SPECIAL DATA COLLECTION SYSTEM (SDCS) EVENT REPORT,
CENTRAL AMERICA, 15 JULY 1975

K. J. Hill, et al
Teledyne Geotech

Prepared for:
Air Force Technical Applications Center

13 January 1976
SPECIAL DATA COLLECTION SYSTEM EVENT REPORT
Central America, 15 July 1975

K.J. Hill, M.S. Dawkins, R.R. Baumstark, and M.O. Gillispie
Alexandria Laboratories
Teledyne Geotech, 314 Montgomery Street, Alexandria, Virginia 22314

January 1976

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Sponsored By
The Defense Advanced Research Projects Agency
Nuclear Monitoring Research Office
1400 Wilson Boulevard, Arlington, Virginia 22209
ARPA Order No. 2897

Monitored By
VELA Seismological Center
312 Montgomery Street, Alexandria, Virginia 22314

Reproduced by
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. Department of Commerce
Springfield, VA 22151
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 SDCS-ER-75-54

2. **GOVT ACCESSION NO.**

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**
 SPECIAL DATA COLLECTION SYSTEM (SDCS) Event Report
 Central America, 15 July 1975

5. **TYPE OF REPORT & PERIOD COVERED**
 Technical

6. **PERFORMING ORG. REPORT NUMBER**
 F08606-74-C-0013

7. **AUTHOR(s)**
 Hill, K. J., Dawkins, M. S., Baumstark, R. R., and Gillespie, M. D.

8. **CONTRACT OR GRANT NUMBER(s)**
 F08606-74-C-0013

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 Teledyne Geotech
 314 Montgomery Street
 Alexandria, Virginia 22314

10. **PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS**
 T/4703

11. **CONTROLLING OFFICE NAME AND ADDRESS**
 Defense Advanced Research Projects Agency
 Nuclear Monitoring Research Office
 1400 Wilson Blvd.-Arlington, Virginia 22209

12. **REPORT DATE**
 13 January 1976

13. **NUMBER OF PAGES**
 10

14. **MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)**
 VELA Seismological Center
 312 Montgomery Street
 Alexandria, Virginia 22314

15. **SECURITY CLASS. (OF THIS REPORT)**
 Unclassified

16. **DISTRIBUTION STATEMENT (OF THIS REPORT)**
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17. **DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)**

18. **SUPPLEMENTARY NOTES**

19. **KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)**

20. **ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)**

DD FORM 1473 EDITION OF 1 JAN 65 IS OBSOLETE
This event report contains seismic data from the Special Data Collection System (SDCS), and other sources for the above event. Published epicenter information from seismic observations is:

<table>
<thead>
<tr>
<th>Station</th>
<th>P Arrival</th>
<th>Origin Time</th>
<th>Lat.</th>
<th>Long.</th>
<th>mb</th>
<th>Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORSAR</td>
<td>16:06:29.4</td>
<td>15:53:44</td>
<td>05 N</td>
<td>083 W</td>
<td>5.3</td>
<td>N/A</td>
</tr>
<tr>
<td>Hagfors</td>
<td>16:06:36.2</td>
<td>15:53:53</td>
<td>06 N</td>
<td>079 W</td>
<td>5.2</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Using SDCS stations, LASA and NORSAR, the epicenter location and magnitudes become

15:53:51.5 07.7N 083.4W 5.1 5.1

All SDCS stations were operational during this period.

Short-period signals associated with this event were recorded at CPSO, HN-ME, RK-ON, FN-WV, NORSAR and LASA. WH2YK short-period data were not recoverable because the station tape recorder was inoperative. Horizontal SP channels at CPSO, HN-ME, RK-ON, and FN-WV were rotated.

Long-period signals were recorded at CPSO, RK-ON, FN-WV, and LASA. WH2YK long-period data were not recoverable because the station tape recorder was inoperative. Horizontal LP channels at CPSO, RK-ON and FN-WV were rotated. ALPA and NORSAR long-period array data were not recoverable. LASA long-period array data are recoverable in segment lengths of 6 minutes 40 seconds; three segments are included in this report.

