.47253E-02, 9.13017E-02, 3.45782E-02, 7.47930E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>6.23144E-02, 4.75792E-02, 3.11267E-02, 1.35762E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>5.29954E-03, 2.77124E-02, 6.71344E-02, 122297</td>
</tr>
<tr>
<td>DATA</td>
<td>.191061, .270991, .359198, .452493</td>
</tr>
<tr>
<td>DATA</td>
<td>.547506, .640301, .729008, .803938</td>
</tr>
<tr>
<td>DATA</td>
<td>.877702, .932815, .972237, .9947</td>
</tr>
<tr>
<td>DATA</td>
<td>1.35762E-02, 3.11267E-02, 4.75792E-02, 6.23144E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>7.47930E-02, 3.45782E-02, 9.13017E-02, 9.47243E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>9.47253E-02, 9.13017E-02, 3.45782E-02, 7.47930E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>6.23144E-02, 4.75792E-02, 3.11267E-02, 1.35762E-02</td>
</tr>
<tr>
<td>DATA</td>
<td>6.877702, .932815, .972237, .9947</td>
</tr>
</tbody>
</table>

END
APPENDIX II. COMPUTER PROGRAM FOR THE PLATE USING BELL'S LAW

A listing of the plate program in "BASIC" is given in Table 2. The input parameters are shown in statements 20 - 220 with their corresponding values given in the DATA statements 720 - 870. The input parameters in the program are given below with the symbols they represent:

\[c = \frac{3^2}{N} K^2 \beta_s = 60000 \text{ psi} \]
\[E = \text{elastic modulus} = 10^7 \text{ psi} \]
\[T_I = \Gamma_y = 28000 \text{ psi} \]
\[G_1 = \Gamma_y = .0035 \]
\[G_2 = \Gamma_c = .013 \]
\[G_3 = \Gamma_c - \frac{\Gamma_N}{\lambda_N} = -.33 \]
\[S = \sigma_y = 40000 \text{ psi} \]
\[M = \text{number of integration points for } x \text{ integral} = 4 \]
\[N = \text{number of integration points for } y \text{ integral} = 4 \]
\[P = \text{number of integration points for } z \text{ integral} = 7 \]
\[Q = \text{number of integration points for } \Gamma \text{ integral} = 5 \]
\[H = h/2a = \text{one half the thickness of the plate divided by the width} \]
\[A9 = a/b = \text{width/length} \]
\[W_1, W_2, W_3 = \text{minimum, maximum, increment in } W \text{ where } W = w_0/a \]
\[(w_0 = \text{maximum deflection}) \]
\[X(I), A(I) = \text{locations, weights for } x \text{ Gauss integration} \]
\[Y(J), B(J) = \text{locations, weights for } y \text{ Gauss integration} \]
\[Z(K), C(K) = \text{locations, weights for } z \text{ Bauss integration} \]
\[G(L), D(L) = \text{locations, weights for } \Gamma \text{ integration} \]

The nondimensional impulse function is given by I6 and the nondimensional deflection parameter \(w_0/h \) by W9. The nondimensional energy function \(V/abHE \) is given in the program by the symbol \(V \).
Table 2. Listing of Plate Program

10 DIM X(10), Y(10), Z(10), C(10), A(10), B(10), C(10), D(10)
20 READ C, E, I1, G1, G2, G3, S
25 READ M, N, P, W
30 READ H, A9
40 READ W1, W2, W3
50 FOR I = 0 TO M - 1
55 READ X(I)
60 NEXT I
65 FOR I = 0 TO M - 1
70 READ A(I)
75 NEXT I
80 FOR J = 0 TO N - 1
85 READ Y(J)
90 NEXT J
95 FOR J = 0 TO N - 1
100 READ B(J)
105 NEXT J
110 FOR K = 0 TO P - 1
115 READ Z(K)
120 NEXT K
125 FOR K = 0 TO P - 1
130 READ C(K)
135 NEXT K
140 FOR K = 0 TO P - 1
145 READ D(K)
150 NEXT K
155 FOR K = 0 TO P - 1
160 READ E(K)
165 NEXT K
170 FOR L = 0 TO Q - 1
175 READ F(L)
180 NEXT L
185 FOR L = 0 TO Q - 1
190 LET V = 0
200 FOR W = W1 TO W2 STEP W3
205 FOR I = 0 TO M - 1
210 FOR J = 0 TO N - 1
215 LET X1 = 3.14159*(2*X(I) - 1)
220 LET Y1 = 3.14159*(2*Y(J) - 1)
225 LET F1 = .25*(-6.28319*SIN(X1)+(1+COS(Y1)))
230 LET F2 = .25*(-39.4784*COS(X1)+(1+COS(Y1)))
235 LET F3 = .25*(1+COS(X1))*(-6.28319*SIN(Y1))
