BIBLIOGRAPHY OF SOVIET DEVELOPMENTS IN MAGNETOHYDRODYNAMICS
NO. 1, JANUARY-DECEMBER, 1975

Sponsored By

Defense Advanced Research Projects Agency

DARPA Order No. 3097

March 22, 1976

This research was supported by the Defense Advanced Research Projects Agency and was monitored by the Defense Supply Service - Washington, under Contract No. MDA-903-76C-0099. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either express or implied, of the Defense Advanced Research Projects Agency or the United States Government.

Informatics Inc.
6000 Executive Boulevard
Rockville, Maryland 20852
(301) 770-3000

Approved for public release; distribution unlimited
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (OCCUPANT)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
<th>6. PERFORMING ORG. REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHY OF SOVIET DEVELOPMENT IN MAGNETOHYDRODYNAMICS</td>
<td>Scientific . . Interim</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatics, Inc. 1000 Executive Boulevard Rockville, Maryland, 20852</td>
<td>MDA-903-76C-0099</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defence Advance Research Project Agency / TAO 1400 Wilson Boulevard Arlington, Virginia 22209</td>
<td>DARPA Order 3097</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>12. REPORT DATE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)</th>
<th>15. SECURITY CLASS. (OF THIS REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. DISTRIBUTION STATEMENT (OF THIS REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific . . Interim</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHD flow</td>
</tr>
<tr>
<td>Magneto-hydrodynamics</td>
</tr>
<tr>
<td>MHD power generation</td>
</tr>
<tr>
<td>Fluid dynamics</td>
</tr>
<tr>
<td>Refractory materials</td>
</tr>
<tr>
<td>High temperature combustion</td>
</tr>
<tr>
<td>Gas dynamics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This bibliography has been compiled by Informatics Inc. in response to an ARPA contractual requirement to monitor current Soviet developments in the field of MHD-magnetohydrodynamics. The period covered is 1975, and includes all known references to MHD topics in open-source Soviet bloc material published or cited in that year.</td>
</tr>
</tbody>
</table>

UNCLASSIFIED

ecurity Classification of This Page (When Data Entered)

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

387113'16
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>ii</td>
</tr>
<tr>
<td>1. MHD General</td>
<td>1</td>
</tr>
<tr>
<td>2. Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>3. Performance and Testing</td>
<td>16</td>
</tr>
<tr>
<td>4. Materials, Components and Auxiliaries</td>
<td>25</td>
</tr>
<tr>
<td>5. Duct Engineering and Fluid Dynamics</td>
<td>30</td>
</tr>
<tr>
<td>6. Magnetohydrodynamic Theory</td>
<td>42</td>
</tr>
<tr>
<td>7. List of Source Abbreviations</td>
<td>53</td>
</tr>
</tbody>
</table>
INTRODUCTION

This bibliography has been compiled by Informatics Inc. in response to an ARPA contractual requirement to monitor current Soviet developments in the field of magnetohydrodynamics. The period covered is 1975, and includes all known references to MHD topics in open-source Soviet bloc material published or cited in that year.

In so broadly-based a topic as MHD, many different disciplines provide pertinent input. Thus in addition to publications expressly devoted to MHD, there is a large body of articles from journals on high temperature combustion, fluid dynamics, refractory materials, plasma physics, magnetics, etc. which apply to various aspects of magnetohydrodynamics. For the present purpose the selections have been generally limited to those relevant to MHD power generation, although a much broader inclusion could be justified. The bibliography nevertheless indicates a wide range of sources; in addition to the regular serial journals there were over 60 publications of the collection, proceedings or monograph type appearing in 1975 alone in the USSR on MHD. Regrettably, many of this type of special publication are often unobtainable outside the USSR, owing to the Soviet practice of frequently publishing them in very small numbers.

For the sake of consistency, the topic breakdown used is the same as that of the comprehensive ERDA bibliography on magnetohydrodynamics,* published in 1975, with the exception that we have not included electrohydrodynamics as a topic. Again, with an enlarged coverage a more detailed topic breakdown than the six assigned categories herein would probably be more useful in future coverage of the Soviet MHD material. Russian sources are generally

abbreviated for simplicity; the full titles are listed at the end of the bibliography. A parenthesized entry (RZh, KL, etc.) stands for a secondary source in which the citation appears; all other cited sources are available in the Informatics Library. Russian authors publishing in U.S. journals have generally been omitted.

