
o

a>

Jti L.O I

ESD-TR-75-368

_cys.
MTR-3105

THE HYBRID PROGRAM MEASUREMENT DEVICE:
DESIGN AND CAPABILITIES

JANUARY 1976

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project No. 572C
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-76-C-0001

AbboaPItt

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

CHARLES JV HARTMAN
Techniques Engineering Division

"» HENRY J> FJDEN, Major, USAF
Program Manager
Techniques Engineering Division

FOR THE COMMANDER

Ua^Js
FRANK J. EMMAj/jBolonel, USAF
Director, Information Systems
Technology Applications Office
Deputy for Command & Management Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-75-368

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

THE HYBRID PROGRAM MEASUREMENT DEVICE:
DESIGN AND CAPABILITIES

S. TYPE OF REPORT A PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MTR-3105
7. AUTHORfs)

D. A. Voorhies

8. CONTRACT OR GRANT NUMBERfs;

F19628-76-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208
Bedford, MA 01730

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Project No. 572C

11. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
Hanscom Air Force Base, Bedford, MA 01731

12. REPORT DATE

JANUARY 1976
13. NUMBER OF PAGES

93
14. MONITORING AGENCY NAME 4 ADDRESSfff dilterent from Controlling Ollice) 15. SECURITY CLASS, (ol thle report)

UNCLASSIFIED
15a. DECLASSIFI CATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION ST ATEMEN T (ol this Repor t)

Approved for public release; distribution unlimited.

J '7. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II dlllerent Irom Report)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side II necessary and identity by block number)

PERFORMANCE MAXIMIZATION
SOFTWARE DEBUGGING
SOFTWARE OPTIMIZATION

20. ABSTRACT (Continue on reverse side II necessary and Identify by block number)

External hardware may be employed to monitor an executing computer program at the
instruction level without interfering with that execution in any way. Software may be
used to control the external hardware, making the measurement process far simpler
and easier to use. The Hybrid Program Measurement Device is useful for program
debugging and optimization. Its capabilities and design are described in this MTR,

DD ,: FORM fifl
AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfHTien Data Entered)

together with its implications and some recommendations for future
work.

UNCLASSIFIED
SECURITY CLASSIF'CATION OF THIS P AGE(When Dele Entered)

ACKNOWLEDGMENT

This report has been prepared by The MITRE Corporation under
Project 572C. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

SECTION I

SECTION II

SECTION III

SECTION IV

INTRODUCTION

DESIGN PHILOSOPHY

USER ENVIRONMENT
DETECTION
REDUCTION LOGIC

Timer
Counters
Buffers

Store Buffer
Grab Buffer

Interrupts
INITIALIZATION SYNTAX
Measurement Specifications
Manipulation Commands
Action Commands
User Assistance

PROGRAM EXECUTION
Results Software
User-Run Programs

SOFTWARE
INITIALIZATION SOFTWARE
EXECUTION SOFTWARE

RERUN
Interrupt Handling

RESULTS SOFTWARE
SUMMARY

Page

6
6

12
13
15
16
16
17
17
18
20
20
21
23
24
24
25
25
27

29
29
32
32
32
33
34

SECTION V HARDWARE
DETECTION
REDUCTION FUNCTIONS
PERIPHERAL INTERFACE

35
36
38
39

SECTION VI FUTURE TRENDS 41

TABLE OF CONTENTS (continued)

SECTION VII

SECTION VIII

APPENDIX I

CONCLUSIONS AND RECOMMENDATIONS
CONCLUSIONS
RECOMMENDATIONS

SUMMARY

SOFTWARE
INITIALIZATION SOFTWARE
DEBUG
COUNT
GRAB
TIME
STORE
HALT
QA
COMOK
DOUBLE
NEWVALS
PA RAM
GETVAL
DEL
ANNOT
MPRINT
MLIST
OCTPRINT
RUN
SETUP
KEEP
USE
GETNAME
NEWCHAR

EXECUTION SOFTWARE
RERUN
MOVEISR
GETSTART
QZ
RESTORE

Page

44
44
45

46

49
49
49
50
50
51
51
51
52
52
53
54
54
55
55
56
56
57
57
58
59
60
60
60
60
61
61
61
64
64
64

TABLE OF CONTENTS (concluded)

Page

RESULTS SOFTWARE 65
DISPLAY 65
INTRO 69
NUMPR 69
ADD10 69
ADDA 70
TODDAY 70
USE 71
BLOCK 71
DOTS 71
0CTDS-0CT2 72
SET832 73
DEC832 73
CPRINT 73
PRINT 73

ERRORS 73

APPENDIX II HARDWARE 75
EVENT DETECTION 75

Addresses 76
Data 77
Device Numbers 77
Descriptor Bits 77
Control Pulses 78
Information Multiplexer 80

Associative Memory 81
Doubling 81

INFORMATION REDUCTION 83
Counters 83
Timer 83
Store Buffer 83
Grab Buffer 84
Halts 85
Interrupt Generator 85

PERIPHERAL INTERFACE 87
Loader 87
Reading 89

CABLE 90
FRONT PANEL 91
MECHANICAL LAYOUT 92

LIST OF ILLUSTRATIONS

Figure Number Page

1 Sample Results Printout 26
2 Initialization Software Architecture 31
3 Sample MLIST Output 58
4 HPMD Software Programs 62
5 Interrupt Software Interactions 63
6 Results Software Architecture 66
7 10-bit Buffer Values 72
8 Detection Logic 79
9 Signal Timing Relationships 82

LIST OF TABLES

Table Number Page

I Parameters 14
II Unique Reduction Functions For Each Group 16
III Grab Buffer Input Information 19
IV Chip and Gate Counts 36
V Reading Addresses 67
VI Descriptor Bits 76
VII Control Pulse Synthesis 80
VIII Loading Addresses 87

SECTION I

INTRODUCTION

The Hybrid Program Measurement Device (HPMD) is a programmable
system which performs instruction-level monitoring of the execution
of a minicomputer program. By combining both hardware and software,
the HPMD provides debugging and optimization capabilities which are
impossible to provide with hardware or software alone. The design
and construction of the HPMD proved the feasibility of the hybrid
hardware-software approach in providing an effective and powerful
monitoring tool. The implementation of the device with a
minicomputer not designed to be monitored in such a manner was quite
difficult; discovering the nature and extent of such difficulties
were important results of this effort.

Program measurement has traditionally been done by software
tools alone; hardware has been used primarily for system-level
measurements. With an HPMD, however, programmable hardware may be
used to aid instruction-level debugging and optimization. In this
context, "measurement" is meant in the broad sense of obtaining
information which describes or defines the execution of a program.

The HPMD was implemented in conjunction with a Data General
NOVA 600 minicomputer. The NOVA's memory and I/O buses are
monitored using an associative memory to detect "events" such as the
execution of a particular instruction or a data word being
initialized. Many different events or combinations of events can be
detected and used to control timing, counting, data storage, and
breakpoint capabilities. Timing frequently used routines or the
intervals between the occurrence of events can be valuable in
optimizing execution speed or searching for a system problem which
is time-dependent. The counters can be used to count the number of
times a piece of code executes or the frequency of other specific
events. Buffers and breakpoints allow access to otherwise obscure
execution data which can be the basis for effective debugging.

The HPMD software runs before and after the user's program to
initialize the hardware and to print the results. The software was
written in ALGOL and assembly language, and it allows a
straightforward yet more sophisticated human interface.
Initialization is accomplished through interpretation of an
interactive syntax designed specifically for this task. The results
software performs data conversion and formatting chores to make the
collected data more useful.

The scope of this document has been limited to a discussion of
the nature of the design and what has been learned from its
construction. The details of software code and hardware wiring are
omitted as irrelevant to documenting what was done and what was
learned as these may apply to future work. Instead, detailed
functional descriptions are provided in the appendices which discuss
the tasks and responsibilities of each software routine and hardware
section. These functional descriptions, together with the working
copy of the software listings and schematics, are adequate for
extensions to the HPMD as well as its repair and maintenance.

The philosophy and considerations which went into the design
are discussed first, since they focus the rationale behind the
design itself. Next, the HPMD is described in terms of its
appearance to an on-line user. This description defines the
capabilities of the system and the syntax used to interact with the
software. Brief summaries of both the software and the hardware
then follow, which give overviews of the approaches used to
implement the capabilities previously defined. The final sections
discuss what has been learned from this effort and what conclusions
can be drawn.

SECTION II

DESIGN PHILOSOPHY

The HPMD is intended as an application of the combination of
hardware and software to instruction-level monitoring. It must be
effective both as a debugging and optimization tool and as an
experiment in hardware-assisted monitoring. Six criteria of
effectiveness were used in its design.

First of all, the device must be easy to use. Time spent
running the device itself is time directly added to the problem
solution, and is frustrating and distracting for the user. The
easier the HPMD is to use, the wider the range of problems to which
it can properly be applied. More difficult devices are often
considered "tools of last resort". A simple man-machine interface
is needed to minimize procedure-related errors while setting up
measurements or interpreting them. Such errors waste time or, if
undiscovered, may ruin much work; they are also distracting to the
problem-solver and tend to discourage further use of the device.

Secondly, the man-machine interface must be easy to learn; this
is a fundamentally different requirement than to be easy to use.
The interface must be clear and uncluttered, and there must be an
easy-to-grasp relationship between commands and their effects. A
minimum of unique formats and options helps, as does a resistance to
catastrophe due to a mistyped character. Brief explanations must be
available on demand to aid in learning and to clarify any
misunderstandings.

Thirdly, to aid in learning and using the HPMD, the internal
architecture of the device, with all its complexity and quirks,
should be invisible to the user. In this way, the user can benefit
from complex and powerful hardware yet need understand only the
services it provides. This "black box" approach makes a hardware
device appear much less imposing to a software-oriented programmer,
and allows that programmer to focus his attention purely on the
problem at hand.

Fourthly, the HPMD must not interfere with the operation of the
computer it is monitoring. Conventional software debugging or
performance measuring tools use the same computer resources as the
program being measured. Unavoidably, the measurements interfere
with the program operation, slowing it down significantly or
aggravating system bottlenecks. Interference can be avoided if the
HPMD does not share computer resources concurrently with the user's

program. The sharing of resources is a complicated process, and the
exact nature of many types of interference is rarely known;
certainty that some subtle effect is not distorting the measurements
can only be achieved if there are no such effects in operation.

A non-interfering tool should be applied where interference
would clearly render the results worthless. Critical timing
relationships, a source of some of the most difficult systems
problems, cannot be measured if the tool slows part of the system.
Furthermore, the effectiveness of an interfering tool is curtailed
if the speed of a lengthy user process is severly degraded. An
interpretive execution scheme running programs at a hundredth of
their original speed may be fine for short programs, but for finding
once-a-day system bugs, it is useless. Only a tool which allows the
system to run at full speed is effective in dealing with such an
elusive problem.

The last two criteria of effectiveness for the HPMD are related
to the experimental use of the HPMD in exploring hardware-assisted
program measurement concepts. For this purpose, the HPMD should
have generalized capabilities, rather than unique or obscure
measurement capabilities with limited applicability. By flexibly
applying general capabilities, a large number of meaningful
instruction-level measurements can be available for evaluation.
Exotic capabilities which are useable in only a few situations prove
very little about the general concept.

Finally, if the results of such an experiment are to be widely
applicable, the design must be easy to transfer to another machine
or another environment. The less modification needed to transfer,
the more general the solution. Where a device is totally dedicated
to and dependent on the unique features of a particular computer,
the knowledge gained from its use is unlikely to apply to different
computers. If, on the other hand, the device monitors only those
elements of a computer which are common to many designs, such as
instruction addresses or I/O data, then whatever knowledge is gained
should apply just as widely. Furthermore, if it is necessary to
move the HPMD to another machine, the task is far less difficult;
only a new interface is required rather than a redesign of the
entire HPMD.

These six criteria: ease of use and of learning, invisibility
of the architecture, lack of interference, generalized capabilities,
and transferability, were important parts of the HPMD design
philosophy. Complexity is also a major factor. The complexity
needed to increase effectiveness also increases cost, errors, and
countless problems in definition, application, and documentation for

10

such an effort. There is a delicate balance between effectiveness
and complexity which must be considered in designing each feature of
the HPMD hardware and software.

11

SECTION III

USER ENVIRONMENT

The physical equipment and logical operations with which the
user interacts while making any program measurements can be defined
as the user environment. Within this environment a programmer will
use the HPMD to debug or optimize a computer program, and therefore,
this user environment should be customized for these tasks as much
as possible to make them efficient and effective.

There are two fundamental approaches to specifying the
measurement of computer programs before execution begins. One is to
save all values or occurrences of a particular event (each
instruction, all I/O, all interrupts, etc.). Although this approach
requires vast storage and its results can take a long time to
peruse, it is an "open-minded" approach which makes no assumptions
about what will be found. Alternatively, by making assumptions
beforehand, the information gathered can be limited to that which is
related to the suspected problem. Less information need be gathered
and much less time will be needed to ferret out evidence of a
program bug. These assumptions are less dangerous than many made
during debugging because they are explicitly stated while specifying
the measurements.

The first approach relies on powerful information reduction and
storage capabilities; the second relies on flexible and powerful
detection logic to resolve events of interest from all others. As
hardware becomes less expensive, the first approach may be more
useful for debugging. For all but the smallest programs, however,
avoiding interference dictates using high-speed (equal to the CPU)
storage media for saving data, and these media are currently quite
expensive. The second approach, including both detection and
reduction, is far less costly (though far more complex), and can
handle a wider range of problems. It was chosen as the basic
architectural approach for the HPMD. As a result, the user must
provide considerable initialization information in order to specify
the conditions under which measurements are to be made as well as
the nature of the measurements themselves. It is for these
interactions that the user environment is optimized.

Physically, the environment consists of a single workstation,
from which all the operations necessary for debugging and
optimization can be controlled. These include the editing,
assembling, and execution of the user's program as well as the
specification of HPMD measurements. Since the selective approach to

12

program measurement implies the entry of a large amount of
information by the user, the use of the system console terminal is
ideal. Its CRT and keyboard allow rapid interactions involving
highly-detailed information. The console terminal, together with
the line printer used for printing the measurement results and the
front panel of the NOVA which is visible from the operator's chair,
are useful for both the basic programming operations and for using
the HPMD.

The logical operations necessary to control the HPMD can make
all the difference in the usefulness and effectiveness of making
measurements. The design philosophy dictates that such operations
must be easy to learn and use, not require an understanding of the
HPMD internal architecture, and allow generalized measurement
capabilities. These qualities are embodied in a concise syntax for
specifying the two basic functions of the device's measurements:
event detection and information reduction. This syntax allows
control of both the detection of important program events and the
subsequent reduction of the execution information. The results
software then can obtain and output the data gathered by this
selective measurement process. The initialization syntax and
results software (DEBUG and DISPLAY) are the two major HPMD programs
which the user may run. Two other programs (RERUN and RESTORE) will
be discussed later.

The selective approach is applicable to most debugging
measurements. Clues from an earlier run usually point to a specific
area in a program which must be investigated, and the programmer
usually knows what to check first. The selective approach limits
the measurements to information relevant to the problem, leaning
heavily on the power and resolution of the detection logic.

Sophisticated detection is an unknown area, and if the HPMD is
to be a worthwhile workshop for exploring such unknowns, it must
have flexible and powerful detection logic. In the final design,
more than half of the hardware and software is involved in
specifying and performing detection functions. The subsequent
reduction functions, although they actually gather the information,
require little information to initialize and less hardware to
implement.

DETECTION

The hardware detection logic of the HPMD compares instruction-
level "parameters" with anticipated values, watching for an
equality. The parameters (addresses, data, or device numbers — see

13

Table I) are fundamental to program execution and frequently
associated with bugs. Equality between the parameter and its
anticipated values is the only relationship which can be detected;
hence an associative memory can be used, greatly simplifying the
hardware.

Table I

Parameters

Parameter Mnemonic Meaning

0 INS Instruction
1 OPR Operand
2 OPL Operand if Read
3 OPS Operand if Store
4 DI I/O Data if Input
5 DO I/O Data if Output
6 IA Instruction Address
7 OPA Operand Address
8 OAL Operand Address if Load
9 OAS Operand Address if Store
10 DCA Data Channel Access Address
11 AST Address if Any Store
12 INT Interrupting Device #
13 DV# I/O Device #
14 IN# Input Device #
15 0U# Output Device #

The detection comparisons are divided into eight groups, each
associated with a parameter. Within each group, the selected
parameter is compared with from one to four different anticipated
values. If a parameter matches any of those values, the match
constitutes a program "event" for that group. The same parameter
can be compared in several different groups, but since the groups
have varying reduction functions associated with them, this may or
may not be equivalent to comparing a parameter with 8, 12, 16...
etc., anticipated values.

The selection of any one of 16 parameters and its comparison
with up to four numbers, repeated for each of 8 groups, provides an
extremely flexible and versatile detection capability. Its power is
increased by the ability to AND together different groups. The
results of the four comparisons of group #1 can be ANDed, one by

14

one, with those of group #5. This double detection operation is
possible in determining the events for groups #1-#4. Requiring two
normal events to coincide before a program event is detected is
excellent for detecting a particular variable (Operand Address if
Store) becoming a particular value (Operand if Store), or a specific
character, such as an EOF (I/O data if Input) being read from a
given device (Device # if Input). By optionally combining the
groups, the same (expensive) associative memory can be used in
different modes to allow single or double comparisons. This
doubling option can be selected on a group-by-group basis; for
example, #1 and #5 can be ANDed, comparison by comparison, to detect
group #1's program event, while groups #2, #3, #4, #6, #7, and #8
are run in the single comparison mode.

The parameters chosen are common to most computers based on a
von Neumann architecture. Hence, the capabilities of the HPMD are
generalized and lessons learned from it can be widely applied. The
parameters are also simple and comprehensible for a programmer,
since they are closely related to the actions of the program as well
as to the machine. This relationship avoids the mental "switching-
gears" which would be necessary if the HPMD forced the programmer to
dwell on machine-level considerations during program debugging.

