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I.  INTRODUCTION

Three-body attachment of electrons to atoms or molecules pro-
vides an abundance of negative ions in the D region of the atmosphere
and below. A further sequence of reactions with neutral constituents
results in the formation of a variety of negative ions. The more

abundant species arc 0 , 02, 03, 04, COS’ CO4, N02, NOS’ and their

*
hydrates.1 These negative ions can be considered as a reservoir
of electrons which can make a large contribution to the free elec-
tron concentration. Stimuli such as photons from sunlight or a
nuclear burst may provide a trigger for this contribution. Several
mechanisms can be responsible for freeing electrons from negative
ions. Those mechanisms of interest here are: (1) direct detachment
of the electron from the negative ion via photon absorption, and
(2) a two step process the first of which is dissociation of the
negative ion into a simpler negative ion plus neutral followed by
detachment of the electron from the simpler negative ion.

Photodetachment measurements have been made for some atmospheric

ions, i.e., 0" 2-? 0- 4-9’ OH™ 4,10-12 o- 8,13—16, NO™ 4,17’ NO- 4’
4,18-20 218 21 © 3 2 3
CO% »aRTer co;- H20 , and O; . Recently photodestruction

(photodissociation and/or photodetachment) measurements of ions of

atmospheric interest have been pursued. Cross sections for Oé, O;,

O;, CO%, HCO%, CO%' H,0 and HCO% © H,0 have been measured at selected
wavelengths 8,22-24  gince experimental studies of atmospheric nega-

tive ions are still quite incomplete, we have initiated a laboratory
investigation of such ions. This report contains the experimental
details and the initial data obtained with the recently constructed
experimental apparatus.

IT. EXPERIMENTAL

The experimental apparatus consists of four major components:
the negative ion source, the drift or thermalizing region, the mass
spectrometer and ion detection electronics, and a laser. A schematic
representation of the apparatus is shown in Figure 1. Initially,

* References are listed on page 23,
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ions are formed in the source from which they are extracted into the
drift region. Under the influence of a weak uniform electric field,
the negative ions drift toward the exit aperture while making many
low energy collisions with the necutral gas molecules. During this
drift time the ions diffuse and possibly react with the neutral
species., Just in front of the exit aperture the negative ion swarm
is intersected by a chopped laser photon source. The ions which pass
through the exit aperturec arc accelerated to a mass filter, detected
by an electron multiplier and the counts are gated to one of two
counters depending on chopper position.

Ions are formed in the source by dissociative attachment or
three-body attachment of electrons to the neutral gas molecules.
Electrons are emitted by a thoriated iridium filament and accele-
rated transverse to the drift direction to a collector where the

current is monitored. A~ 7 x 10-3Wb/m2 magnetic field in the direc-
tion of electron travel assists in confining the electrons to the
filament-collector region and increases the number of electron-
neutral collisions. 1Ions are extracted from this formation region
through a 12 mm hole in the extractor plate. The remainder of the
source consists of three lenses whose potentials may be adjusted

to vary the ion residence time in the ion source region and thereby
vary by up to an order of magnitude the relative concentrations of
ions created by electron impact and those formed by subsequent ion-
neutral reactions. The final lens is positioned in the midplane of
a drift ring and is maintained at the potential of that ring. This
arrangement provides a uniform drift field for the negative ions
from the cxit of the source to the sampling aperture. The last two
lenses of the source can also be used to gate the ions. The result-
ant time arrival spectra can be used to extract ion mobilities and
reaction rate coefficients.

The constant electric field drift region consists of eight
evenly spaced stainless steel rings with 102 mm diameter. The 1.0
mm diameter exit aperture is centered in the midplane of the final,
grounded drift ring. The negative potentials for the other seven
drift rings are determined by an external voltage divider chain.

