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SECTION I 

INTRODUCTION 

The Hybrid Program Measurement Device (HPMD) is a programmable 
system which performs instruction-level monitoring of the execution 
of a minicomputer program.  By combining both hardware and software, 
the HPMD provides debugging and optimization capabilities which are 
impossible to provide with hardware or software alone.  The design 
and construction of the HPMD proved the feasibility of the hybrid 
hardware-software approach in providing an effective and powerful 
monitoring tool.  The implementation of the device with a 
minicomputer not designed to be monitored in such a manner was quite 
difficult;  discovering the nature and extent of such difficulties 
were important results of this effort. 

Program measurement has traditionally been done by software 
tools alone; hardware has been used primarily for system-level 
measurements. With an HPMD, however, programmable hardware may be 
used to aid instruction-level debugging and optimization.  In this 
context, "measurement" is meant in the broad sense of obtaining 
information which describes or defines the execution of a program. 

The HPMD was implemented in conjunction with a Data General 
NOVA 600 minicomputer.  The NOVA's memory and I/O buses are 
monitored using an associative memory to detect "events" such as the 
execution of a particular instruction or a data word being 
initialized. Many different events or combinations of events can be 
detected and used to control timing, counting, data storage, and 
breakpoint capabilities.  Timing frequently used routines or the 
intervals between the occurrence of events can be valuable in 
optimizing execution speed or searching for a system problem which 
is time-dependent. The counters can be used to count the number of 
times a piece of code executes or the frequency of other specific 
events.  Buffers and breakpoints allow access to otherwise obscure 
execution data which can be the basis for effective debugging. 

The HPMD software runs before and after the user's program to 
initialize the hardware and to print the results.  The software was 
written in ALGOL and assembly language, and it allows a 
straightforward yet more sophisticated human interface. 
Initialization is accomplished through interpretation of an 
interactive syntax designed specifically for this task.  The results 
software performs data conversion and formatting chores to make the 
collected data more useful. 



The scope of this document has been limited to a discussion of 
the nature of the design and what has been learned from its 
construction. The details of software code and hardware wiring are 
omitted as irrelevant to documenting what was done and what was 
learned as these may apply to future work.  Instead, detailed 
functional descriptions are provided in the appendices which discuss 
the tasks and responsibilities of each software routine and hardware 
section.  These functional descriptions, together with the working 
copy of the software listings and schematics, are adequate for 
extensions to the HPMD as well as its repair and maintenance. 

The philosophy and considerations which went into the design 
are discussed first, since they focus the rationale behind the 
design itself.  Next, the HPMD is described in terms of its 
appearance to an on-line user.  This description defines the 
capabilities of the system and the syntax used to interact with the 
software. Brief summaries of both the software and the hardware 
then follow, which give overviews of the approaches used to 
implement the capabilities previously defined.  The final sections 
discuss what has been learned from this effort and what conclusions 
can be drawn. 



SECTION II 

DESIGN PHILOSOPHY 

The HPMD is intended as an application of the combination of 
hardware and software to instruction-level monitoring. It must be 
effective both as a debugging and optimization tool and as an 
experiment in hardware-assisted monitoring. Six criteria of 
effectiveness were used in its design. 

First of all, the device must be easy to use. Time spent 
running the device itself is time directly added to the problem 
solution, and is frustrating and distracting for the user. The 
easier the HPMD is to use, the wider the range of problems to which 
it can properly be applied. More difficult devices are often 
considered "tools of last resort". A simple man-machine interface 
is needed to minimize procedure-related errors while setting up 
measurements or interpreting them.  Such errors waste time or, if 
undiscovered, may ruin much work; they are also distracting to the 
problem-solver and tend to discourage further use of the device. 

Secondly, the man-machine interface must be easy to learn; this 
is a fundamentally different requirement than to be easy to use. 
The interface must be clear and uncluttered, and there must be an 
easy-to-grasp relationship between commands and their effects.  A 
minimum of unique formats and options helps, as does a resistance to 
catastrophe due to a mistyped character.  Brief explanations must be 
available on demand to aid in learning and to clarify any 
misunderstandings. 

Thirdly, to aid in learning and using the HPMD, the internal 
architecture of the device, with all its complexity and quirks, 
should be invisible to the user.  In this way, the user can benefit 
from complex and powerful hardware yet need understand only the 
services it provides.  This "black box" approach makes a hardware 
device appear much less imposing to a software-oriented programmer, 
and allows that programmer to focus his attention purely on the 
problem at hand. 

Fourthly, the HPMD must not interfere with the operation of the 
computer it is monitoring.  Conventional software debugging or 
performance measuring tools use the same computer resources as the 
program being measured. Unavoidably, the measurements interfere 
with the program operation, slowing it down significantly or 
aggravating system bottlenecks.  Interference can be avoided if the 
HPMD does not share computer resources concurrently with the user's 



program. The sharing of resources is a complicated process, and the 
exact nature of many types of interference is rarely known; 
certainty that some subtle effect is not distorting the measurements 
can only be achieved if there are no such effects in operation. 

A non-interfering tool should be applied where interference 
would clearly render the results worthless.  Critical timing 
relationships, a source of some of the most difficult systems 
problems, cannot be measured if the tool slows part of the system. 
Furthermore, the effectiveness of an interfering tool is curtailed 
if the speed of a lengthy user process is severly degraded. An 
interpretive execution scheme running programs at a hundredth of 
their original speed may be fine for short programs, but for finding 
once-a-day system bugs, it is useless. Only a tool which allows the 
system to run at full speed is effective in dealing with such an 
elusive problem. 

The last two criteria of effectiveness for the HPMD are related 
to the experimental use of the HPMD in exploring hardware-assisted 
program measurement concepts.  For this purpose, the HPMD should 
have generalized capabilities, rather than unique or obscure 
measurement capabilities with limited applicability.  By flexibly 
applying general capabilities, a large number of meaningful 
instruction-level measurements can be available for evaluation. 
Exotic capabilities which are useable in only a few situations prove 
very little about the general concept. 

Finally, if the results of such an experiment are to be widely 
applicable, the design must be easy to transfer to another machine 
or another environment. The less modification needed to transfer, 
the more general the solution. Where a device is totally dedicated 
to and dependent on the unique features of a particular computer, 
the knowledge gained from its use is unlikely to apply to different 
computers.  If, on the other hand, the device monitors only those 
elements of a computer which are common to many designs, such as 
instruction addresses or I/O data, then whatever knowledge is gained 
should apply just as widely. Furthermore, if it is necessary to 
move the HPMD to another machine, the task is far less difficult; 
only a new interface is required rather than a redesign of the 
entire HPMD. 

These six criteria: ease of use and of learning, invisibility 
of the architecture, lack of interference, generalized capabilities, 
and transferability, were important parts of the HPMD design 
philosophy. Complexity is also a major factor. The complexity 
needed to increase effectiveness also increases cost, errors, and 
countless problems in definition, application, and documentation for 
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such an effort. There is a delicate balance between effectiveness 
and complexity which must be considered in designing each feature of 
the HPMD hardware and software. 

11 



SECTION III 

USER ENVIRONMENT 

The physical equipment and logical operations with which the 
user interacts while making any program measurements can be defined 
as the user environment. Within this environment a programmer will 
use the HPMD to debug or optimize a computer program, and therefore, 
this user environment should be customized for these tasks as much 
as possible to make them efficient and effective. 

There are two fundamental approaches to specifying the 
measurement of computer programs before execution begins. One is to 
save all values or occurrences of a particular event (each 
instruction, all I/O, all interrupts, etc.). Although this approach 
requires vast storage and its results can take a long time to 
peruse, it is an "open-minded" approach which makes no assumptions 
about what will be found. Alternatively, by making assumptions 
beforehand, the information gathered can be limited to that which is 
related to the suspected problem. Less information need be gathered 
and much less time will be needed to ferret out evidence of a 
program bug. These assumptions are less dangerous than many made 
during debugging because they are explicitly stated while specifying 
the measurements. 

The first approach relies on powerful information reduction and 
storage capabilities; the second relies on flexible and powerful 
detection logic to resolve events of interest from all others. As 
hardware becomes less expensive, the first approach may be more 
useful for debugging. For all but the smallest programs, however, 
avoiding interference dictates using high-speed (equal to the CPU) 
storage media for saving data, and these media are currently quite 
expensive. The second approach, including both detection and 
reduction, is far less costly (though far more complex), and can 
handle a wider range of problems. It was chosen as the basic 
architectural approach for the HPMD. As a result, the user must 
provide considerable initialization information in order to specify 
the conditions under which measurements are to be made as well as 
the nature of the measurements themselves.  It is for these 
interactions that the user environment is optimized. 

Physically, the environment consists of a single workstation, 
from which all the operations necessary for debugging and 
optimization can be controlled. These include the editing, 
assembling, and execution of the user's program as well as the 
specification of HPMD measurements.  Since the selective approach to 
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program measurement implies the entry of a large amount of 
information by the user, the use of the system console terminal is 
ideal.  Its CRT and keyboard allow rapid interactions involving 
highly-detailed information. The console terminal, together with 
the line printer used for printing the measurement results and the 
front panel of the NOVA which is visible from the operator's chair, 
are useful for both the basic programming operations and for using 
the HPMD. 

The logical operations necessary to control the HPMD can make 
all the difference in the usefulness and effectiveness of making 
measurements. The design philosophy dictates that such operations 
must be easy to learn and use, not require an understanding of the 
HPMD internal architecture, and allow generalized measurement 
capabilities.  These qualities are embodied in a concise syntax for 
specifying the two basic functions of the device's measurements: 
event detection and information reduction. This syntax allows 
control of both the detection of important program events and the 
subsequent reduction of the execution information. The results 
software then can obtain and output the data gathered by this 
selective measurement process. The initialization syntax and 
results software (DEBUG and DISPLAY) are the two major HPMD programs 
which the user may run.  Two other programs (RERUN and RESTORE) will 
be discussed later. 

The selective approach is applicable to most debugging 
measurements. Clues from an earlier run usually point to a specific 
area in a program which must be investigated, and the programmer 
usually knows what to check first. The selective approach limits 
the measurements to information relevant to the problem, leaning 
heavily on the power and resolution of the detection logic. 

Sophisticated detection is an unknown area, and if the HPMD is 
to be a worthwhile workshop for exploring such unknowns, it must 
have flexible and powerful detection logic.  In the final design, 
more than half of the hardware and software is involved in 
specifying and performing detection functions. The subsequent 
reduction functions, although they actually gather the information, 
require little information to initialize and less hardware to 
implement. 

DETECTION 

The hardware detection logic of the HPMD compares instruction- 
level "parameters" with anticipated values, watching for an 
equality. The parameters (addresses, data, or device numbers — see 
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Table I) are fundamental to program execution and frequently 
associated with bugs. Equality between the parameter and its 
anticipated values is the only relationship which can be detected; 
hence an associative memory can be used, greatly simplifying the 
hardware. 

Table I 

Parameters 

Parameter Mnemonic Meaning 

0 INS Instruction 
1 OPR Operand 
2 OPL Operand if Read 
3 OPS Operand if Store 
4 DI I/O Data if Input 
5 DO I/O Data if Output 
6 IA Instruction Address 
7 OPA Operand Address 
8 OAL Operand Address if Load 
9 OAS Operand Address if Store 
10 DCA Data Channel Access Address 
11 AST Address if Any Store 
12 INT Interrupting Device # 
13 DV# I/O Device # 
14 IN# Input Device # 
15 0U# Output Device # 

The detection comparisons are divided into eight groups, each 
associated with a parameter. Within each group, the selected 
parameter is compared with from one to four different anticipated 
values.  If a parameter matches any of those values, the match 
constitutes a program "event" for that group.  The same parameter 
can be compared in several different groups, but since the groups 
have varying reduction functions associated with them, this may or 
may not be equivalent to comparing a parameter with 8, 12, 16... 
etc., anticipated values. 

The selection of any one of 16 parameters and its comparison 
with up to four numbers, repeated for each of 8 groups, provides an 
extremely flexible and versatile detection capability. Its power is 
increased by the ability to AND together different groups. The 
results of the four comparisons of group #1 can be ANDed, one by 
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one, with those of group #5. This double detection operation is 
possible in determining the events for groups #1-#4.  Requiring two 
normal events to coincide before a program event is detected is 
excellent for detecting a particular variable (Operand Address if 
Store) becoming a particular value (Operand if Store), or a specific 
character, such as an EOF (I/O data if Input) being read from a 
given device (Device # if Input). By optionally combining the 
groups, the same (expensive) associative memory can be used in 
different modes to allow single or double comparisons.  This 
doubling option can be selected on a group-by-group basis; for 
example, #1 and #5 can be ANDed, comparison by comparison, to detect 
group #1's program event, while groups #2, #3, #4, #6, #7, and #8 
are run in the single comparison mode. 

The parameters chosen are common to most computers based on a 
von Neumann architecture. Hence, the capabilities of the HPMD are 
generalized and lessons learned from it can be widely applied. The 
parameters are also simple and comprehensible for a programmer, 
since they are closely related to the actions of the program as well 
as to the machine. This relationship avoids the mental "switching- 
gears" which would be necessary if the HPMD forced the programmer to 
dwell on machine-level considerations during program debugging. 

REDUCTION LOGIC 

The HPMD provides five forms of reduction logic. A timer and 
several counters are controlled by events alone, two buffers save 
program parameters upon or between events, and the HPMD can issue an 
interrupt to halt the program upon any event.  Each of the eight 
detection groups has assigned to it a "unique function" (timer, 
counters, buffers); alternatively, each can cause the interrupt. 
Thus if the timer and all the counters and buffers are used, there 
can be no halting interrupt. Conversely, if eight events are set to 
cause interrupts, no other measurements are possible.  Combinations 
such as the timer and several interrupts are allowed. Note that 
detection using the doubling mode rules out the use of the "unique 
function" for the group paired with the one being doubled. The 
limits of various combinations of single and double detections 
driving unique functions and halts will become clearer as the 
assignment of the unique functions to each detection group is 
explained (see Table II) 
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Table II 

Unique Reduction Functions For Each Group 

Detection Group        Reduction Function 

1 Start Timer 
2 Stop Timer 
3 Enable STORE Buffer 
4 Disable STORE Buffer 
5 Increment Counter #1 
6 Increment Counter #2 
7 Increment Counter #3 
8 Trigger GRAB Buffer 

Timer 

The first two detection groups control the timer; group #1 turns 
it on, and group #2 turns it off. The timer, which can be 
repeatedly started and stopped to accumulate time, is a 30-bit 
counter driven at 5 MHz. A maximum time of 214.7483648 seconds can 
be measured with a resolution of 200 nsec., fine enough to notice 
the results of any change in the coding for the optimization of 
execution time. Longer periods can be measured, with the same 
precision, by determining the number of times that the 214.7483648 
second counter overflows. 

Counters 

Groups #5, #6, and #7 each increment a counter upon detecting 
their program events. The counters are 20 bits long, providing 
maximum counts of 1,048,575 before wrapping around to zero. 

Together, the timer and counters represent powerful tools for 
optimization. The counters can determine the frequency of execution 
of instructions, blocks of code, routines, or even whole programs. 
The timer can measure the time spent in various parts of a program 
or system. Together, they can determine the average execution time 
for any code or routine, by measuring the total time spent within it 
and the number of times it was executed.  Hence, one can measure the 
changes in execution time resulting from different coding. 
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Buffers 

The remaining detection groups control the two buffers within 
the HPMD (the STORE buffer and the GRAB buffer).  These buffers 
implement two different approaches to saving program data; it was 
unclear which would be more useful, so both were included in the 
HPMD for evaluation.  Having at least two buffers within any program 
measurement device is advantageous, since both addresses and data 
may be saved simultaneously.  Relationships between the addresses 
and data can then be discerned. 

STORE Buffer 

The STORE buffer, which saves each consecutive value of a 
selected program parameter, is enabled and disabled by detection 
groups #3 and #H.    The buffer itself holds 256 20-bit values.  These 
20 bits include a 16-bit parameter (as in Table I) and 4 extra bits. 
The extra bits tell whether the value saved originated with the CPU 
or the data channel (important for the AST parameter), whether it 
was a load/input or a store/output operation (important for OPA, 
DCA, OPR or DV#), and whether the GRAB buffer saved any information 
during the same memory cycle.  These extra bits, under some 
circumstances, help the programmer identify the stored information. 
For example, if a location is being wiped out, it is necessary to 
know whether the CPU or the data channel is responsible. 

The STORE buffer's operation can be modified by several control 
options specified by the programmer. The buffer can be frozen when 
it is full, preserving the first 256 values it received. 
Alternatively, the earlier values can be lost as more come in, 
making only the most recent 256 values available.  When the buffer 
becomes full, an interrupt can be issued stopping the program and 
allowing the current 256 values to be printed; later, the program 
can resume capturing another 256 values, etc.  (The interrupt 
capability will be more fully discussed later.) 

Another option allows the buffer to be initially running or 
initially disabled. Finally, since the STORE buffer can be stopped 
and restarted repeatedly, an option exists to inhibit this 
restarting capability. The values of a parameter can be saved 
between the first two occurrences of an event, and subsequent passes 
between those events will not reenable the buffer.  These four 
options allow the programmer to manipulate the gathering of 
information to best suit the application. 

The STORE buffer has three major uses:  historical, 
statistical, and detective. The historical use is the most 
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important; by saving consecutive values of a parameter, such as IA, 
a trace of the program behavior between particular events can be 
obtained. By saving 256 values of a parameter, a statistical data 
base can be built up, especially over several runs. For example, 
interrupt, data channel, or I/O activity can be observed and the 
percentages of that activity caused by the different devices can be 
discovered.  Finally, examples of instructions which modify a core 
location or perform I/O can be used in tracking down a mysterious 
program bug. 

GRAB Buffer 

Whereas the STORE buffer saves every value of a parameter 
between two events, the GRAB buffer saves the value of certain 
parameters only upon detection of an event.  Thus the programmer can 
determine the connection between a parameter and an event; if a 
location is altered, what value is stored into it? 

The GRAB buffer also has several options which the programmer 
specifies when the measurements are selected.  Like the STORE 
buffer, it can be frozen when full if desired, and an interrupt may 
also be initiated. Another option couples the GRAB buffer to the 
STORE buffer so that they are enabled and disabled by the same two 
events (detection groups #3 and #4).  In this way, if the STORE 
buffer is enabled only during a particular block of code, the GRAB 
buffer will gather information only within that block.  Hence the 
selectivity of the HPMD buffers is increased by limiting the scope 
of the measurement to only the particular area or areas of interest. 