REDUCTION LOGIC

The HPMD provides five forms of reduction logic. A timer and
several counters are controlled by events alone, two buffers save
program parameters upon or between events, and the HPMD can issue an
interrupt to halt the program upon any event. Each of the eight
detection groups has assigned to it a "unique function" (timer,
counters, buffers); alternatively, each can cause the interrupt.
Thus if the timer and all the counters and buffers are used, there
can be no halting interrupt. Conversely, if eight events are set to
cause interrupts, no other measurements are possible. Combinations
such as the timer and several interrupts are allowed. Note that
detection using the doubling mode rules out the use of the "unique
function" for the group paired with the one being doubled. The
limits of various combinations of single and double detections
driving unique functions and halts will become clearer as the
assignment of the unique functions to each detection group is
explained (see Table II)

15

Table II

Unique Reduction Functions For Each Group

Detection Group Reduction Function

1 Start Timer
2 Stop Timer
3 Enable STORE Buffer
4 Disable STORE Buffer
5 Increment Counter #1
6 Increment Counter #2
7 Increment Counter #3
8 Trigger GRAB Buffer

Timer

The first two detection groups control the timer; group #1 turns
it on, and group #2 turns it off. The timer, which can be
repeatedly started and stopped to accumulate time, is a 30-bit
counter driven at 5 MHz. A maximum time of 214.7483648 seconds can
be measured with a resolution of 200 nsec., fine enough to notice
the results of any change in the coding for the optimization of
execution time. Longer periods can be measured, with the same
precision, by determining the number of times that the 214.7483648
second counter overflows.

Counters

Groups #5, #6, and #7 each increment a counter upon detecting
their program events. The counters are 20 bits long, providing
maximum counts of 1,048,575 before wrapping around to zero.

Together, the timer and counters represent powerful tools for
optimization. The counters can determine the frequency of execution
of instructions, blocks of code, routines, or even whole programs.
The timer can measure the time spent in various parts of a program
or system. Together, they can determine the average execution time
for any code or routine, by measuring the total time spent within it
and the number of times it was executed. Hence, one can measure the
changes in execution time resulting from different coding.

16

Buffers

The remaining detection groups control the two buffers within
the HPMD (the STORE buffer and the GRAB buffer). These buffers
implement two different approaches to saving program data; it was
unclear which would be more useful, so both were included in the
HPMD for evaluation. Having at least two buffers within any program
measurement device is advantageous, since both addresses and data
may be saved simultaneously. Relationships between the addresses
and data can then be discerned.

STORE Buffer

The STORE buffer, which saves each consecutive value of a
selected program parameter, is enabled and disabled by detection
groups #3 and #H. The buffer itself holds 256 20-bit values. These
20 bits include a 16-bit parameter (as in Table I) and 4 extra bits.
The extra bits tell whether the value saved originated with the CPU
or the data channel (important for the AST parameter), whether it
was a load/input or a store/output operation (important for OPA,
DCA, OPR or DV#), and whether the GRAB buffer saved any information
during the same memory cycle. These extra bits, under some
circumstances, help the programmer identify the stored information.
For example, if a location is being wiped out, it is necessary to
know whether the CPU or the data channel is responsible.

The STORE buffer's operation can be modified by several control
options specified by the programmer. The buffer can be frozen when
it is full, preserving the first 256 values it received.
Alternatively, the earlier values can be lost as more come in,
making only the most recent 256 values available. When the buffer
becomes full, an interrupt can be issued stopping the program and
allowing the current 256 values to be printed; later, the program
can resume capturing another 256 values, etc. (The interrupt
capability will be more fully discussed later.)

Another option allows the buffer to be initially running or
initially disabled. Finally, since the STORE buffer can be stopped
and restarted repeatedly, an option exists to inhibit this
restarting capability. The values of a parameter can be saved
between the first two occurrences of an event, and subsequent passes
between those events will not reenable the buffer. These four
options allow the programmer to manipulate the gathering of
information to best suit the application.

The STORE buffer has three major uses: historical,
statistical, and detective. The historical use is the most

17

important; by saving consecutive values of a parameter, such as IA,
a trace of the program behavior between particular events can be
obtained. By saving 256 values of a parameter, a statistical data
base can be built up, especially over several runs. For example,
interrupt, data channel, or I/O activity can be observed and the
percentages of that activity caused by the different devices can be
discovered. Finally, examples of instructions which modify a core
location or perform I/O can be used in tracking down a mysterious
program bug.

GRAB Buffer

Whereas the STORE buffer saves every value of a parameter
between two events, the GRAB buffer saves the value of certain
parameters only upon detection of an event. Thus the programmer can
determine the connection between a parameter and an event; if a
location is altered, what value is stored into it?

The GRAB buffer also has several options which the programmer
specifies when the measurements are selected. Like the STORE
buffer, it can be frozen when full if desired, and an interrupt may
also be initiated. Another option couples the GRAB buffer to the
STORE buffer so that they are enabled and disabled by the same two
events (detection groups #3 and #4). In this way, if the STORE
buffer is enabled only during a particular block of code, the GRAB
buffer will gather information only within that block. Hence the
selectivity of the HPMD buffers is increased by limiting the scope
of the measurement to only the particular area or areas of interest.

The information "grabbed" upon an event by the GRAB buffer is
not the Table I parameters, as with the STORE buffer, because the
relevant parameter values are often unavailable. Instead, the
information saved by the GRAB buffer consists primarily of the
"current" address, data, or device number. Table III shows the
information available for each option and type of event. To provide
more power for the programmer, the instruction's address (IA) is
temporarily saved so as to provide a fourth option during an Execute
cycle event. This allows, for example, the "grabbing" of the IA
upon a subsequent operand store into a particular location, which
results in the GRAB buffer filling with the address of each
instruction which modifies a memory location.

18

Table III

Grab Buffer Input Information

Type of Host Computer Action

Instruction Fetch

Execute

Grab Buffer Input Selection
Address Data Dev. // IA

IA

I/O

Data Channel

OPA

IA

DC A

INS Most
Recent
DV#

IA

OPR Most IA
Recent
DV#

DI DV# IA
DO

Data Most Most
Trans- Recent Recent
ferred DV# IA

Interrupt Acknowledge IA INS INT IA

It should be noted that some combinations of options and events
are often meaningless, but since under some circumstances they may
be useful, they are not prohibited. For example, "grabbing" the
most recent device number upon a non-1/0 event would usually be
irrelevant.

By selecting the data option upon an event involving a specific
DCA, the data channel data, a piece of information not otherwise
available, may be grabbed. In designing the HPMD to be effective,
this information was judged less useful in specifying events than
the sixteen program parameters shown in Table I.

The GRAB buffer is useful for gathering historical and
statistical data similar to that gathered by the STORE buffer. The
basic difference is that the STORE buffer information is closely
associated with a parameter alone, whereas the GRAB buffer reveals
the relationship between a parameter and an event. It is,
therefore, even more useful for uncovering examples of a mysterious
occurrence; upon an event, the buffer can record the instruction,

19

address, or device number, etc., which indicates the cause or effect
of the event itself.

Interrupts

The interrupt capability is a simple but powerful tool; upon an
event, the program can be stopped. For this reason, any detection
group not otherwise used can be allowed to trigger an interrupt, as
can a full buffer. The interrupt itself is the same as from any I/O
device with two differences: it cannot be masked out, and it works
even though CPU interrupts are disabled.

The interrupt is very useful as a breakpoint; one may execute
part of the program and then see if the error has occurred yet.
Obscure bugs may be uncovered by subdividing the program into
smaller and smaller pieces or a portion of the execution may be
carefully examined. Breakpoints are basic tools whose usefulness
have been proven in countless debugging systems.

By combining the interrupt capability with the other reduction
functions, especially the buffers, the effectiveness of these other
functions is greatly increased. Breakpoints simply allow
examination of the current program state at the breakpoint; the
interrupt and buffers combined allow the examination of recent
program actions leading up to the breakpoint. This can be extremely
useful if the event causing the interrupt is associated with the
effect of some program bug. The cause of an event can often be
revealed by displaying the program path or other behavior before
that event.

As with most I/O interrupts, two or three instructions execute
before the program stops. Only by designing the original CPU
hardware or firmware to handle interrupts immediately could a true
"halting" of the program be achieved without subsequent instructions
being executed.

INITIALIZATION SYNTAX

There are four HPMD software programs which the user can run,
but only DEBUG is used frequently. The DEBUG program is by far the
largest and most complex part of the HPMD software, and is the only
one which requests much input from the user. Its function is to
specify measurements and carry them out. It therefore supports an
interactive syntax which allows the initialization of the entire
HPMD hardware while keeping the user environment simple and
comprehensible.

20

The syntax commands can be thought of as divided into four
catagories: specification, manipulation, actions, and assistance.
The specification commands correspond to the reduction functions:
TIME, COUNT, STORE, GRAB, and HALT. To manipulate the current
measurement selections, DELETE, PRINT, ANNOTATE, KEEP, and USE are
available. Two actions are possible: QUIT and RUN, and for
assistance in using the syntax, line feed, "?", and "!" have special
meanings.

A feature which is noticed immediately makes the syntax as
quick and easy to use as possible: the user need type only the
minimum information necessary to define his command or data
uniquely. For example, only the first letter of each command must
be typed by the user; the rest of the word or phrase is added
immediately by the software. The result is a listing of the
interaction which reads easily yet does not require much typing by
the user. In the examples which follow later, the characters typed
by the user are capitalized and underlined and those generated by
the software are not.

Measurement Specifications

To describe the syntax, a few definitions are needed:

Parameter: any one of the sixteen aspects of program
behavior listed in Table I.

Value: an unsigned octal number, 0-177777.

Event: the description of an equality between a
parameter and from one to four values, with
the values delimited by slashes.

Type: The type of information to be stored in the GRAB
buffer, indicated by an "A","D","#", or "I"
for Address, Data, Device Number, or Instruction
Address, respectively.

Examples of events are: IA = 2000/2053/104 and DV£ = JJ.. These
events define a detection logic group's task, and are thus used in
the syntax for each of the five measurement-specification commands.
Events by themselves are sufficient to define the nature of the
halt, timer, and counter measurements; the buffers must also be
provided the type of information to save. The STORE buffer must be
given a parameter to store, and the GRAB buffer is given the "type"
of information. The formal definition and examples of each
measurement specification follow.

21

Time from (EVENT)
until (EVENT)

(example: Time from IA = 401/407
until IA = 423)

Count if (EVENT)

(example: Count if IN£ = $±)

Halt if (EVENT)

(example: Halt if OPS = 16503)

Store (PARAMETER) from (EVENT)
until (EVENT)

(example: Store OPR from IA r 4061
" until IA = 4120)

Grab (TYPE) if (EVENT)

(example: Grab £ if DI = _1,5_)

These definitions and examples do not include the possibility
of doubling the Time, Store, or Halt commands. If (EVENT) is
expanded to mean either

"(PARAMETER) = (VALUE(s))"

or

"Both (PARAMETER) = (VALUE(s))

and (PARAMETER) = (VALUE(s))"

for those commands which allow doubling, then the previous command
definitions are complete.

Doubling Examples:

Halt if Both DV£ = 20/21
and DI = 42104/2347/7777

22

Store INS from Both OPR = 4
and OAS = 3047

until Both OPR = 1
and OAS = 3047

Store LA from IA = 2031
until Both IN£ = 21

and DI = 15/12/177

Time from Both OPR = 177776/177777
and OAS = 3016

until IA = 3070

Manipulation Commands

Manipulation of the measurement specifications which are being
held within the initialization software is possible by using the
p_elete, £rint, Annotate, Keep, or Use commands. Delete allows one
to expunge from the current list of measurements to be performed any
one or all of them. Simply typing the "])" for "Delete" and the
first letter of the measurement ("T", "C", "S", "G", or "H") is all
that is usually needed to eliminate that specification. If "A." is
typed, all the current specifications are deleted. If the same type
of measurement has been specified more than once, a number must also
be entered to identify the one to be deleted. The specifications
are numbered in the order of entry, which is also the order in which
they are printed by a Print command or as part of the results
printout.

The £rint command asks for a "T" or "L" to indicate the
terminal or the line printer. The Annotate command allows a large
amount of description to be entered and saved with the current
measurement specification. Any previous annotation is replaced.
Lines of input may be typed as desired, terminated by two
consecutive carriage returns. Keep and Use save and recall the
current measurement specifications on the disk, allowing several
sets of specifications to be maintained simultaneously. These
commands require a file name to indicate where to put or find the
measurements.

23

Action Commands

Two of the commands, £uit and Run, end the execution of DEBUG.
QUIT forces the current measurement specifications, if any, into a
disk file for reloading the next time DEBUG is entered; it is useful
for building up and saving (with "Keep") several sets of
specifications without using any immediately. Run loads the HPMD
hardware with the current measurement specifications and then
executes the user's program. These specifications are also saved on
disk, as with the £uit command. The Run command therefore starts
the measurement process with the hardware.

User Assistance

At any point in the syntax, typing "?." obtains a concise
explanation of what information is desired by the software. Typing
"J_" obtains a listing of valid next characters to continue the
current measurement specification; the "!" will be discussed in more
detail later. A line feed aborts the current measurement
specification and a "....NOT DONE" is echoed. No matter where one
is in entering a command, if the command is not complete, a line
feed insures it is not added to the current measurements.

The syntax is a concise means of entering complex information
and relationships. To keep it as easy to learn and use as possible,
a feature was added which in effect eliminates the possibility of
syntax errors. At any point during the interactions between the
user and the HPMD software, only a limited number of options for the
user exist. The next character which may be typed in most contexts
is usually one of ten or fewer. Characters whose entry would be
"illegal" (meaningless in the context of the previous characters)
are not accepted into the command and are not echoed to the user.
Therefore, typing syntax errors is impossible, and no error messages
are ever required.

This interaction with the keyboard is a dramatic change for the
user first experiencing it, but is not as frustrating or confusing
as one might expect. Users learn a syntax new to them chiefly by
trial and error. With the type of interaction described above, the
user gets immediate and non-destructive feedback from the software,
because an illegal character, whether caused by a misunderstanding
or a slip of the finger, is not echoed on the terminal.
Furthermore, the previous characters remain undisturbed, so the line
need not be reentered, reducing frustration and making the trial and
error learning process faster and less painful.

24

The usefulness of the "J_" command now becomes clear; the
characters listed when a "J_" is entered correspond to the "legal"
keys. The "J.","2"» and line feed are always legal. The "J_" can be
used to resolve any confusion as to the demands of the syntax at
each point. The "J?" provides a fuller explanation, to both teach
the user having little experience, and to remind more experienced
users of such things as a parameter mnemonic.

PROGRAM EXECUTION

All these commands are handled by DEBUG, which is executed from
the console. To measure a particular program (via the RUN command),
the program's name must be typed after the "DEBUG", complete with
all the parameters normally used when executing the program. For
example, to measure the assembler which is itself assembling another
program named XYZ, the programmer might type "DEBUG ASM XYZ".

Results Software

The results software runs under three circumstances: upon an
interrupt, upon completion of the user program, and upon direct
command by the programmer. Its purpose is first to read in the
time, counts, and buffers' contents from the HPMD, and then to
convert, format, and list them.

The results printout contains many types of information
relevant to the particular measurement (see Figure 1). First is a
distinctive title and pattern at the top of the page which makes it
easy to discern from all other line printer output. The time and
day are listed, based on the system's internal clock; since the time
is given to the second, and the results software takes more than a
second to run, the time and day are a unique identifier for each
run. The annotation is then printed, if one was entered with the
measurement specifications. The annotation helps identify the
printout in terms of the programmer's purpose in making the
measurement. Next, the specifications of the measurements
themselves are listed. This is the same listing that the
initialization software provides if a "Print measurements at
Lineprinter" command is given.

These pieces of information, although not gathered by the HPMD
hardware, are most useful in keeping track of that data. It is a
disadvantage of computer printouts that they all look alike: the
numbers may vary, but formats frequently remain the same. Time,
date, comments, and specifications all help distinguish each results
printout.

25

000000990000000000000990000000
0 PROGRAM MEASUREMENT DEVICE 0
00990990000000000099999090000&

22151114 01/30/75

COUNT TIMES EXECUTED C0NE3.

TIME FROM • 000436 / 000436 / 000436 / 0100436
UNTIL • 000437 / 000437 / 000437 / 000437

COUNT IF • 000436 / 000436 / 000436 / 000436
STORE IA FROM • 000493 / 000453 / 000453 / 0(10453

UNTIL • 000456 / 000456 / 000456 / 000456
GRAB A IF • 000433 / 000454 / 000455 / t> to e 4 • «S

TIME * 210.5464400 SECONDS

COUNT • 1046513

STORE BUFFERl

130011 »SC 130011 • SO 130011 • SD 130011*30 130011+SD 130011*80 130fc l + SP 130011- • SD
1300U •80 190011- • SD 130011 • SO 130011+SD 130011*30 1300U + SO 130* 1 + SD 131011- • SO

130011 •6D 130011 • SD 130011 • SD 130011+SD 1J0011*SD 130011+5D 1300 1 + 30 190011- • 3D

130011 • SD 130011 • SD 130011 • SO 130011*30 130011*50 130U11+SD 1300 1 + SD 130011- • SD
130011 • so 130011 • SD 130011 • SD 130011*90 130011*SD 130011+SD 1300 ll + SO 130011 • SO
130011 • SD 130011 • 3D 130011 • 80 130011*SO 1901M1+SD 130311*80 1300 1 + SD 190011" • so
130011 • 3D 130011 • SO 130011 • 3D 130011*80 130011*30 130011+SD 1300 1+SD 190011- • SD
130011 • SD 130011- • SD 130011 • 3D 130011+SD 130011+SD 130011+SD 1300 1 + SD 190011- • sn
130011 •SO 190011- • SD 130011 • 8D 130011*30 13001t*8D 130011+SD 1300 Ll + SD 190011- • SD
130011 • SO 130011 • SD 130011 • SO 130011*50 130011*30 130011+SD 1300 1 + 30 190011- • sc
130011 • SO 130011 • SO 130011 • SD 130011*80 130011+30 130011*30 1300 1+SD 190011- • SO
130011 •so 130011- • SO 130011 • SD 130011+SD 130011*80 130011*90 1300 1+SD 190011- •3D
130611 • SD 130011- • SD 130011 • 3D 130011*30 1300ll*SC 130311*50 1300 1*10 190011- • SO
130011< • SO 130011 • SD 130011 • SD 130011*30 130011+SD 130311*30 1300 1 + SD 130011- • sc
130011' • SD 190011- • SD 130011 • SD 130011+SD 130011*SD 130011*30 1300! 1+SO 190011- • SO
130011 • 80 190011- • SD 130011 • SD 130011*30 130011*80 13*811*SD 1300 1 + SD 1 300 if- • sc
130011. >SD 130011- • SD 130011 • SD 130011*80 130011*80 130011+SD 19001 1+SD 190011- •sc
130011- • SD 130011- • SD 130011 • SD 130011.SD 130011*30 130011+SD 13001 1+SD 130011- • 60
130011- • SO 190011- • 80 130011 • SD 130011+SD 130011*80 130011+SD 1300 1+SD 190011- • 80
130011 • SD 130011 • SO 130011 • 80 130011+90 130011*3D 130011*SD 1300 1+SO 190011- • SO
130011 • SD 130011 • SD 130011 • 3D 130011*30 130011*80 130011+SD 1300 1+SD 190011- • SD

130011 • SD 130011- • 3D 130011 • 80 13001t*SO 130011*8D 130011+SD 1300 1 + 50 130011- • 80
130011- • SO 130011- • 3D 130011 • SD 130011*30 130011*50 130011+80 1300! 1 + SD 190011- • 80
130011- • 80 130011- • 3D 130011 • SD 130011*30 130011*50 130011+SD 1300 1+SD 130011- • 80
130011- • SD 130011- • SO 130011 • SD 130011*30 130011*5D 130011+SD 1300 1+SD 190011- • SD
130011- • SD 130011- • 3D 130011 • SO 13001l*SD 130011*30 190011+80 1900 1 + 80 130011- • SO
130011- • ID 130011- • 30 130011 • 80 130011.3D 130011*SD 130011+80 13001 1+SD 19B011' • 3D

Fieure 1. Sample Results Printout

26

The remainder of the printout provides the data gathered. Each
type of measurement is shown only if specified. For example, if
only two counters and the GRAB buffer were specified by the
programmer using the initialization software, then no mention is
made in the results printout of the timer, the third counter, or the
STORE buffer. This makes the printout shorter and simpler, and
clarifies the difference between a zero time and an unused timer, or
an empty buffer and an unused one. The counters are not numbered,
either in the specifications or in the results; the order of the
counters is assumed to be the same for each.

