COLD ROTARY FORGING OF SMALL CALIBER GUN BARRELS

DECEMBER 1975

TECHNICAL REPORT

ARSENAL OPERATIONS DIRECTORATE

DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited.

PREPARED BY
ARSENAL OPERATIONS DIRECTORATE
ROCK ISLAND ARSENAL
ROCK ISLAND, ILLINOIS 61201
DISPOSITION INSTRUCTIONS:

Destroy this report when it is no longer needed. Do not return to the originator.

DISCLAIMER:

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The citation of commercial products in this report does not constitute an official endorsement or approval of such products.
The objective of this program was to provide an improved method of manufacturing military gun barrels ranging in bore size from .22 to .50 caliber. During this project, suitable equipment was purchased, and a pilot line for cold rotary forging of barrels was established. Excellent bore qualities, reproducibility, reduced process time and reduced tooling costs were demonstrated. By rifling, chambering, and simultaneous exterior contouring, many conventional machining operations were eliminated with a gain in production.
rate. The cold rotary forging of gun barrels has been implemented as a production process for the Rock Island Arsenal. Greater utilization will occur when engineering design is more closely correlated to the manufacturing process.
PREFACE

This project was accomplished as part of the US Army manufacturing technology program. The primary objective of this program is to develop, on a timely basis, manufacturing processes, techniques, and equipment for use in production of Army materiel.

The cooperation and assistance received from Michael Tanaka, former project officer, and from Jack Hogan, forge shop foreman, is gratefully acknowledged.
1. PROJECT NUMBER. 6737300 BUDGET CODE. PW A3297

2. PROJECT TITLE. MM&T: Cold Rotary Forging of Small Caliber Gun Barrels

3. MAJOR END ITEMS SUPPORTED.
   a. MAJOR END ITEMS. Small arms weapon systems.
   b. COMPONENTS SUPPORTED.
      (1) 7.62mm M219 machine gun barrel
      (2) 7.62mm M134 mini gun (Gau barrel)
      (3) .30 caliber machine gun barrel
      (4) 5.56mm M16A1 rifle barrel
      (5) 50 cal. M8C spotting rifle barrel
      (6) 7.62mm M14 National Match rifle barrel
      (7) other small arms weapon barrels

4. FACILITIES SUPPORTED. Rock Island Arsenal (GOGO)
   Arsenal Operations Directorate
   US Army Armament Command
   Rock Island, Illinois 61201

5. TECHNICAL AREA(S) SUPPORTED. Small arms barrel manufacturing technology.

6. MILESTONE CHART. None (Project completed)

7. LOCATION OF WORK.
   a. In-house and contract.
   b. Rock Island Arsenal, Rock Island, Illinois 61201

8. PERIOD COVERED. 1 Dec 74 to 1 June 75

9. STATUS OF FUNDING.(as of 1 June 75)
   a. Funds Authorized
      In-house $120,000
      Contract $380,000
      Total $500,000
   b. Funds Obligated
      142,123
      357,877
      500,000
      (1) 74-F-0313
      (2) 74-M-2189
      (3) 74-M-2479
      (4) DAA F01-73-C-0173
      (5) 74-C-0077

Project No. 6737300
In-house Contract Total
Funds Expended $142,522 $349,417 $491,939

*All that remains to be expended in the final billing and payment for spare parts under Contract NO. 74-C-0077.

d. Percent (%) of Physical Completion 100% 100% 100%

10. PROJECT OFFICER. John Jugenheimer, Ext. 4135

11. ACCOMPLISHMENTS. An evaluation of the configurations of different caliber small arms rifle barrels was made in conjunction with the rotary forging process. From this, a purchase description was written and submitted for bid for a horizontal barrel forging machine. GFM Machines, Inc. (Steyr, Austria) was awarded the contract for a Model SHK 10 Barrel Forging Machine. The GFM machine has the capabilities of hot or cold forging, rifling, and chambering with simultaneous exterior contouring to precision tolerances. The equipment was installed in the Forge Shop at the Rock Island Arsenal.

