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SUMMARY

Energy solutions are excellent analysis procedures for predicting residual strains or de-
tormations in structural elements when transicnt behavior is of little interest. In this report,
we demonstrate how energy procedures can be used in rigid-plastic structural solutions when
muembers are loaded cither impulsively or quasi-statically by blast waves.

In the impalsive loading realm, the kinetic energy imparted to a structural member is
cquuited to the plastic strain energy, whereas in the quasi-static loading realm, the work per-
formed in deforming a structural member is equated to the plastic strain energy. An assumed
first mode structural deformation pattern works well when caleulating plastic strain encrgy
in cither of the loading realms. Experimental test data on deformed simply-supported and
“satiiever beams, clamped circutar plates. and clamped rectangular plates demonstrate the E
validity of these solutions,

The test duta on diftferent types of structural elemuents are important, as the beam data
involve only bending behavior, the circular plites have both bending and extensionad action,
and the rectangulur plates introduce shearing behavior into the strain energy caleulations.
Because all solutions are closed-torm ones. design formulace result which can be used to eval-
uate plastic deformation in blast loaded structural members.

This report is a reprint of a paper presented at the 16t Explosive Safety Seminar,
Hollywood Beach. Florida, September 1974,

PREFACE

The investipation described in this report was authorized under PA. A 4932 Project
5751264, The work was performed at Southwest Rescarch Institute under Contracts
DAADOS-74-C-0751 and DA/4A15-75-C-0083.

The use of trade names in this report does not constitute an official endorsement or N
approval of the use of such commercial hardware or soltware. This report may not be cited
tor the purposes of advertisement.

The information in this document has been cleared tor release to the general pubiic.
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ENERGY SOLUTIONS FOR PREDICTING DEFORMATIONS
IN BLAST-LOADED STRUCTURES

. . 1. INTRODUCTION

Encrgy solutions are excellent analysis procedures for predicting residual strains or
. deformations in structural components whenever transient (time-dependent) behavior is of
little interest. Although schools readily teach energy procedures for obtaining clastic solu-
tions, few investigators apply the approach to dynamic plasticity problems.

Dynamic rigid-plastic encrgy solutions began in the carly 1950's when Lee and 3
Symondsl ' used the static plastic-hinge concept, considered beam inertia, and propagated :
a traveling hinge to analytically obtain 2he upper bound for permanent deformation in a E
beam under a transverse load. Their Brown University associates and graduates such as S. R.
Bodner. W. Prager. N. Jones, J. B. Martin, R. M. Haythornthwaite and others then added
refinements, illustrations of which are given in Refs. 2-6. 1t was J. E. Greenspon in the 1960's
who pointed out that one could obtain solutions without going through the details of propa-
gating a plastic hinge along structural members [Refs. 7-11]. Greenspon noted that the resid-
ual strain energy stored in a plastically deformed member could be calculatec by assuring a
tinal deformed shape. This strain energy was then equated to the energy flux in an explosive
- blast wave. | 111 we disagrec with this last step, which made deformations independent of

structural orientation relative to the enveloping blast wave, thus ignoring an important effect
. observed in many experiments. In addition. Greenspon's procedure forces pressures and
impulses in the blast wave to obey the relationship P/ = constant, whose asymptotes for both
pressure and impulse are P =0 and / = 0. The response of real targets is related to non-zero
P and [ limits, so this conclusion is also unacceptable.

L
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We would emphasize that Greenspon was correct in his strain energy estimation procedures.
Estimates of structural deformation would have been correct had he equated strain energy to
the kinetic encrgy imparted to the structure for short duration impulsive loads. When durations
are long relative to the structural response time. the strain energy is equated to the work per-
formed when the peak load moves through the distance that the structure deforms. Hence. two
separate procedures are required, one to obtain the solution for the impulsive loading realm.
and the other to obtain the solution for the quasi-static loading realm. We will proceed to tllus-
trate these provedures by computing results and comparing the test data. Our first illustiation
is a rheological model whose exact solution can be obtained and compared to the answers given
by energy procedures.

