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CHAPTER I

O0 INTRODUCTION

W'ith the recent refinement of optical devices and systems there

has evolved a need to examine in closer detail the mechanism and proper-

ties of optical scattering. The relationship between surface micro-

roughness and radiant energy scattering has an important bearing on the

cost and performance of optical systems. The surface roughness and

resulting light scattering properties are therefore important character-

istics of any material considered for use as an optical element. More-

over, if the scattering mechanism were completely understood, surface-3

preparation techniques could possibly be changed to save both time and

expense.

S8 Previous Studies of Surface Scattering Phenomena

Tf a propagating wave is incident upon a plane surface, the

reflected wave is concentrated in the specular direction as determined

S by the well-known laws of reflection [Born and Wolf (1959)]. Another

idealized surface is the perfectly diffuse reflector which scatters

light according to Lambert's cosine law [Hudson (19691,. A more physi-

cally realistic situation is shown in Fig. 1, which illustrates the

optical scattering that occurs when light is reflected from a rough sur-

face. If the surface is not too rough the reflected light is seen to

Ii
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Fig. 1. Schematic Representation of Reflectance
from a Rough Surface.
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consist of a specular component and a diffuse component which is scat-

tered over a wide range of angles centered upon the specular b-,awi.

One of the earliest investigators of scatte ing from , rough

surface was Lord Rayieigh. In 1896 [Rayleigh (1945)J he was investiga-

ting the reflection of acoustic waves, and later [Ray!eigh (1901)] he

noted the effects of poorly polished surfaces on optical performance.

His work examined the effects of surface roughness, wavelength, and

angle of incidence on the reflected beam. Chenmoganadam (1919) derived

* a theory of scattered light based on the phase shift of the reflected

beam due to the rough .urface.

However, it was not until the problem of background clutter in

radar applications became apparent that a determined effort was made to

solve the scattering problem for random surfaces. For example, scatter-

ing from the sea motivated the work of Davies (1954) as well as others

* [Blake (1950), Barrick (1970), Bass (1968), Beard (1961), and Fuks

(1966)]. Considerable work has also been done in attempts to explain

radar reflection from the moci [Daniels (1961), Evans and Pettengill

* (1963), Fung (1964, 1967), Ilagfors (1964)].

Random rough surfaces can be classified into two main groups.

Rough surfaces made up of a random array of objects or shapes with known

scattering characteristics were investigated by Ament (1960), Twersky

(19S7), Spetner (1958), and Peake (1959). The other approach treats the
Z

r- rough surface as a stochastic process. This approach was taken by

t I Isakovich (1952), Ament (1953), Eckart (1953), Feinstein (1954), Davies

(1954), and Beckmann (1957).

3



Since optical surfaces clearly fall into the second classifica-

tion of random surfaces, Bennett and Porteus (1961) expanded and

experimentally investigated the scattering theory of Davies (1954).

From this and subsequent work [Bennett (1963) and Porteus (1963)] the

reflectance properties of samples with a measured surface roughness were

directly compared to theory with good results. Laterest in. these mea-

surements led to investigations at the Optical Sciences Center by

McKenney (1972), Mott (1971), Orme (1972) and DeBell (1974).

In the abova studies, satisfactory theories have been developed

only for the two limiting cases of very rough surfaces (a/A >> 1) and

very smooth surfaces (a/A << 1). Until recently most of the efforts

have been confined to very smooth optical surfaces which satisfy the

second condition. However, recent applications require a more general

theoretical treatment.

In this study surface scatter phenomena is treated as a diffrac-

tion process where the scattering surface introduces an isotropic random

wavefront disturbance. The Fourier techniques of linear systems theory,

which have been applied to the problem of image formation through a

turbulent atmosphere by Shack (1967), are then utilized to develop a

surface scattering theory. Experimental measurements are also made in

an attempt to verify this theory.

Early work in the development of the above theory was carried

out under Contract F04701-72-C-0181 and is documented along with

4
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experimental results in "Surface Scatter Study," Technical Report

accomplished wider that contract is included in th'.s report.
0

U

5



CHAPTER II

GENERALIZED SCALAR DIFFRACTION THEORY

The phenomenon of diffraction involves a wave fifed incident

upon one or more obstacles or apertures of absorbing or conducting sur-

faces. The calculation of the wave field emerging from iuch a dif-

fracting system is the goal of all diffraction theories.

It should be emphasized that both the Kirchhoff and Rayleigh-

Sommerfeld theories, as well as the present discussion in this paper,

treats light as a scalar phenomenon. (For a detailed treatment of the

historical development of diffraction theory, see Goodman (1968),

pp. ZO-56.) Such an approach entirely neglects the fact that the vari-

ous components of the electric ;.nd magnetic field vectors are coupled

through Maxwell's equations and cannot be treated independently.

"I Microwave experiments have shown that scalar theory yields very

accurate results provided that: (i) the diffracting aperture is largP

compared to a wavelength, and (ii) the diffracted wave field is olserved

far from the aperture. It is significant that although :he present

treatment is limited by being a scalar theory, the above approximations

need not be imposed during the mathematical formulation as they are in

the Kirchhoif theory, or in its subsequent use as they almost always are

with the Rayleigh-Srwerfeld theory. The following development

6



threfore provides much more insight and accuracy than the conventional

treatments.

The Diffracted Wave Field

as a Superpositior, of Plane Waves

The fundamental diffraction problem basically consists of two

parts: (i) deteruining the effect of in•troducing the diffracting screen

upon the field immedlately behind the diffr&cting screen, and (ii) how

does it affect the field downstream from the diffracting screen (i.e.,

what is the field immediately behind the diffracting screen and how does

it propagate).

Consider first the pliopagation problem and let the compiex

amplitude distribution of the optical disturbance in plane Po be repre-

sented by the scalar function Uo(i,q;O). This scalar disturbance in P.

will be considered the only radiation contributing to the field

U(5,,;•-) in plane P (see Fig. 2). i has a parametric relationship since

it is a function of the observation plane. Note that a scalee coordi-

nate system is utilized in which 6 = x/A, • = y/A, = a/A.

Initial Conditions

It will be assumed that the complex ammlitude of any monochroma-

tic optical disturbance propagating through free space must obey the

time-independent wave equation (Helmholtz equation). We will also

assume that the Fourier transform of the scalar field Uo($•,D;O) exists.

This is not a severe restriction, nowever, as Bracewell (196S) points

"j 7
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Fig. 2. Geometry of Planes PO and P.
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0
out that physical possibility is a valid sufficient condition for the

existence of a Fourier transform.

o0 The Direct Application of Fourier Transform Theory

We can thus define the following Fourier transform relationships

that exist for planes Po and P.

0

A-0 (oC,B ;0) = f4 C0iP;O)fe-2w (cdic+139) di4 (1)

u~i~o)= ff AOaOOeiw~&s)dd (2)i -w

:!A(ci,8;f) = Mi UCi;z)e-i 2 YrC(•+BP)djd* (3)

00 if7 ~&(4)0 UC*i,9; B) = f ACa,O;i.)e' 2dads0••. (4)

Equations (2) and (4) indicate that the monochromatic scalar wave

field in planes Po and P can be decomposed into plane wave components

whose amplitudes are a function nf the direction cosines of the propaga-

ticn vector. The functions Ao(a,S;O) and A(C,B;-) will be referred to

as the direction cosine spectrum of plane waves contributing to the dis-

turbance Uo(.,9;O) and U(iu;i) respectively. The direction cosine

9



-A spectrm. of plane waves is used here in lieu of the angular !1pectrum of

plane waves discussed by Ratcliff (1956) and others. This is consistent

with a more general treatment Ai'ziii is not restricted to small angles.

In the scaled coordinate system V2  A2V2 , and k2 =(21r)
2.

Honce the Helmholtz equation becomes

[2+ (2n7) 2JU($cP;i) = 0. (5)

Now applying Ea. (4) and requiring the individual plane wave components

to satisfy- the Helmholtz equation, we find

A(cz,B;i) =AOý0.0;0) eZ2 7TyZ (6)

where

The Tratis -er Function of Free Space

Since Eq. (6) relates the Fourier transforms of the scalar

fields in planes P0 and P it can be r'.-written in terms of a transfer

function for free space, R(a,O;A)

AO(cc. ; 0 e~2  (7)

We have thus far applied no restrictions on y and two regions of

interest are appar~tnt. that for -real values of y cnd that for imaginary

values.



r

1 (aZ+8) J for (a2 + 52) s 1 y is real

/ { for (12 + 02) > 1 "' is imaginary.

(8)

Consider now a unit circle in the u-0 plane of direction cosine

space as shown in Fig. 3. Inside this unit circle y is real and the

corresponding part of the disturbance will propagate and contribute to

the wave field in plane P. However, those components of the direction

U cosine spectrum which lie outside the unit circle have imaginary values

of y and represent that part of the disturbance which experiences a

rapid exponential decay. This is the part of the disturbance which is

commonly referred to as the evanescent wave [Goodman (1968)].

