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ABSTRACT

Volume I reports the work performed during FY 75 on the DCA-Speech Evaluation
Contract. Two broad categories of work are described: algorithmic studies and

hardware design.

Several algorithms for digitizing and reducing the data rate of speech signals are
described. These algorithms include an adaptive residual coder (ARC) designed
to produce data at 46 and 9.6 kbps, an adaptive predictive coder (APC) at 8 kbps,
a voice-excited linear predictor (VELP) at 8 kbps, and a straight linear predictive
coded (LPC) vocoder at 2.4, 3.6, and 4.8 kbps. In addition, some work on pitch
or excitation extraction is described. All these studies are evaluated on a real-

time facility which is described.

In the hardware design area, the digital voice terminal is described in detail, as

well as some follow-on next-generation LSI studies.

Volume II will contain a DVT manual, program listings, and a cross assembler.
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SPEECH EVALUATION

L. PROGRAM OVERVIEW - FY 1975

The goal of Lincoln's work for the Defense Communications Agency in FY 75 was the
development and evaluation of various speech digitization algorithms using the real-timec speech-
processing facility centered about the fast digital processor (FFDP). As the program unfolded,
it became clear that an additional focus was the transplanting of these algorithms onto the digital
voice terminals (DVTs) and their subsequent testing by the Narrow-Band Speech Consortium's

Test and Evaluation program. Major aspects of this program included:

(a) An attempt to improve the adaptive predictive coding (APC) algorithm
previously developed by G.T.&E., Sylvania.

(b) A real-time simulation of the adaptive residual coding (ARC) hardware

constructed by Codex.

(c) Development of Lincoln's version of the autocorrelation method for linear

predictive coding (LPC).

The eventual results of these tasks can be summed up best as follows: LPC at 2400, 3600,
and 4800 bps, APC at 8000 bps, and ARC at 9600 and 16,000 bps were implemented on the DVTs
for use by the Consortium's test program. A significant finding was the demonstration that the
DVT was a versatile speech processor that could be quickly and easily programmed to implement
a variety of speech algorithms. Since the DVT, constructed with present technology, is a quite
compact device containing about 500 commercial integrated circuit packages, this finding indi-
cates that speech digitizers in the near future can be both small and cheap, yet flexible.

At the suggestion of R. Sonderegger, the major results of our efforts were presented at the
EASCON Conference on 30 September 1975 in Washington, D.C., and published in the EASCON
Proceedings. The publications include a description of the DVT, a description of the pitch de-
tector used for the LPC algorithms, and descriptions of the APC, LPC, and ARC algorithms.

The 1970's appear to herald a greater degree of activity in speech terminal development.
The technical reasons for this stem from the development of new speech-processing algorithms
such as LPC and APC plus the rapid advance of technology which promises to lead to improved
and cheaper speech terminals. A new and potentially important direction has to do with the
establishment of communication networks with both speech and data transmission capabilities.
The eventual form that such networks take is still open but it is already clear that digital com-
munications for both voice and data could benefit greatly from the development of reliable and
good quality speech terminals running at rates appreciably less than the 64-kilobit channels
designated by the Bell System. Thus, we expect that further development of speech algorithms
and their efficient implementation will be worth pursuing for at least 5 more years.

In the 1960's, the only practical narrow-band speech device was the channel vocoder. While
this device is still a respectable speech digitizer, there is reason to believe that the LPC algo-
rithm is an improvement both in ease of implementation and also in improved speech quality,
despite the fact that LPC has been developed only within the past 5 years whereas channel

vocoders have a 40-year history of development.







[I. OUTLINE OF SPECIFIC TASKS

Volume I of Lincoln Laboratory's FY 75 work on speech evaluation devotes a separate section
to each of the major areas of effort., Section III presents a general description of the fast digital
processor (FDP) facility for real-time simulation of speech-compression algorithms. This fa-
cility was the vehicle for algorithmic research on ARC, APC, LPC, and pitch extraction. In
Sec. IV, we present the design motivation for the digital voice terminal (DVT) — a small, fast,
versatile signal-processing computer capable of real-time performance when running DCA
speech-compression algorithms. The DVT approach to machine design was distinctly different
than that used for the FDP, and the structure is very much simpler. Section V then presents
some research along the direction of less-ambitious lower-power machines that can run specific
speech-compression algorithms (e.g., LPC at a 2400-bps rate) and lend themselves to large-
scale integration (LSI) implementation. After dealing with the issues of machine design in
Secs. IIT through V, the report moves to the topic of speech-compression algorithms (voice
coders). Sections VI through VIII discuss the three algorithms (ARC, APC, LPC) studied on
the FDP and finally implemented on the DVT. All three of these algorithms were tested at var-
ious data rates under the narrow-band consortium test and evaluation effort.

