
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A021 072

MSG; THE INTERPROCESS COMMUNICATION FACILITY FOR THE

NATIONAL SOFTWARE WORKS

PRELIMINARY

BOLT BERANEK AND NEWMAN, INCORPORATED

PREPARED FOR

ROME AIR DEVELOPMENT CENTER

23 JANUARY 1976

T iri-wmnn-T -

Best
Available

Copy

KEEP UP TO DATE
Between the time you ordered this report—

which is only one of the hundreos of thou-
sands in the NTIS information collection avail
able to you—and the time you are reading
this message, several new reports relevant to
your interests probably have entered the col-
lection.

Subscribe to the Weekly Government
Abstracts series that will bring you sum-
maries of new reports as soo/7 as they are
rereived by NTIS from the originators of the
research. The WGA's are an NTIS weekly
newsletter service covering the most recent
research findings in 25 areas of industria1.
technological, and sociological interest—
invaluable information for executiver and
professionals who must keep up to date.

The executive and professional informa-
tion service provided by NTIS in the Weekly
Government Abstracts newsletters will give
you thorough and comprehensive coverage
of govern nent-conducted or sponsored re-

search activities. And you'll get this impor-
tant information within two weeks of the time
it's released by originating agencies.

WGA newsletters are computer produced
and electronically photocomposed to slash
the time gap between the release of a report
and its availability. You can learn about
technical innovations immediately—and use
them in the most meaningful and productive
ways possible for your organization. Please
request NTIS-PR-205/PCW for more infor-
mation.

The weekly newsletter series will keep you
current. But learn what you have missed in
the past by ordering a computer NTISebfch
of all the research reports In your area of
Interest, dating as far back as 1964, if you
wish. Please request NTIS-PFMSS/PCN for
more informatici.

WRITE: Managing Editor
5285 Port Royal Road
Springfield VA 22161

Keep Up To Date With SRIM
SRIM (Selected Research in Microfiche)
provides you with regular, automatic distri-
bution of the complete texts of NTIS research
reports only in the subject areas you select.
SRIM covers almost all Government re-
search reports by subject area and/or the
originating Federal or local government
agency. You may subscribe by any category
or subcategory of our V/GA (Weekly Govern-
ment Abstracts) or Government Reports
Announcements and Index categories, or to
the reports issued by a particular agency
such as the Department of Defense, Federal
Energy Administration, or Environmental
Protection Agency. Other options that will
give you greater selectivity are available on
requesl.

The cost of SRIM service is only 45^
domestic (SOt4 foreign) for each complete

microfiched report. Your SRIM service begins
as soon as your order is receive^ and proc-
essed and you will receive biweekly ship-
ments thereafter, 'f you wish, your service
will be backdated to furnish you microfiche
of reports issued earlier.

B' cause of contractua' arrangement? with
several Special Technology Groups, not all
NTIS reports are distributed in the SRIM
program. You will receive a notice in your
microfiche shipments identifying the excep-
tionally priced i'epo is not available through
SRIM.

A deposit account with NTIS is required
before this service can be initiated. If you
have specific questions concerning this serv-
ice, please call (703) 451-1553, or v-rite NTIS,
attention SRIM Product Manager.

This information product distributed by

|yP|,«S U.S. DEPARTMENT OF COMMERCE
■^ ■ «^ National Technical Information Service

5285 Port Royal Road
Springfield, Virginia 22161

,O0OT RERANEK AND NEWMAN INC

COM SUITING 0 E V I I O P M J N T R £ S t A t C H

(^

o

iiBN Report No. 3237 January 1976

•a: MSG: The Interprocess Communication
Facility for the National Software Works

Preliminary

January 23, 1976

NSW Protocol Committee

This work was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and monitored
by Rome Air Development Center under contract number
F3060I-76-C-Ct*94 and by the Office of Naval Research under
contract number N|014-75-C~0773.

jP Reproduced by

^ NATIONAL TECHNICAL
INFORMATION SERVICE

US D«p»rim.n« o(Commcrc«
Sprmjin-.d. VA. 22151

PRICES SUBJECT TO CHANßt
IOJTON WAirllNGTON CHICAGO HOUSTON LOS ANGElCS OXNAiD SAM PiANClSCO

i -iirnnfiiwir
 "~'"aa-l*A— T M ■ r "if i i.i,-Tii

—üoclaasj £jjBd
StCURlTY CLASSiriCATlON OF TH'Ü ^AOC (Whmn DM» Knffd)

REPORT DOCUIAENTATIOH PAGE
\ nrsom SUMIEII

BBN Report No. 32 37

READ rNSTRUCnONS
BEFORE COMPLETING FORM .

12. COVT ACCCMION NO B. «CCl^ltMT'S CATALOG NUMBER

«• TITLE fanrfSuöflff«)

MSG: The Interprocess Communication
Facility for the National Software Work^
(Preliminary)

i. TY^E OF «EPORT A PFRIOO COVERED

Scientific
•. RERFORMING ORG. fERORT NUMBER

7. AUTNOA

NSW Protocol Committee

• ■ CONTRACT OR GRANT NOMBERfiJ

N0014-75-C-0773

* PERFORMING ORGANIZATION N AN£ AND ADDRESS

Bolt Beranek and Newman Inc. u

50 Moulton Street
Cambridge, Massachusetts 02138

Hi PROGRAM ELEMENT. PROJECT. 1 ASK
^«»EA i WORK UNIT NUMBERS

M. CONTROLLING OFFICE NAME AND ADDRESS «2. REPORT DATE

Defense Advanced Research Projects Agenc^i
Information Processing Techniques

Arlington. VA]4Clfl Wi l^nr. RUM
P« MONITORING AO'iNCV NAME A

»3. NUMBER O» PAGES

7V-

Office of Naval
Code ONR-430D
800 N. Quincy Street
Arlington, Virginia

ADDRESV'f dfttannl fro« ControlHng Ollte»)

Research
18. SECURITY CLASS, (of thlt r«por<>

Unclassified

22217
IS«. OECLASSiFiCATlONTDÖWNGRADINO

SCHEDULE

t«. DISTRSPUTION STATEMENT (ol thlm Report)

Distribution of this document is unlimited. It may be released
to the Clearinahouse, Department of Commerce for sale to the
general public.

!T. DISTRIBUTION STATEMENT (ol rh« «balract Mtf^rcd in Block 20. II dl/l»/«ot from Roporf)

ie SUPPLEMLNTARY NOTES

(a) This research supported by DARPA under ARPA Order No. 29 01
(b) This report also published by Massachusetts Computer

Associates, Document No. CADD~7601-2611.

19. KEY WORDS CConflnuo on rorora* »Id* II n»c**rmry and IdiMlty by block numbmr)

National Software Works
Computer Networks
Interprocess Communication

Distributed Systems
Network Protocols
Resource Sharing

20. ABSTRACT (Contlnv on rovar«* «Id« II nac*««orjr mnd Identity by block lumbur)

This report describes the communication fac
which was developed to support interprocess
the implementation or the National Software
more important of the processes which compr
pattern of communication which those proces
described. Next from those patterns a mode
communication which is sufficient for NSW i
Finally, tho Hf^ii^ of fh^ MSG facil.itv .it.

ility, named MSG
communication for
Works (NSW). The
ise NSW and the
ses require are
1 of interprocess
s abstracted.
a^lf ATP dPVPlnppd.

DD ,^11473 EDITION Of 1 NOV (JS IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE fWiao Dara Entafa.f)

I

OLT BERANEK AND NEWMAN .NC

CONSULTING D E V f I O P M E N T RESEARCH

MSG: The Interprocess Conrnunication
Facility for the National Software Works

Preliminary

January 23, 1976

NSW Protocol Committee

Massachusetts Computer Associates Inc. Document no. CADD-7601-2611
Bolt Beranek and Newman Inc. Report no. 3237

This work was supported by the Advanced Research Projects
Agency of the Department of Defense and monitored by Rome Air
Development Center under contract number F30602-76-C-009^ and by
the Office of Naval Research under contract number
ri0014-75-C-0773.

1(0^

-^.

BOSTC; WA5H14GTON CHICAGO HOUSTON IOS ANGCIES OXNA

-- n i

♦ ^_X«AUCliCO

The NSW Protocol Committee

The NSW Protocol Committee in an ad hoc proup made up ^f
representat ves from Bolt Beranek and Newman Inc. (BBN) and
Massachusetts Computer Associates Inc. (Compass). The committee
members are (in alphabetical order) Paul Johnson (BBN), Robert
Millstein (Compass), Stuart Schaffner (Compass), Richard Sch^ntz
(BBN), and Robert Thomas (BBN). The concepts embodied in this
document are jointly the work of these five people. Special
mention should po to Robert Thomas and Stuart Schaffner who wrote
major portions of the document. Others contributinp; to the
conceptualization of the MSG facility include Don Andrews (SRI),
Robert Braden (UCLA), Kirk Sattley (Compass), Ken Victor (SRI),
and Doug Wells (MIT).

iCH

MSG Design Specification 1/23/76
TABLE OF CONTENTS

Section 1 - Introduction

1. 1 Overview 1 -1
1 .2 NSW Components 1-2
1.3 Patterns of conmunication 1-3
1 .^ Model of Conmunication 1-6
(.5 Modes of Communication 1-7
1.6 Seruencinp of Messages 1-10
1.7 Host Incarnations 1-11
1.8 Organization of this document 1-12

Section 2 - MSG Process Environment

2.1 Hosts 2-2
2.2 Processes 2-3
2.3 Process names 2-4
2.^ Process addressmp; modes 2-5
2.5 Modes of information transfer 2-6
2.6 MSG primitive operations 2-8
2.7 Signals 2-15
2.8 Information transmittal 2-16
2.9 Sequencing of messares 2-18
2.10 Process creation and termination 2-21
2.11 Summary of terms 2-22

Section 3 - MSG-to-MSG Protocol

3-1 Transaction Identifiers 3-2
3.2 On the use of "sourcen and "destination" 3-3
3.3 MSG-to-MSG Protocol Items 3-U

Section 4 - MSG-to-MSG Protocol for the ARPANET

4.1 Implementation of MSG-to-MSG Paths by
ARPANET Connections 4-1

4.2 Establishing the ARPANET Connections 4-2
4.3 Breakinp the ARPANET Connections 4-4
4.4 Authentication of MSGs 4-5
4.5 Error Contrc I for MSG-to-MSG Paths 4-8

Section 5 - MSG-to-MSG Transmission Formats for the ARPANET

5.1 General Format for MSG-to-MSG messapes 5-2
5.2 Formats for Messare Components 5-3
5.3 Identifyinr Transactions 5-6
5.4 MSG-to-MSG Protocol Messares 5-7
5.5 Summary of Commands 5-15

ii

MSG Deslrn SoecificRtion 1/23/76

1. Introduction

1.1 Overview

The National Software Works (
inplenenters with a suitable envir
prorrams. This environnent conr.is
tools (such as editors, compilers,
variety of computer systems, but a
access-rrantinr, resource-allocati
uniform file system. By its very
processes distributed over a numbe
communications network. Ihese pro
one another in order to create a u
describes the communication facili
developed to provide interprocess
implementation of the NSW, The co
is currently the ARPANET. However,
MSG facility to be as independent
implementation so that the concept
implementations on other networks.

NSW) provides software
onment for the development of
ts of many softv/are development
and deburpers), runninr on a

ccessible through a single
nr monitor with a single,
nature, the NSW consists of
r of computers connected by a
cesses must communicate with
nified system. This paper
ty (named MSG) which was
communication for the
mmunications network
we have designed the

as possible of the ARPANET
s may be carried over to

We berin by describinf the more important of the processes
which comprise NSW and discussing the paLtern of communication
which those processes reouire. We then proceed to abstract from
those patterns a model of interprocess communication which is
sufficient for NSW. Finally, we develop the details of the MSG
facility itself.

It is our hone that both the description of the process of
defining MSG as well as the description of the structure of the
protocol will be of interest to protocol developers for the
ARPANET and oche»- networks.