The time measurement is a 10 digit decimal number labelled as
seconds. The counts are 7-digit decimal numbers. The buffers are
listed as arrays of 256 entries, in 32 rows of 8 columns. Each
entry consists of the value saved, given as a 6-digit unsigned octal
number, followed by three modifying characters. The first may be a
"+": if present, it means the other buffer saved a value on the
same memory cycle. This indication can be very useful in relating
the information in one buffer with that in the other. Next may be
an "S" indicating the direction of information flow. If present, it
indicates that the value was transferred out of the CPU, as in a
Store operation or a Data-Out instruction. If there is no "S", then
the information flowed into the CPU, as in a Read or Data-in
instruction. This is useful when GRABbing the IA upon the accessing
of a location (OPA). All instructions which reference that location
would be listed, with the "S" indicating which stored into it.
Lastly, a "D" may be shown to indicate that this value came from the
data channel rather than the CPU. When searching for the reason a
table in core is being overwritten, the AST parameter, if stored,
will show the actual overwriting. The "D" character will then
reveal whether the data channel or the CPU was responsible.

User-Run Programs

The HPMD software includes four programs which can be run by
the user. The largest and most important, "DEBUG", has already been
discussed. Next largest is the results software, which may be run
by typing "DISPLAY". Since it is run automatically when the program
completes or reaches a breakpoint, the user will not normally need
to run it manually. If, however, the program crashes the system or
must be cancelled by the user through the system console, the
"DISPLAY" program can be run to print the measurements on the line
printer.

"RERUN", as its name implies, reloads the HPMD hardware and
then executes the user program again. This is a shortcut for
reentering "DEBUG" and issuing the "RUN" command. It saves time

27

when the same program is run repeatedly with the identical
measurements each time, which is often the case while a program is
being tested.

The final program the user can run restores NOVA interrupt
processing to normal if the user program is aborted. To implement
breakpoints, the system interrupt vector is altered for the duration
of the user's program. When the user's program completes, the
altered vector is restored. Restoration must be performed manually
by running RESTORE if there is an abnormal completion.

28

SECTION IV

SOFTWARE

The HPMD software performs four key functions: obtaining the
measurement specifications, starting the actual measurements,
handling breakpoints, and printing the results. These functions are
implemented by five programs: DEBUG, RERUN, RESTORE, and DISPLAY
which are "visible" to the user, and QZ, which is not. Upon
specifying the "Run" command in DEBUG, the remaining four programs
are automatically executed to handle the measurement process. As
such, they could be considered parts of a single, large program, but
their separation allows them to be invoked manually to provide the
convenience of "RERUN" and the recovery capabilities of "RESTORE"
and "DISPLAY".

Few aspects of the software do not manifest themselves at the
user environment level. Therefore, a simplified functional
description of how the HPMD programs affect the user environment has
already been presented. The implementation of these functions was a
straightforward task, and although the initialization software is
quite large, at no point does the HPMD software become overly
complex. Major difficulties were encountered with the systems
programming to allow interrupt handling, but these were due to the
necessity of exploring countless schemes which used or misused the
operating system. Due to a lack of documentation in several areas,
trial and error experimentation was needed to determine flaws in
many simple approaches. Thus the final scheme is not particularly
complex despite requiring a great deal of time to develop.

INITIALIZATION SOFTWARE

DEBUG is an interactive syntax interpreter which also prepares
the resulting measurement specifications for loading into the
hardware by RERUN. The two programs communicate via a disk file,
$HPMD.MS, where DEBUG puts the specifications, annotation, and user
program name. That program name is then read by RERUN and executed,
since DEBUG has already performed the bulk of the initialization
process.

The primary purpose of the initialization software is to
convert the measurement specifications from the user syntax to the
radically different hardware-loadable table. A simple command, such
as the user typing "H", "IA", and "2047", is expanded into "HALT

29

PROGRAM IF IA = 2047", providing a readable record. Only after all
the commands are entered can a detection group be assigned to handle
this command. The assignment includes four associative memory
locations (all filled with 2047), a corresponding detection
parameter of 6 (IA), and assorted bits specifying halting (as
opposed to the normal group reduction function) and a lack of
doubling. It is in the difference between these two forms for the
same information that much of the power of the HPMD concept lies;
the conversion between a human-oriented syntax and a hardware-
oriented data format allows each to function efficiently.

In this way, the user never need deal with the hardware
architecture. The measurements are accumulated without being
assigned specific hardware detection groups, since that assignment
should not be done until all the specifications are obtained. Since
the count and halt measurments may be performed by any of several
detection groups, the premature dedication of a specific group to a
particular measurement might rule out a subsequently-specified
measurement which depends on that group. Upon a "Run" command, all
the assignments are performed, and a hardware-loadable array is
built up and saved in $HPMD.MS. This juggling of information is a
major feature of the initialization software.

Rarely were tradeoffs made in favor of the software at the
expense of syntax tidiness. DEBUG is by far the largest HPMD
program (1240 lines of ALGOL), and size was never considered a
factor in its design. The 26 routines include 7 shared subprograms;
this high degree of sharing significantly reduces the amount of
code; if that code were in-line rather than in subprograms, another
1740 lines of ALGOL would have been added. The initialization
syntax is relatively easily adaptable to software interpretation
although requiring quite a bit of code. Features such as the
availability of a line feed/abort in every context and the entry of
only the minimum necessary characters demanded a good deal of
software, but their contribution to the syntax makes that additional
software worthwhile.

The architecture of DEBUG closely follows the syntax it
interprets. The syntax consists of two kinds of commands, those
which specify measurements (Count, Grab, Time, Store, and Halt), and
those which affect those specifications (Delete, Print, Annotate,
Run, Keep, and Use). For each of these 11 commands there is a
separate routine which processes that command. The measurement
specifying routines are in turn supported by other routines which
fetch parameters and values, check if doubling is possible, and ask
the user about the buffer control options. The remaining command
routines are supported by routines which format a measurement

30

H
Z
5
QL
H-
O
O

1-
(0
_)
2

z

00
UJ
o

a:
<
i
o
5

UJ
cr
3
H
O
UJ

i
o
<
UJ
cr
<

U-
O
IS)

o

<

31

listing, handle disk file names, and execute the user program. Many
of the routines on each level are supported by the basic keyboard
management routine. This architecture is diagrammed in Figure 2.

EXECUTION SOFTWARE

The execution software has two distinct responsibilities:
loading the hardware at the beginning of the user's program, and
processing the HPMD interrupts. The former task is quite
straightforward, in that the initialization software has already
done most of the difficult work by creating the TABLE array in
ready-to-load format. The processing of interrupts, however, is the
single most difficult software task. Its implementation is shared
by part of RERUN and all of QZ and RESTORE.

RERUN

RERUN is in a sense the "main-line" of the execution software,
in that it swaps to the user program, RESTORE, QZ, and DISPLAY (the
results software). By making each of these a separate program, the
user can run them independently if needed. RERUN executes the
user's program, and handles the actions immediately preceding and
following that execution. It loads the HPMD hardware with the
measurements specified by the initialization software, puts an
interrupt servicing routine (ISR) into core if needed, swaps in the
user program (which runs to completion), shuts down the HPMD
hardware, and then runs RESTORE and DISPLAY. Since this sequence
can be repeated, "RERUN" was chosen as the name to imply for the
user that this program handles the entire instrumented execution.

The loading of the hardware is a simple process because DEBUG
has produced an array of measurement specifications already
transformed into a hardware-loadable format, so the hardware can be
loaded with this array by a sequence of 57 data transfers. Since
the HPMD hardware lacks the mechanical delays which are part of most
peripheral devices, it can accept the data as fast as the NOVA can
send it, requiring no busy flags or ready bits.

Interrupt Handling

Handling HPMD interrupts during the execution of the user
program is difficult because the operating system cancels interrupt
definitions upon completion of the defining program. Furthermore,
all user interrupt definitions are removed upon a transfer to
another program by chaining or swapping. Thus, if HPMD interrupts
were to be processed by the operating system during the user

32

program's execution, the user program itself would have to make that
definition. This is clearly an unreasonable burden for the
programmer. Furthermore, the interrupt servicing routines (ISR)
which the operating system does allow to be defined are prohibited
from swapping in other software, or even doing disk I/O. Since the
results software is relatively large, and the ISR must be in core
with the user program, the ISR must be limited to code which swaps
in the larger results software. This conflict ruled out using the
operating system to handle HPMD interrupts.

To bypass the operating system interrupt restrictions, the user
program must appear to be requesting the results software program
swap. To do this, RERUN copies an ISR into high core beyond the
user program and alters the interrupt vector to reroute all
interrupts through that ISR. The ISR first identifies whether the
interrupt is from the HPMD or not, and if not, branches to the
operating-system interrupt-handling logic. If the interrupt is from
the HPMD, the QZ program is run via a program swap. QZ quizzes the
user as to the disposition of this breakpoint: continue, restart,
or quit. The DISPLAY program is then run via a swap, and then the
requested disposition is carried out. All these functions appear to
the operating system as if they were invoked by the user program
itself, since an HPMD interrupt is invisible to the operating system
software, which is not informed of even the existence of the HPMD
interrupt. It is clear that such a deception involving the
interrupt vector depends on the ISR, which is not protected by the
operating system, remaining intact. The RESTORE program restores
the original vector and thus eliminates that dependence as soon as
the user program completes.

RESULTS SOFTWARE

DISPLAY is a program which handles the entire task of producing
the results printout. The printout contains information of three
types: the date and time of day, a listing of the measurements with
the annotation, and finally the data collected by the HPMD hardware.
The time, date, and annotation are first printed; the time and date
are available from the operating system via a system call, and the
annotation is saved in $HPMD.MS. Input instructions obtain 10-bit
values directly from the hardware, and conversion routines can then
assemble decimal or octal numbers from several of these values taken
together. The timer and each of the counters have their results
displayed in decimal, whereas the buffer contents are given in
octal, since quite often they are machine address or device numbers.
By placing the conversion burden on the results software, the
hardware can use an efficient binary format while the user sees the

33

more useful decimal or octal equivalent. The results software
itself is written entirely in NOVA assembly language, to allow easy
bit-level manipulation of the data. It was also discovered that the
NOVA ALGOL multiprecision arithmetic was bug-ridden and therefore
unsuitable for dealing with the high-precision timer and counter
values. DISPLAY'S modular architecture consists of 14 routines
totalling 656 source lines and assembling into 1460 words of core.
Much effort was expended in writing the results software to minimize
core usage, since it was unclear at that time whether any system's
programming scheme for handling interrupts could be found which did
not force all of DISPLAY to be resident in core with the user's
program. For this reason, in some cases the routines were
delineated not by the rules of functional separation but rather to
minimize core by eliminating almost all duplicate coding.

SUMMARY

Software is valuable in providing tools for the management of
the measurement specifications and the presentation of the collected
data. The KEEP, USE, and PRINT commands help the user handle the
specifications as a group, and the DELETE and ANNOTATE commands
modify that group. The user can then deal with debugging and
optimization experiments in a very straightforward way; only the
program, a group of measurement specifications, and the results need
be considered. This simplified framework is cleaner and more
conducive to the scientific method than schemes which involve the
details of measurement implementation.

34

SECTION V

HARDWARE

The HPMD hardware carries out the measurements specified by the
user with the initialization software. With access to every memory
and I/O transfer, the hardware performs the monitoring in parallel
with the user program's execution, and in no way interferes with the
host computer.

The overall hardware design consists of two parts physically
separated but connected by a cable. The information flowing over
the cable can be defined conceptually in terms which are independent
of the specific machine being monitored. The HPMD consists of a
programmable program measurement device connected to an interface
for the specific computer being monitored and controlling software
which runs on the computer before and after the measurements. The
division into two parts allows the HPMD to approach its design goal
of transferability. To move it to a different 16-bit minicomputer,
a new interface must be designed and built and the ALGOL software
recompiled. The assembly language code must be partly translated
and, to the extent it is operating system dependent, rewritten.
Since the HPMD and the monitored minicomputer are deeply intertwined
at many levels, it was impossible to make the HPMD any more machine-
independent than this; all that is universally applicable is
transferable, all that is machine or operating-system dependent is
not.

The event detection and information reduction sections
perform the measurements specified by the user. To allow the
software to control these sections and to read back the results, the
peripheral interface circuitry adds another path between the CPU and
the HPMD.

Table IV summarizes the size and complexity of these three
major sections plus the front panel logic. Physical size and wiring
complexity are proportional to the chip counts, with an average of
15.8 pins per chip. The functional complexity, however, varies with
the gate count. The storage buffers in the information reduction
section account for a large number of the gates, but since they are
implemented using LSI shift registers, little space or wiring was
needed.

35

Table IV

Chip and Gate Counts

Detection Reduction Device I/O Front Panel Total

SSI 108 chips
538 gates

42 chips
243 gates

39 chips
179 gates

16 chips
88 gates

205 chips
1048 gates

MSI 97 chips
1849 gates

47 chips
1619 gates

38 chips
1621 gates

4 chips
94 gates

186 chips
5255 gates

LSI 32 chips
4416 gates

20 chips
21080 gates

-none-
-none-

-none-
-none-

52 chips
25496 gates

TOTALS

237 chips
6803 gates

109 chips
23014 gates

77 chips
1800 gates

20 chips
182 gates

443 chips
31799 gates

The detection logic is what makes the HPMD different from other
measurement devices. Systems-level monitors have large information
reduction capabilities, often including built-in tape drives and
extensive post-processing of measurement data. They do not allow
detection of multiple program events similar to that defined in
Section III. Using the initialization syntax, it is possible to
request up to 32 simultaneous comparisons be performed, involving 8
different program parameters. These 32 simultaneous comparisons
represent a powerful detection capability which permits using the
selective approach to debugging and optimization.

DETECTION

Event detection may be conceptually thought of as a four-phase
process. First, all sixteen parameters listed in Table I are
synthesized from the host computer bus signals. Second, for any
particular event, the parameter involved is selected from among the
sixteen available. Third, the selected parameter is fed into a
section of the associative memory, where it is compared against four
preset values. Any resulting "match" signal then goes to the final
detection section, the doubling logic. Here it may be gated with

36

other "match" signals to produce an "event" signal, thus completing
the detection process.

In reality, the process is slightly different. None of the
parameters is updated each memory cycle; even Instruction and
Instruction Address are available only once per machine instruction.
Others, such as the I/O parameters, may be seen only rarely. Also,
the parameters involve only three "types" of information: addresses,
data, and device numbers. Every memory cycle will have both an
address and a word of data, and if programmed I/O is performed, a
new device number will be available. The HPMD detection logic is
based on these "types" of information rather than each parameter
separately, and therefore much of the logic deals only with three
sources of information, not sixteen. By sampling under the
appropriate conditions, specific categories within each type are
selected — the parameters are identified in Table I. For example,
by sampling the address bus only on non-data-channel FETCH cycles,
only the instruction addresses are selected.

To detect parameters, it is therefore necessary for the HPMD
hardware to obtain the current address, data, and device number, as
well as a description of the kind of memory cycle. These form the
machine-independent information which flows from the interface over
the cable to the rest of the HPMD hardware. Five descriptor bits
characterize the current memory cycle to allow identification of the
parameters from the "types" of information available. The interface
synthesizes these bits from the specific machine operations. These
bits define the direction of information flow, the cycle initiator,
and the purpose of the cycle.

The descriptor bits are used to synthesize sixteen "control
pulses", one for each parameter. Each control pulse indicates when
the corresponding parameter is updated. These pulses, combined with
the address, data, and device number, constitute all the information
necessary to synthesize each parameter.

The parameters are not directly synthesized, however, for a
very simple reason: if each of the eight detection groups had to
select between sixteen "parameter" registers plus the front panel
switches (for testing purposes), the multiplexer required would be
immense.

Instead, the Information Multiplexer selects between the three
"types" plus the front panel switches, and therefore it can use
dual 4-input multiplexer chips. The control pulses are gated with
the associative memory output rather than the "type" information.
The associative memory compares its values with every value of the

37

selected "type", not the desired parameter, but the irrelevant
comparisons are not sampled by the control pulse, and so the result
is the same. Even using this shortcut, the Information Multiplexer
is the largest single hardware section, requiring 80 16-pin chips.

The detection process requires less than a microsecond, with
most of that time devoted to obtaining the host computer bus
information. The Information Multiplexer and associative memory
themselves require less than 60 nsec. to select and compare the
incoming data. This fast yet detailed examination of the program
execution is used to control the information reduction functions.

REDUCTION FUNCTIONS

Detected program events control five types of reduction
functions: timing, counting, continuous information storage,
intermittent information storage, and program halting. These of
course correspond to the Jime, Count, Store, Grab, and Halt command
defined in Section III.

A major objective of the HPMD experiment was the exploration of
the selective approach to program measurement. An advantage of the
selective approach is that general, straightforward reduction
functions are sufficient. If the detection operations can resolve
the precise events of interest, a very simple recording mechanism
can capture the needed information.

