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CHAPTER 1
INTRODUCTION

Wit the recent refinement of optical devices and systems there
has evolved a need to examine in closer detail the mechanism and proper-
ties of optical scattering. The relationship between surface micro-
rcughness and radiant energy scattering has an important bearing on the
cost and performance of optical systems. The surface roughness and
resulting light scattering properties are therefore important character-
istics of any material considered for use as an optical element. More-
over, if the scattering mechanism were completely understood, surface
preparation techniques could possibly be changed to save both time and

expense.

Previous Studies of Surface ScatteriggrPhenomena

Tf a propagating wave is incident upon a plane surface, the
reflected wave is concentrated in the specular direction as determined
by the well-known laws of reflection [Born and Wolf (1959)]. Another
idealized surface is the perfectly diffuse reflector which scatters
light according to Lambert's cosine law [Hudson (196931. A more physi-
cally realistic situation is shown in Fig. 1, which illustrates the
optical scattering that uccurs when light is reflected from a rough sur-

face. If the surface is not too rough the reflected light is seen to
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Fig. 1. Schematic Representation of Reflectance
from a Rough Surface.
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consist of a specular component and a diffuse component which is scat-
tered over a wide range of angles centercd upon the specular bewn.

One of the earliest investigators of scattering from & rough
surface was Lord Rayieigh. In 1896 [Rayleigh (1945)}] he was investiga-
ting the reflection of acoustic waves, and later [Rayl~igh {1901)] he
notcd the cffects of poorly polished surfaces on optical performance.
ilis work cxamined the effects of surface roughness, wavelength, and
angle of incidence on the reflected beam. Chenmoganadam {1919) derived
a theory of scattered light based on the phase shift of the reflected
becam due to the rough ,urface.

However, it was not until the problem of background clutter in
radar applications became apparent that a determined effort was made to
solve the scattering problem for random surfaces. For example, scatter-
ing from the sea motivated the work of Davies (1954) as well as others
[Blake (1950), Barrick (1970), Bass (1968), Beard (1961), and Fuks
(1966)]. Considerable work has also been done in attempts to explain
radar reflection from the mocn [Daniels (1961), Evans and Pettengill
(1963), Fung (1964, 1967), lagfors (1964)].

Random rough surfaces can be classified into two main groups.
Rough surfaces made up of a random array of objccts or shapes with known
scattering characteristics were investigated by Ament (1960), Twcrsky
(1957), Spetner (1958), and Peake (1959). The other approach trcats the
rough surfacc as a stochastic process. This approach was taken by
Isakovich (1952), Ament (1953), Eckart (1953), Feinstcin (1954), Davies

(1954), and Beckmann (1957).
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Since optical surfaces clearly fall into the second classifica-
tion of random surfaces, Bennett and Porteus (1961) expanded and
experimentally investigated the scattering theory of Davies (1954).
From this and subsequent work [Bennett (1963) and Porteus (1963)] the
reflectance properties of samples with a measured surface roughuness vere
directly compared to theory with good results. Iaterest in these mea-
surements led to investigations at the Optical Sciences Center by
McKenney (1972), Mott (1971), Orme (1972) and DeBell (1874).

In the above studies, satisfactory theories have been developed
only for the two limiting cases of verv rough surfaces (¢/A >> 1) and
very smooth surfaces (o/A << 1). Until recertly most of the efforts
have been confined to very smooth optical surfaces which satisfy the
second condition. However, recent appiications require a more general

theoretical treatment.

In this study surface scatter phenomena is treated as a diffrac-
tion process where the scattering surface introduces an isotropic random
wavefront disturbance. The Fourier techniques of linear systems theory,
which have been applied to the problem of image formation through a
turbulent atmosphere by Shack (1967}, are then utilized to develop a
surface scattering theory. Experimental measurements are also made in
an attempt to verify this theory.

Early work in the development of the above theory was carried

out under Contract F04701-72-C-0181 and is documented along with




cxperimental results in "Surface Scatter Study," Technical Report

SAM50 TR 74-8., dated February 1974. An update of the literature rcview

accomplished under that contract is included in this report.
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CHAPTER 11
GENERALIZED SCALAR DIFFRACTION THEORY

The phenomenon of diffraction involves a wave field incident
upon one or more cbstacles or apertures of absorbing or conducting sur-
faces. The calculation of the wave field emerging from zuch a dif-
fracting system is the goal of all diffraction theories.

It should be emphasized that both the Kirchhoff and Rayleigh-
Somnerfeld theories, as well as the present discussion in this paper,
treats light as a scalar phenomenon. (For a detailed treatment of the
historical development of diffraction theory, see Goodman (196§),
pp. 20-56.) Such an approach entirely neglects the fact that the vari-
o:s components of the electric <nd magnetic tield vectors are coupled
through Maxwell's equations and cannot be treated independently.

Microwave experiments have shown that scalar theory yields very
accurate results provided that: (i) the diffracting aperture is large
compared to a wavelength, and (ii) the diffracted wuve field is olserved
far from the aperture. It is significant that although che present
treatment is limited by being a scalar theory, the above approximatiéhs
need not be imposed during the mathematical formulation as they are in
the Kirchhoff “heory, or in its subsequent use as they almost always are

with the Rayleigh-S-mmerfeld theory. The following development




threfore provides much more insight and accuracy than the conventional

treatments.

The Diffracted Wave Field

as a Superpositior. of Plane Waves

The fundamental diffraction problem basically consists of two
parts: (i) determining the effect of introducing the diffracting screen
upon the field immediateiy bekind the diffracting screen, and (ii) how
does it affect the field downstream from the diffracting screen (i.e.,
what is the field immediately behind the diffracting screen and how does
it propagate).

Consider first the propagation problem and let the comp.ex
amplitude distribution of the optical disturbance in plane P, be repre-
sented by the scalar function U,(%,5;0). This scalar disturbance in P,
will be considered the only radiation contributing to the field
U(X,%32) in plane P (see Fig. 2). 2 has a parametric relationship since
it is a function of the observation plane. Note that a scaled coordi-

-~

nate system is utilized in which & = 2/A, § = y/A, 2 = a/A.

Initial Conditions

It will be assumed that the complex azplitude of any monochroma-
tic optical disturbance propagating through free space must obey the
time-independent wave equation (Helmholtz equation). We will also

assume that the Fourier transform of the scalar field Uy(%,5;0) exists,

This is not a severe restriction, however, as Bracewell (1965) points
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out that physical possibility is a valid sufficient condition for the

existence of a Fourier transform.

The Direct Application of Fourier Transform Theory

We can thus define the following Fourier transform relationships

that exist for planes P, and P.

A,(a,8;0) = ” U, @530y e+ (589) g g (1)
U,&,§:0) = ” A, (a,8;0)e 2" (0F+BE) 4,4 ©)

A(0,8;8) = ” U, ;2)e 2T (88 g gn (3)
UGE§:E) = ” A(a,8;2)e " (B gogq (4)

Equations (2) and (4) indicate that the moncchromatic scalar wave
field in planes P, and P can be decomposed into plane wave components
whose amplitudes are a function of the direction cosines of the propaga-
ticn vector. The functions 4,(a,B;0) and A(a,B;2) will be referred to

as the direction cosine spectrum of plane waves contribuving to the dis-

turbance Up(%,%;0) and U(Z,%;2) respectively. The direction cosine



iy 3t
PR VAR

AL AL AR SR A AL £ (Rl A B Y

spectrum of plane waves is used here in lieu of the angular spectrum of

plane waves discussed by Ratcliff (1956) and others. This is consistent

with a more general treatment whichh is not restricted to small angles.
In the scaled coordinate system V2 = A2v2, and %2 = A2k2 = (2m)2

Honce the Helmholtz equation becomes
[v2 + (202)U@,5;3) = oO. (5)

Now applying Ea. (4) and requiring the individual plane wave components

to satisf, the Helmholtz equation, we find
A@@,B38) = A,ia,8;0)e"2™3 (6)

where

vy = AT

The Trans "er Function of Free Space
Since Eq. (6) relates the Fourier transforms of the scalar
fields in planes P, and P it can be r.written in terms of a tramsfer

function for free space, H(a,8;%)

Hfa,8;8) = 2—;’{%:—3—;—3))- a ot2™E ™

We have thus far applied no restrictions on y and two regions of
interest are appar=nt: that for real values of y und that for imaginary

vaiues.
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for (62 + 8%2) < 1 vy is real

1 - (as+B<)
for (a2 + 8%) > 1 v is imaginary.
(8)
Consider now a unit circle in the a-8 plane of direction cosine
space as shown in Fig. 3. Inside this unit circle y is real and the
corresponding part of the disturbance will propagate and coniribute to
the wave field in plane P. However, those components of the direction
cosire spectrum which lie outside the unit circle have imaginary values
of vy and represent that part of the disturbance which experiences a
rapid exponential decay. This is the part of the disturbance which is

commonly referred to as the evanescent wave [Goodman (1968)].