The information "grabbed" upon an event by the GRAB buffer is 
not the Table I parameters, as with the STORE buffer, because the 
relevant parameter values are often unavailable.  Instead, the 
information saved by the GRAB buffer consists primarily of the 
"current" address, data, or device number.  Table III shows the 
information available for each option and type of event. To provide 
more power for the programmer, the instruction's address (IA) is 
temporarily saved so as to provide a fourth option during an Execute 
cycle event.  This allows, for example, the "grabbing" of the IA 
upon a subsequent operand store into a particular location, which 
results in the GRAB buffer filling with the address of each 
instruction which modifies a memory location. 
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Table III 

Grab Buffer Input Information 

Type of Host Computer Action 

Instruction Fetch 

Execute 

Grab Buffer Input Selection 
Address Data    Dev. //  IA 

IA 

I/O 

Data Channel 

OPA 

IA 

DC A 

INS Most 
Recent 
DV# 

IA 

OPR Most IA 
Recent 
DV# 

DI DV# IA 
DO 

Data Most Most 
Trans- Recent Recent 
ferred DV# IA 

Interrupt Acknowledge IA INS INT IA 

It should be noted that some combinations of options and events 
are often meaningless, but since under some circumstances they may 
be useful, they are not prohibited.  For example, "grabbing" the 
most recent device number upon a non-1/0 event would usually be 
irrelevant. 

By selecting the data option upon an event involving a specific 
DCA, the data channel data, a piece of information not otherwise 
available, may be grabbed.  In designing the HPMD to be effective, 
this information was judged less useful in specifying events than 
the sixteen program parameters shown in Table I. 

The GRAB buffer is useful for gathering historical and 
statistical data similar to that gathered by the STORE buffer.  The 
basic difference is that the STORE buffer information is closely 
associated with a parameter alone, whereas the GRAB buffer reveals 
the relationship between a parameter and an event.  It is, 
therefore, even more useful for uncovering examples of a mysterious 
occurrence; upon an event, the buffer can record the instruction, 
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address, or device number, etc., which indicates the cause or effect 
of the event itself. 

Interrupts 

The interrupt capability is a simple but powerful tool; upon an 
event, the program can be stopped.  For this reason, any detection 
group not otherwise used can be allowed to trigger an interrupt, as 
can a full buffer. The interrupt itself is the same as from any I/O 
device with two differences: it cannot be masked out, and it works 
even though CPU interrupts are disabled. 

The interrupt is very useful as a breakpoint; one may execute 
part of the program and then see if the error has occurred yet. 
Obscure bugs may be uncovered by subdividing the program into 
smaller and smaller pieces or a portion of the execution may be 
carefully examined.  Breakpoints are basic tools whose usefulness 
have been proven in countless debugging systems. 

By combining the interrupt capability with the other reduction 
functions, especially the buffers, the effectiveness of these other 
functions is greatly increased.  Breakpoints simply allow 
examination of the current program state at the breakpoint; the 
interrupt and buffers combined allow the examination of recent 
program actions leading up to the breakpoint.  This can be extremely 
useful if the event causing the interrupt is associated with the 
effect of some program bug.  The cause of an event can often be 
revealed by displaying the program path or other behavior before 
that event. 

As with most I/O interrupts, two or three instructions execute 
before the program stops.  Only by designing the original CPU 
hardware or firmware to handle interrupts immediately could a true 
"halting" of the program be achieved without subsequent instructions 
being executed. 

INITIALIZATION SYNTAX 

There are four HPMD software programs which the user can run, 
but only DEBUG is used frequently.  The DEBUG program is by far the 
largest and most complex part of the HPMD software, and is the only 
one which requests much input from the user.  Its function is to 
specify measurements and carry them out.  It therefore supports an 
interactive syntax which allows the initialization of the entire 
HPMD hardware while keeping the user environment simple and 
comprehensible. 

20 



The syntax commands can be thought of as divided into four 
catagories: specification, manipulation, actions, and assistance. 
The specification commands correspond to the reduction functions: 
TIME, COUNT, STORE, GRAB, and HALT.  To manipulate the current 
measurement selections, DELETE, PRINT, ANNOTATE, KEEP, and USE are 
available.  Two actions are possible:  QUIT and RUN, and for 
assistance in using the syntax, line feed, "?", and "!" have special 
meanings. 

A feature which is noticed immediately makes the syntax as 
quick and easy to use as possible:  the user need type only the 
minimum information necessary to define his command or data 
uniquely.  For example, only the first letter of each command must 
be typed by the user; the rest of the word or phrase is added 
immediately by the software.  The result is a listing of the 
interaction which reads easily yet does not require much typing by 
the user.  In the examples which follow later, the characters typed 
by the user are capitalized and underlined and those generated by 
the software are not. 

Measurement Specifications 

To describe the syntax, a few definitions are needed: 

Parameter:   any one of the sixteen aspects of program 
behavior listed in Table I. 

Value:      an unsigned octal number, 0-177777. 

Event:       the description of an equality between a 
parameter and from one to four values, with 
the values delimited by slashes. 

Type:       The type of information to be stored in the GRAB 
buffer, indicated by an "A","D","#", or "I" 
for Address, Data, Device Number, or Instruction 
Address, respectively. 

Examples of events are:  IA = 2000/2053/104 and DV£ = JJ..  These 
events define a detection logic group's task, and are thus used in 
the syntax for each of the five measurement-specification commands. 
Events by themselves are sufficient to define the nature of the 
halt, timer, and counter measurements; the buffers must also be 
provided the type of information to save. The STORE buffer must be 
given a parameter to store, and the GRAB buffer is given the "type" 
of information.  The formal definition and examples of each 
measurement specification follow. 
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Time from  (EVENT) 
until (EVENT) 

(example: Time from    IA = 401/407 
until   IA = 423) 

Count if (EVENT) 

(example: Count if IN£ = $±) 

Halt if (EVENT) 

(example: Halt if OPS = 16503) 

Store (PARAMETER)  from (EVENT) 
until (EVENT) 

(example:  Store OPR from IA r 4061 
" until IA = 4120) 

Grab (TYPE)  if (EVENT) 

(example:  Grab £ if DI = _1,5_) 

These definitions and examples do not include the possibility 
of doubling the Time, Store, or Halt commands.  If (EVENT) is 
expanded to mean either 

"(PARAMETER) = (VALUE(s))" 

or 

"Both (PARAMETER) = (VALUE(s)) 

and (PARAMETER) = (VALUE(s))" 

for those commands which allow doubling, then the previous command 
definitions are complete. 

Doubling Examples: 

Halt if Both DV£ = 20/21 
and DI = 42104/2347/7777 
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Store INS from Both OPR = 4 
and OAS = 3047 

until Both OPR = 1 
and OAS = 3047 

Store LA from  IA = 2031 
until Both IN£ = 21 

and DI = 15/12/177 

Time from Both  OPR = 177776/177777 
and   OAS = 3016 

until IA = 3070 

Manipulation Commands 

Manipulation of the measurement specifications which are being 
held within the initialization software is possible by using the 
p_elete, £rint, Annotate, Keep, or Use commands.  Delete allows one 
to expunge from the current list of measurements to be performed any 
one or all of them.  Simply typing the "])" for "Delete" and the 
first letter of the measurement ("T", "C", "S", "G", or "H") is all 
that is usually needed to eliminate that specification.  If "A." is 
typed, all the current specifications are deleted.  If the same type 
of measurement has been specified more than once, a number must also 
be entered to identify the one to be deleted.  The specifications 
are numbered in the order of entry, which is also the order in which 
they are printed by a Print command or as part of the results 
printout. 

The £rint command asks for a "T" or "L" to indicate the 
terminal or the line printer. The Annotate command allows a large 
amount of description to be entered and saved with the current 
measurement specification. Any previous annotation is replaced. 
Lines of input may be typed as desired, terminated by two 
consecutive carriage returns. Keep and Use save and recall the 
current measurement specifications on the disk, allowing several 
sets of specifications to be maintained simultaneously.  These 
commands require a file name to indicate where to put or find the 
measurements. 
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Action Commands 

Two of the commands, £uit and Run, end the execution of DEBUG. 
QUIT forces the current measurement specifications, if any, into a 
disk file for reloading the next time DEBUG is entered; it is useful 
for building up and saving (with "Keep") several sets of 
specifications without using any immediately.  Run loads the HPMD 
hardware with the current measurement specifications and then 
executes the user's program. These specifications are also saved on 
disk, as with the £uit command.  The Run command therefore starts 
the measurement process with the hardware. 

User Assistance 

At any point in the syntax, typing "?." obtains a concise 
explanation of what information is desired by the software. Typing 
"J_" obtains a listing of valid next characters to continue the 
current measurement specification; the "!" will be discussed in more 
detail later.  A line feed aborts the current measurement 
specification and a "....NOT DONE" is echoed. No matter where one 
is in entering a command, if the command is not complete, a line 
feed insures it is not added to the current measurements. 

The syntax is a concise means of entering complex information 
and relationships.  To keep it as easy to learn and use as possible, 
a feature was added which in effect eliminates the possibility of 
syntax errors. At any point during the interactions between the 
user and the HPMD software, only a limited number of options for the 
user exist. The next character which may be typed in most contexts 
is usually one of ten or fewer. Characters whose entry would be 
"illegal" (meaningless in the context of the previous characters) 
are not accepted into the command and are not echoed to the user. 
Therefore, typing syntax errors is impossible, and no error messages 
are ever required. 

This interaction with the keyboard is a dramatic change for the 
user first experiencing it, but is not as frustrating or confusing 
as one might expect.  Users learn a syntax new to them chiefly by 
trial and error. With the type of interaction described above, the 
user gets immediate and non-destructive feedback from the software, 
because an illegal character, whether caused by a misunderstanding 
or a slip of the finger, is not echoed on the terminal. 
Furthermore, the previous characters remain undisturbed, so the line 
need not be reentered, reducing frustration and making the trial and 
error learning process faster and less painful. 
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The usefulness of the "J_" command now becomes clear;  the 
characters listed when a "J_" is entered correspond to the "legal" 
keys.  The "J.","2"» and line feed are always legal. The "J_" can be 
used to resolve any confusion as to the demands of the syntax at 
each point.  The "J?" provides a fuller explanation, to both teach 
the user having little experience, and to remind more experienced 
users of such things as a parameter mnemonic. 

PROGRAM EXECUTION 

All these commands are handled by DEBUG, which is executed from 
the console. To measure a particular program (via the RUN command), 
the program's name must be typed after the "DEBUG", complete with 
all the parameters normally used when executing the program.  For 
example, to measure the assembler which is itself assembling another 
program named XYZ, the programmer might type "DEBUG ASM XYZ". 

Results Software 

The results software runs under three circumstances:  upon an 
interrupt, upon completion of the user program, and upon direct 
command by the programmer.  Its purpose is first to read in the 
time, counts, and buffers' contents from the HPMD, and then to 
convert, format, and list them. 

The results printout contains many types of information 
relevant to the particular measurement (see Figure 1).  First is a 
distinctive title and pattern at the top of the page which makes it 
easy to discern from all other line printer output.  The time and 
day are listed, based on the system's internal clock; since the time 
is given to the second, and the results software takes more than a 
second to run, the time and day are a unique identifier for each 
run.  The annotation is then printed, if one was entered with the 
measurement specifications.  The annotation helps identify the 
printout in terms of the programmer's purpose in making the 
measurement.  Next, the specifications of the measurements 
themselves are listed.  This is the same listing that the 
initialization software provides if a "Print measurements at 
Lineprinter" command is given. 

These pieces of information, although not gathered by the HPMD 
hardware, are most useful in keeping track of that data.  It is a 
disadvantage of computer printouts that they all look alike: the 
numbers may vary, but formats frequently remain the same. Time, 
date, comments, and specifications all help distinguish each results 
printout. 
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000000990000000000000990000000 
0 PROGRAM MEASUREMENT DEVICE 0 
00990990000000000099999090000& 

22151114 01/30/75 

COUNT TIMES EXECUTED C0NE3. 

TIME FROM • 000436 / 000436 / 000436 / 0100436 
UNTIL • 000437 / 000437 / 000437 / 000437 

COUNT IF • 000436 / 000436 / 000436 / 000436 
STORE IA FROM • 000493 / 000453 / 000453 / 0(10453 

UNTIL • 000456 / 000456 / 000456 / 000456 
GRAB A IF • 000433 / 000454 / 000455 / t> to e 4 • «S 

TIME  * 210.5464400 SECONDS 

COUNT • 1046513 

STORE BUFFERl 

130011 »SC 130011 • SO 130011 • SD 130011*30 130011+SD 130011*80 130fc l + SP 130011- • SD 
1300U •80 190011- • SD 130011 • SO 130011+SD 130011*30 1300U + SO 130* 1 + SD 131011- • SO 

130011 •6D 130011 • SD 130011 • SD 130011+SD 1J0011*SD 130011+5D 1300 1 + 30 190011- • 3D 

130011 • SD 130011 • SD 130011 • SO 130011*30 130011*50 130U11+SD 1300 1 + SD 130011- • SD 
130011 • so 130011 • SD 130011 • SD 130011*90 130011*SD 130011+SD 1300 ll + SO 130011 • SO 
130011 • SD 130011 • 3D 130011 • 80 130011*SO 1901M1+SD 130311*80 1300 1 + SD 190011" • so 
130011 • 3D 130011 • SO 130011 • 3D 130011*80 130011*30 130011+SD 1300 1+SD 190011- • SD 
130011 • SD 130011- • SD 130011 • 3D 130011+SD 130011+SD 130011+SD 1300 1 + SD 190011- • sn 
130011 •SO 190011- • SD 130011 • 8D 130011*30 13001t*8D 130011+SD 1300 Ll + SD 190011- • SD 
130011 • SO 130011 • SD 130011 • SO 130011*50 130011*30 130011+SD 1300 1 + 30 190011- • sc 
130011 • SO 130011 • SO 130011 • SD 130011*80 130011+30 130011*30 1300 1+SD 190011- • SO 
130011 •so 130011- • SO 130011 • SD 130011+SD 130011*80 130011*90 1300 1+SD 190011- •3D 
130611 • SD 130011- • SD 130011 • 3D 130011*30 1300ll*SC 130311*50 1300 1*10 190011- • SO 
130011< • SO 130011 • SD 130011 • SD 130011*30 130011+SD 130311*30 1300 1 + SD 130011- • sc 
130011' • SD 190011- • SD 130011 • SD 130011+SD 130011*SD 130011*30 1300! 1+SO 190011- • SO 
130011 • 80 190011- • SD 130011 • SD 130011*30 130011*80 13*811*SD 1300 1 + SD 1 300 if- • sc 
130011. >SD 130011- • SD 130011 • SD 130011*80 130011*80 130011+SD 19001 1+SD 190011- •sc 
130011- • SD 130011- • SD 130011 • SD 130011.SD 130011*30 130011+SD 13001 1+SD 130011- • 60 
130011- • SO 190011- • 80 130011 • SD 130011+SD 130011*80 130011+SD 1300 1+SD 190011- • 80 
130011 • SD 130011 • SO 130011 • 80 130011+90 130011*3D 130011*SD 1300 1+SO 190011- • SO 
130011 • SD 130011 • SD 130011 • 3D 130011*30 130011*80 130011+SD 1300 1+SD 190011- • SD 

130011 • SD 130011- • 3D 130011 • 80 13001t*SO 130011*8D 130011+SD 1300 1 + 50 130011- • 80 
130011- • SO 130011- • 3D 130011 • SD 130011*30 130011*50 130011+80 1300! 1 + SD 190011- • 80 
130011- • 80 130011- • 3D 130011 • SD 130011*30 130011*50 130011+SD 1300 1+SD 130011- • 80 
130011- • SD 130011- • SO 130011 • SD 130011*30 130011*5D 130011+SD 1300 1+SD 190011- • SD 
130011- • SD 130011- • 3D 130011 • SO 13001l*SD 130011*30 190011+80 1900 1 + 80 130011- • SO 
130011- • ID 130011- • 30 130011 • 80 130011.3D 130011*SD 130011+80 13001 1+SD 19B011' • 3D 

Fieure 1.  Sample Results Printout 
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The remainder of the printout provides the data gathered.  Each 
type of measurement is shown only if specified. For example, if 
only two counters and the GRAB buffer were specified by the 
programmer using the initialization software, then no mention is 
made in the results printout of the timer, the third counter, or the 
STORE buffer. This makes the printout shorter and simpler, and 
clarifies the difference between a zero time and an unused timer, or 
an empty buffer and an unused one.  The counters are not numbered, 
either in the specifications or in the results; the order of the 
counters is assumed to be the same for each. 

The time measurement is a 10 digit decimal number labelled as 
seconds.  The counts are 7-digit decimal numbers.  The buffers are 
listed as arrays of 256 entries, in 32 rows of 8 columns.  Each 
entry consists of the value saved, given as a 6-digit unsigned octal 
number, followed by three modifying characters.  The first may be a 
"+":  if present, it means the other buffer saved a value on the 
same memory cycle.  This indication can be very useful in relating 
the information in one buffer with that in the other. Next may be 
an "S" indicating the direction of information flow.  If present, it 
indicates that the value was transferred out of the CPU, as in a 
Store operation or a Data-Out instruction.  If there is no "S", then 
the information flowed into the CPU, as in a Read or Data-in 
instruction.  This is useful when GRABbing the IA upon the accessing 
of a location (OPA).  All instructions which reference that location 
would be listed, with the "S" indicating which stored into it. 
Lastly, a "D" may be shown to indicate that this value came from the 
data channel rather than the CPU. When searching for the reason a 
table in core is being overwritten, the AST parameter, if stored, 
will show the actual overwriting.  The "D" character will then 
reveal whether the data channel or the CPU was responsible. 

User-Run Programs 

The HPMD software includes four programs which can be run by 
the user.  The largest and most important, "DEBUG", has already been 
discussed.  Next largest is the results software, which may be run 
by typing "DISPLAY".  Since it is run automatically when the program 
completes or reaches a breakpoint, the user will not normally need 
to run it manually.  If, however, the program crashes the system or 
must be cancelled by the user through the system console, the 
"DISPLAY" program can be run to print the measurements on the line 
printer. 

"RERUN", as its name implies, reloads the HPMD hardware and 
then executes the user program again.  This is a shortcut for 
reentering "DEBUG" and issuing the "RUN" command.  It saves time 
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when the same program is run repeatedly with the identical 
measurements each time, which is often the case while a program is 
being tested. 