Let UO(i,•;O) be the product of the complex amplitude transmit-

tance of a diffracting screen and the complex amplitude distribution

incident upon it. Figure 4a illustrates this quantity broken down into

the part which propagates and the part which makes up the evanescent

wave for the case of a unit amplitude 1:%ne wave normally incident upon

a circular aperture. The direction cosine spectrum of plane waves

associated with these respective optical disturbances are shown in

Fig. 4b.

Note that the sharp corners on the original disturbance in

Fig. 4a correspond to Kirchhoff's unwarra.ited boundary conditions. It

is the propagating part only that accurately represents the disturbance

i1



Fig 3. Unit Circle in Direction Cosine Space.

The plane wave components inside this
circle will propagate, and the plane
wave components outside this circle
contribute to the evanescent wave.
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immediately behind the diffracting aperture which will contrioute to th.

disturbance downstream.

It is now clear that the complex amplizudc distribution in plane

P can be determined by Fourier tran3forming the original disturbance

Uo (&,9;O), then multiplying the resulting direction cosine spectrum of

plane waves Ao(a,B;O) by the transfer function of free space given in

Eq. (7), and finally by applying the inverse Fourier transfcrm integral

of Eq. (4). However, the limits of integration on Eq. (4) must be

changed such that the integratiou is performed only over the unit circle

instead of over the entire a-B plane.

The above analysis, in which An optical disturbance is repre-

sented as a superposition of plane waves, corresponds to the transfer

function apprcach in image formation and yields considerable insight

into the behavior of these plane wave components during the phenomenon

of diffraction.

The Diffracted Wave Field

as a Superposition of Spherical Waves

The convolution theorem [Bracewell C196S)] of Fourier transform

theory requires that a convolution operation exists in the domain of

real space that is equivalent to Eq. (6).

The Point Spread Function

We thus have the alte-native method of expressing the complex

amplitude distribution in the observation plane by the convolution of

14



the original disturbance with a point spread function. The point spread

function is obtained by taking the inverse Fourier transform of the

transfer function found in Eq. (7).
0

Starting with the well-known Weyl expansion formula

[Weyl (1919)], Lalor (1968) obtained a result which, with straightfor- -

ward modification, yields

~ - 2w ff ei~Y (9)

-w0

where

p2 t2 +• + 2 + g.2.

Hence the appropriate point spread function is given by

.= - le i2-y 1-)iei2 (10)

Huygens' Principle

Recall now the assertion by Christiaan Huygens [Thompson (1912)]

in 1678 that each element of a wavefront may be regarded as the center

of a secondary disturbance which gives rise to spherical wavelets; and

moreover that the position of the wavefront at any later time is the

envelope of all such wavelets. These intuitive convictions, sometimes

called Huygens' wavefront construction, are an excellent description of

15



a convolution operation in which the initial disturbance is convolved

with a Huygens' wavelet. It is therefore quite appropriate to think of

the point spread function of a diffraction system as the intersection of

a Huygens' wavelet with the observation plane.

Equation (10) is therefore an exact mathematical expression for a

Huygens' wavelet which is valid right down to the initial disturbance

itself. However, for s >> 1,

"i2yr,- i27r (i - 1/4)h(ij;i) =-- -j/:.C,ý) e r •/)e01

it reduces to the familiar expression for a spherical wave with cosine

obliquity factor and a 7t/2 phase delay.

General Rayleigh-Sommerfeld Diffraction Formula

If we write down OhP c.nvolutin integral for the disturbance in

the observation plar e, using the expression in Eq. (10) fur h(ij;2), we

obtain the general Ruvleigh-Sommerfeld diffraction formula

= f U0 (3.9' 0) a-. I i) 1l - .'~ (12)

where

12 = (.;i ))2 + 2 + i2 (13)

This is an exact expression for tne diffracted wave field which is valid

throughout the entire space in which the diffraction occurs--right down

16
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to the aperture. No approximations have been made. Furthermore, the

above equation expresses the disturbance on the observation plane as a

superposition of spherical waves which corresponds to the spread func-
0

tion approach in image formation.

Geometrical Configurations of the Observation Space

o In order to insure a space invariant point spread function our

equations have been restricted to mapping an optical disturbance from an

input plane to an output plane, where A has a parametric relationship

Ssince it is a function of the output plane. However, the summation of

these Huygens' wavelets is valid over any surface. The above treatment

thus gives us a far more powerful conceptual tool than provided by the

equations themselves.

We will therefore investigate the properties of the diffracted

wave field on two particular geometrical configurations of the observa-

C)tion surface.

The Diffracted Wave Field on a Plane

Equation (12) reduces to the more familiar but less general form
C,

of the Rayleigh-Sommerfeld diffraction formula [Goodman (1968)] when

>> 1. If we then make the following algebraic substitutions

I' = (l + 61, 6 = - ,(14)

Eq. (12) can be rewritten as

[17
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= i2wB 0 S','O

Y- (1+6)2h

Note that we have imposed no restriction upon the size of the aperture

or the size of the observation space. The only limitation on the above

equation is that the observation plane must be many wavelengths from the

aperture.

The above diffraction formula is a rather unwieldy integral to

solve explicitly for most problems of practical interest. Diffraction

pattern calculations ar'. greatly simplified by using the Fresnel or

Fraunhofer diffraction formula (see Appendix A); however, severe

restrictions are then imposed upon the size of the aperture and the

region over which the calculations are valid in the observation plane.

In order that we do not impose these restrictions, let us make a

binomial expansion of the quantity Z in the exponent of Eq. (15). We

can then rewrite Eq. (15) as the following Fourier transforuu integral

*2 . i2w ir ~i
e +U( ,•f- I ', ';•• e did l

(16)

where -the complex quantity

d'o(•',D' ;•,9) = T ',•' ;0) 1 i2(rW
WW 91-P) TW9; (1+6)2 e ,(17)

can be regarded as a generalized pupil function. All of the terms from

the binomial expansion for the quantity k, except for the term which was

18



extracted for use as the Fourier kernel, are lumped together in the

quantity P along with any phase variations in the incident wavefront.

Equation (16) clearly reduces to the conventional Fresnel dif-

fraction formula when a plane wave is incident upon the aperture and

when ^ is sufficiently large such that t is adequately approximated by

retaining only the first two terms of the binomial expansion.

The Diffracted Wave Field on a Hemisphere

Let us now examine the diffracted wave field on a hemisphere

centered upon the diffracting aperture as iliustrated in Fig. 5. The

position of an arbitrary obseivation point will be specified ,by the

direction cosines a and B of its position vector, and the radius ii of

the hemisphere upon which it Tesides. Note that

S= £zj, 8 = fj/I', and y = f/f, (18)

where

j.2 = (2 + p2 j2. (19)

With the following algebraic substitutions

,,iC= i(: + :); : = (,-i)/2 . (20)
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Fig. 5. Geometrical Relationship Between Incident Beam, Dif-
fracting Aperture, and Observation Hemisphere.
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Equation (12) can be rewritten as

i21rP'J ~~u(cL.,00.) ="Y e-- ufo.f , o

x ) e d•'d•' (21)

We now have an exact expression for the diffracted wave field on an

observation hemisphere which is valid throughout the entire half-space

C behind the plane of the diffracting aperture.

If we now require that i >> 1 and make the appropriate binomial

expansions for the quantity (Z-4), we again obtain a Fourier transform

integral

I'Cs,B;i') = X .. f.q (•I ',9*; ,)e- 2ir(°o ÷ .e).
0 .1)

(22)

where the generalized pupil function is r'ven by

1 T ',1 ei 2 r. (23)
woC•', ;0.0'o, ) = To(-ý',,P ;o) Tl C2C•T

Once again, all of the terms from the binomial expansion for the quan-

tity (Z-4), except for the term which was extracted for use as the

Fourier kernel, are lumped together in the quantity V alorg with any

phase variations in the incident wavefront.
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Aberrations of Diffracting Systems

The quantity F/ in Eqs. (17) and (23) represent phase variations

in the diffracted wavefront emerging from the aperture. Therefore, £'

can be interpreted as a conventional wavefront aberration function

[Hopkins (1950)], which is conveniently expressed as a general power

series expansion of the pupil coordinates and the appropriate field

parameters.

For the case of a rotationally-s~mmetric diffracting aperture we

can, without loss of generality, choose the observation point to lie on

the P-axis (• = 0). The wavefront aberration function can then be

written as

w t = a2OO P2 + O02 + W111pa COS$

"+ W4OOp4 + 040a4+ i' 1 3 1pEZ3COSO + W2 2 2p 2Ez2 COS 2 $

"+ i220p2E2 + ý311p3E COS

"+ higher-order terms, (24)

where p is a normalized field position of the observation point and

is a normalized pupil height.

By equating coefficients of the corresponding terms in the

appropriate binomial expansions and the above wavefront aberration func-

tion, we obtain expressions for the aberration coefficients in terms of

the aperture diameter, the observation distance, and the appropriate

field parameter.
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Mhe expressions for these aberration coefficients are derived in

Appendix B and tabulated in Table 1 to vnable easy comparison of several

different geometrical configurations of the incident wavofront and the
0

observation space.