In summary, while not an exhaustive treatment of the subject, this collection is offered as a reasonably comprehensive listing of significant Soviet MHD publications in 1975.
1. MHD General

4. Electromechanics, automation and applied magnetogasdynamics. Moscow, 1974, 158 p. (RZhMekh, 1/75, 1B82).

5. Foliforov, V. M. All-Union technical seminar on use of MHD pumps and chokes in the economy. MG, no. 4, 1975, 15-152.

19. Wehner, F. 20,000 meters under the Pamirs [MHD generator used for seismic sounding]. Neues Deutschland, 6/7 Sept. 1975, p. 16.
2. Design and Development

28. Bazarov, C. P., and E. N. Kufa. On distribution of electric parameters and energy characteristics in the end zones of an MHD module. IN: Sb. 39, 1975, 93-101. (RZhElektrotekhenerg, 10/75, 10F4)

30. Belyakov, V. P., et al. On energy demand for supplying oxygen to a commercial power system with MHD and turbo generators. IN: Sb 33, no. 6, 1975, 18-24, (RZhElektrotekhenerg, 12/75, 12F29)

36. Breyev, V. V., and V. P. Panchenko. Quasi-unidimensional computation method for an MHD generator with approximated boundary layer. MZhiG, no. 4, 1974, 139-145. (RZhMekh, 1/75, 1B27)

40. Chemeris, V. T. An MHD power amplifier with distributed gain. IN: Sb 35, no. 1, 1974, 328-337. (RZhElektrotekhenerg, 2/75, 2F41)

41. Chemeris, V. T. Stator magnetic field and coil impedance of an induction machine with a uniform ladder winding. IN: Sb. 35, no. 1, 1974, 337-351. (RZhElektrotekhenerg, 2/75, 2F42)

43. Draytsun, I. A. Evaluating computation error on heat and mass transfer in the channel, under multimode operating conditions of an MHD generator. IN: Sb 35, no. 1, 1974, 243-252. (RZhElektrotekhenerg, 2/75, 2F33)

44. Freyberg, Ya. Optimizing the geometry of an MHD toroidal dynamo model. MG, no. 3, 1975, 3-7.

46. Garbuzov, V. N. and Ye. I. Zhanzhina. Calculating an open-cycle MHD plant, with allowance for axial nonuniformity of the magnetic field. IN: Sb. 33, no. 3, 1972, 18-34. (LZhS, 26/75, no. 85037)

49. Gekht, G. M. Integral characteristics of an alternating current conduction machine. MG, no. 3, 1974, 125-130. (RZhElektrotekhenerg, 3/75, 3F19)

54. Gol'tsova, Ye. I., and I. T. Alad'yev. Limit efficiency values of a liquid metal MHD generator in a binary thermal electric plant. IN: Sb 33, no. 6, 1975, 80-84. (RZhElektrotekhenerg, 11/75, 11F35)

55. Goncharov, M. V. Reaction field of the armature of an MHD machine, with allowance for anisotropy of the excitation poles. IN: Tr 10, no. 286, 59-64. (RZhElektrotekhenerg, 3/75, 3F20)

60. Ivanov, V. A., et al. **Analysis of layout solutions for a 1200 MW power plant with an MHD generator and turbogenerator**. IN: Sb 33, no. 5, 1974, 8-17. (RZhElektrotekhenerg, 1/75, 1F48)

61. Ivanov, V. V. **Inductive MHD machine**. Author's Certificate USSR, no. 430473, published Nov. 2, 1974. (RZhElektrotekhenerg, 8/75, 8F21P)

62. Ivanov, V. V. **Transverse edge effect in a two-channel linear induction pump**. MG, no. 4, 1975, 105-109.

64. Kim, K. I. **Analytical scheme for a binary power plant with a liquid metal MHD generator**. VAN UkrSSR, no. 6, 1974, 72-79. (RZhElektrotekhenerg, 1/75, 1F58)
electroconductive fluid layer*. IN: Sb 35, no. 1, 301-304. (RZh-Elektrotekhenerg, 2/75, 2F36)

and expansion channel, I. Theory*. MG, no. 2, 1975, 68-74.

68. Kirillov, V. V. et al. *Study of heat exchange and boundary layers in
an MHD generator duct with varying wall temperature*. Teploenergetika,
no. 11, 1975, 19-23.

69. Kirshtein, G. Kh., and V. I, Yakushonok. *Correlation between the
output signal and the vortex component of electric field in a conduction

70. Kolesnichenko, A. F. *Analysis of combined operation of an accelerator
and piston shaper in a liquid metal MHD device*. IN: Sb 35, no. 1, 1974,
305-310. (RZhElektrotekhenerg, 2/75, 2F37)

length and counterpressure for accelerating elements of a compressed-
flow liquid-metal MHD system*. IN: Sb 35, no. 1, 1974, 311-316.
(RZhElektrotekhenerg, 2/75, 2F38)

72. Konyayev, A. Yu., et al. *Allowing for shunt currents in calculating
the magnetic circuit of an induction machine*. MG, no. 4, 1974, 82-86.
(RZhMekh, 5/75, 5B43)

75. Kosachevskaya, Ye. A. Magnetohydrodynamic viscoplastic boundary layer for a constant-velocity external boundary. IN: Sb 3, 1974, 15-17. (RZhMekh, 1/75, 1B25)

