N

U.S. DEPARTMENT OF COMMERCE
National Tachnical Information Service

AD-A021 072

MSG: THE INTERPROCESS COMMUNICATION FACILITY FOR THE
NATIONAL SOFTWARE WORKS
PRELIMINARY

BoLT BERANEK AND NEWMAN, INCORPORATED

PREPARFD FOR
Rome A1R DeveLoPMENT CENTER

23 January 1976

- Best
Available
Copy

4itr =,

Between the time you ordered this report—
which is only one of the hundreas of thnu-
sands in the NTIS information collection avail-
able to you—and the time you are reading
this message, several new reports relevant to
your interests probably have entered the col-
lection.

Subscribe to the Weekly Government
Abstracts series that will bring you sum-
maries of new reports as soui? as they are
received by NTIS from the originators of the
research. The WGA's are an NTIS weekly
newsletter service covering the most recent
research findings in 25 areas of industrial,
technoiogical, and sociological interest—
invaluable information for executiver and
professionals who must keep up to data.

The executive and professional informa-
tion service provided by NTIS in the Weekly
Government Abstracts newsletters will give
you thorough and comprehensive coverage

\of govern aent-conducted or sponsored re-

KEEP UP TO DATE

\

search activities. And you'll get this impor-
tant information within two weeks of the time
it's released by originating agencies.

WGA newsletters are computer produced
and electronically photocomposed to slash
the time gap between the release of a report
and its availability. You can learn abcut
technical innovations immediately—and use
them in the most meaningfui and productive
ways possible for your organization. Please
request NTIS-PR-205/PCW for more infor-
mation.

The weekly newsletter series will keep you
current. But learn what you have inissed in
the past by ordering a computer NTiSesrch
of all the research reports in your area of
interest, dating as far back as 1964, if you
wish. Please request NTIS-PR-186/PCKN for

WRITE: Managing Editor
5285 Port Royal Road
Springfield VA 22161

-

SRiIM (Selected Research in Microfiche)
provides you with regular, automatic distri-
bution of the complete texts of NTIS research
reports only in the subject areas you select.
SRIM covers almost all Government re-
search reports by subject area and/or the
originating Federal or local goverrment
agency. You may subscribe by any category
or subcategory of our V/GA (Weekly Govern-
ment Abstracts) or Government Reports
Announcemenis and Index categories, or to
the reporis issued by a particular agency
such as the Department of Defence, Federal
Energy Administration, or Environmental
Proteciion Agency. Cther options that will
give you greater selectivity are available on
request.

The cost of SRIM service is only 45¢

!on1estic (60¢ foreign) for each complete

Keep Up To Date With SRIM

more informatic-.

microfiched report. Your SRIM service begins
as scon as your order is receiveu and proc-
essed and you will receive biweekly ship-
ments thereaiter. 'f you wish, your service
will be backdated to furnish you microfiche
of reports issued earlier.

Br canse of cortractua' arrangements with
several 3pecial Technolcgy Groups, aot zil
NTIS reports are distributed in the SRIM
program. You will receive a notice in your
microfiche shipments identifying the excep-
tionally priced repe’ s not available through
SRIM.

A deposit account with NTIS is required
before this service can be initiated. If you
have specific questions concerning this serv-
ice, please call (703) 451-1558, or \/rite NTIS,j

attention SRIM Product Manager.

This information product distributed by

5285 Port Royal Road
Springfieid, Virginia 22161

U.S. DEPARTMENT OF COMMERCE

National Technical Information Service

B (JJ

C O N

6%169 .
L BERANEK AND NEWMAN

INC

S Ul T I NG - D EV EL O P M ENT R E S ¢t AR CH

8OSTON

6\ ¢
Do

‘

QBBN Report No. 3237

H {
N
>
<t

=
=g

January 1976

MSG: The Interprocess Communication
Facility for the National Software Works
Preliminary

January 23, 1976

NSW Protocol Committee

mhis work was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and monitored
by Rome Air Development Center under contract number

F3060.-76-C-8794 and by the Office of Naval Research under
contract number Ngﬂl4—75-c~ﬁ773,

W2SHINGTON CHICAGO HOUSTON LOS ANGELES

Q Raproduced by

NATIOMNAL TECHNICAL
INFORMATION SERVICE

US Daparimant of Comwmerce
Spnnztied, YA, 22151

PRICES SUBJECT TO CHANGE

OXNARD SAMN FRANCISCO
= ﬁ Bﬁ ik o ey S i

= A

IInclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

- READ INSTRUCTIONS
REPOR1 DOLUMENTATION PAGE) BEFORE COMPLETING FORM .
L RE2ORT HUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
BBN Report No. 3237
4. TIYLE (and Subtitle) 8. TYPE OF REFORT & PERIOD COVERED

MSG: The Interprocess Communication
Facility for the National Software Works Scientific

(Preliminary) 6. PERFORMING ORG. PEPORT NUMBER
7. AUTHOK(-) CONTAACY OR GRANT NUMBER(Y)
NSW Protocol Committee N@@14-75-C-0773
9. PERFORMING ORGANIZATION NAKE AND ADDRESS 107 PROGRAM ELEMENT. PROJECT, 1 ASK

AREA 3 WORK UNIYT NUMBERS
Bolt Beranek and Newman Inc. --

5@ Moulton Street

Cambridge, Massachusetts 2138 !
V1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE \
Defense Advarced Research Projects Agenc Xy 1976
Information Processing Techniques "'”"““°'”;ﬁ

F']- MONITORING AGZNCY NAME & ADDRESS(If diiferent from Controlling Oflice) 15. SECURITY CLASS. (ol this report®
Office of Naval Research

Code ONR-430D Unclassified
800 N. Guincy Street 18a] ggsé.aaingncn-onﬁownanomc

Arlington, Virginia 22217
16. DISTRIFBUTION STATEMENT (of thia Report)
Distribution of this document is unlimited. It may be released
to the Clearinchouse, Department of Commerce for sale to the
general public.

.77. DISTRIBUTION STATEMENT (of the adsiract entered in Block 20, if dilferent from Report)

18. SUPPLEMLNTARY NOTES

(a) This research supported by DARPA under ARPA Order No. 2901
(b) This report also published by Massachusetts Computer
Associates, Document No. CADD-7681-2611.

19. KEY WORDS (Cuntinue on reverse side if neceseary and identify by dblock number)

National Software Works Distributed Systems
Computer Networks Network Protocols
Interprocess Communication Resource Sharing

20. ABSTRACY (Continue on reverse side i{ neceseary and identiry by dlock number)

This report describes the communication facility, named MSG
which was developed to support interprocess communication for
the implementation o: the National Software Works (NSW). The
more important of the processes which comprise NSW and the
pattern of communication which those prccesses require are
described. ©Next from those patterns a model of interprocess
communication which is sufficient for NSW is abstracted.
Fipally. the d ils S L1 ! ped.d

DD ' :2:‘1,; 1473 EDITION OF | MOV 6518 OBSOLETE

Unclassified
SZCURITY CLASSIFICATICN OF THIS PAGE (When Data !!n_(cnﬂ)

BOLT BERANTEHK A N D NEWMAN INC

Cc ONSU LTI NG + DEVY ELOPMENT =« R ESEAUPRCH

MSG: The Interprocess Communication
Facility for the National Software Works

Preliminary
January 23, 1976

NSW Protocol Committiee

Massachusetts Computer Associates Inc. Document no. CADD-7601-2611
Bolt Beranek and Newrian Inc. Report no. 3237

This work was supported by the Advanced Research Projiects
Apency of the Department of Defense and monitored by Rome Air
Developrient Center under contract number F30602-76-C-0094 and by
the Office of Naval Research under contract number
r¥xmu-75-c-o7?3.

&

i(o)

BOSTZi: WASHI IGTON CHICAGO HOUSTCN LOS ANGELES OXNA Pl _ERANMCISCO !

o S —

The NSW Prctocol Committee

The NSW Protocol Committee i~ an ad hoc proup made up »f
representat. ves from Bolt Beranek and Newman Inc. (BBN) and
Massachusetts Computer Associates Inc. (Compass). The committee
members are (in alphabetical order) Paul Jchnson (BBN), Robert
Millstein (Compass), Stuart Schaffner (Compass), Richard Sch=antz
(BBN), and Robert Thomas (BBN). The concepts embodied in this
docurment are jointly the work of these five people. Special
mention should po to Robert Thomas and Stuart Schaffner who wrote
major rortions of the document. Others contributine to the
conceptualizatiun of the MSG facility include Don Andrews (SRI),
Robert Braden (UCLA), Kirk Sattley (Compass), Ken Victor (SRI),
and Doug Wells (MIT).

i(k)

Y i e e

MSG Design Specification
TABLE OF CONTENTS

Section 1t - Intrnduction

Overview

NSW Components

Patterns of communication
Model of Communication

Modes of Communication
Secuencing of Messages

Host Incarnations
Organizaticn of this document

P P N Y
O~ EW N —

Section 2 - MSG Process Environment

Hosts

Processes

Prorcess names

Process addressing modes
Modes of information transfer
MSG primitive operations
Signals

Information transmittal
Sequencing of messares

.10 Process creation and termination
.11 Summary of teras

PPNV
O O~ EWN -

Section R - MSG-to-!11SG Protocc!?

3.1 Transaction Identifiers
3.2 On the use of "source'" and "destination"”
3.3 MSG-to-MSG Protocol Items

Section 4 - MSG-to-MSG Protocol for the ARPANET

4.1 Implementation of !1SG-to~MSG Paths by
ARPANET Connections

Establishine the ARPANET Connections
Breaking the ARPANET Connections
Authentication of MSGs

Error Contrcl for MSG-to-MSG Paths

g il = i o
Ul swho

1-1
1-2
1-3
1-6
1-7
1-10
1-11
1-12

|
[AS 2N AG QUSRS » N @A R U3 I o U'S BN 0]

ROV
|
N — oo

W ww
1
LW

= I=
LI B |
COUT &= N -

Section 5 - MSG-to-MSG Transmission Formats for the ARPANET

General Format for lNSG-to-MSG messapes
Formats for Messare Componants
IdentifyinfF Transactions

MSG~-to-MSG Protocol Messares

Summary of Commands

T U1 A
U= N =

ii

TUTU U1 WUt
1
—_ =W

HSG Desirn Specification 1/23/76

1. Introduction

i el

1.7 Overview

The Hational Softw~are Works (NSW) provides software
inplementers with a suitable environment for the devecloprent of
prorsrams. This environment concists of many software development
tools (such as editors, compilers, and deburrers), runninr on a
variety of computer systems, but accessible throuesh a sinrle
access-prrantine, resource-allocatine monitor with a single,
unifornm file system. By its very nature, the NSW consists of
processes distributed over a number of computers connected by a
communications network. ‘These processes must communicate with
one another in order to create a unified system. This paper
describes the communication facility (named HSG) which was
developed to provide interprocess comnunication for the
implementation of the NSW. The communications network
is currently the ARPANET. However, we have designed the
MSG facility to be as independent as possible of the ARPANET
implementation so that the concepts mav be carried over to
implementations on other networks.

pownh QN ov [y s

s QR s

T

|
[y |

We begin by deseribine the more imnortant of the processes
which comprise NSW and discussing the pattern of communication
which those processes reaquire. We then proceed to abstract from
those natterns a3 model ol interorocess communication which is

el

£

%g sufficient for NSW. Finally, we develop the details of the MSG
facility itself.

,; It is our hone that both the descriplion of the process of

= >

definine MSG as well as the description of the structure of the
protocol will be or interest to protocol developers for the
ARPANET and other networks.