240 LET F4 = .25*(1+COS(X1))*(-39.4784*COS(Y1))
245 LET F5 = .25*(-6.28319*SIN(X1))*(-6.28319*SIN(Y1))
250 FOR K = 0 TO P - 1
255 LET E1 = .5*(W1)*(F1+2)-Z(K)*W*F2*H
260 LET E2 = .5*(W2)*(A9+2)*(F3+2)-Z(K)*W*A9*F4
265 LET E3 = W*W*A9*F1*F3-2*Z(K)*W*A9*F5
270 LET C = C9*C(C)
275 IF G > G1 THEN 505
280 LET T = C
285 GOTO 540
290 IF G > G2 THEN 530
300 LET T = (T1/E)+(C/E)*SCR(G-G1)
310 GOTO 540
320 LET T = (C/E)*SCR(G-G3)
330 LET V = V*T*C9*A(I)*B(J)*C(K)*D(L)
340
Table 2 - Cont'd

```
550 NEXT L
560 NEXT K
570 NEXT J
580 NEXT I
590 LET I6 = .25*(1/(A9*2*H)^2)*(E/S)*V
600 LET W9 = .5*W/H
610 PRINT I6,W9
620 LET V = 0
630 NEXT W
640 DATA 35000, 1.00000E+07, 35000, 5.00000E-03, 1.30000E-02, -.33, 40000
650 DATA 4, 4, 7, 5
660 DATA 4.00000E-02, .59
670 DATA 8.00000E-02, .8, 8.00000E-02
680 DATA 6.94318E-02, .330009, .66999, .930563
690 DATA .13927, .326072, .326072, .173927
700 DATA 6.94318E-02, .330009, .66999, .930563
710 DATA .13927, .326072, .326072, .173927
720 DATA .949108, -.741531, -.40545, 0
730 DATA .405845, .741531, .949108
740 DATA .139484, .279705, .33133, .417959
750 DATA .38133, .279705, .129434
760 DATA 4.69100E-02, .230765, .5
770 DATA .769234, .95309
780 DATA .118463, .239314, .284444
790 DATA .239314, .118463
800 END
```
REFERENCES

ACKNOWLEDGEMENTS

This work was sponsored by the U.S.A. Ballistic Research Laboratories at Aberdeen Proving Ground. The author would like to express his deepest appreciation to Mr. O. T. Johnson, the technical supervisor of the project, for his continuing guidance and encouragement.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander Defense Documentation Center ATTN: DDC-TCA</td>
<td>1</td>
<td>Commander US Army Materiel Development and Readiness Command ATTN: DRCCP</td>
</tr>
<tr>
<td></td>
<td>Cameron Station Alexandria, VA 22314</td>
<td></td>
<td>5001 Eisenhower Avenue Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Director Defense Advanced Research Projects Agency</td>
<td>4</td>
<td>Commander US Army Aviation Systems Command ATTN: DRSAV-E</td>
</tr>
<tr>
<td></td>
<td>1400 Wilson Boulevard Arlington, VA 22209</td>
<td></td>
<td>DRSAV-ERP DRSAV-EFI, G. Kovacs DRSAV-ERS, J. Poynton</td>
</tr>
<tr>
<td>2</td>
<td>Director Weapons System Evaluation Group Washington, DC 20305</td>
<td></td>
<td>12th and Spruce Streets St. Louis, MO 63166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12th and Spruce Streets St. Louis, MO 63166</td>
</tr>
<tr>
<td>1</td>
<td>Assistant Secretary of Defense (SA) ATTN: Dr. M. Bailey Washington, DC 20301</td>
<td>1</td>
<td>Director US Army Air Mobility Research and Development Laboratories Ames Research Center Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333</td>
<td>4</td>
<td>Commander US Army Air Mobility Research and Development Laboratory ATTN: SAVDL-EU-PP, Mr. Morrow SAVDL-EU-SS, Mr. Robinson SAVDL-EU-RM SAVDL-EU-SS, Mr. Merritt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fort Eustis, VA 23604</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Commander
US Army Missile Command
ATTN: DRSMI-R
DRSMI-CM
DRSMI-RFG
D. R. Peterson
Redstone Arsenal, AL 35809</td>
<td>1</td>
<td>President
US Army Infantry Board
Fort Benning, GA 31905</td>
</tr>
<tr>
<td>3</td>
<td>Commander
US Army Missile Command
ATTN: DRCPM-MDEI-PA
DRCPM-HA
DRCPM-SHO-E
Redstone Arsenal, AL 35809</td>
<td>1</td>
<td>Commander
US Army Harry Diamond Laboratories
ATTN: DRXDO-TI
2800 Powder Mill Road
Adelphi, MD 20783</td>
</tr>
<tr>
<td>1</td>
<td>Commander
US Army Tank Automotive Logistics Command
