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FOREWORD 

This report is intended to supersede both Chapter VI of BRL Interim 
Memorandum Report No. 190 and the portion of Chapter VII concerned with 
structural response. 

3 



TABLE OF CONTENTS 

I. INTRODUCTION ... 

II. ANALYSIS OF TOTAL CONTAINMENT STRUCTURE 

A. Hemispherical Configuration . 

B. Hemicylindrical Configuration 

III. CONCLUDING REMARKS. 

REFERENCES ..... . 

APPENDIX - RESULTS OF THE EXTENDED SOLUTION 

DISTRIBUTION LIST . . . . 

5 

Page 

7 

8 

8 

15 

17 

20 

21 

33 



I. INTRODUCTION 

The concept of a suppressive structure entails the use of multi­
component panels which are supported by a relatively rigid bent-type 
framework. The complete structure, consisting of framework plus panels, 
is fabricated from commercial low carbon steel and forms an enclosure 
surrounding the region where an accidental explosion may occur. The 
panels consist of arrays of bar elements (angles, zees, etc.), perforated 
plates, and louvred plates at various spacings. These panels are in­
tended to provide total containment of fragments and to permit a re­
stricted venting of the contained blast, resulting in a significant de­
crease in external overpressures over what would be realized if no 
suppressive structure were present. For an optimum design the entire 
structure would experience limited elastoplastic deformation, thus 
providing a sink for the released explosive energy. 

To formulate a rigorous mathematical model for the response of such 
a complex structure and to develop efficient methods for obtaining 
numerical solutions would be extremely tedious and costly. However, such 
structures have been produced through a combination of approximate 
analytical procedures plus proof testing. In response to a request for 
short-term assistance in assessing the cost effectiveness of the suppres­
sive structure concept it was decided to eschew any detailed modeling of 
such complex structures and to treat an idealized configuration whose 
response could be readily analyzed by an existing large deflection 
elastoplastic structural shell response computer program, PETROS 3.5. 1 

This analytical tool would be employed to design an efficient closed 
(total containment) shell structure which would have the same protective 
capacity as an existing suppressive structure which was developed for 
application to an 81 mm mortar round automated assembly facility. 2 This 
suppressive structure is a welded steel framework 20 feet (6.10m) long by 
15 feet (4.57m) wide by 13 feet (3.96m) high having 4 feet (1 .22m) by 
12 feet (3.66m) wall panels and 4 feet (1.22m) square ceiling panels, 
the total weight being 51000 pounds (226859N). The comparison between 
the total containment and suppressive structural designs should be mean­
ingful because the suppressive structure, while not necessarily optimized, 
was certainly not grossly overdesigned (a fragment nearly perforated an 
outer louvred panel and the whole structure experienced appreciable 
permanent deformation). 

ls.D. Pirotin~ B.A. Berg~ and E.A. Witner~ "PETROS 3.5: New Developments 
and Program Manual for the Finite-Difference Calculation of Large Elastic­
Plastic Transient Defonmations of Multilayer Variable-Thickness Shells~" 
U.S. Army Ballistic Research Laboratories Contract Report No. 211~ 

February 19?5. AD# A007215. 

2"Design~ Fabrication and Test of a Suppressive Structure for Application 
to an 81 mm Mortar Round Automated Assembly Facility~" Draft Report~ 
Edgewood Arsenal Resident Office~ National Aeronautics and Space 
Administration~ Bay St. Louis~ MS~ 9 January 1974. 
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II. ANALYSIS OF TOTAL CONTAINMENT STRUCTURE 

A. Hemispherical Configuration 

To achieve nearly homogeneous elastoplastic straining a hemispherical 
configuration was selected, this to be bolted down to a horizontal rigid 
foundation as shown in Figure 1. In the analysis this edge condition 
was treated as a clamped boundary. As was the case for the suppressive 
structure of Reference 2, this configuration must survive the simultaneous 
detonation of two 81 rnrn mortar rounds. For simplicity in the analysis, 
these rounds were located at a central point on the foundation so that 
the blast loading is spherically symmetric. The mathematical problem 
may now be posed as follows: For a shell thickness h determined by the 
requirement for fragment containment,* how small can the midsurface 
radius R of the hemisphere be made without causing structural failure due 
to blast loading? 

