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INTRODUCTION 

There is currently a need for large area, inexpensive pyroelectric 
detectors with a high depoling temperature and a large pyroelectric co- 
efficient.  This study was undertaken to look for pyroelectricity in 
poled chalcogenide glasses.  AS2S3 glass is composed of polar pyramidal 
AS2S3 molecular groups which are weakly bonded to each other.  If these 
molecular groups could be oriented through the application of an electric 
field at elevated temperatures and then frozen into the new position by 
lowering the temperature the glass would then be in a polar state And, 
if the polarization associated with this polar state were temperature 
dependent, the material would then be pyroelectric. 

The electrical and optical properties of the As-S system have been 
reported by various authors. '   Recent optical and Raman measurements, »^ 

support the molecular model for As2S^.5  The physical properties of the 

As-Se-Te system, which is similar to the As-S system, have been reviewed. 
The interest in amorphous chalcogenides arises primarily because of the 
applications to xerography and computer memories.  Also, these materials 
have the ancillary benefits of being easily prepared, non-crystalline, 
electronic semiconductors, which are relatively insensitive to impurities. 

PYROELECTRIC MATERIALS 

Of the 32 point groups 10 have a unique polar axis and are therefore 
called polar crystals. The magnitude of the spontaneous polarization in 
these materials depends on temperature. If the temperature changes, 
charges appear on the crystal faces which are perpendicular to the polar 
axis. This is called the pyroelectric effect. If the crystal faces are 
electrically connected, a current will flow when the crystal temperature 
is changed.  The current obeys the relationship: 

I = AP(T) f1- (1) 
at 

1 
R.L. Myuller and Z.U. Borisova, "Solid State Chemistry", Consultant 
Bureau, New York, pp. 168-179 (1966). 

2 
F. Kosek and J. Tauc, Czech. J. Phys. B 20, 94 (197). 

3 
G. Lucovsky, Phys. Rev. B 6, //4, 1480 (1972). 

4 
R.J. Kobliska and S.A. Solin, Phys. Rev. B 8, //2, 756 (1973). 

5 
G. Lucovsky and R.M. Martin, J. Non-Cryst. Solids 8, 185 (1972). 

6D.D. Thornburg, J. Elec. Mat'Is 2, #4, 495 (1973). 



where A is the crystal area, P(T) is the pyroelectric coefficient and 
dT/dt is the time rate of change of the temperature.  The pyroelectic 
coefficients in (nC/cm? °C) for several well-known materials are as 
follows:  Sr 73Ba 2;

Nb206 (28°)> LiTa03 (18), TGS (16-35), LiNb03 (8.3), 

and PVF2 (2.4). 

EXPERIMENTAL PROCEDURE 

Bulk samples of As„S„ from Americal Optical Company were cut and 
polished into 1 cm x 1 cm x .025 cm platelets; samples of the same size 
were also obtained from Servo Corporation.  Some measurements were made 
on samples that were less than 1 cm .  The samples were subsequently 
aluminized or silvered on both sides.  However, the silvered samples could 
not be used for electrical measurements because the silver readily 
diffuses into the As2S^ glass lowering the resistivity.  The capacitance 
and D-value of each sample at 1 kHz were measured before and after the 
poling process on the General Radio Model 1683 RLC bridge.  The results of 
these measurements are: 

(a) e- * 11 

(b) p *  1011 ohm-cm 

(c) p decreases slightly (y  20%) after poling 

(d) aluminum does not readily diffuse into AS2S3 

(e) silver readily diffuses into AS2S3 substantially lowering 
the resisitivity 

The poling circuit shown in Figure 1 consists of a D.C. power supply 
in series with a 105 ohm limiting resistor, a 103 ohm voltage dividing 
resistor and the sample.  The sample holder leads are made from thin 
walled stainless steel tubing to minimize thermal losses from the furnace. 
The aluminum sample block is much more massive than the AS2S0 platelets 
in order to minimize temperature fluctuations.  A chromel-alumel thermo- 
couple is used to monitor the temperature of the aluminum block.  The 
thermocouple output is electrically connected to one channel of a dual- 
pen strip chart recorder.  This experimental arrangement allows the 
simultaneous monitoring of sample current and temperature as a function 
of time. 