Il. SINGLE DEGREE-OF-FREEDOM SYSTEMS
Consider first a single-degree-of-frecdom. rigid-plastic system as in Figure la. The motion

of the mass m is resisted by a Coulomb friction element f when the blast load p(1) is applied to
the structure. We will approximate the blast loading with an exponential decay as in Figure 1b

~I
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(a) (b)

FIGURE 1. RIGID-PLASTIC, SINGLE-DFGREEOF-FBEEQOM DAMAGE MODEL

(wheie P is the maximum applied force and T is the time constant associated with the duration
ot loading). If P/f < 1.0, we have the trivial case where the residual deformation X equals 0
because the mass never moves. If P/ = 1.0, we can write the differential equation of motion:

dz..
Pc"/T——f:m—d-;;\ (1)

By direct integration, we obtain for the case of zero initizl velocity. the velocity relationship:

dx _PT . j) I)
s SIS [ IR 7 Y (A T 7
dt  m l:l ‘ (P (I‘] )

Integrating again. we obtain for the case of zero initial displacement. the displacement equation:

A L(L)(L)’_
.\-—m [7_+¢ S\p N\ 7 1 (3

Motion continues until the velocity. Eq. (2), equals zero or until:

- t/T +(1)(L)= )
¢ s )\7) 10 (4

We cannot explicitly solve for ¢/T in Eq. (4), as it is a transcendental equation: therefore.
we assume values of P/f. solve for ¢/T, and substitute into the displacement equation [Eq. (3)]
to obtain the maximum deformation X. Table 1 gives the results of such a caiculation.

The maximum deformation X in the third column of Table 1 has been made nondimen-
sional by Jividing the left and right sides of Eq. (3) by (PT?)/m. A solution can be presented
for the maximum displacement by plotting (Xm)/(P7? ) versus P/f. We have elected to divide
Plf by (Xm)[{PT?) to form a new fourth column in Table 1 and to plot this new column
(P (Xmf) versus P/f. The reason for this manipulation is that the product T equals the
applied total impulse /. and in this manner we create a scaled load-impulse or P-/ diagram.
The solid line in Figure 2 is this scaled P-/ diagram for a simple rigid-plastic structure.
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P-I DIAGRAM FOR
RIGID-PLASTIC MODEL

1L 1111t

i§r P (Xm)/(PT?) (P [(Xmf)
1.00 0 oo
0.9 1.033 0.001 1033
0.35 1.1% 0.003 394
0.50 1.27 0.00v 141
0.75 142 0.024 59.2
1.00 1.58 0.052 30.3
1.50 194 0.143 13.6
2.00 231 0.270 8.56
200 36 0.630 5.02
4.00 408 1.06 184
6.00 601 2.00 301
= 9,00 9.00 1.50 287
v 130 130 5.50 2.36
z 200 20.0 .00 R
350 350 16.50 N
Z 50.0 S0.0 24.0 208
750 75.0 36.5 208
B 100.0 100.0 49.0 104
o0 2.00
].OD flll—rlll T llIIHI IIRBLBRES

LLILlLil

I

]

Lyl

I 2
Xmf

100

1000

v FIGURE 2. P2 DIAGRAM FOR RIGID-PLASTIC SYSTEM

Observe in Table 1 and Figure 2 that whenever 2 /(.Xm/f) is graater than about 60. the
duration of loading 7T is larger than the response time ¢ and P/f equals 1.0, Similarly. when-
cver P/fis greater than about 20. durations of loading 7 are smaller than the response times ¢

9
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of the responding structure, and / T (Xmf) equals 2.0. The eneray solutlons which we will
apply estimate both of these asymptotes.

The strain energy U stored ir, plastic detormation is given by:
U=frX (5)

The kinetic energy AE imparted to the mass equals:

2 N
m(—l-) = f— (6)
b i

The work I done by the maximum force P acting through the distance X is:
W=PX (7)

Equating the strain energy U. Eq. (5). to the kinetic energy KE, Eq. (6), yields the asymptote
for the impulsive loading realm or:

2

-=2.0 (impuisive loading realm) (8)
Xmyf

The other asymptote is obtained by equating U, Eq. (5), to the work I, Eq. (7).

=1.0 (quasi-static loading realm) (9)

Had we wished to caleulate maxinium clastic deformations rather than plastic ones. the
sume procedures would apply. Replacing the Coulomb friction element with a linear elastic
spring in Figure 1a would have yielded the analytical solid curved line shown in Figure 3.
This solution also has asymptotes for the impulsive and quasi-static loading realms that can be
obtained ucing energy procedures. The strain energy in an elastic system would be given by
Eq. (10) rather than Eq. (5).

~

U=—kX (10

ol —

In an elastic svstem the Kinetic energy KE and work I are still given by Eqs. (6) and (7).
respectively. For an clastic system, equating Eq. (10) to Eq. (6) yields the asymptote for the
impulsive loading realm.