Let Uy(%,%;0) be the product of the complex amplitude transmit-
tance of a diffracting screen and the complex amplitude distribution
incident upon it. Figure 4a illustrates this quantity broken down into
the part which propagates and the part which makes up the evanescent
wave for the case of a unit amplitude ) ane wave normally incident upon
a circular aperture. The direction cosine spectrum of plane waves
associated with these respective optical disturbances are shown in
Fig. 4b.

Note that the sharp corners on the original disturbance in
Fig. 4a correspond to Kirchhoff's unwarraiated boundary conditions. It

is the propagating part only that accurately represents the disturbance

11




Unit Circle in Direction Cosine Space.

The plane wave components inside this
circle will propagate, and the plane
wave components outside this circle
contribute to the evanescent wave.

12
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immediately behind the diffracting aperture which will contrioute to the
disturbance downstream.

It is now clear that the complex amplitude distribution in plane
P can be determined by Fourier transforming the original disturbance
Up(%,5;0), then multiplying the resulting direction cosine spectrwm of
plane waves A,(a,8;0) by the transfer furnction of free space given in
Eq. (7), and finally by appiying the inverse Fourier transfcrm integral
of Eq. (4). However, the limits of integration on Eq. (4) must be
changed such that the integratiou is performed orly over the unit circle
instead of over the entire a-8 plane.

The above analysis, in which an optical disturvance is repre-
sented as a superposition of plane waves, corresponds to the transfer
function apprcach in image formation and yields considerable insight
into the behavior of these plane wave components during the phenomenon

of diffraction.

The Diffracted Wave Field

as a Superposition of Spherical Waves

The convolution theorem [Bracewell (1965)] of Fourier transform
thenry requires that a convolution operation exists in the domain of

real space that is equivalent to Eq. (5).

The Point Spread Function
We thus have the alternative method of expressing the complex

amplitude distribution in the observation plane by the convolution of

14




the original disturbance with a point spread function. The point spread
function is obtained by taking the inverse Fourier transform of the
transfer function found in Eq. (7).

Starting with the well-kncwn Weyl expansion formula
[Weyl (1919)], Lalor (1968) obtained a result which, with straightfor- ~

ward modification, yields

‘1:211'3' = - "~ » ~ A
L e ] = -2 ” e? 2TV L2m(32+BY) g, g, (9)
32 r e
vhere
p2 = 22 + 52 4+ 22,

Hence the appropriate peint spread function is given by

L2571
e

h(E,5:3) = & {e"z“z} - (—1-- 1:) (10)

21

3w
l‘)

Huygeus' Principle

Recall now the assertion by Christiaan Huygens [Thompson (1912)]
in 1678 that each element of a wavefront may be regarded as the center
of a secondary disturbance which gives rise to spherical wavelets; and
moreover that the position of the wavefront at any later time is the
envelope of all such wavelets. These intuitive convictions, sometimes

called Huygens' wavefront construction, are an excellent description of



a convolution operation in which the initial disturbance is convolved
with a Huygens' wavelet. It is therefore quite appropriate to think of
the point spread function of a diffraction system as the intersection of
a Huygens' wavelet with the observatior plane.

Equation (10) is therefore an exact mathematical expression for a
Huygens' wavelet which is valid right down to the initial disturbance

itself. However, for » >> 1,

L2 L2210 - 1/4)
h(@,§;8) = -i(3/F) = = (3/7) = , ¢n
r

it reduces to the familiar expression for a spherical wave with cosine

obliquity factor and a n/2 phase delay.

General Rayleigh-Sommerfeld Diffraction Formula
If we write down the tunvolution integral for the disturbance in
the observation plare, using the expression in Eq. (10) for h(Z,j;2), we

obtain the general B_z_;lvleij&h-Sommerfeld diffraction formula

't 1 . n i21t2
V@55 = ” U553 30) (—7- i) e Laag
2wk £

where

B2 = @82+ -57)2 + 32 (13)

This is an exact expression for tne diffracted wave field which is valid

throughout the entire space in which the diffraction occurs--right down

16
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to the aperture. No approximations have been made. Furthermore, the

above equation expresses the disturbance on the observation plane as a
superposition of spherical waves which corresponds to the spread func-

tion approach in image formation.

Geometrical Configurations of the Observation Space

In order to insure a spacs invariant point spread function our
equations have been restricted to mapping an optical disturbance from an
input plane to an output plane, whers 2 has a parametric relationship
since it is a function of the output plane. However, the summation of
these Huygens' wavelets is valid over any surface. The above treatment
thus gives us a far more powerful conceptual tool than provided by the
equations themselves.

We will therefore investigate the properties of the diffracted
wave field on two particular geometrical configurations of the observa-

tion surface.

The Diffracted Wave Field on a Plane
Equation (12) reduces to the more familiar but less general form
of the Rayleigh-Sommerfeld diffraction formula [Goodman (1968)] when

z >> 1. If we then make the following algebraic substitutions

t-z0+8, &= L22, (14)

N

Eq. (12) can be rewritten as

17
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Note that we have imposed no restriction upon the size of the aperture
or the size of the observation space. The only iimitation on the above
equation is that the observation plane must be many wavelengths from the
aperture. -
The above diffraction formula is a rather unwieldy integral to
solve explicitly for most problems of practical interest. Diffraction
pattern calculations ar? greatly simplified by using The Fresnel or
Fraunhofer diffraction formula (see Appendix A); however, severe
restrictions are then imposed upon the size of the aperture and the
region over which the caiculations are valid in the observation plane.
In order that we do not impose these restrictions, let us make a

binomial expansion of the quantity 2 in the exponent of Eq. (15). We

can then rewrite Eq. (15) as the following Fourier transform integral

i2n3 S a0z e ')
U&,§5:8) = p ”Q[o(a“c',g';a?:,g) e * dz'dj',
-0 (16)
where the complex quantity
Ay f1.s ay A 1 i2nW
Wo(x':y'any) = To(x'!y';o) (1*6). e ’ (17)

can be regarded as a generalized pupil function. All of the terms from

the binomial expansion for the quantity 2, except for the term which was

18
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extracted for use as the Fourier kernel, are lumped together in the
quantity W along with any phase variations ir the incident wavefront.
Equation (16) clearly reduces to the conventional Fresnel dif-
fraction formula when a plane wave is incident upon the aperture and
when 2 is sufficiently large such that T is adequately approximated by

retaining only the first two terms of the binomial expansion.

The Diffracted Wave Field on a Hemisphere

Let us now examine the diffracted wave field on a hemisphere
centered upon the diffracting aperture as iliustrated in Fig. 5. The
position of an arbitrary obseivation point will be specified hy the
direction cosines ¢ and B of its position vector, and the radius » of

the hemisphere upon which it resides. Note that
a = E/p, B = f/p, and y = 2/B, (18)
where
P2 = &2+ 52 + 32, (19)
With the following algebraic substitutions

P = p(+e); e = ([@B-®)/>. (20)
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Equation (12) can be rewritten as

12np
U(a,;#) = y & ff U,@&,5';0)
PUDE r 71
1 ) 1 i@y ., ..
X fem—— e dz'dy’. (21)
{21(17-(14»6) } (+€) v

We now have an exact expression for the diffracted wave field on an
observation hemisriiere which is valid throughout the entire half-space
behind the plane of the diffracting aperture.

If we now require that » >> 1 and make the appropriate binomial
expansions for the quantity (2-5'), we again obtain a Fcurier transform

integral

-

i2np .
resd) = v S [[a @ gtiame IO B gy,
7

(22)
where the generalized pupil function is g ven by
- I 1 i
Qlo(z'.y';u.ﬁ) = T,(z':y';0) o7 e . (23)

Once again, all of the terms from the binomial expansion for the quan-
tity (Z-f'), except for the term which was eitracted for use as the
Fourier kernel, are lumped together in the quantity % alorg with any

phase variations in the incident wavefront.
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Aberrations of Diffracting Systems

The quantity # in Eqs. (17) and (23) represent phase variations

in the diffracted wavefront emerging from the aperture. Therefore, W

- LI e Y AR

can be interpreted as a conventional wavefront aberration function

e

[Hopkins (1950)], which is conveniently expressed as a general pcver

3 series expansion of the pupil coordinates and the appropriate field

3 parameters.

For the case of a rotationally-symmetric diffracting aperture we
'% can, without loss of generality, choose the observation point to lie on

the y-axis (£ = 0). The wavefront aberration function can then be

written as

b 244
"

Waqop? + Wozoa® + Wij1pa cos¢

+ Wygop" + Wouod'+ Wy31p@cos¢ + Wpppp2a® cos?g

+ Wap00%a® + W31103a cos ¢

+ higher-order terms, (24)

where p is a nomalized fieid position of the observation point and a

is a nommalized pupil height.

By equating coefficients of the corresponding terms in the

=

appropriate binomial expansions and the above wavefront aberration func-
tion, we obtain expressions for the aberration coefficients in terms of

the aperture diameter, the observation distance, and the appropriate

field parameter.

22
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fhe expressions for these aberration coefficients are derived in
Appendix B and tabulated in Table 1 to @nable easy comparison of several
different geometrical configurations of the incident wavefront and the
observation space.

