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SUMMARY

* lEnergy solutions are excellent analysis proct-durcs for predicting residual strains or de-
formations in structural elements when transient behavior is ot* little interest. In this report,
we denionstrate how energy proceduces call be used in i igid-plast ic structural solut ions W le
memihers are loaded either impulsively or quasi-statically by blast waves.

In the inipalsive loading realm, the kinetic energy imparted to a structural member is
equated to the plastic strain energy. whereas in the quasi-statit. loadinug icalm,. the work per-

ýk ~formied in deforming a structural member is equated to the plastic strain energy. Ani assumed
first mode structural deformation pattern works well when calculating plastic strain energy
in either of tile loading realms. Experimental test data oin deformied simply-supported and
-:lntiiever beams. clamped circillar plates. and clamped rectangular plates demonstrate the

validity ot' these solutions.

The lest data onl different types of'structural elements are important, as, the beam data
involve only bending behavior, the Lircular plates have both bending and extensionai action,
and the rectangular plates introdukce shearing behavior into the strain energy calculations.
Because all solutions are closed-formn ones. design formulae reSu~lt which can be use.d to eva!-
tiate plastic deformiation in blast loaded structural members.

This report is at rep~rinlt of a papecr presented at the I (Ph Explosive Safecty Seminar,
H ollywvood Beach. Florida. September 1 974.
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The investipation described in this report was autlioriz,ed unlder PA. A 4932. Project
575 1264. The work was performecd At Southwest Research Institute under Contracts
DAAI)05-74-C-075 I and DAAA 15-75-C-0083.

Thec use of' trade names in this report does not conIStit Ute all Official endorsement or
approval of' the uts,, of'suich commercial hardware or software. Yhis report may not be cited
for the purposes of advertisemient.

Thec informationi ill this document has been cleared for release to thle general public.
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ENERGY SOLUTIONS FOR PREDICTING DEFORMATIONS
IN 80-AST-LOADED STRUCTURES

I. INTRODUCTION

Energy solutions are excellent analysis procedures for predicting residual strains or
"deformations in structural components whenever transient (time-dependent) behavior is of
little interest. Although schools readily teach energy procedures for obtaining elastic solu-
lions, few investigators apply the approach to dynamic plasticity rroblems.

Dynamic rigid-plastic energy solutions began in the early 1950's when Lee and
Symonds[ II used the static plastic-hinge concept, considered beam inertia, and propagated
a traveling hinge to analytically obtain :ie upper bound for permanent deformation in a
beam under a transverse load. Their Brown University associates and graduates such as S. R.
Bodner. W. Prager. N. Jones. J. B. Martin, R. M. Haythornthwaite and others then added
refinements, illustrations of which are given in Refs. 2-6. It was J. E. Greenspon in the 1960 's
who pointed out that one could obtain solutions without going through the details of propa-
gating a plastic hinge along structural members [ Refs. 7-11 1. Greenspon noted that the resid-
ual strain energy stored in a plastically deformed member could be calculate(; by assuming a
final deformed shape. This strain energy was then equated to the energy flu( in an exp!osive
blast wave. 1111 We disagree with this last step, which made deformations independent of
structural orientation relative to the enveloping blast wave. thus ignoring all important effect
observed in many experiments. In addition. Greenspon's procedure forces pressures and
impulses in the blast wave to obey the relationship P1 = constant, whose asymptotes for both
pressure and impulse are P = 0 and / 0 0. The response of real targets is related to non-zero
P and I limits, so this conclusion is also unacceptable.

We would emphasize that Greenspon was correct in his strain energy estimation procedures.
E-,timates of structural deformation would have been correct had he equated strain energy to
the kinetic energy imparted to the structure for short duration impulsive loads. When durations
are long relative to the structural response time. the strain energy is equated to the work per-
formed when the peak load moves through the distance that the structure deforms. Hence. two
separate procedures are required, one to obtain the solution for the impulsive loading realm.
and the other to obtain the solution for the quasi-static loading realm. We will proceed to illus-
trate these procedures by computing results and comparing the test data. Our first illustration
is a rheological model whose exact solution can be obtained and compared to the answers given
by energy procedures.