Introduction
1-1

MSG Desien Specification 1/23/76

1.2 NSW Components

The monitor of NSk is the Works Manager. It is responsible
for servicing requests for system resources - e.s., running a
tool, opening a file. The Works Manager verifies that each such
request is wvalid (using in this verification a rather elaborate
access Jdata base which serves as a domain for automated projiect
management machinery). The Works Manaper then allocates to each
valid request th~ necessary resource. This allocation pgenerzlly
involves either the creation of a tcol (e.g., editer, compiler)
instance - i.e., the creation of a new NSW nrocess - or the
movement of a file (which movement may be either inter- or
intra-host).

For each user of NSW an interface to the other components is
provided by a Front End, which may hte loca. to the user. In the
sequel we will talk as if the Front End were local, so that
communication to the user is synon'mous with communication to the
Front End. This is not, however, an NSW system requirement. The
Front End filters the user’ s input stream, discardins bad
choracters (e.r., control-C should not be sent to TEZNEX tools)
and interpreting system-wide cornitrol characters - delete line,
retype line, escane to the Works llanarer, etc. 1In addition, the
Front End may provide iocal parsing of the Works Manager ccmmand
languare and, conceivably, even tocl command lanprares.

Just as users see the HSW environment throueh the Front End,
30 also do ~Hols see an extended local system envircnment throu:h
a Foreman coponent. Tools are software systems which are
written for given host - e.g., MULTICS. To become NSW tocls
they must be inserted into a slightly different milieu. This
different milieu is provided by a Foreman component on the toci’'s
hest. The Foreman provides the tool with access to NSW
resources, such as NSW files. Thus a tool pe.s NSW resources by
making a local call on the Fcreman, which then forwards the
request to the appropriate NSW component. From the viewpoint of
other NSW components, then, it is the Foreman rather than the
tool with which most communication must occur.

The final comporent of interest here is the File Packare.

There is an instance ¢ “he File Packare on each tool-bearing
host. These File Packayres are responsible both for local file
system manipulation - e.e., delete, local file copy - as well as

inter-host file transfers and reformattinc.

Introduct . on
1-2

MSG Uesien Specification /03776

1.3 Patterns of communication

We will now describe the anticipated patterns of
communication between the NSW proces-~es. These communications
factor into =six types:

. Front krd -~ Works Manarer

. tocl/Foreman - Worls Manarer

. Workes Manarer - [1le Packare
Front End - tool/Foreman

. tool/fForeman - “ool/Foreman
File Packare - File Packare

The other pousibics pairs - e.e., Front End - File Packare, File

Packare - tcol/Feriman - ¢o not represent communication paths in
NSW.

. Fronc End - Woris tHararer

Communication -etween these two kinds of process consists of
user requests for NSw ‘esources (Front Encd to ‘Yorks !Manarer) and
Works !lararer responses to such requests (Works ilanarer to Front
End). Evamples of such 1 orests are: run s tocl. copv a file,
delete a file, ete. Ties> reaquests 2re reolativelyv infrecuent - a
user nay nake onlv a few per rour. Each requect is short -
almost 3ll reauests can ~2asily Se encoded in 1000 hits. The
response to each request is also chort - neain, less than 1000
bits. The time required t~ process a 1eaquecst is rencrally brief
- certainly on the nrder of milliseconds as ~ompared to the
minutes hetween requests. 1here is no necessity for a request to
be prorcessed by the same inst:n~e of the Works Manarer that
processed anv previous reauest (siince all 1nstances of the lorks
i‘anarer share the same comron data base). Hence a comrmunication
link need not bhe retained hetween a rront End =nd 2 works ilanarer
between resource reaquests. Thus we can characterize Front End -
Works ilanarer communication as 2 sequence of unrelated elements,
where each element is a short reacuczst, 2 hrief delay, a chort
response, arnd a lonr delayv until the next element ~f the
sequence.

. tocol/Foreman - Works llanarer

These communications are exactlv analorous to rront tnd -
Works flanarcer comnunications. A tool {(nn hehal! nf 3 user)
reauests an HSW recource of the Works Manarer. Exarples of =such
requests are: open a file, create a -ubsidiarv tool nrocess,
deliver a file, etc. As a2above, these recuests are renerally less
than 19900 bits, are processed by the Works ilanarer in

Introduction

1-3

= iz

i

MSG Desipn Specificaticn 1/23/76

milliseconds, have responses of less than 1000 bits, and . rc
relatively infrequent. The only difference bhetwveen this patterp
and the preceding pattern is that tcol requests are more froguent
than Front End reguests, althourh the time between such rc¢ . csts
is still measurable in m nutcs.

Works Manaser - File Packare

These communications are a2pain analorous to the above.
Indeed, these requests (of the Works Manarer to the File Packarc)
ozccur in order to service a Front Ead or tool request of the
Works iManarer. For example, when a tool asks the VWorks Manarer to
open a file, the Works Manager must then ask a File Packare
process to make a copy of that file, possibly across the ARPANET.
The time (o make a cross-net copy of a file may be measured in
seconds (even in minutes for larre files), tut such long copies
are expected to be infreguent. Thus, the same pattern of a chort
request (riot related to previous requests), a brief delay, a
short response, a lory delay holds for VWorks llanarer - File
Packare communication also.

Front End - tool/Foreman

Communication between these processes consists o0 user

commands to tools and tool responses to users. In some cases
these communicaticns will fit into the sarme pa’ *ern as the three
previous cases. Often, however, the pattern is aifferent.

Consecutive requests are related and must be serviced by the sanme
tool. The time t~tween the user s command and the tool 's response
may be rreater than the time between the respcnse to the previous
command ar.d the issuing of the next command. Also, tne freaquency
of user ccmmands to tools mav be mnuch rreater than the frequency
of either user or tool requests to the dorks llanarer. 1In
addition, the leneth of a rFrcnt End - tool/foreran communication
may be larpge. For example, in a fvpical sessicn a user nirht
request the use of a text editer (Front End - Works ltlanarer
communication). ret a particular file to edit (tool/Foreman -
Works Manzrer cormnunication), and then irsert two hundred lines
of prosram text into that file. Thus rrent End - tocl/Foreman
comnunication is expected to vary frorm the infreaquent, short
reguest pattern to frequent, lons transmissions of information.

tool/Foreman - tool/Foreman

These comnunications are relatively infreguent. No tool
currently installed in NSW needs to tal«x directly to another
tool. Nevertheless, deburpine tools for NSV as well as
multi-prccess cocols have been proposed and are heing implemented.

Introduction
1-4

= N - 2 o

HOG Desien Opecification /23776

Such tools reaquire cormnunication facilities. Ve expect that
their vatterns of communication will he analoeous Lo Front En’ -
tool/Foreman cormmunications.

. File Packare - ¥ile Packare

Some very small fraction of these communications will
consist of short, infrequent messares - o.r,, 2o source File
Packare celline a destiration File Packare the lenrth and
encodemnent of a file - but the hulk of such communication wil’
consist of files beine transferred. Thus, we can characterize
this pattern as infreaquent transmissions of many bits.

Irtroduction
1-5

MSG Desipn Specification 1/23/76

1.4 Model of Communication

“rom these expected patterns of communicaticn we can
abstiiect a model of the kind of interprocess protocol that NSV
requires. We nave, roughly spneaking, three patterns of
comnunicatior:

Infr2gquent short transactions betwe<:» previously unrela‘'ed
processes (Pattern 1):

Front End - Works Manaaper

tool/Foreman - Wcrks Manager

Works Manager - File FPackarge

More frequen*, longer transactions between related
processcs (Pattern 2):

Frone End - tool/t'oreman

tool/Foreman - tool/Foreman

Infrequent, very long transactions (Pattern 3):
File Package - File Package.

I..troduction
1-6

e Faee ey ot e

| e ey RIS

S)

o o § s | [R]

-

NSG Desipn Cpecification 1723776

1.5 HMcdes of Comnunication

NMSG supports thes~ NSW patterns of communication by
providing two different modes of bprocess addressinge:

. rFeneric addressinr;
specific addressing;

and three different modes of communication:

. nessares:
. direct communication paths (connections);
. alarnms.

tach mode of bprocess addressinre and communication is
intended to satisfy certain NSW reauirements and to he used in
certain kinds of situations. However, MSG itself does not impose
any li-itations on how procesuces 'me the various communication
moues. MSG does not interpret messares or alarms, nor ‘oes it
intervene in communication on direct connectlons. The
interpretstion of messares, alarns, or direct connectinns is
citirsly ~ matter for the orocesies using N3G to communicate.

Generic nddressine is uv3ed by processes which either have
no. cormnmunicated hefore or rfor whicnh the details of anyv past
communicaticn is irrelevant. It is restricted teo the mescare
mode of communication. A valid reneric address :necifies A
functional process ciass. When NSG accepts a renerically
addressed messare it sel2cts 23 destination come process which is
not only irn the r~eneric class addressed but has also declared its
wiliineness to receiv~ a renericalily addressed messase. If there
is nc such process, MSG may create one. Pattern 1 communication
is always initiated by the transmission of a renerically
addressed messare.

A valid specific address refers to exactly one process and
this address remains valid for the life of that procesc.
Specific addresszing mav be used with r11 three communication
nodes. Specific addressine is used petween processes which are
familiar with each other. The familiarity is renerallyv because
the processes hav comnnunicated with each other before, either
dire~tly or throurh intermeliary processes.

Messare exchanre is provided byv NSG to suppor: the
requirements of nattern 1 communication and some pattern 2
communication. It is expected to he the most ccmmon mode of
comrunication amonrs HSW processes. To cend a messare, A Process

Introduction

MSG Design Specification 1/23/76

addresses it by specifying the address of the process to receive
the message and then executes an MSG "send" primitive which
requests MSG to deliver the message. When MSG delivers a message
to 2 process it also delivers the name (i.e., specific address)
of the process that sent the messarge.

The second mode of MSG communication is direet access
communication. A pair of processes can request that MSG
establish a direct communicacion path between them. Direct
communication paths are provided to support the requirements of
pattern 3 communication, such as file transfers between hosts,
and some pattern 2 communication, such as terminal-like
communication between a Front End and tool/Foreman. (The ARPANET
realization for 2 direct communication path is a host/host
connection or connection pair.)

The alarm mode of communication is supported by MSG to
satisfy a communication requirement typically satisfied by
interrupts in other interprocess communication systems. Alarms
provide a means for one process to alert another process to the
occurrence of an exceptional or unusual event. Processes may
send and receive alarmns much as they send and receive messages.
However, tnere are significant differences between alarms and
messages. The rules that govern the flow and delivery of alarms
are different from those that govern the flow and delivery of
messages. In particutar, the delivery of an alarm to a process

is independent of any message flow tc the process. 1rat is, the
delivery of an alarm to a process cannot be blocked by any
messages queued for delivery to the process. fnlike a message

which can carry a substantial amount of information, the
information conveyed by an alarm is limited to a very short alarn
code. Th_ 3 limitation implies that the deli- 'ry of alarms can be
accomplished in a way that requires little i: the way of
communicatior or storage resources. This makes it possible for
MSG to insure certain "priority" treatment for alarms which makes
them suitable for alerting processes tc¢ exceptional events.

While similar to traditional interrupts, alarms are different in
orne important respect: the delivery of an alarm to a process
does not necessarily imply that the process 1s subjected to a
forced transfer of control by MSG. For this reason, we have
chosen to use th:2 term alarm rather than interrupt.

All modes of interprocess communication supported by MSG
follow the same basic pattern, which i3 roughly as follows:

1. One process tells MSG about a message or alarm to be
sent or a connection to be opened. It also specifies a
cestination address and a signal by which MSG can

Introducticon
1 8

e W——

W

[T |

wit

MSG Desirn Specification 1/23/76

inform it that the messare or alarm has bhecen sent o:
the connection opeiled.