In order to solve this problem it was necessary to formulate the 
pressure pulse as a function of the radius R. Data for this formulation 
are presented in Reference 3. For a selected value of R the pressure 
experienced by the target is represented in the following manner. At the 
arrival of the blast wave there is a jump to the peak reflected pressure, 
followed by an exponential decay which is terminated when the thermo­
dynamic equilibrium pressure corresponding to the release of detonation 
energy and explosion products in a constant volume process is reached. 
Subsequent to this the pressure is taken to remain essentially constant 
at the equilibrium pressure. The actual loading pulse employed is 
illustrated in Figure 2 for the case R = 5 feet (1.52 m). 

The material was taken to be 1020 steel, which was represented in 
the analysis as a strain hardening material with stress-strain properties 
modeled by the succession of linear segments shown in Figure 3. Strain­
rate effects were neglected, which is conservative since these effects 
increase the structural resistance and thus reduce the total deformation. 

The foregoing numerical quantities which have been discussed are 
the only physical data input required for the PETROS 3.5 code (Reference 
1), which treats the transient response of shells by obtaining a finite 
difference solution of the nonlinear partial differential equations of 
motion. Since the loading and response are axisymmetric it is only 
necessary to use three meridional rows of mesh points. Owing to the 
highly nonlinear character of this transient response problem it is 

* For this case, h: 1 inch (25.4mm) of steel is sufficient, as discussed 
in Reference 3. 

3B. Bertrand, C. Brown, D. Dunn, N. Buffington, J. Kineke, C. Kingery, 
R. Meissner, A. Ricchiazzi, S. Robertson, and R. Vitali, "Suppressive 
St~~ctures- A Quick Look," BRL Interim Memorandum Report No. 190, 
Februa~J 19?4. 
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necessary to determine the minimum value for R by trial. When calcula­
tions were performed for R = 10 feet (3.05 m) the response was found to 
be entirely negligible. Results for R = 5 feet (1.52 m) are shown in 
the figures which follow. Figure 4 shows the transient rectangular 
components of displacement in a meridional plane at point A which is at 
45° from the vertical axis of the hemisphere. From this it may be 
determined that the maximum displacement at this point is only 0.036 
inches (0.914 mm), essentially radially outward. Displacements at other 
locations are correspondingly small except in the neighborhood of the 
pole of the hemisphere, where a significantly larger deflection develops 
after 4000 microseconds (as illustrated in Figure 5). This rather 
exceptional behavior in the vicinity of the pole led to a more extensive 
study of the solution of this problem which is reported in the Appendix. 
In this study it was determined that the deflections and strains in this 
structure remain everywhere small, which is consistent with the results 
shown in the energy balance diagram of Figure 6. This diagram, part of 
the graphrical output provided by the BRL version of the PETROS 3.5 code, 
shows the temporal variation of total energy and work quantities for the 
hemispherical shell. There is a gradual increase in the amount of 
(irreversible) plastic work but this will be bounded as the shell "shakes 
down" to purely elastic oscillations. 

It has been noticed that the fluctuations of kinetic energy in this 
analysis have twice the frequency of the work performed by loads external 
to the structural shell (which are provided in this instance by the 
internal blast pressure). The explanation is relatively simple. Initially 
the hemisphere moves outward (except at the fixed boundary) in a "breathing" 
mode, the kinetic energy reaching a maximum value and then decreasing as 
the structural resistance becomes increasingly effective. At the maximum 
outward excursion the elastic strain energy is a maximum and the kinetic 
energy is a minimum (not zero because there is some kinetic energy of 
flexural vibration by this tjme). Up to this point the shell moved in 
the direction of the applied pressure loading so the external work was 
positive. The shell then moves inward, picking up speed until the kinetic 
energy reaches its second maximum and then slowing down as the internal 
stresses and the applied pressure become dominant. The second minimum 
of the kinetic energy occurs at approximately 1000 microseconds, corre­
sponding to a relative maximum of the strain energy. During the inward 
motion of the shell work was performed by the shell against the internal 
pressure (negative work) which accounts for the decrease of the external 
work to a minimum at the same time as the second minimum of the kinetic 
energy. The shell then moves outwards and the preceding energy fluctua­
tions are repeated cyclically. Although more energy is converted to 
flexural motions and plastic work as the solution proceeds, the frequencies 
associated with the breathing oscillations continue to be observable in 
the kinetic energy and external work plots. 