II. SINGLE DEGREE-OF-FREEDOM SYSTEMS

Consider first a single-degree-of-freedom. rigid-plastic system as in Figure Ia. The motion
of the mass nm is resisted by a Coulomb friction element f when the blast load p(t) is applied to
the structure. We will approximate the blast loading with an exponential decay as in Figure I b

"7.



~t/T

T t."
(a) (b)

FIGURE I, RIGID-PLASTIC. SINGLE-DEGREE-OF-FREjEDOM DAMAGE MODEL

(where P is the maximum applied force and T is the time constant associated with the duration
ot loading). If P/f' I .0. we have the trivial case where the residual deformation X equals 0
because the mass never moves. If P/f 1.0, we can write the differential equation of motion: I

d'x
pt.- i f dI2  (I) 2

d/1

By direct integration, we obtain for the case of zero initial velocity, the velocity relationship:

S. .. . - (2)dt m

Integrating again, we obtain for the case of zero initial displacement, the displacement equation:

. [ e- T -- ! (3),,, 2,( P, ,( ý) , - 1

Motion continues until the velocity. Eq. (2), equals zero or until:

e-/T +()() = 1o.0 (4)

We cannot explicitly solve for t/Tin Eq. (4), as it is a transcendental equation: therefore.
we assume values of Pif. solve for uT, and substitute into the displacement equation [Eq. (3)1

to obtain the maximum deformation X. Table I gives the results of such a calculation.

The maximum deformation X in the third column of Table I has been made nondimen-

sional by dividing the left and right sides of Eq. (3) by (PT2 )/m. A solution can be presented .

for the maximum displacement by plotting (Xm)/(PT2 ) versus P/lj We have elected to divide
P/fhby (Xm)/(PT 2 ) to form a new fourth column in Table I and to plot this new column
(PT) I(Xmf) versus P/f The reason for this manipulation is that the product PT equals the
applied total impulse /. and in this manner we create a scaled load-impulse or P-I diagram.
The solid line in Figure 2 is this scaled P-1 diagram for a simple rigid-plastic structure.

8



TABLE I

11___/_T P/f (XMO/(OT 2 ) (, If(XmJ)

_ 1.00 0
0.01) 1.033 0.001 1033
0.35 1.18 0.003 .194
0.50 1.27 0.009 141
0.75 I.42 0.024 59.2
1.00 1.58 0.052 30.3
1.50 1.94 0.143 13.6

S2.00 2.31 0.270 8.56
100 3.16 0.630 5.02
4.00 4.08 1.06 3.84
6.00 6.01 2.00 3.0 1
1).00, Q.00 3.50 2.57S13.0 13.0 5.50 2.36

20.0 20.0 9.00 2.22
35.0 35.0 16.50 2.12
50.0 50.0 24.0 2.08S75.0 75.0 3(1.5 2.05

100.0 100.0 49.0 2.04

100

P P-I DIAGRAM FOR
f RIGID-PLASTIC MODEL

10

1 10 2 100 1000

Xmf
IIGUiRI= 2. P.! I)I..AGRAM IOR RIIII)D-P ASI IC SYSII-EM

Ohserve in Table I and Figure 2 that whenever /2 /(X\ml) is gFeater than about 60. thie

duration of loading T is larger than the response time i and JP/f equals 1.0. Similarly. when-

ever P/f is greater than about 20. durations of Ioading T are smaller than the response times t

9



of the responding structure, and P1/(XmJ) equals 2.0. The energy solutions which we will
apply estimate both of these asymptotes.

The strain energy U stored ir. plastic deformation is given by:

U --fX (5)

The kinetic energy KE imparted to thc mass equals:

IE I PVe [1 1-- (6)

The work h' done by the maximum force P acting through the distance X is:

ItV PV (7)

Equating the strain energy U. Eq. (5). to the kinetic energy KE, Eq. (6), yields the asymptote

for the impulsive loading realm or:

12
- = 2.0 (impuisive loading realm) (8)

The other asymptote is obtained by equating U. Eq. (5), to the work IV, Eq. (7).

P
P 1.0 (quasi-static loading realm) (9)

Had we wished to calculate maxirmum elastic deformations rather than plastic ones. the

same procedures would apply. Replacing the Coulomb friction element with a linear elastic

spring ir, Figure Ia would have yielded the analytical solid curved line shown in Figur,. 3.

