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SUMMARY g

1
Probabilities of Excessive Deviations of %
Simple Linear Rank Statistics ]

Let {SN} be a sequence of r.v.'s whose asymptotic distrjbution
is N(O, oﬁ) and let {xN} be a sequence of constants with x, « ~. A
(righthand) excessive deviation is an event of the form {SN > anN}.
The asymptotic normality of Sy tells us P{SN > xNoN} +0, N w,
but not the rate of this convergence., These rates are needed for
the evaluation of Bahadur (x = x/N) and Bayes Risk (xy = xV1os N)

efficiencies, When SN is a k-sample linear rank statistic (see

Hajek and $iddk (1967)), and xZ = o(N), we show

log P{SN > xNUN} N - x§/2, assuming the null hypothesis. 1In the
two~gample case, we astablish aleo that

P{SN > chN} - o{exp[-xﬁlz + J(xN, AN)]}, when NAg (0 < A ¢ L) e

the size of the first sample and J is a function whose hehavior is

analyzed for various Xy and AN' For example, if xﬁ = o(N), then

| J(xys Ay) = o(l) as N + =, |

"
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i« Introductlion,

Simple iinear rank statistics arise in a variety of situations,
particularly in the problem of testing the equality of two or more
distributions by non-parametric tests. While the asymptotic
distributions of simple linear rank statistics have been studied
extensively (see, e.g., Hdjek and §1dlk (1967)), investigations
concerning their large deviation properties have heen made only
recently (Stone (1967, 1968, 1969) .and Woodworth (1970)). Tn this
paper we study the rates of convergence to zero of null probahili~
ties of excessive deviations of k-sample (k > 2) simple linear
rank statistics. We begin in this section with discuasions of the
notions of an excessive deviation and of a simple linear rank sta-

tistic. The results are in Section 2 and the proofs are in

Section 3.

The concept of an excessive deviation of a random variable will

be discussed here in a general setting. Let {SN, N>1) bea

sequence of random variables with positive finite variances and
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let {UN, N > 1} be a sequence of poaitive constnn’'« sneh 1hat
1.1) lﬂplP{SNSxaN) - #(x)| + 0, N w,

where ¢(+) is the standard normal distribution function.
Let {xN. N 2 1} be a sequence of nonnegative real numbers.
We call P (x\) = P{8, > xyo,} the probability of a_(right-hand)

deviation of sirze x, of Sy. A trivial consequence of (1.1) is
.2 PN(xN) v o(‘xN)v N+ =,

provided x, = 0(1). However, when Xy * @ (1.2) 1s clearly no
longer a direct consequence of (1.1), which leads one tu auk:
given {S,} and {x,}, where Xy * @ ut seme spacified rate, docs
(1.2) hold? If not, what exactly is the asymptotic behavior of
PN(xN)? To anawer théle questiona, tools more refined than the

central limit theorem are needed.

We will nov introduce some terminolony, due e Rubin and
Sethuraman (1965a). 1If Xy ™ 0(1), the event ({§N>x,‘,un} is called nn
ordinery deviation of 6y» while, if Xy > @, it i3 an gxcessive
devistion of S,. Two special caset of excessive devistions have
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separate names, because of the applieations they have found in stat-
istics. The case wheras xﬁ/zog N =+ cz. 0 ¢<e¢ <= i3 a moderate
deviation of SN' vhich arises in the study of Bayes risk efficiency
(see Rubin and Sethuraman (1963b) and Clickner (1972)). The most
extengively atudied excessive deviation is the large deviatton, i

which xﬁ/N -» cz. This attention arises from the fact that

T BRI

probabilities of large deviations must be evaluated in ordor to

compute Bahadur ef{ficiencies (see Bahadur (1960)).