I-V CHARACTERISTICS 

A plot of current vs. voltage for a sample temperature of 220°C is 

shown in Figure 2.  The I-V curve is the same for both current directions. 
It can be seen from this plot that the I-V characteristic is linear for 
voltages up to 400V (16 kV/cm).  This linear I-V characteristic is taken 

as an indication of ohmic contacts.  Some care must be taken in interpreting 
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Figure 1.  Poling Circuit:  The sample is held in place and the 
voltage is applied via the sample holder.  The 
current and the temperature are monitored continously. 
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Figure 2.  The linear I-V characteristic for AS2S3 glass at 220 C 

shown for fields up to 16 kV/cm. 



I-V characteristics in low mobility semiconductors.  For example, with 
ohmic contacts the low current I-V characteristics is linear up to the 
point where more charge is injected than can be stored in the sample. 
At this point the current becomes space charge limited (SCL), that is, 
the carrier transit time equals the dielectric relaxation time.  In this 
region (SCL) the I-V characteristic is not linear even though the con- 

tacts are perfectly injecting.  At higher current densities the I-V curve 
can become electrode limited; that is, the effect of the electrode not 
supplying enough carriers will manifest itself in the I-V characteristics. 
The I-V characteristic can be linear in the electrode limited region. 
Therefore, a variety of I-V characteristics can arise with ohmic contacts. 

ACTIVATION ENERGY AND BAND GAP 

A log current vs. 1/temperature plot for AS2S3 glass with aluminum 
electrodes and 300 V (12 kV/cm) applied is shown in Figure 3.  The data 
can be fit by two straight lines intersecting near the softening temper- 
ature.  If the current-temperature function is approximated in the 
following form. 

I - I0exp(-<)>/kT) (2) 

the activation energy ((j>) is equal to 1.20 eV below the softening point 
and 1.53 eV above. 

Kolomiets et al., determined the band gap of As-^S-, by optical 
absorption measurements to be 2.40 eV at room temperature? The relationship 
between the activation energy and the band gap is described in Kittel^ 
for an intrinsic semiconductor as follows: 

(f> = E/2 + 3/4 kT log (m,/m ) (3) 

m , 
e where m, and m are the hole and electron masses respectively.  If m, 

then the activation energy 4> = Eg/2. In amorphous semiconductors 

the Fermi level does not occur precisely in the middle of the forbidden 
band due to differences in the smearing of the valence and conduction 

bands.  Therefore, the activation energy measured by the conduction process 
(1.20 eV) should be approximately one-half of the optical band gap (2.40 eV) 
The agreement here is good. 

7 
B.T. Kolomiets, T.F. Mazets, Sh. M. Efendieve, and A.M. Andriesh, 
J. Non-Cryst. Solids 4, 45 (1970). 

8 
C. Kittel, "Introduction to Solid State Physics", 3rd Edition, 
John Wiley & Sons, Inc., Inc., New York, p. 307. 
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POLING RESULTS 

Poling was attempted by applying electric fields up to 16 kV/cm 
while temperature cycling the samples from room temperature to 220°C 
and back to room temperature.  The poled samples (without applied voltage) 
were then connected in series with a Keithley 150AR microvolt-ammeter. 
The temperature was then raised from 23°C to 220°C.  The current generated 
by the sample and the temperature were monitored continuously; a typical 
plot is shown in Figure 4.  It can be seen in Figure 4 that no measureable 
current is generated by the sample at temperatures below 125°C.  At 
temperatures near 160°C the current rises sharply with temperature.  The 
peak of this curve depends upon the poling history, the time-temperature 
history, and the magnitude of the temperature.  The direction of current 
flow is in the same direction as when the sample is replaced by a capacitor. 
From integrating the current over the time and assuming that all of the 
charge is on the surface it is found that the surface charge density is as 
high as 4u coulombs/cm2.  This corresponds to one electronic charge per 