Consider first a plane wave illuminating the diffracting aper-
ture and a plane observation space. We s~e from the first column of
Table 1 that all aberrations are present except for lateral magnifica-
tion error (ﬁlll) which is absent for all geometrical configurations
because this term of the binnmial expansion for L is extracted for use
as the kernel of the Fourier transform integral. It is clear that very
large observation distances are required to reduce defocus (Wgzg) to a
negligible value. Also, distortion (ﬁgll) imposes severe restraints
upon the field angle over which the diffracted wave field is accurately
described by the Fourier transform of the aperture function. These
restrictions are the same as those usually imposed during the develop-
ment of the Kirchhoff theory and in most applications of the Rayleigh-
Sommerfeld dif{fraction theory.

The effect of illuminating the aperture with a spherical wave
converging to the observation plane is to eliminate defocus (ﬁb:o) and
all orders of spherical aberration (ﬁbuo)- This removes the requirement
for an extremely large observation distance, but the Fourier transform
of the aperture fuaction is still valid only over a small region about

the optical axis in the observation plane.
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Table 1.

Tabuiation of Expressions for the Aberration Coefficients for Several Different
Geometrical Configurations of (a) Incident Wavefront, and (b) Observation Space.

s. Planc a. Sphere a. Plene a. Sphere
b. Plane b. Plane b. Hemisphcre b. Hemisphere
i 2 ' 2

Piston Error =z ( Ymax ) z(yux ) ] 0 0
Defocus i 3)2 0 Fld\2 0
o 7\ 7i -
W20 23 2r
Lateral Magni-
fication Error 0 0 0 0
i1
3rd-Order - u - {8 \
Piston Error -'5(—‘—‘3‘- ) - -;—(-ﬂ ) 0 0
g z F
%00
Spherical = f3\u s fi\n
Aberration % (—i) 0 - .’sl (.4_) 0
~ 2“ Zf‘
Mouo
Coma # Ymax (4|2 2Yrax [d )3 g (1\3 L (_g_)3
0 2 :\z 2 2 o\z 2 “max ?‘-‘/ 2 "max \ ,,

Astigmatism
W222

r.;( L3l

Field

Y 2f - 2f .
% 2 2
Curvature -:-( "f") (-4-) (-4-) 0 0
l‘}120 * 2 2
- /4 3 Nz R
Distortion E ( aax) _4‘_ afmax) d 0 0
2\ 2/ n Ni/ =z

L£IT)
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Choosing the observation space to be a hemisphere centered upon

the diffracting aperture eliminates field curvature (ﬁzgo), distortion
(W311)» and all orders of piston error (W200 and Wyg0) .

Hence for the case of a spherical incident wave converging to
the intersection of the optical axis and an observation hemisphere, only
coma (ﬁlgl) and astigmatism (ﬁzzz) are present. And the values >f the
aberration coefficients can be calculated from the relationships pro-
vided in the last column of Tahle 1.

Thus, for a system with an aperture diameter of 1 mm and an
observation hemisphere with a radius of 1 m, we have for A = 0.5 um and

Bnax = 1

[l
-
.
N
o
x
(W
[}
[]
+

V131
Wppp = -2.50 x 1071, (25)
Hence there is only A/4 of astigmatism at the edge of the field (i.e.,
90° field angle).
Similarly fo: an f/10 system (&/} = 0.1) with an aperture diam-

eter of 5 cm and a maximum field angle of 0.5° (Byax = 0.00872), we have

for A = 0.5 m,
"131 =  0.545
5}222 = -0.095. (26)

Hence coma dominates at the edge of the field with a value of approxi-

mately A/2.
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Finally, for an f/10 system with an aperture diameter of 1 cm
and a field size equal to the size of the aperture (i.e., a pair of £f/10

relay lenses 1 cm in diameter), we have for A = 0.5 um,

0.625

W13

W22 -0.625. (27)

We find slightly more than A/2 of coma and astigmatism at the edge of
the field.

It should be pointed out that in each of the above cases the
radius of the Airy disc in direction cosine space is approximately equal
to 0.001 Bmax’ fdence the off-axis aberrations are of little more than
academic interest unless there is some structure in the aperture with
high spatial frequency content which will diffract light at large angles
from the direction of the incident beam.

However, the above analysis of the aberrations associated with
the diffraction process can be readily applied to holographic systems or
systems containing diffraction gratings.

For example, an f/6 system with a 10-line-per-mm Ronchi ruling
placed in a 40-mm diameter aperture produces the diffraction nattern
shown in Fig. 6. The diffracted order at three different field posi-
tions was photographed through a microscope with the following results:
at £ = 0 no aberrations were apparent; at 8 = 0.04 coma was predominate
with a value of approximately 5i; and at 8 = 0.10 coma and astigmatism

both have values of approximately 15A.
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i Fig, 6. Diffraction Pattera of a 10-Line per mm Ronchi Ruling Placed in
. an £f/6 Cone of Light with a 40-mm Diameter.

Magnified images of diffracted orders at various field positions
indicate that coma is predominant for small field angles with
astigmatism also becoming significant at larger field angles.
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By stopping the aperture down to a diameter of 12 wm (£f/20
system) and observing the diffracted orders at larger field angles,
astigmatism becomes the predominate abervation as shown in Fig. 7. The
sagittal focus lies on the observation hemisphere of radius » and the
medial and tangential surfaces have smaller radii as indicated. The
diffracted order at 8 = .022 exhibits sbout 6% of astigmatism. This
order was observed thrcugh focus with the microscope and the magnified
images are displayed.

In both of t'.c above csxamples the observed aberrations are in
good agreement with those predicted from the coefficients presented in

Table 1.

Shift Invariance of the Diffracted Wave Field

We have shown that any departures of the actual diffracted wave
field from that predicted by the simple Fourier transform of the aper-
ture function take the form of conventional wavefront aberrations.

If we neglect these aberrations, Eq. (22) reduces to

[ 2o a0 2 Vg,
= (28)

i2npr

Ua,8;P) = ¥ e
ip

But this is merely the Fourier transform of the aperture function multi-
plied by a spherical Huygens' wavelet.

1257
-BT,(&,5:;0)}. (29)

U(a,8;7) = y I—

ir
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Fig. 7. UDiffraction Pattern of a 10-Line per mm Ronchi Ruling Placed
in an t/20 Core of Light with a 12-mm Diameter.

Magnified images of a diffracted order at differeat focal
nositions indicnte that astigmatism is predominant, The
relationship of the sagittal, medial, and tangential sur-
face to the observation hemisphere is aiso shown.




This relationship is valid provided that the observation space is a
hemisphere centered on the diffracting aperture and if the incident
radiation is a unit amplitude spherical wave whose center of curvature
lies on the intersection of the observation hemisphere with the z-axis.
Furthermore, if r is large compared to the size of the diffracting aper-
ture, the Fourier transform relationship is sccurate, not merely over a

small region about the z-axis, but instzad over the entire hemisphere.

Now consider the situation where the incident raaiation strikes
the diffracting aperture a; an angle €, as illustrated in Fig. 8. This
is equivalent to introducing a linear phase variation across the aper-
ture. By applying the shift theorem [Bracewell (1965)] of Fourier
transfore theory to Eq. (29) we find that the complex amplitude distri-
bution on the hemisphere is a function of (B - Bo),

eiZn%
U(a,B-Bpir) = v

FT(2,5;0) exp[i2nByyll, (30)

o

ir

where 8 is the direction cosine of the position vector of the observa-
tion point, and B, is the direction cosine of the position vector of the
undiffracted beam. Note that these direction cosines are obtained by
merely projecting the respective points on the hemisphere back on to the
plene of the aperture and normalizing to a unit radius. The complex
amplitude distribution at an arbitrary point on the hemisphere can now

be said to be a function of the distance of the observation point from

the undiffracted beam in direction cosine space.
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Beam Strikes the Diffraction Aperture at an
Arbitrary Angle.
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As a specific example, suppose we have incident light striking a
diffraction grating at an angle 6p. The diffracted orders will strike
the observation hemisphere in a cross section which is not a great cir-
cle but instead a latitude slice as shown in Fig. 9. Thus for large
angles of incidence the various orders appear to lie in a straight line
only if they are projected down onto the a-~B plane in direction cosine
space. It is therefore clear that varying the angle of incidence merely
shifts the diffracted wave field in direction cosine space without
changing its functional form. This has been verified experimentally by
mounting a diffraction grating at the center of a transparent hemisphere,
placing graph paper cn the plane of the diffraction grating (a-8 plane),
and scribing appropriate latitude lines on the hemisphere upon which the

diffracted ord¢ . fall when illuminated with a small laser beam.

Summary

We have developed a very general treatment of scalar diffraction
theory that yields more insight and accuracy than the conventional
Kirchhoff and Rayleigh-Sommerfeld theories.