ATTN: DRSTA-RHFL
Warren, MI 48090</td>
<td>1</td>
<td>Director
US Army Material and Mechanics Research Center
ATTN: DRXMR-ATL
Watertown, MA 02172</td>
</tr>
<tr>
<td>1</td>
<td>Commander
US Army Mobility Equipment Research & Development Command
ATTN: Tech Docu Cen, Bldg 315
DRSME-RZT
Fort Belvoir, VA 22060</td>
<td>1</td>
<td>Commander
US Army Natick Research and Development Command
ATTN: DRXRD, Dr. D. Sieling
Natick, MA 01760</td>
</tr>
<tr>
<td>2</td>
<td>Commander
US Army Mobility Equipment Research & Development Command
ATTN: Tech Docu Cen, Bldg 315
DRSME-RZT
Fort Belvoir, VA 22060</td>
<td>1</td>
<td>Commander
US Army Foreign Science and Technology Center
Federal Office Building
ATTN: DRXST-CV, Mr. Petrie
Mr. J. Ward, Jr.
220 7th Street, NE<br(Charlottesville, VA 22901)</td>
</tr>
<tr>
<td>1</td>
<td>Commander
US Army Armament Command
Rock Island, IL 61202</td>
<td>1</td>
<td>Commander
US Army Training and Doctrine Command
ATTN: ATCD-CS-M-AR
Fort Monroe, VA 22060</td>
</tr>
<tr>
<td>3</td>
<td>Commander
US Army Picatinny Arsenal
ATTN: SARPA-AP
SARPA-DW8
SARPA-AD-C-S
Mr. Turoczy
Dover, NJ 07801</td>
<td>1</td>
<td>Commander
US Army TRADOC Systems Analysis Activity
ATTN: ATAA-SA
White Sands Missile Range
NM 88002</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Experimentation Command</td>
<td>1 Commander</td>
<td>US Army Air Defense Human Research Unit</td>
</tr>
<tr>
<td></td>
<td>ATTN: CSCG Ln Office Fort Ord, CA 93941</td>
<td></td>
<td>ATTN: ATHRD Fort Bliss, TX 79906</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Transportation Corps School</td>
<td>1 Chief</td>
<td>Concepts Analysis Agency</td>
</tr>
<tr>
<td></td>
<td>ATTN: Infantry Agency Fort Benning, GA 31905</td>
<td></td>
<td>ATTN: CAA-SM 8120 Woodmont Avenue Bethesda, MD 30014</td>
</tr>
<tr>
<td>1 Commandant</td>
<td>US Army Aviation School Fort Rucker, AL 36360</td>
<td>3 Chief of Naval Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: OP-05 OP-34 OP-96C2, Mr. Haering Department of the Navy Washington, DC 20305</td>
<td></td>
</tr>
<tr>
<td>1 Commandant</td>
<td>US Army Armor School</td>
<td>5 Commander</td>
<td>US Naval Air Systems Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: Armor Agency Fort Knox, KY 40121</td>
<td></td>
<td>ATTN: AIR-604 (3 cys) AIR-530 AIR-09JA Washington, DC 20361</td>
</tr>
<tr>
<td>2 Commander</td>
<td>US Army Agency for Aviation Safety Fort Rucker, AL 36360</td>
<td>5 Commander</td>
<td>US Naval Air Systems Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: AIR-35603V AIR-330 AIR-5204/PPW, LTC Reimers AIR-5204, CPT W. Rivers AIR-3501, Mr. Fisher Washington, DC 20361</td>
</tr>
<tr>
<td>1 HQDA (DAMA-AR)</td>
<td>Washington, DC 20310</td>
<td>3 Commander</td>
<td>US Naval Ordnance Systems Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: ORD-0632 ORD-035 ORD-5524 Washington, DC 20360</td>
</tr>
<tr>
<td>1 HQDA (DAMA-ZA)</td>
<td>Washington, DC 20310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 HQDA (SAUS-OR)</td>
<td>Washington, DC 20310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Commandant</td>
<td>US Army Command and General Staff College</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Archives Fort Leavenworth, KS 66027</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

61
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Commander US Naval Sea Systems Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: SEA-6543C, Mr. Sieve</td>
</tr>
<tr>
<td></td>
<td>SEA-033S, W. W. Blaine</td>
</tr>
<tr>
<td></td>