Consider first a plane wave illuminating the diffracting aper-

ture and a plane observation space. We s-e from the first column of

Table 1 that all aberrations are present except for lateral magnifica-

tion error (WIPl) which is absent for all geometrical configurations

because this term of the binomial expansion for Z is extracted for useJo
as the kernel of the Fourier transform integral. It is clear that very

large observation distances are required to reduce defocus (W0 2 0) to a

* negligible value. Also, distortion (W3 1 1) imposes severe restraints

"upon the field angle over which the diffracted wave field is accurately

described by the Fourier transform of the aperture function. These

restrictions are the same as those usually imposed during the develop-

ment of the Kirchhoff theory and in most applications of the Rayleigh-

A Sommerfeld diffraction theory.

The effect of illuminating the aperture with a spherical wave

converging to the observation plane is to eliminate defocus (WO_0) and

all orders of spherical aberration (W0 40 ). This removes the requirement

for an extremely large observation distance, but the Fourier transform

of the aperture function is still valid only over a small region about

the optical axis in the observation plane.

23



Table 1. Tabulation of Expressions for the Aberration Coefficients for Several Different
Geosetrical Configurations of (a) Incident Wavefront, and (b) Observation Space.

a. Plane a. Sphere a. Phrne a. Sphere

,,_b. Plane b. Plane b. Hemisphere b. Hemisphere

Piston Error (0) 0

V200  
=

Defocus hd 2
o,,o 2 0

Lateral Magni-
fication Error 0 0 0 0

V1 1 1

3rd-Order -lox'. '0x0Piston Error - 0

i4.00

Spherical i•) d-j, )4
"Aberration - 0 - - O.

2i i 2i...P1 3 ( " ), /

Astoation ORA 1  )2 2 -" ) 2' _ •_-_/_•_/ "_Inax 2_- _"

'222 2i2 I2
Curv,'-ature 4ja )-4 /\24 /

,Dstortion ('+"- )3 "+' "(gaa 0''+
+•,, \-X 2x a\T 2z
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Choosing the observation space to be a hemisphere centered upon

the diffracting aperture eliminates field curvature (W2 2 0), distortion

(W3 1 1 ), and all orders of piston error (P200 and P4oo).

Hence for the case of a spherical incident wave converging to

the intersection of the optical axis and an observation hemisphere, only

coma (W13 1 ) and astigmatism (W2 2 2 ) are present. And the values Af the

aberration coefficients can be calculated from the relationships pro-

vided iii the last column of Table 1.

Thus, for a system with an aperture diameter of 1 mm and an

observation hemisphere with a radius of 1 m, we have for X = 0.5 pm and

Bmax =

SW131= 1.25 x 10-4

'222 -2.50 x 10"1. (2S)

* @Hence there is only A/4 of astigmatism at the edge of the field (i.e.,

900 field angle).

Similarly for" an f/10 system (d/x- 0.1) with an aperture diam-

* eter of 5 cm and a maximum field angle of 0.5° (Omax n 0.00872), we have

for A = 0.5 Pm,

13 •;= 0.545

i222 = -0.095. (26)

Hence coma dominates at the edge of the field with a value of approxi-

* mately X/2.
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Finally, for an f/10 system with an aperture diameter of 1 cm

and a field size equal to the size of the aperture (i.e., a pair of f/iO

relay lenses 1 cm in diameter), we have for X = 0.5 urn,

•13 • = 0.625

S= -0.625. (27)

We find slightly more than X/2 of coma and astigmatism at the edge of

the field.

It should be pointed out that in each of the above cases the

radius of the Airy disc in direction cosine space is approximately equal

to 0.001 0 mx. Hence the off-axis aberrations are of little more than

academic interest unless there is some structure in the aperture with

high spatial frequency content which will diffract light at large angles

from the direction of the incident beam.

However, the above analysis of the aberrations associated with

the diffraction process can be readily applied to holographic systems or

systems containing diffraction gratings.

For example, an f/6 system with a 10-line-per-mm Ronchi ruling

placed in a 40-mm diameter aperture produces the diffraction nattern

shown in Fig. 6. The diffracted order at three different field posi-

tions was photographed through a mic'roscope with the following results:

at a = 0 no aberrations were apparent; at $ = 0.04 coma was predominate

with a value of approximately SX; and at .= 1.10 coma and astigmatism

both have values of approximately IS.
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,OFILM-o \ PLANEOBSERVATION PLAN

HEMISPHERE FI

r = 240mm
d = 4Drm m"

A.04

Fig. 6. Diffraction Pattern of a 10-Line per am Ronchi Ruling Placed in
an f/6 Cone of Light with a 40-m Diameter.

Magnified images of diffracted orders at various field positions
indicate that coma is predominant for small field angles with
astigmatism also becoming significant at larger field angles.
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By stopping the aperture down to a diamcter of 12 iam (f/20

system) and observing the diffracted orders at larger field angles,

astigmatism becomes the predominate aberration as shown in Fig. 7. The

sagittal focus lies on the observation hemisphere of radius r and the

medial and tangential surfaces have smaller radii as indicated. The

diffracted order at a = .020 exhibits rbout 6A of astigmatism. This

order was observed through focus with the microscope and the magnified

images are displayed.

In both of tl,e above 5xamples the observed aberrations are in

good agreement with those predicted from the coefficients presented in

Table 1.

Shift Invariance of the Diffracted Wave Field

We have shown that any departures of the aztual diffracted wave

field from that predicted by the simple Fourier transform of the aper-

ture function take the form of conventional wavefront aberrations.

If we neglect these aberrations, Eq. (22) reduces to

U(Ca,6;) = y, J ToC', ';0) ei2TC t '.
o- (28)

But this is merely the Fourier transform of the aperture function multi-

plied by a spherical Huygens' wavelet.

i2Týiý
U(Ca,8;i) Y C o (29)

ii2
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PLANE
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r240mm \

d = 12mm

Fig. 7. Diffraction Pattern of a 10-Line per mm Ronchi Ruling Placed
in an 1/20 Core of Light with a 12-mm Diameter.

Magnified images of a diffvacted order at different focal
positions indicite that astigmatism is predominant. The
relationship of -he sagittal, medial, and tangential sur-
face to the observation hemisphere is aiso shown.
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This relationship is valid provided that the observation space is a

hemisphere centered on -the diffracting aperture and if the incident

radiation is a unit amplitude spherical wave whose center of curvature

lies on the intersection of the observation hemisphere with the z-axis.

Furthermore, if r is large compared to the size of the diffracting aper-

ture, the Fourier transform relationship is accurate, not merely over a

small region about the z-.axis, but instead over the entire hemisphere.

Now consider the situation where the incident radiation strikes

the diffracting aperture at an angle eo as illustrated in Fig. 8. This

is equivalent to introducing a linear phase variation across the aper-

ture. By applying the shift theorem [Bracewell (1965)] of Fourier

transform theory to Eq. (29) we find that the complex amplitude distri-

bution on the hemisphere is a function of (a - ao),

U(ct,B-Bo;i') = .{T(.ZP;0) exp[i27r 0oý]}, (30)
ii,

where a is the direction cosine of the position vector of the observa-

tion point, and 00 is the direction cosine of the position vector of the

undiffracted beam. Note that these direction cosines are obtained by

merely projecting the respective points on the hemisphere back on to the

plene of the aperture and normalizing to a unit radius. The complex

amplitude distribution at an arbitrary point on the hemisphere can now

be said to be a function of the distance of the observation point from

the undiffracted beam in direction cosine space.
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Fig. 8. Geometrical Configuration when the Indicent
Beam Strikes the Diffraction Aperture at an
Arbitrary Angle.
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As a specific example, suppose we have incident light striking a

diffraction grating at an angle o0. The diffracted orders will strike

the observation hemisphere in a cross section which is not a great cir-

cle but instead a latitude slice as shown in Fig. 9. Thus for large

angles of incidence the various orders appear to lie in a straight line

only if they are projected down onto the a-8 plane in direction cosine

space. It is therefore clear that varying the angle of incidence merely

shifts the diffracted wave field in direction cosine space without

changing its functional form. This has been verified experimentally by

mounting a diffraction grating at the center of a transparent hemisphere,

placing graph paper cn the plane of the diffraction grating (a-B plane),

and scribing appropriate latitude lines on the hemisphere upon which the

diffracted ork . fall when illuminated with a small laser beam.

Summary•

We have developed a very general treatment of scalar diffraction

theory that yields more insight and accuracy than the conventional

Kirchhoff and Rayleigh-Sommerfeld theories.

By describing the diffraction process in terms of the direction

cosines of the propagating light we have obtained the extromely powerful

result that the diffracted wave field on an observation hemisphere is

given directly by the Fourier transform of the aperture function. This

allows us to apply the well-known techniques of linear systems theory

that have proven so useful in the area of image formation.