400 A .  For the purpose of comparison, BaTiO, a well-known ferroelectric 
material, has a remnant polarization of 25)J coulombs/cm2.  The charge/cm2 

stored in these samples due to the one kilohertz capacitance and the 
applied voltage is 15 x 10 3u coulombs/cm ; this is approximately 270 times 
smaller than the poling charge.  If one considers that the charge is dis- 
tributed throughout the volume of the material, the charge within the 
sample corresponds to 10^ charges/cm^.  It is not unusual to have im- 
purity concentrations in semiconductors of 10  /cm3. 

Equation 1 describes the current generated by a pyroelectric detector. 
The current from the samples (as in Figure 4) is not pyroelectric in origin 
because I is not zero when dT/dt = 0, I does not change sign with dT/dt 
and [ is time dependent.  If there is a pyroelectric current it is in the 
noise.  For this experimental sensitivity this means that P(T) *   .36 x 10~9 

coulombs/cm2 °C. 

The maximum possible pyroelectric constant was estimated using a more 
sensitive apparatus.  A poled specimen at room temperature was plunged into 
hot oil (80°C) and then into cold insulating oil (ca. 15°C).  The specimen 
temperature was monitored with a thermistor embedded in a teflon specimen 
holder; the current from the specimen was monitored on a Keithley Electro- 
meter, Model 616.  Heating and cooling rates as high as 15°C/min were 
achieved.  The electrometer and thermistor outputs were fed through a 
digital data acquisition system into a Wang calculator where the pyro- 
electric constant and temperature change were calculated and tabulated; and 
the pyroelectric constant versus temperature was plotted.  From this data 
we estimate that the pyroelectric constant must be less than 1 x 10-12 

coulombs/cm2 °C.  It is possible for the samples to be polar and to have 
a negligible pyroelectric coefficient if the dipole moment is temperature 
insensitive. 
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An explanation for the observed current in Figure 4 is that 
charge is trapped within the sample during the poling process and is 
subsequently released when the sample is heated.  An alternate explanation 
is that the ASS3 dipolar pyramids are partially aligned via the electric 
field and frozen into position when the sample is cooled.  When the sample 
temperature is elevated the dipoles become disordered and a current flows 
to accommodate the change in polarization. 

The current vs. time relationship was measured at 220 C, 200°C, 180 C, 
and 160°C for various poling voltages in an effort to understand the 
polarization mechanism.  In Figure 5 the current vs. time curves are shown 
for an AS2S3 glass sample poled and depoled at the temperatures shown. 

These discharge curves were measured by short-circuiting the sample through 
the nanoammeter immediately after poling at 400 V (16 kV/cm) for 1 minute. 
It is evident from the curves that there is more than one relaxation time 
involved at each temperature.  The relaxation times vary from about 10 
seconds to 400 seconds.  It is also evident in Figure 5 that the total 
charge varies considerably with temperature (^ 2300 nC at 220 C and ^ 60 
nC at 160°C).  The short circuit current relaxation times (TT    (slow), 

TI SC^ast^J^ at tne £°ur  temperatures are shown in Table 1.  The fast and 

slow relaxation times are taken at the beginning and end of each curve 
respectively.  The open circuit current relaxation times ( TxT ~p(slow), 

xr n_(fast)J) are also shown in Table 1.  These values are obtained from 

the open circuit discharge curves which are measured by inserting various 
delay times between termination of the poling voltage and the commencement 
of the short circuit measurement.  A typical example of a series of these 
measurements is shown in Figure 6.  These are current vs. time curves where 
the delay time can be read directly from the graph. The open circuit dis- 
charge curves are shown in Figure 7.  As can be seen from the curves and 
in Table 1, the relaxation times vary markedly. 