Another 1 rocess which matches the above destination
address tells MSG that it is r=ady to receive the sane
type of communication. It =21iso specifiexs a sipnal by
which MSC can inform this process that the messare or
alarm has been received or the connection opened.

MSG sends the alarm or messare or oupens the connection.
It also si¢nals the source process that the messare or
alarm has been sent or the connection opened and
sirnals the destination process that the messape or
alarm has been delivered or the connection opened.
After it receives the sirnal, the process receivinzs a
message or alarm always knows the specific address of
the sender.

Introduction
1-9

MSG Design Specification 1/23/76

1.6 Sequencing of Messages

Normally MSG does not suarantee that messages sent from one
process to another process will be delivered to the destination
process in the order in which they were sent. However, since it
is expected that NSW processes niy frequently desire message
sequencing, it is possible for a process to ask V¥SG to sequence
certain messages.

To achieve sequencing a process can specify when it sends a
message that the message is to be sequenced. MSCG will) guarantee
that a sequenced message from process A to process B will be
delivered tc¢ process B only after 211 previous sequenced inessares
from process A have been delivered to process B. A procecs may.
if it chooses, intermix sequenced and unsequenccd messages.

Several of the cituations which motivate the presence of the
alarm communication mode within MSG also require that a process
receiving messages be able to distinguish nessages sent befcore an
alarm was sent (or received) from those messages sent afterwards.
That is, it is often important for a pair Hf processes to
synchronize a message stream with respect to an alarm.

To facilitatz suvch message-stream/alarm synchronization, MSG
supports the concept of essage stream markers. A stream marker
ic an attribute of a message. When sending a message a process
may specify whether or not the message is to carry a stream
marker. MSG gua.."ntees that a message M, sent from process A to
process B, whicli carries a stream marker will be delivered to
process B only after all messages sent by A prior to M have been
delivered to B and before any messages sent after M by A.
Furthermore, MSC will notify the receiving procets B whenever it
delivers a message that carries a str-am marker. The
notification will be part of the information normally supplied oy
MSG to the receiving process.

When it is necessary to achieve message stream
synchronizaticn after an alarm, a pair of processes can use the
MSG stream marker. This can be accomplished by rla-ing a streanm
marker on the first messarge sent after the alarm (was sent or
received). Although stream marked messages are provided by MSG
to simplify message-stream/alarm synchronization by MSG
processes, it is important to note that MSG itself places no
constraints upon how processes use stream marked messazes.

Introduction
1-10

e i o

e, VTR N -

MSG Desirn Specification 1/23/706

1.7 Host Incarnations

The NSW is expected to provide continuous, 24 hour a day, 7
day a week service. However, the various computer systems whinh
support NSW processes may not provide such continuous service.
Procer NSW operation reaquires that MSG be able to determine
whether a name for a process refers to a process that MSC is
currently manaring or to an obsolete one which MSG manared durinr
a previous period of liSG service by the host computer system in
question. (The term "incarnation" is used synonymously witn
"period of host MSG service" in the remainder of this document.)
To enable MSG to distinpuish current from obsolete nrocesses, an
MSG process name (more precisely, a specific address) includes an
indication of the host incarnation under which the p.ocess exists
(or existed).

Introduction
1-11

MSG vesign Specification 1/23/76

1.8 Orpanization of this Document

The remainder of fhis document specifies MSG in detail.
There are four par:s to the specification:

il c

ii.

iii.

MSG process environment.

Section 2 defines in detail the environment MSG
provides to MSG proc:sses. In particular, it defines
the set of primitives tha*t YSG provides to such
processes.

MSG-to-MSG protccol.

NSW is a mull ‘-computer system. Parts of MSG will
reside on the various computer systems that comprise
the NS¥W. The inter-computer protococl used by the
compcnents of MSG in order to support the MSG
primitives is specified in Section 3.

MSG-to-MSG Protocol for the AKPANET.

The initial implementation of the NSW will make use of
the ARPANET as an inter-computer communication medium.
Section U specifies how the ARPANET host/host
communication facilities are to be used to support che
1MSG-to-MSG protocol.

MSG-to-MSG Transmission Formats for the ARPANET.
Section 5 defines the formats to he used for the
tranamission of MSG-to-MSG nrotocol messares bhetween
ARPAIET hosts.

introduction
1-12

T 4., N ———— =

[y)

’

MSG Design Specification 1/23/76

2. MSG process =nvironment

This section defines in det2il (he environment MSG provides to
processes. This sectioun ccvers chose aspects of the MSG process
environment which are common to all hosts; it is not a
nrocess-implementer ‘s ruide to MSG on any particular host. Suceh
« puide must also discuss aspects of the process environment
which are peculiar to that host.

MSG process environment
2-1

MSG Desien Specification 1/23/776

ro

.1. Hosts

NSW is implemented as a number of processes runnine
concurrently on a nuamber of different computer svstems, called
hosts. MSG on each uost can be thourht of as an extensinn of that
host “s operating sysctem, creatine a new operating system trat
satisfies the MSG aesign. Because MSG specifies only a fraction
of the ncost environment for a process, it 1s reneralliy true that
MSG preo-~tsses will be sensitive to the type of host on which they
run.

NSW will operate continuously, but irdividual hecsts mav not he
continuously part of it. This can occur because a given bhost is
not scheduled for continuous NSW service, or because the host hsas
failed. We A>:fine a particular period of NSk service by a host as
a hest incarnation, designated by:

<host incarnation name> ::=
<host desirnator><incarnation desiecnator>

where <host desienator> is an i-~teper which uniquely desirnates a
particular host computer and <. carnation desifnator> is an
inteper which desifnates this 1 rticular period of NSW service by
this host.

MSG process environrient
2-2

MSG Desien Specificacion 1/23/78

2.2. Processes

The form of an MSG process is stronply host-dependent, since
the MSG design specifies only a2 part of the operatine system
under which the process runs. An MSG process is what one
generally tninks of as a proce’s, i.e. a collection of progranms,
local memory, etc. to which che operating syster allocates system
resources such as CPU time. MSG processes must, "owever, have the
folloi'ing properties:

1. The process can make at .-ast some MSG primitive calls.
2. The process has a unique MSG process name throurh which
it can be addressed by other processes.

MSG process enviroamen?
)
-3

——— IR T ST RN AN TR s e

Ty

IiSG Desifn Specification 1723776

2.3. Process names

A host incarnation supports a number of MSG processes. Each
process has a name of the forn

<arocess aame> ::= <host incarnation name><{reneric desionator>
<specific designator>

The host incarnation nome is the incarnation name of the host
under vhich the process is runninp. The reneric designator is A
character strine which characterizes a process in terms of its
Tunctional relationship to other processes. This characterization
determines whether a process could be chosen to perform a certain
function. For example, processes with reneric desirnat- -~ UM are
candidates or messares which invoke Works Hanarer functions.

The specific desiprator is an inteper. A process name is always
unambiguous; at all times it eit'er corresponds to a sinrle
process or is invalid.

MSG process environnment
Dl

MSG Desirn Specification 1723776

r o=l W

ey

2.4. Process addressin: modes

There are two fundamental medes by which one process may
address another process: generic and specific. A specific
address is always a process name. Generally process A will use a
specific address for process B because process A has had sonme
prior communication with B, either directly or throuph some
internediary process.

[————

A generic address, however, is of the form:

<generic address> ::= <host desirnator><{generic desisnator> |
<zeneric desipnator>

Unlike specific addressing, whicr uniquery determines the
destination process, generic addressing implies a selection by
MSG of a destination process from a class of n»nrocesses. This
selection allocates the destination process to the comnmunication
implied by the eenericaily addressed messape. This is Jdistiinct
from process allocation, in wi.ich MSG creates and terminates
processes.

The class of processes from which MSG can nick a destination
process for a renerically addressed messare 15 defined as
follows:

1. If the reneric address is of forn

<host desirnator><reneric desirnator>

then the process selected mus® be on the designated host. If
<host desifnator> is not specified in the address, then the
process may bhe on any host.

2. The <rerneric desiepnator> field of the process name must ratch
the <peneric desirfnator> field of the rencric addiress.

3. The process nmust have a Receivepeneric primitive call
pendinr.

MSG process environment
2-5

MSG Desirn Specification 1/23/76

2.5, Modes of information transfer

MSG supports three basic modes of information transfer between
processes: messares, alarms, and direct connections.

A messare is a strine of bits created in the local memory of a
sending process. MSG sends the messare to a receivinpg process by
duplicatiar the bit strinpg in a specified portion of the
receiving process’s local memory. MSG itself imposes no further
structure on messares, nor does it interpret the contents of
messapges. Messares are the only mode of communication which can
be generically addressed.

An alarm, 1like a message, is a strinr of bits created by one
process and addressed to another process. As with a messare. MSG
transmits the bit strine to the receiver process, which has
desipgnated beforehzind where the bit strine is vo be put. In cther
ways, however, alarms differ from messares. First, an alarm is A
fixed-length bit strinpg and is shorter than most messares.
Second, MSG will transmit an alarm independently of any messare
traffic between sender and receiver processes. In fact, M3G will
give alarms priority service over nessares. It is anticipated
that alarms will be used to transmit information abocut unusual or
exceptional conditions, while messares and direct connections
will be used to support normal commun.cation.

A direct connection is a one-~ or tuwo-way dedicated channel
betvween two processes. I1GG assists the processes in onenine and
closing the connecticn, but does nct intervene in the actual use
>f the channel.

Messares are further differentiated by whether they are
addressed to a specific process or to a ceneric class of
nrocesses. Processes use different nrimitive ralles Lc <. .. Aand
receive pgenerically-addressed messares than Lne;, use to sencd and
receive specifically-addressed messares.

For a specifically-addressed messare it is further possible to
specify eitvher (but not bot!l:) of two types of special handline:
sequencing and stream markine. Normally MSG will not ruarantee to
deliver messages in the order in which they were sent. Sequenced
nessares, however, from process A to process B will be cdeliver ad
to B in they same order in whicn they were sent hy A. A strean
marker messare from A to B will not be delivered to B until all
other messages from A to B have been delivered. Fu~“hernore, it
will be delivered to B before any other messares to B sent
subsequently by A.

MSG process environment
2-6

e x ; -
» N— T B CEREE L o i P e T

MSG Desirn Specification 1/22/76

In a.l cases, MSG will inform the receiving process of any
special handling given any messare it receives.

MSG process environnent
2-T

MSG Desien Speciiication 1723776

2.6. MSG primitive operations

Each host supports a set of MSG primitive operations for the
processes that run under it. The method of calling these
primitives will be host dependent. Every primitive call prcduces
sore time later a reply (return) from MSG. We divide the set of
primitive callz into two clesses. differentiated by the meaning
of the reply MSG makes to the primitive call. For one class of
primitive call the MSG repiy si nifies that the primitive
opcration is complete. For the other class of primitive call,
however, the MSG reply signifies onlv that the parameters of call
were reasonable enough for MSG to deduce what cperation to
perform and that MSG has agreed to attempt to perform this
operation. When this primitive operation i3 finally complete or
has been aborted, MSG will sifnal the process, using a sipnal
specified in the primitive call. We call this uncompleted
primitive operation a pending event, where the event in question
is the completion or aborting of the operation. A pending event
has the form:

<{pending event> ::= <prinitive><sirnal><disp><timer>

where
<primitive> is the primitive operatior to be performed
{siecnal> is a means by which MSG can signal the process
that the primitive operatinn is complete
<disp> is 2 pointer to a field in the process’s local mencry
<timer> is a timer which tells HSG when It can abort the
operation.

Every host will offer processes a set of signals for ucse in
primitive calls that produce pendine events. We shall uiscuss
sifnals at gsreater lenpgth later in this document. The disp field,
which MSG will have set before it sends the sirnal, tells the
process whether the primitive operation completed normally or was
aborted.