This solution also has asymptotes for the impulsive and quasi-static loading realms that can be

obtained L1zing energy procedures. The strain energy in an elastic system would be given by
Eq. (10) rather than Eq. (5).

Ui-2kX2  (10)

In an elastic system the kinetic energy KE and work It' are still given by Eqs. (6) and (7).

respectively. For an elastic system, equating Eq. (10) to Eq. (6) yields the asymptote for the

impulsive loading realm.

X

10



IEGA

or

* P/k _ (impulsive loading realn) (I2)

Similarly. equaling Eq. 10) to Fq. 17) yields the quasi-static loading realm asy*ptoht,-

* = 2.0 (quasi-static loading realm) 3)

Pl/

Both the impulsive loading realm asymptote and quasi-static loading realm asymptote are
shown in Figure 3. Figure 3 illustrates that, il" these asymptotes are known for an elastic a-,
we!l as plastic system, the deformations can be predicted using energy procedures.

As has been illustrated in these simple models, the principles are as follohws:

(I)I To estimate the impulsive loading realm 3itruclural deformation asymptotc. estimate
the strain energy in a deformed structure :'nd cquate thlik; strain energy to the kinue;:
energy imparted to the structure.

(2) To obtain the quasi-static structural ucformation asympt et. cI.IUio ' the stratw en cre:
to the work perl'ormcd by the peak ottcc dellectiin! with the ,r~uctt~re.

We are now prepared to illustrate these principtes as they arc applih d to beam. plate,. anid simi-
lar more cornplcx structural components which arc loaded by blast waves or other t ransico'
pulse,,. The fir.:t structural components that we wil! st udy ar: cantilever he;as.

Ill. BLAST LOADED CANTILEVER BEAMS

Consider a clamped cantilever beam of rectangular cross section as depicted in Figure 4.

"We will assumc that the defornmed shape for this structural component is given by

it'w [I -Iv e, s CIS2

Notice that the assumed detonned shape has no deflection and no slope at x 0 and no
monment at x = L. The maximum deformation and ma ximul slope occur at x z !.. ad the
maximum moment occurs at .v 0. These are the correct boundary conditions. A good solti-
tion does depend upon selecting an appropriate defornmed shape.

Because no membrane action is deve!oped. the strain en'rgy is d;ssipated in bending. In
anl elastic member, the bending strain enerey is giveni by:

II
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1:1(1'RV. 4. SCIII-MATIC I)RAWIN(,01: CI AMPI])
CAN I II INI.R fil- V.1

° ..

U=f (15)
_E1:

where the momlent Al is equal to E/(d' w/dx -). Differentiating E-q. (1)and suabstilituting
into Eq. I1) then yields:

i4  2~j 1. /tX
U= - C• -- 2  IUA (-0)

32Li

Or, upon integrating:

I T 4

64VL

Te kin, tic energy imparted to the cantilever beam of mass density p. width . and
thickness h, by a uniformi specific impulse ol' intensity i is given nb\

K1 .AN I L IK ll. II I

or

L i /b d\ v
ICE f ;(pbhi dcv) ) '

(phli v

Integration of the preceding quantity then yields:

13



Fi

= 12 bL

2ph (20)

The equation defining the impulsive loading realm asymptote for the elastic maximum tip
deformation is then obtained by equating Eq. (20) to Eq. (17). The width b drops out of the
solution when bh 3 /112 is substituted for the second moment of area I in Eq. (17).

L W2 
(21)

The quasi-static loading realm asymptote is predicted by estimating the work- W asoci-
ated with the peak drag load Q. The work is;

W CDQh dv w (22)
be:am

or

I.( ~7r.,.v
W=(oQhr( f( I -cos2 ddx (23)

U,

Integration of the preceding quantity t hen yields.

It,=- I- -) hLt'L (24)

Equating Eq. (24) to Eq. (17) and substituting for the second moment of area then yields the
quasi-static asymptote for the elastic maximum tip deformation.

"= •---s i (25)

Maximum elastic strains at the root of the cantilever beam can also be calculated from
the maximum tip deformations, either Eq. (21) or Eq. (25). dependent upon the loading realm.
Substiluting the second derivative o! Eq. (14) into the moment curvature relationhip, the
moment into a A le/I, the stress o into e = ol/E. and h 3 / 12 for the second moment ,'f area I,
yields the strain eqtuation in terms of the maximum tip deformation. This equation is given by:

ir~hw'0  IrX
e i-t cos (26)8L• 2L

The strain c will be a maximum at the root of the cantilever beam where cos 7r.v/2L equals 1.0.