Introdjct idi
1-1

■ --

Mi3G Design Specification 1/23/76

1.2 NSW Components

The monitor of NSW is the Works Manager,. It is responsible
for servicinp- requests for system resources - e.p., runninp a
tool, opening a file. The Works Manarer verifies that each such
request is valid (usinp in this verification a rather elaborate
access data base which serves as a domain for automated project
management machinery). The Works Manager then allocates to each
valid request th^ necessary resource. This allocation generally
involves either the creation of a tool (e.g., editor, compiler)
instance - i.e., the creation of a new NSW process - or the
movement of a file (which movement may be either inter- or
intra-host).

^or each user of NSW an interface to the other components is
provided by a Front End, which may be loca± to the user. In the
sequel we will talk as if the Front End were local, so that
communication to the user is synonymous with communication to the
Front End. This is not, however, an NSW system requirement. The
Front End filters the user's input stream, discarding bad
characters (e.g., control-C should not be sent to TENEX tools)
and interpreting system-wide control characters - delete line,
retype line, escane to the Works Manarer, etc. In addition, the
Front End may provide local parsing of the Works Manager command
language and, conceivably, even tool command languages.

Just as users see the NSW environment through the Front End,
so also do)Ols see an extended local system environment through
a Foreman component. Tools are software systems which are
written for riven host - e.g., MULTICS. To become NSW tools
they must be inserted into a slightly different milieu. This
different milieu is provided by a Foreman component on the tool's
host. The Foreman provides the tool with access to NSW
resources, such as NSW files. Thus a tool gets NSW resources by
making a local call on the Foreman, which then forwards the
request to the appropriate NSW component. From the viewpoint of
other NSW components, then, it is the Foreman rather than the
tool with which most communication must occur.

Introduction
1-2

—---

MSG Dorian SpecifiOrit ion I/;M/7^

1.? Patterns of con^unioation

Wo will nov; describe the anticipated patterns of
corminicat ion hetv/een the NSW processes. These connunicat ion:
factor into six types:

Front Krü - Works Manarer
tool/Foreman - WorLs Manarer
Works Manaper - File Packare
Front End - tool/Foreman
tool/Foreran - tool/Forenan
File Package - File Packare

The other nossihi- pairs - e.P"., Front End - File Packare, File
Packare - tool/Fcvnan - do not represent connunication paths in
NSW.

Frone End - Wor' s Manager

use
Wor
Fnd
del
use
a In
res
hit
- c
nin
be
pro
Pan
lin
bet
Wor
whe
res
sea

ConnuniCc
r requests
ks Manarer
). Exanpl(
etc a file
r nay Make
ost all re(
ponse to er
s . The t ii
ortainly or
utes betwe«
processed
cessed any
a^er share
k need not
ween resoui
ks Manager
re each el
ponse, and
uence .

at ion "-et ween these two kind
for NSW resources (Front En
responses to such requests

es of such i ^'.ests are: run
, etc. Ti.esc reouests are re
only a few per r.our. Each

nuests can easily se encoded
ach rennest is also ^hort -
ne reouired t^ process a rea
n the order of milliseconds
en requests. 1here is no no
by the sane inst'n-e of the
previous reauest (since all
the sane c onn o n data base).
be retained between a Front

rce requests. Thus we can c
connunication as i sequence

e^ent is a short reauest, a
a 1o n r d e1 a v until the next

;■• of process

(W

consists of
to Works Manarer) and

o Front
file,
e n t - a

Works Manager t
a tool , copy a
latively infrecu
request is short
In 1000 bits,

a r a i n, less than
UPst is renerail
^5 conrared to t
cessity for a re
Works ilanarer th
instances of th
Hence a connun

End '-nc. i Works
haracterize Fron
of unrelated el

I ■» r i e f delay, a r
elenent o^ the

The
moo

v brief
he
quest to
at
e Works
i cation
Mana «^er

t End -
e n e n t s ,
h o r t

. tool/Foreran - Works Manager

These connunications arc exactly analorous to Front End -
Works Manarer connunications. A. tool (on behalf of a user)
requests an NSW resource of the Works Manarer. Examples of such
requests ire: open a file, create a subsidiary tool process,
deliver a file, etc. As above, these requests are generally less
than 100C bits, are processed by the Works Manarer in

Introduction

1-3

MSG Desipn Specificaticn 1/23/76

millisecond?, have responses of less thnn 1000 bits, and rre
relatively infrequent. The only difference between this pattern
and the preceding pattern is that tool requests are none frequent
than Front End requests, althourh the tine between such revests
is still measurable in rrnutcs.

. Works Manarer - File Package

These communications are arain analoFous to the above.
Indeed, these requests (of the Works Manarer to the File Package)
occur in order to service a Front End or tool request of the
Works Manager. For example, when a tool asks the Works Manarer to
open a file, the Works Manager must then ask a File Package
process to make a copy of that file, possibly across the ARPANET.
The time oO make a cross-net copy of a file may be measured in
seconds (even in minutes for larpe files), but such lonr copies
are expected to be infrequent. Thus, the sane pattern of a short
request (not related to previous requests), a brief delay, a
short response, a Icp delay holds for Works Manarer - File
Packape communication also.

. Front End - tool/Foreman

Communication between these processes consists of user
commands to tools and tool responses to users. In some cases
these communications will fit into the same pa'^ern as the three
previous oases. Often, however, the pattern is different.
Consecutive requests are related and must be serviced by the same
tool. The tine Iritween the user's command and the tool's response
may be preater than the time between the response to the previous
command and the issuinp of the next command. Also, the freouency
of user commands to tools may be much greater than the frequency
of either user or tool requests to the fork's Manarer. In
addition, the lenrth of a Front End - tool/Forer.an communication
may be larp-e For example, in a typical session a user ni^ht
request the us0 of a text editor (Front End - Works Manarer
communication), ret a particular file to edit (tool/Forer.an -
Works Manarer communication), and then insert two hundred lines
of prop-ram text into that file. Thus Front End - tool/Foreman
communication is exoected to vary from the infrequent, short
request pattern to frequent, lonr transmissions of information.

. tool/Foreman - tool/Foreman

These communications are relatively infrequent. No tool
currently installed in NSW needs to talk directly to another
tool. Nevertheless, deburpinr tools for NSW as well as
multi-process cools have been proposed and are heinr implemented.

Introduct ion

-SSff^SSiSÜ ithrrrr

HSG Design Spocifioatlon l/^S/TC

Such tools require connunication facilitier,. We expect that
their oatterns of connunication will he analoroua to Front En
tool/Foreman oonmunications.

. File Packare - File Packafe

i

Some very small fraction of these communications will
consist of short, infrequent messages - o.n-., a source File
Packard tellinc a destiration File Packare the lenrth and
encodement of a file - but the hulk of such communication wil1

consist of files beinr transferred. Thus, UP can characterize
this pattern as infreouent transmissions of many bits.

Um

I»*

Introduction

1-5

L-,". —rih
ri —y

"Tnili «*

i! IWIMiWIIHIWJWiWmMWIllli WPIWWIU-^MJ» III ■! f IIMJW

MSG Design Specification 1/23/76

',H Model of Communication

^rom these expected patterns of communication we can
abstract a. model of the kind of interprocess protocol that NSW
reauires. Wo have, roughly speakinp:, three patterns of
communication:

. Infr?auent short transactions between previously unrelated
processes (Pattern 1):

Front End - V/orks Moiaper
tool/Foreman - Werks Manager
Works Manager - File Packape

. More frequent, longer t'.'ansactions between related
processes (Pattern 2):

FroHw End - tool/i'oreinan
tool/Foreman - tool/Foreman

. Infrequent, very lon^ transactions (Pattern 3)-*
File Package - F^'le Package.

L.troduction
1-6

M i ii IMiHMMaitniniiiinrtii—^—- —

MSG Desipn Cpecifloat ion 1/23/76

1.5 Modes of Comnunication

tISG supports theso NSW patterns of communication by
providing tv;o different nodes of process addressinr:

. reneric addressinr;

. .specific addressinr;

and three different nodes of communication:

. nessapes*

. direct communication paths (connections);

. alarms.

Lach mode of orocess addressinr and communication is
intended to satisfy certain NSW renuirements and to be used in
certain kinds of situations. H^weve^, MSG itself does not impose
any Irritations on how rrocesL.^s '^e the various communi ation
nodes. MSG does not interpret nessarcs or alarms, nor oes it
intervene in communication on direct connections. The
interpret'-: t ion of nessares, alarms, or direct connections is
et.tirsly •■ matter for the processes uslnr MSG to communicate.

ed by processes which either have
r which the details of any past
It is restricted to the nessape

id reneric address inecifies -c
en MSG accepts a renerically
as destination sone process which is
addressed but has also declared its
rically addressed message. If there
reate one. Pattern 1 communication
ansmission of a renerically

Generic addressinr IS U3
noo communicated before or fo
comnunication is irrele vant.
mod e of communication. A val
fun ctiocal process clas s . Wh
add rcssed message it se 1 .3 C t S
not only in the generic c 1 ^ s s
wil lin^ness to receive a fene
is nc such process, MSG nav c
is always initiated by the tr
add ressed nessd^e.

A valid specific address refers t
this address remains valid for the lif
Specific addressinr nay be used with fx
nodes. Specific addressinr is used Detween processes w
familiar with each other. The familiarity is renerallv
the processes hav communicated with each other before,
directly or through intermediary processes.

o exactly one process and
e of that process.
11 three communication

which are
y because

either

Messare exchange is provided by MSG to supper: the
requirements of pattern 1 comnunication and sone pattern ?
comnunication. It is expected to be the nost common node of
comnunication anonr NSW processes. To send a message, a process

Introduction
1-7

I ---"^ririn -— i ■ in ii i - —T

MSG Design Specification 1/23/76

addresses it by specifying the address of the process to receive
the message and then executes an MSG "send" primitive which
requests MSG to deliver the message. When MSG delivers a message
to a process it also delivers the name (i.e., specific address)
of the process that sent the message.

The second mode of MSG communication is direct access
communication. A pair of processes can request that MSG
establish a direct communicacion path between them. Direct
communication paths are provided to support the requirements of
pattern 3 communioatxon, such as file transfers between hosts,
and some pattern 2 communication, such as terminal-like
communication between a Front End and tool/Foreman. (The ARPANET
realization for a direct communication path is a host/host
corinection or connection pair.)

The alarm mode of communication is supported by MSG to
satisfy a communication requirement typically satisfied by
interrupts in other interprocess communication systems. Alarms
provide a means for one process to alert another process to the
occurrence of an exceptional or unusual event. Processes may
send and receive alarma much as they send and receive messages.
However, tnere are significant differences between alarms and
messages. The rules that govern the flow and delivery of alarms
are different from those that govern the flow and delivery of
messages. In particular, the delivery of an alarm to a process
is independent of any message flow to the process. 'i>at is, the
delivery of an alarm to a process cannot be blocked by any
messages queued for delivery to the process. Unlike a message
which can carry a substantial amount of information, the
information conveyed bv an alarm is limited to a very short alarm
code. Th_s limitation implies that the deli' ^ry of alarms can be
accomplished in a way that requires little i» the way of
communication or storage resources. This makes it possible for
MSG to insure certain "priority" treatment for alarms which makes
them suitable for alerting processes tc exceptional events.
While similar to traditional interrupts, alarms are different in
one important respect: the delivery of an alarm to a process
does not necessarily imply that the process is subjecwßd to a
forced transfer of control by MSG. For this reason, we have
chosen to use th? term alarm rather than interrupt.

All modes of interprocess communioation supported by MSG
follow the same basic pattern, which is roughly as follows:

1, One process tells MSG about a message or alarm to be
sent or a connection to be opened. It also specifies a
cestination address and a signal by which MSG can

Introduction
1 3

- - - •■ - - - — 1 aaa

MSG Desirn Specification 1/23/76

inform it that the message or alarm has been sent o:
the connection opened.

2. Another [recess which matches the above destination
address tells MSG that it is rsady to receive the same
type uf communication. It also specifies a sipnal by
which MSv can inform this nrocess that the messare or
alarifi has been received or the connection opened.

3. MSG send.^ the alarm or messape or opens the connection
It also signals the source process that the messare or
alarm has been sent or the connection opened and
sirnals the destination process that the messape or
alarm has been delivered or the connection opened.
After it receives the sipnal, the process receivin.7 a
messape or alarm always knows the specific address of
the sender.