Section IX discusses the problem of pitch detection and implementing the time-domain Gold
pitch detector on the FDP and DVT. In addition, a comparison between the time-domain detector
and an absolute magnitude difference function detector is made in terms of program length and
running time. No statements are made about the quality of synthesized vocoder speech using
either pitch detector, as these issues are better left to listening tests.

Finally, Section X presents an overview of the program and a brief summary of our ongoing
efforts.

Volume II of this annual report consists of a DVT manual, Fortran cross assembler listing,

diagnostic listings, and annotated listings for LPC, ARC, and APC algorithms.







III. THE FAST DIGITAL PROCESSOR (FDP) SIMULATION FACILITY

The simulation in real time of complicated algorithms for speech bandwidth compression
is a relatively new approach to speech-compression research. The I'DP was designed and
constructed at Lincoln Laboratory to run such simulations, and has done so quite successfully
since 1970. In fact, it may well have been the first general-purpose stored-program computer
to run a complicated speech program in real time so that people could actually talk "through it"
and evaluate the particular algorithm being run. It was the IFDP facility that was used as the
tool for the Lincoln Laboratory speech evaluation DCA effort in early I'Y 75. By using this
facility, it was possible to code up various forms of APC, ARC, and LPC algorithms, as well
as two disparate pitch detectors. These could be run as real-time code on the FDP, and, along
with an input A/D converter and an output D/A converter, allow the machine to appear as a
"black box" speech coder configured as needed for people to use as shown in Fig. III-1. With
careful listening tests, it was possible to try many parameter variations and optimize each of
the algorithms for certain conditions of data rate and bandwidth. The following is a discussion
of the facility at Lincoln Laboratory, indicating the peripheral devices particularly important
for speech-compression algorithmic optimization.

Figure III-2 is a general block diagram of the facility. The core element in the facility is
of course the FDP,* a signal-processing emitter coupled-logic computer with a cycle time of
150 nsec, 18-bit data word, separate program memory (5k) and data memory (4k X 2), four
parallel arithmetic units each containing a full array multiplier, and a double-width (36 bits)
program word. The machine was designed to perform a complex multiply or digital filter re-
cursion (each requiring four multiplies) in the order of 1 psec, including setup time for the four
arithmetic elements. The 36-bit program word width allows control of the four individual arith-
metic elements as well as memory read and write or control simultaneously. The data memory
is actually two separate 4k memories in order to allow for complex data manipulation. As a
result of the parallelism, separate data and program memory, and instruction overlap at the
150-nsec rate, the FDP was between a factor of 10 and 100 faster than other contemporary
machines. This fact enabled speech research to be conducted using real-time simulations.

The FDP program and data memory are loaded through an I-O connection to a Univac 1219
machine with 32k of 18-bit word store, a 2-psec cycle time, and eight I-O channels of its own.
The Univac is connected to a 230k word drum, paper tape reader-punch, typewriter, two display
scopes, two Ampex 7-track digital tape drives, and A/D and D/A converters. The FDP is in
effect a peripheral device to the 1219, but once code is loaded into FDP memory, the FDP runs
as a freestanding machine with its own set of A/D and D/A converters for input and output of
analog speech.

The Univac 1219 is the background processor for assembly, editing, debugging, display of
data blocks, and running of simple tasks that are logically performed outside of the FDP.

A more complex real-time arrangement allows for several speech algorithms to reside in
binary form on the Univac magnetic drum, which can be read into Univac core and then over to
FDP memory in a few tens of milliseconds. In this fashion, it is possible to be talking through
the FDP as shown in Fig. III-1 with one algorithm in use, and select by way of the keyboard a

*B. Gold, L L. Lebow, P.G. McHugh, and C. M. Rader, "The FDP, A Fast Programmable
Signal Processor," IEEE Trans. Computers C-20, 33 (1971), DDC AD-728092,




second algorithm or parameter variation and have it loaded and running while two users notice
only a minor "click.," This is, in fact, the mode used to refine our algorithms for APC, ARC,
and LPC before transferring these codes to DVT language.