14



Substituting Eq. (21) for wo into Eq. (26) then yields the maximum strain equation for the

impulsive loading realm.

2.45 h/,. (impulsive loading realm) 127)

Equation (26) for the impulsive loading realm can be compared to experimental test
data to demonstrate the validity of this analy.,is procedure. In 1958, Baker. et al..l 121

detonated H.E. explosive charges in the vicinity of 6061-T6 aluminum cantilever beams.
Plotted in Figure 5 is the maximum bending strain as a function of i/(L%/e) for beams with
a length of 12 in. and thickness of 0.051 inch. Some uncertainty exists in computing the
impulse imnarted to the beams because of an air blast wave diffracting around the beams.
hence, the test data are plotted as bars. As can be seen in Figure 5. Eq. (27) for the maximum
elastic strain at the root of the cantilever beams accurately predicts experimentally voscrved
results.

I he strain at the root of cantilever beams in the quasi-static loading realm can be obtained
by substituting Eq. (25) into Eq. (26) and setting the cos [(7rQ)/(2L)] equal to 1.0. This resultf yields:

r (3).534 (quasi-static realm) (28)

J. D. Day in unreported tests ran five blast loading experiments on clamped cantilever steel
beams with strain gauges at the root of the beam. The steel beams were 6 X 3/4 X 3/4 in. and
"were exposed to side-on overpressures Ps as summarized in Table 2. The drag pressure Q can
be calculated from P5, and assuming that CD equaled 1.75, we obtain calculated strains as
shown in the last column of Table 2. These calculated strains compare very favorably with
experimental observed results.

Plastic response of cantilever beams can be estimated as easily as elastic response. If we
assume a rigid-plastic model, the bending strain energy now becomes the integration of the
moment-,eurvature relationships over the length of the beams. In other words:

L d2iv d (29)

Differentiating Eq. (14), the assumed deformed shape and substituting it into Eq. (29) gives:

U 2AMv 'fT f cos - dx (30)
8L 2  0 2

0S
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TABLE 2. IELASTIC STRAINS IN CANTILEVEiRS.
QUASI-STATIC LOADING REALM

Test Experimental ('alculatedNt • (1s | 0 Q(1 si) io+ ioC 10
""No. C x t* e x t*

I 8.80 1.76 23.2 23.6
8.68 1.74 22.9 23.

3 10.48 2.42 32.5 32.5
4 16.l01 5.47 1,0.4 73.5

S5 20.78 8.73 141.0 117.5

But in a rectangular member the yield moment M, ohh0/4. hence. upon substituting for

Al,. and completing the integration. we obtain:

iro, h/i 2 2oSU = (311

I16L

Equating Eq. (31) to the kinetic energy. Eq. (20). then yields the asymptote for Pe rma-

nent residual tip deflection in the impulsive loading realm.

S) tX 32)L h

Reti'rence 12 also presents test data on permanent tip deflections for the same 6061-T6
aluminumn cantilevcr beams as were used in the elastic strain. Figure 5. comparison. Plot ted

in Figure 6 are these scaled tip deflections as a function oli/(L /•). Equation (32) was

placed in the same fbrmat as the data in Figure 6 by multiplying and dividing Eq. (32) by the

cla,ýic modulus E. As can be seen in Figure o. the agreement is relatively good. The disagree-
inent that does arise at sniall values of scaled impulse i/(Lv\'fT) is caused by our use olfa rigid-

rlastic rather than elastic-plastic analysis.

The writers have no data for a cantilever bean, permanent tip deflection comparison in
the qulasi-static loading reahn. In the quasi-static loading realm, the displacement X b,.-•.omes

indeterminate when U. Eq. (31 ). is equated to It'K, Eq. (24). The so!ution in the quasi-static
loading realm is 6ivcn by:

-- =0.540 (h) (33)

The displacement wa in Eq. (33) is indeterminate just as X was indeterminate in the rigid-
plastic rheological model, Eq. (9). for the quasi-static loading realm. This conclusion is cor-

rect for perfectly plastic nonhardening systems in the quasi-static loading realm. A hardening

stress-strain law does result in finite displacements.