Introduction
1-9

^^^

MSG Design Specification 1/23/76

1.6 Sequencing of Messages

Normally MSG does not guarantee that messages sent frorp one
process to another process will be delivered to the destination
process in the order in which they Vvere sent. However, since it
is expected that NSW processes rn^y frequently desire message
sequencing, it is possible for a process to ask NSG to sequence
certain messages.

To achieve sequencing a process can specify when it sends a
message that tha message is to be sequenced. MSG will guarantee
that a sequenced message from process A to process B will be
delivered tc process B only after all previous sequenced messages
from process A have been delivered to process B. A process may.
if it chooses, intermix sequenced and unsequenccd messages.

Several of the situations which motivate the presence of the
alarm communication mode within MSG also require that a process
receiving messages be able to distinguish messages sent before an
alarm was sent (or received) from those messages sent afterwards.
That is, it is often important for a pair >f processes to
synchronize a message stream with respect to an alarm.

To facilitate such message-stream'alarm synchronization, MSG
supports the concept of essage stream markers. A stream marker
is an attribute of a message. When sending a message a process
may specify whether or not the message is to carry a stream
marker. MSG gua.'^ntees that a message M, sent from process A to
process B, which carries a stream marker will be delivered to
process B onlv after all messages sent by A prior to M have been
delivered to B and before any messages sent after M by A.
Furthermore, MSG will notify the receiving proceLS B whenever it
delivers a message that carries a stream marker. The
notification will be part of tho information normally supplied oy
MSG to the receiving process.

When it is necessary to achieve message stream
synchronization after an alarm, a pair of processes can use the
MSG stream marker. This can be accomplished by pis mg a stream
marker on the first message sent after the alarm ,was sent or
received). Although stream marked messages are provided by MSG
to simplify message-stream/alarm synchronization by MSG
processes, it is important to note that MSG itself places no
constraints upon how processes use stream marked messages.

Introduction
1-10

i mmaimm

nmimnMiiMn ..

MSG Desirn Specification 1/23/76

1.7 Host Incarnations

The NSW is expected to provide continuous, ?4 hour a day, 7
day a week service. However, the various computer systems which
support NSW processes nay not provide such continuous service.
Proper NSW operation requires that MSG be able to deternine
whether a name for a process refers to a process that MSG is
currently manan-inp or to an obsolete one which MSG nanap-ed durinr
a previous period of MSG service by the host computer system in
question. (The term "incarnation" is used synonymously with
"period of host MSG service" in the remainder of this document.)
To enable MSG to distinpuish current from obsolete processes, an
MSG process name (more precisely, a specific address) includes an
indication of the host incarnation under which the process exists
(or existed) .

Introduction
1-1 1

 - ■

I1SG Jesi^n Specification 1/23/76

1.8 Organization of this Document

The remainder of this document specifies MSG ir. detail.
There are four pares to the specification:

i. MSG process environment.
Section 2 defines in detail the environment MSG
provides to MSG processes. In particular, it defines
the set of primitives that MSG provides to such
processes.

ii. MSG-to-MSG protocol.
NSW is a mul' -.-computer system. Parts of MSG will
reside on the various computer systems that comprise
the NSVI. The inter-computer protocol used by the
compenents of MSG in order to support the MSG
primitives is specified in Section 3-

iii. MSG-to-MSG Protocol for the ARPANET.
The initial implementation of the NSW will make use of
the ARPANET as an inter-computer communication medium.
Section 4 specifies how the ARPANET host/host
communication facilities are to be used to support ehe
MSG-to-MSG protocol.

iv. MSG-to-MSG Transmission Formats for the ARPANET.
Section 5 defines the formats to be used for the
transmission of MSG-to-MSG protocol messages between
ARPANET :iosts.

Introduction
1-12

r^ir-rr

 ,

MSG Design Specification 1/23/76

2. MSG process anvironment

This section defines in detr,"il uhe environnent MSG provides to
processes. This section covers chose aspects of the MSG process
environment which are common to all hosts; it is not a
process-implementer's ruide to MSG on any particular host, 'uch
a puide must also discuss aspects of the process environnent
which are peculiar to that host.

MSG process environment
2-1

-^w.

MSG Desipn Spec i fiorit ion 1/?3/76

2.1. Hosts

US
cone
host
host
sstl
of t
MSG
run .
NSW

oont
not
fail
a ho

W is inplem(?nt
urrently on a
s . MSG on each
's operatinr s
sfies the MSG
he host enviro
processes will

will operate
inuously part
scheduled for
ed. We H »fine
st incarnation

ed as a number of processes runninr
njnber of different computer svstems, called
liest can be thourht of as an extension of that

yscem, creating a new operating system that
ciesign. Because MSG specifies onl> a fraction
nnent for a process, it is renerally true that
be sensitive to the type of host on which they

continuously, but individual hrsts may not be
of it. This can occur because a riven host is
continuous NSW service, or because the host has
a particular period of NSl. service by a host as
, designated by:

<host incarnation name> ::=
<host desiprnatorXincarnat ion designators

where <host desip-nator> is an t^te^er which uniquely designates a
particular host computer and <:' carnation desirnator> is an
intep-er which desipnates this \ rticular period of NSW service by
this host.

MSG process environment
2-2

i ■■

Hmmmpm» mm>imm^,*im*,'»l'*„ ^--"- -'-'li-"-"' nWMHMMMI^wii

MSG Desip-n Specification 1/23/76

i 1 U

2.2. Processes

The form of an MSG process is stronply host-dependent, since
the MSG design specifies only a part of the operating system
under which the process runs. An MSG process is what one
generally tninks of as a proc^ s, i.e. a collection of prop-rams,
local memory, etc. to which the operating system allocates system
resources such as CPU time. MSG processes must, however, have the

follovTiiiR properties:
1. The process can make at 1 "»ast some MSG primitive calls.
2. The process has a unique MSG process name throuph which

it can be addressed by other processes.

MSG process environmen
2-3

• •-- ^— — amsammmmmm lira- mi 1

MSG Desirn Specification 1/?3/76

.0 . 3 • Process names

A host incarnation supports a number of MSG processes. E^ch
process has a name of the Torn

CDrocess liame> = <host incarnation nameXpeneric <iesi^nator>
<spec.ific desirn a tor>

The host incarnation n-nne is the incarnation name of the
under which the process is runninr. The peneric desipna
character strinr which characterizes a process in terns
functional relationship to other processes. This charact
determines whether a process could be chosen to perform
function. For example, processes with reneric desifTnatr

candidates for messapes which invoke Works Manaper funct
rihe specific desipnator is an inteper. A process name is
unambipuous; at all times it either corresponds to a sin
process or is invalid.

host
tor is a
of its
erization
a certain
^ WM are
ions.
alv/ays

pie

MSG process environment

■ ivmrMiiii-i

MSG Design Specification 1/23/76

2.M. Process addressing modes

There are two fundamental nc^es hy which one proces 3 nay
address another process: generic and specific. A specific
address is always a process name. Generally process A will use a
specific address for process B because process A has had some
prior communication with. B, either directly or throuph some
intermediary process.

A generic address, however, is of the form:

<generic address> ::= <host desirnatorXrenerio designators j
generic desipnator>

Unlike specific addressing, which uniqueiy determines the
destination process, generic addressinp implies a selection by
MSG of a destination process from a class of processes. This
selection allocates the destination process to the communication
implied by the r-enericaily addressed messare. This is dislinct
from process allocation, in w'iich MSG creates and terminates
processes.

The class of processes from which MSG can nick a destination
process for a renerically addressed mossare is defined as
follows:
1. If the reneric address is of form

<host desirrnatorX^eneric desirnator>
then the process selected must be on the designated host. If
<host desirnator> is not specified in the address, then the
process may be on any host.

2. The <p-eneric designators field of the process name must match
the <rreneric desipnator> field of the reneric address.

3. The process must have a Receivegeneric primitive call
pendinr.

MSG process environment
2-5

^jt

MSG Desirn Specification 1/23/76

2.5. Modes of information transfer

MSG supports three basic nodes of information transfer between
processes: nessares, alarms, and direct connections.

A message is a strinf of bits created in the local nenory of a
sending process. MSG sends the messape to a receivinp process by
duplicatinr the bit strinp in a specified portion of the
receiving process's local memory. MSG itself imposes no further
structure on nessapes, nor does it interpret the contents of
messages. Messares are the only mode of communication which can
be Fenerically addressed.

An alarm, like a messape, is a strinr of bits created by one
process and addressed to another process. As with a messare, MSG
transmits the bit strinr to the receiver process, which has
designated beforehand where the bit strinr is LO be put. In other
ways, however, alarms differ fron messapes. First, an alarm is a
fixed-lenpth bit strinp and is shorter than most messages.
Second, MSG will transnit an alarm independently of any messape
traffic between sender and receiver processes. In fact, M3G will
pive alarns priority service over nessapes. It is anticipated
that alarns will be used to transnit in0orrnation about unusual or
exceptional conditions, while messapes and direct connections
will be used to support normal connun.'.cation.

A direct connection is a one- or tv/o-way dedicated channel
between two processes. MSG assists the processes in oneninp and
closinp the connection, but does not intervene in the actual use
Df the channel.

Messapes are further differentiated by whether they are
addressed to a specific process or to a generic class of
processes. Processes use different primitive ^all0 uc .c. . ., and
receive penerically-addressed nessares than Lne^ use to send and
receive specifically-addressed nessapes.

For a specifically-addressed nessape it is further possible to
specify either (but not both) of two types of special handlinp:
sequencinp and strean markinp. Normally MSG will not ruarantee to
deliver nessapes in the order in which they were sent. Sequenccd
nessapes, however, fron orocess A to process D will be deliveied
to B in they sane order in which they were sent by A. A strean
narker nessape fron A to B will not be delivered to B until all
other nessapes fron A to B nave been delivered. Furthermore, it
will be delivered to B before any other nessapes to B sent
subseouently by A.

MSG process environnent
2-6

——~' i ■■■rti

MSG Design Specification
1/23/76

«

In all cases, MSG will inform the receivinr process of any
special handling piven any message it receives.

tISG process environnent
2-7

intiiliftM-ii -

MSG Design Specification 1/23/76

2.6. MSG primitive operations

Each host supports a set of MSG
processes that run under it. The
primitives will be host dependent
sore tine later a reply (return)
primitiv? calls into two CIPSSCS
of the reply MSG makes to the pn
primitive call the MSG reply s- n
operation is complete. For the ot
however, the MSG reply signifies
were reasonable enough for MSG to
perform and that MSG has agreed t
operation. When this primitive op
has been aborted, MSG will signal
specified m the primitive call,
primitive operation a pending eve
is the completion or abortinp- of
has the form:

primitive operations for the
method of calling these

Every primitive call prcduces
from MSG. We divide the set of
differentiated by the meaning

mitive call. For one class of
ifies that the primitive
her class of primitive call,
only that the parameters of call
deduce what operation to

o attempt to perform this
eration is finally complete or
the process, using a signal

We call this uncompleted
nt, where the event in question
the operation. A pending event

<pendinF event> ::= <prinitive><signal><disp><timer>

where
<primitive> is the primitive operation to be performed
<signal> is a means by which MSG can signal the process

that the primitive operation is complete
<disp> is a pointer to a field in the. process's local memory
<timer> is a timer which tells MSG when it can abort the

operation.

Every host will offer processes a set of signals for u^e in
primitive calls that produce pending events. We shall discuss
signals at greater length later in this document. The disp field,
which MSG will have set before it sends the signal, tells the
process whether the primitive operation completed normally or was
aborted.

The set of all pending events for a process is called that
process's ^endinp" event set. l.'hen the process makes a primitive
call of the second class, a pending event is added to its pending
event set. When MSG completes or aborts a pendinp- event, it sets
the appropriate disp field, sends the signal, and then deletes
the pending event from that process's pending event set.

A process should ensure that no two elements simultaneously in
its pendinr event set have the same signal, but MSG will not
enforce this restriction. The simplest way for a process to
ensure tnis is never to reuse a signal in a primitive call until

MSG process environment
2-8

aa^-^ r if-rrtlMJiaMpahflu aifc «jfi i

MSG Design Specification 1/23/76

that signal has been received from the old call. It should be
emphasized that the signal for an operation is the only reliable
way for a process to ensure that this operation has completed.