The I'DP facility continues to be used for speech research, although the new DVT devices

are in several ways simpler to program, though considerably less flexible in terms of debugging

features.
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IV. DIGITAL VOICE TERMINAL (DVT) DESIGN

A. INTRODUCTION

Inherent with the large, complex, expensive, one-of-a-kind FDP facility are programming
difficulties and the inability to operate in a stand-alone mode. These shortcomings indicated
that a second-generation processor was needed. A compact, easy-to-use, easy-to-replicate,
relatively inexpensive facility capable of stand-alone operation and of equivalent or superior
performance capability to FDP became the overall objective.

The Lincoln Digital Voice Terminal (LDVT) was designed to meet this objective. Comprised
of a custom-designed 55-nsec, 16-bit minicomputer and appropriate integrated peripherals, the
LDVT has proven to be well matched to the real-time speech-processing problem. In this sec-
tion, a technical description of the LDVT system is presented. The genuine power and versa-
tility of the processor are illustrated in later sections of this report via detailed descriptions
of three fully operational vocoder software packages that have been written for it. These algo-
rithms include linear predictive coding (LPC), adaptive predictive coding (APC), and adaptive
residual coding (ARC).

B. LDVT SYSTEM DESCRIPTION
1. Minicomputer Architecture

The high-performance minicomputer forms the "heart" of the LDVT processor and accounts
for most of the circuitry. To handle the anticipated rigorous real-time processing loads, the
machine's architecture had to be sufficiently simple to accommodate maximum rate-cycle times,
yet sophisticated enough to permit implementation of a substantially powerful instruction set. At
a 55-nsec cycle time, it should be possible to execute a large variety of nontrivial operations in
a single machine epoch.

The end result (Fig.IV-1) is a 2's complement, 16-bit, essentially fixed-point processor
with software-controlled, extended-precision capability. The major subassemblies are a 542 X
16 -bit high-speed RAM used exclusively for program data and constants (MD), a separate 1k X
16-bit RAM strictly for executable code (MP), a bused file comprised of four active registers
(A, X, P, B), aversatile arithmetic/logic unit (ALU), and an input-output (I-O) system. In a
typical operation, an operand selected from MD and another selected from the register file are
operated on in the ALU. The result is returned to the register file which can be loaded from
or stored into MD using the ALU as an intermediary, where appropriate.

Each of the four conceptual elements of the register file has special functions. The
A-register is the primary machine accumulator, but also serves as a bootstrap buffer for code

destined for loading into M The X-register can be used as an ancillary accumulator, but serves

mostly as an indexing compli)nent in MD address calculation. The P-register is actually the ma-
chine program counter, hence supplying address information to MP‘ Alteration or sequencing of
P in response to program status is normally controlled automatically by special hardware. How-
ever, its inclusion in the register file facilitates status save/restore operations in subroutine
and interrupt handling. The B-register is actually a pair of registers that serve as interface
buffers for the 1-O system. Peripheral in-out traffic handling and initial power-up bootstrap-

ping are effected through this port.



The ALU (Fig.IV-2) is divided conceptually into halves, only one of which can be actuated
at a given time. One half consists of the logic necessary to perform the fundamental add/
subtract and Boolean operations. Provisions are made for several output scaling options via a
selection matrix. Subordinate logic also is included to implement overflow detection and carry
status preservation for programmed multiple precision.

The other half is a 16- X 16 -bit multiplication element that forms a 32-bit signed product in
220 nsec. The design is a re-entrant/reclocked type consisting of two hardware iterations of
Booth's 3-bit multiplier coding algorithm. Four machine cycles are necessary to perform the
effective eight iterations required to produce a 32-bit product. Any one of four possible 16 -bit
multiplier outputs can be selected at a time for transmission to the A-register. They consist
of the lower product half, upper half, and two shifted versions of the upper half. The lower
half is always preserved for future retrieval in cases where the full 32-bit product is desired.

The R- and MOR-registers serve as intermediate buffers for the operands sourced from
the register file and MD, respectively. They are necessary due to the pipelined timing struc-
ture of the processor. The R-register serves in a secondary capacity as an input buffer for
MD during data store operations.

The 1-O system consists of single, 16-bit input and output channels along with appropriate
control. Each of the channels is further multiplexed to four subchannels. Simultaneous input
and output may be active, but only one subchannel of each type can be accommodated at a time.
Transactions can be conducted on a vector priority interrupt basis, or by using a simple pro-
grammed test for completion. Input takes priority over output and only one level of interrupt
service routine nesting is permitted, i.e., once an interrupt has been honored, all further
interrupts are locked out until the interrupt service is completed. Completion is signaled via
a special indirect branch instruction used to terminate the service routine and to return to the
main program. Overflow, ALU carry, and program counter statuses are saved automatically
on interrupt. They are restored via the special termination instruction. Active register status

must be saved and restored under software control.