By describing the diffraction process in terms of the direction
cosines of the propagating light we have obtained the extrcmely powerful
result that the diffracted wave field on an observation hemisphere is
given directly by the Fourier transform of the aperture function. This

allows us to apply the well-known techniques of linear systems theory

that huve proven so useful in the area of image formation.
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Furthermore, we have shown that any departures of the actual
diffracted wave field from that predicted by tne Fourier transform rela-
tionship take the form of conventional aberrations whose behavior is
well understood in terms of the dimensions of the diffraction aperture,
the radius of the observation hemisphere, and the appropriate field

parameters.
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“HAPTER I1I
SURFACE SCATTER THEORY

In the following treatment the scattering of light from optical
elements is considered to be solely a surface phenomenon. Although it
is recognized that bulk scattering mechanisms, such as photon-phonon
interactions [Bloembergen (1965)] and scattering from free electrons
[Vachaspati (1964)], can exist if the substrate material is not per-
fectly conducting. Leader and Dalton (1972) have obtained some measured
data on the bulk scattering from dielectrics. The excitation of surface
plasmons has also been suggested by several investigdtors as contribu-
ting to short wavelength scattering from polished metal surfaces
[Beaglehole (1970), Hunderi and Beaglehole (1970), Crowell and Ritchie
(1970), Elson and Ritchie (1971), and Daudé, Savary, and Robin (1972)].
However, the above effects are believed to be small for most visible and

infrared radiation scattered from metal surfaces.

Surface Scatter Phenomena as a Diffraction Process

In Chapter II it was shown that the diffracted wave field on a
hemisphere is given directly by the Fourier transfcrm of the complex
amplitude transmittance of the diffracting aperture. In general, the
pupil function in a diffracting apert.e will include perturbations that

lead to scattered radiation. Surface scatter phenomena can thus be
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described as a diffraction process in which the pupil function ias ran-

dom phase variations in addition to any existing amplitude variaticns.
The diffraction theory of the previous chapter can therefore be directly
applied to the problem of predicting the complex amplitude distribution
on an observation hemisphere of radius r resulting Ffrom an incident beam

of light being reflected from a rough surface.

Effect of the S-attering Surface upon the System Pupil Function

Figure 10 illustrates the surface height variations (WR) as a
function of distance along the surface. This surface profile has
associated with it an autocovariance function and a surface height dis-
tribution function as indicated.

The effect of the rough surface can be considered to be a space-
dependent modifier, or random component, of the effective pupil function
of the system. The disturbance emerging from the scattering surface is

given by
U (& §0) = ap@§0) = ap (7;0p,,5:0). (31)
Here the pupil function of the system producing the incident
beam is given by

- . i, (2,550
p,(&y:0) = a;(%,§:0) e > (32)

where q; describes the amplitude variations across the exit pupii of the
system, and W; describes any phase variations or aberrations in the

wavefront of the incident beam.
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Fig. 10. Illustration of Surface Heigit Variations and Associated
Statistical Parameters.

The random component of the pupil function due to the scattering

surface similarly has an amplitude and phase component
£4ni (2,530)
pp(®,4;0) = VR(2,;0) e > (32a)
where R is the reflectance of the scattering surface and QR is the
above-mentioned surface height variation. Note that the phase varia-
tions on the reflected wavefront are twice as large as the actual

variations on the reflecting surface.
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Scattered Wave Field on a Hemisphere
The results of the previous chapter, [Eq. (29)], indicate that
the complex amplitude distribution on the cbservation hemisphere is.

given directly by the Fourier transform of Ub(&,y;O)

i2nh

Ua,8:8) = vy S— FUp(2,5;0)}. (33)

.’

ir

The total reflected flux P is obtained by applying Rayleigh's
theorem from Fourier transform theory

-

J-YP; |U(a,8;%) |2dads = a? ”lp(:’i:',g';O)lzd.%'dy'.
@ @ (34)

Noting that dw = dadB/y, the radiant intensity of the scattering

system can be written as

52 . ] .
I(a,B) = % = T U8R = a MFP@EF;0}2. (35)

Utilizing the autocorrelation theorem of Fourier transform theory, this

is equivalent to

ren) = o || peniope g 0ed. G
-®
The autocorrelation function of a Lambertian surface approaches
a Dirac 6-function; hence, its Fourier transform is constant and we
obtain
IL(a,ﬁ) - yK, K = ccastant (35b)

which is cons:istent with Lamhert's cosine law.
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The Effective Transfer Function of a Scattering System
Following the standard procedure used in image evaluation, the
effective transfer function of the scattering system is defined as the

normalized autocorrelation of the pupil function

«©

JJ p&',5';0)p* (& -z,5" -§;0)dz'dy"
H(z,5;0) = ——— . (36)
[ o900 22 ag:

The effective spread function of the scattering system is now

defined in the usual way as the Fourier transform of the transfer

]

function

p@E',5';0)p*(&'-%,5'-5;0)d2"dy’ }

Eg—ﬁs

S(e,B) = F{H(x,y;0)} =
JJ lp('w Al O)IZdE'dg'

-0

(37)

Direct substitution from Eq. (34) and Eq. (35a) results in the following
expression for the effective spread function in terms of the radiant

intensity of the scattering system

5(a,8) = -Y-‘?.r(a,e). (37a)

Scattering from Optical Surfaces

Let the height variations ﬁR of 2 given illuminated area on a

scattering surface be a two-dimensional sample function W iﬁi,g;O). A
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3 random process, i/R(&,g 30), is made up of an ensemble of such functions

E as shown in Fig. 11. For fixed spatial coordinates, Wp(%),5,;0) is a

random variable. And, for 2 specific sample function with fixed cpatial

coordinates, Wo.(&1,§11;0) is a single nuuber.
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J Fig. 11. An Cnscmble of Two-Dimensional Sample Functions ﬁ‘i(;.,;')

Representing Surface Height Variations Constitutes a Random
Process W(x,%).

Two random variables, W(X;,5y) and W(Xy,¥2) with fixed
spatial coordinates are also shown,
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Assumptions Concerning the Statistical Properties of an Optical Surface

We are primarily interested in the scattering vehavior of opti-

cal surfaces. The following assumptions are made concerning the statis-
tical properties of an optical surface prepared by conventional
fabrication techniques on ordinary optical materials:

1. The reflectance k is constant over the entire surface. This
assumption is not essential tut it is reasonable and fur-
thermore it has been shown by Shack (1967) that phase fluc-
tuations will dominate over amplitude fluctuations in their
combined effect on the spread function.

2. ﬁRci,g;O) is a single-valued gaussian random process.

3. ﬁR(i,g;O) is at least locally stationary in the statistical
sense (i.e., surface is homogeneous and isotropic).

4, The random variables ﬁR(&l,gl;O) and ﬁRC%Z,Qg;O), produced
by any two fixed pairs of spatial coordinates, are jointly
normal regardless of their correlation coefficient.

5. ﬁk(&,g;O) is weakly ergodic (i.e., the mean and autocorrela-
tion function determined by space averages using a single
sample function ﬁki(%,g;O) are the same as those determined

by ensemble averages).
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The Effective Transfer Function of a Scattering Surface
Substituting Eq. (31) into Eq. (36) we obtain -
T ian[Wpg-HEp) t4n[in;-Wrel -
jf ariarg € e dz'di!
Jf(ﬁ,gio) = -z poy
2 A ~
” lag|* didy: (38) C
where
= LN B I
a, a; &',5'30)
= PP vair:
ar aL(x z, y'-y; 0)
o s (5.4
N O (s B 3
Wpog = W @'-%, §'-§; 0)
WRI = WR(&':}?';O) -
- - ~ n"A A'_ -
WR2 = WR(ac X, u'-y, 0). (39) -
The above expression for the transfer function contains the ran-
dom variables WRZ and WRZ; therefore, taking the expected value we have
iZﬂ[WLl-WLgl 1:417[5131--;/;;2]
E Sy 2t
H ar 197 9€ Ele dz'dy
ElH(z,y;0)) = = - (49
JJ Ialeda“:'dg' .
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Since the random variables involved are assumed to be stationary,
the expected value uncer the integral is independent of &' and j' and //”

can be taken outside the integral

> ’I:ZTT[EILZ-WLZ] e
JJ ay a; q€ dz'dy

L4 [Wp7-Wpol
E{H(3,5;0)} = E{e RI7"RZ }'“’ - . (41)
[ tal2aerape

We now recognize the normalized autocorrelation function in the above
equation to be the transfer function of the optical system producing the

incident beam

o iZﬂ[ﬁlLl—fngl R
b a jaz ,¢ &'y
o (#,§;0) = T : (42)
JJ IaLIZCﬁ'dg'

The average quantity in Eq. (41) is therefore the equivalent transfer

function of the scattering surface

14| Wp1-Hps)
Jfk@%,Q;O) = E<e . (43)

But this is merely the joint characteristic function (Papoulis
(1965), p. 225) of the two random variables Wﬁ] and WﬁZ' Since WR] and

WR“ are jointly normal random variables, it can be shown
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that (see Papoulis (1965}, p. 226))

E{emn[wm—m]} . E4m(nionz) 872 (012-2C1 3+057) s
where
Ci2 = E{(Wrz-n1) (Wrg-n2)} 45)

~

is the covariance function of the random variables ﬁRZ and ﬁR”' But WRZ

and WRZ are identical functions merely displaced from one another; hence
61 = 0z = op n = np (46)
and

Cyp = chi,g) £ autocovariance of WR. 47

The equivaient transfer function of the scattering surface is thus given
by
Cpy(2:9) ]

—(4ﬂ0ﬁ])2 [1 - —-8;2'—

Hp(%,550) = e (48)

where 0&2 is the variance of the surface height distribution function

and cw(&,g) is the two-dimensional autocovariance function of the
surface.