82. Levental', G. B., et al. Technical and economical factors for an MHD plant working at peak load. IN: Sb 33, no. 6, 1975, 3-16. (RZhElektrotekhenerg, 12/75, 12F7)

86. Medin, S. A. *End effect in an optimal plane MHD generator with anisotropic conduction.* MG, no. 3, 1974, 99-104. (RZhMekh, 2/75, 2B48)

92. Ovsyannikov, A. M. Study of combined flows in radial nozzles of MHD generators. IN: Sb 24, v. 23, 1974, 103-125. (RZhMekh, 8/75, 8E46)

98. Pushkarev, O. Ye., and V. A. Reysig. Solving variational problems of an MHD generator with a dissociative working material. IN: Sb 33, no. 5, 1974, 51-56. (RZhElektrotekhenerg, 1/75, 1F40)

103. Shilova, Ye. I. Purging of nonconducting particles from liquid metals in a current-induced magnetic field. MG, no. 2, 1975, 142-144.

114. Vitkovskaya, O. N., and A. P. Rudakova. Air flow computation for an MHD acceleration channel, with allowance for resistivity and heat transfer at the channel wall. IN: Tr 2, v. 5, no. 4, 1974, 100-105. (RZhMekh, 2/75, 2E42)

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>Voprosy gazotermodinamiki energoustanovok</td>
<td>Probleme of gas thermodynamics of energy systems</td>
<td>Sb. nauchn. tr., Vyp. 1 Khar'kov aviats. in-t, Khar'kov, 1974, 164 p. (RZhElektrotekhenerg, 8/75, 8F2K)</td>
</tr>
<tr>
<td>119</td>
<td>Vutsens, A. P.</td>
<td>Computation of e-m heating with an inductor inside a cylindrical cavity</td>
<td>MG, no. 3, 1975, 135-142.</td>
</tr>
<tr>
<td>121</td>
<td>Yakovlev, V. S. et al.</td>
<td>Design features of a magnetic system for MHD experiments</td>
<td>IN: Sb 35, no. 1, 1974, 77-84. (RZhElektrotekhenerg, 2/75, 2F14)</td>
</tr>
<tr>
<td>122</td>
<td>Yakubenko, A. Ye.</td>
<td>Study of end losses in a planar channel with terminal electrodes, using arbitrary magnetic Reynolds numbers</td>
<td>IN: Tr 7, no. 32, 1974, 149-157. (RZhMekh, 6/75, 6B19)</td>
</tr>
<tr>
<td>125</td>
<td>Zholudov, Ya. S., and M. M. Nekhamin.</td>
<td>Computation of dynamic boundary layer and friction in an MHD channel</td>
<td>IN: Sb 33, no. 5, 1974, 78-84. (RZhElektrotekhenerg, 1/75, 1F41)</td>
</tr>
<tr>
<td>126</td>
<td>Zubatov, N. G. et al.</td>
<td>Dimensions of the energy exchanger and its real power efficiency in an MHD system</td>
<td>IN: Sb 33, no. 3, 1972, 64-71. (LZhS, 26/75, no. 85036)</td>
</tr>
</tbody>
</table>
3. Performance and Testing

128. Alikishibekova, T. M. Plasma from the combustion of mazut and its use as the working material in an MHD generator. IN: Sb 36, 1974, 90-91. (RZhElektrotekhenerg, 4/75, 4F11)

137. Belinskiy, V. V., et al. On plasma and electric field parameters in an MHD generator channel. IN: Sb 35, no. 1, 1974, 3-15. (RZhElektrotekhenerg, 2/75, 2F6)

148. Davydov, Yu. V., and P. A. Usachev. Theoretical and experimental evaluation of ferromagnetic system behavior in magnetic and shear fields. IN: Sb 17, 1974, 46-84. (RZhMekh, 5/75, 5B40)

150. Derevyanko, V. A., and V. S. Sokolov. On flow separation from channel electrodes, under strong hydromagnetic interaction caused by effects of anisotropic conductivity. IAN SO SSSR, no. 8, 1974, 21-26. (RZhMekh, 1/75, 1B48)

162. In the Academy's Institute of High Temperatures [New output from the U-25 MHD generator]. VAN, no. 8, 1975, 126.

166. Kapustyanenko, G. G. et al. Results of studies on thermodynamic acceleration of a fluid. IN: Sb 35, no. 1, 1974, 288-293. (RZhElektrotekhenerg, 2/75, 2F34)

169. Kirillov, V. V., and V. D. Semenov. Study of heat exchange in the channel of an open cycle MHD generator. IN: Sb 33, no. 6, 1975, 45-49. (RZhElektrotekhenerg, 12/75, 12F24)

174. Kuznetsov, V. I. Results of an experimental study on energy dissipation in the combined accelerator/injector chamber of an MHD device. TVT, no. 4, 1975, 836-842.