2. Instruction Formats

To minimize cycle time, it was essential that a control with minimum decoding require-
ments be designed. For this reason, the LDVT minicomputer is virtually a one-format machine.
The format (Fig.IV-3) consists of a 6-bit operation code field, a 9-bit address/constant field
(y), and a single-bit special field (x). With the necessity of differentiating among several for-
mats as a function of OP code eliminated, decoding could be effected efficiently by a fast 32- X
64-bit, micro-code ROM, Although the ROM technique affords the obvious advantage of custom
instruction-set tailoring, its primary advantages are compactness and speed. The LDVT con-
trol constitutes somewhat of a degenerate case of the classic microprocessor control in that all
but one machine instruction can be implemented in a single microstep. Overhead operations
such as program counter maintenance and memory address calculation are performed automat-
ically and in parallel with special explicit control logic,

The instruction repertoire that evolved, summarized in Table IV-1, can be classified
in three basic categories according to the type of action governed. The first of these, the

arithmetic/logic class, is of the general form:

£ {[R], [Mp(@)]} ~[R]




where
R=A, X, B, P
Y , ifx=0
Y +[XI , ifx=1
The 9-bit y-field serves as a base address, capable of spanning all of MD’ which can be
modified under control of the x-bit by the contents of the X-register.

The second class is the memory transfer group and has virtually the same structure as the

arithmetic operations. Governed operations are of the general form:

[MD(oz)] - [R]

or

[R] = [Mp(a)]

where R = A, X, B, P as before. Operations of the form

[MD(oz)] - [P]

have the interesting effect of branching the running program. In fact, this is the means by which
return-point restoration and indirect jumps are actually implemented.

The most interesting class is the control group and contains all conditional/unconditional
branch codes as well as miscellaneous in/out handling instructions. Branches are of the

general form
Y - [P]
if conditions are met and

(P] +1 -'[MD(i)] , ifx=1

Described verbally, a branch to location Y in M can be conditionally or unconditionally

effected, and P status (return point) saved optionallylzn location 1 of MD' Given a 1k MP and

a 9-bit y-field, branches can take place only within a 512-word page. Page boundaries are
crossed using memory transfers into P, as described previously. Condition codes include over-
flow, input/output status, ALU sign, and sense switch tests. Auto-incrementing/decrementing

jumps operating in conjunction with the X-register also are included.
3. Timing Philosophy
The following sequence of events must occur to fully execute a given instruction:

(a) P-counter assumes desired state

(b) MP accessed

(c) Fetched instruction interpreted, decoded
(d) MD address computed, if applicable

(e) MD and register file read

(f) Execution
(g) Result recorded.




TABLE IV-1
LDVT INSTRUCTION LIST

Execution
Mnemonic Action Time
LDA/LDAX [A] “~[Mp] T
LDB/LDBX (8] <My T
LDP/LDPX [P] ‘—[MD] T
LDX/LDXX [X] < Mp) T
STA/STAX [MD] ~[A] T
STB/STBX [MD] «— [B] T
STP/STPX (Ml < [P] T
STX/STXX (Mp] < [X]
ADDA/ADDAX (Al +[Mp] = [A] T
ADDP/ADDPX (Pl + (M) —~ [Pl T
ADDX/ADDXX (X] +[Mp] ~[X] T
SUBA /SUBAX (Al =[Mg] ~[A] T
SUBP/SUBPX [Pl —[Mg] ~[P] T
SUBX/SUBXX [X] =Myl ~[X] T
MULI/MULIX Bits 0-15 of [A] x[MD] - [A] 47
MULF/MULFX Bits 15-30 of [A] X[M_] ~[A] 47
MULD/MULDX Bits 14-29 of [A] X [Mp] ~[A] 41
MULH/MULHX Bits 16-31 of [A] ><[MD] - [A] 47
STPLA Lower byte of last product = [A]
AAND/AANDX (Al N (Mgl ~[A] T
AOR/AORX (Al U [MDl - [A] T
AXOR/AXORX (Al & Mgl —[A] T
CMPA (A] - [A] T
ADDAD/ADDADX (Al +[Mpl +C_ = [A]
SUBAD/SUBADX [A] + Mgl +C_ ~IAl T
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TABLE IV-1 (Continued)