Considerabie insight into the scattering process can now be
obtained by considering the nature of this transfer function. The auto-

covariance function approaches the value oﬁz as the displacement
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approaches zero. The equivalent transfer function thus approaches unity
as expected. As the displacement approaches infinity the autocovariance
function approaches zero and the equivalent transfer function
approaches a plateau of height exp[-(ZnoﬁOZ].

The equivalent transfer function of the scattering surface can
thus be rezarded as the sum of a constant component and a bell-shaped

component as shown in Fig. 12a. Equation (48) can therefore be rewrit-

ten as
H(£,9:0) = A+BQE,G;0), (49)
where
- (4mop) 2
A = e W
- (4nojp)?
B = 1-e¢
, C&, )
(41!0“W) ——c-ﬁ—/z——
A -1
Q(Z,5;0) = = . (50)
(4nop)?
e -1

The Effective Spread Function of a Scattering Surface
The significance of this interpretation of the equivalent trans-
fer function of the scattering surface is dramatically shown by the

inferred properties of the corresponding spread function. Since the
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transfer function is the sum of two separate components, the equivalent
spread function of the scattering surface is the sum of the inverse
Fourier transforms of the two component functions. Tho constant compo-
nent trensforms into a delta function, and the bell-shaped component
transforms into another bell-shaped function as shown in Fig. 12b.
Hence the scattering surface reflects an incident beam of light as a
specularly-reflected beam of diminished intensity surrounded by a halo
of scattered light. Furthermore, the relative power distribution
between the specular component and the scat:ered component of the
effective spread function are given by the quantities 4 and B
respectively.

Note that as more and more light is scattered, energy is trans-
ferred from the specular component of the spread function into the
scattered component of the spread function. For a perfectly Lambertian
reflector the specular component disappears completely from the spread

function.

Relationship between the Spread Function and the BRDF

From the above analysis it is clear that the Bidirectional
Reflectance Distribution Function (BRDF), (see Appendix C), which is
appearing frequently in the radiometry literature, is merely an infinite
family of two-dimensional spread functionms.

In general. the above scattering function (or the BRDF of dif-

fuse reflectance measurements) will change with angle of incidence just
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as the point spread function of an optical imaging system will, in
general, vary with the field position of the point source. However, the
analysis of imaging systems is greatly simplified by assuming an iso-
planatic system in which the point spread function does not change with
field position (and this is a reasonable assumption for many practical
imaging systems). Similarly, the analysis of light scattering systems
will be greatly simplified if they can be shown to be shift-invariant
(i.e., if the shape of the scattering function does not change with the
angle of incidence). If this is true, the four-dimensional BRDF degen-

erates into a single two-dimensional spread function.

Shift Invariance in Direction Cosine Space

The scattered light distribution on an observation hemisphere
will appear to consist of the sum of two components, a core which is the
delta function convolved with the spread function of the optical system
producing the incident beam, and a scattering function which is the
bell-shaped halo convolved with the spread function of the optical
system.

In Fig. 13 we have merely replaced the diffracting aperture of
Fig. 8 with a scattering surface and tiae geometry of the measurements
has been folded about the reflecting plane. Hence, we have the incident
beam striking the scattering surface at scme angle of incidence, a
specularly-reflected beam striking the observation hemisphere, and the

scattered light distribution being sampled at an arbitrary point with
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direction cosine coordinates o and B. The scattered light distribution
on the hemisphere will, in general, change shape drastically with angle
of incidence--becoming quite skewed and asymmetrical at large angles of
incidence. However, our theory predicts that, for certain surfaces with
well-behaved statistics, if the data collected on the hemisphere is
plotted as a function of the direction cosines of the pusition vector of
the observation point, this new scattering function will not change
shape but will merely be shifted in direction cosine space with changes
in angle of incidence. This is a rather significant development which
has profound implications regarding the quantity of data required to
completely characterize a scattering surface. However, it remains to be
shown whether scattering surfaces of practical interest can experimen-

tally be shown to obey these predictions.
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CHAPTER 1V

SURFACE SCATTER MEASUREMENTS

Apparatus
An instrument has been designed and built at the Optical Sci-

ences Center for making scattered light measurements o~ a hemisphere as
described in the previous chapter. A schematic diagram of this appara-
tus is shown in Fig. 14. The incident light passes through a chopper so
that synchronous detection with a PAR lock-in amplifier can be made.

The mechanical apparatus shown in Fig. 15 is located in a small nhotome-
tric darkroom in which the experiment is conducted. A movable arm with
folding mirrors can be positioned to direct the incident beam onto the
sample at any desired angle. A lens positioned on this arm focuses the
incident radiation onto the hemisphere mapped out by the detector; hence,
the geometrical configuration is consistent with that illustrated in
Fig. 13 of the previous chapter. Two separate driving mechanisms allow
us to measure the scattered light distribution over the entire hemi-

sphere bounded by the plane of the sample.

The Light Source
The light source employed is a Spectra-Physics Model 165 Argon
Ion Laser. The laser is operated with a light-regulated, single-

frequency output which assures intensity regulation to within
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Fig. 14, Schematic Diagram of Scatter Measurement Apparatus.
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Reproduced from
best available copy.

Apparatus for Measuring Scattered Light Distribution from
Optical Surfaces.

(1) Precision rotary table, (2) worm gear drive for arm
supporting detector, (3) photomultiplier tube and fiber-
optic probe, (4) sample holder, (5) movable arm with fold-
ing mirrors and lens for directing and focusing incident
beam, (6) P.A.R. lock-in amplifier, (7) high voltage power
supply for PMT.
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one percent. The measurements were made with approximately 20 mw of

power in the incident beam at a wavelength of 0.5145 um.

The Detector Unit

The detector is a Phillips one-inch, end-on photomultiplier
having an S-20 photocathode. Light reaches the photomultiplier by way
of a rigid fiber-optic probe. Such a probe offers several distinct
advantages in light sampling. In addition to allowing increased angular
resolution throughout the sampling space, and enabling us to sample
within half a degree of the incident or specularly-reflected beams, it
provides the ability to control the field of view of the detector for
the purpose of stray light rejection.

The original configuration consisted of a rigid fiber-optic
bundle bent such that one end was pointed toward the illuminated spot on
the sample. This end of the bundle thus acted as the collecting aper-
ture for the detection system. The other end of the fiber-optic bundle
proiruded into the photomultiplier tube housing followed by a series of
baffles to limit the field of view of the detector as shown in Fig. 16a.
This resulted in a detector response which had a gaussian dependence
upon field angle.

However, Ly introducing a small collecting lens and a field stop
in front of the fiber-optic bundle as shown in Fig. 16b, the baffles can
be eliminated 4nd a well-defined field of view of any desired size can

be obtained by properly choosing the size of the field stop. This is
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Fig. 16. (a) Previous Configuration of Detector Probe Unit.
(b) New Configuration of Detector Probe Unit.
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more clearly illustrated in Fig. 17. A coated doublet with a 10-mm
focal length was edged down and mounted in a black anodized brass tube

3 mm in diameter. A field stop allowing a S5-degree field of view was
fabricated and inserted into the tube at the rear focal plane of the
lens. This assembly was then positioned onto the end of the fiber-optic
bundle. The detector response from a small (point source) light source
was then recorded as a function of field angle for both detector probe
configurations. The results are displayed for comparison in Fig. 18.
Both the flat response and the sharp cutoff obtained with the modified
unit are highly desirable features. The flat response promises to elim-
inate signal variations due to slight misalignment or wobble in the
mechanical instrument while scanning over the hemisphere. The ability
to keep the field of view s.aall with a very sharp cutoff is essential
for stray light rejection.

The scattered light flux from a polished surface varies by sev-
eral orders of magnitude over the angular range to be measured. Hence
the linearity of the PMT was measured using a calibrated neutral density
wedge and several known neutral density filters to vary the incident
flux. The resulting linearity curve is shown in Fig. 19 and indicates a
deviation of less than 1% over a range of five orders of magnitude of

the incident flux.
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The Scanning Mechanism

The mechanical apparatus for measuring the angular dist-ibution
of light scattered from optical surfaces was shown in Fig. 15. The
detector probe unit is mounted on a rigid arm that can be rotated in
either of two orthogonal directions. Rotation about a vertical axis is
accomplished by means of 2 massive precision rotary table. The rigid
arm is attached to the rotary table by mezans of a worm gear arrangement
that allows rotation about the horizontal axis. The intersection of

these two axes defines the sample location.