The final program the user can run restores NOVA interrupt 
processing to normal if the user program is aborted.  To implement 
breakpoints, the system interrupt vector is altered for the duration 
of the user's program. When the user's program completes, the 
altered vector is restored.  Restoration must be performed manually 
by running RESTORE if there is an abnormal completion. 
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SECTION IV 

SOFTWARE 

The HPMD software performs four key functions:  obtaining the 
measurement specifications, starting the actual measurements, 
handling breakpoints, and printing the results.  These functions are 
implemented by five programs:  DEBUG, RERUN, RESTORE, and DISPLAY 
which are "visible" to the user, and QZ, which is not.  Upon 
specifying the "Run" command in DEBUG, the remaining four programs 
are automatically executed to handle the measurement process.  As 
such, they could be considered parts of a single, large program, but 
their separation allows them to be invoked manually to provide the 
convenience of "RERUN" and the recovery capabilities of "RESTORE" 
and "DISPLAY". 

Few aspects of the software do not manifest themselves at the 
user environment level.  Therefore, a simplified functional 
description of how the HPMD programs affect the user environment has 
already been presented.  The implementation of these functions was a 
straightforward task, and although the initialization software is 
quite large, at no point does the HPMD software become overly 
complex. Major difficulties were encountered with the systems 
programming to allow interrupt handling, but these were due to the 
necessity of exploring countless schemes which used or misused the 
operating system.  Due to a lack of documentation in several areas, 
trial and error experimentation was needed to determine flaws in 
many simple approaches.  Thus the final scheme is not particularly 
complex despite requiring a great deal of time to develop. 

INITIALIZATION SOFTWARE 

DEBUG is an interactive syntax interpreter which also prepares 
the resulting measurement specifications for loading into the 
hardware by RERUN.  The two programs communicate via a disk file, 
$HPMD.MS, where DEBUG puts the specifications, annotation, and user 
program name.  That program name is then read by RERUN and executed, 
since DEBUG has already performed the bulk of the initialization 
process. 

The primary purpose of the initialization software is to 
convert the measurement specifications from the user syntax to the 
radically different hardware-loadable table.  A simple command, such 
as the user typing "H", "IA", and "2047", is expanded into "HALT 
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PROGRAM IF IA = 2047", providing a readable record.  Only after all 
the commands are entered can a detection group be assigned to handle 
this command. The assignment includes four associative memory 
locations (all filled with 2047), a corresponding detection 
parameter of 6 (IA), and assorted bits specifying halting (as 
opposed to the normal group reduction function) and a lack of 
doubling.  It is in the difference between these two forms for the 
same information that much of the power of the HPMD concept lies; 
the conversion between a human-oriented syntax and a hardware- 
oriented data format allows each to function efficiently. 

In this way, the user never need deal with the hardware 
architecture. The measurements are accumulated without being 
assigned specific hardware detection groups, since that assignment 
should not be done until all the specifications are obtained.  Since 
the count and halt measurments may be performed by any of several 
detection groups, the premature dedication of a specific group to a 
particular measurement might rule out a subsequently-specified 
measurement which depends on that group.  Upon a "Run" command, all 
the assignments are performed, and a hardware-loadable array is 
built up and saved in $HPMD.MS.  This juggling of information is a 
major feature of the initialization software. 

Rarely were tradeoffs made in favor of the software at the 
expense of syntax tidiness. DEBUG is by far the largest HPMD 
program (1240 lines of ALGOL), and size was never considered a 
factor in its design.  The 26 routines include 7 shared subprograms; 
this high degree of sharing significantly reduces the amount of 
code; if that code were in-line rather than in subprograms, another 
1740 lines of ALGOL would have been added.  The initialization 
syntax is relatively easily adaptable to software interpretation 
although requiring quite a bit of code.  Features such as the 
availability of a line feed/abort in every context and the entry of 
only the minimum necessary characters demanded a good deal of 
software, but their contribution to the syntax makes that additional 
software worthwhile. 

The architecture of DEBUG closely follows the syntax it 
interprets.  The syntax consists of two kinds of commands, those 
which specify measurements (Count, Grab, Time, Store, and Halt), and 
those which affect those specifications (Delete, Print, Annotate, 
Run, Keep, and Use).  For each of these 11 commands there is a 
separate routine which processes that command.  The measurement 
specifying routines are in turn supported by other routines which 
fetch parameters and values, check if doubling is possible, and ask 
the user about the buffer control options.  The remaining command 
routines are supported by routines which format a measurement 
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listing, handle disk file names, and execute the user program. Many 
of the routines on each level are supported by the basic keyboard 
management routine.  This architecture is diagrammed in Figure 2. 

EXECUTION SOFTWARE 

The execution software has two distinct responsibilities: 
loading the hardware at the beginning of the user's program, and 
processing the HPMD interrupts.  The former task is quite 
straightforward, in that the initialization software has already 
done most of the difficult work by creating the TABLE array in 
ready-to-load format.  The processing of interrupts, however, is the 
single most difficult software task.  Its implementation is shared 
by part of RERUN and all of QZ and RESTORE. 

RERUN 

RERUN is in a sense the "main-line" of the execution software, 
in that it swaps to the user program, RESTORE, QZ, and DISPLAY (the 
results software).  By making each of these a separate program, the 
user can run them independently if needed.  RERUN executes the 
user's program, and handles the actions immediately preceding and 
following that execution.  It loads the HPMD hardware with the 
measurements specified by the initialization software, puts an 
interrupt servicing routine (ISR) into core if needed, swaps in the 
user program (which runs to completion), shuts down the HPMD 
hardware, and then runs RESTORE and DISPLAY.  Since this sequence 
can be repeated, "RERUN" was chosen as the name to imply for the 
user that this program handles the entire instrumented execution. 

The loading of the hardware is a simple process because DEBUG 
has produced an array of measurement specifications already 
transformed into a hardware-loadable format, so the hardware can be 
loaded with this array by a sequence of 57 data transfers.  Since 
the HPMD hardware lacks the mechanical delays which are part of most 
peripheral devices, it can accept the data as fast as the NOVA can 
send it, requiring no busy flags or ready bits. 

Interrupt Handling 

Handling HPMD interrupts during the execution of the user 
program is difficult because the operating system cancels interrupt 
definitions upon completion of the defining program.  Furthermore, 
all user interrupt definitions are removed upon a transfer to 
another program by chaining or swapping.  Thus, if HPMD interrupts 
were to be processed by the operating system during the user 
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program's execution, the user program itself would have to make that 
definition.  This is clearly an unreasonable burden for the 
programmer. Furthermore, the interrupt servicing routines (ISR) 
which the operating system does allow to be defined are prohibited 
from swapping in other software, or even doing disk I/O.  Since the 
results software is relatively large, and the ISR must be in core 
with the user program, the ISR must be limited to code which swaps 
in the larger results software. This conflict ruled out using the 
operating system to handle HPMD interrupts. 

To bypass the operating system interrupt restrictions, the user 
program must appear to be requesting the results software program 
swap.  To do this, RERUN copies an ISR into high core beyond the 
user program and alters the interrupt vector to reroute all 
interrupts through that ISR.  The ISR first identifies whether the 
interrupt is from the HPMD or not, and if not, branches to the 
operating-system interrupt-handling logic.  If the interrupt is from 
the HPMD, the QZ program is run via a program swap.  QZ quizzes the 
user as to the disposition of this breakpoint:  continue, restart, 
or quit.  The DISPLAY program is then run via a swap, and then the 
requested disposition is carried out. All these functions appear to 
the operating system as if they were invoked by the user program 
itself, since an HPMD interrupt is invisible to the operating system 
software, which is not informed of even the existence of the HPMD 
interrupt.  It is clear that such a deception involving the 
interrupt vector depends on the ISR, which is not protected by the 
operating system, remaining intact.  The RESTORE program restores 
the original vector and thus eliminates that dependence as soon as 
the user program completes. 

RESULTS SOFTWARE 

DISPLAY is a program which handles the entire task of producing 
the results printout.  The printout contains information of three 
types:  the date and time of day, a listing of the measurements with 
the annotation, and finally the data collected by the HPMD hardware. 
The time, date, and annotation are first printed; the time and date 
are available from the operating system via a system call, and the 
annotation is saved in $HPMD.MS.  Input instructions obtain 10-bit 
values directly from the hardware, and conversion routines can then 
assemble decimal or octal numbers from several of these values taken 
together.  The timer and each of the counters have their results 
displayed in decimal, whereas the buffer contents are given in 
octal, since quite often they are machine address or device numbers. 
By placing the conversion burden on the results software, the 
hardware can use an efficient binary format while the user sees the 
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more useful decimal or octal equivalent.  The results software 
itself is written entirely in NOVA assembly language, to allow easy 
bit-level manipulation of the data.  It was also discovered that the 
NOVA ALGOL multiprecision arithmetic was bug-ridden and therefore 
unsuitable for dealing with the high-precision timer and counter 
values. DISPLAY'S modular architecture consists of 14 routines 
totalling 656 source lines and assembling into 1460 words of core. 
Much effort was expended in writing the results software to minimize 
core usage, since it was unclear at that time whether any system's 
programming scheme for handling interrupts could be found which did 
not force all of DISPLAY to be resident in core with the user's 
program.  For this reason, in some cases the routines were 
delineated not by the rules of functional separation but rather to 
minimize core by eliminating almost all duplicate coding. 

SUMMARY 

Software is valuable in providing tools for the management of 
the measurement specifications and the presentation of the collected 
data.  The KEEP, USE, and PRINT commands help the user handle the 
specifications as a group, and the DELETE and ANNOTATE commands 
modify that group. The user can then deal with debugging and 
optimization experiments in a very straightforward way; only the 
program, a group of measurement specifications, and the results need 
be considered.  This simplified framework is cleaner and more 
conducive to the scientific method than schemes which involve the 
details of measurement implementation. 
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SECTION V 

HARDWARE 

The HPMD hardware carries out the measurements specified by the 
user with the initialization software. With access to every memory 
and I/O transfer, the hardware performs the monitoring in parallel 
with the user program's execution, and in no way interferes with the 
host computer. 

The overall hardware design consists of two parts physically 
separated but connected by a cable.  The information flowing over 
the cable can be defined conceptually in terms which are independent 
of the specific machine being monitored.  The HPMD consists of a 
programmable program measurement device connected to an interface 
for the specific computer being monitored and controlling software 
which runs on the computer before and after the measurements.  The 
division into two parts allows the HPMD to approach its design goal 
of transferability.  To move it to a different 16-bit minicomputer, 
a new interface must be designed and built and the ALGOL software 
recompiled. The assembly language code must be partly translated 
and, to the extent it is operating system dependent, rewritten. 
Since the HPMD and the monitored minicomputer are deeply intertwined 
at many levels, it was impossible to make the HPMD any more machine- 
independent than this; all that is universally applicable is 
transferable, all that is machine or operating-system dependent is 
not. 

The event detection and information reduction sections 
perform the measurements specified by the user.  To allow the 
software to control these sections and to read back the results, the 
peripheral interface circuitry adds another path between the CPU and 
the HPMD. 

Table IV summarizes the size and complexity of these three 
major sections plus the front panel logic. Physical size and wiring 
complexity are proportional to the chip counts, with an average of 
15.8 pins per chip.  The functional complexity, however, varies with 
the gate count.  The storage buffers in the information reduction 
section account for a large number of the gates, but since they are 
implemented using LSI shift registers, little space or wiring was 
needed. 

35 



Table IV 

Chip and Gate Counts 

Detection Reduction Device I/O Front Panel Total 

SSI 108 chips 
538 gates 

42 chips 
243 gates 

39 chips 
179 gates 

16 chips 
88 gates 

205 chips 
1048 gates 

MSI 97 chips 
1849 gates 

47 chips 
1619 gates 

38 chips 
1621 gates 

4 chips 
94 gates 

186 chips 
5255 gates 

LSI 32 chips 
4416 gates 

20 chips 
21080 gates 

-none- 
-none- 

-none- 
-none- 

52 chips 
25496 gates 

TOTALS 

237 chips 
6803 gates 

109 chips 
23014 gates 

77 chips 
1800 gates 

20 chips 
182 gates 

443 chips 
31799 gates 

The detection logic is what makes the HPMD different from other 
measurement devices.  Systems-level monitors have large information 
reduction capabilities, often including built-in tape drives and 
extensive post-processing of measurement data. They do not allow 
detection of multiple program events similar to that defined in 
Section III.  Using the initialization syntax, it is possible to 
request up to 32 simultaneous comparisons be performed, involving 8 
different program parameters.  These 32 simultaneous comparisons 
represent a powerful detection capability which permits using the 
selective approach to debugging and optimization. 

DETECTION 

Event detection may be conceptually thought of as a four-phase 
process.  First, all sixteen parameters listed in Table I are 
synthesized from the host computer bus signals.  Second, for any 
particular event, the parameter involved is selected from among the 
sixteen available. Third, the selected parameter is fed into a 
section of the associative memory, where it is compared against four 
preset values. Any resulting "match" signal then goes to the final 
detection section, the doubling logic.  Here it may be gated with 
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other "match" signals to produce an "event" signal, thus completing 
the detection process. 

In reality, the process is slightly different.  None of the 
parameters is updated each memory cycle; even Instruction and 
Instruction Address are available only once per machine instruction. 
Others, such as the I/O parameters, may be seen only rarely.  Also, 
the parameters involve only three "types" of information: addresses, 
data, and device numbers.  Every memory cycle will have both an 
address and a word of data, and if programmed I/O is performed, a 
new device number will be available.  The HPMD detection logic is 
based on these "types" of information rather than each parameter 
separately, and therefore much of the logic deals only with three 
sources of information, not sixteen.  By sampling under the 
appropriate conditions, specific categories within each type are 
selected — the parameters are identified in Table I.  For example, 
by sampling the address bus only on non-data-channel FETCH cycles, 
only the instruction addresses are selected. 

To detect parameters, it is therefore necessary for the HPMD 
hardware to obtain the current address, data, and device number, as 
well as a description of the kind of memory cycle.  These form the 
machine-independent information which flows from the interface over 
the cable to the rest of the HPMD hardware. Five descriptor bits 
characterize the current memory cycle to allow identification of the 
parameters from the "types" of information available.  The interface 
synthesizes these bits from the specific machine operations.  These 
bits define the direction of information flow, the cycle initiator, 
and the purpose of the cycle. 

The descriptor bits are used to synthesize sixteen "control 
pulses", one for each parameter.  Each control pulse indicates when 
the corresponding parameter is updated.  These pulses, combined with 
the address, data, and device number, constitute all the information 
necessary to synthesize each parameter. 

The parameters are not directly synthesized, however, for a 
very simple reason:  if each of the eight detection groups had to 
select between sixteen "parameter" registers plus the front panel 
switches (for testing purposes), the multiplexer required would be 
immense. 

Instead, the Information Multiplexer selects between the three 
"types" plus the front panel switches, and therefore it can use 
dual 4-input multiplexer chips.  The control pulses are gated with 
the associative memory output rather than the "type" information. 
The associative memory compares its values with every value of the 
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selected "type", not the desired parameter, but the irrelevant 
comparisons are not sampled by the control pulse, and so the result 
is the same.  Even using this shortcut, the Information Multiplexer 
is the largest single hardware section, requiring 80 16-pin chips. 

The detection process requires less than a microsecond, with 
most of that time devoted to obtaining the host computer bus 
information. The Information Multiplexer and associative memory 
themselves require less than 60 nsec. to select and compare the 
incoming data.  This fast yet detailed examination of the program 
execution is used to control the information reduction functions. 

REDUCTION FUNCTIONS 

Detected program events control five types of reduction 
functions:  timing, counting, continuous information storage, 
intermittent information storage, and program halting.  These of 
course correspond to the Jime, Count, Store, Grab, and Halt command 
defined in Section III. 

A major objective of the HPMD experiment was the exploration of 
the selective approach to program measurement. An advantage of the 
selective approach is that general, straightforward reduction 
functions are sufficient.  If the detection operations can resolve 
the precise events of interest, a very simple recording mechanism 
can capture the needed information. 

The timer is a 30-bit binary counter driven asynchronously at 5 
MHz.  This 5 MHz. pulse train is gated by a set-reset flip-flop, 
which itself is driven by the start timer and stop timer events. 

Each of the three counters is 20 bits long, and is implemented 
using MSI 4-bit binary counter chips, as is the timer. Both the 
timer and the counters are reset by an NIOS 5 instruction on the 
NOVA, which is fed to the reset input on each counter chip.  This 
instruction is executed just before each measurement run. 

Both the STORE and the GRAB buffers are built using LSI dual 
256-position shift register chips. Since each small (10-pin) chip 
holds 512 bits, only ten are needed for each buffer.  Thus these 
twenty chips contain more than half of the gates in the entire HPMD 
hardware (see Table IV). 

The STORE buffer, like the timer, is controlled by a set-reset 
flip-flop driven by a pair of detection events.  Its input can be 
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any of the parameters listed in Table I#  The Information 
Multiplexer section provides "type" information to a 16-bit latch 
which is triggered by the STORE buffer control pulse.  This same 
control pulse also shifts the entire buffer whenever a new parameter 
value is obtained.  Extra counters and gating implement the buffer 
options such as permanent shutdown when full. Four extra bits are 
synthesized and stored along with the selected parameter.  They 
indicate that the information is valid, that the GRAB buffer is also 
shifting, as well as the information in two descriptor bits. 

The GRAB buffer differs from the STORE buffer mainly in its 
input.  Instead of capturing each new value of a parameter while 
enabled, the GRAB buffer event triggers a buffer shift directly. 
Its input is the address, data, or device number plus a latch which 
provides the IA.  In most other ways, it is identical to the STORE 
buffer. 

The breakpoint capability is quite complex despite its 
straightforward function.  First, a "HALT" signal is derived from 
the 11 possible causes within the HPMD (8 detection groups, 2 
buffers and a front panel button).  This signal is then sent over 
the cable to the interrupt generator, a part of the HPMD-NOVA 
interface.  If HPMD interrupts are enabled (a manual and 
programmable function), the interface uses the conventional I/O 
device protocol to initiate an interrupt.  The NOVA CPU is also 
forced into the Interrupt Enable state by driving a CPU signal, EXT 
ION EN.  The original state is meanwhile preserved within the 
interrupt generator, and may be read out by the software for later 
restoration. 

The ideal breakpoint is impossible to implement using an I/O 
interrupt; their purposes are dissimilar. A breakpoint is in theory 
unmaskable and immediate, without any destruction of the current 
machine state. An I/O interrupt is simply a method for getting the 
CPU's attention without requiring frequent busy-bit sampling. The 
HPMD interrupt successfully bypasses all masking or interrupt- 
disabling obstacles, but several instructions execute before the ISR 
begins, effecting a form of "skidding" beyond the event detected. 
Without redesigning the CPU, this fault is unavoidable. 

PERIPHERAL INTERFACE 

The peripheral interface allows the HPMD hardware to be 
programmed under software control, and its results read back and 
processed by other software running on the host computer.  The 
loader directs and stores the controlling measurement information, 

39 



and the reading circuitry allows the reduction functions' data to be 
read back into the NOVA 800. 