Execution
Mnemonic Action Time
LDAYP 000000 + IRy_o = [Al T
LDAYN 176000 + IR0_9 - [A] T
DBA 2 - [A] —~[A] T
HVA 271 - (Al > (Al T
QTA 272 . (Al ~(A] T
DBX 2 - [XI =X T
HVX 27 (X~ T
YiX Y =[xl T
10S Initiate 1/O transfers T
STAMP/STAMPX (Al = [Mp(Y + [XD] 21
JP/IPX/JPS/IPKS Y = [P] U
JPZA/JPZAK/JPZAS /IJPZAKS Y~ [Pl if[A] >0 T
JNA/INAK /JNAS/IJNAK S Y —~[P] if [A] <0 T
JPZX/JPZXK Y =[Pl if [X] >0, [X] =1 [X] T
JNX/INXK Y =[P if [X] <0, [X] +1~[X] T
JIR/JIRK /JIRS /JIRK S Y = [P] if input transfer ready T
JOR/JORK /JORS/JORKS Y = [P] if output transfer ready T
JOV/JOVK/JOVS/JOVKS Y = [P] if overflow flag set T
JSW/ISWK /JSWS /ISWKS Y = [P] if sense switch W set T
JSV/ISVK/JSVS/ISVKS Y = [P] if sense switch V set T
1JP (MpMI+Y [Pl T
101JP [MD(Z)] +Y - [P] T
HLT Stop execution T
Notes:
T =55 nsec

Suffix X appended to a mnemonic signifies that Mp address is Y + [X],
otherwise it is Y + 0.

[MD(O)] =0. Thus, an "LDA 0" clears A, etc.

Suffix S appended to jump code signifies that return point is to be
saved, i.e., [P] +1 "’[MD(l)].

Suffix K appended to jump code signifies suppression of the next
subsequent operation. Transfer time is effectively 2T in this case.

Machine NO-OP isa "STA 0."

11




Assuming the fastest circuit technology available, it would be impossible to accomplish this se-
quence in 50 nsec unless an utterly simplistic machine structure with very small memories is
assumed. Calculations indicate that the above event chain could be segmented in thirds in a
well-balanced way yielding a net cycle time on the order of 55 nsec. This implies a triple-
overlapped, pipelined type of timing arrangement with the usual attendant increase in control
complexity. However, experience shows that the overall package count increases suffered in
such cases are usually modest and that the increased cycle time potential justifies the sacrifice.
To clarify details, consider the following symbolic code segment:

[A] + [MDl - [A]
[A] - [Mp]

JPA' Y

In this example, the A-register is added to a location in M_,, the result is tested, and a branch

to MP (Y) takes place if it is positive. In a timing diagramDof this sequence (Fig, IV-4), three
time lines are marked off in units of machine cycles corresponding to Mg activity, decoding and
setup, and final execution. The process begins by fetching the "add" instruction from MP‘ At
the end of the access cycle, the instruction is buffered in an instruction register (IR) and Mp is
accessed again to fetch the "store" instruction. Simultaneous with the second access, the "add"
instruction is decoded and the register file is read. Also, the MD operand address is computed
and MD is read. At the instant the "store" instruction is loaded into the IR, the operands asso-
ciated with the "add" instruction are loaded into ALU buffers R and MOR. During the next
cycle, the "jump" instruction is fetched, the "store" instruction is decoded, and the "add" takes
place in the ALU., At this point, the three-level pipeline is full.

MD address calculation requires half a machine cycle (25 nsec). The actual read takes place
during the latter half. Rather than leave the memory idle during the first half, it is available
for store operations. Therefore, the execute portion of a store instruction actually occurs dur-
ing the first half of the decode epoch of the subsequent operation.

A curiosity of the pipelined type of timing arrangement involves emptying the pipeline on a
branch operation. Because of the overlap, a further instruction is read from MP before the con-
trol realizes a branch is to occur. In essence, a cycle is needlessly lost in emptying the pipe.
In the case of the LDVT minicomputer, it was decided that this cycle be available for use on an
optional basis. That is, each branch instruction can either waste the cycle or not. If the cycle
is used, the effect is to perform the next instruction subsequent to the branch, irregardless of
whether the branch actually takes place. Many programmers find this an exceedingly useful,
though somewhat unusual, feature.