Rt o

RS S

Much of the previous work on excessive deviations has been for i%

sums of independent random variables. When SN is the mean of i.i.d,

RN RTRRTRET

random variables with zero mean, unit variance and finite moment

- -
generating function, and ay = N ¢, Cramer (1938) has shown

i (1.3) PN(xN) " @(-xN)exp[ng-h X(XNN-%)]- J

where Xy +> o, x§ = O0(N), and where A (2) is a function which admits

a convergent power series expansion for small |z|. A corollary ]

of (1.3) 1s that (1.2) holds if xg = o(N).
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i Feller (1543) reneralized Cramér's (1038) renult to none- i
.; identically distributed random variables. Tubin and Sethuraman %‘
_g (1965a) considered only moderate deviation: but were able to relax f
gi the requirement of a moment generatins function., Other work on the

problem has been done Ly Chernoff (195), Linnik (1960, 1961, 1962),

o and others.

Only right-hand deviations {s; > xNoN} have been discussed

3 here, This practice will be continued throughout this paper.

f% : All results for right-hand axcessive devistions have immediate

4 1 extensions to left-hand deviations {SN < -xNoN) and two-gided ﬁ

deviations {|SN| > xopte
We will now define a simple linear rank statistic., lLet

xll' ceey xlnl. ey xkl. vay xknk be a sequence of independeut

PRSI MOTE - . ee -

and continuour random variablea, where k 2 2, ny 21, i =1,

. Rkn be the ranks

eve, k and %_+...+nk-N. Let N],.. "

for the combined sample xll. ooy ank. Consider the problem of

ST e . = e et i

testing the tull hypothesis H: xll' iy xknk are identically

distributed versus the k-sample alternative with density

Kk ™
(1.4)  q(Kyqs sves X, )™ I T £(x,, - &),
11 kT gy ey 13T

where f 18 a known density and Al’ cany Ak are known constants.
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A locally most powerful test of H versus q is based on the h siyg b

v
simple lincar rank statistic (sece Hadjek and Sid&k (1967) p. 69).

lf ;i (Ryy)
(1.5) S, = A R
N A ‘5-1‘" 14

where aN(l), vy aN(N) are a sequence of conetants, called scores.

These simple linear rank statistics include many of the more

common and important rank statistics. For example, if
aN(i) = {/N+1, 1=1, ..., N,we obtain a k~sample extension of the
classical Wilcoxon rank-sum statistic, When &N(i) = ] for

1> (N+ 1)/2 and =1 for 1 < (N + 1)/2,8N becomes a median test. With

- N
aN(i) » E[¢ 1(Uéi))]. i=1, ..., N, where Uél) € 44 ¢ Ué ) are
the order statistics for a sample of size N from the uniform

(0,1) distribution, SN is the Fisher-Yates-Terry-Hoeffding normal

gcores statistic,

1
To the authors' knowledge, all previous work on excessive ‘
deviations of linear rank statistics has been for the case ‘

of large deviations only and under the null hypothesis H (Stone

(1967, 1968, 1969) and Woodworth (1970)). In this paper we will

be considering only excessive deviations that are not large

PRSI

(1.e. xg > ® but xﬁ/N + 0) and only the null hypothesis H. Thus

there is no overlap of the present paper with Stone's or

Woodworth's work., In fact, our results fill in a gap between

their work and the work of these many asuthors who have studied
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the asymptotic normality of simple linear rank statistics (see

Hajek and $1dax (1967) for references.

2. Main Results.

We need some notation. Let ANi - ni/N, i=l, ..., k. Let

k

2 2
(2.1) e 121 Ang 8y = nye)

We shall assume

(2.2) 0 < liminf ANi £ limsup xNi <l,1m1, .io, k,
Nbe Nbe

N
and 02 > 0 for all N » k. Further, let f a,(]) = 0, and Z lﬁ(J) = N.