From the above it may be inferred that the radius R of the hemisphere 
could be made considerably less than 5 feet (1.52 m) before danger of 
rupture would arise. However, to be conservative and because the size 

11 



\ 1 X3 

\ 
I ~ ~6 

\\ U2\ FIXED____.AI!" _/\ ,X2 . 

\\ .

(\ U V\ EDGE 

.. r 
1 

11 3 lii'\ ~ E • ,1 
~ \ 'I \ " 4 E 

c: \ \ I ~~ /' ~ . ' \ X . -- I, I \1 I \ ... \ 1 ~ 
~ \1 i I ; \ 

1
\\ Z z . I II ,, I I I, \ w 

~ .010 
11 

\ If \\, ;I \1'\ '\ 2 
2 \ 1

/ \! .) \ I ~ ~ II \\ I I I\. I .2 8 0 I I I ',I I-

- u I' 1 I ;/ \' \ // ~ N \ 'I I z 
~ /, \ z I II I w 
w 11 1\ 1. ~ 
~ I ·~~ ~ u ,, ~ 

~ I\ \ . . \_-/ o ~ 
a 11 ., \\ 1 , 

I\ )1 '(/ \ ,"'---/ 
\\ \ \ I 
\1 \ / '-' --1-.2 
I\ \ __ / 

-.010 1- \\ 
\~\__! 

I I f 
0 1000 2000 3000 4000 5000 

microseconds 

Figure 4. Transient Displacement Components at Point A, R=S Feet 



.081 I I I I I I I I I I 92 
/ I 

I \ 

I \ 
I 

I 
I I -n 

I 
.,. 

\ \ 
• /...--...... e 
~ 

I \ 
,, e u \ (\ c \ \ I 

~ .02 
I ~ 

\ I w 
\ ' ' 

w I \ \ 

I 
...J 

...J \ \ 

\ 
0 

0 I \ CL 

CL I \ 
I I \ \ ~ 

~ 
\ I 

0 
I ; o ..... 

..... ' z 
(.M ..... I i z \ I w 

w •. I I ~ 
\ I 

~ \ 

I 
w 

w '---' u 
u-.02 ~ 

~ 
...J 

...J 
CL 

CL I V) 

V) i 0 
I 

0 

-.04 -l-1 
I 

I 
I 
I 

i 

-.06~ 
\ 
\ 
I 

\ 
\ I 

-.osl I I I 
\ I 

d-2 I I I I I I ~I 

0 1000 2000 3000 4000 5000 
TIME, microseconds 

Figure 5. Transient Displacement at Pole of Hemisphere 



-~ 

2400r-~~---,----r----r----r---.----.----.----.----~~ 
DISCRETIZATION EXTERNAL ~07 

.. • ~ 

2200 

2000 

1800 

1600 

-~ 1400 
I , 
c 
~ 1200 
~ 

~ 
C) 1000 
a:: 
w z 
w 

600 

400 

200 
\

. 
·' 

'J 

I 
I 
i 
i 

/ '\\ /f ~~ 
I I ~ \ 
. I ' \ 

/) \\ ;;. )\ 

I ~ \ 
I I 

!', \ t I 

I U 
1/1 

i 
f;, 
I, 

I \ /! 
I \ i/ / 

1\ ~~ ~j; / 
\ I I 

\1 , '-/ ;' 
I 'V 

\ 

'J 

I 

1. 