/
X=—0= (n

Vv ki
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or
X %
—z [~T (impulsive loading realim) (rnh
Plk m

Similarly. equating Eq. (10) to Eq. (7) yields the quasi-static loading realm usymptote:

X '
— =20 (quasi-static loading realm) (il
Plk 4 ©louding

Both the impulsive loading realm asymptote and quasi-static joading realm asymptote are

shown in Figure 3. Figure 3 illustrates that, il these asymptotes are known for an Clastic as
well as plastic system, the deformations can be predicted using energy procedures.

As has been illustrated in these simple models. the principles are as follows:

t1) To estimate the impulsive loading reaim structural deformation asymptote, estimate
the strain energy in a deformed structure ond equate this strain energy to the Kineiie
energy imparted to the structure.

(2) To obtain the quasi-static structural actormation asymptote. equate the strain enerey
to the work pertformued by the peak rorce deflecting with the structure.

We are now prepared to illustrate these principles as they are applicd to beam. plates.and simi-
lar more comples structural components which are loaded by blust waves or other transicot
pulse.. The first structural components that we wil! stady are cantilever heams.

1i. BLAST LOADED CANTILEVER BEAMS

Consider a clamped cantilever beam of rectangular cross section as depicted in Figure 4.

We will assume that the deformed shape for this structural compoenent is given by

LAY
W=y, [] — Cos :—I‘] (1H

Notice that the assumed detormed shape has no detlection and no stope at v = 0 and no
moment at v = L. The maximum deformation and maximum slope occur at v = L, and the
masimum moment occurs at v = 0. These are the correct boundary conditions. A good solu-
tion does depend upon selecting an appropriate deformed shape.

Because no membrane action is devetoped. the strain enerpy is dissipated in bending. In
an clastic member. the bending strain enerey is given by:

. mwwwn&mﬁwmwMmmmmwwmmuwummmWMW&MMMMMWMW

e sttt sl

g g




T T T T R AT T e TRy TR

(R T

f

;
AS7Nd 3380 01 ISNCISHd WAKIX VIV £ 330914

| | _ gy
| ~ D0OT 001 oI A 01

10 10°0
_.W : ,ﬁuﬁﬁ— i 7 m:ﬁul_ _, 1 H T-ﬂ__ 7 T M_ﬂ—a U1 1 i —:JQﬂ_ R B H0.0
| { 1 1 |
" |
x -4
- 3g d e N
E 1 d | 3.
— add 9 (1)d 1o
- -
[ <4 3/d
B . X
- ]
- NOILMIOS TYDILIATYNY u ¥/ ch
— —
Iy
R - ajodwAse anis)nduw; .
— Aid [/
- 02 / .
8 ajoydwAse aye)s-1seny) - ]
o “ .
o 3
TSN NI TR IR Mg g g bty 1 g 0l

il
|

r,,iﬁlltlln [

e e ol G 10

T

12

e~ s




TR

T ——

a

L e

e e 0 0 A0 0 P e g

) T

T O

!

— - i N 4]_ I
===, 1

FIGURE 4. SCHE MATIC DRAWING OF CLAMPED
CANTILEVER BEAM

I /‘/zd.'
sz_fl;T\ (15)

(4]

where the moment M is cqual to Eld? w/da® ). Differentiating £q. ( 14) and substituting
into kq. (15) then vields:

”41,"/ 2L N
=~ - :‘n f cos? (:7\)(].\’ o)
3..[, 0 Y

Or. upon integrating:

a fhwd

N 4L’

U (bending in clastic cantilever beam) an

The kinctic energy imparted to the cantilever beam of mass density p. width A, and
thickness /1 by a uniform specific impulse of intensity 7 is given by:

!
KE= 3 —ml} (18)
heam
or
KE= f L om a\)( b dv )z (19
= - I/
J 2 phh dx

Integration of the preceding quantity then yiclds:




S ——

. fbL | R
B - (20)

The equation defining the impulsive loading realm asymptote for the elastic maximum ti;,

deformation is then obtained by equating Eq. (20) to Eq. (17). The width b drops out of the
solution when b43/12 is substituted for the second moment of area / in Eq. (17).

wo VIBLILN( i 21
L nt \h/J\i/Ep -

The quasi-static loading realm asymptote is predicted by estimating the work-W associ-
ated with the peak drag load Q. The work is:

W=3 CpQhdyw (22
beam
or
' 2 ..
W=CpQbwy f (l —cos ;)-Z)d.\' (23)
0, =

Integration of the preceding auantity then yickls:

,
W= (I - i)(',, Qhlw, (24)

Cquating Eq. (24) to Eq. (17) and substituting for the sccond moment of arca then yields the
quasi-static asymptote for the elastic maximum tip deformation.

wa 8755 (C L\
s (—‘Q)L) (25)

w’ 2 \h

Maximum clustic strains at the root of the cantilever beam can also be caleulated from

the maximum tip deformations., cither Eq. (21) or Eq. (25). dependent upon the loading realm.