On comparing the discharge curves in Figures 7 and 5, no simple re- 
lationship is found between the open circuit and short circuit curves. 
The major difference arises between the 220°C curves where the open cir- 
cuit values are much higher than the short circuit values.  This same 
general behavior is seen also at 200°C; however, the differences are not as 
pronounced. At 180°C the open circuit values fall below the short circuit 
values then level off to be higher.  This same behavior is seen also at 
190°C.  At 160°C the curves are quite similar over the limited range of 
values.  In an attempt to analyze these results an equivalent circuit 
model of the electroded sample was used.  It was assumed that the bulk of 
the sample could be represented by a capacitor in parallel with a resistance 
which decreases exponentially with temperature.  The contact resistance is 
assumed to be temperature independent and in series with the capacitor. 
With this model the open circuit discharge curves arise from the capacitor 
discharging through the resistance with a time constant (RC) which depends 
on temperature.  From the capacitance and resistance values for the samples 

11 
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Figure 7.  Open circuit current versus time curves are shown for poled 
AS2S3 glass.  The sample was poled and depoled at the tem- 

peratures indicated on the curves. 
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the R-C time constant ranges from 4 x 10-i seconds at 220°C to 4 x 10"* 
seconds at 160°C.  These results are not in agreement with the data in 
Figure 7 and Table 1.  Additionally, this model will not account for the 
differences between the open and short circuit curves.  A dipolar model 
and a trapped charge model will also be considered. 

By integrating the current vs. time curves over the time we obtain 
the charge remaining on the sample vs. time for the open and short cir- 
cuit configurations.  These curves are shown in Figures 8 and 9 respectively. 
The relaxation times for these curves vary considerably.  No curve can be 
described by a single relaxation time.  The open and short circuit fast 
and slow relaxation times are given in Table 2.  Again, the fast and slow 
values are obtained at the beginning and end of each curve respectively. 
The greatest difference between the open and short circuit polarization 
curves arise again for the 220°C data.  At 200°C the open circuit polar- 
ization curve crosses the closed circuit polarization curve from below 
after approximately eight minutes.  The open circuit polarization at 180°C 
is higher as a function of time than the closed circuit curve; at 160°C it 
is somewhat lower.  This data does not fit the simple dipolar model con- 
sidered for this glassy system in the following calculations. 

DIPOLAR MODEL RESULTS 

Consider N  dipoles per unit volume of moment p at temperature T in an 

electric field E.  The potential energy of each dipole is 

U = -p  E = -pE cos6 (4) 

where G is the angle between the field and the dipole.  The polarization 
P per unit volume is 

P = Np <cos0> (5) 

where <cos6> is the average over the thermally equilibrated distribution. 

From the Boltzmann distribution 

<cos0> = /e^BU
C°s9 d" = ctnh 3U - 1/eU (6) 

fe        dfi 

where ft = 1/kT. 
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O  220#C 

Q(nC) 

Figure 8. The open circuit polarization versus time curves are 
shown for AS2S3 glass after having been poled at the 

temperatures indicated. 
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O 220*C 

a 200*C 
A 180'C 

• 160*C 

Q(nC)  i 

TIME (MINUTES) 

Figure 9. The short circuit polarization versus time curves are 
shown for AS2S3 glass after having been poled at the 

temperatures indicated. 
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For a dipole strength of 10-1' esu and a field of 12 kV/cm 
(40 statV/cm), pE = 4 x 10~16 erg.  At room temperature, kT % 4 x 10"11* 
erg.  Therefore pE/kT ^ 10"? << 1 and 

ctnh pE/kT - kT/pE £ pE/3kt (7) 

.' .  P = Np2 E/'JkT (8) 

For the case of AS2S3 glass, the probability that an AsS^ dipole 
will reorient under the influence of an electric field depends also on 
how tightly the molecule (dipole) is bound to the neighboring molecules. 
This means that the number of dipoles available for reorientation depends 
on the binding energy a and the temperature T.  This relationship can be 
expressed as follows: 

N = N e"a/kT (9) o 

and therefore 

P = NQ e"
a/kT p? E/3kT (10) 

As the temperature increases the number of dipoles increases but the 
disorienting effect of temperature increases as well.  There is a peak in 
the polarization versus temperature curve.  By differentiating P with 
respect to T and setting the function equal to zero one finds the optimum 
poling temperature 

Topt = a/k (11) 

Two results of this calculation are that the polarization increases 
linearly with the field; and, the polarization increases with temperature 
up to Topt and then decreases. 