4. Peripheral System

To make a self-sufficient speech terminal out of what has been described as a general-
purpose minicomputer required a wholly integrated set of appropriate peripheral elements. The
LDVT peripheral complex (Fig.IV-5) consists of a 12-bit, analog-to-digital/digital-to-analog
converter (ADC/DAC) set, two 16-bit serial-to-parallel/parallel-to-serial converter (S-P/P-S)
sets, 4k X 16 ROM, 2k X 16 RAM, and a host-computer channel.

The ADC/DAC set serves the obvious purpose of interfacing the local handset. The S-P/P-S
sets mediate traffic flow of serialized data out to modems that interface with telephone lines or

12




whatever other transmission medium is desired. The two sets provided include a conferencing
capability wherein a given LDVT can transmit from one speaker yet receive from two others.

The host-computer channel permits program assembling and editing in laboratory-based
experimental environments. New software systems are thus transmitted easily to the LDVT.
The host computer is also an effective debugging tool to monitor LDVT memory dumps, etc.
For stand-alone applications, however, a 4k X 16-bit bootstrap ROM takes the place of the
computer channel. In such cases, the ROM contains the necessary operational firmware to
personalize the LDVT to whatever speech-compression algorithm the user desires. ROM con-
tents are loaded into the minicomputer automatically on power-up controlled by a nonvolatile
bootstrap loader in the first few MP locations. This bootstrap loader also can acquire code
from a host computer, if desired.

A high-speed 2k X 16 auxiliary RAM (MX) in the peripheral complex enhances the rather
limited memory capacity of the minicomputer. Read/write operations can be streamed at a
200-nsec rate because of the RAM's high-performance capability and the way its control is
wedded to the computer in-out complex. Address information is supplied through the X-register.
In a typical operational system, MX is used to store speech buffers, coding/decoding tables,

or perhaps executable code bound for loading in M The latter could occur when the running

P
program is too large to fit into MP at once, thus necessitating real-time code overlays.

C. ENGINEERING CONSIDERATIONS: SYSTEM FABRICATION AND PACKAGING

The stringent performance and compactness requirements of the LDVT minicomputer re-
stricted the choice of circuit technology to 10,000-series emitter-coupled logic (ECL 10k), a
fully populated 2-nsec MSI family. The lower performance requirements of the peripheral sys-
tem and outside-world compatibility considerations indicated that standard 7400-series TTL
could be utilized safely. The minicomputer has 498 ECL packages, all but 12 of which are of
the 16-pin DIP configuration. The remainder, used in the ALU, are 24-pin DIPs. 197 TTL
16 -pin DIPs serve the peripheral complex along with a small analog board containing the DAC/
ADC system, associated sampling/desampling filters, and miscellaneous audio amplification.

Given the brief development interval allotted, the entire LDVT, except the analog subsys-
tem, was built with wire-wrap construction techniques. It is well known that ECL 10k with a
3-nsec rise time can be well controlled in a wire-wrap environment as long as proper care is
taken in signal-path conditioning and DC power distribution. For example, signal paths must
be terminated properly to control reflections, and loads must be constrained carefully in num-
ber and physical position to preserve waveform quality. The terminations, ranging typically
from 50 to 150 ohms, pose a special problem in that they consume board space and increase
dissipation. The usual practice in ECL systems is to provide a special —2-V termination volt-
age in addition to the standard —5.2-V supply to conserve power. Since the DC distribution sys-
tem must exhibit very high capacitance and low inductance in the interests of noise-margin pres-
ervation, explicit strapping of a —2-V supply on a standard, single-voltage, wire-wrap board
is an extremely dangerous practice. For this reason a special family of wire-wrap board, in-
tended for use with ECL systems and currently commercially available, was developed by
Lincoln Laboratory. Although essentially similar to standard 180-pack configurations, they
differ in that a second, buried voltage plane is provided, along with proper decoupling capability,
to handle the —2-V distribution. In spaces between the 16-pin DIP sockets, special 8-pin, single-

inline (SIP) sockets accommodate Cermet termination resistor packs of compatible configuration.
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The sockets connect directly to the buried —2-V plane. Inthe LDVT system, only two standard
terminator SIP values were necessary: 100 and 150 ohms. By connecting pairs in parallel, val-
ues of 50, 60, and 75 ohms also could be achieved.