The timer is a 30-bit binary counter driven asynchronously at 5
MHz. This 5 MHz. pulse train is gated by a set-reset flip-flop,
which itself is driven by the start timer and stop timer events.

Each of the three counters is 20 bits long, and is implemented
using MSI 4-bit binary counter chips, as is the timer. Both the
timer and the counters are reset by an NIOS 5 instruction on the
NOVA, which is fed to the reset input on each counter chip. This
instruction is executed just before each measurement run.

Both the STORE and the GRAB buffers are built using LSI dual
256-position shift register chips. Since each small (10-pin) chip
holds 512 bits, only ten are needed for each buffer. Thus these
twenty chips contain more than half of the gates in the entire HPMD
hardware (see Table IV).

The STORE buffer, like the timer, is controlled by a set-reset
flip-flop driven by a pair of detection events. Its input can be

38

any of the parameters listed in Table I# The Information
Multiplexer section provides "type" information to a 16-bit latch
which is triggered by the STORE buffer control pulse. This same
control pulse also shifts the entire buffer whenever a new parameter
value is obtained. Extra counters and gating implement the buffer
options such as permanent shutdown when full. Four extra bits are
synthesized and stored along with the selected parameter. They
indicate that the information is valid, that the GRAB buffer is also
shifting, as well as the information in two descriptor bits.

The GRAB buffer differs from the STORE buffer mainly in its
input. Instead of capturing each new value of a parameter while
enabled, the GRAB buffer event triggers a buffer shift directly.
Its input is the address, data, or device number plus a latch which
provides the IA. In most other ways, it is identical to the STORE
buffer.

The breakpoint capability is quite complex despite its
straightforward function. First, a "HALT" signal is derived from
the 11 possible causes within the HPMD (8 detection groups, 2
buffers and a front panel button). This signal is then sent over
the cable to the interrupt generator, a part of the HPMD-NOVA
interface. If HPMD interrupts are enabled (a manual and
programmable function), the interface uses the conventional I/O
device protocol to initiate an interrupt. The NOVA CPU is also
forced into the Interrupt Enable state by driving a CPU signal, EXT
ION EN. The original state is meanwhile preserved within the
interrupt generator, and may be read out by the software for later
restoration.

The ideal breakpoint is impossible to implement using an I/O
interrupt; their purposes are dissimilar. A breakpoint is in theory
unmaskable and immediate, without any destruction of the current
machine state. An I/O interrupt is simply a method for getting the
CPU's attention without requiring frequent busy-bit sampling. The
HPMD interrupt successfully bypasses all masking or interrupt-
disabling obstacles, but several instructions execute before the ISR
begins, effecting a form of "skidding" beyond the event detected.
Without redesigning the CPU, this fault is unavoidable.

PERIPHERAL INTERFACE

The peripheral interface allows the HPMD hardware to be
programmed under software control, and its results read back and
processed by other software running on the host computer. The
loader directs and stores the controlling measurement information,

39

and the reading circuitry allows the reduction functions' data to be
read back into the NOVA 800.

The loader is based on a decoded 6-bit counter which directs
each successive data transfer to a different storage element. Since
the software formats the array of data in the proper sequence, each
piece of information simply falls into place. This is an example of
the software simplifying the hardware by removing a data-
manipulation burden. A total of 590 bits are transferred in this
manner, consisting of 53 words of varying widths.

For transferring the measurements back to the results software,
a 10-bit reverse path is provided. Nine transfers are required to
obtain the timer and counter data, and another 1024 empty both of
the buffers. The 6-bit counter used for loading is also used to
select which 10-bit field to transfer. The 20-bit buffers are each
allocated two counter "addresses", with the data taken from
alternate addresses on consecutive transfers. A large multiplexer
is used to funnel all the 10-bit fields into a single reverse path.

40

SECTION VI

FUTURE TRENDS

Many lessons learned in the design and construction of the HPMD
can suggest and guide future work in this area. The primary lesson
is the success of the hybrid hardware-software approach. Man and
digital circuitry function at such radically different levels that
interaction between them is difficult. Program measurement in the
hardware differs radically from the programmer's conception of
debugging or optimization. Humans, with a limited short-term memory
capacity, are severely handicapped if they must recall many minor
machine-to-program transformations; those transformations should be
performed for them by the debugging and optimization tools.

All detection schemes must deal with the conflict between
resolution and complexity* To obtain resolution, many different
program parameters must be examinable, with complex operations
performed on them to discern specific or obscure relationships.
Such power is costly and complex. One of the lessons learned from
the HPMD is the size differential between detection based on single
signals versus that based on 16-bit parameters. It is necessary to
limit the handling of word-size information in detection functions
if cost and complexity are important.

Many of the HPMD design and construction difficulties can be
traced back to a lack of "monitorability" in the host computer
hardware or inflexibility in its systems software. There is a small
trend towards providing probe points for assessing the workload on
each computer system element, but a device which performs program
measurement goes far beyond this. It seems unlikely that computer
manufacturers would alter their hardware and software to accommodate
external program measurement devices. Long before external devices
became a force in computer marketing, internal instrumentation would
most likely appear which, if designed by the manufacturer
concurrently with the computer itself, could offer the most
straightforward and powerful program measurement capability.
Internal instrumentation would appear the most effective approach to
widespread use of an HPMD-like aid.

With the increasing use of LSI and GSI (large-scale and grand-
scale integrated) circuitry, accessibility to the hardware will
diminish to nearly zero. An external HPMD will become impossible,
but the reduction in hardware cost might very well make practical
the inclusion of HPMD capabilities on-chip at the time of
manufacture. Such additional on-chip functions should become

41 •

increasingly common as the difficulties and expenses of providing
them external to the chip become prohibitive.

An alternative to the strict signal-sensing HPMD approach is to
implement a computer-cum-monitor in a single firmware package. Some
or all of the difficult task of discerning parameters could easily
be microprogrammed into the instruction-level architecture.
External hardware may or may not be needed, depending on the system
resources available for this use. Note that interference, as
previously defined, is not inevitable in such an approach; if the
firmware relies on external hardware for some detection, reduction,
and storage chores, then the firmware's monitoring functions could
be "turned on" continuously, without altering the machine behavior
when they are used.

The availability of a CPU for detection presents intriguing
possibilities. Instead of merely detecting equalities as in the
HPMD, far more sophisticated relationships could be detected. These
may include ranges, Boolean, or even arithmetic relationships
between parameters. If necessary, an entire software subroutine
could be executed to determine if the current conditions constitute
a program event. Such schemes, if implemented with the firmware or
software of the host computer, will cause some speed degradation.
Some Boolean or even arithmetic relationships may be detected at
full speed in external hardware. Complex sequential algorithms,
however, cannot be executed in real time while the monitored program
continues to run unless there is a tremendous difference in the
relative speeds of the two processes.

The nature of the computers to be monitored are changing, not
just in hardware technology or architecture, but in terms of user-
visible innovations such as higher-order languages and virtual
machines. If an HPMD can be justified because it allows a
programmer to solve problems without mentally "switching-gears" to
deal with machine-level measurement considerations, then the nature
of such measurement devices must evolve with the computer. For
debugging a higher-order language, instruction locations should be
expressable as labels or line numbers, not object code locations or
actual memory addresses. Variable names should be usable for
specifying operands, and logical unit numbers for specifying devices
or files. In general, the event specification and information
reduction must be as symbolic as the language they are supporting,
for the programmer deals with the problem symbolically.

Indeed, as operating systems play more and more of a support
role for user programs, the debugging and optimization process for
programs will merge with that for systems. Software making correct

42

and efficient use of the system resources is becoming an important
part of system optimization; as software becomes more resource-
oriented instead of instruction-oriented, program debugging and
optimization becomes another aspect of system performance
measurement.

Virtual memories vary in their visibility to the user, from
named segments to the automatic emulation of near-infinite memories.
To the extent that the virtual memory is visible to the user and is
involved in a program bug or optimization problem, then the
measurement device must not obscure that visibility. If excessive
page faults are degrading the performance of a particular routine,
then the measurement device must reveal this phenomenon, not gloss
over it as an "implementation detail". For virtual memories,
cooperation between the processes on many levels of the computer
system, from the compiler and relocatable loader to the page fault
handler, is needed if such a measurement device is to keep track of
a program scattered throughout disks and core pages.

These two examples, higher-order languages and virtual
memories, illustrate several general considerations concerning
future program measurement devices. First and foremost is the need
to keep the man-machine interactions at the human level rather than
the machine level. The machine must be visible only where problems
related to its nature and functions might arise. The architecture
of the measurement device itself should never be visible, although
its limitations must be made clear.

Secondly, the evolution of computers is leading us toward a
greater interdependence between the levels within an architecture.
Virtual memory is a simple concept; its implementation, however,
frequently involves a synergy between software, firmware, hardware,
and peripherals. As program measurement is included in such an
arrangement, it becomes clear that cooperation between it and many
other portions of the host computer on many levels will be needed.
An effort of this scope should be done during system design rather
than after-the-fact.

43

SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The design and construction of the HPMD have shown that the
most effective balance between hardware and software complexity is
to design very complex hardware while leaving the software design
effort at a more manageable level. Obtaining and manipulating
hardware word-width parameters was found to be difficult for even
modest functions on a minicomputer not designed to be monitored.
The software's task was much easier, since data manipulation and
interactive command interpretation are common software chores.

Many of the major problems encountered, such as synthesizing
parameters and implementing breakpoints, exist only because
commercial computers are not currently designed to be monitored. If
these problems are attacked early in the design of the computer
itself, then they can be eliminated. Most of their causes, such as
the inaccessibility of key signals and registers or software
inflexibility, are not fundamental. If "monitorability" is
considered important, it can be achieved.

The ideal time to consider the connection of program
measurement hardware to a computer is at the time of the computer's
initial design. The CPU, memory, and I/O buses, as well as the
timing and control signals necessary to interprete them, must be
made available to external devices. Some decoding is needed for
both the execution and the monitoring, such as the direction of
information flow, and such information must be explicitly available
to the external hardware, rather than buried deep on a board or
implicit in a complex signal protocol.

Interrupts must provide instant response to implement a
breakpoint. The detection of a breakpoint lags the actual event,
and so the halting signal by its very nature is not available until
late in an instruction. The resultant interrupt must nonetheless be
processed before the next instruction to avoid the "skidding"
effect. This is not technically impossible, but is much quicker
than currently demanded for handling I/O.

Analogously, the computer's software can ideally be designed
with this same foresight, anticipating the demands of the
measurement software. The HPMD effort has shown that in many cases
features are included within an operating system to protect one

44

program from the foibles of another. User interrupt definitions are
an obvious example; on the NOVA 800, they are wiped out before
control is passed from one program to another. Although
advantageous in many situations, such protection features make it
difficult or impossible for a debugging program to manipulate and
control the operating environment of a monitored user program. A
little foresight could loosen such constraints which constitute
major obstacles to program measurement.

RECOMMENDATIONS

Based on these conclusions, two recommendations can be made to
capitalize on the HPMD experiment. A one-year evaluation of
instruction-level monitoring techniques, such as provided by the
HPMD, is needed to judge the usefulness of the various measurements.
The design and construction of the HPMD was a necessary first step
to determine what can be done, what measurements are easy to obtain,
etc. A perspective on the usefulness of each capability is needed
next. This perspective can be the basis for specifying monitoring
functions which will truely be assets in software development,
optimization, and debugging. This is the ultimate payoff for the
HPMD effort.

The final recommendation opens the door for such instruction-
level monitoring hardware. If the Air Force actively encourages
"monitorability" and even built-in monitors, then such aids may
become practical on a wide scale. A computer to which monitoring
hardware may be easily attached (or which already includes such
hardware) is more suitable for program debugging and optimization.
As was learned with the HPMD, it is impractical to expect such
powerful tools to be readily added after the fact if their
attachment is not anticipated in both the original hardware and
software. Active encouragement of this anticipation during design
can be a way to insure that such monitors may be later applied as
needed.

45

SECTION VIII

SUMMARY

The HPMD was an experiment in hardware-assisted debugging and
optimization. The device itself was designed to make effective
program measurements and to be easily controlled by the user. The
combining of hardware and software was the key to its success.
Their complementary capabilitities provide a design too complex and
costly for hardware alone, yet more effective than a purely software
tool.

The design goals for effectiveness and complexity appear to
have been met in most cases, although an evaluation phase will
reveal much more. It would be difficult to devise substantial
improvements on the conciseness, clarity, or sheer speed of the
software syntax and keyboard characteristics. The invisibility of
the hardware architecture was achieved in one sense but not in
another. The syntax expresses measurements in quasi-English rather
than switches and push-buttons, and the allocation of detection
groups is automatic. One the other hand, the measurements
themselves correspond exactly to the hardware functions, and some
options are specified in a sloppy manner, such as "A,D,#, or I";
they represent the intrusion of hardware quirks into an otherwise
elegent command syntax.

The hardware-software approach does prevent any form of
interference during measurements. The computer's resources are
heavily used to initialize the device and to process the results,
but during the actual measurements the hardware does not affect the
host computer. The implementation of these general measurement
types was found to be not as transferable as originally expected.
The concept of a "universal" measurement device interfaced to
specific computers proved quite workable, but that interface, at
least for the NOVA 800, is unexpectedly large (20$ of the device)
and is a non-transferable design effort.

Much can be learned from the problems encountered during the
design of the HPMD and its resultant shortcomings. Hardware
difficulties in obtaining the needed signals, synthesizing the
parameters, and implementing breakpoints all stem from the
unmonitorable nature of the host computer. Likewise, systems
programming difficulties are due to aspects of the operating system
which were included as protection for user programs. A major result
of the HPMD effort is the concept of "monitorability", and the
definition of its hardware and software implications.

46

Several areas of future growth may be perceived based on the
HPMD experiment. Symbolic debugging is a natural approach for a
hybrid monitor, since the transformation from symbolic to machine
level is a common software function. Use of the host CPU for
detection functions is a possibility, as is implementing some or all
of the detection functions in firmware.

Two recommendations may be made to direct further growth in
this field. Evaluation is needed to determine which program-level
measurements are the most productive and worthwhile. Such
evaluations permits the proper evolution of monitoring devices based
on their potential contribution. Finally, the Air Force should
actively encourage the "monitorability" of the computers they
specify and purchase. The inclusion of built-in monitoring aids
which can interact with controlling software should also be
considered. The HPMD has shown the feasibility and advantages of
this hybrid approach.

47

APPENDIX I

SOFTWARE

The following functional descriptions define the basic actions
each software routine performs. They are presented here to give the
reader a feeling for the scope of this effort and to provide
insights into the problems encountered and solutions found.

INITIALIZATION SOFTWARE

DEBUG

This is the main-line for the initialization software; its task
is to obtain commands from the user and delegate their execution to
the appropriate subprogram, as well as managing the measurement
specifications as they accumulate.

As the first code to be executed, this main-line program must
OPEN all the files needed for initialization; these files are the
(spooled) terminal input and terminal output, and also $HPMD.MS.
Upon entering, the most recent measurements and annotation must be
recalled, if there are any. By sensing the size of $HPMD.MS, the
main-line can determine whether it contains this information or was
just created by the OPEN. If empty, the measurement specifications
are zeroed and the annotation set to be a null string. Otherwise,
the old measurements and annotation are read in from disk, and the
annotation is printed at the terminal as a reminder to the user of
the nature of those measurements.

Next, a command is obtained. The user is cued with a ":", the
current measurements preserved in a temporary array, and NEWCHAR is
called to obtain the single character which begins the command. The
colon cue is unique to this initial point in the syntax. NEWCHAR,
which manages the keyboard, is instructed to accept only a character
in the string "CTSGHDKURAQP", the first letter of each command.
Based on this first character, the appropriate subprogram can be
called to perform the specified function. Before this happens,
DEBUG checks to see if the command is RUN or QUIT; if it is one of
these, no more measurements will be added and so the older
information in $HPMD.MS is deleted and replaced by the current
measurements. This insures that $HPMD.MS contains only the latest
information between DEBUG executions. The first character is then
checked to see if it is "D", "P", "A", "U", or "R". These represent
commands which do not add measurements, and therefore can always be

49

performed; DEL, MPRINT, ANNOT, KEEP, USE, or RUN is called
respectively. Otherwise, a measurement is to be added. COMOK is
called to determine if there is room within the HPMD hardware to
also handle the new measurement; if there is not, DEBUG prints a
message for the user. Otherwise, the "C", "S", "G", "T", or "H"
will cause the execution of COUNT, STORE, GRAB, TIME, or HALT
respectively.

If at some time during the measurement specification dialogue
the user types a line feed, then the function is aborted and the
cancel flag is turned on. Before branching back to the beginning to
obtain a new first character, this flag is checked. If it is ON,
then a "...NOT DONE" is printed to assure the user that the software
handled the line feed properly, and the measurements saved in the
temporary array are recalled; if it is OFF, then the new
measurements are preserved and, assuming QUIT was not specified, the
next command is processed.

COUNT

This is the simplest of the measurement-specifying routines,
since the syntax for a Count command consists only of the "Count if"
and an event definition. Upon entering one of these routines, the
first character has already been echoed to the terminal, and so
COUNT prints only "OUNT IF". NEWVALS, which reads in event
definitions, is then called with parameters which indicate doubling
for this command is not allowed, and that the event obtained is to
drive a counter. Since NEWVALS both obtains and saves the parameter
and values which define the event, COUNT has nothing else to do. It
should be noted that NEWVALS returns a cancel flag which indicates
whether the user aborted the event definition with a line feed.
Count, like all other commands, returns immediately if the flag is
on, passing it back to DEBUG.

GRAB

The syntax for the Grab command differs from the other commands
in that the type of information to be saved in the buffer is
specified by a "A", "D", "#", or "I", and three questions about the
Grab buffer control are asked. First of all, "rab current" is
printed since the "G" has already been echoed. NEWCHAR is then
called, with a "AD#I" string as its legal characters. The character
obtained is decoded into 1, 2, 3, or 4 respectively and saved as
part of the current measurements< Assuming the cancel flag was not
set by NEWCHAR, " IF " is printed and NEWVALS is called. NEWVALS is
instructed not to allow doubling and to save the event obtained as a
Grab event. To handle the questions and answers for controlling

50

both buffers, QA is used. QA is passed a "question" string and
where to put the TRUE/FALSE answer. GRAB therefore calls QA three
times with the questions: "FREEZE BUFFER WHEN FULL?", "INHIBIT IF
STORE BUFFER STOPPED?", and "HALT PROGRAM WHEN BUFFER FULL?". As
with any routine which obtains information from the user, the cancel
flag may be set by QA»

TIME

The time syntax includes two events, either or both of which
may include doubling. "IME FROM" is printed, and then NEWVALS is
called to get the first event. COMOK informed DEBUG, upon "T" being
entered, that a time measurement was within the capacity of the HPMD
hardware. This did not imply that doubling is possible. To perform
the analysis to determine if there is capacity for a doubling,
DOUBLE can be called. The flag returned is passed to NEWVALS, which
obtains and saves the first event, whether doubled or not "UNTIL" is
then printed, followed by DOUBLE and NEWVALS to handle the second
event.