The Incident Beam

A large movable arm with appropriate folding mirrors is used to
direct the incident beam onto the sample at any desired angle of inci-
dence. Immediately following the last folding mirror the beam is
focused onto a pinhole which acts as a spatial filter as shown in
Fig. 20. Lens L2 then forms an image of the pinhole upon the hemisphere
mapped out by the collecting aperture of the scanning fiber-optic probe.
This spatial filter assembly eliminates from the beam incident upon the
sample any light scattered from the folding mirrors as well as any dif-

fraction effects from the chopper blade.

Experimental Procedures

The instrument described in the previous section allows us to
measure the scattered light distribution over the entire hemisphere

bounded by the plane of the sample for all angles of incidence. However,
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in order to limit the quantity of data to be collected, the scattered
radiation field will be sampled in two principal directions. These
include the entire plane of incidence and a plane containing the inter-
section of the specular beam with the unit hemisphere, which is perpen-
dicular to both the plane of incidence and the plane of the sample
being tested (see Fig. 21). This particular sampling procedure was
chosen because each sampling direction then involves one fixed coordi-
nate in direction cosine space as discussed in the theory section of
this report. Furthermore, the apparatus was designed such that each of

the two independent drive mechanisms <orresponds directly to a given

coordinate in direction cosine space. Hence for a given observation
point determined by the angles 6 and ¢ displayed on the apparatus, the

corresponding coordinates in direction cosine space are given by

cosf sing

[+]
]

w
fl

sin6. {51)

Measurements will be made to within one degree of the specular

i beam in both directions. These measurements will be made for a variety
of angles of incidence on a set of samples consisting of an assortment
of glass types having been polished to varying degrees of surface
roughness. A sample with a diffuse Mg0Q coating will be used as a refer-
ence. Asymmetries that arise as a result of polishing techniques,
cleaning, and coating anomalies, can be investigated by rotating the

sampie about a normal to the surface.
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Sample Preparation

An original goal of the research reported here was to examine
the scattering properties of samples whose surface characteristics span
those typically produced with optical Jabrication techniques.

Surface preparation techniques used to produce a set of samples
are outlined in Table 2. All samples were finished to be nominally flat.

The prepared samples were cleaned prior to coating with aluminum.
Cleaning consisted of careful washing with Liquinox, a mild detergent,
under very warm, filtered tap water. Samples were then mounted in a
sample holder while held in distilled water. Once in a holder, samples
were moved to an ultrasonic cleaner filled with distilled water for
rinsing. Once rinsed the samples were set to dry in a dust-free atmo-
sphere. Dry samples weve removed from the sample holders and placed in
individual boxes being supported by the edge of their backside. Mott
(1671) used a similar cleaning technique, which he describes more
completely.

Cleaned dry samples were then plazed in a high vacuum chamber
and coated to 1 ear opacity with pure aluminum. Coating technique varied
from the standard only in that excessive care was taken to allow the
chamber to reach a pressure below 2 x 10-% torr prior to coating. The
samples were allowed to cool to room temperature prior to removal from
the chamber. Each coating run contaired ten different samples. Once
coated, samples were returned to their individual storage boxes. After

all samples were coated, the best samples of each type were selected for
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measurement. This selection was made on the basis of individual inspec-

tion of each sample while held under a microscope illuminator i. an
otherwise dark room. Samples that had coating nonuniformities, sleeks
or pinholes were rejected as were those with waterspots, large scratches,
or otherwise questionable appearance. Prior to each set of scatter mea-
surements, samples were again individually inspected for flaws. Dust
was removed using a commercially available pressurized air can. After
the scattering characteristics of each sample were measured, the sample

was returned to its individual box.

System Alignment

Prior to making any meaningful scatter measurements it was
necessary to systematically align the entire system.

The incident laser beam was first made accurately hori:ontal.
Then the mechanical apparatus was positioned such that the axis of rota-
tion of the movable arm supporting the folding mirrors (see Fig. 20) was
colinear with the incident beam. This was accomplished by means of four
massive leveling screws at the base of the stand supporting the entire
apparatus.

With mirror M1 removed the laser beam passes through the small
hole in the center of the bearings upon which the movable arf rotates.
This assures that the incident beam is indeed colinear with the axis of
roi.ation and furthermore allows the sample holder, which is mounted on a

shaft passing through the axis of the precision rotary table, to be
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accurately positibned so that the center of the scattering surface lies
at the intersection of these two perpendicular axes.

Mirror M1 is then put into place and adjusted until the laser
beam is centered upon mirror M2. Similarly, M2 is adjusted until the
beam is centered upon M3.

With the lenses L1 and L2 and the pinhole P removed from the
system, mirror M3 is adjusted until the beam is centered upon the sample
holder.

The incident beam is then made accurately perpendicular to the
axis of rotation of the movable arm by the following procedure. With
the sample removed, the rotary table is positioned so that the beam is
centered on the detector at position A. A polished sample is placed in
the holder and adjusted until the specularly-relfected beam returns pre-
cisely along the incident beam. Now the table is rotated until the
detector is centered upon the reflected beam at position B. If A and B
are not precisely 180° apart, systematically adjust mirrors M2 and M3
and repeat the above procedure.

Lenses L1 and L2 are then placed in the beam and properly cen-
tered. And finally, the pinhole P is accurately positioned at the back
focal position of lens L1.

With the system properly aligned, the movable arm can be rotated
to direct the inciacnt beam at any desired angle without requiring other

adjustments to keep the beam centered upon the sample.




An addi‘*ional requirement is that the PMT with its associated

e

fiber-optic probe be positioned and aligned such that the field of view
of the PMT remain accurately centered on the illuminated portion of the
sample throughout the entire range of its scanning motion. Provisions

were therefore made to allow three degrees of freedom (one translation

oML AGT L 3w 0 Yl i 30

and two rotation) in adjusting the position and orientation of the PMT

housing. Removing the PMT from its housing and illuminating the fiber-
optic probe from the back side greatly facilitates this alignment pro-

cedure as it allows one to directly observe the field of view on the

sample holder while making the necessary adjustments.

Measurement Technique

The sample to be measured is placed in the holder and the
movable arm positioned to achieve the desired angle of incidence. A
calibrated attenuator is then placed in the incident beam and the detec-
tor centered on the specularly-reflected beam. The collecting aperture
of the fiber-optic probe is large enough to collect the entire specular
beam; hence, the output signal, V,, of the PMT in this position is pro-

portional to the total flux in the specular beam.

The detector s then moved a known angular distance (approxi-
mately one degree) from the specular beam and the attenuator removed. A

profile of the scattered light distribution is then measured by scanning

the observation hemisphere with the fiber-optic probe. Approximately

30 separate readings are taken at different angular positions between
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the specular beam and the plane of the sample. This set of readings is
the raw data.

The sample is then removed and the incident beam allowed to pass
unobstructed through the sample holder and into a black absorbing
Rayleigh's horn. Background measurements are then made along the same
profile as above and subtracted from the raw data. These background
measurements were found to be completely negligible in most instances.

The data now describes the spread function of the scattering
system, which is made up of the spread function of the scattering sur-
face convolved with the spread function of the optical system producing
the incident beam. These are shown in Fig. 22.

The spread function of the incident beam is then measured by
again piacing the calibrated attenuator in the incident beam and cen-
tering the detector on the direct beam passing through the empty sample
holder. Since the collecting aperture of the fiber-optic probe is large
enough to collect most of the incident beam, the output signal, ¥,, of
the PMT in this position represents a good approximation to the total
flux in the incident beam. The detector is then moved a known angular
distance (approximately one degree) from the direct beam and the attenu-
ator removed. A profile of the incident beam is then measured. These
readings rapidly diminish to :zerc within five degrees of the peak value.

Since the spread function of the incident beam (Fig. 22a) is
narrow comparced to the scattering function of the surface (Fig. 22b),

the scatteiling porsion of the surface spread function is virtually
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unchanged by the convolution operation while the delta function compo-
nent merely replicates the beam spread function. The desired scattering
function can thus be obtained by subtracting the beam spread functi n

readings from the raw data.

Data and Results

Rather extensive scatter measurements have been made on two
representative surfaces. One is a ground gla_: surface which is a very
diffuse reflector. The other is an optically polished surface which is
a nice specular reflector. Both samples were coated with aluminum prior
to making the measurements. Four separate scattering profiles from the
specular beam to the plane of the sample (see Fig. 21) were made at
several angles of incidence.

The backscattering profile of the scattered light distribution
for these two samples is shown in Fig. 23 for several different angles
of incidence. Note that we are plotting the quuntity V/V,y along the
ordinate. Since V is proportional to the power coliected per unit solid
angle subtended by the fiber-optic probe and V, is proportional to the

total power in the incident heam, we can write

_Z N P/Aw - P/(A]’Aw). = Ll‘(ei’mi; Or, or) (52)
Yor Poy PolA E;(67,67) -

whe 2 4 1s the illuminated area on the sample.
Hence the quantity plotted along the ordinate is equivalent to

the reflected radiance in the sampled direction divided by the incident

B i i L nl"dﬂmhmﬂ
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irradiance, which is precisely the way the BRDF is defined. Our scat-
tering curves are therefore one-dimensional profiles of the four-
dimensional BRDF. Also, in accordance with our theory we are plotting
this function versus the quantity B-.,, which is the distance of the

observation point from the specular beam in direction cosine space.