MSG process environment
2-9

mm ^iniMM—i ■ -MWWÄidMM.

MSG Design Specification i/;:3/76

2.6.1 Primitives that create pendinr events

Many of the followinr pr.'i itives contain the paraneter dt. This
is used to create the <timer> field of the pendinr event, and
either specifies a timt interval in local hose clock units or
indicates that a default value should be chosen by MSG. Unless
the default is specified,

<timer> = tc+dt where tc is the local host clock tine when
the primitive was called.

1 . Sendspecificmessare(ms^area,pnam,sifrnal,disp,dt »sphndl)
where
msgarf . points to a message to be sent
pnam a process name
sphnc specifies special handlinp for the messape
0 - ordinary handlinr
1 - sequenced ressare
2 - stream marker message

This causes the messape pointed to by ms/area to be sent to
process pnam. At the ver> minimum, completion of this
primitive operation means that the msrarea has been read by
MSG, the disp field set, and the pendinr event deleted from
the sender's pending event set. Local hosts may opt to
guarantee more, such as that when the primitive is completed
the foreign host has accepted the message.

2 . Sendgenericmessage {uicr.zrea , ^enadr , signal , disp , dt »pwait)
where
nsgarea points to a message to be sent
frenadr is a generic address
qwait is a boolean

This is like Sendspecificm,ssape except that here a generic
address is specified instead of a nrocess name, there is no
special handling, and there is the extra parameter qwait.
Unlike a Sendspecificmessage, a GendgenericmessaFe may cause
MSC to create a destination process. Qv/ait is a Doolean;
setting it false will cause MSG to accept the primitive only
if there is a process available with a Receivegeneric
primitive pending.

MSG process environment
2-10

M3G Desirn Specification 1/23/76

\. Reeeivespecificmessape(msRarea,srcnam,sipnai,disp,dt,sphrdl)
where
nsgarea points to a block of local memory in which MSG

will out a message
srcnam points to a field of local memory which MSG will

set to the process name of the sender
sphndl points to a field of local memory which MSG will

set to the special handlinp class of the messape
beinp received:

0 ~ ordinary handling
1 - sequenced message
2 - stream marker messape

If the primitive completes normally, i.e. if the specified
signal is received and the disp field does not indicate an
error, then msparea will contain a messape which was sent by
a Sendspecificmessape primitive call by some process. Srcnam
will contain the name of the process that sent the messape,
and sphndl will show if the messape was sequenced or was a
stream marker.

4. Receivepenericmessape(msparea,srcnam,sipnal,di^p,dt)
where
msparea points to a block of local memory in which MSC will

put a messape
srcnam noints to a field of local memory which MSG will

set to the process name of the sender

This is like Receivespecificmessape except that here the
messape received was sent by a Sendpenericmessape primitive
instead of a Sendspecificmessape primitive. There is also no
special handlinp field.

MSG process environment
2-1 1

_j^

MSG Design Specification 1/23/76

5. Sendalarm(acode,pnam,sippnal,disp)
where
acode is an alarm code
pnam is a process name

This sends the alarm code acode to the process named pnam.
When this primitive completes, the disp field will indicate
one of the followinp; outcomes:

1. OK. Eithe'.1 the alarm was delivered to the process or it
was queued and will be the next alarm to be delivered to
the process.

2. Rejected. Process pnam is not accepting alarms at all
now, or another alarm is already queued for this process,
or sone error has occurred.

6. Enablealarm(acode,srcnam,signal,disp)
where
acode,srcnam point to fields of local memory

This enables the process to receive an alarm. When the alarm
is received, acode will be set to the alarm code and srcnam
will be set to the name of the alarm sender. In order for an
alarm to be received, not only must an Enablealarm primitive
be pendinp but also the iaccept boolean slate for this
process must be true. This boolean value LS chanped by the
primitive Aoceptalarms.

MSG process environment
2-12

MSG Design Specification 1/23/76

7. Ope-^connCconntype, conn id , pnan , sipnal, ciisp , dt)
where
conntype is a connection type
TELETYPE
BINARY SENr>-RECEIVE(s)
BINARY SEND(s)
BINARY RECEIVE(s)
where s is a byte size
ccnnid is a connection identifier
pnan is a process name

This opens a connection of type conntype to process pnan.
The connection will be identified by connid. In "der for the
primitive to complete normally, process nnam must also
execute an Openconn primitive addressed to this process, with
the same connid and a compatible connLype. Some hosts may
return a host-dependent identifier for the connection.

8. Closeconn (connid ,pnamfsiprnal ,disp ,dt)
where
connid is a connection identifier
pnan is a process name

This refers to the connection created before by the primitive
Openconn(conntype,connid,pnam,...). If the connection was
never opened, Closeconn will abort with an error code in the
disp field. If the corresponding Openconn is still pending,
the Openc.nn also will abort. Whatever the outcome, however,
when the Closeconn primitive completes, the connection, if it
ever existed at all, will be closed.

9- Terminationsirmal(tsipnal,disp) where
tsipmal is a signal

If this primitive ever completes, i.e. if tsipnal is ever
received then it should be taken as a request by MSG for the
process to terminate. The disp field may be used, at host
option, to specify why the termination is beinp requested.

MSG process environment
2-13

if «MirVy mi^^T. - . , ,mimm~ i*tMmm - n ■■■ ■" "

MSG D^sipn Specification 1/?3/76

2.6.2 Primitives that do not create pendinp events

1. Stopme()

This primitive indicates that the process wishes to
terminate. Control will never return from this primitive.
The process will be terminated by MSG as soon as possible.
Well-behaved processes will ensure that their pendinp- event
sets are empty before issuing this primitive.

2. Rescind(rsi^ral)
where
rsijprnal is a signal

This is used to delete a pendinr primitive operation. Tie
parameter rsipnal must be the signal of a pendinp event, i.e.
an uncompleted primitive operation. If the Rescind call
returns successfully then the correspondinp primitive will
not occur and rsignal will not be sent. The Rescind may fail
because the primitive operation is partially complete and it
is too late to stop it, or because rsjfndi no longer
corresponds to a pendinr event. The latter case generally
means that the correspondinp primitive has already completed.
It is a host option what primitives may be rescinded at all.

Some hosts may wish to return an event handle with
rescindable primitive calls. In this case, the call will he
Rescind(event handle).

3- Acceptalarms(aaccept)

Each process has a boolean state value, iaccept. If an alarm
is sent to a proces^ whose iaccept state is false, the
Sendalarm will fail with a disposition indicating that thc-
process is not accepting alarms. If, however, iaccept is true
then the Sendalarm will either match an Enablealarm, be
queued, or be rejected because another alarm is already
queued for this process. Acceptalarms sets iaccept to the
value of qajcept.

4. Resynch(pnam)

If MSG had been rejectinr sequenced messages to process pnam
due to failure of a sequenced message transmission, then HSG
will now stop d o 1 n r so.

MSG process environment
2-14

rliüiriHif ii ,. MiMtm

MSG Design Specification 1/23/76

2.7. Signals

Each host provides for processes running under it a set of
signals. A signal is a means by which MSG can inform a process
that some event has occurred, in particular that MSG has
completed some primitive operation.

Different hosts will offer different signals, but all signals
must satisfy certain criteria:

1. At any point in time, the process can determine whether or
not the signal has been received.

2. Signals must be distinguishable, i.e. if one of several
possible signals has been received, the process must be able
to determine which one.

3. Signals are local. A signal to one process does not
directly affect any other process.

The restrictions listed above allow
variety of signals for processes. It i
section to further specify what sipnal
host. We list here some examples of si
provide. These are strictly examples;
requirement that these particular sign
1. Block/Unblock

The process waits and control does
primitive call until the event has

2. Flag
MSG sets a field in the process's
when the event has occurred. This
<disposition> field itself.

3. TENEX PSI on channel n
On TENEX, MSG send? an interrupt o
event has occurred.

4. Flag plus TENEX PSI
MSG sets a field in the process 's
then sends an interrupt on ?n agre
which is the same for all signals
differs from example 3 in that her
cause interrupts on the sane cnann
queues PSIs on a channel only one
PSIs nay be lost if MSG sends seve
type sufficiently close to each ot
care, a process can handle the res
undue dlfflcultv.

hosts to specify a wide
s not the function of this
s will be available on any
gnals that a host might
they imply no MSG
als be supported:

rot return from the
occurred.

local memory nonzero
field could be the

n PSI channel n when the

local memory nonzero,
ed-upon PSI channel
of this type. This
e different signals
el. Because TENEX
interrupt deep, some
ral signals of this
her in time. With
ulting race without

MSG process environment

2-15

MSG Design Specification 1/23/76

2.3 Information transnittal

The sendinp; of messages and alarms and the openinp and clo.sinr
of connections all involve a pairinp of compatible primitive
operations in the pending event sets of (usually) different
processes. Such a pairing defines an interchanpe of information
between two processes which MSG must cause to happen. Tne
possible pairinps are:

1. Specifically-addressed message
This pairs the primitives
Sendspecificmessapre(ma,pb,...) in process pa
Receivespecificmessape(mb,snam,...) in process pb

This causes the message pointed to by ma to be transmitted by
MSG to process pb and put into the memory area pointed to by
mb. In addition, snam in process pb will b^ set to pa so that
the receiving process will know the name of the sendinr
process .

2. Alarm
This pairs the primitives
Sendalarm(acode , ^b , ...) in process oa
Enablealarm(cdval snam,...) \r\ process pb

This pairinrr is possible only if the boolean state variable
iaccept in process pb is true. This causes the alarm code
acode to be transmitted f^om process pa to process ob and put
into field cdval. In addition snam will be set to pa, the
name of the sendinp- process.

3. Generically-addressed messape
This pairs the primitives
Sendpeneriernessape (ma , crenadr , .
Receivesenericmessa.re(mb,snam,

.) in process pa

..) in process pb

This is like a specifically-addressed message pairinr except
that here penadr is a re.-^^ic address which matches process
name pb instead of beinr pb directly.

MSG process environment
2 .16

-in

1/23/76

) in process pa
) in process pb

MSG Desipn Specification

4. Openinp- a connection
This pairs the primitives
Openconn(ta,connida,pb,.
Openconn(tb,connidb,pa, .

where
connida = connidb
L^ and tb are compatible connection types:
1. ta - tb = TELETYPE
2. ta = tb = BINARY SEND-RECEIVE(s)
3. ta = BINARY SEND(s)

tb = BINARY RECEIVE(s)
where s is a byte size.

This opens a connection of the indicated type between
processes pa and pb. The connection will be hereafter
identified to both processes as connida (= connidb).

5. Closing a connection
This pairs the primitives
Closeconn(connid,pb,...) in process pa
Closeconn(connid,pa,...) in process pb

This will close for both processes the connection between
them which is identified by connid.

These pairinrs define tasks that MSG is to perform, but they
allow MSG hosts a rreat deal of freedom in schedulinr computer
time and resources to the muluitude of concurrent operations they
must perform. We must, however, specify a few more rules:

1. Fairness. MSG will not prossly favor any one process, mode of
communication, or particular operation over any other.
Exceptions are:
a. Alarms will be favored over messages.
b. Transmission of messapes with special handling

attributes may be delayed until other related messages
have been transmitted.

2. Access to communication. A process must always be able to
have in its pendinp event set:
a. One messape send primitive.
b. One messape receive primitiv,.
c. One alarm send primitive.
d. One alarm enable primitive.
e. One primili*. e to open or close a connection.

3- Efficiency. Within limits set by the above rules, MSG will
amnpe its workload so as to perform it in a ^easo^.ably
efficient manner.