32



U

U#

(-)

- a

Fig. 9. Illustration of the Position of the
Diffracted Orders in Real Space and
Direction Cosine Space.
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Furthermore, we have shown that any departures of the actual

diffracted wave field from that predicted by tne Fourier transform rela-

tionship take the form of conventional aberrations whose behavior is

well understood in terms of the dimensions of the diffraction aperture.

the radius of the observation hemisphere, and the appropriate fielO'

rarameters.
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1 :HAPIER III

SURFACE SCATTER THEORY

In the following treatment the scattering of light from optical

elements is considered to be solely a surface phenomenon. Although it

is recognized that bulk scattering mechanisms, such as photon-phonon

interactions [Bloembergen (1965)] and scattering from free electrons

[Vachaspati (1964)], can exist if the substrate material is not per-

fectly conductng. Leader and Dalton (1972) have obtained some measured

data on the bulk scattering from dielectrics. The excitation of surface

plasmons has also been suggested by several investi;ators as contribu-

ting to short wavelength scattering from polished metal surfaces

[Beaglehole (1970), Hunderi and Beaglehole (1970), Crowell and Ritchie

(1970), Elson and Ritchie (1971), and Daud6, Savary, and Robin (1972)].

However, the above effects are believed to be small for most visible and

infrared radiation scattered from metal surfaces.

Surface Scatter Phenomena as a Diffraction Process

In Chapter II it was shown that the diffracted wave field on a

hemisphere is given directly by the Fourier transferm of the complex

amplitude transmittance of the diffracting aperture. In general, the

pupil function in a diffracting apert,,.ie will include perturbations that

lead to scattered radiation. Surface scatter phenomena can thus be
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described as a diffraction process in which the pupil function ihas ran-

dom phase variations in addition to any existing amplitude variations.

The diffraction theory of the previous chapter can therefore be directly

applied to the problem of predicting the complex amplitude distribution

on an observation hemisphere of radius r resulting from an incident beam

of light being reflected from a rough surface.

Effect of the S'.attering Surface upon the System Pupil Function

Figure 10 illustrates the surface height variations (WR) as a

function of distance along the surface. This surface profile has

associated with it an autocovarian'.e function and a surface height dis-

tribution function as indicated.

The effect of the rough surface can be considered to be a space-

dependent modifier, or random component, of the effective pupil function

of the system. The disturbance emerging from the scattering surface is

7 Igiven by

U. (k fl;0)= a0p(t, ;O) = aopL(.,.;O)PR(.t-Y;O). (31)

Here the pupil function of the system producing the incident

beam is given by

• p(&,j,;O) = aL (,y;O) e , (32)

where aL describes the amplitude variations across the exit pupil of the

system, and WL describes any phase variations or aberrations in the

wavefront of the incident beam.
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Fig. 10. Illustration of Surface Heigit Variations and Associated
Statistical Parameters.

I The random component of the pupil function due to the scattering

surface similarly has an amplitude and phase component

pR(X•,1;) = .tR(.,D;0) e), (32a)

where R is the reflectance of the scattezing surface and WR is the

above-mentioned surface height variation. Note that the phase varia-

tions on the reflected wavefront are twice as large as the actual

variations on the reflecting surface.
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Scattered Wave Field on a Hemisphere

The results of the previous chapter, [Eq. (29)], indicate that

the complex amplitude distribution on the observation hemisphere is.

given directly by the Fourier transform of Uo(,.J;O)

i2746e0

U{(a, - o(e,9;O)1,9;0)}. (33)

The total reflected flux P is obtained by applying Rayleigh's

theorem from Fourier transform theory

P=ff ..2

-0 -0 (34)

Noting that dt = dids/y, the radiant intensity of the scattering

system can be written as

I( ,) = i - IU(aj,;•)12  = ao2yI•{p(&,p;O)}12. (3S)

Utilizing the autocorrelation theorem of Fourier transform theory, this

is equivalent to

a 0 ,B) = (35a)

The autocorrelation function of a Lambertian surface approaches

a Dirac 6-function; hence, its Fourier transform is constant and we

obtain

I (aS) yK, K constant (3Sb)

which is consistent with Lam),ert's cosine law.
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The Effective Transfer Function of a Scattering System

Following the standard procedure used in image evaluation, the

effective transfer function of the scattering system is defined as the

normalized autocorrelation of the pupil function

U ffpij-0)*(1 1-POd 4

=rfy,90) C (36)

If
-- m

The effective spread function of the scattering system is now

defined in the usual way as the Fourier transform of the transfer

function

aCf P* x', ;0)p*C( V -,Y ;o)d I; d t

C(a,8) = jF{j. X,Y;O)} =0

f ,il'10 _(37)

Direct substitution from Eq. (34) and Eq. (35a) results in the following

expression for the effective spread function in terms of the radiant

intensity of the scattering system

_ (a.1F IB). (37a)

Scattering from Optical Surfaces

Let the height variations F/ of a given illuminated area on aR

scattering surface be a two-dimensional sample function Wqp(i,9;0). A
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random process, WR(C,g;O), is made up of an ensemble of such functions

as shown in Fig. 11. For fixed spatial coordinates, WR(•i,qI;O) is a

random variable. And, for a specific sample function with fixed spatial

coordinates, WR (l,if1;O) is a single number.

X i2S

t I

Iii 2 2Y)

:n

(I S I2

Fig. 11. An Cnscmblc of T;Uo-Dimensional Sample Functions Wi(x'v)
Representing !urfazc Hleight Va.'-iations Constitutes a Random
Process xy)

Two random variables, "(i 1,i') and i(i 2•,• 2 ) ,with fixeJ
spatial coordinate:; are also shown.
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Assumptions Concerning the Statistical Properties of an Optical Surface

We are primarily interested in the scattering behavior of opti-

cal surfaces. The following assumptions are made concerning the statis-
0

tical properties of an optical surface prepared by conventional

fabrication techniques on ordinary optical materials:

1. The reflectance R iq constant over the entire surface. This

assumption is not essential tut it is reasonable and fur-

thermore it has been shown by Shack (1967) that phase fluc-

tuations will dominate ovwr amplitude fluctuations in their

combined effect on the spread function.

2. WR(;,9;0) is a single-valued gaussian random process.

3. W (i,9;0) is at least locally stationary in the statistical

sense (i.e., surface is homogeneous and isotropic).

4. The random variables WR(.l,.9;0) and WR(C2,92;0), produced

by any two fixed pairs of spatial coordinates, are jointly

normal regardless of thnir correlation coefficient.
A

S. W (x,;0) is weakly ergodic (i.e., the mean and autocorrela-

tion function determined by space averages using a single

sample function Wj(?,9;0) are the same as those determined

by ensemble averages).
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""he Effective Transfer Funmction of a Scattering Surface

Substituting Eq. (31) into Eq. (36) we obtain

-CO

" " n[L1WL] i47rW• ;W2
jJ , laJLa e e ••

JJ IaL'm1I ,dS o,~ (38) ,

where

aLl aLCx. 'O)

aL2  aL 9x '-P; 0)

WL2 WL('c, 1 ',9 ; 0)

WR1 = WR(-,',.)

WR2 "R 0.(39)

The above expression for the transfer function contains the ran-

dom variables WR1 and WR2; therefore, taking the expected value we have

JJ aLlaL2 e E je a d•'

+~-c co{'•• o (40)

ff IaLI 2 d•'ay'

-co
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Since the random variables involved are assumed to be stationary,

the expected value under the integral is independent of ý' and P' and

can be taken outside the integral

i2nr[WLI -WL2]

i41T[Rl-P Jjf LJ,a, 2e%00

U Jaj I 2aId ,

We now recognize the normalized autocorrelation function in the above

equation to be the transfer function of the optical system producing the

incident beam

i2It[WL1-WL2i

fJ aLl aLe

Soe' ,;o)= -CO (42)

JJ IaL 12cx'c41'
-CO

The average quantity in Eq. (41) is therefore the equivalent transfer

function of the scattering surface

JrR(2x,P;O) = El e}i7[R1P2 (43)

But this is merely the joint characteristic function (Papoulis

(196S), p. 22S) of the two random variables WR1 and WR2 . Since WR1 and

WR2 are jointly normal random variables, it can be shown
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that (see Papoulis (1965), p. 226))

i e LR1kR2] i4 z4(TI1-n 2 ) e8¶2 (o 1
2 -2C, 2 +0 2

2 )E e = e e (44)

where

C1 2  = E{(fVRl-nl)(PR2-n2)} (45)

is the covariance function of the random variables WR1 and W But R1

and W are identical functions merely displaced from one another; hence
WR2

01 G2 = O n,' = nl 2 (46)

and

C1 2  C(&,•) -autocovariance of WR" (47)

The equivalent transfer function of the scattering surface is thus given

by

-(41%or) 2  1 - °2

A 0 e (48)

where Oa2 is the variance of the surface height distribution function

and CW(•,•) is the two-dime!nsional autocovariance function of the

surface.

Considerabie insight into the scattering process can now be

obtained by considering the nature of this transfer function. The auto-

covariance function approaches the value oa- 2 as the displacement

W
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approaches zero. The equivalent transfer function thus approaches unity

as expected. As the displacement approaches infinity the autocovariance

function approaches zero and the equivalent transfer function

approaches a plateau of height exp[-(2w4,) 2 ].