The distance from the last source lens to the exit aperture can be
varied from 2 to 125 mm by moving the source. The source is mounted
to the main vacuum chamber by a welded diaphragm stainless steel
bellows to allow this movement to be made under vacuum conditions.



Variation of the drift distance is used to adjust the relative con-
centrations of ions created or lost in ion-molecule reactions as well
as allowing for relaxation of ions created in excited states. End
effects?> which may be important in mobility measurements can be
eliminated by obtaining data at two or more drift distances. One
may also obtain ion-molecule reaction rate constants by variation

of the drift distance.26

Ions passing through the exit aperture enter a region of low

pressure, ~ 107 °N/m“ as compared to v 10 N/m2 in the drift region.

These ions are accelerated through collimating lens to a potential

of ~ 30 volts before they enter the monopole mass filter which has

approximately 1 amu resolution. A channeltron multiplier and asso-
ciated pulse counting electronics detect, amplify, and record this

incoming signal.

The photon source is a continuous duty ion laser with a beam
diameter of approximately 1.4 mm. Both Ar and Kr laser tubes have
been used. To maximize the photon intensity the output mirror of
the laser was situated such that the interaction of the light beam
with the negative ion swarm was inside the laser cavity. High
quality quartz Brewster windows on the vacuum system and high re-
flectivity output mirrors were used to maximize intracavity light
power. A thermopile was used to indicate the laser output power.
To obtain the average power for the course of an experimental run
the voltage output of the thermopile was converted to frequency and
counted. This number along with a measurement of time for the run
is used to calculate the average power. To convert this power into
the actual intracavity power Pc the following relationship can be
used

P.(X) = P (A) [?—Tﬁ{—)@l : )

where T()) is the transmission of the laser output mirror and P is
the output power. The intracavity laser power for these experiments
ranged from 1 to 50 watts. However, only relative power measurements
were necessary to the reduction of the data presented here.. The
laser beam is modulated with a 50 percent duty cycle by an intra-
cavity 93 Hz chopper. This chopper also controls the gating of the
ion count pulses to one of two scalers alternately to give a measure
of the ion count rate with light off and light on. As will be shown
below, the ratio of these two numbers, along with the power and
drift velocity measurements, can be used to calculate the photo-
destruction cross section.

10



III. ANALYSIS

The resultant intensity of a negative ion species subjected
to a photon flux is given by

1) = Ioe'B°(A)¢(x)t , (2)

where Io is the initial negative ion intensity, o(A) is the cross

section for the photon-ion interaction, t is the average time an
ion spends in the photon beam, ¢() is the photon flux, and B is
a geometric term describing the overlap of the photon beam with

the ion swarm which is sampled through the exit aperture.

The photodestruction cross section can be written as

N
0

ORI TR =

where N(X) and NO are the counts detected at the particle multiplier

with and without a flux of photons of wavelength X, respectively.

It is assumed that the negative ion intensity is proportional to
these detected counts. For all data reported here the cross sections
were measured relative to O . Absolute values for the photodetach-
ment cross section of O  at wavelengths of interest have been re-

ported in the literature.z—4 By making a relative measurement, .
experimental conditions can be arranged such that the value of B
is not required. However, we did perform initial checks by mea-
suring the O  photodetachment cross section.

Using six discrete lines of an Ar ion laser (514.5 nm, 501.7 nm,
496.5 nm, 488.0 nm, 476.5 nm, and 457.9 nm) the photodetachment cross
section for O was measured. The values obtained were consistent
with previous measurements in that they were constant to within 10
percent. The largest contribution to this fluctuation was likely
the uncertainty in the laser output mirror transmission for these

wavelengths. To obtain a cross section of 6.3 x 10’18 cm2 a value

for B near unity was required. This value was anticipated since
the photon beam diameter is 1.4 mm and the exit aperture is smaller
(1.0 mm) and within 1 mm of the photon beam edge.