Substituting the second derivative of Eq. (14) into the moment curvature relationship. the
moment into o = M/l the stress o into € = o/E, and bh? /12 for the second moment of area /.

yields the strain equation in terms of the maximum tip deformation. This equation is given by:

i hw, A 5
PYE COs Ez (26)

t:

The strain ¢ will be a maximum at the root of the cantilever beam where cos 7x/2L equals 1.0.
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Substituting Eq. (21) for w, into Eq. (26) then yields the maximum strain equation for the
impulsive loading realm.

i

5

- e=245-—— (impulsive loading realm) -~ 127

n\/r

Equation (26) for the impulsive loading realm can be compared to expenmenlal test
data to demonstrate the validity of this analysis procedure. In 1958, Baker. et al., [ ) - :
~ detonated M.E. explosive charges in the vicinity of 6061-T6 aluminum cantilever beams. =
Plotted in Figure S is the maximum bending strain as a function of i/(Ly/pZ) for beams with
a length of 12 in. and thicknass of 0.051 inch. Some uncertainty exists in computing the
impulse imnarted to the beams because of an air blast wave diffracting around the beams:
hence. the-test data are plotted as bars. As can be seen in Figure . Eq. (27) for the maximum
elastic strain at the root of the cantilever beams accurately predicts experimentally bserved
results.

The strain at the root of cantilever beams in the quasi-static loading realm can be obtained
by substituting Eq. (25) into Eq. (26) and setting the cos [(70)/(2L)] equal to 1.0. This result
yiclds:

e e i

2
=3.534 (h) < 'ZQ) (quasi-static realm) (28)

2 J. D. Day in unreported tests ran five blast loading experiments on clamped cantilever stecl

§ . beams with strain gauges at the root of the beam. The steel beams were 6 X 3/4 X 3/4 in. and :

g were exposed to side-on overpressurcs Py as summarized in Table 2. The drag pressure Q can

= be calcuiated from P;. and assuming that Cp equaled 1.75, we obtain calculated strains as E

L shown in the last column of Table 2. These calculated strains compare very favorably with
experimental observed results.

Plastic response of cantilever beams can be estimated as casily as clastic response. If we

E assume a rigid-plastic model, the bending strain encrgy now becomes the integration of the
: moment-curvature relationships over the length of the heams. In other words:

I 2
d
U= _f My LN (29)

Differentiating Eq. (14), the assumed deformed shape and substituting it into Eq. (29) gives:

200w A Ty
=1—-“-’-“—°f cos = dx 3o,
0

U

8L 2L




MAXIMUM BENDING STRAIN x 106

1000

800

— —— 6061-T6 BEAMS,
- _L.. —
i = - 200.0 -
1 { | 1 ! | { 1
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FIGURE S, ELASTIC RESPONSE OF CANTILEVERS, IMPULSIVE LOADING REALM




TABLE 2. ELASTIC STRAINS IN CANTILEVERS,

e T U b i i

QUASI-STATIC LOADING REALM
. , Test i N v 'Experimenufnl Calculated |
- No. | Flesd | Qlpsd |0 pte € X 10%*
i 3.50 1.76 232 23.6
I 2 8.68 1.74 229 234
3 10.48 242 328 325
4 16.10 5.47 0.4 73.5
5 20.78 8.73 1410 17.5

But in a rectangular member the vield moment M,. = obh? /4; hence. upon substituting for
M, and completing the integration, we obtain:

o _moybhiwg 31
l6L )

Equating Eq. (31) to the kinctic energy, Eq. (20), then yields the asymptote for perma-
nent residual tip detlection in the impulsive foading realm.

P wo 8(LN( i Y (32)
7 L w\hJ \I/po, o

Retorence 12 also presents fest data on permanent tip deflections tor the same 6061-T6
aluminum cantilever beams as were used in the elastic strzin, Figure S, comparison. Plotted
in Figure 6 are these scaled tip deflections as a function of il Ly/pF). Equation (32) was
placed in the same tormat as the data in Figure 6 by multiplying and dividing Eq. (32) by the
clastic modulus £, As can be seen in Figure o, the agreement is relatively pood. The disagree-
ment that does arise at small values of scaled impulse i/(Ly,/0T) is caused by our use of a tigid-
plastic rather than elastic-plastic analysis.