, I 
I / 

ERROR l .. , 
I 

I 
I \ 

. \ I i ~-\. I It, 

jl \\ /~ ·, 
·/ \\ I 1 ' / ~\· II ~ 

!, \ I a:: I r . o 
/ # \\ I ~ 1l >- \\ / 1 ~ 

I I /1 li1 ' \ I /I <( 
\ \ I ! w I ' 'I ~ \,,'/ z \ '-"/ Cl.. 

'\ '- ~ /' w (\ \ / \ ~ • \ I \ \ • r, \,_/ \ ~ I ... '-' I \ 1 ~ I I I 

\ T:.tn; \. I\ 
• I \ 

I 

I 

\ I 

\ / ,_; 

. I i \ ' 
I ' \ I 

KINETIC ENERGY 

\ 

200 

100 

0 0 
0 1000 2000 3000 4000 5000 

TIME, microseconds 

Figure 6. Energy Balance Diagram, R=S Feet 

... 
~ 
:. 
0 ·--. 
~ 
C) 
a:: 
w z 
w 



of the containment structure is already inconveniently small for nec­
essary machinery and service personnel further reductions in R were not 
pursueJ. The total weight of the containment structure for R = 5 feet 
[1.52 m) was determined to be approximately 7000 pounds (31137N), or 
about 14~ of the weight of the corresponding suppressive structure of 
Reference 2. In this comparison, allowance was made for the weight of 
flange material required at the boundary of the hemisphere hut not for 
extra weight associated with access provisions, welds, or foundations 
since these considerations are common to both types of construction. 
Since the cost of monocoque construction employed for the total contain­
ment structure should be considerably less than the cost of fabricating 
the panel arrays used in the suppressive structure, a comparison on a 
cost basis should be even more favorable to the containment structure. 

Up to this point no consideration has been given to the possibility 
that fragment-induced damage to a monocoque shell might result in 
catastrophic rupture when the blast loading is applied. One should 
estimate the material removal produced by the worst-threat fragment and 
perform a local three-dimensional analysis using the PETROS 3.5 pre­
dicted transient stress field to determine whether a crack would be 
propagated under such loading. This rather diffictJlt problem in fracture 
mechanics can be at least partially circumvented by a conservative 
selection of wall thickness for the monocoque shell (even a doubling of 
the wall thickness would leave the containment structure in a very favor­
able competitive position in comparison to a suppressive structure, as 
may he inferred from the preceding example). However, the part-way­
through damaged shell should be designed to at least sustain the quasi­
static residual pressure. 

B. Hemicylindrical Configuration 

Although the previously considered hemispherical configuration has 
advantages with respect to optimal stressing of the material it clearlr 
has drawbacks regarding access and the shape of the interior volume 
afforded. Consequently, consideration was given to analysis of the 
response of a compromise configuration: specifically, a hemicylinder 
with closed ends, one-quarter of which is illustrated in Figure 7. 
While certainly not as efficient from a structural viewpoint,* it is 
regarded as a closer approximation to a configuration which could be 
employed for an assembly line operation. 

This response problem was also treated using the PETROS 3.5 code 
for the case h = 1 inch (25.4 mm), R = 5 feet (1.52 m) and a cylinder 
length L of 10 feet (3.05 m). The weight of this structure would be 
approximately 10500 pounds (46706N). The same charge, two 8lmm mortar 
rounds, was assumed to be detonated on the axis of the cylinder midway 

* It would certainly be possible to design a more structurally efficient 
end closure than a flat plate but other considerations relating to the 
intended application may indicate a preference for a vertical wall. 
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Figure 7. Hernicylinder Geometry, Including Finite Difference Grid 
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between the ends. The peak reflected pressure on the cylinder at z = L/2 
and on the end plates on the cylinder axis is 1000 psi (6.89 MPa) as for 
the hemisphere. At other locations the peak pressure is less due to 
spherical divergence of the blast wave and oblique reflection. Empirical 
data on this pressure were fitted by a quadratic approximation in the 
response calculations. The pressure at each location was then assumed 
to decay exponentially until the equilibrium pressure (100 psi (0.69MPa)) 
is reached, which is less than for the hemisphere due to the greater 
internal volume. 