186. Polishchuk, V. P. *Industrial application of magnetodynamic devices.* MG, no. 1, 1975, 118-128.

197. Vliyaniye zoly na rabotu elementov kanala MGD generatora ustanovki U-02 (Effect of ash on duct elements of the U-02 MHD generator). In-t vysokikh temperatur, AN SSSR (IVTAN), Moskva, 1974, 28 p. (KLDV, 9/75, no. 15758)

4. Materials, Components and Auxiliaries

208. Ganefel'd, R. V. **Voltage pulsation effects on electrical strength of MHD channel insulation.** IN: Sb 35, no. 1, 1974, 112-115. (RZhElektrotekhenerg, 2/75, 2F19)

209. German, V. O., et al. **On using a potassium nitrate mixture for erosion protection of electrodes in an MHD generator.** TVT, no. 6, 1974, 1323-1325. (RZhElektrotekhenerg, 4/75, 4F8)

220. Nechiporenko, Ye. P. et al. Work function of a Ti-Zr binary carbide in 10^{-5} to 10^{-9} torr vacuum, as a function of N_2 and O_2 level. TVT, no. 4, 1975, 879-872.

221. Oleynik, G. S. and L. A. Shipilova. Effect of sintering conditions on microstructure and electrical characteristics of self-binding silicon carbide. Por. metal. no. 9, 1975, 30-34.
222. Oleynik, G. S. Operating mechanism of a silicon carbide polycrystalline electrode in the channel of an open-cycle MHD generator. IN: Sb 33, no. 5, 1974, 66-70. (RZhElektrotekhenerg, 1/75, 1F55)

224. Poltavtseva, I. S., et al. Porous cermet materials for electrodes with enhanced gas permeability. IN: Sb 33, no. 5, 57-62. (RZhElektrotekhenerg, 1/75, 1F54)

230. Sozanski, A. Rare earth metal chromites. Szklo i ceram, v. 25, no. 10, 1974, 303-307. (RZhKh 19M, 7/75, 7M76)

237. Zholudov, Ya. S. Analyzing the efficiency and stability of the combustion chamber for an MHD generator. IN: Sb 38, no. 1, 1974, 14-23. (RZhElektrotekhenerg, 8/75, 8F12)

5. Duct Engineering and Fluid Dynamics

242. Afonin, A. A., and V. I. Bondarenko. Use of traveling mechanical waves for transporting liquid, solid or loose materials. IN: Sb 13, 1974, 156-161. (RZhMekh, 3/75, 3B54)

249. Azatyan, L. D. Diffraction of a strong magnetogasdynamic shock wave around a wedge. IAN Arm, v. 27, no. 5, 1974, 47-62. (RZhMekh, 7/75, 7B14)

256. Bondarenko, V. I., and A. A. Afonin. Fluid hydrodynamics in a channel with deforming boundary surface. IN: Sb 26, no. 51, 1975, 113-118. (RZhMekh, 9/75, 9B20)

263. Chameyeva, N. A. Study on effects of electric conductivity in the channel wall and heat dissipation on the natural convection in a nonuniform magnetic field. IN: Sb 5, 1973, 131-138. (RZhMekh, 1/75, 1B33)

264. Dargeyko, M. M. Study of wave propagation in magnetoviscoelastic media. IN: Sb 31, no. 27, 1975, 44-49. (RZhMekh, 12/75, 12B8)

265. Dedkov, A. N. On optimal conditions for transition through sonic speed in an MHD channel. IN: Sb 35, no. 1, 1974, 221-230. (RZhElektrotekhenerg, 2/75, 2F31)

278. Ivanov, L. P. Convective stability of a ferromagnetic liquid in a vertical channel heated from below. IN: Sb 11, 1974, 44-46. (RZhMekh, 3/75, 3B39)

281. Kapustyanenko, G. G. Plane flow of an electrically conductive fluid around a gas cavity in a magnetic field. IN: Sb 26, no. 51, 1975, 130-133. (RZhMekh, 9/75, 9B8)

282. Kashkarov, V. P. Newtonian fluid jet with a free surface in a magnetic field. IN: Sb 4, 1974, 226. (RZhMekh, 1/75, 1B26)

284. Keleberdenko, S. B. Form of liquid equilibrium in a cylinder under influence of weak gravitational and magnetic fields, with allowance for surface tension force. Stability of equilibrium forms. IN: Sb 19, 1974, 128-142. (RZhMekh, 7/75, 7B3)

286. Khonichev, V. I., and V. I. Yakovlev. **Secondary flow originating in a rotating cylinder of incompressible conductive fluid at abrupt switching of a transverse magnetic field.** ZhPMTF, no. 5, 1974, 28-36. (RZhMekh, 2/75, 2E15)