The set of all peuding events for a process is called that
process s rendine event set. “hen the process makes a primitive
call of the second class, a pendine event is added to its pendinr
event set. When MSG completes or aborts a pending evenl, it sets
the appropriate disp field, sends the s.ipnal, and then deletes
the pending event from that process’s pending event set.

A process should ensure that no two elements simultaneousiy 1in
its pending event set have the same sienal, but 1SG will not
enforze this restriction. The simplest way for a process to
ensure tnis is never to reuse a sifnal in a primitive call until

MSG process environment
2-8

1SG Design Specification 1/23/76

that signal has been ceceived from the old call. It should be
emphasized that the signal for an operation is the cnly reliable
way for a process to ensure that this operation has completed.

MSG process environment
2-9

i A e ey doak

MSG Design Specification 1723776

2.6.1 Primitives that creatc pendine everts

Many of the following pri itives contain the parameter dt. This
is used to create the <timer> field of the pending event, and
either specifies a time interval in local hosc clock units or
indicates that a default value should be chosen by MSG. Unless
the default is specified,

<(timer> = tc+dt where tc is the local host clock time when
the primitive was called.

1. Sendspecificmessare(msgarea,pnam,signal,disp,dt,spnndl)

where
mseare . points to a messagze to hbe sent
pnam a process namne

sphn« specifies special handling for the massarge
0 - ordirary handlinpg
1 - sequenced ressare
2 - stream marker messare

This causes the messape pointed to by ms-sarea to be sent to
nrocess pnam. At the very minimum, completicon of this
primitive -peration means that the msgarea has been read by
MSG, the disp field set, and the pending event deleted from
the sender s pending event set. Local hosts may opt to
puiarantee more, such as that when the primitive is completed
the foreign hcst has accepted the messare.

2. Sendgenericmessage(ncrarea,cenadr,sienal,disp,d.,owait)
where
nmsgarea points to a message to be sent
renadr is a reneric address
gwalt is a boclean

This is like Sendspecificm_ssage except that here a reneric
address is specified instead of a nrocess name, there iz no
special handlinge, and there is the extra parameter await.
Unlike a Sendspecificmessage, 2 Sendrenericmescare may ca'ise
MSC to create a destination process. Quwait is a coolean;
setting it false will cause MSG to accept the primitive onlv
if there is a process available with a Receivereneric
primitive pending.

MSG process environment
2-10

MSG Desipn Specification 1/23/76

3. Receivespecificmessape(msearea,srcnam,sipnal,disp,dt,snhrdl)

where
msgarea points to a block of local memory in which MSG
will put a message
srcnam points to a field of local memory which NMSG will
set to the process name of the sender
sphndl points to a field of local memcry which MSG will
set to the special handling class of the message
being received:
0 - ordinary handling
E ! - sequencec messarge
¢ - stream marker messarge

If the primitive completes ncormally, i.e. if the specified
signal is received and the disp field does not indicate an
error, then msparea will contain a message which was sent by
a Sendspecificmessage primitive call by some process. Srcnan
will contair the name of the process that sent the messare,
and sphndl will show if the messapge was sequenced or was a
stream marker.

4, Receiverenericmessarpe(msparea,srcnam,signal,disp,dt)
where
msecarea points to a block of local memory in which MSC will
put a messacge
srcnam noints to a field of local memory which MSG will
set to the process narme of the sender

This is like Receivecspecificmessare except that here the
messare received was sent by a Sendgenericmessage primitive
instead ot a Sendspecificmessare primitive. There is also no
speciel handling field.

MSG process environment
2-11

MSG Design Specification 1723776

(92

Sendalarm(acode,pnam,signal,disp)
where

acode is an alarm code

pnam 1s a process name

This sends the alarm code acode to the process named pnamn.
When this primitive completes, the disp field will indicate
one of the following outcomes:
1. OK. Eithe: the alarm was delivercd to the process or it
was queued and will be the next alarm to be delivered to
the process.
2. Rejected. Process pnam is not a:xcepting alarms at all
now, or another alarm is already queued for this process,
or some error has occurred.

Enablealarm(acode,srcnam,signal,disp)
where
acode,srcnanm point to fields of local memory

This enables the process Lo receive an alarm. When the alarn
is received, acode will be set to the alarm code and srcnam
will be set to the name of the alarm sender. In order for an
alarm to be received, not only must an Enablealarm primitive
be pending but also the iaccept boolean state for this
process must be true. This boolean value (s chanped by the
primitive Acceptalarms.

MSG process environment
2-12

%

MSG Design Specification 1/23/76

STy [™R

[
@uenmonied

7. Operconn(conntype,connid,pnam,sipnal,disp,dt)
where
conntype is a connection type
TELETYP &
BINARY SENN-RECEIVE(s)
BINARY SEND(s)
BINARY RECEIVE(s)
where s is a byte size
ccnnid is a connection identifier
pnam is a process name

e a3

=

This opens a connection of type conntype to process pnanm.

The connection will be identified by connid. In ~der for the
primitive to complete normally, process nnam must also
execute an Openconn primitive addressed to this process, with
the same connid and a compatible conniype. Some hosts may
return a host-dependent identifier for the connection.

8. Closeconn(connid,pnam,sigral,disp,dt)
where
connid is a connertion identirier
pnam 1is a prncess namne

This refers to the connection created before by the primitive
Openconn(conntype,connid,pnam,...). If the connection was
never opened, Closeconn will abort with an error code in the
disp field. If the corresponding Openconn is still pending,
the Openc.nn also will abort. Whatever the outcome, however,
when the Closeconn primitive completes, the connection, if it
ever existed at all, will be closed.

9. Terminationsirnal(tsignal,disp) where
Lsignal is a signal

If this primitive ever completcs, i.e. if tsignal is ever
received then 1t should be taken as a request by MSG for the
process to terminate. The disp field may be used, at host
option, to specify why the termination is being requested.

MSG process environment
2-13

MSG Desipn Specification 1/23/76

2.6.2 Primitives that do not create pendine events

Uc

AS]

Stopme ()

This primitive indicates that the process wishes to
terminate. Control will never return from this primitive.
The process will be terminated bv MSG as soon as possible.
Well-behaved processes will ensure that their pendine event
sets are empty before issuing this primitive.

Rescind(rsigral)
where
rsignal is a sienal

This is used to delete a pending primitive operation. The
parameter rsignal must be the sienal of a pending event, i.e.
an uncompleted primitive operation. If the Rescind call
returns successfully then the corresponding primitive will
not occur and rsipnal will not be sent. The Rescind may fail
because the primitive operation is partially complete 4and it
is too late to stop it, or because rsiena«l no longer
corresponds to a pending event. The latter case generally
means that the corresponding primitive has already completed.
It is a host option what primitives may be rescinded at all.

Some hosts may wish to return an event handle with
rescindable primitive calls. In this case, the call will bte
Rescind(event handle).

Acceptalarms(qaccept)

Each process has a boolean state value, ilaccepi. If an alarn
is sent to a proces~ whose iaccept state is false, the
Sendalarm will fail with a disposition indicating that thrc
process is not accepting alarms. If, however, iaccept is true
then the Sendalarm will either match an Enablealarm, be
queued, or be reiected because 2nother alarm is already
queued for this n»rocess. Acceptalarms sets iaccept to the
value of qaccept.

Resynch(pnan)
If MSG had been reijecting sequenced messares to process pnan

due to failure of a sequenced messare transmission, then MSG
will now stop doinr so.

i1SG process environnment
2-14

MSCG Design Specification 1/23/76

2.7. Signals

~ Each host provides for processes running under it a set of
Signals. A signal is a means by which MSG can inform a process
that scme event has occurred, in particular that MSG has
completed some primitive oneration.

Different hosts will offer different signals, but all signals
must satisfy certain criteria:

1. At any point in time, the process can determine whether or
not the signal has been received.

2. Signals must be distinguishable, i.e. if one of several
possible signals has been received, the process must be able
to determine which one.

3. Signals are local. A signal to one process does not
directly affect any other process.

The restrictions listed above alleow hosts to specify a wide
variety of signals for processes. It is not the function of this
section to further specify what sienals will be available on any
host. We list here some examples of signals that a bost might
- provide. These are strictly examples; they imply no MSG
requirement that these particular signais be supported:

1. Block/Unblock

The process waits and control does rot return from the
primitive call until the event has occurred.

. 2. Flarg
MSG sets a field in the process’s local memory nonzero
. when the event has occurred. This field could be the

<disposition> field itself.

3. TENEX PSI on channel n

3 On TENEX, MSG send< a«n interrupt on PSI channel n when the

event has occurred.

4. Flaeg plus TENEX PSI
MSG sets a field in the process’s local memory nonzero,
then sends an interrupt on ~2n agreed-upon PSI channel
which is the same for all sifnals of this type. This
differs from example 3 in that here different sienals
cause interrupts on the same channel. Because TENEX
queues PSIs on a channel only one interrupt deep, some
PSIs may be lost if MSG sends several sipnals of this
type sufficiently close to each other in time. With
care, a process can nandle the resulting race without
undue dAifficulty.

MSG process environment
2-15

MEG Design Specification 1/22/76

2.9 Information transmittal

The sending of messapes and alarms and the opening and closing
of connections all involve a pairing of compatible primitive
operations in the pending event sets of (usually) different
processes. Such a pairing defines an interchange of information
between two processes which MSG must cause to happen. Tne
possible pairings are:

1. Specifically-addressed message
This pairs the primitives
Sendspecificmessage(ma,pb,...) in process pa
Receivespecificmessage(mb,snam,...) in process pb

This causes the messape pointed to by ma to he transmitted by
MSG to process pb and put into the memory area point=d to by
mb. In additicn, snam in process pb will be set to pa so that
the receivineg process will know the name of the sendins

process.

2. Alarm
This pairs the primitives
Sendalarm(acode,u»,...) in process pa
Enablealarm(cdval snam,...) in process pb

This pairine is possible only if the boolean ctate variable
iaccept in process pb is true. This causes the alarm code
acode to be transmitted from process pa to process pb and put
intc field cdval. In addition snam will be set to pa, the
name of the sendine process.

3. Generically-addrecsed message
This pairs the primitives
Sendrenericmessage(ma,genadr,...) in process pa
Receivegenericmessare(mb,snam,...) in process pb

This is like a specifically-addressed messare pairinec except
that here renadr is 3 reo>~ric address which matches process
name pb instezd of being pb directly.

iSG process environment
2-16

[E——

e, .

MSG Desipn Specification 1/23/76

4. Opening a connection
This pairs the primitives

Openconn(ta,connida,pb,...) in process pa
Openconn(tb,connidb,pa,...) in process pb
where

connida = connidb
ti1 and tb are compatible connection types:

1. ta = tb = TELETYPE
2. ta = tb = BINARY SEND-RECEIVE(s)
3. ta = BINARY SEND(s)
tb = BINARY RECEIVE(s)
where s is a bvte size.

This opens a connection of the indicated type between
processes pa and pb. The connection will be hereafter
identified to both processes as connida (= connidb).

5. Closing a ccnnection
This pairs the primitives
Closeconn(connid,pb,...) in process pa
Closeconn(connid,pa,...) in proce<s pb

This will close for toth processes the connection between
them which is identified by connid.

These pairines define tasks that MSG is to perform, but they
ailow MSG hosts a rreat deal of freedom in scheduling computer
time and resources to the muluvitude of concurrent operations they
must perform. We must, however, specify a few more rules:

1. Fairness. MSG will not grossly favor any one process, node of
communication, or particular operation over any other.
Exceptions are:

a. Alarms will be favored over messages.

b. Transmission of messages with special handling
attributes may be delayed until other related messares
have been transmitted.