The polarization versus time data for various voltages is shown for 
temperatures of 160°C, 180°C, 200°C, and 220°C in Figures 10 to 13 re- 
spectively.  It can be seen from the data that the amount of polarization 
depends on time, temperature, and field.  At any given temperature the 
amount of polarization saturates with time and with field.  This result is 
not in agreement with Equation (10) in that the polarization does not in- 
crease linearly with field.  Even under the circumstances where the polar- 
ization is increasing with field the increase is not linear.  Also, it is 
highly unlikely that the dipole moment would be large enough to make the 
approximation in Equation (7) invalid.  From Figures 10 to 13 it is evident 
that the polarization increases markedly with temperature.  A plot of the 
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peak polarization as a function of 1/temperature is shown in Figure 14. 
However, it is not clear from this curve that there is an optimum poling 
temperature as is predicted in Equation (11).  If an optimum poling 
temperature exists, it is above 220°C.  Additional data above this temper- 
ature is difficult to obtain inasmuch as the glass softening point is 
195°C. 

The fact that the polarization saturates at low voltages would imply 
that there are a given number of charge traps at a given temperature. 
These traps are then filled when a voltage is applied to the sample.  As 
was pointed out previously, the charge stored within the sample corresponds 
to 1015 electrons/cm3.  This does not correspond to an unusually high trap 
concentration. 

CHARGE TRAPPING* 

For non degenerate semiconductors, the thermally equilibrated free 
electron concentration is given by 

n0 = Nc exp [(FQ - Ec)/kT] (12) 

where Nc is the effective density of states in the conduction band, Ec 
is the lowest conduction band energy, k is the Boltzmann constant, T 
is the temperature in degrees Kelvin, and FQ is the equilibrium Fermi 
energy. 

The concentration (nto) 0f filled electron traps at energy level 

Et is as follows: 

V0 " 1 + 1/g exp [(Et - FQ)/kT] "  1 + (l/g)(N/n0) 

where N = Nc exp [(Efc - Ec)/kT ] , and 

where Nt is the trap concentration and g (degeneracy) is a statistical 

weighting factor.  This is an equilibrium condition which arises from 
electrons being captured and reemitted into the conduction band.  When 
an electric field is applied to the sample, the balance between the free 
electron concentration and the trapped electron concentration is changed 
by the injected charge.  In other words, a new equilibrium is found based 
on the new free electron concentration n.  The corresponding quasi-Fermi 
level F is related to n as follows: 

n = nQ + n. = Nc exp [(F - Ec)/kl] (14) 

M.A. Lampert and P. Mark, "Current Injection in Solids", Academic Press 
New York (1970). 
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Figure 11. The polarization of As2S3 glass is shown as a function 

of time for various poling voltages at a temperature 
of 180OC. 
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Figure 12.  The polarization of AS2S3 glass is shown as a function 
of time for various poling voltages at a temperature 
of 200°C. 
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Figure 13.  The polarization of AS2S3 glass is shown as a function 
of time for various poling voltages at a temperature 
of 220°C. 
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Figure 14.  Saturation polarization vlaues are plotted as a 
function of l/temperature for As^S., glass. 
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where ii: is the injected free charge concentration, n() is the equilibrium 
free charge concentration, and Nc is the conduction band density of states. 
Under these circumstances the trapped charge concentration is 

nt == nt,i + nt,o == 1 + (l/gfexp [(Et - F)/kT] 

where n  . is the excess trapped electron concentration due to injection, 
t, i 

The relationship between the free and trapped charges can be obtained 
by balancing the trapping rate r against the thermal ionization rate gt^ 
as follows: 

r = n <vo> (Nt - nt), and (16) 

8th " nt <e> V 

Nt 
where r = ghi. and n_ =  :  tn     c   1 + (<e>/<va>)(N /n) 

(18) 

In the above equations, v is the magnitude of the free electron velocity, 
a  is the trap capture cross section, <vo> is the average of vo over the 
free electron velocity distribution, and <e> N = E^e^, where E^e^ is 
the probability per unit time of thermal ejection of a trapped electron 
into conduction band state k summed over all conduction band states. 