The loader is based on a decoded 6-bit counter which directs 
each successive data transfer to a different storage element.  Since 
the software formats the array of data in the proper sequence, each 
piece of information simply falls into place.  This is an example of 
the software simplifying the hardware by removing a data- 
manipulation burden. A total of 590 bits are transferred in this 
manner, consisting of 53 words of varying widths. 

For transferring the measurements back to the results software, 
a 10-bit reverse path is provided.  Nine transfers are required to 
obtain the timer and counter data, and another 1024 empty both of 
the buffers.  The 6-bit counter used for loading is also used to 
select which 10-bit field to transfer. The 20-bit buffers are each 
allocated two counter "addresses", with the data taken from 
alternate addresses on consecutive transfers. A large multiplexer 
is used to funnel all the 10-bit fields into a single reverse path. 
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SECTION VI 

FUTURE TRENDS 

Many lessons learned in the design and construction of the HPMD 
can suggest and guide future work in this area.  The primary lesson 
is the success of the hybrid hardware-software approach. Man and 
digital circuitry function at such radically different levels that 
interaction between them is difficult.  Program measurement in the 
hardware differs radically from the programmer's conception of 
debugging or optimization.  Humans, with a limited short-term memory 
capacity, are severely handicapped if they must recall many minor 
machine-to-program transformations; those transformations should be 
performed for them by the debugging and optimization tools. 

All detection schemes must deal with the conflict between 
resolution and complexity*  To obtain resolution, many different 
program parameters must be examinable, with complex operations 
performed on them to discern specific or obscure relationships. 
Such power is costly and complex. One of the lessons learned from 
the HPMD is the size differential between detection based on single 
signals versus that based on 16-bit parameters.  It is necessary to 
limit the handling of word-size information in detection functions 
if cost and complexity are important. 

Many of the HPMD design and construction difficulties can be 
traced back to a lack of "monitorability" in the host computer 
hardware or inflexibility in its systems software. There is a small 
trend towards providing probe points for assessing the workload on 
each computer system element, but a device which performs program 
measurement goes far beyond this.  It seems unlikely that computer 
manufacturers would alter their hardware and software to accommodate 
external program measurement devices.  Long before external devices 
became a force in computer marketing, internal instrumentation would 
most likely appear which, if designed by the manufacturer 
concurrently with the computer itself, could offer the most 
straightforward and powerful program measurement capability. 
Internal instrumentation would appear the most effective approach to 
widespread use of an HPMD-like aid. 

With the increasing use of LSI and GSI (large-scale and grand- 
scale integrated) circuitry, accessibility to the hardware will 
diminish to nearly zero. An external HPMD will become impossible, 
but the reduction in hardware cost might very well make practical 
the inclusion of HPMD capabilities on-chip at the time of 
manufacture. Such additional on-chip functions should become 
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increasingly common as the difficulties and expenses of providing 
them external to the chip become prohibitive. 

An alternative to the strict signal-sensing HPMD approach is to 
implement a computer-cum-monitor in a single firmware package. Some 
or all of the difficult task of discerning parameters could easily 
be microprogrammed into the instruction-level architecture. 
External hardware may or may not be needed, depending on the system 
resources available for this use.  Note that interference, as 
previously defined, is not inevitable in such an approach; if the 
firmware relies on external hardware for some detection, reduction, 
and storage chores, then the firmware's monitoring functions could 
be "turned on" continuously, without altering the machine behavior 
when they are used. 

The availability of a CPU for detection presents intriguing 
possibilities.  Instead of merely detecting equalities as in the 
HPMD, far more sophisticated relationships could be detected.  These 
may include ranges, Boolean, or even arithmetic relationships 
between parameters.  If necessary, an entire software subroutine 
could be executed to determine if the current conditions constitute 
a program event.  Such schemes, if implemented with the firmware or 
software of the host computer, will cause some speed degradation. 
Some Boolean or even arithmetic relationships may be detected at 
full speed in external hardware. Complex sequential algorithms, 
however, cannot be executed in real time while the monitored program 
continues to run unless there is a tremendous difference in the 
relative speeds of the two processes. 

The nature of the computers to be monitored are changing, not 
just in hardware technology or architecture, but in terms of user- 
visible innovations such as higher-order languages and virtual 
machines.  If an HPMD can be justified because it allows a 
programmer to solve problems without mentally "switching-gears" to 
deal with machine-level measurement considerations, then the nature 
of such measurement devices must evolve with the computer. For 
debugging a higher-order language, instruction locations should be 
expressable as labels or line numbers, not object code locations or 
actual memory addresses.  Variable names should be usable for 
specifying operands, and logical unit numbers for specifying devices 
or files.  In general, the event specification and information 
reduction must be as symbolic as the language they are supporting, 
for the programmer deals with the problem symbolically. 

Indeed, as operating systems play more and more of a support 
role for user programs, the debugging and optimization process for 
programs will merge with that for systems. Software making correct 
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and efficient use of the system resources is becoming an important 
part of system optimization; as software becomes more resource- 
oriented instead of instruction-oriented, program debugging and 
optimization becomes another aspect of system performance 
measurement. 

Virtual memories vary in their visibility to the user, from 
named segments to the automatic emulation of near-infinite memories. 
To the extent that the virtual memory is visible to the user and is 
involved in a program bug or optimization problem, then the 
measurement device must not obscure that visibility.  If excessive 
page faults are degrading the performance of a particular routine, 
then the measurement device must reveal this phenomenon, not gloss 
over it as an "implementation detail".  For virtual memories, 
cooperation between the processes on many levels of the computer 
system, from the compiler and relocatable loader to the page fault 
handler, is needed if such a measurement device is to keep track of 
a program scattered throughout disks and core pages. 

These two examples, higher-order languages and virtual 
memories, illustrate several general considerations concerning 
future program measurement devices. First and foremost is the need 
to keep the man-machine interactions at the human level rather than 
the machine level.  The machine must be visible only where problems 
related to its nature and functions might arise.  The architecture 
of the measurement device itself should never be visible, although 
its limitations must be made clear. 

Secondly, the evolution of computers is leading us toward a 
greater interdependence between the levels within an architecture. 
Virtual memory is a simple concept; its implementation, however, 
frequently involves a synergy between software, firmware, hardware, 
and peripherals. As program measurement is included in such an 
arrangement, it becomes clear that cooperation between it and many 
other portions of the host computer on many levels will be needed. 
An effort of this scope should be done during system design rather 
than after-the-fact. 
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SECTION VII 

CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

The design and construction of the HPMD have shown that the 
most effective balance between hardware and software complexity is 
to design very complex hardware while leaving the software design 
effort at a more manageable level. Obtaining and manipulating 
hardware word-width parameters was found to be difficult for even 
modest functions on a minicomputer not designed to be monitored. 
The software's task was much easier, since data manipulation and 
interactive command interpretation are common software chores. 

Many of the major problems encountered, such as synthesizing 
parameters and implementing breakpoints, exist only because 
commercial computers are not currently designed to be monitored.  If 
these problems are attacked early in the design of the computer 
itself, then they can be eliminated. Most of their causes, such as 
the inaccessibility of key signals and registers or software 
inflexibility, are not fundamental.  If "monitorability" is 
considered important, it can be achieved. 

The ideal time to consider the connection of program 
measurement hardware to a computer is at the time of the computer's 
initial design. The CPU, memory, and I/O buses, as well as the 
timing and control signals necessary to interprete them, must be 
made available to external devices.  Some decoding is needed for 
both the execution and the monitoring, such as the direction of 
information flow, and such information must be explicitly available 
to the external hardware, rather than buried deep on a board or 
implicit in a complex signal protocol. 

Interrupts must provide instant response to implement a 
breakpoint.  The detection of a breakpoint lags the actual event, 
and so the halting signal by its very nature is not available until 
late in an instruction. The resultant interrupt must nonetheless be 
processed before the next instruction to avoid the "skidding" 
effect.  This is not technically impossible, but is much quicker 
than currently demanded for handling I/O. 

Analogously, the computer's software can ideally be designed 
with this same foresight, anticipating the demands of the 
measurement software. The HPMD effort has shown that in many cases 
features are included within an operating system to protect one 
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program from the foibles of another.  User interrupt definitions are 
an obvious example; on the NOVA 800, they are wiped out before 
control is passed from one program to another. Although 
advantageous in many situations, such protection features make it 
difficult or impossible for a debugging program to manipulate and 
control the operating environment of a monitored user program. A 
little foresight could loosen such constraints which constitute 
major obstacles to program measurement. 

RECOMMENDATIONS 

Based on these conclusions, two recommendations can be made to 
capitalize on the HPMD experiment.  A one-year evaluation of 
instruction-level monitoring techniques, such as provided by the 
HPMD, is needed to judge the usefulness of the various measurements. 
The design and construction of the HPMD was a necessary first step 
to determine what can be done, what measurements are easy to obtain, 
etc.  A perspective on the usefulness of each capability is needed 
next.  This perspective can be the basis for specifying monitoring 
functions which will truely be assets in software development, 
optimization, and debugging. This is the ultimate payoff for the 
HPMD effort. 

The final recommendation opens the door for such instruction- 
level monitoring hardware.  If the Air Force actively encourages 
"monitorability" and even built-in monitors, then such aids may 
become practical on a wide scale. A computer to which monitoring 
hardware may be easily attached (or which already includes such 
hardware) is more suitable for program debugging and optimization. 
As was learned with the HPMD, it is impractical to expect such 
powerful tools to be readily added after the fact if their 
attachment is not anticipated in both the original hardware and 
software. Active encouragement of this anticipation during design 
can be a way to insure that such monitors may be later applied as 
needed. 
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SECTION VIII 

SUMMARY 

The HPMD was an experiment in hardware-assisted debugging and 
optimization.  The device itself was designed to make effective 
program measurements and to be easily controlled by the user. The 
combining of hardware and software was the key to its success. 
Their complementary capabilitities provide a design too complex and 
costly for hardware alone, yet more effective than a purely software 
tool. 

The design goals for effectiveness and complexity appear to 
have been met in most cases, although an evaluation phase will 
reveal much more. It would be difficult to devise substantial 
improvements on the conciseness, clarity, or sheer speed of the 
software syntax and keyboard characteristics. The invisibility of 
the hardware architecture was achieved in one sense but not in 
another.  The syntax expresses measurements in quasi-English rather 
than switches and push-buttons, and the allocation of detection 
groups is automatic. One the other hand, the measurements 
themselves correspond exactly to the hardware functions, and some 
options are specified in a sloppy manner, such as "A,D,#, or I"; 
they represent the intrusion of hardware quirks into an otherwise 
elegent command syntax. 

The hardware-software approach does prevent any form of 
interference during measurements. The computer's resources are 
heavily used to initialize the device and to process the results, 
but during the actual measurements the hardware does not affect the 
host computer. The implementation of these general measurement 
types was found to be not as transferable as originally expected. 
The concept of a "universal" measurement device interfaced to 
specific computers proved quite workable, but that interface, at 
least for the NOVA 800, is unexpectedly large (20$ of the device) 
and is a non-transferable design effort. 

Much can be learned from the problems encountered during the 
design of the HPMD and its resultant shortcomings.  Hardware 
difficulties in obtaining the needed signals, synthesizing the 
parameters, and implementing breakpoints all stem from the 
unmonitorable nature of the host computer.  Likewise, systems 
programming difficulties are due to aspects of the operating system 
which were included as protection for user programs. A major result 
of the HPMD effort is the concept of "monitorability", and the 
definition of its hardware and software implications. 
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Several areas of future growth may be perceived based on the 
HPMD experiment. Symbolic debugging is a natural approach for a 
hybrid monitor, since the transformation from symbolic to machine 
level is a common software function. Use of the host CPU for 
detection functions is a possibility, as is implementing some or all 
of the detection functions in firmware. 

Two recommendations may be made to direct further growth in 
this field. Evaluation is needed to determine which program-level 
measurements are the most productive and worthwhile. Such 
evaluations permits the proper evolution of monitoring devices based 
on their potential contribution.  Finally, the Air Force should 
actively encourage the "monitorability" of the computers they 
specify and purchase.  The inclusion of built-in monitoring aids 
which can interact with controlling software should also be 
considered.  The HPMD has shown the feasibility and advantages of 
this hybrid approach. 
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APPENDIX I 

SOFTWARE 

The following functional descriptions define the basic actions 
each software routine performs. They are presented here to give the 
reader a feeling for the scope of this effort and to provide 
insights into the problems encountered and solutions found. 

INITIALIZATION SOFTWARE 

DEBUG 

This is the main-line for the initialization software; its task 
is to obtain commands from the user and delegate their execution to 
the appropriate subprogram, as well as managing the measurement 
specifications as they accumulate. 

As the first code to be executed, this main-line program must 
OPEN all the files needed for initialization; these files are the 
(spooled) terminal input and terminal output, and also $HPMD.MS. 
Upon entering, the most recent measurements and annotation must be 
recalled, if there are any.  By sensing the size of $HPMD.MS, the 
main-line can determine whether it contains this information or was 
just created by the OPEN.  If empty, the measurement specifications 
are zeroed and the annotation set to be a null string. Otherwise, 
the old measurements and annotation are read in from disk, and the 
annotation is printed at the terminal as a reminder to the user of 
the nature of those measurements. 

Next, a command is obtained. The user is cued with a ":", the 
current measurements preserved in a temporary array, and NEWCHAR is 
called to obtain the single character which begins the command.  The 
colon cue is unique to this initial point in the syntax.  NEWCHAR, 
which manages the keyboard, is instructed to accept only a character 
in the string "CTSGHDKURAQP", the first letter of each command. 
Based on this first character, the appropriate subprogram can be 
called to perform the specified function. Before this happens, 
DEBUG checks to see if the command is RUN or QUIT; if it is one of 
these, no more measurements will be added and so the older 
information in $HPMD.MS is deleted and replaced by the current 
measurements. This insures that $HPMD.MS contains only the latest 
information between DEBUG executions. The first character is then 
checked to see if it is "D", "P", "A", "U", or "R".  These represent 
commands which do not add measurements, and therefore can always be 
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performed; DEL, MPRINT, ANNOT, KEEP, USE, or RUN is called 
respectively. Otherwise, a measurement is to be added. COMOK is 
called to determine if there is room within the HPMD hardware to 
also handle the new measurement; if there is not, DEBUG prints a 
message for the user. Otherwise, the "C", "S", "G", "T", or "H" 
will cause the execution of COUNT, STORE, GRAB, TIME, or HALT 
respectively. 

If at some time during the measurement specification dialogue 
the user types a line feed, then the function is aborted and the 
cancel flag is turned on. Before branching back to the beginning to 
obtain a new first character, this flag is checked.  If it is ON, 
then a "...NOT DONE" is printed to assure the user that the software 
handled the line feed properly, and the measurements saved in the 
temporary array are recalled; if it is OFF, then the new 
measurements are preserved and, assuming QUIT was not specified, the 
next command is processed. 

COUNT 

This is the simplest of the measurement-specifying routines, 
since the syntax for a Count command consists only of the "Count if" 
and an event definition. Upon entering one of these routines, the 
first character has already been echoed to the terminal, and so 
COUNT prints only "OUNT IF".  NEWVALS, which reads in event 
definitions, is then called with parameters which indicate doubling 
for this command is not allowed, and that the event obtained is to 
drive a counter.  Since NEWVALS both obtains and saves the parameter 
and values which define the event, COUNT has nothing else to do.  It 
should be noted that NEWVALS returns a cancel flag which indicates 
whether the user aborted the event definition with a line feed. 
Count, like all other commands, returns immediately if the flag is 
on, passing it back to DEBUG. 

GRAB 

The syntax for the Grab command differs from the other commands 
in that the type of information to be saved in the buffer is 
specified by a "A", "D", "#", or "I", and three questions about the 
Grab buffer control are asked.  First of all, "rab current" is 
printed since the "G" has already been echoed.  NEWCHAR is then 
called, with a "AD#I" string as its legal characters.  The character 
obtained is decoded into 1, 2, 3, or 4 respectively and saved as 
part of the current measurements<  Assuming the cancel flag was not 
set by NEWCHAR, " IF " is printed and NEWVALS is called.  NEWVALS is 
instructed not to allow doubling and to save the event obtained as a 
Grab event.  To handle the questions and answers for controlling 
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both buffers, QA is used. QA is passed a "question" string and 
where to put the TRUE/FALSE answer. GRAB therefore calls QA three 
times with the questions:  "FREEZE BUFFER WHEN FULL?", "INHIBIT IF 
STORE BUFFER STOPPED?", and "HALT PROGRAM WHEN BUFFER FULL?".  As 
with any routine which obtains information from the user, the cancel 
flag may be set by QA» 

TIME 

The time syntax includes two events, either or both of which 
may include doubling.  "IME FROM" is printed, and then NEWVALS is 
called to get the first event.  COMOK informed DEBUG, upon "T" being 
entered, that a time measurement was within the capacity of the HPMD 
hardware.  This did not imply that doubling is possible.  To perform 
the analysis to determine if there is capacity for a doubling, 
DOUBLE can be called.  The flag returned is passed to NEWVALS, which 
obtains and saves the first event, whether doubled or not "UNTIL" is 
then printed, followed by DOUBLE and NEWVALS to handle the second 
event. 

STORE 

STORE is similar to TIME, except that the parameter to be 
stored must be entered and there are buffer control options, as in 
GRAB.  "TORE" is printed to complete the command name, and PARAM is 
used to get the parameter.  PARAM is a lower-level routine used also 
by NEWVALS, which obtains the specified parameter from the terminal 
and returns a number 0-15.  In this case, PARAM was instructed not 
to accept a "B" (for "Both"), since this parameter entry is quite 
distinct from the doubling event syntax case which NEWVALS must 
handle. Assuming the cancel flag is not turned on, "FROM" is 
printed and then DOUBLE and NEWVALS are called. As with TIME, 
DOUBLE determines if doubling is legal for a Store command given the 
current measurements, and NEWVALS gets and saves one or two events 
accordingly.  "UNTIL" delimits the start event(s) from the stop 
event(s), and the DOUBLE and NEWVALS procedure is repeated a second 
time. All of these calls to NEWVALS are dependent on the cancel 
flag remaining off. QA is then used to handle the four questions 
about the buffer control options.  "FREEZE BUFFER WHEN FULL?", 
"PROHIBIT RESTARTING?", "HALT PROGRAM WHEN BUFFER FULL?", and 
"INITIALLY RUNNING?", are asked and the user's response is saved as 
part of the current measurements, again assuming no line feeds. 

HALT 

The last of these five routines which specify measurements is 
HALT.  This combines the single event of COUNT and GRAB with the 
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possibility of doubling as seen in TIME and STORE, "alt program if" 
is printed, and then DOUBLE and NEWVALS are used to get and save the 
single or doubled event. 