The project implemented and tested a pilot line for the cold rotary forging of several small arms barrels ranging from .17 to .50 caliber. Tooling in the form of tungsten carbide mandrels and forging hammers was provided by GFM. Barrel preforms were fabricated from GFM design at the Rock Island Arsenal. Conventional chromium-molybdenum-vanadium barrel steel of hardness Rockwell C25-30 (per Mil-S-1195) was used. Preform design parameters were programmed into a Hewlett Packard Model 9830A programmable calculator. The print-out includes final preform drawings and data that can be used directly in machine set-up.

During the project, .22 caliber M16 (heavy walled configuration), 7.62mm M219 machine gun, 7.62mm M134, .50 caliber M8C spotting rifle, 7.62mm M14 National Match (with double taper exterior contouring) barrels were successfully rifled. Additional rifling for .17 caliber (4.32mm) and 5.56mm Mann barrels and rotary forging of super-alloy metal M134 barrels for the Research Directorate was also done successfully.

Twenty-two caliber M16 and 7.62mm barrels were successfully rifled and chambered. These two sizes of barrels were mounted on weapon actions and test fired for accuracy. Both sizes of barrels exceeded military accuracy requirements. The M14 National Match barrels are currently being adapted to receivers to be test fired for accuracy under a development program by the General Thomas J. Rodman Laboratory.

CONCLUSIONS.

a. The rotary forging process is an improved method of manufacturing military small arms barrels.

b. Small arm rifle and machine gun barrels from .17 caliber to .50 caliber inclusive can be successfully rifled on the GFM Model SHK 10 Forging Machine.
c. Rifling and chambering, including simultaneous outside contouring, can be successfully achieved.

d. Rifling is best achieved between a 27% to 29% reduction in cross-sectional area. Rifling with chambering is best achieved between a 37% to 39% reduction.

e. Precision sniper rifle grade barrel rifling occurs in a narrow range of machine settings. The extremes result in either "underfilling" of the lands (represented as rounded corners) or "overfilling" of the lands (represented as tearing or galling) and will drastically reduce mandrel life.

f. Metallurgical analyses demonstrate that rotary forged barrels meet or exceed military requirements. Improved grain structure, increased toughness, better corrosion resistance, and finer surface finish result from the process. In general, the geometry and surface finish of the mandrel are reflected precisely in the barrel bore. Bore finishes of 8 micro inch (arithmetic average) or less are possible.

g. Rotary forged barrels exceed military accuracy requirements.

h. Bore variation is drastically reduced and straightness increased. Variations of less than .00015 inches are common.

i. Greater utilization of rotary forging for barrel production will occur when engineering design is more closely correlated to this process.

12. PROBLEM AREA(s). None

13. FUTURE WORK. None

14. BENEFITS.

a. Any item in the Army Material Plan (AMP) that can be manufactured more economically and/or with better properties by rotary forging will benefit from this project. Military small arms weaponry will be greatly improved by the adoption of this process. The benefits to the Government include: (1) reduced tooling and labor costs and increased production by using one forging operation for rifling, chambering, and exterior contouring, (2) metallurgically improved weapons due to finer micro-structure, (3) much higher production rates for difficult to machine super-alloy barrel materials required for rapid firing weapon systems, and (4) the ability to produce extremely accurate small arms independent of operator skills.

b. No by-product discoveries have been encountered.

c. The enclosed representative cost reductions have been identified during this project (See Inclosure 1)

15. IMPLEMENTATION PROCEDURES. All manufacturing personnel responsible for barrel production have been briefed on the CFM machine and the rotary forging process. A set-up man has been trained in the operation of the machine and set-up procedure. A selection of four different types of barrels was used during a two-week training session. A Methods Engineer worked with the set-up man to develop skills in preparing a program method sheet. A Tooling
Engineer was instructed on parameters for tooling, preforms and template design.

During the training session, a machine set-up and operation guideline was prepared and distributed. Method programs of previously forged barrels of various calibers were included as an aid for future set-ups.