=1

Lat SN be as defined 1in (1.5). Throughout the rest of this paper
i : wve will asaume that the null hypothesis H holds. Then ESN =0

and var 8, = Nzagnl(N-l). We define PN(xN) to be

e fai i e ke

i
]
’_g
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!

e Eaemfiam e
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g0 we define PN(xN) to be

? g . 'f

. 3 Ky

?-g (2.3) PN(xN) = P{SN z Xy GANN h ?

k. | 4

| g
- We can now state our main results. 1
| b
- 1
- 3
3 i Theorem 2.1, let Sy be of the form (1.5), assume the null g
:2 % hypothesis H obtains and define Py(x,) by (2.3), where x, > §
> 2

| | and xN/N + 0, Assume ]
i

| | ” 2 2

SO (Mo“) xN max ‘N(j) - O(N) p
154sN
ﬁ_ and %
3 ]
(. 3 N 3 k ]
3 (2.5) vy = 7 lay ()| /N = o(N¥/x). ¥
; N ] N N

J=1 ¥

Then, as N + =, k

.“

. 2 A

(2.6) log PN(xN) no- xN/2. ,

This crude estimate of PN(xN) can be improved somewhat in ?

the two-sample case (k = 2), provided (2.4) and (2.5) are ,

strengthened a little, When k = 2, without loss of generality, i

we may set A] -], Az = 0, which gives (with n-nl), ;

n

— 2 —
Letting AN b 1 and AN ANZ’ we get HAN AN and TAN A AI' RO

N NN

(2.3) becomes i
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(2.8)  P.(x.) = P{S. = x.(NA%.)9).
<. NN N ° *NYARN

We now state our additional results for the two-sample case.

Observe that (2.9) includes both (2.4) and (2.5).

Theorem 2.2. Let the null hypothesis H obtain, let sN be of the

2

form (2.7), and define Py (x.) by (2.8), where x, + =, xN/N + 0.

N
If

3, 3
(2.9) vy = o(N%/x),
then, as N -+ o,
(2.10) P (%) = ofexpl-x2/2 + (kAT
where

2 -

(2.11)  J(xgdy) = Oe/2) (1 = AA/peay) + NI, py),
vhere
(2.12)  1(\,p) = Alog(A/p) + rlog(XYq),
where q = 1-p, qu=1-py, and Py 18 the unique solution of the equation

N
(2.13) n = z {1+ (qN/pN)exp[-xNaN(j)(AﬁXN/N)%/quN]]-l.
i=1

Theorems 2.1 and 2.2 are the best results obtainable with pre-

o el - S e

e
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sently available methods. llowever, it would be desirable to improve
on these results to obtain a better estimate of PN(xN). one
comparable to Cramér's (1938) result (1.3). To do this in the
two-sample case a certaln rate of convergence to normaiity of the
normed distribution QN(') of the mean of certain dependent random

variables arising in the proof of Theorem 2.2 is required. This

convergence rate has not been established. Let

(2.14) &y = sup [&y(x) = 0(x)],
X

where ¢N(°) is defined in (3.39). It follows from Hajek (1964) .g

that AN + 0 as N + o, His result is reproduced here as Lemma 3.7.

The required convergence rate 1s My ™ o(l) where Xy " (See
(3.46)). 1f it can be verified that this rate holds then the

following estimate is obtainable:

(2.15) Pyx) v @(—xN)exP[J(xN,AN)]. N+ o,

3

Te extend Theorem 2.2 to the case k > 2, a multivariate gen-

eralization of Hajek's (1964) asymptotic normality result is

ot L7 kel .

required, Unfortunately, it too, 1s not yet available.
The conditions of Theorems 2.1 and 2.2 are sironger than
those required to establish the asymptotic normality of simple

v
linear rank statistics SN (See, e.g., Hdjek and Sid&k (1967)

pp. 193-195). This 1s to be expected since these theorems give

i LR ¥R
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wore detailed and precise 'nformation about the asymptotic behav-
ior of SN tliai does a statement of asymptotic normality. Even ac,
it is natural to ask whether these stronger conditions are very
restrictive, in terms of potential applications Many simple

linear rank statietics SN have scores of either of the forms

(2.16)  ay(1) = B ¢(uit)

or
(2.17)  ay(1) = ¢(1/M1),

where ¢ 18 a non-constant function on (0,1) and, further, SN is

1
ssymptotically normal if f ¢2(u)du < » (See, e.g., Hdjek and
0

gid&k (1967) Chapter V). Clearly, if
1 3 ‘
(2.18) [ |o(u)| du < =,
Q

then (2.9) holds for the scores ay and QN and we may apply
Theorems 2.1 and 2,2 to SN' Some simple linear rank statistics
that have scores of the form (2.16) or (2.17) where ¢ satisfies
(2.18) are: median, Wilcoxon, Van der Waerden and Fisher-Yates-
Terry-Hoeffding, all tests for location shift, and Capem, Klotz,
Ansari-Bradley, quartile, and Savage, all tests for a shift in

scale, See Clickner (1972) for details.