STORE

STORE is similar to TIME, except that the parameter to be
stored must be entered and there are buffer control options, as in
GRAB. "TORE" is printed to complete the command name, and PARAM is
used to get the parameter. PARAM is a lower-level routine used also
by NEWVALS, which obtains the specified parameter from the terminal
and returns a number 0-15. In this case, PARAM was instructed not
to accept a "B" (for "Both"), since this parameter entry is quite
distinct from the doubling event syntax case which NEWVALS must
handle. Assuming the cancel flag is not turned on, "FROM" is
printed and then DOUBLE and NEWVALS are called. As with TIME,
DOUBLE determines if doubling is legal for a Store command given the
current measurements, and NEWVALS gets and saves one or two events
accordingly. "UNTIL" delimits the start event(s) from the stop
event(s), and the DOUBLE and NEWVALS procedure is repeated a second
time. All of these calls to NEWVALS are dependent on the cancel
flag remaining off. QA is then used to handle the four questions
about the buffer control options. "FREEZE BUFFER WHEN FULL?",
"PROHIBIT RESTARTING?", "HALT PROGRAM WHEN BUFFER FULL?", and
"INITIALLY RUNNING?", are asked and the user's response is saved as
part of the current measurements, again assuming no line feeds.

HALT

The last of these five routines which specify measurements is
HALT. This combines the single event of COUNT and GRAB with the

51

possibility of doubling as seen in TIME and STORE, "alt program if"
is printed, and then DOUBLE and NEWVALS are used to get and save the
single or doubled event.

£A

QA poses a question and decodes the user's answer. It is
called by STORE and GRAB to interrogate the user about the buffer
control options. The flag bit corresponding to the specified buffer
option is first turned off by ANDing the flags with a mask, and the
question string passed to QA is printed. NEWCHAR is then called,
with "NFYT10" given as the string of legal characters. These allow
the user to think of the TRUE-FALSE answer as "TRUE" or "FALSE",
"YES" or "NO", "1" or "0", even "YEP" or "NOPE". Assuming the
cancel flag is not set, the returned character is checked to see if
it is "Y", "T", or "1"; if it is, then the flag bit is turned on,
if not, the flag remains OFF.

C0M0K

C0M0K combines arithmetic and Boolean operations to determine
if a particular command is possible given the current measurements.
The algorithm must deal with the difference between the measurements
as specified and the measurements as assigned detector groups upon a
Run command. For Time, Store, and Grab, there is no difference;
only one detector group is capable of doing these measurements'
specialized tasks. This is not true, however, for Count and Halt.
There are three identical counters, and any leftover detection
groups can control the halt interrupt. It would be a shame to
assign specific detection groups for these measurements any earlier
than necessary, since such an assignment may preclude a subsequent
measurement. For example, if a Halt is specified first and is
assigned a particular group, say Group #1, then the timer could not
be used. Likewise, if a Count was assigned to Group #5, then the
"Start timer" event could not be doubled (that would need #1 and
#5).

To avoid this lack of versatility, the measurements are stored
as they are specified, without any assignment to particular
detection groups. C0M0K is called to determine if there is room for
any new measurement being entered by the user. If there is not,
then the DEBUG main-line will print "INSUFFICIENT CAPACITY FOR THIS
MEASUREMENT DELETE A MEASUREMENT" to tell the user that there is
not enough capability in the hardware to accomplish both the current
measurements and this new one.

52

The algorithm COMOK uses to make this determination analyzes
what room is available and what the new measurement demands. First
the initial command character, "T", "S", "C", "G", or "H", is
identified and converted into an integer. The number of non-Halt
measurements is counted, and the number of Halts and double-Halt
groups needed is subtracted from it; this gives the space for
additional Halts. If the measurement requested is a Halt and this
space number is greater than zero, then COMOK returns as True.
Otherwise it must differentiate between Time and Store, which use
two groups each, even without any doubling, and the Count and Grab,
which need only one. If there is room for at least two more halts,
and neither time group is currently needed, then the time
measurement is legal; the Store measurement is handled analogously.
If there is room for at least one more halt, and there are less than
three Counts specified currently, then another Count is legal.
Also, assuming no Grab measurements are specified, space for a halt
implies space for a Grab. In this way, COMOK determines if a
measurement is possible.

COMOK returning TRUE implies only that the command can begin to
be entered; if doubling is demanded later in the command, then the
user may yet be prohibited from getting the command as desired.
DOUBLE performs a similar function for TIME, STORE, and HALT by
checking the legality of doubling for that command given the current
measurements.

DOUBLE

DOUBLE must also deal with the specification/assignment
dichotomy. Only Times, Stores, and Halts can be doubled, and DOUBLE
determines if this is possible for a particular command and the
current measurements. The algorithm used first calculates how much
room there is left for halts, which can go anywhere, and then the
room for double-halts. If there is not room for at least two single
halts and the possible unused groups arranged so at least one
double-halt can be added, then DOUBLE returns FALSE. Next, further
checks are made for the TIME and STORE commands: if doubling is
requested for either time event or the start STORE buffer event,
then DOUBLE checks to see if there are less than three counters and
previous doubles for these events. If so, then what counters there
are can be shifted into assignments which have room for this
additional doubling. If a stop STORE buffer doubling is requested,
then it is permitted unless there is a Grab measurement specified.

DOUBLE performs a function similar to COMOK, but it is used
differently. COMOK is used to check if a command already begun
should be ruled out; DOUBLE is called before the user can type "B"

53

for "Both", and therefore, determines whether that key should be
legal or not when the event is defined.

NEWVALS

NEWVALS handles the definition of all events. PARAM and GETVAL
can obtain the parameter and each octal value; NEWVALS main task is
therefore to manage their use and to store the results in the proper
format. It is passed the type of command and which event within
that command it must obtain, as well as whether doubling is
permitted. Based on these it gets one or two parameter-values
definitions and adds them to the current measurements.

PARAM is called first, followed by printing "=". The parameter
is stored in the measurements, as is an indicator defining the type
of event. GETVAL is called up to four times or until it sees a
carriage return, and the values obtained are stored. If doubling
was prohibited or PARAM did not receive a "Both" before the
parameter, then NEWVALS returns. Otherwise, the parameter-values
process is repeated once more, with doubling definitely prohibited
and the information obtained is stored as the "doubling" of the
earlier event type.

PARAM

Although PARAM is the third largest routine in the
initialization software, its task is quite simple. It must obtain
from the user a parameter mnemonic as defined in Table I and returns
the corresponding sequence number, 0-15. If doubling is allowed for
the event which this parameter is a part, then "Both" is allowed and
PARAM returns an indicator as to whether it indeed preceded the
parameter. Finally, as will all routines which interact with the
user, the cancel flag is returned to indicate whether a line feed
was typed.

To obtain the parameters yet maintain the feature of requiring
only the minimum of typing, a tree structure is searched, based on
the first, second, and third characters. As soon as the characters
inputted uniquely define a parameter, PARAM prints the remaining
character(s) and returns with the sequence number. For example, if
"A" is typed, only one parameter ("AST") is possible, and so PARAM
prints "ST" and returns with an 11. NEWCHAR is used to full
advantage by PARAM since at each node in the tree structure there
are only a limited number of legal next characters, and NEWCHAR can
control the keyboard to limit the user to that set. The tree thus
consists of calls to NEWCHAR with the legal next characters for

54

every non-ending node, and a sequence number and possible printing
string at each ending node.

GETVAL

GETVAL returns a value derived from the octal number typed by
the user. To do this it must both perform ASCII octal digit to
integer conversion and detect the end of the number; the latter task
is more complex. In addition, a rubout is interpreted as a "local
cancel", allowing the user to start over in defining the value, and
line feed again cancels the entire command.

As an event is defined, NEWVALS calls GETVAL up to four times
in a row to get a group of values until a carriage return is
entered. A value must be returned the first time; subsequent values
are optional. A flag is passed to GETVAL indicating whether to
accept a carriage return instead of a value. GETVAL in turn returns
a description of what happened: carriage return alone (if legal),
value without carriage return, and value with carriage return. A
value is delimited by ending with a slash or a carriage return; if a
value exceeds octal 20000, further digits cannot be added and the
keyboard must be limited to "/", carriage return and rubout. This
avoids any "value too large" error message.

NEWCHAR is used to obtain the input characters. At first,
depending on whether a value must be entered, "0-7" or "0-7" and
carriage return are provided as the legal characters. After the
first character, "/" is added to the list, as is carriage return if
it is not already there. The characters are converted to numbers
and added to a running integer total; the integer is multiplied by 8
before adding in each new number. Upon a slash or carriage return,
the integer i_s the octal value to be returned. Upon a rubout, the
integer is zeroed and the process begun again.

DEL

DEL handles the Delete command, one of the simplest to use, yet
quite difficult to implement. The other routines store the
measurements in a long array, in the order they were entered. This
array must be edited to remove any measurements the user wishes to
delete.

First, DEL determines which types of measurements are currently
specified, and constructs a string of characters each of which
begins one of the corresponding commands. Thus if there is a Time,
two Counts and a Grab the string would be "TCG". "A" is added to
the string, and it is then used in a call to NEWCHAR as the list of

55

legal characters after "elete" is printed. NEWCHAR returns one of
these, and the measurement editing is based on the character. The
remainder of that command is immediately printed, such as "ime",
"ount" or "rab".

If "A" was returned, all of the measurements are erased. If
"T", "S", or "G" was returned, the array is searched for the (only)
entry which corresponds, and it is eliminated. If it was listed as
the first half of a doubling, the other part is found and erased
also. Counts and Halts can be different, since there can be more
than one of each. DEL checks how many Counts or Halts are
specified, and if there is only one, it is found and erased. For
Halts, any doubling is also found and erased. If there are more
than one, a "#" is printed to prompt the user to enter a number to
indicate which measurement is to be deleted. NEWCHAR is called,
given "123" as legal digits for a Count and "12345678" for Halt.
The array is then scanned and when the corresponding Count or Halt
measurement is found, it is erased.

The erasing operation is performed by an internally defined
procedure, which overwrites the measurement being deleted with the
remainder of the array, shrinking the array in the process. The
number of measurements is decremented, as is the count of that
particular kind of measurement.

ANNOT

ANNOT builds a long character string which the DEBUG main-line
saves in $HPMD.MS for printing by the results software or upon
reentering DEBUG. KEEP and USE also save and recall the string
along with the other information in their files, "nnotate:" is
printed first, and then the user can enter the comments using any
alphanumeric and most punctuation keys. Two carriage returns in a
row terminate the comment. Line feed cancels the entire annotation,
preserving the earlier one, if any, and rubout deletes the previous
character from the string.

The string has a maximum length of 5000 characters. If the
user attempts to enter further characters, NEWCHAR limits them to
carriage return and rubout. A "?" provides the explanation: "No
more room; valid characters are CR and rubout".

MPRINT

MPRINT adapts MLIST, which generates a formatted description of
the current measurements, for listing in the terminal or line
printer. First it checks to see if there indeed are any

56

measurements to print; if not, it responds "rint...no measurements
currently specified". If there are some, it prompts the user with
"rint measurements at" and calls NEWCHAR to obtain a "T" or "L" for
Terminal or L_ineprinter. Assuming the cancel flag is not entered,
it either writes "erminal" or "ineprinter", and if the latter, the
line printer is OPENed as an output device. MLIST is then called,
given the appropriate channel number, and the line printer is closed
if this is needed.

MLIST

To generate a readable printout of the current measurements, it
is necessary to reverse the encoding of the command by the DEBUG
main-line of the parameter by PARAM, of the values by GETVAL, and of
the buffer options by QA. MLIST does this by manipulating character
strings based on the encoded measurements. The results are written
on an output device or file as specified by the calling routine.
The reconstructed printout looks quite similar to the original
terminal session when the measurements were first entered
interactively.

The current measurements are stored as array entries consisting
of type, parameter, and values. These entries are outputted in
order, with each type getting a different format. First, the
command itself is printed, such as "Time from" or "Halt if". If it
is a Store or Grab, the parameter or "AMI" selected is decoded into
the proper character(s) and outputted, followed by a "from" or "if".
If the type of entry is the second half of a Time or Store, "until"
is substituted, and if it is the doubling of the previous entry,
"...and" is used. Next, the parameter is decoded into its Table I
mnemonic and outputted with an "=". Finally OCTPRINT is called four
times to output the values in octal, separated by "/". If the
command was a Store or Grab, concise definitions of the buffer
options are added, such as "Freeze", "Halt", and "Once". The
results of MLIST for a sample set of measurements are shown in
Figure 3.

OCTPRINT

OCTPRINT outputs to the specified output channel six digits
which represent the octal equivalent of the value passed to it.
Sign-testing and mask-and-shift are used to generate six integers
which equal the value of each octal digit field in the passed value.
Writing them without intervening blanks produces the octal number.

57

TIME FROM IA • 002056 / 002096 / 002056 / 002056
UNTIL IA • 002073 / 002077 / 002077 / 002077

COUNT IP IA • 002056 / 002056 / 002056 / 002056
COUNT IF OU» > 000033 / 000033 / 000033 / 000033
STORE INT FROM IA • 001753 / 001753 / 001753 / 001753 RUN

UNTIL IA • 003007 / 003007 / 003007 / 003007

Figure 3. Sample MLIST Output

RUN

RUN is the largest single routine in the entire HPMD software.
It has four responsibilities: assigning actual detection groups for
the current measurements while converting them into HPMD hardware
format, determining a set of flags for the results software which
indicate which parts of the hardware are being used, loading these
final measurements into $HPMD.MS, and finally creating a suitable
execution environment for the user's program. SETUP is then called
to actually run the user program.

Converting the measurements from DEBUG measurements array
format to HPMD hardware format occupies the first half of RUN. As
seen in COMOK and DOUBLE, the measurements are not assigned specific
groups as they are entered. Only after the user types "R" can this
assignment be done, since no more entries will be made. Time,
Store, and Grab measurements must go in specific places; they are
not flexible in their assignments. They are therefore assigned
their detection groups first. Double Halts are somewhat flexible,
and are assigned next. Any pair (1-5, 2-6, 3-7, 4-8) of unused
doubled detection groups can implement a double-Halt, but it is not
until the Time, Store, and/or Grab assignments are known that a
leftover pair can be located. Counts come next: whatever groups
among #5-#7 that the Time, Store, and double-Halt assignments did
not use are available for Counts. Finally, the single Halts, which
can go anywhere, are assigned whatever group(s) remain. The
sequence of fixed measurements, double-Halts, Counts, and single-
Halts insures a conflict-free assignment. COMOK and DOUBLE have
already checked to make sure the measurement entries can be squeezed
into the hardware without exceeding its resources. This process of
assignment generates another array, called TABLE, which contains the
information to be loaded directly into the HPMD hardware. The

58

hardware is not informed the meaning of each word of information;
its position in TABLE implies its meaning. For example, positions
33-40 are the detection parameters for groups #1-#8 respectively,
while positions 48-50 contain the buffer control options. Such a
rigid format makes the hardware's task easier.

The flags for the results software are set while assigning the
measurements, since at that time the use of specific hardware groups
is known. These flags will allow the results software to, for
example, omit printing the count in counter #1 if its detection
group is being used to double the start Timer event instead. This
is the only point within the entire initialization software that
such a determination is known.

$HPMD.MS is now written with all the information available
about the current measurements* TABLE, the measurements array, and
the flags for the results software are put in first. COM.CM, the
file in which the operating system puts "DEBUG" and the program name
to be executed is read to make sure that a program was indeed
specified; the program file is OPENed and CLOSEd to insure that it
exists. Error messages tell the user if either of these tests fail.
The program name is then written into $HPMD.MS; all old entries
except the current annotation have thus been overwritten. Skipping
over that annotation, the file pointer is advanced to the end-of-
file, and MLIST is called to add a printable listing of the current
measurements for the results software. Because the annotation and
measurements are the last things in the file, the results software
can print them together in a simple read-print loop which can
continue until the new end-of-file is reached.

COM.CM, from which the user program name was extracted, is
edited to remove the word "DEBUG". When this is done, it is
identical to what it would have been if the user had typed simply
the program name with any parameters and switches. The environment
for the user program is therefore as the program expects them in
terms of all those parameters and switches, and the user program
will behave normally.

RUN has now done its tasks and can call SETUP. SETUP does not
return to RUN, and so RUN does not return to the DEBUG main-line,
except if errors were encountered with the user's program name.

SETUP

SETUP is an assembly language routine which simply chains to
the RERUN program via a system call. Originally intended to do all
the outputting to the HPMD hardware itself, SETUP was reduced to a

59

/

system call when RERUN began to overlap such duties. RERUN will
read TABLE out of $HPMD.MS and load it into the HPMD hardware. It
will then swap in and execute the user program, and finally run the
results software.

KEEP

To save a copy of the current measurements in a disk file, KEEP
calls GETNAME to obtain the file name. After appending ".MS" to
indicate it's a measurement file, it is OPENed to see if it already
exists. If it does, it is deleted since it might be longer than the
current information. Then it is recreated, and the current
measurements array and annotation are written into it.

USE

USE performs a function complementary to that of KEEP. GETNAME
is used to obtain the file name, and ".MS" is again appended. If
successfully OPENed, the measurements and annotation are read to
replace the current ones. If the OPEN is unsuccessful,
"...MEASUREMENT FILE NOT FOUND" is printed and the current
measurements and annotation remain unchanged.

GETNAME

To obtain a file name, GETNAME uses NEWCHAR to read in up to 11
alphanumeric characters. A "$" is not allowed in such a file name,
thwarting the user who attempts to apply KEEP or USE to $HPMD.MS,
which has the wrong format. Assuming the cancel flag is not set,
they are checked for a rubout or carriage return. As in ANNOT, a
rubout is echoed as a backarrow and the previous character is
deleted; if a carriage return is seen, GETNAME returns with the file
name. When 11 characters have been entered without a carriage
return, NEWCHAR is limited to only rubout and carriage return, with
an explanatory message available upon a "?".

NEWCHAR

Last but not least is the routine which handles all terminal
inputs from the user. Called by DEBUG, QA, PARAM, GRAB, DEL, ANNOT,
MPRINT, and GETNAME, it manages the keyboard and thereby implements
the legal-illegal keys features, the line feed cancel feature, as
well as "?" and "!" responses.