PR e

[rr—

The writers have no data for a cantilever beani permanent tip deflection comparison in
the quasi-static loading realm. In the quasi-static loading realm, the displacement X becomes
indeterminate when U, Eq. (31),is equated to WA, Fq. (24). The solution in the quasi-static
loading realm is given by:

P . n\?
——= 0.540(-—) (33)
o, L

The displacement wy in Eq. (33) is indeterminate just as X" was indeterminate in the rigid-
plastic rheological model, Eq. (9). for the quasi-static loading rcalm. This conclusion is cor-
rect for perfectly plastic nonhardening systems in the quasi-static loading realm. A hardening
stress-strain law does result in finite displacements,

17
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* V. BENDING IN SIMPLY-SUPPORTED AND CLAMPED BEAMS

Our next iliustration will be plastic bending in a simply-supported beam being loaded
with a1 uniform load. Figure 7 shows the deformed shape of a bent simply-supported beam.

L L ‘ |
| EJ’:LL&JJi;;L; .]
- =

.
-."-!n .
. —" — — —

FIGURE 7. DEFORMED SHAPE OF SIMPLY-SUPPORTED BEAM

To calculate strain energy in this member. we musi assume a deformed shape. Sclecting:

4x?
W= Wy (] — 2-\2—) (34)

as an appropriate deformed shape gives the appropriate boundary conditions. At x = 0.
cenier of the beam. w = wy and the slope (dsw/dy) = 0, while at the ends of the beam. v =
+L/2. the deflections w = 0 and the slopes (dw/dx) = =8xw, /L2, a maximum value. The
strain energy equals the plastic yield moment A, for the beam cross-section times the change
in angle of rotation integrated over the entire beam. Because the beam is symmetric and the
change in angle of rotation with respect to v approximately equals —d?w/dx? . the strain
encrgy U cquals:

L/2 d2w

U= “201 M, E\—: dv (35)

Differcntiating Eq. (34). substituting it into Eq. (35) and integrating then vields:

_8Mywy

36
) (36)

The kinetic energy A& is obtained by summing the impulse squared divided by two times
the incremental mass [see Eq. (6)] over the entire beam. If b is the width cf the loaded mem-
ber. p the density. 4 the cross-sectional area. and i the specific impulse. this summation yields
the following integration.

L/ i*h2(dv)?
KE =2 _—
of 20A(dx)

(3N
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Equating U. Eq. (36). to KE, Eq. (38), yields the asymptote for the impulsive loading
realm.

it K
ot = lb(ﬂ) (impulsive realm s.s. beam) (39)
. phigA \L/ - A S : :

The work W is obtained by integrating over the length of the beam, the forces times the

distances through which they move. This operation is petformed by integrating ph dvx times
the assumed deformed shapes, Eq. (34).

L/2 453
W=2 f pbw, (l - “;)d.\' 40)
o L
or
2
W= 3 pblwyg 4

Equating W. Eq. (41), to U, Eq. (36). yields the quasi-static asymptote,

pbL? Co -
T =12 (quasi-static realm s.s. beam) 42)
! v

So far these calculations have assumed that the beam is simply-supported and free to
rotate at the ends. If the beam is clamped at the ends, no rotation occurs, but can move
inwards so that no membrane action is developed: we can use many of the results which have
already been developed. To do this, assume that a clamped eam is really two simply-
supported beams that have been split and joined end to end as in Figure 8.

This new configuration implics that:

LM, v
Us=2U, . =—”—;‘—"2 43)
and that
2hg
KE=2KE ., =" (44)
0/1
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FIGURY 8. DEFORMED SHAPE OF CLAMPED 8FAMS
but ¢ =L/2 and vy = wy/2, so substituting for ¢ and v, and equating U to KF yields:
ih wo

=32— (impulsive realm clamped beam) (45)
pAM, L

Because Eq. (45) for clamped beams is twice Eq. (39) for simplv-supported beams. we
can wrte

—iz hzl' _ W

- =12 {impulsive realm beam bending) (40)
A p,‘l/”‘\. L
where
N = 1.0 for simply-supported beams
N'= 2.0 for clamped beams
To ¢xperimentally demenstrate the vulidity of this solution. we have plotted ¢xperimental
data taken by Florence and Firthl! 3 and compared these data to Eq. (46). Because Florence

and Firth used beams with rectangular cross-sections. M, = o, hh? /4. Substituting for Al,.. bl for
AL and 2¢ for L (they used half spans). vields:

i

? I\ fw
— = (—)( 0) (impulsive realm rectangular beam bending) EXA
Npoyii? \WANY

All of the beams tested by Florence and Firth had an ¢/ ratio of’ 36. so this comparison is mude
by plotting i/(hy/Npa, ) versus wq /€. All beams are impulsively loaded using sheet explosive.
Both clamped and pinned beams made of 2024-T4 aluminum, 6061-T6 aluminum. 1018 cold

rolled stecl. und 1018 annealed steel are included in this comparison. Figure 9 demonstrates the
validity of Eq. (47) and this analysis procedure.