Both coordinates are then plotted on a logrithmic scale. For the pol-
ished sample, the five curves with the incident angle varying from zero
to 60° coincide almost perfectly. Hence, it is apparent that the

scattering function does not appreciably change with the angle of

incidence. The corresponding curves for the rough sample coincide fcr a
substantial range of angles then begin to depart somewhat at the large
angles.

The four separate profiles of the scattered light distribution
from the same two samples with the incident beam at 45° are shown in
Fig. 24. Again the curves for the polished sample coincide almost per-
fectly, s. ~esting a rotationally-symmetric distributicn in directicn
cosine space. Some asymmetry is noted in the scattered light distribu-
tion from the rough sample.

The data on Figs. 23 and 24 confirm that for a certain class of

surfaces (in which optically polished glass is definitely a member, and

ground glass can perhaps be included to a lesser extent), the scattering

properties are indeed shift invariant, and can be completely character-

Pt TR G

ized by a single set of measurements at a fixed angle of incidence! ‘
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The scattering function for a variety of samples with a wide
range of mas surface roughnesses are exhibited in Fig. 25. XNote that
the MgO0 surface, which is somewhat of a diffuse reflectance standard,
yields a straight horizontal line as a Lambertain rrclector should.

Since the radiance of a Lambertian source is given by [Hudson (1969)]
.M -
L = = (583)

where M is the total emittance into a hemisphere, the height of the MgO
scattering curve is taken to be 1/v and all other scatter measurements
are normalized accordingly. The values of the rms surface roughness are

merely estimates.

It may be of interest to compare the scattering curves resulting
from special materials or unusual fabrication techniques with those of
more conventional optical surfaces. For example, the result of scat-
tering measurements on a polished beryllium sample and an ionically-
polisihed fused quartz sample are shown in Fig. 26 along with some curves
from conventional optical surfaces. All measurements are normalized by
the reflectance of the surface so that the beryllium does not appear to

have better scattering characteristics due to its lower reflectance.
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CHAPTER V

SURFACE STRUCTURE MEASUREMENTS

Three traditional techniques for obtaining surface structure
information involve profilometry, electron-microscopy, and FECO inter-
ferometry. Most profilometers provide too coarse a measurement for
optical surfaces. The electron microscope works nicely on the rough

ground glass surfaces but fails to yield sufficient information about

the smooth polished surfaces. However, since it requires multiple
reflections, the FECO interferometer works well on smooth surfaces with
a strong specular beam but does not yield good results for the rough
diffuse surfaces. The latter two complementary techniques will thus be

utilized in our research effort.

Electron Microscopy

Surface profiles of the rough samples are determined from
electron-micrograph stereo pairs using conventional stereo-
photogrammetric techniques [Moffitt (1959)]. Nankivell (1963) discusses
some of the stereo-pnotogrammetric problems unique to electron micro-
scope applications. A typical electron-micrograph stereo pair is shown
in Fig. 27a with a line scribed to indicate the position of a set of
preliminary surface height measurements that were made with a standard

Fairchild Stercocomparagraph. This instrument consists of a mirror
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stereoscope fitted with a parallax bar containing a micrometer for mea-
suring the parallax of each desired pair of points. The resulting sur-
face profile is shown in Fig. 27b.

The two statistical parameters which determine the scattered
light characteristics are the variance of the surface height distribu-

tion and the surface autocovariance function. A computer program was

written which takes the surface profile data and determines the above

two parameters. The transfer function of the scattering surface is then

calculated from Eq. (48) of Chapter III. The Fourier transform of this

R R ek i s

function then yields the predicted scattered light distribution.

thl ph i)

3 A Hewlett-Packard Mcdel 9810 programmable desktop calculator and
nlotter ic used for this data reductinn. The program has 2nly recently

been debugged and become operationazl.

Figure 28 shows several sections ¢f a suvface profile, a histo-

AT g 7, 3 P

gram indicating the surface height distribution along with a gaussian

S Sl ks

function for comparison, the surface aucocovariance function, ihe

resulting transfer function, and finally the scattering functior or

3 spread function.

: As this is a very recent result and due to some scaling problems
in the computer program, a comparison of this predicted spread function
with the measured scattering function is nct yet available. This work

is being continued under Contract F04701-75-C-0106.
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FEQD Interferometry

Surface profiles of the smooth samples will be made with a FECO

_ir erferometer. This data will aiso be used to determine the variance

of the surface height distribution and tihe surface autocovariance func-
tion. Bennett (1974) has reported on a scanning FECO interferometer
that can measure very small height differences with a lateral resolution
of 2 microns to yield statistics for optical surfaces. This instrument,
along with auxiliary equipment which includes a slow-scan TV camera,
signal averager, mini-computer, and a teletype unit, yields the surface

profile, mms roughness, surface height distribution function, autocovar-

iance function, and other statistical parameters for the surface.

We have sent two samples to be measured with the above apparatus.

Additional samples will be measured on a Hilger Watts N130 FECO inter-
ferometer here at the Optical Sciences Center. The results of these
measurements will be used to predict a surface spread function by
applying the theory of Chapter III. This predicted spread function will
then be compared to the directly measured scattering function in an
attempt to experimentally verify our scattering theory. The results of

this work will be reported under Contract F04701-75-C-0106.
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CHAPTER VI

SUMMARY

A theoretical model to explain surface scatter has been devel-
oped in which the scattering process is assumed to be a diffraction
rhenomena.

By describing the diffraction process in terms of the direction
cosines of the propagating light we have obtained the extremely powerful

.oult that the diffracted wave field on an observation hemisphere is
given directly by the Fourier transform of the aperture function. This
allows us to apply the well-known techniques of linear systems theory
that have proven so useful in the area of image formation. Furthermore,
we have shown that any departures of the actual diffracted wave field
from tha. predicted by the Fourier transform relationship take the form
of conventional aberrations whose behavior is well understood in terms
of the dimensions of the diffraction aperture, the radius of the obser-
vation hemisphere, and the appropriate field parameters.

This diffraction theory is then generalized to include the scat-
tering effects of rough surfaces. For certain surfaces with well-
behaved statistics, our theory predicts that, if the data collected on a
hemisphere is plotted as a function of the direction cosines of the
observation point, this new scattering function, which depends only upon

the variance of the surface height distribution and the surface
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autocovariance function, will not change shape but will merely be
shifted in direction cosine space with changes in angle of incidence.
This is a rather significant deveiopument, which has profound implica-
tions regarding the quantity of data required to completely characterize
a scartering surface. No approximations are made in the theoretical
development concerning the size of the surface height variations; heuce,
this theory should work equally well for very smooth, highly-pclished
optical surfaces and the very rough surfacazs freyuently used for batfle
materials.

An Instrument has been designed and built at the Optical Sci-
ences Center for making scattered light measurements (or BRDF measure-
ments) in an attempt to verify the above theory. This instrument is
capable of making measuremerts over the entire hemispherc bounded by the
piane of the sample (with an angular resolution of less than one degree)
for onv desired angle of incidence.

Extensive scatter measurements at a variecty of angles of inci-
denc: have been made on two representative surfaces. One is a ground
glass surface that is a very diffuse reflector. The other is an optu-
cally-polished surface that is a nice specular refiector. Both samples
were aluminized prior to making the measurements. "his data was then
plotted as a function of the direction cosines of the position vector of
the observaticn point. For the case of the swnoth sampie. thc five
curves with the angle of incidence varying from zere ¢ vy degrecs corn-

cide almost perfectly. The scattering curves for the rough sapplre
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cuoincide for a substantiat range of angles then begin to depart somevwhat
at large anc'es. The data from these two surfaces confirm that for a
certain class of surfaces (in which optically-polished glass is derfi-
nitely a member, and ground gla:s can perhaps be included to a lesser
degree) the scattering properties of the surface are indeed shift

invariant, and can be completely chsracterized by a single set of

measureuents at a fixed angle of incidence.

Surface profile measuremeats have been made on the rough sample
from electron-micrograph stereo pairs using conventional stereo-
photogrammetric techniques. Similar data wil! be obtained from a FECO
interferometer for the smooth sample. A computer program hes teen
written that takes the surface profile data and determines the variaace
of the surface height distribution and the surface autocovariance func-
tion. These two statistical parameters are then used to calculate the

effective trunsfer function of the scattering surface. The Fourier

&

transform of this quantity yields the predicted spreacd function or scat-

tering fuiction, which can then be directly compared to the measured

S ARt AN Mt e i Sk, e Ty

scattered light distribution. Tnis worl. is being continued under Con-

o
3

tract F04701-75-C-0106.