To do this, it simply reads in a character, checks it against
the legal character string passed to it plus "?", "!", and line feed
and, assuming it matches one of them, it acts accordingly. If no

60

match is found, it loops back and reads another character without
echoing the first one; in this way, the former key appears dead to
the user. If it is a "?", the explanation message specified by the
calling routine is printed; if it is an "!", then the legal string
passed is printed instead. In either case, NEWCHAR then loops back
to read another character. If it is a line feed, the cancel flag is
set. Finally, if it is a legal character, then that character is
echoed, and thus it appears to the user to function normally. Upon
either a legal character or a line feed, NEWCHAR returns.

EXECUTION SOFTWARE

RERUN

To set up the execution and measurements, RERUN first loads the
HPMD hardware. $HPMD.MS is OPENed, and the first 130 bytes are read
into core. These consist of 114 bytes comprising the hardware-
loadable TABLE, plus the name of the user program, and the flags
passed primarily to the results software. The TABLE array is then
outputted to the hardware, after the hardware has been cleared by an
NIOC instruction on the NOVA 800* One of the flags passed from the
initialization software reflects the Store buffer option of
initially started vs. initially stopped. If started is selected, a
DIB instruction is executed, enabling the Store buffer; conversely,
a DIC instruction will ensure that the buffer is disabled if that is
selected. Next, the flag which indicates whether any Halts were
specified is checked, because this means HPMD interrupts may have to
be handled. If so, the MOVEISR subroutine is called.

An NIOS instruction is executed to start up the HPMD by zeroing
the timer and counters as well as enabling any interrupts, and then
the user program is executed by a system call (see Figure 4). Since
it is a swap rather than a chain, when the user program completes,
RERUN picks up from after that system call. Depending on whether
the user program makes a normal or abnormal return, the error flag
in an accumulator may be saved. Finally, RESTORE and also DISPLAY
are executed, and then RERUN returns to the system. If the user's
program returned with an error code, RERUN returns to the system
abnormally with that same error code.

MOVEISR

MOVEISR consists of two programs: the ISR itself and a program
which copies the ISR into core next to the user program. MOVEISR
calls subroutine GETSTART, which calculates a starting address for

61

COMMAND LINE INTERPRETER

EXECUTION /COMPLETION

DEBUG
CHAIN

RERUN

USER
PROGRAM

Figure 4 HPMD SOFTWARE PROGRAMS

the ISR based on the size of the user program. To copy it into a
new location in core, three byte pointers must be relocated. The
byte pointers in the ISR point to file names of the programs to
execute: DISPLAY, QZ, and the user's program. They are used in the
program swap system calls. The user program's name must itself be
copied from its storage in RERUN into the ISR* The system interrupt
vector, core location 1, is saved for later use. The actual copying
of the "relocated" ISR is now performed, and its starting address
stored into location 1. When this is done, all interrupts cause the
execution of this ISR.

The relocated ISR checks the
HPMD; if not, it branches to the
address was saved from location 1
with an NIOC 5 instruction, which
interrupts and zeroes its address
read in, which includes the state
enable/disable flag. In order to
system interrupts, the hardware s
and forces an interrupt enable
as the PC and registers, are also
restoration.

interrupt to see if it is from the
system interrupt routine, whose

Otherwise, it clears the HPMD
both disables further HPMD
register. The status can then be
of the NOVA interrupt
allow Halts despite disabled
imultaneously requests an interrupt
The rest of the machine state, such
saved in core for later

62

RERUN

USER
PROGRAM

INTERRUPT

BRANCH

(CONTINUE)

ISR

DISPLAY

(QUIT)

SWAP

(RESTART)

USER
PROGRAM

Figure 5 INTERRUPT SOFTWARE INTERACTIONS

QZ is then executed via a system call to query the user about
what to do next. Based on whether it returns normally or
abnormally, and if abnormally with what "error" value, ISR can take
one of several paths (see Figure 5). Upon a normal return, the ISR
assumes the user wished to stop any further execution, and so ISR
itself returns. Since the ISR execution is invisible to the
operating system, this return is handled identically to an actual
user program return, and RERUN resumes by running the results
software. Otherwise, DISPLAY (the results software) is run by the
ISR itself. Again, this is invisible to the operating system, and
so the normal restrictions as to what can be done in a conventional
interrupt routine do not apply. After DISPLAY completes and
returns, ISR either restores all the registers and interrupt
enable/disable state and branches to the old PC address, or it
chains to the user program. These two actions effect a continuation
onward from the halt breakpoint, or alternatively bring in a fresh
copy of the user program object code and thus restart the program.

By relying heavily on separate programs both to print the
results accumulated and to interrogate the user as to how to
proceed, the ISR is kept quite small (81 words). This is

63

significant since it must rest in high core co-resident with the
user program.

GETSTART

GETSTART computes the location of the ISR based on the size of
the user program. At a minimum, it must reside beyond location
13000 (octal). If the user cancelled the program under test, the
command line interpreter is run automatically to handle user
requests from the console, obliterating any code below 13000 long
before the user could have it run RESTORE to relieve the ISR of its
responsibilities. Similarly it must be beyond the end of the user
program. GETSTART reads the copy of the user program object code
stored on disk to find the control information defining the highest
core address used, and returns to MOVEISR with either one greater
than that address or 13000, whichever is higher.

QZ

When the ISR determines that it has received an HPMD interrupt,
it runs QZ to ask the user what to do next. Although it is a
separate program, it is used as a subroutine for the ISR, which
allows much additional code without enlarging the ISR.

As a separate program, QZ first OPENs the terminal input and
terminal output, and then prints "Enter 'C to continue, 'R' to
restart, or 'Q' to quit". A single input character is read in, and
compared with a set of six possibilities, "C", "R", "Q", "?", "!",
and line feed. If no match is found, the character is ignored and
QZ branches back to read in another. This imitates the user
environment created by NEWCHAR in the initialization software by
making unreasonable keys appear "dead". Similarly, "?" and "!" are
allowed, but both simply cause the repetition of the initial cue
about "C", "R", and "Q". In keeping with the protocol expected by
the ISR, "Q" causes a normal return from QZ, whereas "C" and "R"
cause abnormal returns with differing error codes. Finally, the
line feed is treated as a "Q", aborting the user program execution.

RESTORE

RESTORE is a simple program which stores one of several values
in core location 1. A system call which returns the location of the
operating system is used to obtain a number unique for each revision
of the NOVA RDOS system. By checking it against its possible
values, RESTORE can determine which revision is being used, and,
therefore, where the normal system interrupt routine is. By storing

64

the system interrupt routine's normal entrance point into location
1, all interrupts will be handled by it bypassing any ISR.

If the returned location matches no known value, a message is
printed saying "SYSTEM CLOBBERED...DO PROGRAM LOAD"; otherwise,
""FINISHED*" is printed to indicate both the end of the user program
if RERUN calls RESTORE, or to reassure the user that the interrupt
vector was now normal if RESTORE is run manually. It should be
noted that RESTORE puts the proper value in location 1 whether or
not it is there already. This means that a user can run RESTORE
whenever desired for reassurance without danger of doing anything
disruptive.

RESULTS SOFTWARE

DISPLAY

DISPLAY is the results software main-line, which does all the
read operations from the hardware and calls the appropriate
conversion, formatting, and outputting routines (see Figure 6).
Immediately upon entrance, an NIOC 5 instruction is executed which
disables any possible HPMD interrupt, as well as clearing the
address register. DIA instructions can then obtain the information
shown in Table V.

The hardware/software interface for reading information into
DISPLAY is similar in many ways to that for loading the device. The
same internal address register is used to select which information
is available. Table V lists the information obtained for each value
in the address register. 0-10 can be read repeatedly, since the
status, timer, and counters are not changed by being read; the
buffers lose the information after it is shifted out of them. This
is not a disadvantage, however, since they can be printed as they
are read. Indeed, the zeroes simultaneously shifted into the
buffers which replace the data are a convenient and automatic way
of clearing the buffers before they are used again.

65

DISPLAY

USE BLOCK

SET832

DEC832 PRINT

NUMPR

CPRINT ADDIO

o

u

<

ADDA

Figure 6 RESULTS SOFTWARE ARCHITECTURE

66

Table V

Reading Addresses

Address Information
Register Obtained

0 Cable Interlock and Proper ION Flag
1 Timer Bits 0-9
2 Timer Bits 10-19
3 Timer Bits 20-29
4 Counter #1, Bits 0-9
5 Counter #1, Bits 10-19
6 Counter #2, Bits 0-9
7 Counter #2, Bits 10-19
8 Counter #3, Bits 0-9
9 Counter #3, Bits 10-19
10 (spare)
11 (spare)
12 Store Buffer Bits 0-5 + 4 extra bits
13 Store Buffer Bits 6-15
14 Grab Buffer Bits 0-5 + 4 extra bits
15 Grab Buffer Bits 6-15

The status is first read in, but with this current
software version, it is ignored. INTRO is then called, which
handles all of the heading, time, date, and $HPMD.MS information.
INTRO returns several flags which indicate which of the six
measurements were indeed specified *

The time measurement is then read in and converted to decimal,
10 bits at a time. The counts and time as obtained from the
hardware are simply large binary numbers, 20 and 30 bits
respectively. The timer number is a count of 200 nsec. intervals.
A DIA gets the highest 10 bits of the 30 bit timer value, and ADD10
converts it into an array of ten decimal digits. A "2" is passed to
ADD10, which indicates that the decimal digits must represent twice
the value of the 10 bit word. This takes into account the fact that
each timer count represents 200 nsec., and so the decimal digits
will be the time in tenths of microseconds. The process is repeated
twice more, with the new 10 bit values read in and added to the
decimal digits as the decimal digits are shifted over by 1024. The
result is a digit array which represents, in decimal, (value #1 x
2097152) + (value #2 x 2048) + (value #3x2). The 30 bit value has
thus been doubled and converted to decimal.

67

USE is then called to check the flags returned by INTRO. If
the timer was specified, USE returns to the next statement after the
call; otherwise, it skips to the address given as a parameter, in
this case the counter processing code. Assuming the timer value is
relevent, PRINT is called to print the string "TIME=" on the line
printer. Next, NUMPR prints the decimal digit array in the format
specified. A zero is passed to NUMPR, informing it that all 10
digits are to be printed. When all the digits are to be printed,
NUMPR uses the format XXX.XXXXXXX, which fits the time measurement.
PRINT is called again after the digits to add "SECONDS" and a
carriage return.

The count values are handled in a similar way; DIA gets the 10
bit values and ADD10 assembles them into a decimal number. A "1" is
passed to ADD10 the first time, since the 20-bit binary value is a
straightforward count and does not need to be doubled as did the
time. Since there are 20 bits instead of 30, DIA and the ADD10
routine are used only twice for each count. Again, USE is called to
skip the printing of any meaningless count. Otherwise, PRINT
provides a "C0UNT=" and NUMPR prints the decimal digits. Passed a
"3", NUMPR skips the first three digits and decimal point, producing
a XXXXXXX format. This code for processing the counts is looped
through three times, once for each counter.

In the case of both the timer and the counters, the DIA
instructions as well as the calls to ADD10 are executed before USE
checks if the measurement was specified. This wastes CPU time, but
because ADD10 is fast and DISPLAY has time to burn, it is not a
significant drawback. By doing it in this manner, the address
register in the HPMD hardware is advanced over meaningless times or
counter values just as if they were relevant; no extra code is
needed to advance the register to replace the normal processing
steps.

A DIB instruction forces 10 into the address register, in
preparation for reading in the Store buffer's data. USE is then
called, since the buffer need not be read in if it is irrelevant.
Next, PRINT provides a heading "STORE BUFFER:" for the data, and
BLOCK is called to get and print it. BLOCK will read in all 256
values, and print them in an 8 column by 32 row array of octal
numbers. " " will be substituted for the locations in the
beginning of the buffer which precede the actual data, if there are
any. This process is repeated for the GRAB buffer with no
differences except the heading "GRAB BUFFER:". The DISPLAY main-
line is now complete, and returns to the calling routine (RERUN, the
interrupt servicing routine, or the operating system's command line
interpreter).

68

INTRO

INTRO handles the opening of files and the listing of all the
heading information. In a sense, it should be part of the main-line
code, but it was separated into its own routine to make the main-
line itself less cluttered and more readable. Its chores are few
and straightforward, but in assembly language they require over a
page.

INTRO first opens the line printer and calls PRINT to create
the heading box at the start of the listing (see Figure 1). The
line printer will remain open until DISPLAY completes. TODDAY is
then called, which adds the time of day and the date to the listing.
$HPMD.MS is opened, positioned to the flags which indicate which
measurements were specified and these flags are read into core.
$HPMD.MS is then positioned to the annotation and measurements,
which are stored in the file completely formatted and ready to
print. Alternating line-reads from $HPMD.MS and line-writes to the
line printer dump them on to the listing until an EOF halts the
process. The flags are then loaded into a register for the main-
line to use, and INTRO returns.

NUMPR

NUMPR prints an array of digits on the line printer in one of
several formats. From one to ten digits can be specified; if ten, a
decimal point is inserted between the third and fourth most
significant ones. Leading zeros are omitted, thereby left
justifying the number. The array is processed digit by digit, the
first non-zero one turning off the loading zero suppression flag and
enabling their printing using CPRINT, the character printing
routine. The digits are converted to ASCII by adding the character
"0" to the digit* Exceptions to the zero suppression rule are that
the 10 digit format's decimal point also turns off the suppression
flag, and it is always turned off before the last digit. This
permits a "0" count to be printed rather than a blank one. When all
the digits have been processed, NUMPR returns.

ADD10

ADD10 adds a 10 bit binary value to a 10 digit decimal array,
putting the result in the decimal array. A parameter passed to
ADD10 defines the method in which this is to be done. If the
parameter is 1, then the array is zeroed before the addition, and
therefore, the binary number is converted to decimal. If the
parameter is 2, the array is zeroed as before, but the binary number
is doubled before the addition; the result is an array decimal

69

digits equal to twice the binary value. If the parameter in a
subsequent call is 0, then the current decimal array is multiplied
by 1024 before having the binary value added to it. This allows
consecutive calls to accumulate the decimal equivalent of a 20 or 30
bit binary value by successive decimal shifts and additions.

The key to the algorithm which performs this binary-to-decimal
conversion is ADDA, a routine which adds two arrays of decimal
digits. By providing it with a decimal array containing 1, it can
add that array to itself repeatedly, thereby generating the powers
of two in the form of decimal digits. This power array can be added
to the other decimal digit array selectively, depending on whether
the binary bit in the 10-bit binary word which corresponds to that
particular power of two is TRUE or not. For example, if the binary
number was 49, the power array would be added in only when it
equalled 1, 16, and 32; the lowest decimal digit would have a 1, 6,
and 2 added to it, with the next digit getting 0, 1, and 3. In this
way, binary to decimal conversion can be accomplished easily. The
effect of the 0, 1, or 2 parameter is implemented easily for 1 and 2
by zeroing the decimal digit array and the power array first, and
using an initial power array value equal to the 1 or 2 respectively.
If it is zero, the power array and the decimal digit array continue
where they left off at the previous call, but with a new 10-bit
value.

ADDA

To add two arrays of 10 decimal digits, ADDA adds the elements
one by one while keeping track of any carry, just as it is done
manually. Starting with the lowest order digits, each pair of
digits are added and, if the result is less than ten, it is stored
back into the first array. If it is greater than 10, it is reduced
to a single digit by subtracting 10 from it and turning on carry
before storing it. That carry is then added with the next higher
pair of digits, and the process repeats. Carry out of the highest
digits is impossible in this results software application; ADDA is
coded to ignore it.

TODDAY

The NOVA RD0S operating system, like most, maintains a time of
day clock and a calendar. With the appropriate system calls the
hour, minute, and second are returned in separate registers, or
alternatively the year, month, and day. These are all small binary
numbers. ADD10 can be used to convert them to decimal, and adding
"0" converts these to ASCII. CPRINT can then print each digit, plus
the appropriate colons and slashes as delimiters.

70

USE

USE is a convenience routine, which is separated from the main-
line only to make that code more readable. USE checks the flags
returned by INTRO which tell which measurements are relevant and
which are not. If the next measurement is irrelevant, USE returns
indirectly through the address given as a calling parameter; if
relevant, USE returns to the next instruction after the call.

BLOCK

To print the buffer contents in an 8 x 32 array format, BLOCK
calls SET832 to initialize the formatting, DOTS to handle empty
positions, and 0CTDS-0CT2 to handle real values. As such, the code
of BLOCK contains only branches and subroutine calls. SET832 is
called first to initialize the column and row counters. DOTS is
then called, which repeatedly prints " " until a real data
value is seen. If it is never seen, it returns to BLOCK which
itself returns; otherwise, DOTS returns to a call to 0CT2, one of
the two entry points in 0CTDS-0CT2. 0CT2 will then print the buffer
value as an octal number, and handle the "+", "D", and "S" bits.
0CT2 then returns and BLOCK returns if there are no further values
to be read; otherwise, OCTDS is called repeatedly to get more data
values and handle them. Eventually, OCTDS will run out of values
and it will return to a BLOCK return. From this description, it is
clear that BLOCK does nothing but call other routines which do the
work; they even decide when and if BLOCK should return or call the
next routine.

DOTS

To differentiate real buffer data values from empty locations,
DOTS prints " " instead of "000000". Rather than returning and
then being called again with the next value, DOTS performs read
operations with the HPMD hardware itself, and does not return until
real data values are seen or 256 empty locations have come and gone.

Two DIA instructions get the 20 bit buffer value shown in
Figure 7. The "INFO" bit is ON only if the other 19 bits define
real data; DOTS tests this, and returns to the 0CT2 call if it is
ON. Otherwise, PRINT is called to do the " " and DEC832 is
used to decrement the column and row counter. Depending on DEC832,
DOTS loops back for more DIA's or returns to BLOCK'S return if the
entire buffer was empty.

71

VALID OTHER DESC. DESC.
BUFFER BIT BIT 0 1 2 3 4 3

INFO ALSO A E .

FIRST VALUE

6 7 8 9 10 II 12 13 14 15

.—|
-c
o SECOND VALUE
<a
«r •
<

L^l
Figure 7 10-BIT BUFFER VALUES

0CTDS-0CT2

OCTDS and 0CT2 are two entry points into the same routine.
OCTDS performs two DIA's before falling through into the 0CT2 entry,
which assumes the values read are already in registers. These
values are the 20 bits of a buffer entry as defined in Figure 7.
0CT2 then converts the 16 bit value into a 6 digit octal number and
prints it, followed by "+' and "S" depending on if each
symbol's corresponding bit is TRUE. DEC832 is used as it is in
DOTS, to loop back for more values until the buffer is emptied.