o ten
I TR
ok e il
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It is not immediately obvious from Theorem 2,2 as precented,
exactly how fast PN‘“N) tends to zero when Xy grows at a specified

8 3

rate, say xg = log M, or perhaps Xy = NY. It is necensary to

analyze J(xN.AN) for various x, and AN to see more clearly the
behavior of PN(xN). This ie done in Corollaries 2.5 and 2.6

follewing the preliminary Lemmas 2.3 and 2.4,

Lemme 2.3. Let Py be the solution of equation (2.13). Let (2.9)

—t——

hold. Then
° 2,k
(2.19) Ty =y ¢ kzlck(xN)(xN/u) .

vhere {c, (\), k > 1} i8 & sequence of functions of A whose first

two elements are

(2.20) e,(M) =1i=1,

(2.21) c,(2) = (A=34)(1 - 1/(2x X)),

Further, if A = It + o(1'Y), then Py =l + o(r 1),

Lemma 2.4. Define I(A,p) by (2,12) for 0 ¢ A < 1 and 0 < p <1,

It |A-p|] < min (p,q), then

2 - . o i
2.22) 100,p) = ML) (2pa-ipfeag®) ¢ ] ARl Ay Ay
™ 1=3 at (-p)

Y
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Corollery 2.5. In Theorem 2.2 assume Ay ® 1+ 0(2/1). ‘Then
J(xN.A") = of1).

Corollery 2,6. Under the conditions of Theorem 2,2,

X, © % i
@z gy <4 L0

vhere (d:l.“)' i > 0} is a sequence of functions of A vhose first

element is

(2.24) a,(0) = -(2-20)%/8) 7.

Further, if, vor somc integer k = 1, 2, ...,

(2.25) nninr(x"‘*l) Ky 5 0 and xf“‘*"’) = o1y,

then

(2026) J(XN,AN) = n(l)' if }; = 0

?
k=1 i
—g z 4, (, )( )+ o), 1k > 0.

R L NP




To simplify nctation, we will often write s, for nN(i), A, for

J.__Proofs.
We begin the proofs with some preliminarics and four lemmas

vhich will be used in proving both Theorems 2,1 and 2.2.

Ang» ©p for o,., etc., suppressing the dependence on N. 5 E
Let w(l) € .40 ¢ W(N) be the order statistics for the combined ﬁ
sanple xll. iaey xk » and let é
™

1 1f W,y is from the i-th semple, 3

(3.1) CiJ n .ﬁ
0 otherwise, 1

for 4 m1, .o, ky § =1y evuy No Clearly, Cyy + oo + Cyp =y, |
ie1l, ..., k. Then, by rearranging the sum, l
1o} *

(3- 2) 8, = a A C . !

Vogm dum PH

Let \l’ - {(1. 0, DN Y 0). (0’ 1. 0. seey 0). *sey (0, sy 0, 1)}

be a set consisting of k points with z = (zl. . zk) a typical
(1)

element and let 277, ..., Z(N) be a sequence of independent and

identicall; distributed random vectors taking values in ¥ with

probabilities py, +euy Pys Py > 0, L ® 1, viuy ky p + .. p = 1, i

1
that is,

k z %
(3.3 Pz sz} = 1 b
i=]
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tet 2(8) = 220 & ... 4 2V = [2,(N), ..., 2 (M), Derine s

statistic TN by

N k

(3.4) Ty= ) u, ) .
N7 gE gl

and let tN be a realization of TN' ‘he kay to these proofs is the

observation that

(3.5)  P{8y = t,} = P(Ty = t,|2a(N) = n},

where n = (n;, ..., n,), and, further, (3.5) is an identity in the
probabilities Prs coer Py
For each h > 0, define a new joint distribution for the