16. REMARKS. The rotary forging process is a revolutionary improved method of rifling and chambering small arms rifle barrels, eliminating much tooling while improving barrel quality. Accuracy data was obtained from barrels that were not chrome plated, however. Future work would have to include the plating process if an accurate comparison is to be made between conventionally machined barrels and rotary forged barrels. Extremely precise dimensions for rifling are obtained in a very narrow range of machine adjustments. Chambering of barrels after rifling requires a good knowledge of the forging process and considerable working experience.

Future trends in rifle production in private industry all point toward this new process. A vast majority of commercial shotgun and rifle barrels manufactured in our country today are a result of rotary forging. Currently, the production of a .50 caliber barrel is being planned at the Rock Island Arsenal. This effort includes the design and fabrication of the tooling (including mandrels) to support the project. Mandrel production is a critical area with only two outside sources being currently available. (Atrex Div. of Wallace Murry Corp., Newington, Conn; and GPM, Steyr, Austria.)

RICHARD L. JOHNSON
Chief
Plant Engineering Division
Inclosure 1 - Representative Rotary Forge Cost Savings

The following cost savings are representative of the magnitude of savings obtainable in producing a rifled and chambered small arms rifle barrel. Additional savings are available in the production of plated barrels through the elimination of the electropolishing operation.

<table>
<thead>
<tr>
<th>Tooling costs</th>
<th>(Rifled &amp; chambered barrel)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Convention</strong></td>
<td><strong>Rotary Forge</strong></td>
</tr>
<tr>
<td>(Per 1000 barrels)</td>
<td>(Per 5000 barrels)</td>
</tr>
<tr>
<td>Body reamer $262.00</td>
<td>Forging mandrels</td>
</tr>
<tr>
<td>Second shoulder reamer $250.00 (2 @ $450)</td>
<td>$900.00</td>
</tr>
<tr>
<td>Bullet seat reamer $200.00</td>
<td>Forging Hammers</td>
</tr>
<tr>
<td>Rifling broach $608.00</td>
<td>$2000.00</td>
</tr>
<tr>
<td>Bore reamer (3 @ $81.00)</td>
<td>$243.00</td>
</tr>
<tr>
<td></td>
<td>$1,563.00</td>
</tr>
<tr>
<td>Tool maintenance costs $4,400.00</td>
<td>$2900.00</td>
</tr>
<tr>
<td></td>
<td>$5,963.00</td>
</tr>
<tr>
<td>Tool cost per barrel $5.96</td>
<td>$0.58</td>
</tr>
<tr>
<td>Tool cost savings per barrel $5.38</td>
<td></td>
</tr>
</tbody>
</table>
### Operating Costs (Rifled & Chambered barrel)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Conventional Hr</th>
<th>Rotary Forge Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill barrel</td>
<td>.0758</td>
<td>.0425</td>
</tr>
<tr>
<td>Rough Turn barrel</td>
<td>.1086</td>
<td>.2000</td>
</tr>
<tr>
<td>Rough ream barrel</td>
<td>.0552</td>
<td></td>
</tr>
<tr>
<td>Finish ream barrel</td>
<td>.0552</td>
<td></td>
</tr>
<tr>
<td>Broach rifling</td>
<td>.0921</td>
<td></td>
</tr>
<tr>
<td>Forge rifling &amp; chamber</td>
<td>.3869</td>
<td>.1167</td>
</tr>
<tr>
<td>Rough in chamber</td>
<td>.1123</td>
<td></td>
</tr>
<tr>
<td>Semi-finish Chamber</td>
<td>.1193</td>
<td></td>
</tr>
<tr>
<td>Finish chamber</td>
<td>.1152</td>
<td></td>
</tr>
<tr>
<td><strong>Operating Time savings</strong></td>
<td>0.7337 Hr</td>
<td>0.3592 Hr</td>
</tr>
<tr>
<td>Operating Cost savings @ $22.00 per Hr.</td>
<td>$8.24 per Barrel</td>
<td>$8.24 per Barrel</td>
</tr>
<tr>
<td>Operating Cost savings</td>
<td></td>
<td>$8.24 per Barrel</td>
</tr>
<tr>
<td>Tooling Cost savings</td>
<td></td>
<td>$5.38 per Barrel</td>
</tr>
<tr>
<td>Total Rotary Forge Savings</td>
<td></td>
<td>$13.62 per Barrel</td>
</tr>
</tbody>
</table>