The binary to octal conversion is done by masking only the bit
or bits of interest, then converting to ASCII and using CPRINT to
print it, followed by rotating the next octal digit under the mask
and repeating. Additional masks test the bits which control the
printing of "+", "D", or "S". If the bits are FALSE, blanks are
printed to maintain the column format. DEC832 will return to one of
two locations depending on whether more values remain in the buffer.
These in turn cause 0CTDS-0CT2 to return to one of two locations in
BLOCK.

72

SET832

To keep track of the columns and rows while printing the 256
buffer values, SET832 and DEC832 are used. SET832 is the simpler of
the two: it initializes the column counter to 8 and the row counter
to 32. BLOCK calls it once per buffer printing.

DEC832

DEC832 decrements the column counter and returns if it is not
zero. If it is zero, the end of the row has been reached, and three
actions are taken: a carriage return and line feed are printed, the
column counter is reset to 8, and the row counter is decremented.
If the resulting row counter is zero, then the buffer is empty and
DEC832 returns to a different location than it does if more remains.
In this way, DEC832 handles the chores which must be done at the end
of each line of buffer printout.

CPRINT

CPRINT uses a system call to print a single character on the
line printer. It is designed for its call to be easy to insert in
the calling routine by assuming the ASCII character to be printed is
already in the right byte of a register. CPRINT swaps it into the
left byte, and performs a Write-Sequential system call, specifying
the number of bytes as one. The separation of this trivial function
into a single distinct routine saved a great deal of time when the
results output was altered from direct to system I/O to allow line
printer spooling and printout continuity; only CPRINT and PRINT
needed to be changed.

PRINT

Called by half of the routines, PRINT is an easy to use output
routine for printing strings of ASCII characters. It is passed the
address of such a string; first it scans the string until it sees a
zero byte. This scanning allows it to count the bytes to be
printed. When it has both the address and the number of bytes, a
Write-Sequential system call is used to perform the actual
outputting.

ERRORS

If any of several unexpected situations arise, the results
software will halt. Three conditions are anticipated. $HPMD.MS may
have been altered before DISPLAY is run, it may be impossible to

73

OPEN the line printer, and the disk may become full. $HPMD.MS is
dealt with only in INTRO where attempts to position its file pointer
to the measurements' flags or to the annotation may be illegal if a
small file is substituted. This condition is indicated by the CPU
halting with the address lights containing 1471, 1476?, or 1502.
INTRO also attempts to OPEN the line printer file $LPT. If this is
not possible for whatever reason, the CPU halts and the address
lights will contain 1454. Pressing the "Examine AC2" switch will
provide the error code in the data lights: 12 means the system can
find no $LPT file, 21 implies the system thinks someone else is
still using it. Finally, PRINT, CPRINT, or INTRO may halt if the
disk is full and they attempt to add more to the line printer
spooling buffer. In this case, the address lights will hold 1043,
1101, or 1511 and AC2 will contain 27.

It should be noted that deletion of $HPMD.MS does not cause an
error; instead, INTRO returns immediately and so the printout
continues without any annotation or measurements. All the possible
measurements will be displayed, whether they are valid or not, since
the measurement flags in $HPMD.MS are not available.

Upon an error, some degree of recovery is usually possible. An
altered $HPMD.MS may result in garbage instead of annotation and
measurements, but the data gathered will not be altered. Depending
on the value at the flags' location, some of the data may be skipped
even if valid. The "Continue" switch may be pressed to pick up
execution after the halt. Almost all errors can be corrected by
reloading the system and then running DISPLAY from the terminal. In
some cases when one is stopped at an interrupt and wishes to
continue, however, it will be necessary to choose between no
printout of value or no continuation.

74

APPENDIX II

HARDWARE

The functions of each hardware section are defined in this
appendix to convey the scope of the hardware and to show the extent
that the design is dependent on the NOVA 800 and the extent it is
independent.

EVENT DETECTION

The basis of the HPMD measurements is the processing of the
program parameters listed in Table I, It may be noted that none of
these parameters is updated each memory cycle; even Instruction and
Instruction Address are available only once per machine instruction.
Others, such as the I/O parameters, may be seen only rarely. It may
also be noted that they consist of only three "types" of
information: addresses, data, and device numbers. Every memory
cycle will have both an address and a word of data, and if
programmed I/O is performed, a device number will also be available.
The HPMD detection logic is based on these "types" of information
rather than each parameter separately, and therefore, much of the
logic deals only with three sources of information, not sixteen. By
sampling under the appropriate conditions, the "type" can later be
categorized into the parameter of interest. For example, by
sampling only on non-data-channel FETCH cycles, the addresses can be
limited to only instruction addresses.

To detect parameters, it is therefore necessary for the HPMD
hardware to obtain the current address, data, and device number, as
well as a description of what kind of memory cycle it is. These
form the basis of the conceptual, machine-independent information
which flows from the interface over the cable to the rest of the
HPMD hardware. Five generalized descriptor bits characterize the
current memory cycle to allow discerning the parameters, and the
interface synthesizes these bits from the specific machine
operations. They are defined in Table VI.

75

Table VI

Descriptor Bits

Descriptor Bit Definition

A 0 = CPU Cycle
1 = Data Channel Cycle

B 0 = Instruction-fetch Cycle
1 = Non-fetch Cycle

C 0 = Non-1/0 Cycle
1 = I/O Execute Cycle

D 0 = Non-Interrupt Cycle
1 = Interrupt Cycle

E 0 = Load or Input Cycle
1 = Store or Output Cycle

Addresses

To obtain the address involved in each memory operation, the
NOVA backplane signals must be tapped. Addresses may be specified
by the CPU, in which case they appear on the MBO (Memory Buffer
Output) bus, or occasionally they may be specified by a Data Channel
interface and can be found on the DATA bus. A backplane signal,
READIO, discerns between the two cases.

The MBO and DATA buses are connected through low-power
inverters, to a 16-bit wide multiplexer. Seventy low-power
inverters are used to tap all the NOVA backplane signals needed,
because they require at most only a quarter the normal signal power
and thus cannot significantly load down the NOVA. The multiplexer
selects one of the two buses, according to the state of READIO, and
sends it to a 16-bit latch. The selected bus will only have the
address available for a few hundred nanoseconds, and so it must be
grabbed at that moment and held in the latch. MALOAD is a backplane
signal which pulses at the appropriate moment, and the latch is
updated by MALOAD for each new address. This multiplexing and
latching is analogous to the process the memory boards use to obtain
their load or store address.

76

The latched address is available 300-450 nsec. before the data
appears., and therefore, the old data overlaps the new address during
that period. This is unacceptable if doubling is to be allowed in
the detection logic, and so the address is latched again when the
data appears so as to be present during the identical interval.

Data

The data value may come from the CPU, from memory, or from any
I/O device. In the first two cases, it will be on the NOVA MEM bus,
and for I/O it will be on the DATA bus. Descriptor bit "C", which
indicates whether there is any programmed I/O during the current
memory cycle, is used to select the MEM or the DATA bus with a
multiplexer. The resulting 16-bit data value is latched as soon as
it is kr.own to be good by a signal called GRAB DATA, STROBE,
MBLOAD, or any programmed I/O signal each imply data is or soon will
be available on the appropriate bus, and so they are used to
generate GRAB DATA. A 100 nsec. delay is used for STROBE and
MBLOAD, while programmed I/O signals are delayed 400 nsec. This
GRAB DATA triggers both the data latch and the second address latch.

Device Numbers

If the device number is the result of programmed 1/0, then the
DEV0-DEV5 backplane signals will carry it. In the case of an INTA
(INTerrupt Acknowledge) instruction, the interrupting device puts
its number on the DATA bus. As with the address and data values, it
is necessary to use a multiplexer to select between two sources of
information. Since device numbers are 0-77 octal, however, this
path is only 6 bits wide rather than 16. Descriptor bit "D", ON
only during the execute portion of INTA instructions, is used to
control the multiplexer. A GRAB DEVICE pulse is synthesized by
delaying INTA's and programmed I/O signals 400 nsec, and then is
used to latch the device number selected by the multiplexer.

Descriptor Bits

The five descriptor bits are synthesized from NOVA memory and
I/O control signals obtained from the backplane. They classify the
CPU cycle as defined in Table VI. MALOAD, a pulse which tells the
memory boards that an address is available, comes before each memory
cycle. The HPMD generates another signal, CYCLE, by delaying MALOAD
for 220 nsec., thereby getting a pulse reasonably early in each
memory cycle. CYCLE is then used in synthesizing several of the
descriptor bits by sampling conditions or clearing bits which may
later be set. By latching the state of READI0 at MALOAD time, data
channel activity can be sensed. This value overlaps the previous

77

cycle, and so it is again sampled by CYCLE to produce descriptor bit
"A", now synchronized with the rest of the bus and descriptor bit
information. CYCLE is also used to latch the fetch state signal to
obtain "B". CYCLE is used to clear a flip-flop which may later be
set by any programmed I/O activity; this flip-flop generates
descriptor bit "C". If there is such activity, it is set; if not,
it remains cleared. In a similar way, bit "D" is driven by a flip-
flop cleared by cycle and set by an INTA instruction. Bit "E" is
the most complex, since it is based on the direction of information
flow during both memory access and I/O instructions. A directly-
settable, directly-clearable type D flip-flop is used to drive bit
"E". At the beginning of each memory cycle, it is directly cleared
by CYCLE; if at any point an output I/O instruction occurs, it is
directly set. To differentiate between memory load and store
operations, one need only detect a STROBE or MBLOAD pulse
respectively; unfortunately, the MBLOAD pulse is also used for data
input operations, and so setting bit "E" upon MBLOAD would be
incorrect in some cases. By using the type D flip-flop to sample
whether there is a current input operation upon each MBLOAD pulse,
the "E" will be set upon MBLOAD pulses only in the absence of any
input operation.

Control Pulses

In order to limit the detection operation to only the selected
parameter, it is necessary to observe the proper type of information
(address, data, or device number) at the proper moment. Signals
called control pulses are synthesized to indicate the proper time
and circumstances for each detection operation (see Figure 8).

Each control pulse must arrive at a time when the information
has settled and will be correct for at least a few hundred
nanoseconds to come. It also must arrive in the midst of only those
memory cycles wherein the selected parameter is updated. In the
simple case where instruction address (IA) is selected, the control
pulse is only generated late in each CPU-initiated Fetch cycle. It
must be late enough to assure the information and descriptor bits
have settled down, but early enough so that there is time to perform
the reduction functions.

The correct timing for all control pulses is assured by gating
them with a timing signal supplied by the interface within the NOVA.
A CPU timing signal, PTG3, is present only during the final quarter
of each cycle; its timing is ideal for gating the control pulses.

The "proper circumstances" are more difficult to discern. This
is accomplished by a two-step synthesis, in which the conditions

78

(CABLE)

INTERFACE

(MULTIPLEXERS
SLATCHES)

a
0-

HOST
COMPUTER
BUSES a
CONTROL
SIGNALS

ADDRESS

DATA

DEVICE No.

DESCRIPTOR BITS

CONTROL
PULSE

NETWORK

(PARAMETER
UPDATE)

FRONT PANEL

INFORMATION
MULTIPLEXER

SELECTED
INFORMATION

ASSOCIATIVE
MEMORY

CONTROL
PULSE

MATCH ?

UNIQUE FUNCTION

• GATING
HALT

Figure 8 DETECTION LOGIC

indicating the updating of each of the sixteen parameters are
detected, and then each control pulse is selected from among those
sixteen signals. Table VII defines the conditions for each
parameter in terms of the descriptor bit values, and these formulae
are implemented in hardware by a maze of Boolean gating to produce
the sixteen control pulses. Sixteen-input multiplexers select each
control pulse from among these signals based on which parameter is
to be detected. This selection is then gated by the timing signal
to assure that the control pulse arrives at the proper time.

79

Table VII

Control Pulse Synthesis

Conditions
Paramet er Meaning A BCD E Formula

INS Instruction 0 0 0 0 0 ~A~B
OPR Operand 0 1 0 0 X ~AB~C
OPL Operand if Load 0 1 0 0 0 ~AB~C~E
OPS Operand if Store 0 1 0 0 1 ~AB~CE
DI I/O Input Data 0 1 1 0 0 ~AC~D~E
DO I/O Output Data 0 1 1 o 1 ~AC~DE
IA Instruction Address 0 0 0 0 0 ~A~B
OPA Operand Address 0 1 0 0 X ~AB~C
OAL Operand Address if Load 0 1 0 X 0 ~AB~C~E
OAS Operand Address if Store 0 1 0 X 1 ~AB~CE
DC A Data Channel Access Address 1 XXX X A
AST Address if Any Store X 1 0 0 1 B~CE
INT Interrupting Device # 0 1 1 1 0 "AD
DV# I/O Device # 0 1 1 0 X ~AC~D
IN# Input Device # 0 1 1 0 0 ~AC~D~E
OU# Output Device # 0 1 1 0 1 ~AC~DE

KEY: X =

0 =
1 =

don't care conditon
0 implied by other bits
1 implied by other bits

Informa tion Multiplexer

To select the type of information to be used in the detection
comparisons, a massive multiplexer is used to provide the desired
address, data, or device number as requested. It is divided into
ten sections, eight of which handle the information for each
detection group, and the remaining two serve the buffers. Each
section takes the 16 address, 16 data, and 6 device number signals
provided by the NOVA interface, as well as 16 signals from the front
panel switches for test purposes, and selects 16 (or 6) output
signals. Since there are ten such sections in the Information
Multiplexer, this is clearly one of the largest parts of the
hardware.

To control each section, a two-bit value is used based on the
parameter desired to select between the four sources. If the
parameter is among the first six in Table I, then the type of

80

information needed is the current address; the next six require the
current data, and the last four require the device number. To use
the front panel switch register, the "Front Panel Load" switch is
turned on, in which case the Information Multiplexer ignores the
programmed parameter selection and provides the front panel switches
value* A small set of gates can synthesize the two-bit control
value from the four-bit programmed parameter and the state of its
"Front Panel Load" switch. This set of gates is implemented nine
times, since the Grab buffer's multiplexer is controlled directly.

Associative Memory

The heart of the detection logic is the associative memory,
which performs the actual comparisons between the current
information and the anticipated parameter values. It consists of 32
words of associative memory, each 16 bits wide, and is divided into
8 sections, one for each detection group. The information selected
by the Information Multiplexer is fed into the corresponding
associative memory group which continuously compares it with its
four internal values. These comparisons proceed whether the
information represents a new value of the selected parameter or not.
For example, if "IA = 2000, 2001, 2002, 2003" was the event
definition, then IA is the selected parameter, and 2000, 2001, 2002,
and 2003 are the internal associative memory values. The
associative memory, however, is fed all addresses, both of
instructions and of operands, from the CPU and from the data
channel. If the address, from whatever source, is among 2000-2003,
then the associative memory group produces a match as its output.
This process takes only 40 nsec. within the LSI chips. The timing
for the entire detection process plus the buffer shift time is shown
in Figure 9.

Doubling

The circuitry to implement optional detection doubling is quite
simple. Sixteen programmed bits control whether doubling is
required for each of the pairs of associative memory words. These
bits are inverted and then OR-ed with the match outputs from words
16-31, providing signals which are TRUE if either doubling is not
required or the second half of the pair is TRUE. These signals are
then AND-ed with the 0-15 match outputs to effect the doubling if
needed. The four matches within each group are AND-ed together to
produce a single match signal, which for groups 1-4 are controlled
by doubling logic, and for groups 5-8 are not. These match signals
are then AND-ed with their corresponding control pulse, thereby
producing eight event signals which are the electronic manifestation
of the event concept developed as part of the software syntax. The

81

O CO

<
Li-
ce
UJ

>•

00

Q
UJ
X

o

to
to
UJ
or
o
Q
<

CO
<
o
UJ

o
6
z
UJ

o
>
UJ
Q

<
a

w
to
UJ
cc
Q
Q
<

UJ
5

UJ
>
UJ

CO O

CO
CO
UJ

Q
Q

<

Q

0-

<
b

UJ

o
>
UJ
Q

<
Q

to
W
UJ
CC
Q
Q
<

3
0.
t-
Z)
o
I o
«J
2

>-
CC
o
2
UJ

2
UJ

>

o
o
CO
If)
<

CO
I- UJ
U. CO

I-I
to?

X
CO

UJ
cr

<

en

3

82

control pulse implies that the parameter is being updated, so if the
associative memory, after any doubling gates, shows a match, then
the event is detected.

INFORMATION REDUCTION

Eaoh of the eight events can control either its Table II unique
function (timer, counter, or buffer) or it can initiate a NOVA
interrupt to halt the user program. Programmed "enabling" bits
allow each event signal to reach the common interrupt line or its
unique function input. Although the syntax does not support it, a
detection group may even be programmed to do both; upon an event,
the unique function could be performed as well as the program
halted.

Counters

The unique functions associated with groups 5, 6, and 7 are the
incrementing of counters. Initially zeroed, they increment by one
upon each event detected by their detection group. Each counter is
made up of five 4-bit binary counter chips connected end-to-end to
produce a 20-bit counter. A common reset line zeroes all the
counters at once; this line is driven by an NIOS 5 instruction in
the NOVA. The 20-bit total permits a maximum count of 1,048,576
before wraparound occurs and the counter begins again from zero.
The chips themselves are capable of counting at 18 MHz, which far
exceeds the 1.125 MHz maximum event-detection repetition rate.

Timer

The timer is a 30-bit counter driven by a gated 10 MHz crystal
oscillator. A flip-flop is set and reset by the first two detection
groups respectively, and that flip-flop gates the continuously-
running 10 MHz square wave. A commercially-manufactured Motorola
K1091A crystal oscillator, which fits into a 14-pin DIP package,
supplies the time base with a .01$ practical stability. This
frequency is divided by a 30-bit counter similar to the counters
described in the previous section. The LSB of this counter changes
state each 200 nsec., and the MSB changes each 107.3741824 sec,
providing 200 nsec. resolution during a 214.7483648 second period
before wraparound occurs.

Store Buffer

The store buffer obtains its parameter input as do the
associative memory groups; it has its own Information Multiplexer

83

section and its own control pulse. A latch is used to hold the
address, data, or device number selection upon the availability of a
new parameter value as triggered by the control pulse.