MSG process environment
2-17

-■^v .X.
•" -— - ■ ■■■^-^' " 1 fll -——-

MSG Desiftn Specification 1/23/76

2.9 Sequencing of niessapres

As
that a c
process
in which
messages
communic
insure p
expected
it is po
messaRes

noted in Section 1.6, MSG normally does not guarantee
ollection of messages sent from me process to another
will be delivered to the destination process in th.- order
they were sent. Some applications will require that the
between two processes be sequenced. In such cases, the

ating processes could observe a private protocol to
roper sequencing of messages. However, since it is
that processes ..u. ^ frequently desire message sequencing,

ssible for a process to ask MSG to sequence certain

To achieve sequencing a process can specify when it sends a
message that the message is to be sequenced. MSG will guarantee
that a sequenced message from process A to process B will be
delivered to process B only after all previous sequenced messages
from process A have been delivered to process B. A process may,
if it chooses, intermix sequenced and unsequenced messap-es.

The sending and receiving discir1ines required of MSG to
support sequenced messages are discussed below. Processes should
be aware that a cost is associated with the use of the message
sequencing option; that cost will be reduced message throughput.

MSG cannot guarantee that every message will be delivered.
(The destination host may be temporarily inaccessible, the
destination process may spontaneously disappear, the message nay
be timed out, etc.) When MSG is unable to deliver a normal,
unsequenced message, the sending process is signalled and
notified (via the disposition information normally supplied by
MSG) that the message could not be delivered. The sending
process can then take whatever action it feels is appropriate
with respect to the message in question.

s eq
since a seq ue
the s e q u e n o e .
that proces «5
messages Ml i

success full y
should MSG do
to deliver M2
to deliver th
M3, Mh and M5
3 are cor.muni
sequencing i .;-
deliver the r

uencing introduces an additional comple
need message is not independent of cthe

To illustrate the nature of the probl
A has attempted to send process B the s
M2, M3, M4, M5. Furthermore, suppose t
delivers Ml but is unable to deliver M2
with M3, M^, and M5? In particular, i
does not necessarily mean that MSG wil

e remaining messages in the sequence.
without M2 may confuse process B; pro
eating via sequenced messages presumabl
important. Therefore, MSG will not at

emaining pendln; sequenced messages.

xity here
r messages in
em, suppose
ecuenced
hat MSG
. What
ts inability
1 be unable
Delivery of
cesses A and

y because
tempt to

MSG process environment
2-18

..'»■v^./^-«.-„f ..,,-,-

MSG Design Specification 1/23/76

If MSG cannot deliver a sequenced message from process A to
process B, it will stop the flow of seqjenced nessa^es to process
B from process A until process A takes some explicit action to
"resynchronize" the message sequence. MSG does this by marking
process A as beinp out of synchrony with process B after a
sequenced messape from process A to process B fails. MSG will
then abort all pending sequenced Sendspecificmessage primitives
m process A's pendinp event set which are addressed to pr jess
B. Furthermore it will reject all such primitive calls
subsequently made hy A until A r0synchronizes the message
sequence with B by executing the primitive Resynch(B).

As noted ir Section 1.6, in situations in which an alarm is
transmitted or received, it is often important for a pair of
pr)cesses to identify a point in a stream of messages between
them corresponding to "where" the transmission (or receipt) of
the alarm occurred. To facilitate such message/alarm
synchronization, MSG supports the concept of message stream
markers. A stream marker is an attribute of a message. When a
process sends a message it can specify whether or not the message
is to carry a stream marker. The default is no stream marker.

MSG guarantees
process B, which car
process B only after
delivered to B (or h
undeliverable) and b
Furthermore, MSG wil
delivers a message t
notification will be
MSG t the receivinr
places no constraint
However, we expect t
adopted for NSW.

that a message M. sent from process A to
ries a stream marker will be delivered to
all messages sent by A prior to M have been

ave been determined by MSG to be
efore any messages sent after M by A.
1 notify the receiving process 3 whenever it
hat carries a stream marker. The
part of the information normally supplied by
process. We emphasize that MSG itself

s upon how processes use stream markers,
hat standards repardinp their use will be

MSG observes a oueuinp discipline with respect to
Receivespecificmessage primitives. The Receivespecificnessape
primitives executed by 3 process are to be satisfied in the order
in which they art-, issued in the sense that the first
Receivespecificmessage should be satisfied by the first message
MSG accepts for tne process, the second by the second message,
etc. We note that this does not necessarily imply that the
signals associated with a collection of pending receives will be
delivered to the receiving process in the order in which the
receives were satisfied.

MSG process environment
2-19

^^_ ----- -

MSG Design Speolfication 1/23/76

In additio
not imply that
delivered in th
If in-order del
request "sequen
for a message i
discipline wher
receivinp MSG h
the sending pro
stream marking
observes a send
only after the
from sender to
messages from s
this message.
receiving disci
is sufficient t
marked messages

n, we note that this MSG receiving discipline does
messages from a given sending process will be
e order in which the sending pro^oss sent ^hem.
ivery is required, the sending process must
ced" or "stream marker" handling. When sequencing
s requested, the sending MSG observer ^ sending
eby it transmits the message only after the
as accepted all previous sequenced messages (from
cess to the receiving process). Similarly, when
for a message is requested, the sending MSG
ing discipline whereby it transmits the message
receiving MSG has accepted all previous messages
receiver and additionally transmits no further
ender to receiver until the receiving MSG accepts
These sending disciplines, together with the
pline described above and always followed by MSGs,
o insure in-order delivery of sequenced and stream

MSG process environment
2-20

»ic-rnutfrf^ n

MSG Design Specification 1/23/' 6

2,10. Process creation and termination

To create a process MSG performs the followinp: operations:
1. MSG assigns a process name to the process and creates

an empty pending event aet for it.
2. MSG creates the {.^ocess on the host operatinp system.
3. MSG starts the process in some host-dependent apreed-upon

initial state.

An MSG host may create processes for one of only two reasons:
1. In order to fulfill its oblipation to find a destination for

a penerically addressed message.
2. As part of system initialization or restart.

To terminate a process, MSG performs the following operations:
1. MSG marks the process for termination in such a way that

it will no longer be a candidate for any communication
from other processes and such that it is blocked from
issuing any more MSG primitives.

2. MSG completes or rescinds all elements in the process's
pending event set.

3- MSG deletes the process from the host.
4. MSG forgets about the process.

flSG process environment
2-21

_.-

rtSG Desipn Specification 1/23/76

2.11 Summary of terms
We present here a brief summary of the terms defined in

this section:
1. Host incarnation name

<host incarnation name> ::=
<host desifrnatorXincarnation desipnator>

2. Process name
<process name> : : =
<host incarnation nameXp-eneric designatorXspecific designator)

3 . Generic addt ess
<generic address: ::= <host desi^natorXpeneric desip-nator> I

<Generic designator)

4. Generic designator
<peneric designator/ ::- character strinp

5. Specific oesignatcr
<specific designator) ::~ integer

6. Host designator
<host designator) ::- integer

7. Incarnation designator
<inca'"nation desik.iator) ::= integer

M3G process environment
2-22

 .

r.
MSG Desipn Specification 1/23/76

3. MSr lu-MSG Protocol

This section specifies the Inter-hcst MSG protocol which
supports the primitives provided to processes nanaped by MSG.
The concern in this section is the information communicated
between MSGs rather' tnan how it is communicated. This section
assumes the existence or a bi-directional communication path
between each pair of MSG nost systems. Issues such as how these
MSG-to-MSG oaths are supported by ARPANET communication
capabilities or how MSG-to-MSG messages are delivered are the
subjects of Sections 4 and 5.

MSG-to-MSG Protocol
3-1

i*»iirra«¥i 11

MSG Design Specification 1/23/76

3.1. Transaction Identifiers.

The completion of an inter-host MSG transaction (such as the
transmission of a messape or an alarm) generally requires a
protocol exchange that involves several inter-MSG messapes. When
an MSG initiates an inter-host transaction on behalf of a process
it manages, it generates an identifier for the transaction whict
it places into the inter-MSG message which initiates the
transaction. In addition, the initiating MSG generally places
the name of the initiating process into the inter-MSG message.

When an MSG responds to an inter-MSG message that initiates
a transaction, the responding MSG includes the transaction
identifier chosen by the initiating MSG in its response. If the
transaction in question is one that requires further interaction
between the MSGs, the responding MSG generates a second
identifier (its identifier) for the transaction and places it
into the respcnoe message. All subsequent inter-MSG messages
which refer to the transaction will include both transaction
identifiers .

MSG-to-MSG Protocol
3-2

MSG Design Specification 1/23/76

3.2. On the use of "source" and "destination".

Most inter-MSG messages are transmit
interactions between a pair of processes,
these messages include the names of two p
two transaction identifiers. in the spec
we adopt the convention of using "source"
process or transaction identifier managed
and "destination" when referring to a pro
identifier managed by the responding MSG.
relative to the initiator of the transact
to the sender of a particular message in
messages needed to carry out the transact

ted to support
Consequently, most of

rocess and many include
ification that follows,
when referring to a
by the initiating MSG

cess or transaction
"Source" is then

ion; it is not relative
the series of protocol
ion.

MSr-to-MSG Protocol
3-3

JST ii i ii ii uai ^Mit — -—mi

MSG Design Specification 1/23/76

3.3. MJG-to-MSG Protocol Items.

In the specifications of inter-host MSG protocol items that
follow, the items are grouped according to the primitives they
support. In these specifications all information exchanged
between MSGs is explicitly represented as parameters of the
various protocol messages. In some cases some parameters may be
implicit from the protocol exchange context and are therefore
redundant. Section 5 defines the transmission formats for the
protocol items in detail.

1. MSG-to-MSG protocol for interprocess messages
(SendSpecificMessage, ReceiveSpecificMessage ,
SendGenericMessage, ReceiveGenericMessage)

MESS (source-process, destination-process, source-ID,
destination-ID, handling, length, message-data)

This initiates an inter-MSG message transaction. It
indicates that the source-process has requested that a message
(defined by length, message-data) be delivered to the
destination-process. The source ID is the idrntifier selected by
the source MSG to identify the message transaction. The
destination MSG should include source-ID in all communication
concerning this message transaction. The destination-ID is empty
if it is unknown; it tak:s on meaning for Interactions requiring
more than a simple request and acknowledgement (see descriptions
of MESS-HOLD, HOLD-OK, MESS-CANCEL and XMIT below). The
destination-ID is an identifier selected by the destination MSG
for the message transaction. The handling parameter specifies
the special handling (if any) required by the receivxü,- MSG in
order to properly deliver the message. Examples of special
handling include: include a synchronization marker with message;
MESS-HOLD not an acceptable response (see below); MESS-HOLD
acceptable and this MESS is an implicit HOLD-OK (see below).

Protocol requires the destination MSG to promptly acknowledge
MESS with one of the following three messages.

MESS-OK (source-process, destination-process, source-ID)

This response to MESS indicates that the destination MSG
takes full responsibility for buffering the message data and
subsequent delivery of the data to the destination-process. This
reply implies that destination-process is currently a valid name.

MSG-to-MSG Protocol
3-^

,*m*MälJ~m~^rT'm 1 iir Tifc«Mii^MiBiifciMn 1 1 ir... ■.^^—^--

MSG Design Specification 1/23/76

It does not imply that the message data has been actually
received by destination-process, nor does it guarantee that
destination-process will ever accept the data.

MESS-REJECT (source-process, destination-process, source-ID,
reason)

This response to MESS indicates that the destination MSG
will not accept the request for the transaction identified by
source-ID. Reason indicates the reason for rejection. Possible
reasons include: no such process, no buffer space, too many
messages already queued for this process, etc. The reason
supplied might be one which attempts to stimulate retransmission
by the source MSG if the rejection is known to be of a temporary
nature.

The following fcur MSG-MSG protocol items provide an
important extension to the basic message transmission discipline
of MESS, MESS-ÜK, and MESS-REJ described above. These additional
protocol items are motivated by the need for flexible flow
control within MSG. Their inclusion introduces complexity to the
protocol. However, the flexible flow control they support is
sufficiently important to iustify this complexity.

MESS-HOLD (source-prcoess, destination-process, source-ID,
destination-'.D)

This response to MESS indicates that the destination MSG
will not accept the inessage data associated with the specified
message transaction but that it will remember that the message
transaction has been requested and at some time in the future
will ask the initiating MSG to retransmit the message data. The
destination-ID is the identifier selected by the destination MSG
for the message transaction. Both source-ID and destination-ID
should be included in any subsequent MSG-to-MSG communication
concerning this message tran1 «action.