'l(l)

random vectors & 7, ..., Z(N) by

1)

N k z

3.6) oz - B ya, L N e 1T q1;
J=l 1=1

where

ha 4, k ha, A
i 371,=1
(3.7 q,, =pe 3 Tpe I
i3 i 11 i
Observe that, under Q, Z(l). ceey Z(N) aire independent random

vectors taking values in ¥, but are not identically distributed.
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Lemmu ;,1. Let 8, Le wiven by (3."), Ty Y (3.4),  and .PN(YN) by
(2.3), PFor any h > 0 and any Pys sers By with py > 0, iel, ..., k,

n LTI | 1, ve have

N ok by, 4

(3.8) pN(xN) -‘%H ng[iglpiu J 1] © Ay
wherc

—htN .
(3.9) Ay =1L, e QTy = t,|2(N) A~ p},

N

1

and sz denotes swnatlion cver thoae tN ratdoiydng by :_xNoAJ'.

Proof. From (3.6) and (3.7),

(3.10) P (x,) = [P{z(N)=n}]™ ZXNP{'if;—'-tN. %(N)=n)

i)

[ ) pe

=1 421 & =ht,

= J"l i l x‘( o NQ{TU;t
P{Z(N)=n} N ‘

Ji]

o 2(M)=nk.
vhich is equal to the ripght hund sidc of (3.8). L~ m 3.1 is nov
proved.

Observe that (3.8) is an identity in the k+l arbitrary
variables Pys oo Py and h. We will later exploit this fact hy
making convenient choices for these quantities. But first we
will obtain asymptotic approximations to all the factors in the

t {ght=hand side of (3.8) except AN We bogin with P{Z(N) = nl,
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Lemma 3.2. For any Pys coes By such that py >0, i=1, ..., Xk and

L hw
T e L Rl didal e T

Pyt ..ot P ® l) ve have, under (2.2), as N + o,

RSV Y

. k k
(3.10) Plz()eg) v (2nn)2EV2 g epry § 5 20600, /8, ).
im) i=)

oof. Apply Stirling's formula.

Lemma 3.3. Let 4y, ” (qn + 00+ qiN)/N and Eﬂ a {oii), i, A =1,

sesyg k"l)’ Vhere

oﬁ) " qy(i-qy ) ir1=e

" -q,,9,, ird 42,

Assume. 1lim { g (N'lgﬂ)] = I (say) is a positive definite matrix, Theu
e Ju)

we have, uniformly in n,

) «
(3.12) (2m)* 12 (a0t PYa(z(WIen) - explo gz g + 0, 1+ =, !

where Ei“ = (N“;i(nl-qu‘ ) geen 'N-"(nk-l-qu"l' )} .

J Iy
Proof. Let By = (N7(2,(N)-Nqy ),... N 7(2, , (M)-Nq, , 1.
Clearly EN is asymptotically normal with zero mean vector and
covariance matrix L. Rvaleva (1954) has proven a local limit
theorem for sums of 1.i.d. lattice vectors. To prove (3.12)

we follow her argument in outline, varying the details to

e U VU S T4

handle our non-identically distributed vectors and taking ad-
vantage of the special structure of 2(N). See Clickner (197}

for the details.

dedidtion Ll e L e e s el L ,;J
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We no. need some notation. Let EQ, vnrQ. ete., dunote

¢expectation, variance, ote. under Q. Then

(3.13)  Eqr Z . q
UL
and
2
(3.14) Vo = var Z a Z A q,.(1-q,.).
T RS R
Also, define vy = PIAI + .40 ¥+ pkAk and
2
(3.18) TA Z p (8 = v,)".

=]
The motivation for the bound on h in Lemma 3.4 will be made clear

in (3,24) and (3.25).