The equivalent transfer function of the scattering surface can

thus be regarded as the sum of a constant component and a bell-shaped

component as shown in Fig. 12a. Equation (48) can therefore be rewrit-

ten as

* (ýij;o) = A+BQ(.B,;0), (49)

where

A = l -e

- (4rap) 2

B e-l(O
(4Troa,) 2

Q~jg;O) :e 2 1 (SO)

e -1

The Effective Spread Function of a Scattering Surface

The significance of this interpretation of the equivalent trans-

fer function of the scattering surface is dramatically shown by the

inferred properties of the corresponding spread function. Since the
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Fig. 12. (a) Effective Transfer Function of a Scattering Surface.
(b) Spread Function Associated with a Scattering Surface.
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transfer function is the sum of two separate components, the equivalent

spread function of the scattering surface is the sum of the inverse

Fourier transforms of the two component functions. Thi constant compo-

nent trensforms into a delta function, and the bell-shaped component

transforms into another bell-shaped function as shown in Fig. 12b.

Hence the scattering surface reflects an incident beam of light as a

specularly-reflected beam of diminished intensity surrounded by a halo

of scattered light. Furthermore, the relative power distribution

between the specular component and the scattered component of the

effective spread function are given by the quantities A and B

respectively.

Note that as more and more light is scattered, energy is trans-

ferred from the specular component of the spread function into the

scattered component of the spread function. For a perfectly Lambertian

reflector the specular component disappears completely from the spread

function.

Relationship between the Spread Function and the BRDF

From the above analysis it is clear that the Bidirectional

Reflectance Distribution Function (BRDF), (see Appendix C), which is

appearing frequently in the radiometry literature, is merely an infinite

family of two-dimensional spread functions.

In general, the above scattering function (or the BRDF of dif-

fuse reflectance measurements) will change with angle of incidence just
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as the point spread function of an optical imaging system will, in

general, vary with the field position of the point source. However, the

analysis of imaging systems is greatly simplified by assuming an iso-

planatic system in which the point spread function does not change with

field position (and this is a reasonable assumption for many practical

imaging systems). Similarly, the analysis of light scattering systems

will be greatly simplified if they can be shown to be shift-invariant

(i.e., if the shape of the scattering function does not change with the

angle of incidence). If this is true, the four-dimensional BRDF degen-

erates into a single two-dimensional spread function.

Shift Invariance in Direction Cosine Space

The scattered light distribution on an observation hemisphere

will appear to consist of the sum of two components, a core which is the

delta function convolved with the spread function of the optical system

producing the incident beam, and a scattering function which is the

bell-shaped halo convolved with the spread function of the optical

system.

In Fig. 13 we have merely replaced the diffracting aperture of

Fig. 8 with a scattering surface and tie geometry of the measurements

has been folded about the reflecting plane. Hence, we have the incident

beam striking the scattering surface at some angle of incidence, a

specularly-reflected beam striking the observation hemisphere, and the

scattered light distribution being sampled at an arbitrary point with
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I Fig. 13. Geometrical Relationship Between Incident Beam, Scatter-
ing Surface, the Measured Scattered Light Distribution,
and the Resulting Spread Function.
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direction cosine coordinates a and 8. The scattered light distribution

on the hemisphere will, in general, change shape drastically with angle

of incidence--becoming quite skewed and asymmetrical at large angles of

incidence. However, our theory predicts that, for certain surfaces with

well-behaved statistics, if the data collected on the hemisphere is

plotted as a function of the direction cosines of the position vector of

the observation point, this new scattering function will not change

shape but will merely be shifted in direction cosine space with changes

in angle of incidence. This is a rather significant development which

has profound implications regarding the quantity of data required to

completely characterize a scattering surface. However, it remains to be

shown whether scattering surfaces of practical interest can experimen-

tally be shown to obey these predictions.

s
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CHAPTER IV

* SURFACE SCATTER MEASUREMENTS

Apparatus

An instrument has been designed and built at the Optical Sci-
S

ences Center for making scattered light measurements oo a hemisphere as

described in the previous chapter. A schematic diagram of this appara-

tus is shown in Fig. 14. The incident light passes through a chopper so

that synchronous detection with a PAR lock-in amplifier can be made.

The mechanical apparatus shown in Fig. 15 is located in a small photome-

tric darkroom in which the experiment is conducted. A movable arm with

folding mirrors can be positioned to direct the incident beam onto the

sample at any desired angle. A lens positioned on this arm focuses the

] incident radiation onto the hemisphere mapped out by the detector; hence,

the geometrical configuration is consistent with that illustrated in

Fig. 13 of the previous chapter. Two separate driving mechanisms allow

us to measure the scattered light distribution over the entire hemi-

sphere bounded by the plane of the sample.

The Light Source

The light source employed is a Spectra-Physics Model 165 Argon

Ion Laser. The laser is operated with a light-regulated, single-

frequency output which assures intensity regulation to within
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Fig. 14. Schematic Diagram of Scatter Measurement Apparatus.
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Fig. 15. Apparatus for Measuring Scattered Light Distribution from
Optical Surfaces.

(1) Precision rotary table, (2) worm gear drive for arm
supporting detector, (3) photomultiplier tube and fiber-
optic probe, (4) sample holder, (5) movable arm with fold-
ing mirrors and lens for directing and focusing incident
beam, (6) P.A.R. lock-in amplifier, (7) high voltage power
supply for PMT.
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one percent. The measurements were made with approximately 20 mw of

power in the incident beam at a wavelength of 0.5145 pm.

The Detector Unit

The detector is a Phillips one-inch, end-on photomultiplier

having an S-20 photocathode. Light reaches the photomultiplier by way

of a rigid fiber-optic probe. Such a probe offers several distinct

advantages in light sampling. In addition to allowing increased angular

resolution throughout the sampling space, and enabling us to sample

within half a degree of the incident or specularly-reflected beams, it

provides the ability to control the field of view of the detector for

the purpose of stray light rejection.

The original configuration consisted of a rigid fiber-optic

btudle bent such that one end was pointed toward the illuminated spot on

th.e sample. This end of the bundle thus acted as the collecting aper-

tu.-e for the detection system. The other end of the fiber-optic bundle

pro'ruded into the photomultirlier tube housing followed by a series of

baffles to limit the field of view of the detector as shown in Fig. 16a.

This resulted in a detector response which had a gaussian dependence

upon field angle.

However, iLy introducing a small collecting lens and a field stop

in front of the fiber-optic bundle as shown in Fig. 16b, the baffles can

be eliminated dnd a well-defined field of view of any desired size can

be obtained by properly choosing the size of the field stop. This is
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Fig. 16. (a) Previous Configuration of Detector Probe Unit.

(b) New Configuration of Detector Probe Unit.
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more clearly illustrated in Fig. 17. A coated doublet with a to-nw!

focal length was edged dowin and mounted in a black anodized brass tube

3 mm in diameter. A field stop allowing a S-degree field of view was

fabricated and inserted into the tube at the rear focal plane of the

lens. This assembly was then positioned onto the end of the fiber-optic

bundle. The detector response from a small (point source) light source

was then recorded as a function of field angle for both detector probe

configurations. The results are displayed for comparison in Fig. 18.

Both the flat response and the sharp cutoff obtained with the modified

unit are highly desirable features. The flat response promises to elim-

inate signal variations due to slight misalignment or wobble in the

mechanical instrument while scanning over the hemisphere. The ability

to keep the field of view s.nall with a very sharp cutoff is essential

for stray light rejection.

The scattered light flux from a polished surface varies by sev-

eral orders of magnitude over the angular range to be measured. Hence

the linearity of the PM' was measured using a calibrated neutral density

wedge and several known neutral density filters to vary the incident

flux. The resulting linearity curve is shown in Fig. 19 and indicates a

deviation of less than 1% over a range of five orders of magnitude of

the incident flux.
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Fig. 17. Detailed Illustration of New Fiber-Optic Probe.
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Fig. 18. Detector Response as a Function of Field Angle for
Detector Configurations shown in Fig. 16.
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The Scanning Mechanism

The mechanical apparatus for measuring the angular dist.-ibution

of light scattered from optical surfaces was shown in Fig. 15. The

detector probe unit is mounted on a rigid arm that can be rotated in

either of two orthogonal directions. Rotation about a vertical axis is

accomplished by means of a massive precision rotary table. The rigid

arm is attached to the rotary table by means of a worm gear arrangement

that allows rotation about the horizontal axis. The intersection of

these two axes defines the sample location.

The Incident Beam

A large movable arm with appropriate folding mirrors is used to

direct the incident beam onto the sample at any desired angle of inci-

dence. Immediately following thu last folding mirror the beam is

focused onto a pinhole which acts as a spatial filter as shown in

Fig. 20. Lens L2 then forms an image of the pinhole upon the hemisphere

mapped out by the collecting aperture of th• scanning fiber-optic probe.