Protocol requires that the source MSG acknowledge the MESS-HOLD
promptly with one of the following two messages.

MSG-to-MSG Protocol
3-5

—.., . —

MSG Design Specification 1/23/76

HOLD-OK (source-process, destinatio.i-process, source-ID,
destinalion-ID)

This reply to MESS-HOLD indicates that the source MSG agrees
to buffer the message associated with the transaction specxfied
by source-ID and destination-ID. The destination MSG will
remember the pending message transaction and request transmission
of the message when it is able to accept the message data.

MESS-CANCEL (source-process, destination-process, source-ID,
destination-ID, reason)

This reply to MESS-HOLD Indicates that the source MSG is
unwilling to buffer the specified message. In addition, it may
be used by a source MSG to indicate that it has ceased buffering
a message which it had previously agreed to buffer.

XMIT (source-process, destination-process, source-ID,
destination-ID)

This is used by a destination MSG Do request a source MSG to
transmit a message previously buffered. The XMIT signals that
tie message will, in all probability, be successfully accepted.
On receiving a XMIT, the source MSG is expected to transmit the
message identified via a MESS message (usinp the specified
source-ID and destination ID to identify the transaction in
question). All legal responses to a MESS request are appropriate
for the redelivery.

A destination MSG can send a MESS-REJ rather than an XMIT in
order to abort a message transaction for which the message is
buffered at the source. It might choose to do this if the
destination-process termi .jates without requesting the message.

We note that since a destination MSG can utilize the
MESS-HOLD option, it may be important to provide processes
managed by MSG means to declare that a MESS request be accepted
or rejected immediately (i.e. not held) by a destination MSG.
This concept is not currently supported at the process-MSG
interface level; should it become important to do so, the
"handling" oarameter of the ME^S item will be used to support the
concept at the inter-MSG protocol level .

MSG-to-MSG Protocol
3-6

"-'■m--T -— -*****-.-. - - ■ -i^-^- -- - . -,

MSG Design Specification 1/23/76

2. MSG-to-MSG Protocol for4 Interprocess Alarms
(SendAlarm, EnableAlarm)

ALARM (source-process, destination-process, source-ID,
alarm-code)

This initiates an inter-MSG alarm transaction. It indicates
that the source-process has requested that an alarm be
transmitted to the destination-process. A few bytes of data
(alarm-code) are to be conveyed to the destination-process alonf^
with the alarm. The ALARM message should bypass the flow control
mechanism applied to normal interprocess message transactions
(MESS). Source-ID is the identifier selectee by the source MSG
to identify this transaction.

Protocol requires that one of the following two messages be sent
promptly to acknowledge the ALARM,

ALARM-OK (source-process, destination-process, source-ID)

This response to an ALARM request indicates that the alarm
request has been accepted by the destination MSG. It does not
mean that the alarm has been received by the destination-process;
it may be the case that the alarm is never actually delivered to
the destination-process.

ALARM-REJECT (source-process, destination-process, source-ID,
reason)

This resoonse to an ALARM request indicates that the
destination MSG refuses to accept the al^rm. Reason indicates
the reason for rejection (e.g. incorrect destination process
name, process not acceptinp alarms, another alarm is already
queued , etc) .

MSG-to-MSG Protocol
3-7

-i n iiaMM^^^ä^^.^^-^-^^^^.. .^^ __ ■-—w ^M^M_X: ^_J_______

MSG Design Specification 1/23/76

3- MSG-to-MSG Protocol for Direct Access Communication
(Openconn, Closeconn)

Because of the symmetric nature of the following three
protocol messages, we change our conventions with respect to
"source" and "destination". In the description of these three
items, "source process" always indicates ehe process local to the
sending MSG and "destination process" always indicates the
process at the receiving MSG. The same convention is used for
the transaction ID fields.

C0NNECT10N-0DEK (source-process, destination-process,source-ID,
destination-ID, user-connection-ID, type,
source-socket)

This message indicates that the source process desires to
establish a direct communication path to the destination-process
of the "type" specified. The source-ID is the identifier
selected by the source MSG to identify the operations concerned
with establishing and breaking the connectionis) . Destination-ID
is rmpty when unknown.

[For implementations which make use of the ARPANET, the
source-socket specifies the socket(s) at the source MSG host
which is (are) to be used in establishing the connection which
implements the communication path. Protocol states that the
ARPANET RFCs required to establish the connect ion(s) are to be
exchanged immediately after both source and destination MSGs have
agreed to the connection (by exchanging matching CONNECTION-OPEN
messages).J

CONNECTION-CLOSE (source-process, destination-process, source-ID,
destina on-ID, reason)

This protocol message indicates that the sending MSG wants
to close the connection identified by source-ID and
destination--D. Protocol specifies that the receiver shoulr,
close the crnnecuion and acknowledre the request with a matching
CONNECTION-CLOSE. CONNECTION-CLOSE may be sent to abort a
connection which has not yet been completely opened. Reason
indicates the reason the connection is being closed. Possible
reasons include: orocess requested close, byte size mismatch,
type mismatch, and entry timeout.

MSG-to-MSG Protocol
3-8

Li

MSG DesiRn Specification 1/23/76

CONNECTION-REJECT (source-procesc, destination-process,
destinat?on-ID, reason)

This item is used to reject a CONNECTION-OPEN or a
CONNECTION-CLOSE request. It does not require an
acknowledgement. Reason indicates the reason for rejection
Possible reasons include: no such destination; no such
connection. The transaction identifier returned is the
"source-ID" for the request being rejected.

4. MSG-to-MSG Protocol for Obtaining Process Status
(Get-status primitive)

An MSG primitive to be used to obtain information regarding
status of an MSG process is to be sper^fied in the future.

The "get-status" primitive will not be required in the firsc MSC
implementation. The following describes, in general terms, thr(

the si
MSG
^ee

protocol items which are intended to support the "get-status"
primitive.

SEND-STATUS (source-process, destination-process, source-ID)

This protocol message requests the status of the
destination-process on behalf of the source-process. Source-ID
is the identifier selected by the source MSG for the ctatus
transaction.

Protocol requires that one of the following two messages be
promptly sent in acknowledgement of SEND-STATUS.

STATUS-OK (source-process, destination-process, source-ID,
status-words)

This returns the status information requested by the source
MSG. The information to be included in the status report has not
yet been completely specified. We expect that it will include
the state of destination-process including pending Sends and
Receives as well as pendinp: alarms.

[Note: it may not be desirable to allow a process LO obtain
detailed status information about processes with which it is not
actively communicating. The precise access controls (if any)
that are required for the Get-status primitive will be defined in
the future.]

MSG-to-MSG Protocol
3-9

. -, —I.**

MSG Dtsip:n Specification 1/23/76

STATUS-REJECT (source-process, destiiation-process, source-ID,
reason)

This response is used to indicate the rejection of a
SEND-STATUS probe reouast. Reason indicates the reason for the
rejection.

5. Miscellaneous 'iSG-to-MSG Messages.

The following MSG to MSG messages are provided because they
have proven useful in comunication system implementations and
for experimental extensibility.

NOP

This message is a no-operatxon. ic has no effect and is
immedi^cely discarded by the receiving MSG. No reply is
required.

ECHO (data-byte)

This protocol message requests the receiving MSG to echo the
data-byte. It can be used to see if a remote MSG is actively
functioning. Protocol specifies that the data-byte of an ECHO
message be promptly returned tu the sending MSG in a matching
ECHO-REPLY message.

ECHO-REPLY (data-byte)

Reply to ECHO.

EXPERIMENTAL (command, length, data)

This messaRe provides for experimentation ami extensibility
within the MSG-to-MSG protocol. The com^rind specifies the
function reauested; the length specifies the number of bytes in
the EXPERIMENTAL protocol message; data is information relative
to the function requested.

MSG-to-MSG Protocol
3-10

MSG Design Specification 1/23/76

4, MSG-to-MSG Protocol for the ARPANET

k

i

4.1 Implementation of MSG-to-MSG paths by ARPANET connections.

Section 3 introduced the notion of "MSG-to-MSG paths" across
which ".iter-host MSG messrv,es are sent. A single such MSG-to-MSG
path exists between each pair of host MSGs.

MSG-to-MSG paths are virtual entities in the sense that they
are implemented by ARPANET host/host protocol conne tions. At
any given time, a given MSG-to-MSG path may be implemented by
zero, one or more pairs of ARPANET host/ho^t connections. The
standard byte size for ARPANET connection which implement
MSG-to-MSG paths is 8 bits.

The set of ARPANET connections which implement an MSG-to-MSG
path are equivalent in the sense that any legal inter-host MSG
message can be sent over ary one of the ARPANET connections in
the set.

To send a message to another MSG, an MSG selects one ARPANET
connection from the set that implements the MSG-to-MSG path and
transmits the message over the connection. If no such ARPANET
connection exists, the sending MSG must act to establish one.

MSG-to-MSG Protocol for the ARPANET
4-1

^— —'—iiffir ... -^ r.^. -^ T^ rr. _ _

MSG Design Specification 1/23/76

1.2 Establishing the ARPANET connections.

A pair of ARPANET connections which supports an MSG- to -MSG
path is established via an TCP to a "well known" contact socket
in the normal way. The contact socket for MSG is 27 (decimal) -
33 (octal).

After a new pair of connections is established by an ICP,
the pair of MSGs mast engage in a synchronization exchange before
they can use the connections to carry the inter-MSG messages
defined in Section 3. The purnose of this MSG-MSG
synchronization is to allow the two MSGs to exchange their
current ^incarnation,, numbers and any other information pertinent
to subsequent interaction via the connection pair.

An MSG incarnation number« ident ^ies a particular period of
MSG service. (We frequently use the ^m ''MSG incarnation" to
mean such a period of MSG service.) A period of M3G service ends
and a new period of MSG service begins when an MSG re-initializes
itself. This typically occurs after its hort has restarted or
th-? MSG itself has crashed aid been restarted. An MSG is
expected to know its current incarnation number and to change its
incarnation number when a new period of service begins. (An MSG
could Jo this by storinrr its incarr.ation number in a file which
is prenerveJ over host and MSG crashes. When a new period of
service begin^. the MSG could increment the stored incarnation
number . nd use the number obtained to identify the new period of
service.)

At: now.ed in Sections 1 and 2, MSG process names include an
incarnation number component which serves to identify the
incarnation of the MSG that generated the process name and is
responsible for managing the process. The MSG incarnation number
component of a process name is used to determine whether the
process named is one that currently exists or is an obsolete one
which was managed by the MSG d ring one of its previous periods
of service.

The MSG-to-MSG protocol for the synchronization exchange is:

1. The MSG that initiated the ICP initiates the
synchronization exchange by using the send connection
of the pair to send the message:

SYNCH (my~incarnation, your-incarnation, ve-sion, data)

where:

MSG-to-nSG Prctcc-l for the ARPANET
4-2

MSG Design Specification 1/23/76

my-incarnacion identifies tho current incarnation
of the initiating MSG.

your-incarnation is empty,
version identifies the version of the MSG-to-MSG

protocol to be used on this connection,
data is other synchronization information.

(To be defined in the future.)

2. The other MSG responds tc the SYNCH hy usinp the send
cciinection of the pair to send the messape:

SYNCH (rny-incarnat ion , your- incarnation , version, data)

where:
my-inc^rrr*tion identifies the current incarnation

of the respondinp MSG.
version identifies the version of uhe MSG-to-MSG

protocol to be used on this connected,
your-incarnation echoes the incarnation number

specified in the mitiatinp MSG's SYNCH
message.

data is other synchronization information.

After the synchronization exchanre is completed, the connections
may be used to carry any of the inter-MSG messapes defined in
Section 3 until the connections are closed (see Section 4.3
below).

An MSG may wish to ascertain that the entity at the other
end of i new connection pair is indeed another MSG before it
commits any of its host resources to actinr uoon protocol
messapes received over the new connection. Section ^. 4 below
defines a procedure which MSGs may use to reliably authenticate
one another.