Lemma 3.4, Let h = hN’ where hN < KxN/Nk. for some K, O < K < o,

Assume X _ -+ o, xﬁ/N + 0, and (2.4) obtains. Then, as N + e,

N
N k a,A
(.16 T 1og( ] pye "ty NUST2/2 + O(NKIYR) s
j-l im}

2

(3.17)  qy, = p, + e, 2008, = vp? - 121 4 Oty te1, e K,

(3.18) KTy = Nhy T2 + 0(Nh

QN NYN) ’

|
K i
(3.19) Vg NiZIAipi(l p,) Nhyvy) s
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|
| N 2 i
! (3.20) | qij(l-qij)/N = py(1-p,) + O(h), 1=, ooy Ky :
i j.l i
2 " 2
I (3.21) Zlququln = pyPy, + O(h“) , 1w, 3
- 3= 3
| §
i3 9
%’ Proof, Consider the left-hand side of (3.16): i}
i A
% k byt k 3
4 18 2.2 2 i
%: iglpie =1+ haw, + khnajiglpiAi 1
3 k hyla,A, | 4
% 6.3 3 3 N'Te !
; e 8da 2 ] fa, 2N ;
; 6 h'N J =1 i
¢ vhere |6 € 1. Then 3
4 ]
- N k had N 3
. 2 2.2 3 3 :
E Jlog¢ Jpetdlya I {hea,v, + 4hea'Ts + O(hgla, |9)}
| 4=l {=1 i ym1 hN J A hN ja h'N j

N
- undnr? + 0(h§jZI|.J|3)

- NhéTi/Z + O(Nhgyg).

Expressions (3.17) - (3.21) follow similarly. The proof of Lemma

3.4 18 complete.
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I'roof of Theorem .1

In addition to Lemmas 3.1-3.4, we need two lemmas spucif-

{cally for Theorem 2.1,

lLemma 3.5, TDefine AN by (3.9). Then for each N and any h > 0,

(3.22) 0 2 log Ay + thoANh

2 =47h + log{l = Bgl(Ty = 2y = 2, M2 |20 mal 473},

Proof. Clearly AN < exp[-thaANk]. On the other hand,

Ay 2 exp[-thoANH - AVTh]Q{chANh s Ty S xNaANk + 4VT|Z(N)-n1

5 GXPl'thUANk - AvTh]{l - EQ[(TN.KNOANH - ZVT)2|Z(N)-31/4V%},

by Chebyshev's inequality. Lemma 3.5 follows.

We will now choose values for py, «svs Py and h for the

k-sample came. Let
(3.23) Py Ai' i=1, ..., k

and lct h = h, be the vatqua rolutica o/

3
(3.24) EQ'I‘" = xy0,N" + 2V,




<20~

This choice of hN maximizes a term in the lower bound of AN tn

Lemma 3.5. A simple arguement shows that hN is well defined by
(3.24), and, further

(3.25) hy ™ xN/oAN".

Lerma 3.6, Let (3.23) hold and let hy, be the solution of (3.24),

satisfying (3.25). Then, as N + «,

(3.26) EQ(Twli(N) = ) ~ By

and

(.27 varg(Tylz(¥) = g) » V2.

cof. Consider, for i =1, ..., kK, J =1, ..., N,

(3) alz(w) =
(3.28) Qfz,'’ = 1{2(N) = pn) = ay m ’

where n, = (nl. ey My gy By=ly Bya ey nk) in l, veey Ko

Fron (3.17), (3.20), (3.21) and (3.23), £ = lim N3 ): 7. has

-3
J=1
elements of the form A (l-A ) on the main diagonal and -Aikz off the

k
main diagonal. Since 2 A =1, det L= N A. Hence, by Lemma 3.3,
tm tu1 1

Ql2(n) = 2
(3.29) ariTﬁT-:-;T- exp(E%: [(Ai-qi_)2 - (Ai-l/N-qi.) )}

= expl(h,-q, , }Ay - 1/20 )