296. Kuznetsov, A. P., and A. S. Pleshanov. **On flow behind a detonation wave front in a transverse magnetic field at small Re.** FGiV, no. 5, 1974, 784-788. (RZhMekh, 3/75, 3B21)

297. Latyshev, V. M., et al. **Computation studies of the channel of a 1200 MW MHD power unit, with nominal and partial modes.** IN: Sb 33, no. 6, 1975, 14-18. (RZhElektrotekhenerg, 11/75, 11F13)

298. Lazarev, P. P., and A. S. Pleshanov. **Quasi-unidimensional computation of a real MHD channel at small Re.** MG, no. 3, 1974, 90-98. (RZhElektrotekhenerg, 3/75, 3F5)

302. Mareyev, V. A. **Self-similar magnetogasdynamic flows associated with detonation and combustion waves.** MZhiG, no. 1, 1975, 99-107. (RZhMekh, 7/75, 7B9)

304. Naletov, V. V. **Internal and surface noise in the turbulent boundary layer of a conductive fluid.** IN: Sb 35, 1974, 193-197. (RZhMekh, 1/75, 1B20)

306. Nedospasov, A. V., and V. D. Khait. **Nonlinear analysis of unstable magnetohydrodynamic flow.** TVT, no. 4, 1974, 835-841. (RZhElektrotekhenerg, 1/75, 1F42)

309. Odnorozhenko, I. G., et al. **Comparative studies of various separator models for two-phase compressed flows.** IN: Sb 33, no. 6, 1975, 89-93. (RZhElektrotekhenerg, 11/75, 11F38)

310. Padalka, V. G. **Dynamics of plasma flow in nonuniform transverse magnetic fields.** IN: Sb 42 1974, 199-238. (RZhF, 5/75, 5G388)

312. Pavlov, K. B. *On MHD flow of an incompressible viscous fluid caused by deformation of a flat surface.* MG, no. 4, 1974, 146-147. (RZhMekh, 5/75, 5B19)

315. Regirer, S. A. *Outflow of conductive fluid through a plane slotted channel opening.* IN: Tr 7, no. 32, 1974, 143-148. (RZhMekh, 6/75, 6B15)

319. Shchegolev, G. M. *Feasibility of studying MHD channel flow with a model.* IN: Sb 33, no. 5, 1974, 84-94. (RZhElektrotekhenerg, 1/75, 1F39)

322. Sher'yazdanov, G. B. Semifinite laminar flow of an incompressible conductive liquid on a moving plate. IN: Sb 4, v. 2, 1974, 245-246. (RZhMekh, 2/75, 2B37)

325. Sipliviy, B. N. Approximate computation of the velocity field in a planar MHD channel. IVUZ Elektromekh, no. 2, 1975, 213-215. (RZhElektrotekhenerg, 8/75, 8F6)

326. Siplivyy, B. N. On steady-state conductive fluid flow in a circular channel with a radial magnetic field. IVUZ Elektromekh, no. 3, 1975, 327-330. (RZhElektrotekhenerg, 8/75, 8F16)

331. Tsebers, A. O. *On the magnetization models of a ferromagnetic colloid in a hydrodynamic flow.* MG, no. 4, 1975, 37-44.

332. Usikov, A. Ya., et al. *Use of SHF ionization to increase electric conductivity of cold boundary layers.* IN: Sb 33, no. 7, 1975, 28-33. (RZhElektrotekhenerg, 11/75, 11F21)

333. Uvarov, V. V., et al. *Calculation of turbulent boundary layer at the insulated channel wall of an MHD generator.* IN: Sb 33, no. 6, 1975, 55-60. (RZhElektrotekhenerg, 11/75, 11F11)

337. Volchek, B. B., et al. *Effect of nonuniform velocity distribution and limited channel width on flow characteristics in a traveling magnetic field.* MG, no. 3, 1974, 105-112. (RZhMekh, 2/75, 2B41)
338. Yakhot, A. O. **Effective internal impedance of a channel with variable cross-section and electrodes.** MG, no. 2, 1974, (RZhMekh 1/76, 1B44)

340. Yantovskiy, Ye. I. **On the analogy between transition to two-dimensional turbulence and oriented magnetization.** MG, no. 2, 1974, 135-138. (RZhMekh, 1/75, 1B38)

343. Zaytsev, S. G., et al. **Study of characteristics of separation originating in a supersonic plasma flow passing through a transverse magnetic field.** MZhiG, no. 1, 1975, 86-91. (RZhMekh, 5/75, 5B15)

344. Zhelnorovich, V. A. **On Newtonian equations for fluids with internal magnetic and mechanical momenta.** MZhiG, no. 6, 1974, 155-158. (RZhMekh, 3/75, 3B1)
6. Magnetohydrodynamic Theory

345. Ageyev, A. N. *Electrodynamic excitation of ultrasound in liquid metals*. MG, no. 4, 1974, 135-140. (RZhMekh, 5/75, 5B45)

346. Alekseyev, V. V. *On bifurcation of stationary solutions to the MHD equation*. Mat. analiz i yego pril, v. 6, 1974, 20-30. (LZhS, 37/75, no. 123076)

350. Azatyan, L. D. *Obtaining a nonlinear solution in the vicinity of a magnetosonic wave*. IN: Tr 3, no. 3(127), 1974, 32-37. (RZhMekh, 6/75, 6B34)

373. Kirshteyn, G. Kh., and V. A. Timofeyev. The discontinuity effect of magnetic field flux on conversion characteristics of electromagnetic discharges. MG, no. 4, 1975, 139-142.