Project No. 6737300
DISTRIBUTION

A. Department of Defense

Defense Documentation Center
ATTN: TIPDR
Cameron Station
Alexandria, VA 22314

B. Department of the Army

Commander
U. S. Army Materiel Command
ATTN: AMCRD-E
AMCRP-I
AMCQA-E
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
U. S. Army Materiel Command
Scientific and Technical Information Team - Europe
ATTN: AMXST-STL Dr. Richard B. Griffin
APO New York 09710

Commander
U. S. Army Armament Command
ATTN: AMSAR-PP1-K
AMSAR-PP1-WW
AMSAR-RDP
AMSAR-SC
AMSAR-QAE
Rock Island, IL 61201

Director
U. S. Army Materials and Mechanics Research Center
ATTN: AMXMR-N
Watertown, MA 02172

Director
U. S. Army Maintenance Management Center
ATTN: AMXMD-A
Lexington, KY 40507
DISTRIBUTION

Commander
U. S. Army Electronics Command
ATTN: AMSEL-PP/1/IM
Fort Monmouth, NJ 07703

Commander
U. S. Army Missile Command
ATTN: AMSMI-11E
AMSMI-PRT
Redstone Arsenal, AL 35809

Commander
U. S. Army Tank-Automotive Command
ATTN: AMSTA-RK
AMSTA-RCM.1
Warren, MI 48090

Commander
U. S. Army Aviation Systems Command
ATTN: AMSAV-ERE
P. O. Box 209
St. Louis, MO 63166

Commander
U. S. Army Troop Support Command
ATTN: AMSTS-PLC
4300 Goodfellow Blvd.
St. Louis, MO 63120

Commander
Ballistic Missile Defense Systems
ATTN: BNDSC-TS
P. O. Box 1500
Huntsville, AL 35804

Project Manager
Munition Production Base Mod
Picatinny Arsenal
Dover, NJ 07801

Commander
Harry Diamond Laboratories
ATTN: AMXDO-RCD
2800 Powder Mill Road
Adelphi, MD 20783
DISTRIBUTION

Commander
Natick Development Center
ATTN: AMXNL-EQ
Kansas Street
Natick, MA 01762
1

Commander
U. S. Army Air Mobility R&D Labs
ATTN: SAVDL-ST
Fort Eustis, VA 23604
1

Commander
Rock Island Arsenal
ATTN: SARRI-PE
SARRI-RS Mr. V. Long
SARRI-LS
SARRI-L
SARRI-LPL
1

Commander
Watervliet Arsenal
ATTN: SARWV-PPP-WP
SARWV-PPI-LAJ
SARWV-QA
1
Watervliet, NY 12189

Commander
Picatinny Arsenal
ATTN: SARPA-MT-C
SARPA-QA-T-T
SARPA-C-C
1
Dover, NJ 07801

Commander
Edgewood Arsenal
ATTN: SAREA-QA
Aberdeen Proving Ground, MD 21010
1
DISTRIBUTION

Copies

Director
U. S. Army Production Equipment Agency
ATTN: AMXPE-MT
Rock Island Arsenal
Rock Island, IL 61201
2

Director
USAMC Intern Training Center
ATTN: AMXMC-ITC-PPE
Red River Army Depot
Texarkana, TX 75501
1

Commander
U. S. Army Tropic Test Center
ATTN: STETC-MO-A (Technical Library)
APO New York 09827
1
The objective of this program was to provide an improved method of manufacturing military gun barrels ranging in bore size from .22 to .50 caliber. During this project, suitable equipment was purchased, and a pilot line for cold rotary forging of barrels was established. Excellent bore qualities, reproducibility, reduced process time and reduced tooling costs were demonstrated. By rifling, chambering, and simultaneous exterior contouring, many conventional machining operations were eliminated with a gain in production rate. The cold rotary forging of gun barrels has been implemented as a production process for the Rock Island Arsenal. Greater utilization will occur when engineering design is more closely correlated to the manufacturing process.