11



Normalization of the measured cross section to the O  cross
section eliminates uncertainties associated with B and the laser
power. The photodestruction cross section of an ion A" normalized
to the O  cross section can be written as

N
0
1n W A P Va©
ap-(0) = 0g-(3) N, ’ (4)
1n NOO o Vo-
Py- _ _
where P is the ratio of laser powers P for the A and O cross

A A
section measurements. Since the laser beam is not altered during
the acquisition of the 0 and A” cross section data, the geometric
term B does not change. The time an ion spends in the laser beam
(2) has been replaced by the ion velocity. For the case where the
ion makes a number of collisions while traversing the laser beam
a drift velocity can be used for the ion velocity. Drift velocities
were obtained from existing mobility data.

Drift tube experiments usually report results as a function
of the mean collision energy between the ions and the neutral gas.
This energy is expressed by the ratio of the applied drift field
to the neutral gas density, E/N. The units for E/N are V m? but

are normally converted to Townsends (1 Townsend (Td) = 10-21V mz).

The cross section measurements reported here were made at an E/N

of 10 Td. At.this E/N the drift velocity for 0 is approximately an
order of magnitude less than thermal velocity. With this weak

field the negative molecular ions are thermalized while traversing
the drift region.

IV. RESULTS

Photodestruction cross section measurements for 05 and CO%
were performed in O2 and 02/C02 mixtures, respectlvely Figure
2a shows the negative ions formed in 13.3 N/m ultra high purity

02. Primary reactions for the formation of O  and O2 are

e + 02 -0 +0 I

12
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and e+ 0, +0, >0, +0

2 * U700, 11

Residual amounts of CO, in the apparatus resulted in small quantities

of CO% and C0; also being formed in this ion spectrum. These quan-
tities of CO% and COi could effect the photodetachment cross section

22,23

measurements of 05 in the following way. Moseley et al. have

found that most, if not all, of the photodestruction of COé is by

breaking up into 0” and CO,. This provides a source term for O
not accounted for. However, the photodestruction cross section
for CO, is more than a factor of three smaller than the O photo-
detachment cross section over the photon energy range studied here.
Assuming no mass discrimination the concentration of CO, is about
3 percent that of 0. If we now assume maximum efficiency for the
collection of the photofragment O  then this would be a 1 percent
effect on the results. Since the dissociation energy of COi into
0, and €O, is 0.8 evl(leV = 1.602 x 10717
the 05 concentration during laser on conditions. Our preliminary

J), it can contribute to

measurements of the COi photodestruction cross section at 676.4 nm,

647.1 nm,and 514.5 nm indicate its value is substantially less than
the photodetachment cross section of 02. Moseley has measured the

photodestruction cross section for CO, in the wavelength region from

4
660 to 515.5 nm and finds values less than 2 x 10-19cm2. This cross

section together with the quantity of C0; present in the ion spectrum

make possible errors from this effect less than 0.3 percent.

A negative ion impurity at an m/e of 46 is present in the ion

spectrum. The identity of this ion is most likely NO2 since some

experimental testing was carried out using nitric oxide gas in the
system. The photodestruction cross section for this ion was mea-
sured to be negligible with respect to an introduction of error

in the present results.

Figure 2b shows the negative ions formed in a carbon dioxide

and oxygen gas mixture. In addition to producing negative ions
from reactions I and II O and CO% can be formed by the reactions

14



e + CO2 >0 + CO I1I

and 0 + Co, + M ~» CO% + M, IV

4
case is about 25 percent and from previous arguments the maximum
uncertainty caused from the CO; is less than 5 percent.