17
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IV. BENDING IN SIMPLY-SUPPORTED AND CLAMPED BEAMS
S. ~Our next illustration will be plalstic bending in a simply-supported beam being loaded

"U. with a uniform load. Figure 7 shows the deformed shape of a bent simply-supported beam.

FIGURL• 7. DEFORMED SIIAP+.'OF SIMPLY-SUPPORTED BEAM

S~To calculate strain energy in this member. we mus' assume a deformcd shape. Selecting:IWo I -34)

L.2

as an appropriate deformed shape gives the appropriate boundary conditions. At x = 0.
center of the beam. w = wo and the slope (dw/d.) 0, while at the ends of the beam. x
±L/2. the deflections wi 0 and the slopes (dwid') -8.vwo/L 2, a maximum value. The
strain energy equals the plastic yield moment il,. for the beam cross-section times the change
in angle of rotation integrated over the entire beam. Because the beam is symmetric and the
change in angle of rotation with respect to .v approximately equals -d ,,/d.', the strain
entrgy V equals:

S1./2 2d %,
U U-2 M d (35)

Differentiating Eq. (34). substituting it into Eq. (35) and intcgrating then yields:

U = i, (36)
L

The kinetic energy KE is obtained by summing the impuJse squared divided by two times
the incremental mass Isee Eq. (6)] over the entire beam. If b is the width ef the loaded mem-
ber. p the density. A the cross-sectional area. and i the specific impulse. this summation yields
the following integration.

L12 0b2 (d&)?
KE =2 f (37)

o2pA (dv)

19



or

2pA

Equating U. Eq. (36). to K.. Eq. (38). yields the asymptote for the impulsive loading
F realm.

- = 16(-j) (impulsive realm s.s. beam) (39)
OAiy A L

The work W is obtained by integrating over the length of the beam, the forces times the
distances through which they move. This operation is performed by integrating pb dy times
the assumed deformed shapes. Eq. 134).

L1= 2 4x.:it'2 J" pbivo I- dx (40)
L 2

or

It, it'd (41)
3

Equating W. Eq. (41). to U, Eq. (36). yields the quasi-static asymptote,

pbL
12 (quasi-static realm s.s. beam) 142)MyI

So far these calculations have assumed that the beam is simply-supported and free to
rotate at the ends. If the beam is clamped at the ends, no rotation occurs, but can move
inwards so that no membrane action is developed: we can use many of the results which have
already been dcveloped. To do this. assume that a clamped *.eam is really two simply-
supported beams that have been split and joined end to end as in Figure 8.

This new configuration implies that:

U, 2U, V (43)

and that

KE! 2KE,.,. = p 44)
2A

20



IE

j A 2

but V = L'2 and.ro = w0 /2, so substituting for V and . ad equating U to KE yields:

"2 w (impulsive realm clamped beam) (45)
pA-141. L

Because Eq. (45) for clamped beams is twice Eq. (39) for simply-supported beams. we
can write

= i ' (impulsive realm beam bending) (46)

where

A'= 1.0 for simply-supported beams

A'= 2.0 for clamped beams

To experimentally demonstrate the validity of this solution, we have plotted experimentad
data taken by Florence and Firthl I -. 1 and compared these data to Eq. (46). Because Florence
and Firth used beams with rectangular cross-sections., ,= o,.hh2 /4. Substituting for M,. hh for

A-. and 2V for L (they used half spans). yields:

.pOy \I'-• ( -)e -o) (impulsive realm rectangular beam bending) 147)

All of the beams tested by Florence and Firth had an C/h ratio of 36. so this comparison is made

by plotting i/(hv/ 1ýp1 ) versus w0 /l. All beams are impulsively loaded using sheet explosive.
Both clamped and pinned beams made of 2024-T4 aluminum, 606 1-T6 aluminum. 1018 cold
rolled steel, and 1018 annealed steel are included in this comparison. Figure 9 demonstrates the
validity of Eq. (47) and this analysis procedur,.
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IBecause we have no data for clamped beams or simply-supported beams in the quasi

static realm. we will not develop the equations, but will give the results. Because the clamped

beam in bending is 8/3 times Eq. (42) for simply-supponed bending, w,: can write:

I .. .v 1 2.V1.415 (quasi-static realm beam bending) (48)

whe.re

.V = I simply-supported beam

X = 2 clamped beam

V. CIRCULAR PLATE (BENDING AND EXTENSIONAL BEHAVIOR)

The next solution that we will evaluate is for the residual mid-point deformation in
uniformly impulsed clamped circular plates. This problem adds an additional term to the strain
energy expression. as both bending and extensional action will be present. A possible deformed

shape for a clamped plastically deformed circular plate is:

It (, + cos (49)

The deformed sh:..' is being described by a radial (radius r and angle 0) coordinate system

with its origin at the center of the plate. Because of symmetry, the defrmed shape is inde-
pendent of the angle 0. EIquation (49) meets the appropriate boundary conditions for a clamped
circular plate in that at the center with r = 0. It is a maximum deformation of w 0 . and (dwl/dr)
0 while at the edge of the plate with r = R, It' = 0 and (dw/dr) = 0. An inflection point occurs at
r = R/2 when the curvature changes from negative to positive for increasing values olr.

Because no change in length occurs circumferentially. there is no circumferential strain and
no circumferential strain energy in a clamped circular plate. The radial strain energy per unit

volume equals the stress o times the strain c in any structural element. If we assume that the
plate is yielding, the stress a must equal the yield stress o, in a rigid plastic constitutive relation-
ship. and if plane sections remain plane, the bending strain for small deformations is given by

-:1 d2 w/dr 2 ) where - is the plate coordinate perpendicular to the r and 0 coordinates. To com-
pute the bending strain energy contribution Uh. create a circular differential torus of circumn-

ference 2irr. thickness d:. and width dr. The differential bending strain energy du,, equals
this volume times a, times - z(d- w/dr: I. The total bending strain energy Uh is obtained by
integrating the differential strain energy over the plate thickness and plate raditus. Fquation 150)

describes this mathematical procedure.
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'h/2 R/2 / ~w

-h/2 o R/2

(2ir dr a (- (50)•. 12r drd:) Io~v -'zdr'

Equation (50) must be integrated in parts because the sign of the bending stress changc,,
at the inflection point which is located at R12. Dilferentiuting Eq. (49). substituting it into
Eq. (501. and integrating over d: plus dr then yields:

Sl~ib 4

Next we estinawe the extensional strain energy U. through a similar procedure. :'sten-
sional strains in a circular plate are generally given by c = v/1.0 + (dtw/dr)' - 1.0. Using the

binomial expansion and retaining only the first two terms leads to the approximate expression
for extensional strains. e - 0.5 idw/dr)l. We will use the same differential torus to compute
extensional strain energy as was used to compute bending strain energy. The total extensional
strain energy LU, is obtained by integrating the differential volume times oy times 0.5 (dw/dr
over plate thickness and plate radius. Equation (52) mathematically describes this procedure
for obtainiig extensional strain energy.

'hl2 R [ d N
U,. = f f (27rr drd:.)(o., ) ' dr/J5

D)itferentiating Eq. (49). suhstibt,ting it into Eq. (52). and integrating yields:

rc (53)

The total strain energy U is the sum of U,. [ Eq. (53)1 and ,'h ( Eq. (51)1. or:

(i '; JJ W0,. + ( •vh,,' (54)

Tihe kinetic energy KE for a uniformly applied impulsive load imparted to the plate is
obtained just as it was for a beam. by summing up the impulse squared divided by two times
the incremental mass over the surface of the entire plate. This summation leads to the follow-
ing integration.

)R iI(27rr3ldr)5
-E = oh(2rr) I dr)
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I

•• or: •"fi2 R Q•,

2II
. juating U I Eq. (54)1 t) K " I FA q. (50 1J yields ti ' asymptote for the-in pu sive loading

Sfah1 1. 1 1 + 2-

L,"\1;) + ) imipulsive reallm clamped circular plate) 1571

A compari.on between [q. (57) for a unitorm impulse on a clamped circular platc and cxperi-
mental test data can hc made using test re.tuhls by Florence. 114 Rcidual permanent mid-

span deformationis were mecasured on both clamped circular 0061-T6 aluminum plate, and