<td>SEA-654, CPT J. Frost</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20367</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Naval Analysis (MCOAG)</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. Jack Watson</td>
</tr>
<tr>
<td></td>
<td>1401 Wilson Boulevard</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22209</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Naval Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: MAT-0315, K. Takle</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20360</td>
</tr>
<tr>
<td>3</td>
<td>Commander US Naval Air Development Center, Jacksonville</td>
</tr>
<tr>
<td></td>
<td>ATTN: SR</td>
</tr>
<tr>
<td></td>
<td>SAED, M. Mitchell</td>
</tr>
<tr>
<td></td>
<td>SAED, D. Tauras</td>
</tr>
<tr>
<td></td>
<td>Warminster, PA 18974</td>
</tr>
<tr>
<td>2</td>
<td>Commander US Naval Air Propulsion Test Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: R&T Div, P. Piscopo</td>
</tr>
<tr>
<td></td>
<td>ATE-4, Mr. Scott</td>
</tr>
<tr>
<td></td>
<td>Trenton, NJ 08628</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Prince Georges Plaza</td>
</tr>
<tr>
<td></td>
<td>Center Building</td>
</tr>
<tr>
<td></td>
<td>Hyattsville, MD 21402</td>
</tr>
<tr>
<td>1</td>
<td>Commander David W. Taylor Naval Ship Research & Development Center</td>
</tr>
<tr>
<td></td>
<td>Annapolis, MD 21402</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 040</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>4</td>
<td>Commander US Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code DEC</td>
</tr>
<tr>
<td></td>
<td>Code GAV, T. McCants</td>
</tr>
<tr>
<td></td>
<td>W. D. Ralph</td>
</tr>
<tr>
<td></td>
<td>J. R. Rech</td>
</tr>
<tr>
<td></td>
<td>Dahlgren, VA 22448</td>
</tr>
<tr>
<td>5</td>
<td>Commander US Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 408, H. Drake</td>
</tr>
<tr>
<td></td>
<td>Code 4070, M. Keith</td>
</tr>
<tr>
<td></td>
<td>Code 4081, C. Sandberg</td>
</tr>
<tr>
<td></td>
<td>Code 6031, M. Backman</td>
</tr>
<tr>
<td></td>
<td>Code 4083, G. Monscko</td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Naval Ammunition Depot</td>
</tr>
<tr>
<td></td>
<td>ATTN: RD-3</td>
</tr>
<tr>
<td></td>
<td>Crane, IN 47522</td>
</tr>
<tr>
<td>1</td>
<td>Director US Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 5554, Dr. Esterowitz</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20390</td>
</tr>
<tr>
<td>3</td>
<td>Commandant US Marine Corps</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code AAP</td>
</tr>
<tr>
<td></td>
<td>AAW-1, LTC Peterson</td>
</tr>
<tr>
<td></td>
<td>AAW-5, LTC Paige, Jr.</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20380</td>
</tr>
<tr>
<td>1</td>
<td>Director Development Center, MCDEC</td>
</tr>
<tr>
<td></td>
<td>Quantico, VA 22134</td>
</tr>
<tr>
<td>1</td>
<td>HQ USAF (AFSCAGF)</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20330</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 3 | AFSC (LTC Stephenson)
Andrews AFB
Washington, DC 20331 |
| 1 | AFSC (SDOA)
Andrews AFB
Washington, DC 20331 |
| 3 | HQ USAFSC (XRLW, LTC Seufert;
SDW, R. Hartmeyer; DLCA, P. Sandler)
Andrews AFB
Washington, DC 20334 |
| 1 | USAFTAWC (OA)
Eglin AFB, FL 32542 |
| 3 | AFATL (DLY)
Eglin AFB, FL 32542 |
| 1 | AFATL (DLRW, W. D. Thomas)
Eglin AFB, FL 32542 |
| 1 | OSU
ATTN: Mr. R. Armstrong
Eglin AFB, FL 32542 |
| 2 | AFWL (MAJ H. Rede; MAJ J. Godsey)
Kirtland AFB, NM 87117 |
| 2 | AFSWC (TEEM, LTC D. Meyers; TESPO, MAJ R. Gerhandt)
Kirtland AFB, NM 87117 |