374. Kiselev, M. I., and A. Mayrykov. Study on fluid flow stability in a cylindrical shell. IN: Tr 1, no. 73, 1974, 26-32. (RZhMekh, 1/75, 1B34)

378. Kostenko, P. P., and S. D. Frolov. Methods for computing the makeup of the working material in an open-cycle MHD generator. IN: Sb 38, no. 1, 1974, 3-8. (RZhElektrotekhenerg, 8/75, 8F10)

380. Kozlov, V. B. Thermodynamics of a multistage injection cycle for a liquid metal MHD converter. TVT, no. 6, 1974, 1244-1251. (RZhElektrotekhenerg, 4/75, 4F14)

383. Ladyzhenskaya, O. A., and V. A. Solonnikov. On linearization and invariant sets for magnetohydrodynamic problems. IN: Sb 1, 1974, 83-130. (RZhMekh, 1/75, 1B1)

391. Naletov, V. V. *On plasma flow noise in a magnetic field.* IN: Sb 5, no. 1, 1974, 190-193. (RZhF, 1/75, 1G102)

392. Naletov, V. V. *On sound emission from locally-isotropic turbulence.* IN: Sb 35, 1974, 198-201. (RZhMekh, 1/75, 1B14)

396. Pavlov, A. M. *Some characteristics on motion of solids with weak conductivity near a fixed point in a magnetic field.* IN: Sb 4, v. 2, 1974, 51-53. (RZhMekh, 2/75, 2B13)

399. Petrosyan, L. G. *On a problem in asymmetrical magnetohydrodynamics.* IAN Arm., no. 6, 1974, 44-55. (RZhMekh, 7/75, 7B8)

401. Poberezhskiy, L. P., and A. O. Yakhot. Distribution of potential in a channel with Hall effect and a nonuniform magnetic field. MG, no. 4, 1974, 57-64. (RZhElektrotekhenerg, 5/75, 5F6)

402. Rashchepkin, A. P. Hall voltage in a plasma flow in an external alternating magnetic field. IN: Sb 2, 1975, 33-40. (RZhElektrotekhenerg, 10/75, 10F5)

403. Repa, I. I. On nonlinear oscillations of electric current in a plasma. IN: Sb 35, no. 1, 1974, 201-208. (RZhElektrotekhenerg, 2/75, 2F29)

405. Rvachev, V. L., and T. I. Sheyko. Three-dimensional distribution of electric field in a cylindrical channel. MG, no. 4, 1974, 53-56. (RZhMekh, 5/75, 5B35)

409. Sapunkov, Ya. G. Natural convection in a strong magnetic field. MG, no. 4, 1974, 24-31. (RZhMekh, 5/75, 5B23)
410. Sapunkova, O. M. Study of one rigorous solution of an MHD equation.
IN: Aerodinamika, Saratov, no. 3(6), 1974, 110-119. (RZhMekh, 7/75, 7B7)

412. Sedova, G. L. Plane waves and small disturbances in magnetized or polarized media. MZhG, no. 6, 1974, 114-120. (RZhMekh, 3/75, 3N13)

413. Selezov, I. T. Propagation and diffraction of waves in an MHD medium with elastic inclusions. IN: Sb 21, 1974, 641-648. (RZhMekh, 7/75, 7B21)

414. Semenov, V. S. Applying a ray method to stationary equations of electrodynamics in a conducting liquid. ZhTF, no. 8, 1975, 1584-1590. (RZhMekh, 12/75, 12B4)

419. Shchegolev, G. M. Comparative study of heat exchange and resistance in the channel of an MHD generator. IN: Sb 33, 1975, no. 7, 33-40. (RZhElektrotekhenerg, 12/75, 12F26)

422. Sipliviy, B. N. Approximate computation of the velocity field in a circular and planar MHD channel. MG, no. 2, 1975, 45-53.