Scaling factors on plots are millimicrons at 1 Hz (not corrected for instrument response) with the exception of LASA and NORSAR short-period plots. LASA SP scaling factors are millimicrons per inch. Scaling factors are not reported for NORSAR short-period.
<table>
<thead>
<tr>
<th>SITE CODE</th>
<th>LOCATION</th>
<th>SITE COORDINATES DEG MN SECS</th>
<th>ELEVATION METERS</th>
<th>INSTRUMENTATION SHORT-PERIOD</th>
<th>INSTRUMENTATION LONG-PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPA</td>
<td>Alaska</td>
<td>65 14 00.0 N 147 44 36.0 W</td>
<td>626</td>
<td>None</td>
<td>31300</td>
</tr>
<tr>
<td>CPSO</td>
<td>McMinnville, Tennessee</td>
<td>35 35 41.4 N 085 34 13.5 W</td>
<td>574</td>
<td>6480 V</td>
<td>SL210 V</td>
</tr>
<tr>
<td>FN-WV</td>
<td>Franklin, West Virginia</td>
<td>38 32 58.0 N 079 30 47.0 W</td>
<td>910</td>
<td>KS36000</td>
<td>KS36000</td>
</tr>
<tr>
<td>LASA</td>
<td>Billings, Montana</td>
<td>46 41 19.0 N 106 13 20.0 W</td>
<td>744</td>
<td>HS10</td>
<td>7505A V 8700C H</td>
</tr>
<tr>
<td>HN-ME</td>
<td>Houlton, Maine</td>
<td>46 09 43.0 N 067 59 09.0 W</td>
<td>213</td>
<td>18300</td>
<td>SL210 V 8700C H</td>
</tr>
<tr>
<td>NORSAR</td>
<td>Kjeller, Norway</td>
<td>60 49 25.4 N 010 49 56.5 E</td>
<td>379</td>
<td>HS10</td>
<td>7505A V 8700C H</td>
</tr>
<tr>
<td>RK-ON</td>
<td>Red Lake, Ontario</td>
<td>50 50 20.0 N 093 40 20.0 W</td>
<td>366</td>
<td>18300</td>
<td>SL210 V 8700C H</td>
</tr>
<tr>
<td>WH2YK</td>
<td>White Horse, Yukon</td>
<td>60 41 41.0 N 134 58 02.0 W</td>
<td>853</td>
<td>18300</td>
<td>SL210 V 8700C H</td>
</tr>
</tbody>
</table>

Note: The orientation of the radial instruments at FN-WV is assumed to be 316° ± 5° based on empirical data (event recordings). Rotation, where performed, is referenced to this azimuth and may be questionable.
HYPOCENTER DETERMINATION

Input for Event: 15 Jul 75
15:54:30.0 7.000W 84.000W 0km.

<table>
<thead>
<tr>
<th>STA.</th>
<th>ARRIVAL</th>
<th>RESIDUALS</th>
<th>DIST.</th>
<th>AZ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC</td>
<td>16 00 40.0</td>
<td>-3.7</td>
<td>27.8</td>
<td>356.2</td>
</tr>
<tr>
<td>FN-WV</td>
<td>16 00 09.9</td>
<td>-1.1</td>
<td>30.9</td>
<td>5.9</td>
</tr>
<tr>
<td>NM-NE</td>
<td>16 01 33.1</td>
<td>-0.4</td>
<td>40.6</td>
<td>16.5</td>
</tr>
<tr>
<td>LAC</td>
<td>16 01 57.1</td>
<td>-0.6</td>
<td>43.5</td>
<td>337.2</td>
</tr>
<tr>
<td>HK-ON</td>
<td>16 01 58.9</td>
<td>-1.4</td>
<td>43.8</td>
<td>350.6</td>
</tr>
<tr>
<td>MAC</td>
<td>16 06 29.4</td>
<td>-1.8</td>
<td>85.4</td>
<td>29.4</td>
</tr>
</tbody>
</table>

67 Herrin Travel Time Tables

<table>
<thead>
<tr>
<th>ORIGIN</th>
<th>LAT.</th>
<th>LNG.</th>
<th>DEPTH (km)</th>
<th>SDV</th>
<th>IT</th>
<th>STA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC CONVERGENCE CN CALC RUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:54:12.4</td>
<td>8.166N</td>
<td>83.376W</td>
<td>132. CAIC</td>
<td>1.2 16 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:53:51.5</td>
<td>7.696N</td>
<td>83.369W</td>
<td>0. REST</td>
<td>1.2 3 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{CALC} & : 3.3 \\
\text{REST} & : 3.3
\end{align*}
\]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\]

Chi2 Coverage Ellipse: 95 PER CENT CONF. LEVEL, SDV = 1.18
MAJOR 97.5km, MINOR 61.0km, AZ = 27 AREA = 18655 SQ.KM. REST
DATA SUMMARY