1]
j




Because we have no data for clamped beams or simply-supported beams in the quasi
static realm. we will not develop the equations, but will give the results. Because the clamped
beam in bending is 8/3 times Eq. (42) for simply-supported bending, we can wtite:

pr2 .l 4 I 5 . . .
T IRARE (quasi-static realm beam bending) (48)
M,
where
N=1] simply-supported beam =
N=2 clamped beam

V. CIRCULAR PLATE (BENDING AND EXTENSIONAL BEHAVIOR)

The next solution that we will evaluate is tor the residual mid-point deformation in
uniformly inpulsed clamped circular plates. This problem adds an additional term to the strain
energy expression, as both bending and extensional action will be present. A possible deformed
shape tor a clamped plastically deformed circular plate is:

w, nr
w=~(l +cosE) (49)

The deformed sha; o is being described by a radial (radius 7 and angle 0) coordinate system

with its origin at the center of the plate. Because of symmetry, the deformed shape is inde-
pendent of the angle 8. Equation (49) mects the appropriate boundary conditions for a clamped
circular plate in that at the center with 7 = 0, w is a maximum deformation of wy. and (dw/dr) = :
0 while at the edge of the plate with r = R w = 0 und (dw/dr) = 0. An inflection point cecurs at z
r = R/2 when the curvature changes trom negative to positive for increasing values of 7. 3

Because no change in length occurs circumtcerentially. there is no circumterential strain and
no circumterential strain encergy in a clamped circular plate. The radial strain enerpy per unit
volumu cquals the stress o times the strain € in any structural clement. 1t we assume that the
plate is yielding, the stress 0 must cqual the vield stress o, ina rigid plastic constitutive relation-
ship. und if plane sections remain plane. the bending strain for small deformations is given by . 3
—2(d?®w/dr?) where ¢ is the plate coordinate perpendicular to the r and 0 coordinates. To com- 1
pute the bending strain energy contribution &y, create a cireular differential torus of circum-
ference 2ur, thickness d-. and width dr. The differential bending strain encrgy d{7) cquals
this volume times 0, times - 2(d% widr®). The total bending strain energy Uy is obtained by
integrating the differential strain energy over the plate thickness and plate radius. Equation (50)
describes this mathematical procedure.




¥
W

b

th/2 RI2 o dw wi2 R =]
Up= S S (Zirdrdz)(oy)(ﬂ?;; + S : :
. ~h/2 0 /2 RI2

d?w

(2rrdrdz)(—a,) (": E;z—) {50)

Equation (50) must be integrated in parts because the sign of the bending stress changes
at the inflection point which is located at /2. Differentiating Eq. (49). substituting it into
Eq. (50). and integrating over dz plus dr then yields:

wlo,hPwy
4

iy = (51)

T i

: Next we estimane the extensional strain energy U, through a similar procedure. Exien-
: sional strains in a circular plate are generally given by ¢ =4/T.0 + (dw/dr)? — 1.0. Using the
binomial expansion and retaining only the tirst two terms leads to the approximate cxpression
for extensional strains. € = 0.5 (duw/dr)?. We will use the same ditferential torus to compute
extensional strain energy as was used to compute bending strain energy. The total extensional
strain energy U is obtained by integrating the differential volume times o, times 0.5 (dw/dr ?
over plate thickness and plate radius. Equation (52) mathematically describes this procedure

et T

. tor obtairing extensional strain encrgy. L
thiz R 1 fdw\?
Co = (2nr drdz) to, ) —(*) (52
- /,.J'; «'nr e \ar

Differentiating kq. (49), subsutvting it into Eq. (82). and integrating vields:

L0 )t TR R

1 B

4 . oTouhwg .

3 U, = —=—2 (53)
16

- The total strain energy {Cis the sum of L, (Eq. (53)] and &) [Eq. (51)]. or:

e

: .
. ’ ne b 17“ - -
: U= z‘ ol wy + E oyhwg 54
The kinetic energy AE Tor a uniformly applied impulsive load imparted to the plate is

obtained just as it was tor a beam. by summing up the impulse squared divided by two times
the incremental mass over the surtace of the entire plate. This summation leads to the follow-
ing integration.

b f i) (dr)?