426. Taktarov, N. G. Surface waves in a viscous ferromagnetic fluid. MG, no. 4, 1974, 143-145. (RZhMekh, 5/75, 5B11)

433. Tsebers, A. O. *Flow of dipole fluids in external fields.* MG, no. 4, 1974, 3-18. (RZhMekh, 5/75, 5B34)

435. Tseskis, A. L. *On an invariant of the Loytsvansky type in MHD.* MG, no. 2, 1974, 133-135. (RZhMekh, 1/75, 1B4)

438. Ul'trivanov, I. P. *Dispersed control of a liquid conductor in a magnetic field.* IVUZ Avia, no. 2, 1975, 135-139. (RZhMekh, 9/75, 9B6)

443. Yakubov, I. T. Estimating the electrical conductivity of combustion products in an open-cycle MHD generator. TVT, no. 6, 1974, 1321-1322. (RZhElektrotekhenerg, 5/74, 4F10)

446. Zhelnorovich, V. A. Equations for liquids with internal magnetic and mechanical momenta. MZhG, no. 5, 1974, 174-177. (RZhMekh, 4/75, 4B1)

448. Zhevlakov, L. N. Conditions for quasistatic equilibrium of a heavy incompressible melt with electric conductivity in an oscillating magnetic field. IN: Sb 20, 1974, 36-41. (RZhMekh, 7/75, 7B4)

7. SOURCE ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Atomnaya energiya</td>
</tr>
<tr>
<td>AN SSSR PM</td>
<td>Akademiya nauk SSSR. Institut prikladnoy matematiki. Moscow.</td>
</tr>
<tr>
<td>DAN SSSR</td>
<td>Akademiya nauk SSSR. Doklady</td>
</tr>
<tr>
<td>FGiV</td>
<td>Fizika goreniya i vzryva</td>
</tr>
<tr>
<td>GAO</td>
<td>Glavnaya Astronomicheskaya Observatorija, Pulkovo.</td>
</tr>
<tr>
<td>IAN Arm</td>
<td>Akademiya nauk Armyanskaya SSR. Izvestiya Mekhanika.</td>
</tr>
<tr>
<td>IAN SO SSSR</td>
<td>Akademiya nauk SSSR. Sibirskoye otdeleniye. Izvestiya</td>
</tr>
<tr>
<td>IVUZ Avia</td>
<td>Izvestiya vysshikh uchebnikh zavedeniy. Aviatsionnaya tehnika</td>
</tr>
<tr>
<td>IV'Z Elektromekh</td>
<td>Izvestiya vysshikh uchebnikh zavedeniy. Elektromekhanika.</td>
</tr>
<tr>
<td>KL</td>
<td>Knizhnaya letopis'</td>
</tr>
<tr>
<td>KLDV</td>
<td>Knizhnaya letopis' - Dopolnitel'nuyy vypusk.</td>
</tr>
<tr>
<td>LZhS</td>
<td>Letopis' zhurnal'nykh statey</td>
</tr>
<tr>
<td>MG</td>
<td>Magnitnaya gidrodynamika</td>
</tr>
<tr>
<td>MZhiG</td>
<td>Akademiya nauk SSSR. Izvestiya. Mekhanika zhidkosti i gaza.</td>
</tr>
<tr>
<td>PM</td>
<td>Prikladnaya mekhanika</td>
</tr>
<tr>
<td>PMM</td>
<td>Prikladnaya matematika i mekhanika</td>
</tr>
<tr>
<td>Por. Metal</td>
<td>Poroshkovaya metallurgiya</td>
</tr>
<tr>
<td>RBL</td>
<td>Russian Book List</td>
</tr>
<tr>
<td>RZhElektrotekhenerg</td>
<td>Referatívnyy zhurnal. Elektrotekhnika i energetika, 21F</td>
</tr>
</tbody>
</table>

53
Sb 1 - Sbornik. Materialy Vses. shkoly po differents. uravneniyam s beskonech. chisлом nezavisimykh peremennykh i po dinamichesk. sistemam s beskonech. chisлом stepeney svobody. Dilizhan, AN Arm SSR.

Sb 2 - Preobrazovatel'n. i elektroizmerit. Tekhnika, Kiev.

Sb 3 - Teor. i prikl. mekh.

Sb 4 - Matematika i mekhanika, Alma-Ata.

Sb 5 - Sovrem. probl. teplovoy gravitats. konvektsii, Minsk.

Sb 6 - Uralsk. konf. po primeneniyu magnit. gidrodinam. v metallurgii, Perm.

Sb 7 - Raschet na prochnost' i zhestkoost' elementov s-kh mashin i tekhnol oborud. Rostov na Donu.

Sb 8 - Mosk. obl. ped. in-t, Moscow.

Sb 9 - Veses. konf. po primeneniyu magnit. gidrodinam. v metallurgii, Perm.

Sb 10 - Materialy Konf. molodykh uchenykh Mordovsk, un-t. Estestv. i tekhn. n. Saransk.

Sb 11 - Sovrem. probl. teplovoy gravitats. Minsk.

Sb 12 - VI Vses. konf. po generatoram nizkotemperatur. plazmy. Frunze.

Sb 13 - Elektroenerg. i magnit. gidrodinamika, Kiev.