£A 

QA poses a question and decodes the user's answer. It is 
called by STORE and GRAB to interrogate the user about the buffer 
control options. The flag bit corresponding to the specified buffer 
option is first turned off by ANDing the flags with a mask, and the 
question string passed to QA is printed.  NEWCHAR is then called, 
with "NFYT10" given as the string of legal characters. These allow 
the user to think of the TRUE-FALSE answer as "TRUE" or "FALSE", 
"YES" or "NO", "1" or "0", even "YEP" or "NOPE". Assuming the 
cancel flag is not set, the returned character is checked to see if 
it is "Y", "T", or "1";  if it is, then the flag bit is turned on, 
if not, the flag remains OFF. 

C0M0K 

C0M0K combines arithmetic and Boolean operations to determine 
if a particular command is possible given the current measurements. 
The algorithm must deal with the difference between the measurements 
as specified and the measurements as assigned detector groups upon a 
Run command. For Time, Store, and Grab, there is no difference; 
only one detector group is capable of doing these measurements' 
specialized tasks. This is not true, however, for Count and Halt. 
There are three identical counters, and any leftover detection 
groups can control the halt interrupt.  It would be a shame to 
assign specific detection groups for these measurements any earlier 
than necessary, since such an assignment may preclude a subsequent 
measurement. For example, if a Halt is specified first and is 
assigned a particular group, say Group #1, then the timer could not 
be used. Likewise, if a Count was assigned to Group #5, then the 
"Start timer" event could not be doubled (that would need #1 and 
#5). 

To avoid this lack of versatility, the measurements are stored 
as they are specified, without any assignment to particular 
detection groups. C0M0K is called to determine if there is room for 
any new measurement being entered by the user.  If there is not, 
then the DEBUG main-line will print "INSUFFICIENT CAPACITY FOR THIS 
MEASUREMENT DELETE A MEASUREMENT" to tell the user that there is 
not enough capability in the hardware to accomplish both the current 
measurements and this new one. 
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The algorithm COMOK uses to make this determination analyzes 
what room is available and what the new measurement demands. First 
the initial command character, "T", "S", "C", "G", or "H", is 
identified and converted into an integer. The number of non-Halt 
measurements is counted, and the number of Halts and double-Halt 
groups needed is subtracted from it; this gives the space for 
additional Halts.  If the measurement requested is a Halt and this 
space number is greater than zero, then COMOK returns as True. 
Otherwise it must differentiate between Time and Store, which use 
two groups each, even without any doubling, and the Count and Grab, 
which need only one.  If there is room for at least two more halts, 
and neither time group is currently needed, then the time 
measurement is legal; the Store measurement is handled analogously. 
If there is room for at least one more halt, and there are less than 
three Counts specified currently, then another Count is legal. 
Also, assuming no Grab measurements are specified, space for a halt 
implies space for a Grab.  In this way, COMOK determines if a 
measurement is possible. 

COMOK returning TRUE implies only that the command can begin to 
be entered; if doubling is demanded later in the command, then the 
user may yet be prohibited from getting the command as desired. 
DOUBLE performs a similar function for TIME, STORE, and HALT by 
checking the legality of doubling for that command given the current 
measurements. 

DOUBLE 

DOUBLE must also deal with the specification/assignment 
dichotomy.  Only Times, Stores, and Halts can be doubled, and DOUBLE 
determines if this is possible for a particular command and the 
current measurements. The algorithm used first calculates how much 
room there is left for halts, which can go anywhere, and then the 
room for double-halts.  If there is not room for at least two single 
halts and the possible unused groups arranged so at least one 
double-halt can be added, then DOUBLE returns FALSE.  Next, further 
checks are made for the TIME and STORE commands:  if doubling is 
requested for either time event or the start STORE buffer event, 
then DOUBLE checks to see if there are less than three counters and 
previous doubles for these events.  If so, then what counters there 
are can be shifted into assignments which have room for this 
additional doubling.  If a stop STORE buffer doubling is requested, 
then it is permitted unless there is a Grab measurement specified. 

DOUBLE performs a function similar to COMOK, but it is used 
differently. COMOK is used to check if a command already begun 
should be ruled out; DOUBLE is called before the user can type "B" 
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for "Both", and therefore, determines whether that key should be 
legal or not when the event is defined. 

NEWVALS 

NEWVALS handles the definition of all events.  PARAM and GETVAL 
can obtain the parameter and each octal value; NEWVALS main task is 
therefore to manage their use and to store the results in the proper 
format.  It is passed the type of command and which event within 
that command it must obtain, as well as whether doubling is 
permitted.  Based on these it gets one or two parameter-values 
definitions and adds them to the current measurements. 

PARAM is called first, followed by printing "=". The parameter 
is stored in the measurements, as is an indicator defining the type 
of event. GETVAL is called up to four times or until it sees a 
carriage return, and the values obtained are stored.  If doubling 
was prohibited or PARAM did not receive a "Both" before the 
parameter, then NEWVALS returns. Otherwise, the parameter-values 
process is repeated once more, with doubling definitely prohibited 
and the information obtained is stored as the "doubling" of the 
earlier event type. 

PARAM 

Although PARAM is the third largest routine in the 
initialization software, its task is quite simple.  It must obtain 
from the user a parameter mnemonic as defined in Table I and returns 
the corresponding sequence number, 0-15. If doubling is allowed for 
the event which this parameter is a part, then "Both" is allowed and 
PARAM returns an indicator as to whether it indeed preceded the 
parameter.  Finally, as will all routines which interact with the 
user, the cancel flag is returned to indicate whether a line feed 
was typed. 

To obtain the parameters yet maintain the feature of requiring 
only the minimum of typing, a tree structure is searched, based on 
the first, second, and third characters. As soon as the characters 
inputted uniquely define a parameter, PARAM prints the remaining 
character(s) and returns with the sequence number. For example, if 
"A" is typed, only one parameter ("AST") is possible, and so PARAM 
prints "ST" and returns with an 11. NEWCHAR is used to full 
advantage by PARAM since at each node in the tree structure there 
are only a limited number of legal next characters, and NEWCHAR can 
control the keyboard to limit the user to that set. The tree thus 
consists of calls to NEWCHAR with the legal next characters for 
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every non-ending node, and a sequence number and possible printing 
string at each ending node. 

GETVAL 

GETVAL returns a value derived from the octal number typed by 
the user. To do this it must both perform ASCII octal digit to 
integer conversion and detect the end of the number; the latter task 
is more complex.  In addition, a rubout is interpreted as a "local 
cancel", allowing the user to start over in defining the value, and 
line feed again cancels the entire command. 

As an event is defined, NEWVALS calls GETVAL up to four times 
in a row to get a group of values until a carriage return is 
entered.  A value must be returned the first time; subsequent values 
are optional.  A flag is passed to GETVAL indicating whether to 
accept a carriage return instead of a value.  GETVAL in turn returns 
a description of what happened: carriage return alone (if legal), 
value without carriage return, and value with carriage return. A 
value is delimited by ending with a slash or a carriage return; if a 
value exceeds octal 20000, further digits cannot be added and the 
keyboard must be limited to "/", carriage return and rubout.  This 
avoids any "value too large" error message. 

NEWCHAR is used to obtain the input characters.  At first, 
depending on whether a value must be entered, "0-7" or "0-7" and 
carriage return are provided as the legal characters. After the 
first character, "/" is added to the list, as is carriage return if 
it is not already there.  The characters are converted to numbers 
and added to a running integer total; the integer is multiplied by 8 
before adding in each new number. Upon a slash or carriage return, 
the integer i_s the octal value to be returned. Upon a rubout, the 
integer is zeroed and the process begun again. 

DEL 

DEL handles the Delete command, one of the simplest to use, yet 
quite difficult to implement.  The other routines store the 
measurements in a long array, in the order they were entered.  This 
array must be edited to remove any measurements the user wishes to 
delete. 

First, DEL determines which types of measurements are currently 
specified, and constructs a string of characters each of which 
begins one of the corresponding commands.  Thus if there is a Time, 
two Counts and a Grab the string would be "TCG".  "A" is added to 
the string, and it is then used in a call to NEWCHAR as the list of 
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legal characters after "elete" is printed. NEWCHAR returns one of 
these, and the measurement editing is based on the character. The 
remainder of that command is immediately printed, such as "ime", 
"ount" or "rab". 

If "A" was returned, all of the measurements are erased. If 
"T", "S", or "G" was returned, the array is searched for the (only) 
entry which corresponds, and it is eliminated.  If it was listed as 
the first half of a doubling, the other part is found and erased 
also. Counts and Halts can be different, since there can be more 
than one of each. DEL checks how many Counts or Halts are 
specified, and if there is only one, it is found and erased. For 
Halts, any doubling is also found and erased.  If there are more 
than one, a "#" is printed to prompt the user to enter a number to 
indicate which measurement is to be deleted.  NEWCHAR is called, 
given "123" as legal digits for a Count and "12345678" for Halt. 
The array is then scanned and when the corresponding Count or Halt 
measurement is found, it is erased. 

The erasing operation is performed by an internally defined 
procedure, which overwrites the measurement being deleted with the 
remainder of the array, shrinking the array in the process. The 
number of measurements is decremented, as is the count of that 
particular kind of measurement. 

ANNOT 

ANNOT builds a long character string which the DEBUG main-line 
saves in $HPMD.MS for printing by the results software or upon 
reentering DEBUG. KEEP and USE also save and recall the string 
along with the other information in their files,  "nnotate:" is 
printed first, and then the user can enter the comments using any 
alphanumeric and most punctuation keys.  Two carriage returns in a 
row terminate the comment.  Line feed cancels the entire annotation, 
preserving the earlier one, if any, and rubout deletes the previous 
character from the string. 

The string has a maximum length of 5000 characters.  If the 
user attempts to enter further characters, NEWCHAR limits them to 
carriage return and rubout. A "?" provides the explanation: "No 
more room; valid characters are CR and rubout". 

MPRINT 

MPRINT adapts MLIST, which generates a formatted description of 
the current measurements, for listing in the terminal or line 
printer. First it checks to see if there indeed are any 
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measurements to print; if not, it responds "rint...no measurements 
currently specified". If there are some, it prompts the user with 
"rint measurements at" and calls NEWCHAR to obtain a "T" or "L" for 
Terminal or L_ineprinter. Assuming the cancel flag is not entered, 
it either writes "erminal" or "ineprinter", and if the latter, the 
line printer is OPENed as an output device. MLIST is then called, 
given the appropriate channel number, and the line printer is closed 
if this is needed. 

MLIST 

To generate a readable printout of the current measurements, it 
is necessary to reverse the encoding of the command by the DEBUG 
main-line of the parameter by PARAM, of the values by GETVAL, and of 
the buffer options by QA. MLIST does this by manipulating character 
strings based on the encoded measurements.  The results are written 
on an output device or file as specified by the calling routine. 
The reconstructed printout looks quite similar to the original 
terminal session when the measurements were first entered 
interactively. 

The current measurements are stored as array entries consisting 
of type, parameter, and values.  These entries are outputted in 
order, with each type getting a different format.  First, the 
command itself is printed, such as "Time from" or "Halt if".  If it 
is a Store or Grab, the parameter or "AMI" selected is decoded into 
the proper character(s) and outputted, followed by a "from" or "if". 
If the type of entry is the second half of a Time or Store, "until" 
is substituted, and if it is the doubling of the previous entry, 
"...and" is used.  Next, the parameter is decoded into its Table I 
mnemonic and outputted with an "=".  Finally OCTPRINT is called four 
times to output the values in octal, separated by "/".  If the 
command was a Store or Grab, concise definitions of the buffer 
options are added, such as "Freeze", "Halt", and "Once".  The 
results of MLIST for a sample set of measurements are shown in 
Figure 3. 

OCTPRINT 

OCTPRINT outputs to the specified output channel six digits 
which represent the octal equivalent of the value passed to it. 
Sign-testing and mask-and-shift are used to generate six integers 
which equal the value of each octal digit field in the passed value. 
Writing them without intervening blanks produces the octal number. 
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TIME      FROM  IA • 002056 / 002096 / 002056 / 002056 
UNTIL IA • 002073 / 002077 / 002077 / 002077 

COUNT     IP    IA • 002056 / 002056 / 002056 / 002056 
COUNT     IF    OU» > 000033 / 000033 / 000033 / 000033 
STORE INT FROM  IA • 001753 / 001753 / 001753 / 001753  RUN 

UNTIL IA • 003007 / 003007 / 003007 / 003007 

Figure 3.  Sample MLIST Output 

RUN 

RUN is the largest single routine in the entire HPMD software. 
It has four responsibilities:  assigning actual detection groups for 
the current measurements while converting them into HPMD hardware 
format, determining a set of flags for the results software which 
indicate which parts of the hardware are being used, loading these 
final measurements into $HPMD.MS, and finally creating a suitable 
execution environment for the user's program.  SETUP is then called 
to actually run the user program. 

Converting the measurements from DEBUG measurements array 
format to HPMD hardware format occupies the first half of RUN.  As 
seen in COMOK and DOUBLE, the measurements are not assigned specific 
groups as they are entered. Only after the user types "R" can this 
assignment be done, since no more entries will be made.  Time, 
Store, and Grab measurements must go in specific places; they are 
not flexible in their assignments.  They are therefore assigned 
their detection groups first. Double Halts are somewhat flexible, 
and are assigned next. Any pair (1-5, 2-6, 3-7, 4-8) of unused 
doubled detection groups can implement a double-Halt, but it is not 
until the Time, Store, and/or Grab assignments are known that a 
leftover pair can be located. Counts come next: whatever groups 
among #5-#7 that the Time, Store, and double-Halt assignments did 
not use are available for Counts. Finally, the single Halts, which 
can go anywhere, are assigned whatever group(s) remain.  The 
sequence of fixed measurements, double-Halts, Counts, and single- 
Halts insures a conflict-free assignment. COMOK and DOUBLE have 
already checked to make sure the measurement entries can be squeezed 
into the hardware without exceeding its resources.  This process of 
assignment generates another array, called TABLE, which contains the 
information to be loaded directly into the HPMD hardware. The 
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hardware is not informed the meaning of each word of information; 
its position in TABLE implies its meaning. For example, positions 
33-40 are the detection parameters for groups #1-#8 respectively, 
while positions 48-50 contain the buffer control options.  Such a 
rigid format makes the hardware's task easier. 

The flags for the results software are set while assigning the 
measurements, since at that time the use of specific hardware groups 
is known.  These flags will allow the results software to, for 
example, omit printing the count in counter #1 if its detection 
group is being used to double the start Timer event instead. This 
is the only point within the entire initialization software that 
such a determination is known. 

$HPMD.MS is now written with all the information available 
about the current measurements*  TABLE, the measurements array, and 
the flags for the results software are put in first. COM.CM, the 
file in which the operating system puts "DEBUG" and the program name 
to be executed is read to make sure that a program was indeed 
specified; the program file is OPENed and CLOSEd to insure that it 
exists.  Error messages tell the user if either of these tests fail. 
The program name is then written into $HPMD.MS; all old entries 
except the current annotation have thus been overwritten.  Skipping 
over that annotation, the file pointer is advanced to the end-of- 
file, and MLIST is called to add a printable listing of the current 
measurements for the results software. Because the annotation and 
measurements are the last things in the file, the results software 
can print them together in a simple read-print loop which can 
continue until the new end-of-file is reached. 

COM.CM, from which the user program name was extracted, is 
edited to remove the word "DEBUG".  When this is done, it is 
identical to what it would have been if the user had typed simply 
the program name with any parameters and switches.  The environment 
for the user program is therefore as the program expects them in 
terms of all those parameters and switches, and the user program 
will behave normally. 

RUN has now done its tasks and can call SETUP. SETUP does not 
return to RUN, and so RUN does not return to the DEBUG main-line, 
except if errors were encountered with the user's program name. 

SETUP 

SETUP is an assembly language routine which simply chains to 
the RERUN program via a system call. Originally intended to do all 
the outputting to the HPMD hardware itself, SETUP was reduced to a 
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system call when RERUN began to overlap such duties.  RERUN will 
read TABLE out of $HPMD.MS and load it into the HPMD hardware.  It 
will then swap in and execute the user program, and finally run the 
results software. 

KEEP 

To save a copy of the current measurements in a disk file, KEEP 
calls GETNAME to obtain the file name. After appending ".MS" to 
indicate it's a measurement file, it is OPENed to see if it already 
exists. If it does, it is deleted since it might be longer than the 
current information.  Then it is recreated, and the current 
measurements array and annotation are written into it. 

USE 

USE performs a function complementary to that of KEEP.  GETNAME 
is used to obtain the file name, and ".MS" is again appended.  If 
successfully OPENed, the measurements and annotation are read to 
replace the current ones. If the OPEN is unsuccessful, 
"...MEASUREMENT FILE NOT FOUND" is printed and the current 
measurements and annotation remain unchanged. 

GETNAME 

To obtain a file name, GETNAME uses NEWCHAR to read in up to 11 
alphanumeric characters. A "$" is not allowed in such a file name, 
thwarting the user who attempts to apply KEEP or USE to $HPMD.MS, 
which has the wrong format.  Assuming the cancel flag is not set, 
they are checked for a rubout or carriage return. As in ANNOT, a 
rubout is echoed as a backarrow and the previous character is 
deleted; if a carriage return is seen, GETNAME returns with the file 
name. When 11 characters have been entered without a carriage 
return, NEWCHAR is limited to only rubout and carriage return, with 
an explanatory message available upon a "?". 

NEWCHAR 

Last but not least is the routine which handles all terminal 
inputs from the user. Called by DEBUG, QA, PARAM, GRAB, DEL, ANNOT, 
MPRINT, and GETNAME, it manages the keyboard and thereby implements 
the legal-illegal keys features, the line feed cancel feature, as 
well as "?" and "!" responses. 

To do this, it simply reads in a character, checks it against 
the legal character string passed to it plus "?", "!", and line feed 
and, assuming it matches one of them, it acts accordingly.  If no 
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match is found, it loops back and reads another character without 
echoing the first one; in this way, the former key appears dead to 
the user.  If it is a "?", the explanation message specified by the 
calling routine is printed; if it is an "!", then the legal string 
passed is printed instead.  In either case, NEWCHAR then loops back 
to read another character. If it is a line feed, the cancel flag is 
set. Finally, if it is a legal character, then that character is 
echoed, and thus it appears to the user to function normally. Upon 
either a legal character or a line feed, NEWCHAR returns. 