2. Access to communication. A process must always be ahle to
have in its pending event set:
2. One message send primitive.
b. One messape receive primitiv. .
¢. One alarm send primitive.
d. One alarm enable primitive.
e. One primiti~e to cpen or close a connection.

3. Efficiency. Wi.thin limits set by the above rules, HMSG will
arranre 1ts werkload so as to perfornm it in a reasonably
efficient manner.

MSG process environment
2-17

e e e T T o — ————
T e 'ﬁm e e S

MSG Desipn Specification 1/23/76

2.9 Sequencing of ressages

As noted in Section 1.6, MSG normally does not puarantee
that a collection of messapes sent from one process to anotner
process will be delivered to the destination process in tho order
in which they were sent. Some applications will require that the
messagzes between two processes be sequenced. In such cases, the
communicating processes could observe a private protocol to
insure proper sequencing of messages. However, since it is
expected that processes w. v frequently desire message sc.quencing,
it is possible for a process to ask M3G Lo sequence certain
messages.

To achieve sequencing a process can specify when 1t sends a
message that the messape is to be sequenced. MSG will guarantee
that a sequenced message from process A to process B will be
delivered to process B only after all previous sequenced messages
from process A have been delivered to process B. A process may,
if it chooses, intermix sequenced and unsequenced messarges.

The sending and receiving discip’ines required of MSG to
support sequenced messapes are discussed below. Processes should
be aware that a cost is associated with the vuse of the message
sequencing option; that cost will be reduced messare throughput.

M3G cannot guarantee that every messaece will be delivered.
(The destination host may be temporarily inaccessible, the
destination process may spontaneously disappear, the messane nmay
be timed out, etc.) When MSG is unable to deliver a normal,
unsequenced message, the sendiag process is signalled and
notified (via the disposition information normally supplied by
MSG) that the message could not be delivered. The sending
process can then take whatever action it feels is appropriate
with -espect to the message in question.

Sequencing introduces an additional comrlexity here
since a sequenced message is not independent of cther messages in
the sequence. To 1illustrate the nature of the problem, suppose
that process A has attempted to send process B the sequenced
nmessages M1, Mz, M3, MU, M5. Furthermore, suppose that MSG
successfully delivers M1 but is unable to deliver M2. What
should MSG cdo with M3, M4, and M5? In particular, its fnability
to deliver M2 does not necessarily mean that HSG will be unable
to deliver the remaining messares in the sequence. Delivery of
M3, MU and 15 without M2 may confuse process B; processes A and
B are cornunicating via sequenced messages presumably because
sequencing is important. Therefore, MSG will not attempt to
deliver the remaininr pendiny sequenced messares.

MSG process environment
2-18

MSG Design Specification 1/23/76

If MSG cannot deliver a sequenced messape from process A to
process B, it will stop the flow of seguenced messages to process
: B from process A until process A takes some explicit action to
- "resynchronize™ the message sequenze. MSG does this by marking
process A as being out of synchrony with process B after a
sequenced messape from process A to process B fails. MSG will
then abort all pending sequenced Sendspecificmessage primitives
1n process A’s pending event set which are addressed to pr cess
B. Furthermore it will reject all such primitive calls
subsequently made hy A until A r<~ynchronizes the messare
sequence with B by executing the primitive Resynch(B).

As noted ir Section 1.6, in situations in which an alarm is
transmitted or received, it is often important for a pair of
processes to identify a point in a stream of messages between
them corresponding to "where" the transmission (or receipt) of
the alarm occurred. To facilitate such messare/alarn
syiucnronization, MSG supports the concept of message stream
markers. A stream marker is an attribute of a messape. When a
process sends a message it can specify whether or not the messaype
is to carry a stream marker. The default is nc stream marker.

MSG puarantees that a message M, sent from process A to
process B, which carries a stream marker will be delivered to
process B only after all messares sent by A prior to ¥ have been
delivered to B (or have been determined by !3G to be
nndeliverable) and before any mes=sapges sent after M by A.
Furthermnore, MSG will notify the receiving process 3 whenever it
delivers a message that carries a stream marker. The
notification will bhe part of the information normally supplied by
MSG to the receivine process. We emphacize that MSG itself
places no constraints upon how process~s use stream markers.
Hovever, we expect that standards regarding their use will be
adoptea for NSW.

HSG observes a aueuing discipline with respect to
Receivespecificmessapge primitives. The Receivespecif.cmessare
nprimitives exe~uted by 2 process are to be satisfied in the order
in which they are 1ssued in the sense that the first
Receivespecificmessape should be satisfied by the first messare
“"SG accepts for tne process, the second by the second messare,
etc. W2 note that this does not necessarily imply that the
sienals associated with a collection of pendinrfs receives will be
delivered to the receiving process in the order in which the
receives were satisfied.

MSG process cnvironment
2-19

M3SG Design Specirication 1/23/76

in addition, we note that this MSG receiving discipline does
not imply that messages from a given sending process will be
delivered in the order in which the sending process sent *hem.
If in-crder delivery is required, the sending process must
request "sequenced" or "stream marker" handling. When sequencing
for a messarse is requested, the sending MSG observes = sendinp
discipline whereby it transmits the messare only after the
receiving MSG has accepted all previous sequenced messages (fron
the sending process to the receiving process). Similarly,6 when
stream marking for a messare is requested, the sending MSG
observes a sending discipline whereby it transmitc the message
only after the receiving MSG has accepted all previons messages
from sender to receiver and additionaliy transmits nc further
messages from sender to receiver until the receiving MSG accepts
this messapge. These sending disciplines, torether with the
receiving discipline described abtove and always followed by MSGs,
is sufficient to insure in-order delivery of sequenced and strean
marked messages.

MSG process environment

2-20

H [

MSG Design Specification 1/23/°6

[T

X]

2.10. Process creation and termination

b
-
To create a process MSG performs the following operations:

3 1. MSG assigns a process name to the process and creates
H an empty perding event set for it.

2. MSG creates the process on the host operating system.
- 3. MSG starts the process in some host-dependent apgreed-upon
3 initial state.
. An MSG host mayv create processes for one of only two reasons:
: 1. In order to ftulfill) its obligpation tc find a destinaticn for
‘ a generically addressed messarge.

2. As part of system initialization or restart.
: To terminate a process, MSG performs the following operations:

1. MSG marks the process for terwinatiocn in such a way that
- it will no longer be a candidate fc. any comnunication
from other processes and such that it is bleccked from
issuing any mcre MSG primitives.
MSG completes or rescinds all elements in the process’s
pending event set.
. 3. MSGC deletes the process from the host.

4, MSG forgets about the process.

ro

MSG process environment
2-21

MSG Desipgn Spe-~ification 1/23/76

2.11 Summary of terms
We present bere a brief summary of the terms defined in
this section:
1. Host incarnation name
<host incarnation name> :::=
<host designator><incarnation designator>

Process name
{process name> ::=
<host incarnation name><generic desipgnator><specific designator>

N

3. Generic add. ess
{gcneri~z address’ ::= <host desi~nator><peneric desipnator> |
{meneric designator>

4. Generic designator
{peneric designator>» ::= character string

. Specific desipgnatcr
{specific designator> ::= integer

6. Host designator
<host desi,:ator> ::=: integer

7. Incarnation designator
{incarnation desip.ator> ::= integer

3G process environment
2-22

» e
=

¥

-.
W §

-
[

MSG Desipgn Specification 1/23/76

3. MSC .Lo-MSG Protocol

This section specifies the inter-hcst MSG protocol which
supports the primitives provided to processes manared by MSG.
The concern in this section is the information communicated
between MSGs rather tnan how it is communicated. This section
assumes the existence of a bi-directional communication path
between each pair of MSG nost systems. Issues such as how these
MSG-to-MSG naths are supported by ARPANET communication
capabilities or how MSG-to-M3G messages are delivered are the
subjects of Sections Y4 ar? 5,

MSG~to-MSG Protocol
3-1

e e b . ek ks i

MSG Desipgn Specification 1/23/76

3.1. Transaction Identifiers.

The completion of an inter-host MSG transaction (such as the
transmission of A message or an alarn) cenerally requires a
protocol exchange that involves several inter-MSG messares. When
an MSG initiates an inter-host transaction on behalf of a process
it manares, it generates an identilier for the transaction whict
it places into the inter-MSG message which initiates the
Lransaction. In addition, the initiating MSG generally places
the name of the initiating process into the inter-MSC message.

When an MSG responds to an inter-MSG message that initiates
a transaction, the responding MSG includes the transaction
identifier chosen by the initiating MSG in its response. If the
transaction in question is one that requires further interaction
between the MSGs, th= responding MSG generates a second
identifier (its identifier) for the transaction and places it
into the respcr<s= messape. All subsequent inter-MSG messages
which rerer to the transaction will include both transaction
identifiers.

MSG~-to-MSG Protocol
3-2

s R v r— P—

MSG Design Specification 1/23/76

3.2. On the use of "source"” and "destination".

Most inter-MSG messages are transmitted to support
interactions between a pair of processes. Consequently, most of
these messages include the names of two process and many include
two transaction identifiers. 1n the specification that follows,
we adopt the convention of using "source" when referring to a
process or transaction identifier manaped by the initiatinp MS3G
and "destination" when referring to a process or transaction
identifier managed by the responding MSG. "Source" is then
relative to the initiator of the transaction; it is not relative
to the sender of a particular message in the series of protocol
messages needed to carry out the transaction.

MSC -to-MSG Protocol

3-3

PN

MSG Design Specification 1/23/76

3.3. M_G-to-MSG Protocol Items.

In the specifications of inter-host MSG protocol items that
follow, the items are ~rouped according to the primitives they
support. In these specifications all information exchanged
between MSGs 1s explicitly represented as parameters of the
various protocol messages. In some cases some parameters may be
implicit from the protcccl exchange context and are therefore
redundant . Section 5 defines the transmission formats for the
protocol items in detail.

1. MSG-to-MSG protocol for interprocess messages
(SendSpecificMessage, ReceiveSpecificMessage,
SendGenericMessage, ReceiveGenericMessage)

MESS (source-process, destination-process, source-ID,
destination-ID, handliag, length, message-~data)

This initiates an inter-MSG message transaction. Tt
indicates that the sourc~m-nrocess has requested that a message
(defined by length, message-data) be delivered to the
destination-prccess. The source ID is the identifier selected by
the source MSG to identify the message transaction. The
destination MSG should include source-ID in all communication
concerning this message .-ansaction. The destination-ID is enmpty
if it is unknown; it tak:s on meaning for .nteractions requiring
more than a simple request and acknowledgement (see descriptions
of MESS-HOLD, HOLD-OK, MESS-CANCEL and XMIT below). The
destination-~ID is an identifier selected by the descination MSG
for the message transaction. The handling parameter specifies
the special handling (if any) required by the receiv.., MSG in
order :to properly deliver the messape. Examples of special
handling include: 1include a synchronization marker with messare;
MESS-HOLD not an acceptable response (see below); MESS-HOLD
acceptable and this MESS is an implicit HOLD-OK (see below).

Protocol requires the destination MSG to promptly acknowledpe
MESS with one of the followine three messapes.

MESS~0K (source-process, destination-process, source-1D)

This response to MESS indicates that the destination MSG
takes full responsibility for buffering the message data and
c1bsequent delivery of the data to the destination-process. Tais
reply implies chat destination-process is currently a valid name.

MSG-to-MSG Protocol
3-4

s

o d
P |

Bt §
["]

v

St § [S
[Sw——; e [SSr—"

MSG Design Specification 1/23/76

It does nct imply that the message data has been actually
received by destination-process, nor does it guarantee that
destination-process will ever accept the data.

MESS-REJECT (source-process, destination-process, source-ID,
reason)

This response to MESS indicates that the destination MSG
will not accept the request for the transaction idertified by
source-ID. Reason indicates the reason for rejection. Possible
reasons include: no such process, no buffer space, too many
messiges already queued for this process, etc. The reacson
supplied might be one which attempts to stimulate retraiismission
by the source MSG if the rejection is known to he of a temporary
nature.