Sb 14 - Fiz. aerodispersn. sistem.

Sb 15 - Chisl. metody mekh. splosh. sredy.

Sb 16 - Gidromekhanika. Moscow

Sb 17 - Protsessy i apparaty v magnitniy pole. Apatity.

54
Sb 18	-	Geofizicheskiye issledovaniya, Minsk.
Sb 19	-	Dinamika i ustoychivost' mnogomern. sistem, Kiev.
Sb 20	-	Raboty po mekhaniki sploshnoy sredi, Tula.
Sb 21	-	Izbranyye problemy prikladnoy mekhaniki, Moscow.
Sb 22	-	Elektronika i modelirovaniye, Kiev.
Sb 23	-	Teploobmen. Moscow.
Sb 24	-	Nauchnyy institut' vychislitel'nogo tsentra, Moskovskiy universitet, Moscow.
Sb 25	-	Raspredelennoye upravleniye protsessami v sploshnikh sredakh, Kiev.
Sb 26	-	Problemy tekhnicheskoj elektrodinamiki, Moscow.
Sb 27	-	Aerofizicheskiye issledovaniya, Novosibirsk.
Sb 28	-	8th Rzh. soveshchaniya po magnit. gidrodinamike, Riga.
Sb 29	-	Teplo. i massoobmen v khimicheskoy tekhnologii, Kazan'.
Sb 30	-	Matematicheskaya fizika, Moscow.
Sb 31	-	Kibernetika i vychislitel'naya tekhnika, Moscow.
Sb 32	-	Energeticheskiy institut im. G. M. Krzhizhanovskogo, Moscow.
Sb 33	-	Teplotekhnicheskiye problemy pryamogo preobrazovaniya energii, Kiev.
Sb 34	-	Stroyeniye, svoystva i primeneniyte metallov, Moscow.
Sb 35 - Voprosy MGD preobrazovaniya energii. Kiev.
Sb 37 - Energetika, Kuybyshev.
Sb 38 - Voprosy gazotermodinamiki energoustanovok. Khar'kov.
Sb 39 - Energetika, Voronezh.
Sb 40 - Institut vysok. temperatur, AN SSSR, Moscow.
Sb 41 - Magnitnogidrodinamicheskiye ustanovki. Moscow.
Sb 42 - Fiz. i primenenye plazm uskoriteley, Minsk.
Sb 43 - Teplofizika i termodinamika, Sverdlovsk.
Sb 44 - Fiz. institut, AN SSSR, Moscow.
TVT - Teplofizika vysokikh temperatur
Tr 1 - Trudy. Frunze politekhnicheskiy institut Frunze.
Tr 2 - Tsentr. Aero-Gidrodinam. Institut, Moscow.
Tr 3 - Yerevan un-t. Yestestv. nauk.
Tr 4 - Molodoy nauch. robotnik, Yerevan.
Tr 5 - Mosk. energ. in-ta., Moscow.
Tr 6 - Mosk. fiz. -tekhn. in-ta, Moscow.
Tr 7 - Inst. mekh., Mosk un-ta, Moscow.
Tr 8 - Kazan'. Aviatsionnyy institut.
Tr 9 - Matematicheskiy Institut, AN SSSR, Moscow.
Tr 10 - Moskovskiy Aviatsionnyy Institut, Moscow.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr 11</td>
<td>Tallin Politekhnicheskiy Institut, Tallin.</td>
</tr>
<tr>
<td>Tr 12</td>
<td>Azerb. nauch. -issled. institut energetiki, Baku.</td>
</tr>
<tr>
<td>UFN</td>
<td>Uspekhi fizicheskikh nauk</td>
</tr>
<tr>
<td>VAN</td>
<td>Akademiya nauk SSSR. Vestnik</td>
</tr>
<tr>
<td>VAN UKrSSR</td>
<td>Akademiya nauk Ukrainskoy SSR. Vestnik</td>
</tr>
<tr>
<td>VLU</td>
<td>Leningradskiy universitet. Vestnik</td>
</tr>
<tr>
<td>ZhETF</td>
<td>Zhurnal eksperimental'noy i teoreticheskoy fiziki.</td>
</tr>
<tr>
<td>ZhETF P</td>
<td>Pis'ma v Zhurnal eksperimental'noy i teoreticheskoy fiziki.</td>
</tr>
<tr>
<td>ZhPKh</td>
<td>Zhurnal prikladnoy khimii.</td>
</tr>
<tr>
<td>ZhPMTF</td>
<td>Zhurnal prikladnoy mekhaniki i tekhnicheskoy fiziki.</td>
</tr>
<tr>
<td>ZhTF</td>
<td>Zhurnal tekhnicheskoy fiziki.</td>
</tr>
<tr>
<td>ZhTF P</td>
<td>Pis'ma v Zhurnal tokhnicheskoy fiziki.</td>
</tr>
</tbody>
</table>