EXECUTION SOFTWARE 

RERUN 

To set up the execution and measurements, RERUN first loads the 
HPMD hardware.  $HPMD.MS is OPENed, and the first 130 bytes are read 
into core. These consist of 114 bytes comprising the hardware- 
loadable TABLE, plus the name of the user program, and the flags 
passed primarily to the results software.  The TABLE array is then 
outputted to the hardware, after the hardware has been cleared by an 
NIOC instruction on the NOVA 800* One of the flags passed from the 
initialization software reflects the Store buffer option of 
initially started vs. initially stopped.  If started is selected, a 
DIB instruction is executed, enabling the Store buffer; conversely, 
a DIC instruction will ensure that the buffer is disabled if that is 
selected.  Next, the flag which indicates whether any Halts were 
specified is checked, because this means HPMD interrupts may have to 
be handled.  If so, the MOVEISR subroutine is called. 

An NIOS instruction is executed to start up the HPMD by zeroing 
the timer and counters as well as enabling any interrupts, and then 
the user program is executed by a system call (see Figure 4). Since 
it is a swap rather than a chain, when the user program completes, 
RERUN picks up from after that system call. Depending on whether 
the user program makes a normal or abnormal return, the error flag 
in an accumulator may be saved. Finally, RESTORE and also DISPLAY 
are executed, and then RERUN returns to the system.  If the user's 
program returned with an error code, RERUN returns to the system 
abnormally with that same error code. 

MOVEISR 

MOVEISR consists of two programs:  the ISR itself and a program 
which copies the ISR into core next to the user program. MOVEISR 
calls subroutine GETSTART, which calculates a starting address for 
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EXECUTION /COMPLETION 

DEBUG 
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RERUN 

USER 
PROGRAM 

Figure 4   HPMD SOFTWARE  PROGRAMS 

the ISR based on the size of the user program. To copy it into a 
new location in core, three byte pointers must be relocated.  The 
byte pointers in the ISR point to file names of the programs to 
execute:  DISPLAY, QZ, and the user's program.  They are used in the 
program swap system calls. The user program's name must itself be 
copied from its storage in RERUN into the ISR* The system interrupt 
vector, core location 1, is saved for later use.  The actual copying 
of the "relocated" ISR is now performed, and its starting address 
stored into location 1.  When this is done, all interrupts cause the 
execution of this ISR. 

The relocated ISR checks the 
HPMD; if not, it branches to the 
address was saved from location 1 
with an NIOC 5 instruction, which 
interrupts and zeroes its address 
read in, which includes the state 
enable/disable flag. In order to 
system interrupts, the hardware s 
and forces an interrupt enable 
as the PC and registers, are also 
restoration. 

interrupt to see if it is from the 
system interrupt routine, whose 

Otherwise, it clears the HPMD 
both disables further HPMD 
register. The status can then be 
of the NOVA interrupt 
allow Halts despite disabled 
imultaneously requests an interrupt 
The rest of the machine state, such 
saved in core for later 
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Figure 5 INTERRUPT SOFTWARE INTERACTIONS 

QZ is then executed via a system call to query the user about 
what to do next.  Based on whether it returns normally or 
abnormally, and if abnormally with what "error" value, ISR can take 
one of several paths (see Figure 5).  Upon a normal return, the ISR 
assumes the user wished to stop any further execution, and so ISR 
itself returns.  Since the ISR execution is invisible to the 
operating system, this return is handled identically to an actual 
user program return, and RERUN resumes by running the results 
software. Otherwise, DISPLAY (the results software) is run by the 
ISR itself. Again, this is invisible to the operating system, and 
so the normal restrictions as to what can be done in a conventional 
interrupt routine do not apply. After DISPLAY completes and 
returns, ISR either restores all the registers and interrupt 
enable/disable state and branches to the old PC address, or it 
chains to the user program.  These two actions effect a continuation 
onward from the halt breakpoint, or alternatively bring in a fresh 
copy of the user program object code and thus restart the program. 

By relying heavily on separate programs both to print the 
results accumulated and to interrogate the user as to how to 
proceed, the ISR is kept quite small (81 words).  This is 
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significant since it must rest in high core co-resident with the 
user program. 

GETSTART 

GETSTART computes the location of the ISR based on the size of 
the user program.  At a minimum, it must reside beyond location 
13000 (octal). If the user cancelled the program under test, the 
command line interpreter is run automatically to handle user 
requests from the console, obliterating any code below 13000 long 
before the user could have it run RESTORE to relieve the ISR of its 
responsibilities. Similarly it must be beyond the end of the user 
program.  GETSTART reads the copy of the user program object code 
stored on disk to find the control information defining the highest 
core address used, and returns to MOVEISR with either one greater 
than that address or 13000, whichever is higher. 

QZ 

When the ISR determines that it has received an HPMD interrupt, 
it runs QZ to ask the user what to do next. Although it is a 
separate program, it is used as a subroutine for the ISR, which 
allows much additional code without enlarging the ISR. 

As a separate program, QZ first OPENs the terminal input and 
terminal output, and then prints "Enter 'C to continue, 'R' to 
restart, or 'Q' to quit". A single input character is read in, and 
compared with a set of six possibilities, "C", "R", "Q", "?", "!", 
and line feed.  If no match is found, the character is ignored and 
QZ branches back to read in another. This imitates the user 
environment created by NEWCHAR in the initialization software by 
making unreasonable keys appear "dead".  Similarly, "?" and "!" are 
allowed, but both simply cause the repetition of the initial cue 
about "C", "R", and "Q".  In keeping with the protocol expected by 
the ISR, "Q" causes a normal return from QZ, whereas "C" and "R" 
cause abnormal returns with differing error codes. Finally, the 
line feed is treated as a "Q", aborting the user program execution. 

RESTORE 

RESTORE is a simple program which stores one of several values 
in core location 1. A system call which returns the location of the 
operating system is used to obtain a number unique for each revision 
of the NOVA RDOS system.  By checking it against its possible 
values, RESTORE can determine which revision is being used, and, 
therefore, where the normal system interrupt routine is. By storing 
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the system interrupt routine's normal entrance point into location 
1, all interrupts will be handled by it bypassing any ISR. 

If the returned location matches no known value, a message is 
printed saying "SYSTEM CLOBBERED...DO PROGRAM LOAD"; otherwise, 
""FINISHED*" is printed to indicate both the end of the user program 
if RERUN calls RESTORE, or to reassure the user that the interrupt 
vector was now normal if RESTORE is run manually.  It should be 
noted that RESTORE puts the proper value in location 1 whether or 
not it is there already.  This means that a user can run RESTORE 
whenever desired for reassurance without danger of doing anything 
disruptive. 

RESULTS SOFTWARE 

DISPLAY 

DISPLAY is the results software main-line, which does all the 
read operations from the hardware and calls the appropriate 
conversion, formatting, and outputting routines (see Figure 6). 
Immediately upon entrance, an NIOC 5 instruction is executed which 
disables any possible HPMD interrupt, as well as clearing the 
address register.  DIA instructions can then obtain the information 
shown in Table V. 

The hardware/software interface for reading information into 
DISPLAY is similar in many ways to that for loading the device. The 
same internal address register is used to select which information 
is available. Table V lists the information obtained for each value 
in the address register.  0-10 can be read repeatedly, since the 
status, timer, and counters are not changed by being read; the 
buffers lose the information after it is shifted out of them. This 
is not a disadvantage, however, since they can be printed as they 
are read. Indeed, the zeroes simultaneously shifted into the 
buffers which replace the data are a convenient and automatic way 
of clearing the buffers before they are used again. 
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Figure  6 RESULTS SOFTWARE   ARCHITECTURE 
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Table V 

Reading Addresses 

Address Information 
Register Obtained 

0 Cable Interlock and Proper ION Flag 
1 Timer Bits 0-9 
2 Timer Bits 10-19 
3 Timer Bits 20-29 
4 Counter #1, Bits 0-9 
5 Counter #1, Bits 10-19 
6 Counter #2, Bits 0-9 
7 Counter #2, Bits 10-19 
8 Counter #3, Bits 0-9 
9 Counter #3, Bits 10-19 
10 (spare) 
11 (spare) 
12 Store Buffer Bits 0-5 + 4 extra bits 
13 Store Buffer Bits 6-15 
14 Grab Buffer Bits 0-5 + 4 extra bits 
15 Grab Buffer Bits 6-15 

The status is first read in, but with this current 
software version, it is ignored.  INTRO is then called, which 
handles all of the heading, time, date, and $HPMD.MS information. 
INTRO returns several flags which indicate which of the six 
measurements were indeed specified * 

The time measurement is then read in and converted to decimal, 
10 bits at a time. The counts and time as obtained from the 
hardware are simply large binary numbers, 20 and 30 bits 
respectively. The timer number is a count of 200 nsec. intervals. 
A DIA gets the highest 10 bits of the 30 bit timer value, and ADD10 
converts it into an array of ten decimal digits. A "2" is passed to 
ADD10, which indicates that the decimal digits must represent twice 
the value of the 10 bit word. This takes into account the fact that 
each timer count represents 200 nsec., and so the decimal digits 
will be the time in tenths of microseconds. The process is repeated 
twice more, with the new 10 bit values read in and added to the 
decimal digits as the decimal digits are shifted over by 1024.  The 
result is a digit array which represents, in decimal, (value #1 x 
2097152) + (value #2 x 2048) + (value #3x2). The 30 bit value has 
thus been doubled and converted to decimal. 
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USE is then called to check the flags returned by INTRO.  If 
the timer was specified, USE returns to the next statement after the 
call; otherwise, it skips to the address given as a parameter, in 
this case the counter processing code.  Assuming the timer value is 
relevent, PRINT is called to print the string "TIME=" on the line 
printer. Next, NUMPR prints the decimal digit array in the format 
specified. A zero is passed to NUMPR, informing it that all 10 
digits are to be printed. When all the digits are to be printed, 
NUMPR uses the format XXX.XXXXXXX, which fits the time measurement. 
PRINT is called again after the digits to add "SECONDS" and a 
carriage return. 

The count values are handled in a similar way; DIA gets the 10 
bit values and ADD10 assembles them into a decimal number. A "1" is 
passed to ADD10 the first time, since the 20-bit binary value is a 
straightforward count and does not need to be doubled as did the 
time. Since there are 20 bits instead of 30, DIA and the ADD10 
routine are used only twice for each count. Again, USE is called to 
skip the printing of any meaningless count. Otherwise, PRINT 
provides a "C0UNT=" and NUMPR prints the decimal digits. Passed a 
"3", NUMPR skips the first three digits and decimal point, producing 
a XXXXXXX format.  This code for processing the counts is looped 
through three times, once for each counter. 

In the case of both the timer and the counters, the DIA 
instructions as well as the calls to ADD10 are executed before USE 
checks if the measurement was specified. This wastes CPU time, but 
because ADD10 is fast and DISPLAY has time to burn, it is not a 
significant drawback. By doing it in this manner, the address 
register in the HPMD hardware is advanced over meaningless times or 
counter values just as if they were relevant; no extra code is 
needed to advance the register to replace the normal processing 
steps. 

A DIB instruction forces 10 into the address register, in 
preparation for reading in the Store buffer's data.  USE is then 
called, since the buffer need not be read in if it is irrelevant. 
Next, PRINT provides a heading "STORE BUFFER:" for the data, and 
BLOCK is called to get and print it. BLOCK will read in all 256 
values, and print them in an 8 column by 32 row array of octal 
numbers.  " " will be substituted for the locations in the 
beginning of the buffer which precede the actual data, if there are 
any.  This process is repeated for the GRAB buffer with no 
differences except the heading "GRAB BUFFER:". The DISPLAY main- 
line is now complete, and returns to the calling routine (RERUN, the 
interrupt servicing routine, or the operating system's command line 
interpreter). 
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INTRO 

INTRO handles the opening of files and the listing of all the 
heading information.  In a sense, it should be part of the main-line 
code, but it was separated into its own routine to make the main- 
line itself less cluttered and more readable.  Its chores are few 
and straightforward, but in assembly language they require over a 
page. 

INTRO first opens the line printer and calls PRINT to create 
the heading box at the start of the listing (see Figure 1). The 
line printer will remain open until DISPLAY completes.  TODDAY is 
then called, which adds the time of day and the date to the listing. 
$HPMD.MS is opened, positioned to the flags which indicate which 
measurements were specified and these flags are read into core. 
$HPMD.MS is then positioned to the annotation and measurements, 
which are stored in the file completely formatted and ready to 
print. Alternating line-reads from $HPMD.MS and line-writes to the 
line printer dump them on to the listing until an EOF halts the 
process. The flags are then loaded into a register for the main- 
line to use, and INTRO returns. 

NUMPR 

NUMPR prints an array of digits on the line printer in one of 
several formats.  From one to ten digits can be specified; if ten, a 
decimal point is inserted between the third and fourth most 
significant ones.  Leading zeros are omitted, thereby left 
justifying the number. The array is processed digit by digit, the 
first non-zero one turning off the loading zero suppression flag and 
enabling their printing using CPRINT, the character printing 
routine.  The digits are converted to ASCII by adding the character 
"0" to the digit* Exceptions to the zero suppression rule are that 
the 10 digit format's decimal point also turns off the suppression 
flag, and it is always turned off before the last digit. This 
permits a "0" count to be printed rather than a blank one. When all 
the digits have been processed, NUMPR returns. 

ADD10 

ADD10 adds a 10 bit binary value to a 10 digit decimal array, 
putting the result in the decimal array.  A parameter passed to 
ADD10 defines the method in which this is to be done.  If the 
parameter is 1, then the array is zeroed before the addition, and 
therefore, the binary number is converted to decimal. If the 
parameter is 2, the array is zeroed as before, but the binary number 
is doubled before the addition; the result is an array decimal 
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digits equal to twice the binary value.  If the parameter in a 
subsequent call is 0, then the current decimal array is multiplied 
by 1024 before having the binary value added to it. This allows 
consecutive calls to accumulate the decimal equivalent of a 20 or 30 
bit binary value by successive decimal shifts and additions. 

The key to the algorithm which performs this binary-to-decimal 
conversion is ADDA, a routine which adds two arrays of decimal 
digits. By providing it with a decimal array containing 1, it can 
add that array to itself repeatedly, thereby generating the powers 
of two in the form of decimal digits. This power array can be added 
to the other decimal digit array selectively, depending on whether 
the binary bit in the 10-bit binary word which corresponds to that 
particular power of two is TRUE or not.  For example, if the binary 
number was 49, the power array would be added in only when it 
equalled 1, 16, and 32; the lowest decimal digit would have a 1, 6, 
and 2 added to it, with the next digit getting 0, 1, and 3. In this 
way, binary to decimal conversion can be accomplished easily.  The 
effect of the 0, 1, or 2 parameter is implemented easily for 1 and 2 
by zeroing the decimal digit array and the power array first, and 
using an initial power array value equal to the 1 or 2 respectively. 
If it is zero, the power array and the decimal digit array continue 
where they left off at the previous call, but with a new 10-bit 
value. 

ADDA 

To add two arrays of 10 decimal digits, ADDA adds the elements 
one by one while keeping track of any carry, just as it is done 
manually.  Starting with the lowest order digits, each pair of 
digits are added and, if the result is less than ten, it is stored 
back into the first array.  If it is greater than 10, it is reduced 
to a single digit by subtracting 10 from it and turning on carry 
before storing it. That carry is then added with the next higher 
pair of digits, and the process repeats. Carry out of the highest 
digits is impossible in this results software application; ADDA is 
coded to ignore it. 

TODDAY 

The NOVA RD0S operating system, like most, maintains a time of 
day clock and a calendar. With the appropriate system calls the 
hour, minute, and second are returned in separate registers, or 
alternatively the year, month, and day.  These are all small binary 
numbers. ADD10 can be used to convert them to decimal, and adding 
"0" converts these to ASCII. CPRINT can then print each digit, plus 
the appropriate colons and slashes as delimiters. 
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USE 

USE is a convenience routine, which is separated from the main- 
line only to make that code more readable.  USE checks the flags 
returned by INTRO which tell which measurements are relevant and 
which are not. If the next measurement is irrelevant, USE returns 
indirectly through the address given as a calling parameter; if 
relevant, USE returns to the next instruction after the call. 

BLOCK 

To print the buffer contents in an 8 x 32 array format, BLOCK 
calls SET832 to initialize the formatting, DOTS to handle empty 
positions, and 0CTDS-0CT2 to handle real values.  As such, the code 
of BLOCK contains only branches and subroutine calls.  SET832 is 
called first to initialize the column and row counters.  DOTS is 
then called, which repeatedly prints " " until a real data 
value is seen.  If it is never seen, it returns to BLOCK which 
itself returns; otherwise, DOTS returns to a call to 0CT2, one of 
the two entry points in 0CTDS-0CT2. 0CT2 will then print the buffer 
value as an octal number, and handle the "+", "D", and "S" bits. 
0CT2 then returns and BLOCK returns if there are no further values 
to be read; otherwise, OCTDS is called repeatedly to get more data 
values and handle them.  Eventually, OCTDS will run out of values 
and it will return to a BLOCK return. From this description, it is 
clear that BLOCK does nothing but call other routines which do the 
work; they even decide when and if BLOCK should return or call the 
next routine. 

DOTS 

To differentiate real buffer data values from empty locations, 
DOTS prints " " instead of "000000". Rather than returning and 
then being called again with the next value, DOTS performs read 
operations with the HPMD hardware itself, and does not return until 
real data values are seen or 256 empty locations have come and gone. 

Two DIA instructions get the 20 bit buffer value shown in 
Figure 7. The "INFO" bit is ON only if the other 19 bits define 
real data; DOTS tests this, and returns to the 0CT2 call if it is 
ON. Otherwise, PRINT is called to do the " " and DEC832 is 
used to decrement the column and row counter. Depending on DEC832, 
DOTS loops back for more DIA's or returns to BLOCK'S return if the 
entire buffer was empty. 

71 



VALID OTHER DESC. DESC. 
BUFFER BIT BIT 0 1 2 3 4 3 

INFO ALSO A E    . 

FIRST  VALUE 

6 7 8 9 10 II 12 13 14 15 

.—| 
-c 
o SECOND   VALUE 
<a 
«r • 
< 

L^l 
Figure 7   10-BIT BUFFER VALUES 

0CTDS-0CT2 

OCTDS and 0CT2 are two entry points into the same routine. 
OCTDS performs two DIA's before falling through into the 0CT2 entry, 
which assumes the values read are already in registers.  These 
values are the 20 bits of a buffer entry as defined in Figure 7. 
0CT2 then converts the 16 bit value into a 6 digit octal number and 
prints it, followed by "+' and "S" depending on if each 
symbol's corresponding bit is TRUE.  DEC832 is used as it is in 
DOTS, to loop back for more values until the buffer is emptied. 