"This spatial filter assembly eliminates from the beam incident upon the

sample any light scattered from the folding mirrors as well as any dif-

fraction effects from the chopper blade.

Experimental Procedures

The instrument described in the previous section allows us to

measure the scattered light distribution over the entire hemisphere

bounded by thse plane of the sample for all angles of incidence. However,
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Fig. 20. Detailed Illustration of Movable Arm Supporting the
Optical System Forming Incident Beam.
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in order to limit the quantity of data to be collected, the scattered

radiation field will be sampled in two principal directions. These

include the entire plane of incidence and a plane containing the inter-

section of the specular beam with the unit hemisphere, which is perpen-

dicular to both the plane of incidence and the plane of the sample

being tested (see Fig. 21). This particular sampling procedure was

chosen because each sampling direction then involves one fixed coordi-

nate in direction cosine space as discussed in the theory section of

this report. Furthermore, the apparatus was designed such that each of

the two independent drive mechanisms 'orresponds directly to a given

coordinate in direction cosine space. Hence for a given observation

point determined by the angles e and 0 displayed on the apparatus, the

corresponding coordinates in direction cosine space are given by

a = cosO sino

= sin6. (Si)

Measurements will be made to within one degree of the specular

beam in both directions. These measurements will be made for a variety

of angles of incidence on a set of samples consisting of an assortment

of glass types having been polished to varying degrees of surface

roughness. A sample with a diffuse MgO coating will be used as a refer-

ence. Asymmetries that arise as a result of polishing techniques,

cleaning, and coating anomalies, can be investigated by rotating the

sawas e about a normal to the surface.
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Fig. 21. Gi-ometrica1 Configuration of Two Principal
Planvs in which the Scattered Light Field
Will Be Sampled.
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Sample Preparation

An original goal of the research reported here was to examine

the scattering properties of samples whose surface characteristics span

those typically produced with optical 2abrication techniques.

Surface preparation techniques used to produce a set of samples

are outlined in Table 2. All samples were finished to be nominally flat.

The prepared samples were cleaned prior to coating with aluminum.

Cleaning consisted of careful washing with Liquinox, a mild detergent,

under very warm, filtered tap water. Samples were then mounted in a

sample holder while held in distilled water. Once in a holder, samples

were moved to an ultrasonic cleaner filled with distilled water for

rinsing. Once rinsed the samples were set to dry in a dust-free atmo-

sphere. Dry samples were removed from the sample holders and placed in

individual boxes being supported by the edge of their backside. Mott

(1971) used a similar cleaning technique, which he describes more

completely.

Cleaned dry samples were then plazed in a high vacuum chamber

and coated to iear opacity with pure aluminum. Coating technique varied

from the standard only in that excessive care was taken to allow the

chamber to reach a pressure below 2 x 10-6 torr prior to coating. The

samples were allowed to cool to room temperature prior to removal from

the chamber. Each coating run contained ten different samples. Once

coated, samples were returned to their individual storage boxes. After

all samples were coated, the best samples of each type were selected for
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measurement. This selectio~n was made on the basis of individual inspec-

tion of each sample while held under a microscope illuminator i, an

otherwise dark room. Samples that had coating nonuniformities, sleeks

or pinholes were rejected as were those with waterspots, large scratches,

or otherwise questionable appearance. Prior to each set of scatter mea-

surements, samples were again individually inspected for flaws. Dust

was removed using a commercially available pressurized air can. After

the scattering characteristics of each sample were measured, the sample

was returned to its individual box.

System Alignment

Prior to making any meaningful scatter measurements it was

necessary to systematically align the entire system.

The incident laser beam was first made accurately horizontal.

Then the mechanical apparatus was positioned such that the axis of rmta-

tion of the movable arm supporting the folding mirrors (see Fig. 20) was

colinear with the incident beam. This was accomplished by means of four

massive leveling screws at the base of the stand supporting the entire

apparatus.

With mirror Ml removed the laser beam passes through the small

hole in the center of the bearings upon which the movable arr. rotateF.

This assures that the incident beam is indeed colinear with the axis of

roLation and furthermore allows the sample holder, which is mounted on a

shaft passing through the axis of the precision rotary table, to be
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accurately positioned so that the center of the scattering surface lies

at the intersection of these two perpendicular axes.

Mirror Ml is then put into place and adjusted until the laser

beam is centered upon mirror M2. Similarly, M2 is adjusted until the

beam is centered upon M3.

With the lenses Li and L2 and the pinhole P removed from the

system, mirror M3 is adjusted until the beam is centered upon the sample

holder.

The incident beam is then made accurately perpendicular to the

axis of rotation of the movable arm by the following procedure. With

the sample removed, the rotary table is positioned so that the beam is

centered on the detector at position A. A polished sample is placed in

the holder and adjusted until the specularly-relfected beam returns pr"-

cisely along the incident beam. Now the table is rotated until the

detector is centered upon the reflected beam at position B. If A and B

are not precisely 1800 apart, systematically adjust mirrors M2 and M3

and repeat the above procedure.

Lenses LI and L2 are then placed in the beam and properly cen-

tered. And finally, the pinhole P is accurately positioned at the back

focal position of lens Li.

With the system properly aligned, the movable arm can be rotated

to direct the incia~nt beam at any desired angle without requiring other

adjustments to keep the beam centered upon the sample.
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An addi'ional requirement is that the PMT with its associated

fiber-optic probe be positioned and aligned such that the field of view

of the PMT remain accurately centered on the illuminated portion of the

sample throughout the entire range of its scanning motion. Provisions

were therefore m•ade to allow three degrees of freedom (one translation

and two rotation) in adjusting the position and orientation of the Prff

housing. Removing the PMT from its housing and illuminating the fiber-

optic probe from the back side greatly facilitates this alignment pro-

cedure as it allows one to directly observe the field of view on the

sample holder while making the necessary adjustments.

M4easurement Technique

The sample to be measured is placed in the holder and the

movable arm positioned to achieve the desired angle of incidence. A

calibrated attenuator is then placed in the incident beam and the detec-

tor centered on the specularly-reflected beam. The collecting aperture

of the fiber-optic probe is large enough to collect the entire specular

beam; hence, the output signal, V8 , of the PWT in this position is pro-

portional to the total flux in the specular beam.

The detector is then moved a known angular distance (approxi-

mately one degree) from the specular beam and the attenuator removed. A

profile of the scattered light distribution is then measured by scanning

the observation hemisphere with the fiber-optic probe. Approximately

30 separate readings are taken at different angular positions between
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the specular beam and the plane of the sample. This set of readings is

the raw data.

The sample is then removed and the incident beam allowed to pass

unobstructed through the sample holder and into a black absorbing

Rayleigh's horn. Background measurements are then made along the same

profile as above and subtracted from the raw data. These background

measurements were found to be completely negligible in most instances.

Tlhe data now describes the spread function of the scattering

system, which is made up of the spread function of the scattering sur-

face convolved with the spread function of the optical system producing

the incident be.am. These are shown in Fig. 22.

The spread function of the incident beam is then measured by

j •again placing the calibrated attenuator in the incident beam and cen-

"tering the detector on the direct beam passing through the empty sample

holder. Since the collecting aperture of the fiber-optic probe is large

enough to collect most of the incident beam, the output signal, V,, of

the MWrr in this position represents a good approximation to the total

flux in the incident beam. The detector is then moved a known angular

distance (approximately one degree) from the direct beam and the attenu-

ator removed. A profile of the incident beam is then measured. These

readings rapidly diminish to zero within five degrees of the peak value.

Since the spread function of the incident beam (Fig. 22a) is

narrow compared to the scattering function of the surface (Fig. 22b),

the scatteiing portion of the surface spread function is virtually

b9
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Fig. 22. (a) Spread Function of Incident Beam.
(b) Spread Function of Scattering Surface.
Cc) Spread Function of Scattering System.
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unchanged by the convolution operation while the delta function compo-

nent merely replicates the beam spread function. The desired scattering

function can thus be obtained by subtracting the beam spread functi n

readings from the raw data.

Data and Results

Rather extensive scatter measurements have been made on two

representative surfaces. One is a ground gla.ý surface which is a very

diffuse reflector. The other is an optically polished surface which is

a nice specular reflector. Both samples were coated with aluminum prior

to making the measurements. Four separate scattering profiles from the

specular beam to the plane of the sample (see Fig. 21) were made at

several angles of incidence.

The backscattering profile of the scattered light distribution

for these two samples is shown in Fig. 23 for several different angles

of incidence. Note that we are plotting the quantity V/IVy along the

ordinate. Since V is proportional to the power collected per unit solid

angle subtended by the fiber-optic probe and Vo is proportional to the

total power in the incident beam, we can write

_V P/Aw - ________ Lr~i,di; Or,ýr)

ýo Poy -OI Ei(ei3 ýi) (2

whe i A is the illuminated area on the sample.

Hence -he quantity plotted along the ordinate is equivalent to

the reflected radiance in the sampled direction divided by the incident

-1
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irradiance, which is precisely the way the BRDF is defined. Our scat-

tering curves are therefore one-dimensional profiles of the four-

dimensional BRDF. Also, in accordance with our theory we are plotting

this function versus the quantity 6-wo, which is the distance of the

observation point from the specular beam in direction cosine space.