where M is the third body. The ratio of CO, to 0; produced in this

From the results of other investigators,4_9 as well as the

dissociation energy of 0; as 4.08 eVl

05 over the photon energy range of this study can be considered

as composed entirely of photodetachment. The present photodetach-

ment cross section measurements for O2 at selected wavelengths are

, the photodestruction of

displayed as solid triangles in Figure 3. These values together
with the statistical uncertainties resulting from counting are
listed in Table 1. Ar and Kr ion lasers with prism wavelength
selectors were used to obtain the discrete photon energies with

approximately 1 x 10-5 eV resolution. Low field reduced mobility
values for O  and 05 drifting in 0, measured by Snuggs et al.27

have been used to calculate the required drift velocities for_O'
and 05. These mobility values are 3.20 for O and 2.16 for 02.
Photodetachment values for 0{ using an Ar ion laser have been

reported by Cosby et al.8 and are represented by open triangles on
Figure 3. More recently this group used an Ar laser to pump a
tunable dye laser and thus measured the O, photodetachment cross
section continuously from 670 to 565 nm with a photon energy width

of approximately 1 x 10—4 eV. These measurements were averaged
to yield the solid line in Figure 3. Burch et al. and Warneck
using a beam technique with a glow discharge ion source have also
measured the 05 photodetachment cross section. The dashed line

represents an extrapolation of the data of Burch et al. from 1.82
to 2.72 eV. These data have a photon energy resolution of about
0.2 eV. The data of Warneck with a 0.07 eV photon energy reso-
lution are not plotted but follow closely the data of Burch et al.

15
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Figure 3. Photodetachment cross section versus photon energy (1 eV = 1.602x10—1

9J) for Oé.
The solid triangles are present results, the open triangles and solid line

represent the data of Cosby et 31.8, and the dashed line is an extrapolation
of the data of Burch et al.5
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Larger photodetachment values for O; (not shown) have been reported
by Burt7 who conducted an experiment in 02 with pressures ranging

from 66.6 to 359.6 N/mz. These results have been questioned by Cosby

et al. as possibly being affected by the photodissociation of O;.

_ The general agreement for the photodetachment measurements of
0, is quite good. The higher photon energy resolution results in

the 2.35 to 2.71 eV energy range indicate possible structure in the
0, photodetachment cross section; however, a detailed investigation

over this energy range is required to determine if structure exists
as opposed to a smoothly increasing cross section.

Photodestruction cross section measurements for CO% were con-

ducted in O /CO gas mixtures to eliminate the need to use O for
normallzatlon since CO photodissociates to form O°. With the O /
CO2 mixtures suff1C1ent quantities of O are created for use in

normalization. The total gas pressure employed was 6.66 N/m and

the amount of CO2 in the mixture ranged from 20 to 50 percent. The

COE photodestruction data obtained is shown as solid circles in
Figure 4. The error bars represent only the statistical uncertainty

for the COQ counting. These photodestruction values at selected

wavelengths are listed in Table I. Along with these values are the

statistical uncertainty resulting from the counting for both CO%

and the 05 used for normalization.

To obtain the required drift velocities for 05 and CO%

in an 02/C02 gas mixture the following procedure was used. Low field

drifting

have been measured
-4 2

reduced mobilities for O  and COE drifting in CO,

by Moseley29 as 1.92 x 10_4m2/V-sec and 1.34 x 10 /V-sec, respec-
tively. Snuggs et al.27 have measured the reduced mobility of CO3

in O2 as 2.50 x 10-4m2/V—sec. However, we have not found any pub-

lished values for the mobility of 05 in C02. This drift velocity

was therefore computed by substitution into an equation given by

18
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McDaniel and Mason.28 This equation for the low field drift velocity
of an ion in a neutral gas is

g 1 e

Vg0 = —73 T — 172
3 \'“ (kT)

E

= 5
S (5)
where m and M are the masses of the ion and neutral respectively.
Q is the collision cross section and ¢ is a factor of order unity.

Equation 5 can be written for different species (1 & 2), assuming
£E1 = & and Q1 = Q2 then

1 1 1/2
vdl(O) _ K0 El + ﬁl o
vq (O X, (0) L1\,
2 m, + M2

where Kl(O) and K2(O) are the low field reduced mobilities of species

1 and 2, respectively. By substitution of the mobility for O in co,
into Equation 6 we compute the mobility of 05 in CO, to be 1.53 x 1074

2
m2/V-sec.