MSG-to-MSG Protocol for the ARPANET
a-3

-r-' ■wtiitiMirii ■ nimii a^a—aaMMMMM TilM»! ___ ,

MSG Design Specification 1/23/76

4.3 Breaking the ARPANET Connections.

A pair nf ARPANET conneccions to another host represents a
resource which an MSG may not want to keep open indefinitely in
the absence of MSG traffic. If an MSG were to close a connection
pair unilaterally, messages in transit from a remote MSG could be
lost or garbled. A protocol mechanism is defined for closing
pairs of connections in an orderly manner that eliminates the
possibi1ity of such lost or garbled messages.

T e protocol for closing a pair of connections is:

1 . MSG sends an MSG-to-MSG "CLOSE" message over the send
connection of the pair that is to be closed and then
closes the send connection of the pair;

2. Upon receipt of an MSG-to-MSG CLOSE message an MSG is
expected to: close the connection which carried the
message; return a CLOSE message on the send connection
of the pai .' (when it is convenient to do so); and
close the send connection.

The orotocol exchange defined above is the mechanism for
breaking pairs of connections. At present, we refrain from
specifying in detail a policy which defines when MSG may use this
mechanism.

An MSG that does not wish to communicate with the entity
that has initiated an ICP should respor. . to the initiator's SYNCH
message by initiating the CLOSE protocol exchange. An MSG might
choose to do this if the syncnronization data supplied by the
initiating MSG is incompatible or "if the initiating entity can
not properly be authenticated as another MSG.

MSG-to-MSG Protocol for the ARPANET

 ^.^ — ■- - ■ ■■ .^-^^s^^-..-. ^^^

MSG Design Speci 'it ion 1/23/76

k,*\ Authentication of MSGs.

As noted in Section 4.2 above, it nay be important for an
MSG to be able to reliably authenticate the entity at the remote
end of a pair of ARPANET connections as another MSu before host
resources are committed to requests made by that entity. The
problem here is one of mutual authentication. Kach entity must
authenticate the other as an MSG.

[In the absence of an authentication procedure, there is no way
for an MSG to determine whether the entity at the remote end of a
connection is another MSG or a bogus process which follows the
MSG-to-MSG protocol. Failure to distinguish between an MSG and a
process masquerading as an MSG could result in the inadvertent
disclosure o/ private information or unaccountable use of
expensive resources.]

The use of passwords is one approach to MSG authentication.
Only an MSG would know the password and thus be able to properly
identify itself to another MSG. We reject the password nechanism
as unreliable and operationally impractical for the following
reasons:

1. Use of a password requires that the password be stored
in the sending program or be accessible to it in some
way thereby increasing the likelihood that the privacy
of the password will be compromised.

2. If a password is compromised, it must be changeo at
both sending and receiving hosts; this represents a
synchronization problem.

3- Truly secure authentication would probably require
passwords for each pair of hosts; this would require
N^N passwords for an N host NSW.

The mechanisms to be us^d for MSG authentication are based
upon the properties of ARPANhT host/host communication. First,
we assume that the TCP is a secure procedure. That is, we assume
that a host can guarantee that i-iSG is the only entity that has
access zo the MSG ICP contact socket and that MSG is the only
entity that has access to the connections resulting from the ICP.
This is the standard assumption made in the ARPANET regarding the
ICP. Thus, the authenticity of the entity responding to an MSG
ICP as an MSG is based upon the security of the ICP procedure.

The authentication problem that remains is that of
authenticating the entity that initiates the ICP. Thi

MSG-to-MSG hrotocol for the ARPANET
4-S

*«--

MSG Design Specification 1/23/76

authentication can be achieved in a manner similar t
ICP responder. Just as a sinple well known ICP cont
defined, a collection of well known "ICP-from" socke
sockets from which ICPs are initiated) could be defi
collection of ICP-from sockets are required due to t
the ICP which prevents reuse of the ICP-from socket
connections resulting from the ICP are discarded.)
be required to limit access to the ICP-from sockets
connections that result from the ICP) to MSG Just as
required to limit access to the ICP contact socket (
connections that result from the ICP). If this were
an MSG responding to an ICP could authenticate the i
entity as an MSG by checking that the socket from wh
was initiated was one of the well known ICP-from soc

o that of the
act socket is
ts (i.e.,
ned. (A
he nature of
until the
A host would
(ard the
it is

and the
to be done,

nitiating
ich the ICP
kets .

Some hosts find it inconvenient to limit access to a
collection of sockets but have no difficulty in controlling
access to a connection once it is established. Therefore, a
variation of the above approach is used for authenticating
initiating MSGs. A single send socket is defined for MSG
authentication; access to the MSG puthentication socket is
limited to MSG. The authentication socket is to be maintained by
MSG in a listening state. In re^nonse to an RFC for the
authentication socket, MSG should open the requested connection
'with byte size = 32) and send a specification of the sockets
hich it is currently using in active MSG-to-MSG connections.
ihe connection should then be closed and the authentication
socket returned to the listening state.

An MSG at host A responding to an ICP initiated by a remote
entity at host B can authenticate that entity by the following
simple procedure:

1. The MSG at A notes the remote sockets, SI and 32, used
in the connections that result from the ICP.

2. It opens a connection to the authentication socket at
B, reads the socket specification that the MSG at B
send: and closes the authentication connection.

3 If the remote sockets, SI and 32, are included in the
specification then the entity at B is an MSG;
otherwise, it is not. (Note that when the MSG at B
initiates an ICP to the MSG at A, it must remember the
sockets it uses so that it can include them in the
socket specification sent to the MSG at A.)

MSG-to-MSG Protocol for the ARPANET
4-6

MSG Desipn Specification 1/23/76

The reliability o
upon the ability of ho
the authentication soc
specification sent ove
exactly what host B mu
well known contact soc
MSG at A have means to
remote end of connecti
information NCPs must
connection. Thus, the
at A. The authenticit
trustworthiness of the
if they were not, then
between ARPANET hosts.

f Uiis a
st B to
ket and
r the au
st do to
kets.)
reliabl

ons. So
exchange
socket

y of the
NCP at

e could

uthentication procedure depends
insure that only MSG has access to
to the sockets named in the
thentication connection. (This is
insure the security of ICPs to its

In addition, it requires that the
y determine sockets in use at the
cket identity is part of the
in order to open a host/host

information is available to the NCP
information depends upon the

B. We assume NCPs to be secure;
be no reliably securo communication

Tne MSG authentication socket is 29 (decimaly = 3? (octal).
The specification of MSG sockets returned over the authentication
connection may be a ranpe of sockets or a]ist of sockets. A
socket range is transmitted as 3 bytes:

byte 1 :
0 indicates ^anpe spec
byte 2:
Sa
byte 3:
3b

All sockets within the range defined by Sa and Sb (including Sa
and Sb) art; MSG sockets. A list of N sockets is transmited as
N+2 bytes:

byte 1:
1 indicates list spec
byte 2:
N the number of bytes that follow
byte 3:
SI
byte 4:
S2

byte N+2:
SN

The MSG sockets are 51, S2, SM

MSG-to-MSG Protocol
4-7

for the ARPANET

WMmsr.

NiSG Design Specification 1/23/76

4.5 Error Control for M.^u-to-MSG Paths

ARPANET t.ost to host communication is reasonably reliable.
However, communication failures can occur. For example,
host/host messages are lost occasionally. A lost host/host
message may manifest itself at the MSG-to-MSG path level as a
"hung" connection (if the message lost was a host/host allocate)
or cs a totally or partially lost MSG-to-MSG message (if the
message lost was a host/host data message).

In addition, communication between a pair of hosts can be
interrupted temporarily. The interruption may be the result of a
transient network failure (e.g., the source or destination IMP
crashes and is restarted) or a transient host service
interruption (e.g., TENEX hosts occasionally experience BUGCHK
interruptions and resumptions). At the MSG-to-MSG level this may
manifest itself as a spontaneously closed host/hosu connection.
If the connection was being used at the time, this could result
in a lost or garbled MSG-to-MSG message.

Mechanisms to insure reliable communication in an
environment where messages can be lost are reasonably well
understood. These mechanisms typically require positive
acknowledgement cf all messages and the use of a 4: ime out and
retransmission scheme. This generally requires that the
communicating entities (in this case pairs of MSGs) use unique
identifiers or sequence numbers to identify messages in transit
and employ techniques for detectinp; duplicate m^ssares (the
message may have made it but its acknowledgement may have been
lost). Note that these message identifiers serve to identify
individual inter-MSG messages and are therefore different from
the transaction identifiers used in the inter-MSG protocol to
identify transactions that involve a number of inter-MSG
messages.

The question here is:

Should such a reliable transmission mechanism be used
for error control on the MSG-to-MSG paths?

Our position with regard to error control for MSG-to-MSG paths
is :

1. The most effective error control mechanism for the
MSG-to-MSG application is that described by Cerf and
Kahn (i.e., that used in tne InterNet or TCP protocol).

MSG-to-MSG Protocol for the ARPANET
i4-8

MSG Design Specifi^ation 1/23/76

U

\ t

2.

3.

4.

The overhead incurred by uoinp a TCP-like error control
mechanism would not significantly degrade performance
for the NSW MSG application.

Use of a TCP-like mechanism would approximately double
the time and effort required to implement inter-host
MSG.

The TCP mec
MSG-to-MSG
implementat
enable TCP-
messages .
bytes are r
support TCP
believe tha
error contr
"higher lev
protocol.

hanism can be made orthogonal to the
protocol and to a properly designed MSG
ion. That is, the information required to
like error control would envelope inter-MSG
We estimate that 5 or 6 additional 8 bit
equired for each inter-MSG message to
-like error control. Furthermore, we
t the processing required to perform the
ol function can occur- in series with the
el" processing required to implement the MSG

It is not clea
than that normally
v/ill be re quired by
inter-host MSG spec
control fo r the MSG
for inter- MSG messa
required t o support
implementa tlons sho
be necessa ry to add
experience indicate
MSG-to-MSG paths is

r, at presen
provided by
the NSW app

ification do
-to-MSO path
ges include
TCP-like er

uld be done
TCP-like er
that the la
resulting i

t, whether erro
ARPANET host to
licat ion. Ther
es not include
s nor does the
fields for the
ror control. H
with the expect
ror cc»i':rol lat
ck of error con
n unacceptable

r control stronger
host communication

efore, the initial
TCP-like error
transmission format
information
ov/ever, the MSG
ation chat it may
er, should
trol for the
oerformance.

MSG-to-MSG Protocol for the ARPANET
4-9

■ -

MSG Design Specification 1/23/76

5. MSG-to-MSG Transnission Formats for the ARPANET

This section specifies in detail the formats for the
MSG-to-MSG protocol commands as sent over ARPANET connections.
Only the syntax of the commands is specified here; for a
discussion of the semantics of the MSG-to-MSG protocol see
section 3 of this document.

MSG-to-MSG Formats for the ARPANET
5-1

i mm

tamm

MSG Design Specification 1/^3/76

5.1 General format for MSG-to-MSG nes-apes:

An MSG-to-MSG message is a sequence of 8 bit bytes. The
first two bytes contain the length of tne message in bytes; the
third byte is a command code that identifies an MSG-to-MSG
protocol item; and the remaining bytes contain information
relative to the command.

• length * command * data *

2 1 length - 3

MSG-to-MSG Formats for the ARPANET
5-2

^^^^^^^

MSG Design Specification 1/23/76

5.2. Formats for Messape Components

1 . Process names:

As described i.i Section 2, a process name has four
components which specify a host, a host incarnation number, a
generic process class, and a process instance number. The
representation for process names at the MSG-to-process interface
is :

* host * host * process * count * string *
* * incarnation # * inötance # * * *

2 2 2 1 count

Host is a 16 bit host address. (Whether the host address is an
ARPANET host address or an NSW host address whose correspondence
to an ARPANET host address is defined by a table MSG maintains is
to be decided shortly.) If MSG is modified to allow processes
with no generic names, the null generic name will be represented
by a zero length string.

For a generically addressed message the destination process
name is only partially specified. Either only the generic
process class is specified, or only the host and generic class
are specified in a generically addressed message. The other
components are left un'pecifled. "Unspecified" is a special
value used in generically addressed messages for host, host
incarnation #, and process instance *. Unspecified is
represented by two zero bytes.