1018-cold rolled steel plates that had been loaded uniformlv with various layer- o1' shect

explosive. The 22 aluminum data points. 20 steel data points, and lI-q. 57) are all shown in
Figure 10. Once ag;ain Ih," validity( of this solution and analysis procedure arc substantiated.
It there exists a Nvstcmali" error, it is a teiidcncy for the analytical iurve ti, slighl tl under-

.'.hIimate deformatiions whenever mv;'h is large. T1.is error is probably caused by Ithe assumed
delbrined shape not yielding the min imutm strain energy. For small valtcs o0* w,/1h. the
analytical curv're overest inma (Cs deformations. This error is creaited he¢ca LSu WC iISSUlll that
dctorniations ecxtend over the elntire span of hlie plite. When loads are s.imill .1n1d tL•mruiliolis

simall. the dcl'oircd shiuipc covers only a portion of ti' eintirc plate.

VI. RECTANGULAR PLATE (ADDITION OF SHEARING STRAINS)

L *rhc final solution that wc , will develop is fior the plastic response of rt'tangulair plates
frcni uniniormnly aipplied transverse impulses. TI his solution introduces a new complication
associated withi a ladt of radial syuimmetrr and the bending plus extensional shearing forces

assume ;i delormned shape given by:

•t + co ; ) 4 -c. (581

where

X ard Y are hall spans

.x and i, are the rcctangular coordinate system with its origin in the center of tI i' plate.

This assunw'd defornmed shap,: mncets the appropriate deflection and slope criteria ii the middle
of the plate a ad along All boundaries. Lines of inflection occur at .- = Y12 anLd - = A. 2. Tlhe
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i i
strain energy per unit volume in a structural element under a blax'al state of stress is:

Vo. f Ieixx dexx + 2ax) ds (y e (59)
• • ,,trailn%

Because we have yielding, we will assume that oX = oa, and Oyy = a.. but for the shearing
stress we will use a Huber-Mises-Hencky distortion energy yield criteria of ax, = oa/V3.
The normal bending strains are as in the circular plate pioblem with exx = -:a 2 iv/aXv2

and c --:(a2 w/a.2 ). The bending shearing strain e,-,. 2z(a 2 w/x.vay). The bending
strain energy Ub is then given by:

1112 X w 2~ a2  ~ h/2
Ub, 88f d-f dxf d.f4v at, - - - +S f d:

0 ax kI 0

f d, f dv 2 .-- ) ,0,)
0 0 /axII

The bending strain energy c'ntributions from the normal stress and strains must be obtained

by four part integration (from 0 to X/2 and 0 to Y/2, Trom X/2 to X and 0 to Y/2. from 0
to X/2 and Y/2 to Y. plus from X/2 to X and from Y/2 to Y) because the lines of inflection
change the sign of the stress. DifferentiMting Eq. (58), suLstituting it into Eq. (60). and per-
forming the triple integration then yields:

Ut, 0 /1, 1%.0 .w° + +• 7,h' wo (61)

The first term on the right hand side of Eq. (61 ) is the contribution from the normal bending
strains, and the second term is the contribution from the bendi;;g shear strains.

Equation (59) applies to the extensional response as well as bending response. The nor-
real extensional strains are as in the circular plate problem with ec, = 0.5(aw/Ia.v)2 and O1. =,.
0.50aw/ay) 2 . The extensional shearing strain ex,. = (au,/ax)(aw/a,) as a first approximation.
These additional observations mean that the extensional strain energy U, is given by:

U, =4 f d.v f d.v.f d:o.,. L \ -+ yj +4f d
0 o .0 3

f dY' f d-- a,.k• (62)

0 a\
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Differentiating Eq. (58), substituting it into Eq. (62), and performing the triple Integration
yields:

S3x2 PfXi 8
Ue11 hW- 0 + 0W (63)A

32 ~ X YJ /

The total strain energy U is then the sum of U( (Eq. (63)) and Ub (Eq. (61)), or:

U=-ai.h 2 w WO hi+ý!+4 u
o.,.h~w + oyh2 W + - oý,.h w2 +

8
+ - yI o,w• (clamped plate) (64)

V13 0

The strain energy in a simply-supported plate can also be estimated using the same pro-
cedure, with an assumed deformed shape described by:-

wO cos -2 cos (65)
"2X 2Y

The previous procedure gives as a value for the, strain energy U.
i2

U a-,. oh2 Eo + - 4 o + q' + tLa/.2EK+

+ - oyhwgt (s.s. plate) (66)

Notice that Eq. (66) for strain energy in a simply-suppoiled plate is similar to Eq. (64)
foz strain energy in a clamped r!it, Th' u,'y tiffcr-nc, in these equations is in the numeri-
cal values of the coefficients which accompany each term on the right hand side of these
expressions. This observation means that if we insert a coefficient N that is equal to 1.0 for
simply-supported plate and equal to 2.0 for clamped plates. a general strain energy equation
can be written as in Eq. (67).