(1]

RIS vy

200 2nr) (¢r)

tJ
w
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FIGURE 9. BEAM BENDING IN THE IMPULSIVE 1 OADING REALM
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Fquating {7 [Eq. (54)] to AF [ Eq. (50)] yiclds the asymptote tor the-impulsive loading
realin.

iR T3 myw mwp\? X
i == ( -") + -- (——") timpulsive realm clamped circular plate) (57)
oo ks 2\h ¥\Ah

A comparison between Eqg. (57) for a unitorm impulse on a clamped circular plate and expen-
mental test data can be made using test results by Florence.l' 4} Residual permanent mid-
span deformations were measured on boti clamped circular 6061-T6 aluminum plates and
1018-cold rolled steel plates that had been toaded unitormly with various Liyers of shect
explosive. The 22 aluminum data points, 20 steel data points, and Eq. (57 are all shown in
Figure 10. Once again the validity of this solution and analysis procedure are substuntiated.

I there exists o systematic error, it is a tendeney For the anglyticat curve to slightly under-
cerimate deformations whenever wy, ris large. Tais error is probably caused by the ussumed
detormed shape not vielding the mininsum strain energy. For small vialues ot w, /. the
analvtical curve overestimates deformations. This erroris created because we assume that
deformations extend over the entire span ot the plate. When foads are small and detormations
small. the deformed shape covers only a portion of the entire plate.

VI. RECTANGULAR PLATE (ADDITION OF SHEARING STRAINS)
The final solution that we will develop is Yor the plastic response ot rectangular plates
frem unitormly applied transverse impulses. This solution introduces a new complication
associated with a lact of radial symmetry and the bending plus extensional shearing forees

that arc created thereby., Fora clamped-clamped uniformly loaded rectangular plate, we will
assume i deformed shape given by

Wy, LA Wy .
W= -~ <l +cos—,)(l 4 cos -t (58)
4 A }

where
Nand Y are half spuns
xand v are the rectanpular coordinate system with its origin in the center ol the plate.

This assumed deformed shaps mects the appropriate deflection and slope criteria in the middie
of the plate aad along all boundaries. Lines of inflection occur at v = Y/2and v = V2. The

=
=

el

ot e A s L L

L




00—

6.0

4.0

_ ) [
wwMuwmmwwwmmm.\WhmWummmmum;kmmm;muumwmwmuum;HhﬂwwmhuwHHHHH\MUM\\M\HHHHMwawu\umuwm\mmu\wﬂm\

2.0

1.0
t 0.6 o A 6061-T6 ALUMINUM
0 ] ® 1018-CR STEEL
_1
0.4L% -
1 1 ! ;
i . i 1 L1 1 1
1.0 2.0 4.0 6.0 10.0
iR
FIGURE 10. COMPARISON OF EQUATION §7 WiTH V po hz
EXPERIMENTAL PLATE DATA y k
3




rmmmnm-n I

=
=
=
£

e e e gt - e e

strain energy per unit volume in a structural element under a biaxial state of stress is:

v,/

vor = S 0ex dexy + 20y dexy + oy deyy | (59)

strains

Because we have yielding, we will assume that 05, =0, and oy, = g, but for the shearing
stress we will use a Huber-Mises-Hencky distortion energy yield criteria of ox), = 0, A/3.
The normal bending strains are as in the circular plate pioblem with €, = —2(3%w/dx?)

and €, = ~2(32w/dy?). The bending shunng strain exy = 2:(32 w/0xdy). The bending
strain cnergy Up is then given by:

h/2 2., 2w hi2
U,,~8fd-f d\f dv o, (—-:é—‘}-—:—‘l‘—)+8fd'

X ¥ g, 2w\
; ' —— M2z — (60
(;f dx "'f dy <2 w)( ™ a,r) )

The bending strain energy contributions from the normal stress and strains must be obtained
by four part integration (from 0 to X/2 and 0 to ¥/2, irom X/2to X and O to V/2, from 0
to X/2and Y/2 to Y. plus from X/2 to X and from Y/2 to Y) because the lines of inilection
change the sign of the stress. Differentiating Eq. (58). sutstituting itinto Eq. (60), and per-
forming the triple integration then yields:

4
U, = Eo,h nor—* Y]+_O‘h Wo (61

FRRANY:

The first term on the right hand side of Eq. (61Vis the contribution from the normal bending
strains. and fite second term is the contribution from the bending shear strains.