Four power supplies, supplying 225 W of real power for the LDVT, include: 40-A switch-
ing supply for the ECL -5.2-V, 10-A linear regulator for the —2-V ECL termination voltage,
9-A linear regulator for the TTL +5 V, and #15-V supply for the analog equipment. Four 3-in.,
low-acoustic-noise fans at 50 cfm each provide forced air cooling.

The basic LDVT package (Fig.IV-6) fits in a 19- X 5- X 22-in. drawer, occupies about
1.25 cubic feet, and weighs 60 1b. A small outboard box houses the analog equipment and serves
as a receptacle for the handset. The LDVT digital electronics, housed on four wire-wrap boards
arranged in a stack (Fig.IV-7), open for access much as the pages of a book. Interboard con-
nections are provided by controlled-impedance, flat ribbon cables running along the spine or
"binding," obviating the need for a back plane. The bottom three boards are of the special ECL
variety and comprise the minicomputer. The topmost board is a standard, single-voltage, 180-

pack, wire-wrap board accommodating most of the peripheral system.
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Fig.IV-4. LDVT timing example.
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Fig. IV-6.

Fig. IV-7.

LDVT ready for use.

LDVT open for service.
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V. LARGE-SCALE INTEGRATION (LSI) MOTIVATED HARDWARE STUDIES

A. INTRODUCTION

It seemed worthwhile to study the problem of searching out innovative, efficient processor
structures which take advantage of present-day technology evolutionary trends. The quest

focused upon candidate designs which appeared promising from the following viewpoints:

(1) Low unit cost

(2) Amenable to high-volume production
(3) High reliability

(4) Compact form factor

(5) Flexible/versatile architecture.

Trade-offs in emphasis among the (potentially conflicting) desired objectives yield designs

which can be roughly classified into three fundamental categories:

(1) Special Purpose:— This approach typically embodies the most efficient,

compact, and inexpensive approach to implementing a particular choice
of algorithm. The price that is paid, of course, is the relative inflex-

ibility of the end product.

(2) General Purpose:— This class of processor, since it incorporates what

basically amounts to a computer, is by virtue of its wholly programmable
nature the ultimate in terms of flexibility. However, for a specific algo-
rithm choice, inevitable inefficiencies imply a tougher overall perfor-
mance requirement with all of the attendant problems indicative of high-
speed technology system design. Stated simply, for a given problem the
design is bigger and more costly than is probably necessary.

(3) Hybrid:— In the expansive middle ground lying between the aforementioned
extremes, there exists a necessarily broad spectrum of designs which
attempts to marry the best aspects of both worlds. Such hybrid designs
are partly special purpose and partly programmable. For example, a
functional building block common to many processing schemes (like cor-
relation), but which is particularly taxing computationally, might be built
as a special-purpose subsystem. But complicated specialized tasks, such
as reflection coefficient extraction in an LPC vocoder analysis, might best

be implemented in a limited programmable section.

It is our contention that a high premium should be placed on the more flexible design alter-
natives for active research applications areas such as speech processing. Given the many sys-
tems already in existence (APC, LPC, Channel, VELP, etc.) and the many more which will no
doubt evolve, a fully flexible research vehicle seems essential. The first part of this report
focuses upon the Lincoln Laboratory DVT. The intent is to suggest possible methods of reducing
the cost and improving the form factor of the current design. Upon careful scrutiny the design
is found to be dominated in terms of cost, integrated circuit (IC) count, and performance by its
extremely fast memory complement. It is shown that little can be done to improve the design

if constrained to maintaining the current performance levels with standard integrated circuitry.
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1t is further shown that a slower version which utilizes less expensive, more dense memory chips
can be had at a 30-percent decrease in circuit count at a 50-percent speed penalty. Switching to
a lower-speed technology is found to afford a similar package count reduction at a 100-percent
penalty in speed, but the overall cost per unit is halved over the current design.

High-performance technology custom LSI is evaluated as an alternative to off-the-shelf parts.
It is seen that this approach, which does not address itself to the memory area since that is con-
sidered a specialty, can be expected to impact little with respect to IC count on the current mem-
ory dominant design. Custom LSI also is found to be expensive in terms of developmental costs
per unique part type. For low-volume production, such expenses cannot be justified.

A hybrid packaging scheme, wherein several dice of standard, off-the-shelf design share a
common substrate, is suggested as a reasonable compromise approach. The developmental
costs per part are about 1.5 orders of magnitude cheaper than LSI, and the memory density issue
also can be accommodated. Form-factor and reliability improvements similar to those of gen-
uine LSI can be expected, although the raw cost of IC dice as supplied by the vendors does not
drop appreciably over that of standard packaged units.