The deflections at B and C (Figure 7) are the greatest for the end 
plate and the hemicylinder, respectively. At both locations the maximum 
deflections exceed those for the hemisphere, which is in agreement with 
expectations since the deformation of the hemicylinder is highly in­
homogeneous. While strains at certain points are greater than for the 
hemisphere, these are very much less than those required to produce 
rupture so the structure should still be able to contain the explosion. 

III. CONCLUDING REMARKS 

It has been demonstrated, through use of a rather complete and rigorous 
nonlinear shell response methodology, that it is possible to design a 
containment structure that is significantly lighter and less complex to 
fabricate than a suppressive structure of corresponding capability. 

An examination of the characteristics of the near-optimal hemi­
spherical structure permits the identification of factors which contribute 
to efficiency of protective structures: 

1. Shapes which promote the development of membrane restoring forces 
before large deformations occur are desirable in order that the entire 
volume of structural material experiences significant plastic work. 
Flat plates and straight beams supported at the edges which resist de­
formation principally by nonuniformly distributed bending stresses are 
notoriously inefficient. 

2. Since structural weight of fragment containment structures varies 
approximately as the midsurface area, the structure should be made as 
small as the requirement of blast survivability permits. However, it is 
recognized that considerations of internal volume required for necessary 
machinery and for service personnel may dictate the use of a somewhat 
larger, less efficient structure. 

3. While the use of vented spaced plates may be desirable from the 
viewpoint of blast and fragment suppression, in configurations where 
significant bending cannot be avoided (as in box-type structures) the 
use of multiple plates with no shear ties is less efficient than a 
single plate of the same total thickness. 
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In comparing suppressive structures with those designed for total 
containment it was believed that the ventilated structure might be some­
what lighter because it does not have to resist the full blast loading. 
Conversely, it was recognized that stress concentrations associated with 
openings in the ventilated structure would require added weight so that 
the net effect could not be determined a priori. However, the apparent 
greater weight of "equivalent" suppressive structures (aside from that 
part due to greater size) would indicate that either the stress concen­
tration effect is dominant or designers have not been able to take 
advantage of the reduced blast loading due to uncertainty as to its 
extent. Further, it appears from examinations of calculations that 
structures which have been designed to survive the initial portion of a 
blast load such as depicted in Figure 2 can withstand the much lower 
equilibrium pressure indefinitely, thus obviating the need for rapid 
venting of the confined pressure. 

The writers prefer to leave for future judgment any determination as 
to whether suppressive structures can be designed to be competitive with 
total containment structures from an engineering viewpoint. However, 
considerable research and methodology development in the areas of blast 
dissipation, structural component loading, and structural response of 
complex configurations will be required before rational design of 
suppressive structures can be performed with the same degree of confi­
dence as presently exists for containment structures. Perhaps some 
combination of these concepts will eventually prove most satisfactory 
for practical applications. Figure 8 illustrates such a compromise 
which may be useful for an assembly line operation. Munitions on 
pallets are brought by conveyor belt to and away from a station where a 
hazardous operation is performed. This station is enclosed in a con­
tainment structure which has openings for the conveyor belt and pallets 
at each end. Suppressive panels to cover the openings required for 
pallets as well as deflectors to divert residual blast upwards would be 
raised and lowered hydraulically to permit passage of pallets. In the 
closed position the ends of the suppressive panel would be nested in 
wedge supports capable of resisting any loads produced by an accidental 
detonation. While not necessary, additional suppressive panels could be 
located in the upper portion of the cylindrical structure to provide 
controlled upward directed venting of the explosion products. 

Subsequent to the completion of the study reported herein the 
authors became aware of the extensive investigation which had been 
performed by BRL for the Atomic Energy Commission concerning the safety 
of outer containment structures for nuclear reactors. The results of 
this investigation (References 4 - 10)* serve to corroborate the con­
clusion of this report that monocoque structural shells composed of 
spherical or cylindrical segments are desirable and efficient configu­
rations for containment of accidental explosions. 