The above developments indicate that the inverse scattering
problem (determining surface properties from scattered light measure-
ments) may become far more attractive than measuring surface properties

directly.
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APPENDIX A

FRESNEL AND FRAUNHOFER DIFFRACTION

In order to simplify the calculation of diffracted wave fields,
it is customary to impose the restriction that the observation distance
z in Eq. (15) be much larger than the maximum linear dimension of
the diffracting aperture or the region of interest on the observation
ptane. Under this condition the term with (1 + )2 in the denominator
will not differ significantly from unity and the quantity 6@ - 3) in the
exponent is adequately approximated by retaining only the first two

terms of the binomial expansion for £,

o3 . B2+ @212 - 20884951 (A1)
2z

A sufficient condition for the validity of the above expression is the

following Fresnel approximation

30 > TIE@-2D2+ @427, - _ (A.2)

Substituting Eq. {A.1) into Eq. (15) results in the familiar Fresnel

Jiffracticen integral




iz ZF @2+92) @y
” Up(x',5';0) e”

- LT @)

x e dz'dy', (A.3)

whicl: is valid in the Fresnel region defined by Eq. (A.2).

1f the following more-stringent condition, called the
Fraunhofer approximation, is imposed upon the observation distance,
= 5 > Ht2 re2
1 3 T{Z'c + § )max s (A.4)

then the quadratic phase function in the aovove equation is approximately
unity over the entire aperture. The diffracted wave field on an obser-

vation plane in the Fraunhofer region defined by Eq. (A.4) is thus given

directly from the Fourier transform of the pupil function U-',5°0).

E

This is the weli-known Fraunhofer diffraction integral

b’Lsz 5 (5:2+y2) f
U(z,5:2) = — e JJ Ua(.'?:',j}';ﬁ)
iz e
; 22T o .
- @ e g
X e dx'dy'. (A.5)

However, the pupil function U,(Z',7';0) is equal to the product
of the complex amplitude transmittance of the diffracting aperture

(aperture function) 7,(z',5';0), and the complex amplitude distribution

incident upon the aperture. Hence, oniy wio a plane wave is incident
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upon the aperture is the Fraunhofer diffraction pattern given directly

by the Fouricr transform of the aperture function

=
LA
3]
-
&y
e
N>
~
[

e

RE2E: 1'5'.'- &2+52) ¢
[ 0@ 550

12

-0

- 1T @)
X @ de'dg’. (A.6)
Note that an identical expression is obtained from the Fresnel diffrac-
tion formula if a spherical wave converging to the observation plane is
incident upon the diffracting aperture

- };l (5:'2_,_‘1?'2)
U (',5":0) = T,(&',5'00e ° . (A.7)

In both of the above cases the Fourier transform must be evaluated at
a = 2/2 and B = %/2 to assure proper space scaling in the observaticn

plane.
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APPENDIX B

CALCULATION OF ABERRATION COEFFILIENTS

FOR DIFFRACTED WAVE FIELDS

For the case of a plane wave incident upun an aperture, the
diffracted wave field on an observation plane is given by E¢s. (16) and

(17), where
fo Po= @) . @3+ g (8.1)
The quantity 2 can be written as

~

* L = /E-EN)2+ (§-gT)2 + 32
= 3 /T (824872 = 28"+ )1/2%, (B.2)
w.ere
i 8
32 = &2+ 32, 8'2 = £'2 4 §'2,
A binomial expansio: of the above square root results in the following
) expression for ¥
W= Zat e 50282
4 - % (a4 + FILIN 4(%!.._937')2 + 282512 - 4§2(§ﬁv+gg')
- 48'2(xx'+yy')]/z“
+ higher-order temms. (B.3)
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If we assume a rot~tionally-symmetric diffracting aperture we
can, without loss of gentrality, choose the observation point on the
y-axis. Let us therefore set £ = 0. We can then let & = { and

§' = 8' cos¢, hence:
Wo= S 05%+ 50%/82

- %-[g“ + 3" + 4528'2 cos?p + 2525'2 - 4535 cos¢
- 458'3 cos¢l/z"

+ higher-order terms. (8.4

I1f we now substicute

IRy

g = pgr\ax’ a ! = a

into tne rrevious equation, we obtain

b o= Boa 2.2, (/N2 221732
W= 5 (G 0°+ (d/2)* a°)/3
- %-[gmax“p“ + (@t at + 4§max2(372)2 p2a? cos?y
+ 2y 2 (@/2)? o%? - 45 3(d/2) 0% cos¢
- 4§, 3(d/2)3 0@ cc3¢)/3
+ higher-order terms. {B.5)

Equating coefficients of corresponding terms between this equa-
tion and the wavefront aberration function given by Eq. (24), we obtain

tha aberration coefficierts tabulated in the first column cf Table 1.
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If we now have a spherical wave incident upon the aperture, the

quanti ty W in Eq. (17) is gaven by

Wos (B-3) - (Bp-3) + @' + §§')/5, (B.6)

where

b, = FZvgzva2 = 3 /1+82/50.

A binomial expansion of this quantity results in

(3*/3)2 - %-(é'/%)“ + ... . (B.7)

roj

20'2=

But these will merely cancel identical terms in the previous expansion
thus resulting in the alerration coefficients prescnted in column two of
Table 1.

For the c”se of a hemispherical observation space the diffracted
wave field is given by Eqs. (22) and (23). With a planc wave incident

upon the aperture, we have
B o= (@-7) + (o' + BJY). (B.8)

The quantity £ can be writien as

L = /(@-2')2+ (§-9')2 + 32
= »/AT[87 < 2F(R" + B/ , (B.9)
whese
§'2 = 5:'2 + g'Z’ f'2 = &2 ES ‘1;2 + ﬁ2.
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A binomial expansion of the above square root yields

i\\/ = }é', (év/f.)Z - % [§v!+ - 4“§'2(a*'+81')') % 43’2(@'*'89')2]/2?’“
+ higher-order terms. (B.10)

If we again ascume a rotationally-symmetric diffracting aperture

we can, without loss of generality, choose the observation point on the

f-axis. Let us therefore set a = 0. We can also let ' = §' cos¢ which
results in
Wo= 5 (8'/P)2 - L [3'" - 4788'3 cosg + 472623'2 cos?4}/p

+ nigher-order terms. (B.11)

If we now substitute

w
1}
©
w
-
[}
L}
[+
NIR?

into the previous equation, we obtain

Vo= 2 (d/20)2 &t - % [(d/2)* & - 49Bpax (d/2)3 8p3 coso

cofry

+ 43232 (d/2)2 8202 cos24]/PY
+ higher-order terms. {(B.12)

Again equating coeffi.ients of corresponding terus between this
equation and the wezvefront aberration function given by Eq. (24), we

obtain the aberration coefficients tabulated in column three of Tahle 1.
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If we now have a spherical wave iiluminating the aperture and a

hemispherical okservation space, the quantity W in Eq. (23) is given by

W @-2) - @o-1) + (&' + BY"), (B.13)

where
I, = BIT T = p /TT 82/32.

A binomial expansion of this quantity results in

b-p = Z@/m2-F G L : (3.14)

Once again these terms merely cancel identical terms in the previous
expdansion, leaving only coma and astigmatism present in the diffracted

wave field as indicated in the last column of Table 1.
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APPENDIX C

BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

The basic quantity that characterizes (geometrically) the
reflecting properties of a surface element d4 is the bidirectional

reflectance distribution function (BRDF). This quantity

Fp(835955 Bps ) dL, (67,975 Opséps E7)/dE.(87,¢7)

dLr(ein¢i; By O3 Ei)/Li(ei»d’i)in (51'-1)

(c-1

is defined by Nicodemus (19701, as the reflected radiance

dLyp(0;,0;: 8p,¢ s E;) of the surface clement d4 in the directior (0p,¢p)
divided by the incident irradiance dE;(6,97) = Li(87,¢7)d: producing
it. The geometry of this situztion is illustrated in Fig. 29, where the
element of projected solid angle is given by d2 = cosédw.

Th umerical value of the BRDF for a given pair of incident and
reflected ray directions may vary from zero to infinity. In particular,
consider two ideal cases. The BRDF is a constanu ‘or all reflected
directions for a perfectly diffuse (Lambertian) surface; and it becomes
infinite (as a Dirac delta function) for a perfectly specular reflector.
The BRDF, defined above as a ratio of infinitesimals, is an idealized

concept that can never be measured exactly. Real measurements are
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Geometry of Incident and Reflected Elementary Beams
Used to Define the Bidirectional Reflectance Dis-
tribution Function.
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always made over some finite solid angle and wavelength interval and ran
therefore yield only average velues fp over those parameter intervals.

The BRDF is basic in the sense that all other reflectance or
scattering functions can be derived from it. For example, Judd (1967)
lists nine different kinds of reflectance functions based on the angular
extent of the incident and reflected radiation. Ail of them can be
derived from the BRDF.

Note that the BRDF is a four-dimensional quantity that can be
thought of as an infinite family of two-dimensional light Jdistribution
functions--one for every possible angle at which the incident beam can
strike the surface element. This irvolves an overwhelming quantity of
data, especially where high directional resolution is needed to

describe glints and specularities.
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APPENDIX D

LITERATURE REVIEW

Tr - following listing serves as a bibliography for this report
as well as an update of the literaturc review initiated under Contract

F04701-72-C-0181.
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