71' -y 1l 4I - I Ii
U =--- /12 wo + - +- uh.2 w0 + -

+ o), t, t2(67)

The kinetic energy KE imparted to a plate is not dependent upon the deformed shape.
Fr.r a uniformly applied impulsive load imparted to a plate, the kinetic energy is obtained
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(as it was for a circular plate) by summing up the impulse squared divided by two times the
incremental mass over the sua face of the plate. The appropriate integration is given by:

X Y i 2(dx)P(dt), (68)
KL 4 f f5 --- (8

0 o 2ph(d-)(dy)

or

KE (69)
ph

Equating Eq. (67) and Eq. (69) finally yields a general rectangular plate eqt -tion for

deformations caused by uniform impulsive loads. The following equation is this relationship.

1  170, 1 ±,W2N L YJ 17~ ~ 6N-

LVP 0"" V

+X~ 2! 2N (70)

Wc will demonstrate the validity of this solution by using clamped (A' 2) rectangular
plate data reported by N. Jones, T. 0. Uran. and S. A. Tekin. 1151 Rectangular plates with
an aspect ratio ( YIX) equal to 1.695 were loaded with sheet explosive in these experiments.
SBoth hot-rolled mild steel plates and 6061-T6 aluminum plates were tested and can be seen
plotted in Figure 1 I. Equation (69) is also shown in Figure I I ; however, left and right sidesI; of Eq. (69) were multiplied by (YMX) 2 to cast it into the format of their data. Excellent
correlation appears in Figure I I when Eq. (70) is compared to experimental test results.

Unfortunately. no experimental quasi-static loading realm data exist on dynamically
loaded, plastically deformed plates, simply-supported beanms. or clamped beams. The analyti-
tcal solution is easily developed for a plate. The work It.' performed on either simply-supported
or clamped plates is obtained by integrating pw d\" d4r and equals:

IV = -- 2 1 Y(71)
16N-2 P

When this work is equated to the general strain energy expression. Eq. (67), we obtain the
solution for the quasi-static loading realm of rectangular plates.

1 (X)2] (v\ 2(rv -14(,v - ](3 ) (72)
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VII. DISCUSSION

These procedures and the resulting formulae comprise the structural analysis approach
that was used by SwRI to control deformations in the design of a plastically-yielding. blast.
suppressing structure. This analysis procedure yields explicit expressions for nondimensional
deformations in terms of nondimensional loading parameters. If other deformed shapes were
to be assumed. the same nondimensional parameters would occur. however, the numerical
coefficients would have other values. These analyses can also be applied to shell type ,truc-
turcs with no more difficulty than was demonstrated in the development of the plate solu-
tions. The approach is attractivw because no involved solutions to complex differential equa-

tions are required-only integrations of work, kinetic energy. and strain energy are neided
for a given structural element.

The illustrations shown in this paper have included a single-degree-of-freedom plastic
model, a simple elastic model, elastic cantilever beams, plastic simply-supported beams.
plastic clamped beams. plastic clamped circular plates, plastic simply-supported rectangular
plates. and plastic clamped rectangular plates. Experimental test data obtained by other in-
vestigators have been used to demonstrate the validity of these solutions, especially in the j
impulsive loading tealm. It is interesting to note that all plastic beam solutions have the
functional formats

i 2 L (impulsive realm any beam) (73)

and

02I
As tnsiona =constant (quasi-static realm any bean.) (74)

As extensional behavior is developed by elements such as plates. these general functional
formats arc:

i 2x2 ly
a ( w 'impulsive realm plates) (75)

and

1,.,2 ].y W..o)
o,. 2  ( ' ) (quasi-static realm plates)

One could use experimental test data that had been nondimensionalized to graphically
present solutions following these formats.
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