3oth coordinates are then plotted on a logrithmic scale. For the pol-

ished sample, the five curves with the incident angle varying from zero

to 600 coincide almost perfectly. Hence, it is apparent that the

scattering function does not appreciably change with the angle of

incidence. The corresponding curves for the rough sample coincide fcr a

substantial range of angles then begin to depart somewhat at the large

angles.

The four separate profiles of the scattered light distribution

from the same two samples with the incident beam at 450 are shown in

Fig. 24. Again the curves for the polished sample coincide almost per-

fectly, s. -esting a rotationally-symmetric distributicn in direction

cosine space. Some asymmetry is noted in the scattered light distribu-

tion from the rough sample.

The data on Figs. 23 and 24 confirm that for a certain class of

surfaces (in which optically polished glass is definitely a member, and

F• ground glass can perhaps be included to a lesser extent), the scattering

properties are indeed shift invar;ant, and can be completely character-

ized by a single set of measurements at a fixed angle of incidence!

1.
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Fig. 24. Comparison of Scatter Profiles Taken in Different Directions
for an Incident Beam at 4S Degrees.
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The scattering function for a variety of samples with a wide

range of rms surface roughnesses are exhibited in Fig. 25. Note that

the MgO surface, which is somewhat of a diffuse reflectance standard,

yields a straight horizontal line as a Lambertain r'ilector should.

Since the radiance of a Lambertian source is given by [Hudson (1969)]

L M (53)

where M is the total emittance into a hemisphere, the height of the MgO

scattering curve is taken to be 1/v and all other scatter measurements

are normalized accordingly. The values of the rms surface roughness are

merely estimates.

It may be of interest to compare the scattering curves resulting

from special materials or unusual fabrication techniques with those of

more conventional optical surfaces. For example, the result of scat-

tering measurements on a polished beryllium sample and an ionically-

polished fused quartz sample are shown in Fig. 26 along with some curves

from conventional optical surfaces. All measurements are normalized by

-; the reflectance of the surface so that the beryllium does not appear to

have better scattering characteristics due to its lower reflectance.
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CHAPTER V

SURFACE STRUCTURE MEASUREMENTS

Three traditional techniques for obtaining surface structure

information involve profilometry, electron-microscopy, and FECO inter-

ferometry. Most profilometers provide too coarse a measurement for

optical surfaces. The ele:tron microscope works nicely on the rough

ground glass surfaces but fails to yield sufficient information about

the smooth polished surfaces. However, since it requires multiple

reflections, the FECO interferometer works well on smooth surfaces with

a strong specular beam but does not yield good results for the rough

diffuse surfaces. The latter two complementary techniques will thus be

utilized in our research effort.

Electron Microscopy

Surface profiles of the rough samples are determined from

electron-micrograph stereo pairs using conventional stereo-

photogrammetric techniques [Moffitt (1959)]. Nankivell (1963) discusses

some of the stereo-photogrammetric problems unique to electron micro-

scope applications. A typical electron-micrograph stereo pair is shown

in Fig. 27a with a line scribed to indicate the position of a set of

preliminary surface height measurements that were made with a standard

Fairchild Stereocomparagraph. This instrument consists of a mirror
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Fig. 27. (a) Typical FElectron-Micrograph Stereo Pair of a Ground GlassSurface. (b) Surface Profile of Ground Glass Sample asDetermined by Stero-Photogrammetric Techniques.

79



stereoscope fitted with a parallax bar containing a micrometer for mea-

suring the parallax of each desired pair of points. The resulting sur-

face profile is shown in Fig. 27b.

The two statistical parameters which determine the scattered

light characteristics are the variance of the surface height distribu-

tion and the surface autocovariance function. A computer program was

written which takes the surface profile data and determines the above

two parameters, The transfer function of the scattering surface is then

calculated from Eq. (40) of Ch.apter III. The Fourier transform of this

function then yields the predicted scattered light distribution.

A Hlewlett-Packard Model 9810 programmable desktop calculator and

plotter i! used for this data redactinn. The program has inly recently

been debugg6d and become operational.

Figure 28 shows vev.eral sections Gf a su.'face profile, a histo-

gram indicating the surface height distribution along with a gaussian

function for comparison, the surface autocovariance function, the

resulting transfer function, and finally the scattering function or

spread function.

As this is a very recent result and due to some scaling problems

in the computer program, a comparison of this predicted spread function

with the measured scattering function is not yet available. This work

is being continued under Contract F04701-75-C-0106.

80



4) 4

00 C_'4
04J 0

CILC

oh 0 4

4J4

4J4- "4

0D 41

440

V-40 0

j~'44

0 r

0 P40-40

W -4-4 -4
4) 44 c44 $4 r
(1 0 4- -

1$40 ;3

41 0

o .i-4 00.- 0

4) 4.1

*44- U.
).?4 @14$

U Q4.1



FECO Interferometry

Surface profiles of the smooth samples will be made with a FECO

.ir erferometer. This data will also be used to determine the variance

of the surface height distribution and the surface autocovariance func-

tion. Bennett (1974) has reported on a scanning FECO interferometer

that can measure very small height differences with a lateral resolution

of 2 microns to yield statistics for optical surfaces. This instrument,

along with auxiliary equipment which includes a slow-scan TV camera,

signal averager, mini-computer, and a teletype unit, yields the surface

profile, rms roughness, surface height distribution function, autocovar-

iance function, and other statistical parameters for the surface.

We have sent two samples to be measured with the above apparatus.

Additional samples will be measured on a Hilger Watts N130 FECO inter-

ferometer here at the Optical Sciences Center. The results of these

measurements will be used to predict a surface spread function by

applying the theory of Chapter IlIl. This predicted spread function will

then be compared to the directly measured scattering function in an

attempt to experimentally verify our scattering theory. The results of

this work will be reported under Contract F04701-75-C-0106.



CHAPTER VI

* SUWARY

A theoretical model to explain surface scatter has been devel-

oped in which the scattering process is assumed to be a diffraction

phenomena.

By describing the diffraction process in terms of the direction

cosines of the propagating light we have obtained the extremely powerful0

. ult that the diffracted "dave field on an observation hemisphere is

given directly by the Fourier transform of the aperture function. This

allows us to apply the well-known techniques of linear systems theory

that have proven so useful in the area of image formation. Furthermore,

we have shown that any departures of the actual diffracted wave field

from that. predicted by the Fourier transform relationship take the form

of conventional aberrations whose behavior is well understood in terms

of the dimensions of the diffraction aperture, the radius of the obser-

vation hemisphere, and the appropriate field parameters.

This diffraction theory is then generalized to include the scat-

tering effects of rough surfaces. For certain surfaces with well-

behaved statistics, our theory predicts that, if the data collected on a

hemisphere is plotted as a function of the direction cosines of the

observation point, this new scattering function, which depends only upon

the variance of the surface height distribution and the surface

83
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autocovariance function, will not change shape but will merely be

shifted in direction cosire space with changes in angle of incidence.

This is a rather significant developmqent, which has profound implica-

tions regarding the quantity of data requ.;red to completely characterize

a scattering surface. No approximations are made in the theoretical

development concerning the size of the surface height variations; hence,

this theory should work equally well for very si.ooth, highly-polished

optical surfaces and the very rough iurfaces frequently used for baffle

materials.

An instrument has been designed and built at the Optical Sci-

ences Center for making scattered light measurements (or BRDF measure-

ments) in an attempt to verify the above theory. This instrument is

capable of making measuremepts over the entire hemisphere bounded by the

plane of the sample (with an angular resolution of less than one degreel

for o-- desired angle of incidence.

Extensive scatter measurements at a variety of angles of inc.1-

dencc have been made on two representative surfaces. One is a ground

glass surface that is a very diffuse reflector. Tlhe other is an opt.i-

cally-polished surface that is a nice spe,.ultr refiector. Both samples

were aluminized prior to making the measurements. "this data was then

plotted as a function of the direction cosines of the position vtctor ,f

the observation point. For the case of the samnoth sample, thc five

curves with the angle of incidence varying from zero (c .,o Jcgrecs con-.

cide almost perfectly. The scattering curves for the rough sampic

:i4



coincide for a substantiai range of angles then begin to depart somf:,,hat

at large an•.es. The data from these two surfaces confirm that for a

certain class of surfaces (in which optically-polished glass is defi-

nitely a member, and ground gla.:s can perhaps be included to a lesser

degree) the scattering properties of the surface are indeed shift

invariant, and can be completely chF.racterized b a single set of
0

measurements at a fixed angle oi incidence.

Surface profile measurements have been made on the rough sample

from electron-micrograph stereo pairs using conventional stereo-

photogrammetric techniques. Similar data will be obtained from a FECO

interferometer for the smooth sample. A corputer program has been

written that takes the surface profile data and determines the variai~ce

of the surface height distribution and the surface autocovariance func-

tion. These two statistical parameters are then used to calculate the

effective transfer function of the scattering surface. The Fourier

transform of this quantity yields the predicted spread function or scat-

tering fxiiction, which can then be directly compared to the measured

scattered light distribution. This w.r., is being continuei under Con-

tract F04701-75-C-0106.