Equation (59) applics to the extensional response as well as bending response. The nor-
mal »xtensional strains are as in the circular plate problem with €., = 0.5(3w/3x)? and €, =

0.5(dw/31)?. The extensiona! shearing strain €, = (31w/0x)(3w/3y) as a first approximation.
These additional observations mean that the extensional strain energy U, is given by:

X Y 3
Us=4 f dv [ dv f d:zo, I:"(-al:) + "(2?)] +4 f dx
0 0 0 : = \O

FujeHEE)

e




Differentiating Eq. (5§8), substituting it into Eq (62), and perforrnmg the triple lntegration
yields:

. 3n? Y X 8 ,
U, = 33 o‘hwo[x+;]+%oth3 ) - 7(63)7

The total strain encrrgy U is then the sum of U, [Eq. (63)) and U, | Eq. (61)), or:

. [r x7 a 3In? Y X
50_,.h1w0[;+7]+ﬁ0yh2w0+3 a;hwol:x Y]

8
+ \73-0). hwd (clamped plate) (64)

U

The strain energy in a simply-supported plate can also be estimated using the same pro-
cedure, with an assumed deformed shape described by:

AN Ty
W = Wy COS Ix cos %; (65)

The previous procedure gives as a value for the strain energy U,

y X]. 4 : Y
U=o,h?w, [} + -);] +\/_3*f‘a,t"'2‘vo +18 0y I} [,\’ ))5]

4 ,
+ \—/3— 0w} (s.s. plate) (66)

Notice that Eq. (66) for strain energy in a simply-suppoited plate is similar to Eq. (64)
for sirain encrgy in a clamped plate The oty difference in these equations is in the numeri-
cal values of the coefficients which accompany each term on the right hand side of these
expressions. This observation means that if we insert a coefficient N that is equal to 1.0 for

simiply-supported plate and equal to 2.0 for clamped plates. a general strain energy equation
can be written as in Eq. (67).

a1 Y X 4 Wy
U= v oy hwg [/\’ + = Y + :/—30, hwy + ——— v a,.hw},
Yy X 4N
l::‘- + 7] +\~/73_0,.hw3 (67)

The kinetic energy KF imparted to a plate is not dependent upon the deformed shape.
Fer a uniformly applied impulsive load iinparted to a plate. the kinetic cnergy is obtained
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(as it‘was for a circular plate) by summing up the impulse squared divided by two times the
incremental mass over the swilace of the plate. The appropriate integration is given by:

X ¥ 2(dx)(dy)? '
KE=4 RIS : (68)
Gr 6‘ 2ph(dx)(dy) S A2
or )
22
kg =X (69)
ph

Equating Eq. (67) and Eq. (69) finally yields aigeneral rectangular plate equ- tion for
deformations caused by uniform impulsive loads. The following equation is this relationship.

X _1F_ =L (XY (ﬁ)Jr_z_ X (wﬂ) A
VP, it 2N Y h V3IYI\r]  16N?
XV fwo\? . IV {X | [/wo)?
_— — +-.__. — —
[‘ * (Y)] (;) \/3H<h) 7o

We will demonstrate the validity of this solution by using clamped (N = 2) rectangular
plate data reported by N. Jones, T. O. Uran. and S. A. Tekin. 1151 Rectangular plates with
an aspect ratio (Y/X) equal to 1.695 were loaded with sheet explosive in these experiments.
Both hot-rolled mild steel plates and 6061-T6 aluminum plates were tested and can be seen
plotted in Figure 11. Equation (69) is also shown in Figure 11; however, left and right sides

of Eq. (69) were multiplied by (Y/X)? to cast it into the format of their data. Excellent
correlation appears in Figure 11 when Eq. (70) is compared to experimental test results.

Unfortunately. no experimental quasi-static loading realm data exist on dynamically
loaded. plastically deformed plates, simply-supported beams. or clamped beams. The analyti-

cal solution is casily developed for a plate. The work W performed on either simply-supported
or clamped plates is obtained by integrating pw dv dy and equals:

o < ,,z.w--zp

T pwo XY (71

When this work is cquated to the general strain encrgy expression. Eq. (67). we obtain the
solution tor the quasi-static loading realm of rectangular plates.

p (X N /x\? 4W- [x]  3NV-hgw-21,20-N,
=) == |l +{—= =1+
o, \ 247N \) V3AmW-D Ly 32

- { 2 \LQ ) ;(N— D4V -3 { W 71
Y n)” VIR NV-2 Ly [\ g (72
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UNIFORMLY LOADED RECTANGULAR PLATES
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VIl. DISCUSSION

These procedures and the resulting formulae comprise the structural analysis approach
that was used by SWRI to control deformations in the design of a plastically-yiclding. blast-
‘suppressing structure. This analysis procedure yields explicit expressions for nondimensional
deformations in terms of nondimensional loading