The second part of this section concerns itself with the application of newly available bipolar
L.SI microprocessor chip sets to the problem of speech processor design. It is shown that the
devices are, by themselves, far too slow to compete with DVT-like performance and that pro-
grammable parallel processing architectures based upon them do not yield satisfactory re-
sults in terms of utility, cost, form-factor improvement, or performance. Hybrid or quasi-
programmable processor structures are suggested as likely application candidates for the micro-
processors. One such structure, specialized to the task of LPC processing, is described. Ini-

tial estimates of IC count and attendant costs are indicated.

B. GENERAL-PURPOSE PROCESSOR CASE STUDY: THE DVT

To assess the DVT's performance in a practical situation, the essential software components
of a 12th-order Markel LPCi’* vocoder system have been coded as a benchmark. The synthesis
scheme, shown schematically in Fig. V-1, centers upon an all-pole time-varying filter as a model
of the human vocal tract. The filter is excited by either a white noise source or a pulse genera-
tor controlled by the transmitted pitch period estimate, depending on whether a given frame is
voiced or not. The more complex problem of analysis is shown schematically in Fig. V-2. Pa-
rameters characterizing the vocal-tract model for a given speech frame are extractedvia an auto-
correlation followed by a Levinson r'ecur'sion.2 Asynchronous pitch estimation is conducted in
parallel using the Gold-Rabiner method.3 The 12 filter parameters, voice energy level estimate,
buzz/hiss decision, and pitch period estimate are finally encoded and packed for transmission.

Computationtime estimates for the various requisite processing tasks are listed inTable V-1,
Each task is categorized as to whether it belongs to analysis or synthesis, and whether it must be
performed once per speech sample or once per frame. The table was compiled assuming a sam-
pling rate of 6.6 kHz, and 22.5-msec speech frames overlapped by 33 percent which is equivalent
to an intersample period of 150 psec and an effective frame rate of 67 Hz. The autocorrelation
time assumes double-precision arithmetic and that two correlation updates are performed on
each sample arrival., Based on this information, the DVT is capable of exceeding real time by

about 100 percent for this LPC implementation.

* Numbered references appear at the end of the text in each section.
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TABLE V-1
MARKEL LPC-12 REAL-TIME PERFORMANCE
TCOmP(psec)
Computation Per Sample Per Frame
Correlation and window 20 =
“ Filter parameter
B extraction - 262
E Pitch determination and
buzz/hiss decision 35 275
Parameter encoding - 88
3 Parameter decoding - 13
-E Buzz/hiss generation 1.6 -
A Filtering function 1.1 -
Totals 67.7 638
_67.7 +638/100 _
Tcomp/ avail ~ 150 B

In order to assess what might be done to improve package count and cost, it is interesting
to see how the DVT's nominal 470 ECL IC allotment and $13,000 outside purchase budget was
spent. Table V-2 lists the programmable processor's major subassemblies and the emitter
coupled logic (ECL) circuit count associated with each. A striking observation is that something
over a third of the circuits were used up in the two internal memories. In terms of dollars,
these two items comprise about two-thirds of the overall circuit cost for the programmable pro-
cessor. Table V-3 summarizes these facts.

Table V-4 enumerates in some detail the recurrent outside purchase (OP) charges sustained
by Lincoln Laboratory related tothe production of a single DVT unit. These figures do not reflect
overhead associated with design, fabrication, and debug of each unit. Total IC costs comprise
about 42 percent of the total, with the ECL accounting for a full 28 percent. If the ECL mem-
ory alone is examined, it is seen that these circuits comprise nearly 20 percent of the total. It
is also interesting to note that wire-wrap charges plus the requisite circuit panels, wire, termina-
tions, and decoupling capacitors amount to 20 percent of the total —as much as the entire ECL
circuit cost! These observations reflect the cost penalty associated with a high-performance
wire-wrap system. If a commercial vendor were to implement the current design with a very
modest production-level projection (%100 to 1000 units), he would attempt to minimize his costs

primarily by:

(1) Obtaining quantity discounts on digital and analog semiconductor

components, and

(2) Using multilayer PC boards (~4 signal layers) instead of wire-wrap.
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TABLE V-2

DVT ECL PACKAGE COUNT BREAKDOWN

Subsection 16 Pin 24 Pin
P-register 28 0
Instruction register 22 0
Control decoding 14 0
Input/output 45 0
Clock generator<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>