The fol.owing fcur MSG-MSG protocol items prcvide an
important extension fto the basic messape transmissior discipline
of MESS, MESS-0K, and MESS-REJ described abcve. These additional
protocol items are motivated by the need for flexible flow
control within MSC. Their inclusion introduces complexity to the
protocol. However, the flexible flow control they support is
sufficiently important to ijustify this complexity.

MESS-HOLD (source-prccess, destination-process, source-ID,
destination-1D)

This response to ESS indicates that the destination MSG
will not accept the message data associated with the specified
message transaction but that it will remember that the messarge
transaction has been requested and at some time in the future
will ask the initiating MSG to retransmit the messare data. The
destirnation-ID is the identifier selected by the destination MSG
for the message transaction. Both source~ID and destination-ID
should be included in any subsequent MSG-to-MSG communicstion
concerning this messapge trar action.

Protonol requires that the source MSG acknowledpge the MESS-HOLD
promptly with one of the following two messarges.

MSG-to-~MSG Protocol
3-5

MSG Design Specification 1/23/76

HOLD-OK (source-process, destinatiou-process, source-ID,
destination-ID)

This reply to MESS-HOLD indicates that the source MSG agrees
to buffer cthe messapge associated with the transaction specified
by source-ID and destination-ID. The destination MSG will
remenber the pending message transaction and request transmission
of the message when it is able to accept the message data.

MCSS-CANCEL (source-process, destination-process, source-ID,
destination-ID, reason)

This reply to MESS-HOLD indicates that the scurce MSG is
unwilling to buffer the specified message. In addition, it may
be used by a source MSG to indicate that it has ceased buffering
a message which it had oreviously agreed to buffer.

XMIT (source-process, destination-process, source-ID,
destination-ID)

This is used by a destination M3SG to request a source MSG to
transmit a message previously buffered. The XMIT signals that
t 1e message will, in all probability, be successfully accepted.
On receiving a XMIT, the source MSG is expected to transmit the
messare identified via a MESS messare (using the specified
source-ID and destination ID to identify the transaction in
question). All lepal responses to a MESS request are appropriate
for the redelivery.

A destination MSG can send a MESS-REJ rather than an XMIT in
order to abhort a messarse transaction for which the messare is
buffered at the source. It might choose to do this if the
destination-process terminates without reauesting the inessare.

We note that since a destination MSG can utilize the
MESS-HOLD option, it may be important to provide processes
managed by MSC means to declare that a HNESS request he accepted
or rejected immediately (i.e. not held) by a destination MSG.
This concept is not currently supported at the process-MSG
interface level; should it becorie important to do so, the
"handling" parameter of the MESS item will be used to support the
2oncept at the inter-MSG protocol level.

MSG-to-MSG Protocol
2-6

s

MSG Desigr Specification 1723776

2. MSG-to-MSG Protocol for Interprocess Alarms
(SendAlarm, EnableAlarm)

ALARM (source-process, destination-process, source-ID,
alarm-code)

This initiates an inter-MSG alarm transaction. It indicates
that the source-process has requested that an alarm be
transmitted to the destination-process. A few bytes of data
(alarm~-code) are to be conveyed to the destination-process along
with the alarm. The ALARM message should bypass thke flow control
mechanism applied to normal interprocess message transactions
(MESS). Sonurce-ID is the identifier selecctec by the source MSG
to identify %this transaction.

Protocol recuires that one of the following two messages be sent
promptly to acknowledge the ALARM.

ALARM-OK (source-process, destination-process, source-ID)

This response to an ALARM request indicates that the alarm
request has been accepted by the destination MSG. It does not
mean that the alarm has been received by the destination-process;
it may be the case that the alarm is never actually delivered to
the destinatior-process.

ALARM-REJECT (source-process, destination-process, source-ID,
reason)

This resnonse to an ALARM request indicates that the
destination MSG refuses to accept the alarm. Reason indicates
tne reason for rejection (e.g. incorrect destination process
name, process not accepting alarms, another alarm is already
queued, etc).

MSG-to-MSC Protocol
3-7

Mg — o

MSG Design Specification 1/23/76

3. MSG-to-MSG Protocol for Direct Access Communication
{Openconnr, Closeconn)

Because of the symmetric nature of the following three
protocol messages, we change our conventions with respect to
"source" and "destination". In the description of these three
items, "source process" always indicates cthe process local to the
sending MSG and "destination process" always indicates the
nrocess at the rec.iving MSG. The same convention is used for
the transaction ID fields.

CONNECTION-QPEN (source-process, destination-process,source-ID,
destination-ID, user-connection-ID, type,
source-socket)

This message indicates that the source process desires to
estatlish a direct communication path to the destination-process
of the "tyne" specified. The sc¢irce-ID is the identifier
selected by the source MSG to identify the operations concerned
with establishing and breaking the conneccion{(s). Destiration-ID
is empty when unknown.

[For implementations which make use of the ARPANET, the
source-socket specifies the socket(s) at the source MSG host
which is (are) to be used in establishing the connection which
implements the communication path. Protocol states that the
ARPANET RFCs reaquired to establish the connection(s) are to be
exchanpged immediately after both source and destination MSGs have
agreed to the connection (by exchanging matching CONNECTION-OPEN
messages).)

CONNECTION-CLOSE (source-process, destination-process, source-ID,
destina‘ on-ID, reason)

This protocol message indicates that the sending MSG wants
to close the connection identified by source-ID and
destination-_D. Protocol specifies that the receiver shoulc
close the ccnnec.ion and acknowledre the request with a matchine
CONNECTION- CLOSE. CONWECTION-CLOSE may be sent to abort a
connectira wnich has not yet been completely opened. Reason
indicates the reason the connection is being closed. Pcssible
reasons include: orocess requested close, byte size mismatch,
type mismatch, and entry timeout.

MSG-t0o-MSG Protocol
3-8

T T

e d

MSG Design Sprcification 1/23/76

-

§ CONNECTTON~REJECT (source-procesc. destination-process,
- destination-ID, reason)

}a This item is used to reject a CONNECTION-OPEN or a

! CONNECTION-CLOSE request. It does not require an
acknowledgement. Reason indicates the reason for reiection.

B Possible reasons include: no such destination; no such

,i connection. The transaction identifier returned is the

"source-ID" for the request being rejected.

‘,.m...‘,
[rov—

4y, MSG-to-MSG Protocol for Obtaining Process Status
(Get-status primitive)

-

_—
E—

An MSG primitive to be used t¢ obtain information regarding
the statuc of an MSG process is to be spe-ified in the future.
The "get-status" primitive will not be required in the firsc MSG
implementation. The following describes, in pgeneral terms, three
prctocol items which are intended to support the "get-.status"
primitive.

- e
] Mj

[|

[~ SEND-STATUS (source-process, destination-process, source-ID)

This protocol message requests the status of the

- - destiration-process on hehalf of the source-process. Source-ID
‘ is the identifier selected by the source M3G for the ctatus
transaction.

Protocol requires that one of the following two messapes be
promptly sent in acknowledgement of SEND-STATUS.

STATUS-0K (source-process, destination-process, source-ID,
status-words)

This returns the status information requested by the source
MSG. The information to be included in the status report has not
yet been completely specified. We expect that it will include
the state of destination-process including pending Jends and
Receives as well as pendine alarms.

[Note: it may not be desirable to allow a process to obtain
detailad status information about processes with which it is not
actively communicating. The precise access controls (if any)
that are required for the Get-status primitive will be defined in
the future.]

1MSG-to-MSG Protocol
3--9

i i v i, i T s s

MSG Des:ipn Specification 1/23/76

STATUS-REJECT (source-process, destinration-process, source-ID,
reason)

fhis responc-e iz used to indicate the reiection of a
SEND-STATUS probe request. Reason indicates the reason for the
rejection.

5. Miscellaneous !'iSG-to-MSG Messages.

The following MSG to MSG messages are provided because they
have proven useful in communication system implementations and
for experimental extensibility.

NOP

This message is a no-operation. 1c¢ has no effect and is
immedizcely discarded by the receiving MSG. No reply is
required.

ECHO (data-byte)

This protocol messare requests the receivine MSG to echo the
data-byte. It can be used to see if a remote MSG is actively
functioning. Protocol specifie: that the data-byte of an ECHO
message be promptly returned tou the sending MSG in a matching
ECHO-REPLY messarpe.

ECHO-REPLY (data-byte)

Reply to ECHO.

EXPERIMENTAL (command, length, data)

This message provides for experimertation ami extensibility
within the MSG-to-MSG protocol. The comrand specifies the
function requested; the length specifies the number of byvies in
the EXPERIMENTAL protocol messare; data is information relative
to the function requested.

MSG-to-MSG Protocol
3-10

e e ———

[| Qowcad [TN]

[

MSG Design Specification 1723776

4. MSG-to-MSG Protocol for the ARPANET

4.1 Implementation of MSG-to-MSG paths by ARPANET connections.

Secti.n 3 introduced the notion of "MSG-to-MSG paths" across
which “.iter-host MSG mess: _.es are sent. A single such MSG-to-MSG
path exists between each pair of host MSGs.

MSG-to=-MSG paths are virtual entities in the sense that they
are implemented by ARPANET host/host protocol conne tions. At
any given time, a given MSG-to-MSG path may be implemented by
zero, one or more pairs of ARPANET host/host connections. The
standard byte size for ARPANET connection which implement
MSG-to-MSG paths is 8 bits.

The set of ARPANET connections which implement an MSG-to--MSG
path are equivalent in the sense that any legal inter-host MSG
message can be sent over ary one of the ARPANET connections in
the set.

To send a message to another iSG, an iISG selects one ARPANET
connection from the set that implements the MSG-to-MSG path and
transmits the message over the connection. If no such ARPANET
connection exists, the sending MSG must Aact to establish one.

MSG~to-MSG Protocol for the ARPANET
41

M3SG Design Specification 1/23/76

.2 Establishing the ARPANET ccnnections.

A pair of ARPANET connections which supports an MSG- to -11SG
patl is established via an JCP tc a "well known" contact socket
in the normal way. The contact socket for MSG is 27 (decimal) =
33 (octal).

After a new pair of connections is established by an ICP,
the pair of MSGs must engage in a synchronization exchange before
they can use the connections to carry the inter-MSG messages
defined in Section 3. The purnose of this MSG-MSG
synchronization is to allow the two MSGs to exchange their
current "incarnation" numbers and any other information pertinent
to subsequent interaction via the connection pair.

An MSG incarnation number ident “ies a particular periocd of
MSG service. (We frequentiy use the . r»m "MSG incarnation" to
mean such a period of MSG service.) A p-riod of M3G service ends
and a new period of MSG service begins when an NSO re-initializes
itself. This typically occu~s after its host has restarted or
th= MSG itself has crashed aad been restarted. An MSG is
expected to know its current incarnation number and to change its
incarnation number when a new period of service begins. (An MSG
could 1o this by storineg its incarration number in a file which
is prenerved over host and MSG crashes. When a new period of
servic» begin.. the MSG could increment the stored incarnation
nuner ..nd use the number obtained to identify the new period of
service.)

Ar noted in Sections 1 and 2, MSG process names include an
incarnatior number component which serves to identify the
incarnation of the MSG that generated the process name and is
responsible for managing the process. The MSG incarnation number
compoinent of a process name is used to determine whether the
process named is one that currently exists or is an obsolete one
which was managed by the MSG ¢ rine one of its previous rperiods
of service.