The above developments indicate that the inverse scattering

problem (determining surface properties from scattered light measure-

ments) may become far more attractive than measuring surface properties

directly.
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APPENDIX A

FRESNEL AND FRAUNHOFER DIFFRACTION

In order to simplify the calculation of diffracted wave fields,

it is customary to impose the restriction that the observation distance

z in Eq. (15) be much larger than the maximum linear dimension of

the diffracting aperture or the region of inttrest on the observation

plane. Under this condition the term with (1 + 6)2 in the denominator

will not differ significantly from unity and the quantity C - i) in the

exponent is adequately approximated by retaining only the first two

terms of the binomial expansion for Z,

- ~ (~+Y + ('+j 2  
- ( +')(A.1)

2z

A sufficient condition for the validity of the above expression is the

following Fresnel approximation

3 >> (A))2]2
max

Substituting Eq. (A.l) into Eq. (15) results in the familiar Fresnel

diffraction ieal
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- fJ %(&2,j,';O) e2

i2lT I
-e '--z (A. 3)

whicE is valid in the Fresnel region defined by Eq. (A.2).

If the following more-stringent condition, called the

Fraunhofer approximation, is imposed upon the observation distance,

7, >. _(6t2 + 9,2)max , (A.4)

then the quadratic phase function in the aboýve equation is approximately

unity over the entire aperture. The diffracted wave field on an obser-

vation plane in the Fraunhofer region defined by Eq. (A.4) is thus given

directly from the Fourier transform of the pupil function L-'.-' ,ý0).

This is the well-known Fraunhofer diffraction integral

i21Týezý ' (j•2+g2);

i27r~2

(,;.)= e J.uo(•',•';O)

2 + (A.5)

However, the pupil function Uo(•',9';0) i.s equal to the product

of the complex amplitude transmittance of the diffracting aperture

(aperture function) To(•',il';0), and the comolex amplitude distribution

incident upon the aperture. Hence, oniy whc.- a plane wave is incident

It



upon the aperture is the Fraunhofer diffraction pattern given directly

by the Fourier transform of the aperture function

(ý2+p2

i2-r
, - z'O (A.6)

Note that an identical expression is obtained from the Fresnel diffrac-

tion formula if a spherical wave converging to the observation plane is

incident upon the diffracting aperture

a~u _ ( •,.2+.,2)

U O= (o.9,;0;oe (A.7)

In both of the above cases the Fourier transform must be evaluated at

a = W/ and 0 = 1/A to assure proper space scaling in the observaticn

plane.
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APPENDIX B

CALCULATION OF ABERRATION COEFFICIENTS

FOR DIFFRACTED WAVE FIELDS

For the case of a plane wave incident upon an aperture, the

diffracted wave field on an obiervation plane is given by Eqs. (16) and

(17), where

• = CV-2) + C' + 9'0/A. (B.1)

The quantity • can be written as

S= '| + -) 2 + T2

Vl / + [92+a'2 - 2(±.t'+ý 1)1/22, (B. 2)

%'.ere

. 2= '.2 + p2 gt2 , CZ + qt2o

A binomial expansiol of the above square root results in the following

• , *expression for W

p7 +6,]B

p4 + [, + + 4(ij'+99')2 +2i2,2 - 4,2(.•'+pgv)

i •- 40v2 I•''?J')]/z 4

+ higher-order terms. (B.3)
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If we absume a rotstionally-symmetric diffracting aperture we

can, without loss of generality, choose the observation point oil the

g-axis. Let us therefore set i = 0. We can ien let * = 9 and

90 = •' cos*, henc,.

-[p = V_ [, .,1/2

[- 4 .. [ g44 + • 492i2 COS20 . 292g,2 _493gi COSO

- 4P6,3 cosJ]/i,

+ higher-order terms. (B.4)

If we now substicute

= Pax" ' = a

into tne rrevious equation, we obtain

= " [9,X21 p2 + (d/2)2 a2]/i 2

- [94• p 4 + (a/2)4 E4 + 4.m2 2(/2)2 p2 &2 cos 2 ,

max -'Max

+ 21Jmax 2 (a/2)2 p2a2 - 4g.max 3 (d/2) p 3& cosO

-49 ,~ 3 (d/2) 3 pa3 cCC4ý /

+ higher-order te'ms. (B.5)

L Equating coefficients of corresponding tems between this equa-

tion and the wavefront aberration function given by Eq. (24), we obtain

tha aberration coefficients tabulated in the first column cf Table 1.
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If we now have a spherical wave incident upon the aperture, the

quantity W in Eq. (17) is given by

W= (Z-i) - (Co--) + W•' + 99')/., (B.6)

where

to J.ý,2 + 912 + .2 = 2 ¢1 + §,2/22.

A binomial expansion of this quantity results in

io-z = T 8 (B.7)

But these will merely cancel identical terms in the previous expansion

thus resulting in the aLerration coefficients prescnted in column two of

"Table 1.

For the c-se of a hemispherical observati.an space the diffracted

wave field is given by Eqs. (22) and (23). With a plant-, wave incident

upon the aperture, we have

W .C _) + (az, + O ,). (B.8)

The quantity t can be written as

P= V(±-•,)2 + (9-9,)2 + 2e

1 = r[•' - 2I•C ' + a 1 )]/2w 2  , (B.9)

wheze

p,2 .= 2 2 + 72.

':ýt2 A9.'



A binomial expansion of the above square root yields

W 2 -) -t 24 4 (I+)21/:i4

"+ higher-order terms. (B.IO)

If we again as-ume a rotationally-symmetric diffracting aperture

we can, without loss of genexality, choose the observation point on the

^ Y-axis. Let us therefore set a 0. We can also let S' = e' cosO which

-X results in

W 2 = -•- . [-,4, 40093  coso+ 4r 2 82•, 2 C05 2 ,I/.•

+ higher-order terms. (B.lI)

If we now substitute

a= ' = a

into the previous equation, we obtain

= (d/2i')2 &Z [(d/2)4 a4 0 1 8ax d2 3 ip o4

+ 4•-21amax 2 (41/2) 2 02 p2 COS 2 •]/p 4

+ higher-order terms. (B.12)

Again equating coefficients of corresponding terns between this

equation and the wt.iiefront aberration function given by Eq. (24), we

obtain the aberration coefficients tabulated in column three of Tahle 1.
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If we now have a spherical wave liluminating the aperture and a

hemispherical observation space, the quantity W in Eq. (23) is given by

W = (Z-) - (Co-i) + (Cx5' + 01'), (B.13)

where

jo + p = f 'l+ §12/T2.

A binomial expansion of this quantity results in

Sc -o- 2 (•'/ - 8•'I r-- r- •' (,/j,)4 + (1.14)

SOnce again these terms merely cancel identical terms in the previous

expansion, leaving only coma and astigmatism present in the diffracted

wave field as indicated in the last column of Table 1.
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APPENDIX C

BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

The basic quantity that characterizes (geometrically) the

reflecting properties of a surface element dA is the bidirectional

reflectance distribution function (BRDF). This quantity

frii Or,~r) = dLr(OiOi er,@r; EWCL/dei(8oi)

= dLr(oi,-i; er,*r; Ei)/Li(8i,0i)d2i (sr-1 )

(C-1)

is defined by Nicodemus (19701, as the reflected radiance

dLr(ei,0i: er't; E'.) of the surfac,ý element dA in the directior (Or,4r)

divided by the incident irradiance dEi(Oi,oi) = Li(ei, i)d~i producing

it. The geometry of this situation is illustrated in Fig. 29, wh,.re the

element of projected solid angle is given by d =-- cosedw.

Th%; umerical value of the BRDF for a given pair of incident and

reflected ray directions may vary from zero to infinity. In particular,

consider two ideal cases. The BRDF is a constant 4or all reflected

directions for a perfectly diffuse (Lambertian) surface; and it becomes

infinite (as a Dirac delta function) for a perfectly specular reflector.

The BRDF, defined above as a ratio of infinitesimals, is an idealized

concept that can never be measured exactly. Real measurements are
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Fig. 29. Geometry of Incident and Reflected Elementary Beams
Used to Define the Bidirectional Reflectance Dis-
tribution Function.
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always made over some finite solid angle and wavelength interval and can

therefore yield only average values Tj over those parameter intervals.

The BRDF is basic in the sense that all other reflectance or

scattering functions can be derived from it. For example, Judd (1967)

lists nine different kinds of reflectance functions based on the angular

extent of the incident and reflected radiation. All of them can be

derived from the BRDF.

Note that the BRDF is a four-dimensional quantity that can be

thought of as an infinite family of two-dimensional light distribution

functions--one for every possible angle at which the incident beam can

strike the surface element. This involves an overwhelming quantity of

data, especially where high directional resolution is needed to

describe glints and specularities.
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