* References 4 - 10 are listed on page 20. 
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APPENDIX 

RESULTS OF THE EXTENDED SOLUTION 

The growth of displacement at the pole near the end of the previously 
discussed solution (see Figure 5) and the evidence in Figure 6 that the 
plastic work was still increasing gave rise to concern that this solution 
might be numerically unstable and thus invalid. This concern was dis­
pelled when results for a much longer (in time) solution of the same 
problem were obtained. The PETROS 3.5 code was run for 3050 cycles 
(22875 microseconds) in an undamped mode, after which artificial damping 
was introduced to suppress the elastic oscillations. The solution 
self-terminated at cycle 3173 (23797.5 microseconds) when a criterion 
for per cent reduction of kinetic energy was satisfied. This extended 
solution provides insights into several aspects of the response which 
were not apparent in the abbreviated solution. 

The displacement components at point A (which are representative of 
points not adjacent to the boundary or to the pole), previously shown in 
Figure 4, are presented in Figure A-1 for the extended solution. It may 
be seen that the first peak does correspond to the maximum deflection at 
this point. The subsequent oscillations have a positive bias, principally 
due to the residual internal pressure. The predicted displacement at 
point A after oscillations are damped out is 0.0063 inches (0.160 mm) 
which is almost exactly the deflection of an elastic sphere under the 
residual pressure. Therefore, it can be inferred that the permanent 
deflection at this location after the pressure is removed would be 
extremely small. 

The extended solution for the displacement at the pole is shown in 
Figure A-2. The growth in amplitude noted in Figure 5 continues in an 
oscillatory manner, reaching a maximum of 0.136 inches (3.45 mm) at 
about 8000 microseconds. This displacement is less than 14% of the 
thickness of the shell so it may be concluded that geometric nonlineari­
ties are not significant in this problem. Initially the pole moves in 
the same manner as the typical internal point A but by around 3000 
microseconds the motion of the neighborhood of the pole is significantly 
out of phase with that of other points on the shell. The unique be­
havior of the pole in relation to that of the remainder of the shell can 
be better visualized by study of the series of deformed meridional 
contours shown in Figure A-3. 

Were it not for the fixed boundary this centrally loaded hemisphere 
would respond exclusively in a spherically symmetric breathing mode. 
The effect of the boundary is introduced through flexural \~aves which 
initiate at the boundary and propagate towards the pole. In discussing 
wave propagation in a shell one must distinguish between (a) the 
physical behavior of the real or perfectly modeled shell and (b) the 
behavior predicted by the mathematical model actually employed. For (a) 
we know that flexural wave velocities in elastic media depend upon the 
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wave length A (i.e., flexural waves are dispersive). For the material 
properties and geometric parameters of the case under consideration 
these wave speeds and the times ta required for a disturbance to travel 
from the boundary to the pole are as follows: 

Limiting Cases 

Long Waves (A > > h) 

Short Waves (A ~ o) 

Wave Speed 
in/sec m/sec 

1005 

117600 

25.5 

2987.0 

t a 
microseconds 

93800 

802 

where h is the shell thickness. The short wave length limit corresponds 
to the velocity of Rayleigh surface waves while the phase velocity for 
long waves is given by c = 378700/A (in/sec). Since the bounds on ta 
are so widely separated, it is small comfort that the actual time at which 
the pole displacement experiences rapid growth falls within these limits. 
For (b) we are using a Kirchhoff shell theory which neglects transverse 
shear deformation and rotatory inertia. Such theories have the defect 
that they predict unbounded wave speeds as A~ 0. This does not 
necessarily entail the prediction that finite disturbances will arrive 
rrematurely at positions away from the source, however, since the 
spurious precursor may have only infinitesimal amplitude. When the shell 
equations are solved by the finite difference method (as is done by 
PETROS 3.5) another complication arises. In this case the possible 
propagation speed is finite, being limited to two mesh spaces per time 
cycle. On this basis a disturbance originating at the boundary could 
reach the pole by Cycle 10 (75 microseconds) for the mesh employed, which 
is much sooner than the minimum theoretical ta· However, it may be seen 
from the plot for Cycle 20, Figure A-3, that there is no appreciable 
deviation from sphericity except in the immediate neighborhood of the 
boundary. Consequently, the possible spurious precursor is truly in­
significant for this problem. 