These mobility values together with the fractional composition

of the gas mixture substituted into Blanc's Law,
| S
KlZ(O) KI(O) KZ(O)

(7)

give the required low field ion mobilities for the gas mixture. Here
K12(O) is the low field mobility of an ion species in a gas mixture

of fractional composition x, + x

1 2°

Photodestruction cross section values for CO& reported by

Moseley et al.22’23’29 are also plotted on Figure 4. The open
circles represent their data using an Ar ion laser and the half
solid circles represent data taken using an Ar ion laser pumped
tunable dye laser. Burt has reported larger photodetachment cross
sections for COE in the photon energy range studied here; however,

20



the interpretation of his cross sections as being due to photodetach-
ment has been questioned by Ferguson et al1.19 whose calculations
indicate the electron affinity of CO3 2 2.9 eV. As mentioned earlier

Moseley et a1.22’23 report that most, if not all the photodestruction
in this energy range is due to photodissociation. Under conditions
where CO3 was the dominant ion, we observed photoproduction of O~

at 514.5 nm.

The agreement between the two sets of data shown in Figure 4 is

good and suggests detailed structure may be present. Cosby et al.24

have used a tunable dye laser to obtain an abundance of structure
over the range 640 to 565 nm. They interpret their spectra as
resulting from vibrational structure of a bound, predissociating
state.

V. EXPERIMENTAL ERROR

In this section the experimental uncertainties will be discussed
and summed to give an estimate of the overall accuracy of the data
obtained.

The experimental errors can be split into two categories; rela-
tive error and absolute error. The relative error can be thought
of as that error associated with the experimental apparatus. That
is, given that the apparatus measures one data point correctly, the
relative error is the error associated with the other data points
measured with the same apparatus. Contributions to the relative
error consist of (from Equation 4) statistical counting errors, ion
velocity ratio errors, and laser power ratio error.

_ The statistical error taken for each counting measurement is

/N. By combining these counting errors as a root mean square, the
total counting error for each data point is obtained. Since this
error is usually different for each data point, it is displayed as
error bars on Figures 3 and 4. The ion velocities were not measured
with the experimental apparatus, and therefore this error is more
appropriately discussed as absolute error. However, errors and/or
changes in the drift field voltage, temperature, and gas pressure

can influence the ion velocities. We estimate the error in the ratio
of the ion velocities due to these contributions to be * 4 percent.

21



The laser power ratio measurement P due to the frequency range used
for the voltage to frequency conversion is + 3 percent. The root
mean square of these two contributions is * 5 percent which when
added to the counting error represents a measure of the relative
error.

The absolute error consists of the error associated with the
absolute measurement of the O  photodetachment cross section (+ 10
percent)zx3 and the error associated with the computation of the
drift velocities (+ 4 percent)27. The root mean square of these
contributions yields an absolute error of * 13 percent.

The above quoted errors are only directly applicable to the

05 results. The CO% data reduction involved a two-step process.

First the 05 photodetachment cross sections were measured and these
results were necessary for the CO% normalization. Consequently an

additional relative error in counting exists. The root mean square
of these counting uncertainty contributions for CO% is reflected

in Table 1. Additionally it was necessary to calculate the mobility
of O2 in CO2 from Equation 6. This could make the error associated

with the drift velocities used for the co; photodestruction data

slightly larger; however, for present purposes we assume the + 4
percent is a generous estimate.

VI. CONCLUSION

Including possible errors in the present data these results
reinforce the validity of the photodetachment cross section measure-
ments for 02 and the photodestruction cross section measurements for
CO% made by Moseley et al.22 In addition the present Kr ion laser
lines extend the photon energy range for photodestruction of these

ions at discrete wavelengths.
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