The MSG-to-MSG protocol for the synchronizatior exchange is:
1. The MSG that initiatead thke ICP initiates the
synchronization exchange by nsing the send connection
of the pair to send the message:

SYNCH (my-incarnation, your-incarnation, ve'sion, data)

where:

MSG-to=-!!5G Protoc-1 for the ARPANET
b-2

a— sorod G g

[T |

MSG Desipn Specification 1/23/76

my-incarnavion identifies the current incarnation
of the initiating MSG.

your-incarnaticn is empty.

version identifies the version of the MSG-to-MSG
protocol to be used on this conn=cticn.

data is other synchronization information.
(To be defined in the future.)

2. The other MSG responds tc the SYNCH by using the send
ccuanection of the pair to send the messarpe:

SYNCH (my-incarnation, your-incarnation, version, data)

where:

my-incarn~tion identifies the current incarnation
of the responding MSG.

version identifies the version of che MSG-to-MSG
nrotocol to be used on this connectica.

your-incarnation echoes the incarnation number
specified in “he rnitiatine MSG’'s SYNCH
messase.

data is other synchronization information.

After the synchronization exchanre is completed, the connections
may be used to carry any ol the inter-M35G messapes deflined in
Sectior 3 until the connections are clr-ed (see Scction 4.3
below).

An MSG may wish to ascertain that the entity at the other

end of n2w cornnection pair is indeed another MSG berorc it
commits any of its nost resources to actine upon protocol
messages received over the new connection. Sfection 4.4 below

defines a procrdure which MSGs may use to reliibly authenticate
one another.

MSG-to=MSG Prou.ocol for the ARPANET
4-3

MSG Design Specification 1/23/76

4,3 Breaking the ARPANET Connectiens.

A pair of ARPANET connecciors to another host represents a
resource wnich an MSG m2y not want to keep open indefinitely in
the abs~nce of MSG traffic. If an MSG were to close a connection
pair unilateirally, messages in transit from a remote MSG could be
lost or garbled. A protocol mechanism is defined for closing
pairs of connections in an orderly manner that eliminates the
possibility of such lost or parbled messarges.

T e protocol for closing a pair ol connections is:

1. MSG sends an MSG-to-MSG "CLOSC" messape over the send
connection of the pair that is to be clcs=d and then
closes the send connection of the pair;

2. Upon receipt of an MSG-to-MSG CLOSE nmessapge an !MSG is
expected to: close the connection which carried the
messare; return a CLOSE message on the send connecticn
of the pai. (when it is convenient to do so); and
close the send connection.

Tha protocol exchange defined above is the mechanism for
breaking pairs of connections. At present, we refrain fron
specifying in detail a polizy which defines when MSG may use this
mechanisn.

An MSG that does not wish to communicate with the entity
that has initiated an ICP should respon. to the initiator’s SYNCH
message by initiatine the CLOSE protocol exchange. An MSG might
chcos2 to do this if the syncnronization data supplied by th~
initiating MSG is incompatible or if the initiating entity can
not properly be authenticated as another MSG.

MSG-to-MSG Protocol for the ARPANET
Lk

s s — e e =

o Lol ——
@uned Wwmed Smewd Greed | Sesad

L
@t

MSG Design Speci. 4tion 1/23/76

4.4 Authentication of MSGs.

As noted in Section 4.2 above, it may be imrortant for an
MSG to be able to reliably authenticate the entity at the remote
end of a pair of ARPANET connections as another MSG before host
resources are committed to requests made by that entity. The
problem here is one of mutual authentication. Each entity must
authenticate the other as an MSG.

[In the absence of an authentication procedure, there is no way
for an MSG to determine whether the entity at the remote end of a
connection is another MSG or a bogus process which follows the
MSG-to-MSG prctocol. Failure to distinguish between an MSG and a
process masquerading as an MSG could result in the inadvertent
disclosure o. private information or unaccountable use of
expensive resources.]

The use of passwords is one approach to MSG authentication.
Only an MSG would know the password and thus be able to properly
identify itself to another MSG. We reject the password mechanisn
as unreliable and operationally impractical for the folleowing
reasons:

1. Use of a password requires that the password be stored
in the sending profram or be accessible to it in some
way thereby increasing tlie likelihood that the privacy
of the password will he compromised.

2. If a password is compromised, it must be changeo at
F>th sending and receivine hosts; this represents a
synchronization problem.

3. Truly secure authentication would probably require
passwords for each pair of hosts; this would require
N¥N passwords for an N host NSW.

The mechanisms to be used for MSG authentication are based
upon the properties of ARPANLT host/host communication. First,
we assume that the ICP is a secur. procedure. That is, we assune
that a host can guarantee that u3SG is the only entity that has
access %o the MSG ICP contact socket and that MSG is the only
entity that has access to the connections resulting from the ICP.
This is the standard assumption made in the ARPANET regarding the
ICP. Thus, the authenticity of the entity respondin~ to an MSG
ICP as an !ISG is based upon the security of the ICP procedure.

The authentication problem that remains is that of
authenticating the entity that initiates the ICP. Thi-

MSG-to-MSG trotocol for the ARPANET

4-5

— v o

MSG Design Specification 1/23/776

authentication can be achieved in a manner similar to that of the
ICP responder. Just as a single well known ICP contact socket is
defined, a collection of well known "ICP-from" sockets (i.e.,
sockets from which ICPs are initiated) could be defined. (A
collection of ICP-from sockets are required due to the nature of
the ICP which prevents reuse of the ICP-from soclket until the
connections resulting from the ICP are discardeu.) A host would
be required to limit access to the ICP-from sockets (ard the
connections that result from the ICP) to MSG just as it is
required to limit access to the ICP contact socket (and the
connections that result from the ICP). If this were to be done,
an MSG responding to an ICP could authenticate the initiating
entity as an MSG by checking that the socket from which the ICP
was initiated was one of the well known ICP-from sockets.

Some hosts fird it inconvenient to limit access to a
collection of sockets but have no difficulty in controlling
access to a connection once it is established. Therefore, a
variation of the above approach is used for authenticating
initiating MSGs. A single send socket is defined for MSG
authentication; access to the MSG ~Authentication socket is
limited to MSG. The authentication socket is to be maintained by
MSG in a listening state. In re<nonse to an RFC for the
authentication socket, MSG should open the requested connection
‘with byte size = 32) and send a specification of the sockets

tich it is currently using in active MSG-to-!1SG connections.
‘he connection should then be closed and the authentication
socket returned to the listening state.

An MSG at host A responding to an ICP initiated by a remote
entity at host B can authenticate that entity by the following
simple procedure:

1. The MSG at A notes the remote sockets, S1 and S2, used
in the connections that result from the ICP.

2. It opens a connection to the authentication socket at
B, reads the socket specification that the MSG at B
sends, and closes the authentication connection.

3. If the remote sockets, 351 and S2, are included in the
specification then the entity at B is an MSG;
otherwise, it is not. (Note that when the MSG at B
initiates an ICP to the M3G at A, it must remember the
sockets it uses so that it can include them in the
socket specification sent to the MSG at A.)

MSG-to-MSG Protocol for the ARPANET
4.6

oo it 4

[

MSG Design Specification 1,/23/76

The reliability of this authentication procedure depends
upon the ability of host B to insure that only MSG has access to
the authentication socket and to the sockets named in the
specification sent over the authentication connection. (This is
exactly what host B must do to insure the security of ICPs to its
well known contact sockets.) In addition, it requires that the
MSG at A have means to reliably determine sockets in use at the
remote end of connections. Socket identity is part of the
information NCPs must exchange in order to open a host/host
connection. Thus, the socket information is available to the NCP
at A. The authenticity of the information depen-s upon the
trustworthiness of the NCP at B. We assume NCPs to be secure;
if they were not, there could be no reliably secure communication
be.ween ARPANET hosts.

Tne MSG authenti~ation socket is 29 (decimal, = 35 (octal).
The specification of MSG sockets returned over the authentication
conriection may be a range of sockets or a list of sockets. A
socket range is transmitted as 3 bytes:

byte 1.

0 indicates ranre spec
byte 2:

Sa

byte 3:

Sb

All sockets within the ranee defined by Sa and Sb (including Sa
and Sb) are NSG sockets. A list of & s>yckets is transmited as
N+2 bytes:

byte 1:

1 indicates list spec

byte 2:

N the number of bytes that follow
byte 3:

S1

hyte 4:

Se

byte N+2:

SN

The MSG sockets are S1, S2, ..., SN.

MSG-to-MSG Protocol for the ARPANET
u_]

e s i ot s

MSG Design Specification 1/23/76

4.5 Error Control for MSG-to-MSG Paths

ARPANET t.ost to host communication is reasonably reliable.
However, communication failures can occur. For example,
host/host messages are lost occasionally. A lost host/host
message may manifest itself at the M3G-to-M3G path level as A
"hung" connection (if the message lost was a host/host allocate)
or ¢s a totally or partially lost MSG-%0-MSG message (if the
message lost was a host/host data message).

In addition, communication vetween a pair of hosts can be
interrupted temporarily. The interruption may be the result of a
transient network failure (e.g., the source or destination IMP
crashes and is restarted) or a transient host service
interruption (e.g., TENEX hosts occasionally experience BUGCHK
interruptions and resumptions). At the MSG-to-MSG level this may
manifest itself as a spontaneously closed host/host. connection.
If the connection was being used at the time, this could result
in a lost or garbled MSG-to-MSG messarge.

Mechanisms to insure reliable communication in an
environment where messages can be lost are reasonably well
understood. These mechanisms typically require positive
acknowledgement ¢f a3ll messages and the use of a “ime out and
retransmission scheme. This penerally requires that the
communicating entities (in this case pairs of MSGs) use unique
identifiers or sequence numbers to identify messages in transit
and employ techniques for detecting duplicate messares (the
message may have made it but its acknowledgement may have been
lost). Note that these message identifiers serve to identify
individual inter-MSG messages and are therefore different from
the transaction identifiers used in the inter-MSG protocol to
identify transactions that involve a number of inter-MSG
messages.

The cguestion here is:

Should such a reliable transmission mechanism be used
for error control on the MSG-to-MSG paths?

Our position with regard to error control for MSG-to-MSG paths
is:

1. The most effective error control mechanism for the
MSG-to-MSG application is that described by Cerf and
Kahn (i.e., that used in the InterNet or TCP protocol).

MSG-to-MSG Protocol for the ARPANET
L-8

P

M3G Design Specifi~ation 1/23/76

2. The overhead incurred by using a TCP-like error control
mechanism would not significantly deprade performance
for the NSW MSG application.

3. Use of a TCP-like mechanism would approximately double
the time and effort required to implement inter-host
MSG.

4. The TCP mechanism can be made orthogonal to the
MSG-to-MSG protocol and to a properly designed MSG
implementation. That is, the information required to
enable TCP-like error ccatrol would envelope inter-MSG
messages. We estimate that 5 or 6 additional 8 bit
bytes are required for each inter-MSG message to
support TCP-like error control. Furthermore, we
believe that the processing required to perform the
error control function can occur in series with the
"higher level" processing required to implement the MSG
protocol.

It is not clear, at present, whether error control stronger
than that normally provided by ARPANET host to host communication
will be required by the NSW application. Therefore, the initial
inter-host MSG specification does not include TCP-like error
control for the MSG-to-MSG paths nor does the transmission format
for inter-MSG messages include fields for the information
required to support TCP-like error control. However, the MSG
implementations should be done with the expectation chat it may
be necessary to add TCP-like error c2..rol later, should
experience indicate that the lack of error control for the
MSG-to-MSG paths 1s resulting in unacceptable performance.

MSG-t0o-MSG Protocol for the ARPANET
4-9

M3G Design Sp-ocification 1/23/76

5. MSG-to-MSG Transmission Formats for the ARPANET

This section specifies in detail the fcrmats for the
MSG-to-MSG protocol commands as sent over ARDPANET connections.
Only the syntax of the commands is specified here; for a
discussion of the semantics of the MSG-to-MSC protocol see
section 3 of this document.