By examination of Figure A-3 one sees that each full oscillation of 
the breathing mode initiates a flexural wave which travels toward the 
pole. While this wave is dispersive (as evidenced by its decay in 
amplitude at its leading edge) the principle component may be regarded. 
as being a sinusoidal wave whose wave length is A = CT (where T is the 
period of the breathing oscillations and c is the phase velocity for long 
flexural waves). From Figure 4 the period T may be determined to be 
approximately 1400 microseconds. Using this value and the previous 
expression for the phase velocity leads to A = 23.03 inches (0.585 m) 
which is in good agreement with the modes exhibited in Figure A-3. To 
determine the rate at which the energy of flexural vibrations is propa­
gated it is necessary to determine the group velocity (Reference A-1). 
For long waves this is found to be twice the phase velocity, i.e., 
cg = 757400/A inches/sec. Then the time of arrival for significant 

A-1 . H. Kolsky, "Stress Waves t-n Solids," Oxford, 1953. 

27 



flexural energy at the pole is around 2866 microseconds which appears 
to coincide with the time at which a significant phase difference be­
tween the motions of point A and the pole develops. It should be 
emphasized that, since this problem is axisymmetric, there is an effect 
of focusing of flexural vibratory energy at the pole, with continued 
reinforcement as subsequent waves arrive. On this basis the larger 
response at the pole appears quite reasonable. Figure A-3 also shows 
the meridional profile at Cycle 3173 (after all oscillations have been 
suppressed by damping but internal pressure is still applied. By sub­
tracting the static elastic displacement produced by this pressure one 
arrives at the estimate that the final deformed state of the hemisphere 
will entail a "pimple" at the pole which is 0.048 inches (1.22 mm) high. 

Transient strain components on the outer and inner surfaces of the 
hemisphere at point B (see Cycle 0, Figure A-3) are plotted in Figure 
A-4. The strains on the inner and outer surfaces are initially in phase 
and of equal value; i.e., they are membrane strains corresponding to 
the breathing mode. At around 3000 microseconds the strain components on 
the two surfaces become appreciably out of phase and of unequal magnitude, 
signaling the buildup of the flexural deformation previously discussed. 
As the total strains increase in amplitude the circumferential and 
meridional components on the same surface become unequal due to disparity 
in plastic straining in the two orthogonal directions (which is possible 
since point B is not at the pole). 

The energy diagram comparable to Figure 6 but for the extended 
solution is presented as Figure A-S(a). One sees that the double 
frequency for the kinetic energy persists even after the excitation of 
bending modes becomes significantly large. The numerical solution is 
obviously stable, at least for the response duration of interest. The 
discretization error, defined as: Discretization Error : External Work -
(Kinetic Energy + Strain Energy + Plastic Work) does not continue to 
grow but slowly oscillates in amplitude. After damping is introduced 
the ordinate between curves 3 and 4 of Figure A-S(a) becomes the sum of 
the damping work and the discretization error (principally the former). 
The growth of the plastic work is displayed separately in Figure A-S(b), 
which makes apparent the irreversible nature of this quantity. One sees 
that the plastic work approaches a limit in an asymptotic manner but not 
until near the end of the extended solution. Introduction of damping 
obviously has no effect on the plastic work (as desired). The small 
amount of plastic work which occurs before 2000 microseconds was localized 
near the fixed boundary. The stepwise growth of plastic work after 4000 
microseconds correlates exactly with the large amplitude excursions of 
bending strains depicted in Figure A-4, confirming that the bulk of the 
plastic deformation takes place in the immediate neighborhood of the pole. 

Although the results for the extended solution which have been dis­
cussed in this Appendix have made apparent several features of the response 
of the hemispherical shell which were not deducible from the abbreviated 
solution presented in the body of this report, no alteration in the 
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conclusions regarding the ability of the 5 foot (1,52 m) radius hemi­
sphere to contain the prescribed blast loading is required. 
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