INPUT FOR EVENT

<table>
<thead>
<tr>
<th>Time</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:54:30.0</td>
<td>7.000W</td>
<td>84.000W</td>
</tr>
<tr>
<td>15 JUL 75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARRIVAL

<table>
<thead>
<tr>
<th>STA</th>
<th>PHASE</th>
<th>TIME</th>
<th>INST</th>
<th>PER</th>
<th>A/T</th>
<th>MB</th>
<th>NS</th>
<th>DIR</th>
<th>DIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC</td>
<td>EP</td>
<td>15 59 40.0</td>
<td>SFZ</td>
<td>1.9</td>
<td>150</td>
<td>5.46</td>
<td></td>
<td></td>
<td>27.8</td>
</tr>
<tr>
<td>CFC</td>
<td>LQ</td>
<td>16 10 17.0</td>
<td>LPT</td>
<td>19.0</td>
<td>510</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFC</td>
<td>LR</td>
<td>16 11 41.0</td>
<td>LFZ</td>
<td>18.0</td>
<td>327</td>
<td>5.08</td>
<td></td>
<td></td>
<td>27.8</td>
</tr>
<tr>
<td>FN-HV</td>
<td>EP</td>
<td>16 00 09.9</td>
<td>SFZ</td>
<td>1.2</td>
<td>32</td>
<td>4.90</td>
<td></td>
<td></td>
<td>30.9</td>
</tr>
<tr>
<td>FN-HV</td>
<td>LQ</td>
<td>16 11 52.0</td>
<td>LPT</td>
<td>19.0</td>
<td>347</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN-HV</td>
<td>LR</td>
<td>16 14 53.0</td>
<td>LFZ</td>
<td>18.0</td>
<td>463</td>
<td>5.28</td>
<td></td>
<td></td>
<td>30.9</td>
</tr>
<tr>
<td>NN-ME</td>
<td>EP</td>
<td>16 01 33.1</td>
<td>SFZ</td>
<td>0.8</td>
<td>15</td>
<td>4.33</td>
<td></td>
<td></td>
<td>40.6</td>
</tr>
<tr>
<td>LAC</td>
<td>EP</td>
<td>16 01 57.1</td>
<td>SBP</td>
<td>0.9</td>
<td>89</td>
<td>5.15</td>
<td></td>
<td></td>
<td>43.5</td>
</tr>
<tr>
<td>LAC</td>
<td>LR</td>
<td>16 22 55.0</td>
<td>LFZ</td>
<td>21.0</td>
<td>254</td>
<td>5.16</td>
<td></td>
<td></td>
<td>43.5</td>
</tr>
<tr>
<td>BK-CN</td>
<td>EP</td>
<td>16 01 58.9</td>
<td>SPF</td>
<td>1.0</td>
<td>83</td>
<td>5.12</td>
<td></td>
<td></td>
<td>43.8</td>
</tr>
<tr>
<td>BK-CN</td>
<td>LQ</td>
<td>16 19 00.0</td>
<td>LPZ</td>
<td>20.0</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK-CN</td>
<td>LR</td>
<td>16 21 59.0</td>
<td>LPZ</td>
<td>20.0</td>
<td>154</td>
<td>4.95</td>
<td></td>
<td></td>
<td>43.8</td>
</tr>
<tr>
<td>NAC</td>
<td>EP</td>
<td>16 06 29.4</td>
<td>AB</td>
<td>1.2</td>
<td>57</td>
<td>5.42</td>
<td></td>
<td></td>
<td>85.4</td>
</tr>
</tbody>
</table>

ORIGIN

<table>
<thead>
<tr>
<th>TIME</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>DEPTH (KM)</th>
<th>MAG</th>
<th>SDV</th>
<th>STA</th>
<th>LPMAG</th>
<th>LPSTD</th>
<th>LSTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:53:51.5</td>
<td>7.696W</td>
<td>83.369W</td>
<td>0.0 RET</td>
<td>5.06</td>
<td>0.41</td>
<td>6</td>
<td>5.12</td>
<td>0.1</td>
<td>4</td>
</tr>
</tbody>
</table>
NORSAR EVENT FILE 1975 JUL 15

EPX NO. 28860 ARR. 16.6.30.0 9.1N 83.7W 5.0MB 33KM
DIST = 88.6 AZI = 275.9 AMP = 13.0 PER = 1.2

ARRIVAL TIME

= 5 SECONDS

SAB

1A

3C

7C

13C

10<