MSG-to-MSG Formats for the ARPANET
5-1

MSG Design Specification 1/23/76

5.1 General format for MSG-to-MSG mescapes:

An MSG-to-MSG message is a sequence of 8 bit bytes. The
first two byies contain the length of tne message in bytes; the
third byte is a command code that identifies an MSG-to-MSG
protocol item; and the remaining bytes contain information
relative to the command.

2 1 length - 3

MSG-to-MSG Formats for the ARPANET
5=2

MSG Desipgn Specification 1/23/76

5.2. Formats for Messape Components
1. Process names:

As described ia Section 2, a prccess name has four
components which specify a host, a host incarnation number, a
generic process class, and a process instance number. The
representation for process names at the MSG-to-process interface
is:

ot e - e . = S = S e m m = = = A - = = . T = . e e T = - =

¥ host * host ¥ process ¥ count ¥ string *
* * incarnation # * instance # ¥ * *
2 2 2 1 count

Host is a 16 bit host address. (Whether the host address is an
ARPANET host address or an NSW host address whose correspondence
to an ARPANET host address is defined by a table !MSG maintains is
to be decided shortly.) If MSG is modified to allow processes
with no generic names, the null egeneric name will be represented
by a zero length string.

For a penerically addressed message the destination process
name is only partially specified. Either only the generic
process class 1is specil'ied, or only the host and generic class
are specified in a generically addressed message. The other
components are left un~pecified. "Unspecified" is a special
value used in renerically addressed messages for host, host
incarnation #, and process instance «+. Unspecified is
repr esented by two zero bytes.

When a process name appears as the parameter of an
MSG-to-MSG messare, the host component of the name need not be
represented explicitly since it is implicit from the hosts of the
sending and receiving "SGs. There are two representations for
process names a. “he MSG-to-MSG level: normal and compact. The
only difference in the two is the representation of the generic
process class. In the normal represenation the veneric class is
representea by a string whereas in the compact form it is
represented by a one byte generic class code. MSG
implementations must be able to deal wicth both representations
for process names. The compact representation is defined to
allow for greater transmission efficiesncv. Use of the reneric
codes is internal to MSG in the sense that the codes never appear
in a process name given by MSG to an iS50 process or aczcepted by
MSG from an M3G process. Generic class codes for the HUSW will be
defined in the near future.

MSG-to-MSG Formats for the ARPANET
5-3

MSC Design Specification 1/23/76

Normal Format: count < 128 (5 + count bytes)

® hos. * process * count * strinc *
* incarnation # * instance # * * *
2 2 1 count

Compact Format: Generic code >= 128 (5 bytes)

* host * process ¥ genecic ¥
® incarnation # * instance # ¥ code *
2 2 1
Generic code = 128 + n (n < 128)
where n = integer which specifies a weneric class
n = 0 = null (i.e., process has no generic name).

Host Incarnation #:
16 bit (2 byte) number.

0 = unspecified (used for generically addressed messages)
1-255 reserved for special use

MSG transactiecn Identifiers (source-id, destination-id)

16 bit (2 byte) number.

MSG-to-MSG Formats for tne ARPANET
5-4

ad | Deermad

ik sl

MSG Design Specification 1/23/76

4, Alarm code

16 bit (2 byte) number.

5. Failure/Rejection ccdes

R

16 bit (2 byte) number.

See descriptions of individual mossages for discussion of
specific codes. Values have not yet been assigned, nor are
those codes given necessarily exhaustive.

M5G-to-MSG Formats for the ARPANET
S=t5)

e

MSG Design Specification 1/23/76

5.3 Identifying Transactions.

In the format specifications that follow all inter-MSG
messages concerned with inter-process transactions carry the
source and destination process names as well as the MSG source
and destination transaction identifiers. The redundancy provided
by the process names is useful to an MSG in detecting and
recovering from protocol errors or violations resulting t'rom
malfunction of a remote MSG. With the exception of MESS
messages, all protocol messages will fit into a single ARPANET
packet (assuming the compact representation of process names or
generic names of a few characters); hence, the cost associated
with the redundancy is not great.

MSG-to-MSG Formats for the ARPANET
5-6

MSG Design Specification 1/23/76

5.4 MSG-to-MSG protocol messages

1. ME3S(src-proc, dst-proc, handling, src-id, dst-id, nessage)

-——m . e s - --—--—-.-—--..-—-——--——--—-—---—_—_-—_..--.——_—.——u—

*# jength * MESS < src-id % dst-id * First byte *® Handling

- - - - - @ e o = - n = - e = =

length = 19+j+k+M
j = # chars in source :eneric name / 0 if compact format.
k = # chars in destination generic name / 0 if compact
format.
MESS = 8 (10 octal)
Handling = bit flags (numbered 0-7 from left to right)
bit 0 - generically addressed message
bit 1 - sequenced message
bit 2 - synchronizaticn mark on message
bit 3 - immediate decision on delivery (pronibit HOLD)
First byte - Position of first byte of the message (zero 1is
the position of the first bvte of the length field of the
MSG-to-MSG message)

2. MESS-0K(sre-proc, dst-proc, src-id)

length = 15+j+k
MES3-0K = 9 (11 octal)

MSG-to-MSG Formats fovr the ARPANET
5-7

MSG Design Specification 1/23/76

3. MESS-REJ(src-proc, dst-proc, src-id, reason)

length = 17+i+k
MESS-REJ = 10 (12 octal)
reason = To be specified, but including:

dst-proc unknown

no buffer space
nessage queue for rrocess full

4, MESS-HOLDP(src-proc, dst-proc, src-id, dst-id)

length = 17+j+k
MESS-HOLY = 11 (13 octal)

5. HOLD-OK(src-prcc, dst-~proc, src-id, dst-id)

length = 17+j+k
HOLD-CK = 12 (14 octal)

MSG-to-MSG Formats for the ARPANET
5-C

MSG Design Specification 1/23/76
6. MESS-CANCEL(src-proc, dst-proc, sr2-id. dst-id, reason)

e

8.

length = 19+J+k
MESS-CANCEL = 13 (15 octal)
reason = To be specified, but including:
sr2-proc unknown
cs»nr=id unknown
essafe rescinded
sre=-proc terminated
no huffer space

XMIT(src-proc, dst-proc, srec-id, dst-id)

¥ length * XMIT * src-id * dst-id * s-c-p o2 * dst-proc *

length = 17+i+k
XMIT = 14 (16 octal)

AL.ARM(src-proc, dst-pr », src-id, acode)
% length ¥ AL, src-id * acode * srec-proc * dst-proc ¥
2 1 2 2 5+ 5+k

length = 17+3+K
ALARM = 16 (20 octal)

MSG-to-MSC Formats for the ARPANET
5-9

MSG Design Specification 1723776

9. ALARM-OK(src-proc, dst-proc, src-ic’

length = 15+ j+k
ALARM-0K = 17 (21 octal)
10. ALARM-REJ(src-proc, dst-proc, «src-id, reason)
lenpth = 17+j+kK
ALARM-REJ = 18 (22 octal)
reason = To be specified, but including:
dst-proc unknown

dst-proc not accepting alarms
alarm already queued for dst-proc

1. CONNECTION-OPEN(src-proc, dst-proc, src-id, dst-id, conn-id,
type, socket)

length = 25+ j+K
CONN-OPEN = 20 (24 octal)

type: O - Teletype (TELNET)
bit 0 + size - hinary send/receive pair + size
bit 1 + size - binary send + size

MSG-to-MSG Formats for the ARPANET
5-10

MSG Design Specification 172)

bit 2 + size - binary receive + size
socket: 32 bit socket number = N
Teletype N = odd = send socket
N+1 = even = receive socket
Binary send/receive pair {same as Teletype)

— P .

-1

| s
b 12. CONNECTICN-CLOSE(src-proc, dst-proe, src-id, dst-id, reason)

length = 19+ j+k
CONN-CLOSE = 21 (25 octal)
reason = To be specified, but including:
normal close
src-proc terminated
timeout of open
byte-size mismatch
type misuatch

13. CONNECTION-REJECT(srec-proc, dst-proc, src-id, dst-id, reason)

length = 19+ j+k

MSG-to-M13G Formats for the ARPANET
5-11

MSG Design Specification

CONN-REJ = 22 (26 octal)
reason = To be specified,
dst-proc unknown
dst-id unknown
byte-size invalid
type invalid
timeout

length = 3
NOP = 0 (0 octal)

15. ECHO(data byte)

lencth
ECHO =

-a |

(1 octal)

16. ECHO-REPLY(data byte)

length = 4
ECHO-REPLY = 2 (2 octal)

MSG-to-MSG Formats

but including:

5-12

for the ARPANET

1/23/76

MSG Design Specification 1/23/76

17. EXPERIMENTAL(command, length, data)

B e e I I e ke e e e e T

length = U4+N
EXP = 24 (30 octal)

18. SEND-STATUS(src-proc, dst-proc, src-id)

length = 15+j+k
SEND-STATUS = 4 {4 octal)

19. STATUS-OK(src-procc, dst-proc, src-id, status bytes)

length = 15+i+k+N

STATUS-0K = 5 (5 octal)
status hytes = (to be defined)

20. STATUS-REJ(src-proc, dst-prnec, src-id, reason)

MSG-to-MSG Formats for the ARPANET
5-13

MSG Design Specification 1723776

21.

22.

23.

et " R —

STATUS-REJ = 6 (6 octal)
reason = To be specified, but including:

dst-process unknown

CLOSE()
* length * CLOSE *
2 1
length = 3

CLOSE = 7 (7 oct:

SYNCH(sender s incarnation #, receiver’s incarnation #,
version #, data)
¥ lergth * SYNCH ¥ scnder # ¥ receiver # * version # * data *
2 1 2 2 2 N
length = 9+N

SYNCH = 3 (3 octal)

srncer/receiver #°s = Host incarnation #'s = 2 bytes

version # = version of MSG protocol to be used by the sending
MSG = 2 bytes

data = additional synchronization information (to be defined)

PTCL-ERR(error code, bad messapge)

length = 5+N

PTCL-ERR = 25 (31 octal)

errol’ code = To be specified, bat including:
command not implemented
command unknown
comnand syntax erraor

had messapge = The pad MSG-MSG messare.

MSG-to-MSG Formats for the ARPALETY
5-14

MSG Design Specification

5.5 Summary of Commands

Code
Dec Oct
0 0
1 1
2 2
3 3
y Yy
5 5
6 6
7 7
8 10
9 11
10 12
11 13
12 14
13 15
14 16
15 7
16 20
17 21
18 22
19 23
20 24
21 25
22 26
23 27
24 30
25 31
j =
kK =
N =

Command

NOP

ECHO
ECHO-REPLY
SYNCH
SEND-STATUS
STATUS-CK
STATUS-REJ
CLOSE

MESS
MESS-0K
MESS-REJ
MESS-HOLD
HOLD-0K
MESS-CANCEL
XMIT
reserved
ALARM
ALARM-0K
ALARM-REJ
reserved
CONN-OPEN
CONN-CLOSE
CONN-REJ
reserved
EXP
PTCL-ERR

Extra byvtes needed
Extra bytes needed if dst-proc name is not in compact format.

Number of bytes in 72ata cr message contained in command.

M3G-to-1S5G

Length

9+N
15+ j+k
15+ i+k+N
17+ j+k
3

19+ j+k
15+ 3j+k
17+ j+k
17+ j+k
17+3+k
19+ j+k
17+3+k

17+i+k
15+ j+k
17+J+k

25+ 3.k
19+ j+k
19+ i+k

LN

5+N

1723776

if src-proc name is not in compact forwmat.

Formats for the ARPANET