When the sample is thermally equilibrated, n = n0 
ar»d nt = nt,o' 

By using Equations (13) and (18) we find that 

<e>     N    1    E„ - E ,     , 
° , = - exp -^ E <19> 

<vo>0  gNc   g 
exp   kT 

Assuming that Rc and R are the electron capture rate and thermal emission 
rate respectively we have 

Rc • n/xc,  1/TC = n<va>, (20) 

R„ = n/T_,   1/Tp = <e>Np (21) 
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where i  and 1  arc the capture and emission lifetimes.  Using Equation 

(19) in Equation (21) we obtain 
i 

Te = (g/<vo> Nc) exp [(Ec - Et)/kTj. (22) 

Evaluating Equation (22) we assume that g = 1, No. 101" cm-3, a "\< 10""  cm2, 
<va> ^ 10~8 cm3/sec, T = 160°C and 220°C, and therefore, kT = .037 eV 

and.043 eV respectively.  Equation (22) then becomes Te % 10
-11 

exp [(Ec - Et)/kT] .  Values xe for various Ec - Et values are tabulated 
in Table 3.  It is clear from the table that the trap levels that are 
measured in this experiment are in the range 1.0 to 1.4 eV.  The band gap 
of AS2S3 is "v- 2.40 eV.  To explore the deeper traps higher temperatures or 
light of the right wavelength must be employed.  The shallower traps have 
too short a relaxation time to be seen with the experimental techniques 
employed here.  It should also be remembered that a large amount of 
structural disorder is expected in these samples.  This means that the 
environment can vary substantially from one trap site to the next.  There- 
fore, it is expected that the trap energy will not be well defined.  If 
this is the case, then it is also expected that a variety of relaxation 
times will be seen.  This is exactly the case as is evident in Figure 5 
and Table 1. 

Another consideration here is the transit time of the electrons across 
the sample.  If this time were slow enough the sample discharge time could 
be transit time limited.  Taking our sample thickness (d ^ 1/4 mm), the 
voltage applied (^ 400V), and a conservative mobility value (u "V 1 cm2/V sec) 
and using the equation for the transit time (L2/Vu) we find that the transit 
time is ^ 1.6 x 10-6 sec.  On the basis of these numbers it can be said 
that the discharge time of the sample depends on the thermal emission time 
of the traps. 

Applying Equation (15) to the data in Figure 14, it is calculated that 
Et - F 'VJ 1.3 eV.  This means that the dominant trap levels occur at 1.3 eV 
above the quasi-Fermi level.  Assuming small errors in the calculation of 
the energy levels, the dominant trap levels would occur very close to the 
conduction band.  Traps at this level have too short a lifetime to be 
measured in these experiments.  Also, the fact that the 220°C points do not 
fit the exponential approximation could be due to the 195°C softening point 
affecting the trap sites. 

CONCLUSIONS 

On the basis of this study it is concluded that: 

(a) Aluminum forms a non-diffusing ohmic contact on AS2S3. 

(b) Poled AS2S3 glass stores charge which is released when 

temperature cycled.  The magnitude of the charge depends on temperature 
and poling voltage. 
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(c) The discharge of the samples can be described by a multiple 
relaxation time process. 

(d) The data is not well described by a dipolar model. 

(e) The data fits a trapped charge model better than a dipolar 
model. 

(f) The trap levels measured in these experiments are in the 
range 1.0 to 1.4 eV. 

(g) There is no evidence of pyroelectricity in these samples. 

.' 
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