The binary to octal conversion is done by masking only the bit 
or bits of interest, then converting to ASCII and using CPRINT to 
print it, followed by rotating the next octal digit under the mask 
and repeating. Additional masks test the bits which control the 
printing of "+", "D", or "S".  If the bits are FALSE, blanks are 
printed to maintain the column format. DEC832 will return to one of 
two locations depending on whether more values remain in the buffer. 
These in turn cause 0CTDS-0CT2 to return to one of two locations in 
BLOCK. 
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SET832 

To keep track of the columns and rows while printing the 256 
buffer values, SET832 and DEC832 are used.  SET832 is the simpler of 
the two:  it initializes the column counter to 8 and the row counter 
to 32.  BLOCK calls it once per buffer printing. 

DEC832 

DEC832 decrements the column counter and returns if it is not 
zero. If it is zero, the end of the row has been reached, and three 
actions are taken: a carriage return and line feed are printed, the 
column counter is reset to 8, and the row counter is decremented. 
If the resulting row counter is zero, then the buffer is empty and 
DEC832 returns to a different location than it does if more remains. 
In this way, DEC832 handles the chores which must be done at the end 
of each line of buffer printout. 

CPRINT 

CPRINT uses a system call to print a single character on the 
line printer.  It is designed for its call to be easy to insert in 
the calling routine by assuming the ASCII character to be printed is 
already in the right byte of a register. CPRINT swaps it into the 
left byte, and performs a Write-Sequential system call, specifying 
the number of bytes as one.  The separation of this trivial function 
into a single distinct routine saved a great deal of time when the 
results output was altered from direct to system I/O to allow line 
printer spooling and printout continuity; only CPRINT and PRINT 
needed to be changed. 

PRINT 

Called by half of the routines, PRINT is an easy to use output 
routine for printing strings of ASCII characters.  It is passed the 
address of such a string; first it scans the string until it sees a 
zero byte.  This scanning allows it to count the bytes to be 
printed.  When it has both the address and the number of bytes, a 
Write-Sequential system call is used to perform the actual 
outputting. 

ERRORS 

If any of several unexpected situations arise, the results 
software will halt.  Three conditions are anticipated.  $HPMD.MS may 
have been altered before DISPLAY is run, it may be impossible to 
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OPEN the line printer, and the disk may become full. $HPMD.MS is 
dealt with only in INTRO where attempts to position its file pointer 
to the measurements' flags or to the annotation may be illegal if a 
small file is substituted. This condition is indicated by the CPU 
halting with the address lights containing 1471, 1476?, or 1502. 
INTRO also attempts to OPEN the line printer file $LPT. If this is 
not possible for whatever reason, the CPU halts and the address 
lights will contain 1454.  Pressing the "Examine AC2" switch will 
provide the error code in the data lights:  12 means the system can 
find no $LPT file, 21 implies the system thinks someone else is 
still using it.  Finally, PRINT, CPRINT, or INTRO may halt if the 
disk is full and they attempt to add more to the line printer 
spooling buffer. In this case, the address lights will hold 1043, 
1101, or 1511 and AC2 will contain 27. 

It should be noted that deletion of $HPMD.MS does not cause an 
error; instead, INTRO returns immediately and so the printout 
continues without any annotation or measurements. All the possible 
measurements will be displayed, whether they are valid or not, since 
the measurement flags in $HPMD.MS are not available. 

Upon an error, some degree of recovery is usually possible. An 
altered $HPMD.MS may result in garbage instead of annotation and 
measurements, but the data gathered will not be altered. Depending 
on the value at the flags' location, some of the data may be skipped 
even if valid. The "Continue" switch may be pressed to pick up 
execution after the halt. Almost all errors can be corrected by 
reloading the system and then running DISPLAY from the terminal.  In 
some cases when one is stopped at an interrupt and wishes to 
continue, however, it will be necessary to choose between no 
printout of value or no continuation. 
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APPENDIX II 

HARDWARE 

The functions of each hardware section are defined in this 
appendix to convey the scope of the hardware and to show the extent 
that the design is dependent on the NOVA 800 and the extent it is 
independent. 

EVENT DETECTION 

The basis of the HPMD measurements is the processing of the 
program parameters listed in Table I,  It may be noted that none of 
these parameters is updated each memory cycle; even Instruction and 
Instruction Address are available only once per machine instruction. 
Others, such as the I/O parameters, may be seen only rarely.  It may 
also be noted that they consist of only three "types" of 
information: addresses, data, and device numbers.  Every memory 
cycle will have both an address and a word of data, and if 
programmed I/O is performed, a device number will also be available. 
The HPMD detection logic is based on these "types" of information 
rather than each parameter separately, and therefore, much of the 
logic deals only with three sources of information, not sixteen. By 
sampling under the appropriate conditions, the "type" can later be 
categorized into the parameter of interest. For example, by 
sampling only on non-data-channel FETCH cycles, the addresses can be 
limited to only instruction addresses. 

To detect parameters, it is therefore necessary for the HPMD 
hardware to obtain the current address, data, and device number, as 
well as a description of what kind of memory cycle it is.  These 
form the basis of the conceptual, machine-independent information 
which flows from the interface over the cable to the rest of the 
HPMD hardware.  Five generalized descriptor bits characterize the 
current memory cycle to allow discerning the parameters, and the 
interface synthesizes these bits from the specific machine 
operations. They are defined in Table VI. 
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Table VI 

Descriptor Bits 

Descriptor Bit      Definition 

A 0 = CPU Cycle 
1 = Data Channel Cycle 

B 0 = Instruction-fetch Cycle 
1 = Non-fetch Cycle 

C 0 = Non-1/0 Cycle 
1 = I/O Execute Cycle 

D 0 = Non-Interrupt Cycle 
1 = Interrupt Cycle 

E 0 = Load or Input Cycle 
1 = Store or Output Cycle 

Addresses 

To obtain the address involved in each memory operation, the 
NOVA backplane signals must be tapped. Addresses may be specified 
by the CPU, in which case they appear on the MBO (Memory Buffer 
Output) bus, or occasionally they may be specified by a Data Channel 
interface and can be found on the DATA bus. A backplane signal, 
READIO, discerns between the two cases. 

The MBO and DATA buses are connected through low-power 
inverters, to a 16-bit wide multiplexer.  Seventy low-power 
inverters are used to tap all the NOVA backplane signals needed, 
because they require at most only a quarter the normal signal power 
and thus cannot significantly load down the NOVA. The multiplexer 
selects one of the two buses, according to the state of READIO, and 
sends it to a 16-bit latch. The selected bus will only have the 
address available for a few hundred nanoseconds, and so it must be 
grabbed at that moment and held in the latch. MALOAD is a backplane 
signal which pulses at the appropriate moment, and the latch is 
updated by MALOAD for each new address. This multiplexing and 
latching is analogous to the process the memory boards use to obtain 
their load or store address. 
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The latched address is available 300-450 nsec. before the data 
appears., and therefore, the old data overlaps the new address during 
that period. This is unacceptable if doubling is to be allowed in 
the detection logic, and so the address is latched again when the 
data appears so as to be present during the identical interval. 

Data 

The data value may come from the CPU, from memory, or from any 
I/O device.  In the first two cases, it will be on the NOVA MEM bus, 
and for I/O it will be on the DATA bus.  Descriptor bit "C", which 
indicates whether there is any programmed I/O during the current 
memory cycle, is used to select the MEM or the DATA bus with a 
multiplexer.  The resulting 16-bit data value is latched as soon as 
it is kr.own to be good by a signal called GRAB DATA,  STROBE, 
MBLOAD, or any programmed I/O signal each imply data is or soon will 
be available on the appropriate bus, and so they are used to 
generate GRAB DATA. A 100 nsec. delay is used for STROBE and 
MBLOAD, while programmed I/O signals are delayed 400 nsec.  This 
GRAB DATA triggers both the data latch and the second address latch. 

Device Numbers 

If the device number is the result of programmed 1/0, then the 
DEV0-DEV5 backplane signals will carry it.  In the case of an INTA 
(INTerrupt Acknowledge) instruction, the interrupting device puts 
its number on the DATA bus. As with the address and data values, it 
is necessary to use a multiplexer to select between two sources of 
information.  Since device numbers are 0-77 octal, however, this 
path is only 6 bits wide rather than 16.  Descriptor bit "D", ON 
only during the execute portion of INTA instructions, is used to 
control the multiplexer. A GRAB DEVICE pulse is synthesized by 
delaying INTA's and programmed I/O signals 400 nsec, and then is 
used to latch the device number selected by the multiplexer. 

Descriptor Bits 

The five descriptor bits are synthesized from NOVA memory and 
I/O control signals obtained from the backplane. They classify the 
CPU cycle as defined in Table VI. MALOAD, a pulse which tells the 
memory boards that an address is available, comes before each memory 
cycle.  The HPMD generates another signal, CYCLE, by delaying MALOAD 
for 220 nsec., thereby getting a pulse reasonably early in each 
memory cycle.  CYCLE is then used in synthesizing several of the 
descriptor bits by sampling conditions or clearing bits which may 
later be set.  By latching the state of READI0 at MALOAD time, data 
channel activity can be sensed. This value overlaps the previous 
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cycle, and so it is again sampled by CYCLE to produce descriptor bit 
"A", now synchronized with the rest of the bus and descriptor bit 
information. CYCLE is also used to latch the fetch state signal to 
obtain "B". CYCLE is used to clear a flip-flop which may later be 
set by any programmed I/O activity; this flip-flop generates 
descriptor bit "C". If there is such activity, it is set; if not, 
it remains cleared. In a similar way, bit "D" is driven by a flip- 
flop cleared by cycle and set by an INTA instruction. Bit "E" is 
the most complex, since it is based on the direction of information 
flow during both memory access and I/O instructions.  A directly- 
settable, directly-clearable type D flip-flop is used to drive bit 
"E". At the beginning of each memory cycle, it is directly cleared 
by CYCLE; if at any point an output I/O instruction occurs, it is 
directly set. To differentiate between memory load and store 
operations, one need only detect a STROBE or MBLOAD pulse 
respectively; unfortunately, the MBLOAD pulse is also used for data 
input operations, and so setting bit "E" upon MBLOAD would be 
incorrect in some cases. By using the type D flip-flop to sample 
whether there is a current input operation upon each MBLOAD pulse, 
the "E" will be set upon MBLOAD pulses only in the absence of any 
input operation. 

Control Pulses 

In order to limit the detection operation to only the selected 
parameter, it is necessary to observe the proper type of information 
(address, data, or device number) at the proper moment. Signals 
called control pulses are synthesized to indicate the proper time 
and circumstances for each detection operation (see Figure 8). 

Each control pulse must arrive at a time when the information 
has settled and will be correct for at least a few hundred 
nanoseconds to come.  It also must arrive in the midst of only those 
memory cycles wherein the selected parameter is updated. In the 
simple case where instruction address (IA) is selected, the control 
pulse is only generated late in each CPU-initiated Fetch cycle. It 
must be late enough to assure the information and descriptor bits 
have settled down, but early enough so that there is time to perform 
the reduction functions. 

The correct timing for all control pulses is assured by gating 
them with a timing signal supplied by the interface within the NOVA. 
A CPU timing signal, PTG3, is present only during the final quarter 
of each cycle; its timing is ideal for gating the control pulses. 

The "proper circumstances" are more difficult to discern. This 
is accomplished by a two-step synthesis, in which the conditions 
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Figure 8 DETECTION LOGIC 

indicating the updating of each of the sixteen parameters are 
detected, and then each control pulse is selected from among those 
sixteen signals.  Table VII defines the conditions for each 
parameter in terms of the descriptor bit values, and these formulae 
are implemented in hardware by a maze of Boolean gating to produce 
the sixteen control pulses. Sixteen-input multiplexers select each 
control pulse from among these signals based on which parameter is 
to be detected.  This selection is then gated by the timing signal 
to assure that the control pulse arrives at the proper time. 
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Table VII 

Control Pulse Synthesis 

Conditions 
Paramet er Meaning A BCD E Formula 

INS Instruction 0 0 0 0 0 ~A~B 
OPR Operand 0 1 0 0 X ~AB~C 
OPL Operand if Load 0 1 0 0 0 ~AB~C~E 
OPS Operand if Store 0 1 0 0 1 ~AB~CE 
DI I/O Input Data 0 1 1 0 0 ~AC~D~E 
DO I/O Output Data 0 1 1 o 1 ~AC~DE 
IA Instruction Address 0 0 0 0 0 ~A~B 
OPA Operand Address 0 1 0 0 X ~AB~C 
OAL Operand Address if Load 0 1 0 X 0 ~AB~C~E 
OAS Operand Address if Store 0 1 0 X 1 ~AB~CE 
DC A Data Channel Access Address 1 XXX X A 
AST Address if Any Store X 1 0 0 1 B~CE 
INT Interrupting Device # 0 1 1 1 0 "AD 
DV# I/O Device # 0 1 1 0 X ~AC~D 
IN# Input Device # 0 1 1 0 0 ~AC~D~E 
OU# Output Device # 0 1 1 0 1 ~AC~DE 

KEY: X = 

0 = 
1 = 

don't care conditon 
0 implied by other bits 
1 implied by other bits 

Informa tion Multiplexer 

To select the type of information to be used in the detection 
comparisons, a massive multiplexer is used to provide the desired 
address, data, or device number as requested. It is divided into 
ten sections, eight of which handle the information for each 
detection group, and the remaining two serve the buffers. Each 
section takes the 16 address, 16 data, and 6 device number signals 
provided by the NOVA interface, as well as 16 signals from the front 
panel switches for test purposes, and selects 16 (or 6) output 
signals. Since there are ten such sections in the Information 
Multiplexer, this is clearly one of the largest parts of the 
hardware. 

To control each section, a two-bit value is used based on the 
parameter desired to select between the four sources. If the 
parameter is among the first six in Table I, then the type of 
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information needed is the current address; the next six require the 
current data, and the last four require the device number. To use 
the front panel switch register, the "Front Panel Load" switch is 
turned on, in which case the Information Multiplexer ignores the 
programmed parameter selection and provides the front panel switches 
value*  A small set of gates can synthesize the two-bit control 
value from the four-bit programmed parameter and the state of its 
"Front Panel Load" switch.  This set of gates is implemented nine 
times, since the Grab buffer's multiplexer is controlled directly. 

Associative Memory 

The heart of the detection logic is the associative memory, 
which performs the actual comparisons between the current 
information and the anticipated parameter values.  It consists of 32 
words of associative memory, each 16 bits wide, and is divided into 
8 sections, one for each detection group.  The information selected 
by the Information Multiplexer is fed into the corresponding 
associative memory group which continuously compares it with its 
four internal values.  These comparisons proceed whether the 
information represents a new value of the selected parameter or not. 
For example, if "IA = 2000, 2001, 2002, 2003" was the event 
definition, then IA is the selected parameter, and 2000, 2001, 2002, 
and 2003 are the internal associative memory values.  The 
associative memory, however, is fed all addresses, both of 
instructions and of operands, from the CPU and from the data 
channel.  If the address, from whatever source, is among 2000-2003, 
then the associative memory group produces a match as its output. 
This process takes only 40 nsec. within the LSI chips.  The timing 
for the entire detection process plus the buffer shift time is shown 
in Figure 9. 

Doubling 

The circuitry to implement optional detection doubling is quite 
simple.  Sixteen programmed bits control whether doubling is 
required for each of the pairs of associative memory words.  These 
bits are inverted and then OR-ed with the match outputs from words 
16-31, providing signals which are TRUE if either doubling is not 
required or the second half of the pair is TRUE.  These signals are 
then AND-ed with the 0-15 match outputs to effect the doubling if 
needed. The four matches within each group are AND-ed together to 
produce a single match signal, which for groups 1-4 are controlled 
by doubling logic, and for groups 5-8 are not. These match signals 
are then AND-ed with their corresponding control pulse, thereby 
producing eight event signals which are the electronic manifestation 
of the event concept developed as part of the software syntax. The 
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control pulse implies that the parameter is being updated, so if the 
associative memory, after any doubling gates, shows a match, then 
the event is detected. 

INFORMATION REDUCTION 

Eaoh of the eight events can control either its Table II unique 
function (timer, counter, or buffer) or it can initiate a NOVA 
interrupt to halt the user program.  Programmed "enabling" bits 
allow each event signal to reach the common interrupt line or its 
unique function input.  Although the syntax does not support it, a 
detection group may even be programmed to do both; upon an event, 
the unique function could be performed as well as the program 
halted. 

Counters 

The unique functions associated with groups 5, 6, and 7 are the 
incrementing of counters.  Initially zeroed, they increment by one 
upon each event detected by their detection group.  Each counter is 
made up of five 4-bit binary counter chips connected end-to-end to 
produce a 20-bit counter. A common reset line zeroes all the 
counters at once; this line is driven by an NIOS 5 instruction in 
the NOVA.  The 20-bit total permits a maximum count of 1,048,576 
before wraparound occurs and the counter begins again from zero. 
The chips themselves are capable of counting at 18 MHz, which far 
exceeds the 1.125 MHz maximum event-detection repetition rate. 

Timer 

The timer is a 30-bit counter driven by a gated 10 MHz crystal 
oscillator. A flip-flop is set and reset by the first two detection 
groups respectively, and that flip-flop gates the continuously- 
running 10 MHz square wave. A commercially-manufactured Motorola 
K1091A crystal oscillator, which fits into a 14-pin DIP package, 
supplies the time base with a .01$ practical stability. This 
frequency is divided by a 30-bit counter similar to the counters 
described in the previous section. The LSB of this counter changes 
state each 200 nsec., and the MSB changes each 107.3741824 sec, 
providing 200 nsec. resolution during a 214.7483648 second period 
before wraparound occurs. 

Store Buffer 

The store buffer obtains its parameter input as do the 
associative memory groups; it has its own Information Multiplexer 
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section and its own control pulse. A latch is used to hold the 
address, data, or device number selection upon the availability of a 
new parameter value as triggered by the control pulse. 

This same control pulse initiates a buffer shift cycle. The 
circuitry which determines whether a shift cycle occurs or not is 
complex and is based on several factors. Most important, a flip- 
flop is set and reset by the group #3 and group #4 events as 
detected; group #3 enables the store buffers, and group #4 disables 
it. That same flip-flop is also set and reset by DIB and DIC 
instructions to the HPMD which allow the software to set up its 
initial state. Other buffer options may also suppress shift cycles. 
To allow a buffer control pulse to get through to the buffer itself, 
three conditions must be met: the store buffer must be enabled, not 
permanently shut down, and not frozen.  The permanent shutdown flip- 
flop is controlled by both the disabling operation and the 
programmed "shutdown permanent" bit.  That bit is sampled upon 
disabling by group #4, and if it is ON, no further shifting is 
allowed. Control pulses which pass the enable-disable and permanent 
shutdown hurdles must still be gated by the shift counter circuitry. 
These control pulses are fed into a divide-by-256 counter, the 
output of which indicates that the buffer is full. This output is 
used to sample the programmable bit which dictates whether the 
buffer should freeze when it is full.  If the sampled bit is ON, 
then all subsequent control pulses are blocked from shifting the 
buffer. 