| 1 | TAC (DIO)
Langley AFB, VA 23365 |
| 4 | ASD (ASBR; ASBO, Mr. Erkeneff; ASZT; XOO, Mr. Burneka)
Wright-Patterson AFB, OH 45433 |
| 3 | ASD (ENYS, J. Wallick; J. Howard; L. DiRito)
Wright-Patterson AFB, OH 45433 |
| 1 | ASD (XRHL, G. B. Bennett)
Wright-Patterson AFB, OH 45433 |
| 4 | AFLC (MCNEA, W. Dougherty; PPSC, R. Mergler; MMHM, E. Swanson; MEA, COL T. Egan)
Wright-Patterson AFB, OH 45433 |
| 4 | AFAPL (SFL, Jones; SFH, Botteri; SSF, Churchill; AFH, R. Clodfelter)
Wright-Patterson AFB, OH 45433 |
| 5 | AFFDL (FBS; FER; PTS, D. Voyls; R. Lauzze; CPT Beardon)
Wright-Patterson AFB, OH 45433 |
| 2 | AFML (MAE; MAS, COL Hughes)
Wright-Patterson AFB, OH 45433 |
| 1 | Director
National Aeronautics and Space Administration
Langley Research Center
ATTN: MS 246E, L. Bement
MS 249, J. Ward
Hampton, VA 23665 |
| 1 | Director
National Aeronautics and Space Administration
Lewis Research Center
Lewis Directorate
Cleveland, OH 44135 |
| 1 | Bell Helicopter Company
ATTN: Mr. Nile Fischer
P.O. Box 482
Fort Worth, TX 76101 |
| 1 | The Boeing Company
Vertol Division
ATTN: Dave Harding
P.O. Box 16858
Philadelphia, PA 19142 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fairchild Industries</td>
<td>1</td>
<td>LTV Aerospace Corporation</td>
</tr>
<tr>
<td></td>
<td>Fairchild Republic Division</td>
<td></td>
<td>Vought Systems Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: D. Watson</td>
<td></td>
<td>ATTN: D. M. Reedy - Unit 2</td>
</tr>
<tr>
<td></td>
<td>Farmingdale, LI, NY 11735</td>
<td></td>
<td>54244</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>P.O. Box 5907</td>
</tr>
<tr>
<td></td>
<td>Falcon Research and Development Company</td>
<td></td>
<td>Dallas, TX 75222</td>
</tr>
<tr>
<td></td>
<td>ATTN: Lavelle Manhood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1225 South Huron</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denver, CO 80223</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>Rockwell International</td>
</tr>
<tr>
<td></td>
<td>Falcon Research and Development Company</td>
<td></td>
<td>Los Angeles Aircraft Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Arthur Stein</td>
<td></td>
<td>ATTN: R. L. Moonan</td>
</tr>
<tr>
<td></td>
<td>One American Drive</td>
<td></td>
<td>Mail Code AB75</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14255</td>
<td></td>
<td>International Airport</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>Los Angeles, CA 90009</td>
</tr>
<tr>
<td></td>
<td>General Electric Company</td>
<td></td>
<td>United Aircraft Corporation</td>
</tr>
<tr>
<td></td>
<td>Military Engine Products Div</td>
<td></td>
<td>Sikorsky Aircraft Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: E. L. Richardson</td>
<td></td>
<td>ATTN: J. B. Foulk</td>
</tr>
<tr>
<td></td>
<td>Building 2406A</td>
<td></td>
<td>Stratford, CT 06602</td>
</tr>
<tr>
<td></td>
<td>1000 Western Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Lynn, MA 01910</td>
<td></td>
<td>Marine Corps Ln Ofc</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>Cdr, USATECOM</td>
</tr>
<tr>
<td></td>
<td>Summa Corporation</td>
<td></td>
<td>ATTN: Mr. Moshang</td>
</tr>
<tr>
<td></td>
<td>Hughes Helicopter Division</td>
<td></td>
<td>Dir, USAMSAA</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. H. Tinley</td>
<td></td>
<td>ATTN: J. Lindenmuth</td>
</tr>
<tr>
<td></td>
<td>Centinela and Teale Streets</td>
<td></td>
<td>D. O'Neill</td>
</tr>
<tr>
<td></td>
<td>Culver City, CA 90230</td>
<td></td>
<td>J. McCarthy</td>
</tr>
</tbody>
</table>