When a process name appears as the parameter of an
MSG-to-MSG message, the host component of the name need not be
represented explicitly since it is implicit from the hosts of the
sending and receiving MSGs. There are two representations for
process names a^ Lhe MSG-to-MSG level: normal and compact. The
only difference in the two is the representation of the generic
process class. In the normal represenation the p-eneric class is
represented by a string whereas in the compact form it is
represented by a one byte generic class code. MSG
implementations must be able to deal T.;icn both representations
for process names. The compact representation is defined to
allow for greater transmission efficiency. Use of the reneric
codes is internal to MSG in the sense that the codes never appear
in a process name given by MSG to an MSG process or accepted by
MSG from an MSG process. Generic class codes for the NSW will be
defined in the near future.

MSG-to-MSG Formats for the ARPANET
5-3

MSC Design Specification 1/23/76

Normal Format: count < 128 (5 + count bytes)

* hosl * process * count * string *
* incarnation # * instance # * * *

1 :ount

Compact Format: Generic code >= 128 (5 bytes)

» host process * generic *
* incarnation # * instance # * code *

2 2 1

Generic code = 128 + n (n < 128)
where n = inteper which specifies a generic class
Xi - 0 ~ null (i.e., process has no generic name)

2. Host Incarnation #:

16 bit (2 byte) number.
0 = unspecified (used for generically addressed messages)
1-255 reserved for special use

3. MSG transaction Identifiers (source-id. destination-id)

» MSG id *

16 bit (2 byte) number

MSG-to-MSG Formats for tne ARPANET
5-4

imm^imtmtm

li
MSG Design Specification 1/23/76

4, Alarm code

* acode *

2

16 bit (2 byte) number.

5. Failure/Rejection cedes

* reason *

2

16 bit (2 byte) number.
See descriptions of individual messages for discussion of

specific codes. Values have not yet been assigned, nor are
those codes given necessarily exhaustive.

MSG-to-MSG Formats for the ARPANET

 - HUM

MSG Design Specification 1/23/76

5-3 Identifying Transactions-

In the format specifications that follow all Inter-MSG
messages concerned with inter-process transactions carry the
source and destination process names as well as the MSG source
and destination transaction identifiers. The redundancy provided
by the process names is useful to an MSG in detecting and
recovering from protocol errors or violations resulting from
malfunction of a remote MSG. With the exception of MESS
messages, all protocol messages will fit into a single ARPANET
packet (assuming the compact representation of process names or
generic name.! of a few characters); hence, the cost associated
with the redundancy is not great.

MSG-to-MSG Formats for the ARPANET
5-6

■ mm*

^^^^mm r— —

MSG Design Specification
1/23/76

5.U MSG-to-MSG protocol messages

1. MESS(src-proc, dst-proc, handling, src-id, dst-id, message)

* length * Mfc^sS •* src-id * dst-id * First byte * Handling

2 12 2 1 1

• src-proc * dst-proc * message *

5+j 5+k M

length = 19+j+k+M
,j = # chars in source generic name / 0 if compact format,
k = # chars in destination generic name / 0 if compact

format.
MESS = 8 (10 octal)
Handling = bit flags (numbered 0-7 from left to right)

bit 0 - generically addressed message
bit 1 - sequenced message
bit 2 - synchronization mark on message
bit 3 - immediate decision on delivery (prohibit HOLD)

First byte - Position of first byte of the message (zero is
the position of the first bvte of the length field of the
MSG-to-MSG message)

2. MESS-0K(src-proc, dst-proc, src-id)

* length * MESS-OK * src-id * src-proc * dst-proc *

2 1 2 5+j 5+k

length = 15 + vi-»-k
MESS-OK - 9 (11 octal)

MSG-to-MSG Formats fo- the ARPANET
5-7

11 wiiaMliTl \THnm iiTnimiBi^ ■

MSG Design Specification 1/23/76

3. MESS-REJ(src-proc, dst-proc, src-id, reason)

* lenpth * MESS-REJ * src-id * reason * src-proc * dst-proc *

2 12? 5 + J 54-k

length = 17+J+k
MESS-REJ = 10 (12 octal)
reason = To be specified, but includinp;;

dst-proc unknown
no buffer space
message queue for process full

4. MESS-HOLD(src-proc, dst-proc, src-id, dst-id)

* length * MESS-HOLD * src-id * dit-id * src-proc * dst-proc *

2 12 2 ^ 5-fk

length = 17+j+k
MESS-HOLD = 11 (13 octal)

5. H0LD-0K(src-proc, dst-proc, src-id, dst-id)

* length * HOLD-OK * src-id * dst-id * src-proc * dst-proc *

2 1 2 2 5+j 5+k

length = 17+J+k
HOLD-OK =12(14 octal)

MSG-to-MSG Formats for the AKPANET

iimniaini I ITII in i in - -, r, ^.^.^ ., ^ _: |. ,, t,^^^^,^^. ^ f

MSG Design Specification 1/23/76

6. MESS-CANCEL(src-proc, dst-proc, sro-^d, dst-id, reason)

* lengtli * MESS-CANCEL » src-id * dst-id » reason

2 1 2 2 2

* src-proc * dst-proc *

J+J 5+k

length = 19-M+k
MESS-CAKCEL =13(15 octal)
reason = To be specified, but including;

srj-proc unknown
^c-id unknown
essape rescinded
5rc-proc terminated
no buffer soace

7. XM1T(src-proc, dst-proc, src-id, dst-id)

» lenpth * XMIT * src-id * dst-id *

2 12 2

length = 17+J+k
XMIT = U (16 octal)

AlARMCsrc-proc, dst-pr ;, src-id, acode)

s.^c-p oc * dst-proc *

'5+j 5+k

* length » AL,,

2 1

src-id * acode * src-proc * dst-proc *

2 2 5-M 5 + k

length -- 17 + j+k
ALARM = 16 (20 octal)

MSG-to-MSG Formats for the ARPANET
5-9

MSG Desipn Sped float ion 1/23/76

9. ALAHM-0K(src-proc, dst-proc, src-idN

* length * ALARM-OK * src-id * src-proc * dst-proc *

2 1 2 5+.1 5+k

length = 15+j+k
ALARM-OK = 17 (21 octal)

10. ALARM-REJ(src-proc, dst-proc, src-id, reason)

* length * ALARM-REJ * src-id * reason * src-proc * dst-proc *

2 12 2 5+J 5+k

length = 17+j+k
ALARM-REJ = 18 (22 octal)
reason = To be specified, but including:

dst-proc unknown
dst-proc not acceptinR alarms
alarm already queued for dst-proc

11. CONNECTION-OPENCsrc-proc, dst-proc, src-id, dst-id, conn-id,
type, socket.)

* length * CONN-OPEN * src-id * dst-id * conn-id * type

2 12^22

* socket * src-proc * dst-proc *

4 5+1 5+k

length - 25 + .1+k
CONN-OPEN = 20 (24 octal)
type: 0 - Teletype (TELNET)

bit 0 -»- b^'ze - binary send/receive pair + size
bit 1 + size - binary send -♦■ size

MSG-to-MSG Formats for the ARPANET
5-10

—Ml
—

MSG Design Specification 1/?

bit 2 -♦- size - binary receive + size
socket: 32 bit socket number = N

Teletype N = odd = send socket
N+1 = even = receive socket

Binary send/receive pair (same as Teletype)

12. CONNECTION-CLOSECsrc-proc, dst-proc, src-id, dst-ii, reason)

* length * CONN-CLOSE * src-J ' * dst-id * reason * src-proc

2 1 2 2 2 5+j

* dst-proc *

5+k

length = 19+j+k
CONN-CLOSE = 21 (25 octal)
reason = To be specified, but including:

normal close
src-proc terminated
timeout of open
byte-size mismatch
type misi.iatch

13. CONNECTION-REJECT(src-proc, dst-proc, src-id, dst-id, reason)

* length * CONN-REJ * src-id * dst-id * reason * src-proc

2 1 2 2 2 5 + j

» dst-pr-.. *

5+k

length = 19+j+k

MSG-to-Mrv3 Formats for the ARPANET
5-11

mtaUBmmm -m n-- , —- , -- „^1
F. ^r |r ^

MSG Design Specification 1/23/76

CONN-REJ = 22 (26 octal)
reason = To be specified, but includinp:

dst-pnoc unknown
dst-id unknown
byte-size invalid
type invalid
timeout

14. NOP

» length * NOP »

2 1

length :: 3
NOP = 0 (0 octal)

15. ECHÜ(data byte)

* length * ECHO * data byte *

2 1 1

length = 4
ECHO =1(1 octal)

16. ECHO~REPLY(data byte)

length * ECHO-REPLY * data byte *

1

length = k
ECHO-REPLY = 2(2 octal)

1SG-to-MSG Formats for the ARPANET
5-12

MSG Design Speci n.catiot 1/23/76

17. EXPER.IMENTAL(command, length, data)

* length * EXF * comand * data *

2 1 " N

length = 4+N
EXP = 24 (30 octal)

18. SEND-STATUS(src-proc, dst-proc, src-id)

» length * SEND-STATUS * src-id * src-proc * dst-proc *

2 1 2 5+J 5+k:

length = 15+j+k
SEND-STATUS = 4 (^ octal)

19. STATUS-OK(src-rroc, dst-proc, src-id, status bytes)

* length » STATUS-OK * src-id * src-proc * dst-proc

2 1 2 5-v%i 54k

* status bytes

N

length = 15+j+k+N
STATÜS-0K = 5 (5 octal)
status bytes = (to be defined)

20. STATUS-REJ(src-proc, dst-proc, src-id, reason)

* length * STATUS-REJ * src-id * reason * src-proc * dst-proc *

2 1 2 2 5+j 5+k

length = 17+j+k

MSG-to-MSG Formats for the ARPANET
5-13

MSG Design Specification 1/23/76

STATUS-REJ = 6 (6 octal)
reason = To he specified, but Includinp;

dst-process unknown

21. CLOSEO

* length * CLOSE »

2 1

length - 3
CLOSE = 7 (7 octc)

22. SYNCH(sender's incarnation #, receiver's incarnation //,
version #, data)

ler.gth * SYNCH * sender # * receiver # * version # * data *

2 12 2 2 N

length = 9+N
SYNCH =3(3 octal)
s*-nüer/receiver #'s = Host incarnation #'s = 2 bytes
version // = version of MSG protocol to be used by the sending

MSG = 2 bytes
data = additional synchronization Information (to be defined)

23. PTCL-ERP.(error code, bad message)

* length * PTCL-ERR * error code * bad message *

2 1 2 N

length = 5+N
PTCL-ERR = 25 (31 octal)
error code = To be specified, but including:

command not implemented
command unknown
command syntax er^or

bad message = The Dad MSG-MSG message.

MSG-to-MSG Formats for the ARPAu'KT
5-1^4

■—rtMaM<a^iM|MMMa
1 immtmWM t«TiTi ..,.■, -r-1

MSG Design Specification 1/23/76

5.5 Summary of Commands

Code Command Length
Dec Oct

0 0 NOP 3
1 1 ECHO 4
2 2 ECHO-REPLY 4
3 3 SYNCH 9+N
^4 4 SEND-STATUS 15 + j+k
5 5 STATUS-OK 15+j+k^N
6 6 STATUS-REJ 17+j+k
7 7 CLOSE 3
8 10 MESS 19+j+k
9 11 MESS-OK 15+j+k

10 12 MESS-REJ 17+j+k
11 13 MESS-HOLD 17+j+k
12 U HOLD-OK 17+j^k
13 15 MESS-CANCEL 19+J+k
14 16 XMIT 17+j+k
15 17 reserved
16 20 ALARM 17+j+k
17 21 ALARM-OK 15+j+k
18 22 ALARM-REJ 17+j+k
19 23 reserved
20 24 CONN-OPEN 25+Jvk
21 25 CONN-CLOSE 19+j+k
22 26 CONN-REJ 19+J+k
23 27 reserved
24 30 EXP 4+N
25 31 PTCL-ERR 5+N

j = Extra bytes needed if src-proc name is not in compact format
k = Extra bytes needed if dst-proc name is ^nf in compact format
N = Number of bytes in ciata or messape contained in command.

MSG-to-MSG Formats for the ARPANET
5-15

 —__