If the buffer is not disabled, not permanently shut down, nor 
frozen, then the buffer control pulse triggers a 300 nsec. 
monostable multivibrator.  It is the 300 nsec. pulse which is used 
to drive the shift registers. 

The buffers are implemented out of MOS dual 256-position shift 
register chips, arranged as a 20 bit wide, 256 position long buffer. 
The input is the latched buffer input information (16 bits) plus 
four other bits (see Figure 7). These other bits define whether the 
position contains valid information, whether the other buffer is 
shifting on the same memory cycle, and also include the data channel 
and data direction descriptor bits ("A" and "E"). The valid 
information bit is needed since the act of reading data out of the 
buffer feeds meaningless data in the other end. 

Grab Buffer 

The grab buffer is in most ways identical to the store buffer, 
differing only in its source of information and triggering 
mechanism.  Rather than being fed information in the same way as 
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each detection group, the grab buffer's Information Multiplexer 
selects between the current address, data, or device number, as well 
as the most recent instruction address.  This selection is based on 
two programmable bits, not bits decoded from a selected parameter. 
Furthermore, a control pulse is not generated based on any parameter 
updating; instead, detection group #8's events trigger grab buffer 
shifting directly.  Two other minor differences involve the grab 
buffer programmable options, which can inhibit the shift pulses when 
the store buffer is disabled or permanently shut down, but cannot 
permanently shut down the grab buffer. 

In all other aspects, the two buffers work in the same manner. 
Both buffers can freeze when full if desired, and use the 20-bit 
wide shift registers driven by 300 nsec. pulses.  The extra four 
bits are the same, except the "other buffer currently shifting" bit, 
of course, refers to the opposite buffer in each case. 

Halts 

The halting function can be initiated by any of 11 different 
causes, and so it is implemented by a single HALT signal to which 
any number of open-collector gates may be connected.  Each detection 
group has such a gate, which forces the HALT line TRUE upon 
detecting an event if the halt-enable programmed bit for that group 
is TRUE. Such gates are used in a similar manner driven by each 
"buffer full" signal in combination with each respective "halt upon 
buffer full" option bit. Finally, the eleventh such open-collector 
gate is pulsed by the front panel "Interrupt" button, for use in 
both hardware and software checkout. The HALT line is sent over the 
cable to the NOVA interface, where the interrupt generator stops the 
user program. 

Interrupt Generator 

The interrupt generator performs seven distinct functions 
involved in proper interrupt handling for the HPMD on the NOVA. 
First of all, an enable/disable flag is maintained based on several 
items.  It is necessary to insure that interrupts are never 
generated when they are not intended, and so three conditions must 
be met before interrupts are enabled:  the cables must be connected, 
the "DISABLE" switch on the interface board must not be ON, and the 
software must have deliberately tried to enable the interrupt 
generation. The cable connection is sensed by sending the HPMD 
device's +5 volt power supply voltage over the cable; if the device 
is not connected and turned on, all interrupts will be suppressed. 
The manual switch provides another level of protection, and is 
useful while working on the hardware. Finally, a flip-flop is set 
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and reset by NIOS 5 and NIOC 5 instructions, which initiate and stop 
the HPMD measurements. 

If enabled, the HALT signal coming over the cable is used to 
trigger NOVA interrupt request.  The HALT signal is first latched, 
so an interrupt will be caused even if the HALT signal goes away. 
Next it is gated by the interrupt enabled signal, and then it is 
sampled by the periodic NOVA "REQUEST ENABLE" signal, and if ON is 
used to drive the common NOVA interrupt request line. 

The procedure will only have an effect if the NOVA is enabled 
to be interrupted.  To assure prompt halting despite the NOVA's 
interrupts being disabled, at this time the NOVA CPU interrupt 
enable/disable flip-flop is forced into the enable state. This is 
done by driving the "EXT ION EN" line, an obscure CPU signal which 
is rarely used.  This line is held TRUE until an interrupt starts. 

The fourth interrupt generator function is to handle the NOVA 
"INTP" lines, which are an interrupt interface daisy chain. By 
passing all pulses on these lines when not causing an interrupt, but 
blocking all pulses when it is, the interrupt generator lets the 
other device interfaces know to whom interrupt belongs. 

To let the CPU know which interface caused the interrupt, an 
INTA instruction can be issued.  Upon this instruction, the 
interrupt generator forces a "5" on the data bus where it can be 
read by the CPU.  That "5" is the HPMD device code on the NOVA. 

When the CPU interrupt enable flag is forced ON, the previous 
state is lost. In order to allow the software to be able to restore 
the original machine state for continuation after an interrupt, the 
previous CPU interrupt enable state must be saved.  Rather than 
attempting to capture it at essentially the same moment as it begins 
to be changed, the interrupt generator keeps track of the flag state 
in parallel with the CPU. NIOS 77 and NIOC 77 instructions, which 
enable and disable the CPU interrupt capability, are used to set and 
reset a flip-flop which will be equivalent to the CPU flag at all 
times except upon an HPMD interrupt, when it will remain in its 
previous state while the CPU flag is forced ON. 

This equivalent flag, together with the cable continuity check 
signal, can later be read out by the HPMD software. Bits 9 and 10 
of the data word obtained by the first DIA instruction to the HPMD 
hardware will contain this information. 
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PERIPHERAL INTERFACE 

Loader 

The loader circuitry is responsible for the loading of all the 
memory elements within the hardware under the control of the 
software.  By using an internal indexing scheme, the 
hardware/software protocol is reduced to a clearing pulse and a 
simple sequence of data transfers. A six-bit up-down counter, 
called the address register (AR), is used to direct incoming 
information to the proper storage element (see Table VIII). 
Initially zeroed by an NIOC 5 instruction, each subsequent DOA 0,5 
instruction transfers up to 16 bits of information and then 
immediately increments the AR.  In this way, each word goes to a 
different destination. 

Table VIII 

Loading Addresses 

Address Information 
Register Stored 

0-31 Associative Memory Values 
(4 Values x 8 Groups) 

32-39 Parameters for Each Group (as in Table I) 

40-4 3 Doubling Bits, Halt and Unique Function 
Enable Bits, Groups 1-4 

44-47 Halt and Unique Function Enable Bits, 
Groups 5-8 

48-51 Shift Control Option Bits 

52 Grab Buffer Input Selection 

53-55 (unused) 

56 Store Buffer Input Parameter Selection 
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The data word of any I/O transfer is brought to the HPMD on the 
data lines for detection purposes.  If the I/O specifies a device 
number of 5 (the HPMD), then the type of I/O requested is encoded 
into a 3-bit field and sent over the cable.  After decoding, a DOA 
instruction is used to store the data word in the HPMD. In this 
way, the same data lines which are used for carrying information for 
detection are also used for loading the HPMD hardware. 

The AR is implemented using two 4-bit, up-down counter chips. 
It will be cleared by a NIOC 5 instruction and incremented by a DOA 
or DIA instruction (since it is also used for reading measurements 
back into the software). The front panel also has the capability of 
zeroing, incrementing, decrementing, or loading it with a specific 
6-bit value* 

The decoding of the AR is accomplished by a variety of 
arrangements depending on the nature of the corresponding storage 
element.  The highest 3 bits are decoded into 8 lines by using part 
of a BCD-to-decimal decoder chip to detect AR addresses 0-7, 8-15, 
16-23, etc.  The first four of these lines enable four other 
decoders each operating on the low order 3 bits, producing 32 lines 
corresponding to AR addresses 0-31. These addresses belong to the 
32 associative memory words, and each one is selected for loading 
when the AR contains its address. By zeroing the parameters to be 
detected, the associative memory words are fed data information, 
since parameter zero is "Instruction". The data information is 
indeed instructions during CPU Fetch cycles, but during I/O it is 
the I/O data word. Thus by zeroing all detection parameters, each 
word of associative memory will be fed all I/O data, which can then 
be stored into the memory when enabled by a DOA 0,5 instruction and 
selected by the proper AR value. 

The remaining loader storage functions are far less 
complicated.  The "32-39" high-order AR decoding line enables the 
parameter storage. Four 8-bit, addressable latches are all enabled 
by this line, and each stores one bit of each of eight parameters. 
The low-order 3 bits of the AR are used to steer the parameter into 
the proper slot in these addressable latches. In this way, the 
lowest 4 bits of each data word transfered during the 32nd through 
the 40th DOA 0,5 instruction will be stored as detection parameter 
values. 

In a similar manner, addressable latches are used to store the 
eight halt enable bits, the eight reduction function enable bits, 
and the 2-bit value containing the grab buffer multiplexer selection 
as well as all buffer control option bits. 
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Four 4-bit latches are used to save the sixteen doubling bits, 
one bit for each doubling pair. Another BCD-to-decimal decoder is 
used to determine which latch is selected by the current AR 
contents. A 4-bit latch enabled by the 56-63 decoding line latches 
the store buffer parameter. These 4-bit and addressable 8-bit 
latches, together with the associative memory, constitute all of the 
HPMD storage. 

Reading 

The method used for reading the results back to the software is 
in many ways similar to that used by the loader.  The AR is again 
the key to steering the information to be conveyed.  Basically, 
successive DIA 0,5 instructions obtain the true interrupt flag, the 
times value, the counters' values, and the contents of both buffers. 
Several factors slightly complicate this method. 

First of all, the path from the HPMD hardware to the NOVA 
interface is only 10 bits wide.  This limitation was chosen since 
the counters and buffers are 20 bits wide and the timer is 30 bits 
wide, requiring a fractional-width path lest the cable requirements 
be unreasonable. This forces AR addresses 1-3 to be needed for the 
timer, 4-5, 6-7, and 8-9 for the counters, 12-13 for the store 
buffer, and finally 14-15 for the grab buffer. Ten and eleven 
remain available for future enhancements. 

To allow an entire buffer to be read by successive DIA 
instructions, the actual AR address is altered by substituting 00110 
for the highest 5 bits in the case of the store buffer and 00111 for 
the grab buffer; the lowest AR bit, which toggles with each DIA, was 
used to oreate an alternating pair of substitute addresses, 12-13 
and 14-15. The 00110 substitution is enacted by a DIB 0,5 
instruction, which transfers no meaningful data back to the NOVA, 
but does tell the read circuitry to begin reading the store buffer 
values.  In a similar manner, a DIC 0,5 substitutes the grab 
buffer's 00111. 

The AR value or its substitute will, therefore, be a number 
between 0-15, and a large multiplexer is used to select the proper 
information based on this number.  This multiplexer is 10 bits wide, 
corresponding to the reverse data path used for reading.  Inputs 0, 
1, and 11 are grounded, since the interrupt generator, at the other 
end of the cable, will add the true interrupt flag state into 0, and 
10 and 11 are unused. 

This read circuitry is first used to obtain the timer and 
counters by an NI0C and successive DIA's.  Then, a DIB and 
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successive DIA's read in the store buffer, and a DIC with still more 
DIA's get the grab buffer.  Each measurement is broken into two or 
three 10 bit fields, and are obtained in MSB before LSB order. 

CABLE 

The cable is responsible for carrying many signals at very high 
data rates.  Forty-seven signals are sent from the NOVA interface to 
the HPMD, and 12 proceed in the opposite direction. Ground loops, 
stray coupling, inter-signal coupling, and line termination 
distortions all had to be minimized if the information was to arrive 
at the other end quickly and accurately. 

Ideally, a shielded twisted pair would have been available 
allowing each signal to be sent differentially, but the large number 
of signals and the limited space on the NOVA interface board ruled 
out so lavish a scheme.  Two 50-conductor flat cables were chosen, 
allowing wire-wrap connectors to be bolted to the board and still 
remain under the .375" height limit. With 59 signals and 100 
conductors, it was clear that many of them could not be sent as 
differential pairs.  The timing signal, descriptor bits, I/O 
control, and HALT line were judged to be the most critical and so 
these were provided side-by-side conductors isolated from other 
pairs by grounded conductors.  The timing signal, considered the 
most critical of all, was provided an additional grounded conductor 
between its differential pair. The remaining signals, the address, 
data, and device number buses as well as the reverse path for 
reading, are sent as single conductors side-by-side with each other. 
These signals are not as critical since they have more time to 
settle and all members of each bus change at once. 

These bus signals have reference voltage lines interspersed 
among their conductors.  There are four reference voltage lines for 
the address, data, and device number buses, and two for the reverse 
bus.  These reference voltages are used in a differential comparison 
with each bus signal; in this way, some of the advantages of 
differential pairs, such as suppression of ground loops and stray 
coupling, are retained without requiring as many additional 
conductors. 

The signals are all driven by open-collector hex inverter (or 
non-inverter) buffer-driver chips, which can sink 40 ma. and still 
develop less than +0.7 volts across their output.  Using these chips 
for drivers, six lines could be driven by one package, saving much 
board real-estate at both ends of the cable. 
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The receivers used for all the signals were Fairchild 9615 dual 
differential line receivers.  These work as medium-speed 
comparators, fast enough to handle the NOVA data rates, yet sluggish 
enough to ignore spikes and other very fast noise.  Pull-up 
resistors were used on all signals, approximately matching the 
characteristic impedance of the flat cable (130 ohms) to minimize 
reflections.  This resistance requires the drivers to sink 33 ma., 
which is an advantage in that such a low impedance and high-power 
level design reduces the probability that a brief and medium-energy 
pulse picked up from other equipment could alter the state of any 
signal.  Because the drivers are TTL circuits, the cable voltages 
conform roughly to TTL requirements, with +5 and +0.7 as the actual 
TRUE and FALSE levels.  The bus reference voltages were set to be 
+2.85 volts to split the difference. 

FRONT PANEL 

The front panel of the HPMD "box" is designed to aid in the 
hardware development.  It allows loading all the HPMD storage, 
exercising the associative memory, address register, and interrupt 
generator, and also display of major HPMD signals.  The address 
register is used as it would be by the software, except 16 data 
switches provide the information to be stored upon pushing the 
"Write Increment" button.  Thirty-two L.E.D.s display the current 
output of each detection word.  To obtain these DOCUMENTsignals, the 
associative memory outputs are latched by their corresponding 
control pulse.  The result stays ON or OFF until another control 
pulse updates the display:  this allows checkout of the detection 
functions by single-stepping the NOVA. The descriptor bits, HALT 
line, timer, store buffer, address register, DOA, and DIA lines are 
also displayed. 

Push-button signals are debounced using set-reset flip-flops 
and then differentiated by R-C high-pass filters to produce 100 
nsec. pulses.  These pulses are then used to increment or decrement 
the AR, cause an interrupt, or reset the HPMD by emulating an NIOC 5 
instruction. 

The L.E.D.s are driven by the same type of hex buffer driver 
chips used to drive the cable.  Series resistors (110 ohms) limit 
the current to a safe 20-30 ma level which provides adequate 
brightness without degrading their output very rapidly. 
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MECHANICAL LAYOUT 

The HPMD hardware is divided between two parts:  the NOVA 
interface and the measurement device itself.  To the extent it was 
possible, the NOVA interface contains all the circuitry which is 
host-dependent. 

The NOVA interface was constructed using a 15-inch square board 
from Data General with wire-wrap pins, to which 128 16-pin IC 
sockets were soldered. This board plugs directly into the NOVA 
chassis, occupying a slot which has been specially wired for it. 
Normally a memory slot, it already has available at its backplane 
connector all of the memory and I/O bus signals. Five CPU signals, 
PTG3, F, ION, PI, and EX ION EN are connected to the HPMD slot by 
extra backplane wiring; it is these wires which make the HPMD slot 
unique. 

All communication with the measurement device is done over the 
cable, for which two 50-pin connectors have been bolted in place at 
one end of the board. The circuitry itself consists mainly of 14 
and 16-pin I.C. chips, with a few potentiometers, discrete 
components, and two L.E.D.'s used in the interrupt generator 
checkout.  Across the power supply leads at the backplane connector 
are a reverse diode and a zener diode to protect the NOVA from any 
glitches induced on these lines by the board, and vice-versa.  Two 
100 ufd. capacitors add protection and transient smoothing, together 
with sixteen 6.8 ufd. and ninety-five .05 ufd. capacitors 
distributed throughout the board to insure minimal power supply 
impedance.  The power itself is derived from the NOVA, and this 
averages about 1.75 amps, at 5 volts. 

The measurement device itself was arranged to be an efficient 
packaging arrangement yet provide excellent accessability, since it 
is a development system which required much probing and rewiring. 
Almost all of the circuitry was done on small cards, which could be 
plugged into a card cage for checkout and operation and be removed 
for rewiring and repair.  The card cage has 13 slots, only 10 of 
which are needed for the HPMD as currently designed. Cable 
connectors are bolted on top, so their wire-wrap connections are 
coplanar with the card cage's backplane connections.  Each slot 
accepts a 120-pin connector from its card, and the power supply is 
distributed throughout the backplane. An overvoltage protection 
circuit is soldered directly to the backplane which will crowbar the 
power supply down to 5.5 volts if a higher voltage is sensed.  This 
both limits transients and provides protection against incorrect 
power supply voltages, which was most comforting when the device was 
run using adjustable 0-30 volt supplies early in the checkout phase. 
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A reverse diode also limits transients and provides additional 
protection. Power supply line capacitors, 50 ufd. each, are 
soldered to the backplane at each of the ten card slots in use.  The 
card cage itself is mounted high in the cabinet to allow cool air to 
flow under the cards and be drawn upward by convection. 

The circuit cards contain 20 rows of 50 wire-wrap pins each and 
are large enough for 60 14-pin or 50 16-pin I.C.'s.  The 1000 pin 
matrix allows intermixing 14, 16, and 24 pin I.C.'s in a wide 
variety of arrangements.  Additional wire-wrap pins are soldered to 
the edge connector, which provides access to the card cage backplane 
for 120 signals.  Numerous .1 ufd. capacitors provide decoupling for 
the power lines which are distributed on both sides of each card. 

The cabinet allows as much access as possible to the card cage. 
Both the front and back panels are hinged and latched, allowing them 
to be opened as doors to remove or adjust cards and to perform 
backplane wiring work.  The front panel includes all the L.E.D.'s, 
switches and associated circuitry mounted directly on it so as to 
swing out of the way.  The back panel has both the +5 and the -12 
volt power supplies mounted on it, together with a fan for cooling. 
The top of the cabinet is perforated and is removable, allowing easy 
access to the cable connectors and card cage.  The back panel is 
nearly two inches shorter than the cabinet, providing a large gap at 
the bottom for the cables, power cord, and circulating air to get in 
and out of the cabinet.  This gap, together with the fan, perforated 
top and convection, provide exceptional cooling for both the hot 
power supplies and the circuit cards. 

93 