This same control pulse initiates a buffer shift cycle. The
circuitry which determines whether a shift cycle occurs or not is
complex and is based on several factors. Most important, a flip-
flop is set and reset by the group #3 and group #4 events as
detected; group #3 enables the store buffers, and group #4 disables
it. That same flip-flop is also set and reset by DIB and DIC
instructions to the HPMD which allow the software to set up its
initial state. Other buffer options may also suppress shift cycles.
To allow a buffer control pulse to get through to the buffer itself,
three conditions must be met: the store buffer must be enabled, not
permanently shut down, and not frozen. The permanent shutdown flip-
flop is controlled by both the disabling operation and the
programmed "shutdown permanent" bit. That bit is sampled upon
disabling by group #4, and if it is ON, no further shifting is
allowed. Control pulses which pass the enable-disable and permanent
shutdown hurdles must still be gated by the shift counter circuitry.
These control pulses are fed into a divide-by-256 counter, the
output of which indicates that the buffer is full. This output is
used to sample the programmable bit which dictates whether the
buffer should freeze when it is full. If the sampled bit is ON,
then all subsequent control pulses are blocked from shifting the
buffer.

If the buffer is not disabled, not permanently shut down, nor
frozen, then the buffer control pulse triggers a 300 nsec.
monostable multivibrator. It is the 300 nsec. pulse which is used
to drive the shift registers.

The buffers are implemented out of MOS dual 256-position shift
register chips, arranged as a 20 bit wide, 256 position long buffer.
The input is the latched buffer input information (16 bits) plus
four other bits (see Figure 7). These other bits define whether the
position contains valid information, whether the other buffer is
shifting on the same memory cycle, and also include the data channel
and data direction descriptor bits ("A" and "E"). The valid
information bit is needed since the act of reading data out of the
buffer feeds meaningless data in the other end.

Grab Buffer

The grab buffer is in most ways identical to the store buffer,
differing only in its source of information and triggering
mechanism. Rather than being fed information in the same way as

84

each detection group, the grab buffer's Information Multiplexer
selects between the current address, data, or device number, as well
as the most recent instruction address. This selection is based on
two programmable bits, not bits decoded from a selected parameter.
Furthermore, a control pulse is not generated based on any parameter
updating; instead, detection group #8's events trigger grab buffer
shifting directly. Two other minor differences involve the grab
buffer programmable options, which can inhibit the shift pulses when
the store buffer is disabled or permanently shut down, but cannot
permanently shut down the grab buffer.

In all other aspects, the two buffers work in the same manner.
Both buffers can freeze when full if desired, and use the 20-bit
wide shift registers driven by 300 nsec. pulses. The extra four
bits are the same, except the "other buffer currently shifting" bit,
of course, refers to the opposite buffer in each case.

Halts

The halting function can be initiated by any of 11 different
causes, and so it is implemented by a single HALT signal to which
any number of open-collector gates may be connected. Each detection
group has such a gate, which forces the HALT line TRUE upon
detecting an event if the halt-enable programmed bit for that group
is TRUE. Such gates are used in a similar manner driven by each
"buffer full" signal in combination with each respective "halt upon
buffer full" option bit. Finally, the eleventh such open-collector
gate is pulsed by the front panel "Interrupt" button, for use in
both hardware and software checkout. The HALT line is sent over the
cable to the NOVA interface, where the interrupt generator stops the
user program.

Interrupt Generator

The interrupt generator performs seven distinct functions
involved in proper interrupt handling for the HPMD on the NOVA.
First of all, an enable/disable flag is maintained based on several
items. It is necessary to insure that interrupts are never
generated when they are not intended, and so three conditions must
be met before interrupts are enabled: the cables must be connected,
the "DISABLE" switch on the interface board must not be ON, and the
software must have deliberately tried to enable the interrupt
generation. The cable connection is sensed by sending the HPMD
device's +5 volt power supply voltage over the cable; if the device
is not connected and turned on, all interrupts will be suppressed.
The manual switch provides another level of protection, and is
useful while working on the hardware. Finally, a flip-flop is set

85

and reset by NIOS 5 and NIOC 5 instructions, which initiate and stop
the HPMD measurements.

If enabled, the HALT signal coming over the cable is used to
trigger NOVA interrupt request. The HALT signal is first latched,
so an interrupt will be caused even if the HALT signal goes away.
Next it is gated by the interrupt enabled signal, and then it is
sampled by the periodic NOVA "REQUEST ENABLE" signal, and if ON is
used to drive the common NOVA interrupt request line.

The procedure will only have an effect if the NOVA is enabled
to be interrupted. To assure prompt halting despite the NOVA's
interrupts being disabled, at this time the NOVA CPU interrupt
enable/disable flip-flop is forced into the enable state. This is
done by driving the "EXT ION EN" line, an obscure CPU signal which
is rarely used. This line is held TRUE until an interrupt starts.

The fourth interrupt generator function is to handle the NOVA
"INTP" lines, which are an interrupt interface daisy chain. By
passing all pulses on these lines when not causing an interrupt, but
blocking all pulses when it is, the interrupt generator lets the
other device interfaces know to whom interrupt belongs.

To let the CPU know which interface caused the interrupt, an
INTA instruction can be issued. Upon this instruction, the
interrupt generator forces a "5" on the data bus where it can be
read by the CPU. That "5" is the HPMD device code on the NOVA.

When the CPU interrupt enable flag is forced ON, the previous
state is lost. In order to allow the software to be able to restore
the original machine state for continuation after an interrupt, the
previous CPU interrupt enable state must be saved. Rather than
attempting to capture it at essentially the same moment as it begins
to be changed, the interrupt generator keeps track of the flag state
in parallel with the CPU. NIOS 77 and NIOC 77 instructions, which
enable and disable the CPU interrupt capability, are used to set and
reset a flip-flop which will be equivalent to the CPU flag at all
times except upon an HPMD interrupt, when it will remain in its
previous state while the CPU flag is forced ON.

This equivalent flag, together with the cable continuity check
signal, can later be read out by the HPMD software. Bits 9 and 10
of the data word obtained by the first DIA instruction to the HPMD
hardware will contain this information.

86

PERIPHERAL INTERFACE

Loader

The loader circuitry is responsible for the loading of all the
memory elements within the hardware under the control of the
software. By using an internal indexing scheme, the
hardware/software protocol is reduced to a clearing pulse and a
simple sequence of data transfers. A six-bit up-down counter,
called the address register (AR), is used to direct incoming
information to the proper storage element (see Table VIII).
Initially zeroed by an NIOC 5 instruction, each subsequent DOA 0,5
instruction transfers up to 16 bits of information and then
immediately increments the AR. In this way, each word goes to a
different destination.

Table VIII

Loading Addresses

Address Information
Register Stored

0-31 Associative Memory Values
(4 Values x 8 Groups)

32-39 Parameters for Each Group (as in Table I)

40-4 3 Doubling Bits, Halt and Unique Function
Enable Bits, Groups 1-4

44-47 Halt and Unique Function Enable Bits,
Groups 5-8

48-51 Shift Control Option Bits

52 Grab Buffer Input Selection

53-55 (unused)

56 Store Buffer Input Parameter Selection

87

The data word of any I/O transfer is brought to the HPMD on the
data lines for detection purposes. If the I/O specifies a device
number of 5 (the HPMD), then the type of I/O requested is encoded
into a 3-bit field and sent over the cable. After decoding, a DOA
instruction is used to store the data word in the HPMD. In this
way, the same data lines which are used for carrying information for
detection are also used for loading the HPMD hardware.

The AR is implemented using two 4-bit, up-down counter chips.
It will be cleared by a NIOC 5 instruction and incremented by a DOA
or DIA instruction (since it is also used for reading measurements
back into the software). The front panel also has the capability of
zeroing, incrementing, decrementing, or loading it with a specific
6-bit value*

The decoding of the AR is accomplished by a variety of
arrangements depending on the nature of the corresponding storage
element. The highest 3 bits are decoded into 8 lines by using part
of a BCD-to-decimal decoder chip to detect AR addresses 0-7, 8-15,
16-23, etc. The first four of these lines enable four other
decoders each operating on the low order 3 bits, producing 32 lines
corresponding to AR addresses 0-31. These addresses belong to the
32 associative memory words, and each one is selected for loading
when the AR contains its address. By zeroing the parameters to be
detected, the associative memory words are fed data information,
since parameter zero is "Instruction". The data information is
indeed instructions during CPU Fetch cycles, but during I/O it is
the I/O data word. Thus by zeroing all detection parameters, each
word of associative memory will be fed all I/O data, which can then
be stored into the memory when enabled by a DOA 0,5 instruction and
selected by the proper AR value.

The remaining loader storage functions are far less
complicated. The "32-39" high-order AR decoding line enables the
parameter storage. Four 8-bit, addressable latches are all enabled
by this line, and each stores one bit of each of eight parameters.
The low-order 3 bits of the AR are used to steer the parameter into
the proper slot in these addressable latches. In this way, the
lowest 4 bits of each data word transfered during the 32nd through
the 40th DOA 0,5 instruction will be stored as detection parameter
values.

In a similar manner, addressable latches are used to store the
eight halt enable bits, the eight reduction function enable bits,
and the 2-bit value containing the grab buffer multiplexer selection
as well as all buffer control option bits.

88

Four 4-bit latches are used to save the sixteen doubling bits,
one bit for each doubling pair. Another BCD-to-decimal decoder is
used to determine which latch is selected by the current AR
contents. A 4-bit latch enabled by the 56-63 decoding line latches
the store buffer parameter. These 4-bit and addressable 8-bit
latches, together with the associative memory, constitute all of the
HPMD storage.

Reading

The method used for reading the results back to the software is
in many ways similar to that used by the loader. The AR is again
the key to steering the information to be conveyed. Basically,
successive DIA 0,5 instructions obtain the true interrupt flag, the
times value, the counters' values, and the contents of both buffers.
Several factors slightly complicate this method.

First of all, the path from the HPMD hardware to the NOVA
interface is only 10 bits wide. This limitation was chosen since
the counters and buffers are 20 bits wide and the timer is 30 bits
wide, requiring a fractional-width path lest the cable requirements
be unreasonable. This forces AR addresses 1-3 to be needed for the
timer, 4-5, 6-7, and 8-9 for the counters, 12-13 for the store
buffer, and finally 14-15 for the grab buffer. Ten and eleven
remain available for future enhancements.

To allow an entire buffer to be read by successive DIA
instructions, the actual AR address is altered by substituting 00110
for the highest 5 bits in the case of the store buffer and 00111 for
the grab buffer; the lowest AR bit, which toggles with each DIA, was
used to oreate an alternating pair of substitute addresses, 12-13
and 14-15. The 00110 substitution is enacted by a DIB 0,5
instruction, which transfers no meaningful data back to the NOVA,
but does tell the read circuitry to begin reading the store buffer
values. In a similar manner, a DIC 0,5 substitutes the grab
buffer's 00111.

The AR value or its substitute will, therefore, be a number
between 0-15, and a large multiplexer is used to select the proper
information based on this number. This multiplexer is 10 bits wide,
corresponding to the reverse data path used for reading. Inputs 0,
1, and 11 are grounded, since the interrupt generator, at the other
end of the cable, will add the true interrupt flag state into 0, and
10 and 11 are unused.

This read circuitry is first used to obtain the timer and
counters by an NI0C and successive DIA's. Then, a DIB and

89

successive DIA's read in the store buffer, and a DIC with still more
DIA's get the grab buffer. Each measurement is broken into two or
three 10 bit fields, and are obtained in MSB before LSB order.

CABLE

The cable is responsible for carrying many signals at very high
data rates. Forty-seven signals are sent from the NOVA interface to
the HPMD, and 12 proceed in the opposite direction. Ground loops,
stray coupling, inter-signal coupling, and line termination
distortions all had to be minimized if the information was to arrive
at the other end quickly and accurately.

Ideally, a shielded twisted pair would have been available
allowing each signal to be sent differentially, but the large number
of signals and the limited space on the NOVA interface board ruled
out so lavish a scheme. Two 50-conductor flat cables were chosen,
allowing wire-wrap connectors to be bolted to the board and still
remain under the .375" height limit. With 59 signals and 100
conductors, it was clear that many of them could not be sent as
differential pairs. The timing signal, descriptor bits, I/O
control, and HALT line were judged to be the most critical and so
these were provided side-by-side conductors isolated from other
pairs by grounded conductors. The timing signal, considered the
most critical of all, was provided an additional grounded conductor
between its differential pair. The remaining signals, the address,
data, and device number buses as well as the reverse path for
reading, are sent as single conductors side-by-side with each other.
These signals are not as critical since they have more time to
settle and all members of each bus change at once.

These bus signals have reference voltage lines interspersed
among their conductors. There are four reference voltage lines for
the address, data, and device number buses, and two for the reverse
bus. These reference voltages are used in a differential comparison
with each bus signal; in this way, some of the advantages of
differential pairs, such as suppression of ground loops and stray
coupling, are retained without requiring as many additional
conductors.

The signals are all driven by open-collector hex inverter (or
non-inverter) buffer-driver chips, which can sink 40 ma. and still
develop less than +0.7 volts across their output. Using these chips
for drivers, six lines could be driven by one package, saving much
board real-estate at both ends of the cable.

90

The receivers used for all the signals were Fairchild 9615 dual
differential line receivers. These work as medium-speed
comparators, fast enough to handle the NOVA data rates, yet sluggish
enough to ignore spikes and other very fast noise. Pull-up
resistors were used on all signals, approximately matching the
characteristic impedance of the flat cable (130 ohms) to minimize
reflections. This resistance requires the drivers to sink 33 ma.,
which is an advantage in that such a low impedance and high-power
level design reduces the probability that a brief and medium-energy
pulse picked up from other equipment could alter the state of any
signal. Because the drivers are TTL circuits, the cable voltages
conform roughly to TTL requirements, with +5 and +0.7 as the actual
TRUE and FALSE levels. The bus reference voltages were set to be
+2.85 volts to split the difference.

FRONT PANEL

The front panel of the HPMD "box" is designed to aid in the
hardware development. It allows loading all the HPMD storage,
exercising the associative memory, address register, and interrupt
generator, and also display of major HPMD signals. The address
register is used as it would be by the software, except 16 data
switches provide the information to be stored upon pushing the
"Write Increment" button. Thirty-two L.E.D.s display the current
output of each detection word. To obtain these DOCUMENTsignals, the
associative memory outputs are latched by their corresponding
control pulse. The result stays ON or OFF until another control
pulse updates the display: this allows checkout of the detection
functions by single-stepping the NOVA. The descriptor bits, HALT
line, timer, store buffer, address register, DOA, and DIA lines are
also displayed.

Push-button signals are debounced using set-reset flip-flops
and then differentiated by R-C high-pass filters to produce 100
nsec. pulses. These pulses are then used to increment or decrement
the AR, cause an interrupt, or reset the HPMD by emulating an NIOC 5
instruction.

The L.E.D.s are driven by the same type of hex buffer driver
chips used to drive the cable. Series resistors (110 ohms) limit
the current to a safe 20-30 ma level which provides adequate
brightness without degrading their output very rapidly.

91

MECHANICAL LAYOUT

The HPMD hardware is divided between two parts: the NOVA
interface and the measurement device itself. To the extent it was
possible, the NOVA interface contains all the circuitry which is
host-dependent.

The NOVA interface was constructed using a 15-inch square board
from Data General with wire-wrap pins, to which 128 16-pin IC
sockets were soldered. This board plugs directly into the NOVA
chassis, occupying a slot which has been specially wired for it.
Normally a memory slot, it already has available at its backplane
connector all of the memory and I/O bus signals. Five CPU signals,
PTG3, F, ION, PI, and EX ION EN are connected to the HPMD slot by
extra backplane wiring; it is these wires which make the HPMD slot
unique.

All communication with the measurement device is done over the
cable, for which two 50-pin connectors have been bolted in place at
one end of the board. The circuitry itself consists mainly of 14
and 16-pin I.C. chips, with a few potentiometers, discrete
components, and two L.E.D.'s used in the interrupt generator
checkout. Across the power supply leads at the backplane connector
are a reverse diode and a zener diode to protect the NOVA from any
glitches induced on these lines by the board, and vice-versa. Two
100 ufd. capacitors add protection and transient smoothing, together
with sixteen 6.8 ufd. and ninety-five .05 ufd. capacitors
distributed throughout the board to insure minimal power supply
impedance. The power itself is derived from the NOVA, and this
averages about 1.75 amps, at 5 volts.

The measurement device itself was arranged to be an efficient
packaging arrangement yet provide excellent accessability, since it
is a development system which required much probing and rewiring.
Almost all of the circuitry was done on small cards, which could be
plugged into a card cage for checkout and operation and be removed
for rewiring and repair. The card cage has 13 slots, only 10 of
which are needed for the HPMD as currently designed. Cable
connectors are bolted on top, so their wire-wrap connections are
coplanar with the card cage's backplane connections. Each slot
accepts a 120-pin connector from its card, and the power supply is
distributed throughout the backplane. An overvoltage protection
circuit is soldered directly to the backplane which will crowbar the
power supply down to 5.5 volts if a higher voltage is sensed. This
both limits transients and provides protection against incorrect
power supply voltages, which was most comforting when the device was
run using adjustable 0-30 volt supplies early in the checkout phase.

92

A reverse diode also limits transients and provides additional
protection. Power supply line capacitors, 50 ufd. each, are
soldered to the backplane at each of the ten card slots in use. The
card cage itself is mounted high in the cabinet to allow cool air to
flow under the cards and be drawn upward by convection.

The circuit cards contain 20 rows of 50 wire-wrap pins each and
are large enough for 60 14-pin or 50 16-pin I.C.'s. The 1000 pin
matrix allows intermixing 14, 16, and 24 pin I.C.'s in a wide
variety of arrangements. Additional wire-wrap pins are soldered to
the edge connector, which provides access to the card cage backplane
for 120 signals. Numerous .1 ufd. capacitors provide decoupling for
the power lines which are distributed on both sides of each card.

The cabinet allows as much access as possible to the card cage.
Both the front and back panels are hinged and latched, allowing them
to be opened as doors to remove or adjust cards and to perform
backplane wiring work. The front panel includes all the L.E.D.'s,
switches and associated circuitry mounted directly on it so as to
swing out of the way. The back panel has both the +5 and the -12
volt power supplies mounted on it, together with a fan for cooling.
The top of the cabinet is perforated and is removable, allowing easy
access to the cable connectors and card cage. The back panel is
nearly two inches shorter than the cabinet, providing a large gap at
the bottom for the cables, power cord, and circulating air to get in
and out of the cabinet. This gap, together with the fan, perforated
top and convection, provide exceptional cooling for both the hot
power supplies and the circuit cards.

93