- exp(O(xﬁ/N)),




uniformly in { =1, ..., k, J 1, ..., N Hence, &
| N BRI
(3.30) EQ('I'le(N)-g) ) . I 402! = 1)z(Nj=n) ~ BoTy
Jnl Yisl 2
Similarly, for 4, 4' w1, «o.y  k, J, 4" = 1, oouy, N, J 4 4°,
' "
(3.31) Q{Zi'j)nl, Zi'a )l],lZ(N)u&) v Qg0
wniformiy in &, i', J end 3'. The joint probability on the Loft-hand
side of (3.31) is zero if J = §'. Heuce ﬁ
o N o,k
2 2% \24n(d)
(3.32) B (T5|2(N)up) = J &S J a5Q{z;Y'w1|2(N)=n} b,
A AT ;
+ ) “J“‘J’AiAi'Q{zid)'l’ Zi‘?')-IIZ(N)'-g) ~ Eq'rﬁ. 3
JhS or il

Lemma 3.6 follows. !

We can now prove Theorem 2.1. This will be done by sub~
stituting Lemmas 3.2-3.6 in Lemma 3.1, More specifically, let i

(3.23) hold and let h = h, solve (3.24) which entails

hy, ™ x“/NhnA. From Lemmas 3,2 and 3.3,

N




=22~ b

{z N) = A N 2 f

(3.33) %ﬁ{'ﬁ}'-—ﬁ expl- 3 f (Ag=ay)%/2y ] A
B i=1 , ¥

= exp[0(xy/¥)],

using (3.17). From Lemma 3.4, specifically (3.16), we have
N k  hea,d

(3.34) ¥ log( ] e Ny W x§/2. 3
=1 ism1 4

;

By the definition of hy, R
E.L(T,, - x,0 NH - 2V )2|Z(N)-n] = var,(T,|Z(N)=n) ~ V2 2

Q- VN T *n%a T = Q''N 3 T

by Lemmna 3,6, Hence, from Lemma 3.5, ]

(3.35)  1og Ag ~ -x:.

Theorem 2.1 now follows by substituting (3.33), (3.34), and (3.33)

in Lemma 3.1.

Proof of Theorem 2.2

The main difference between the proofs of Thevrems 2.1 and

2.2 lies in the treatment of the sum AN‘ defined in (3.9). Here,
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we write Ay as AN - axp[—hEQTN]CN.

where
-
. + =hV
(.36 oy = [ e XN
where

N N

N
2 2

(3.39) 8. (y) = QT < yV + EQTN|Z(N)'E}’

ﬁ and

(3.40) B = th(xihu)* - BTy 1/, | |

Observe that ON(') is the conditional distribution referred to in

the discussion following Theorem 2.2 (:ee equation (2.14) ). {

Now select Py and h. Choose P, ® Py to be the solution of




I3
v
}
¥
i

TR

(
:
;
g
i

ReErb 7R A fo e c
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N " -1
(3.41) n= ) {1+(ay/py) expl-xnni(kNAN/N) oyt -
im=l
This is the p, of (2.13). Choose
ky ’.‘:
(3.42) h=hy*~ xy A/ B oty

Note that py is well-defined by (3.41) and we have

Py v AN and hN " xN/(AﬁThN)k, g0 these choices are only slightly
different from those in the proof of Theorem 2.1 -- but ara wore
convenient for the proof of Theorem 2.2. The reasons for these
choices will become apparent in Lemma 3,7 and display (3.45).

Lemmas 3.7 and 3.8 conatitute the analysis of AN

Lemma 3,7. (HAjek (196h)). Let (3.41) hold. A necessary and

sufticient condition for AN + 0, vherea
8 = synlo,(y) - oly)]

and wut-) is defined in (3.39) is




25~
ucz bl 2 -
3.43) V] (a,-a)n,7, +0
i i
ieA
3
for all € > 0, vhere A_ = (1:|a1~:| > ¢V},
Proof. This is Theorem T.1 of H&jek (1964).

Lemma 3.8. Let Py mdhu be pgiven by (3,41) and (3,42), respectively,
and let (2.9) obtain., With Cy a8 in (3.36), we have, as N »+ o,

CN + 0.

Proof. We can write
®  uh yV
(3.44) CN - f e . as(y)
B

~h,VB ®  =hyyV
(0y(B)-4(B)] + nv IB e [2y(¥)-0(y)lay.

+e
Techniques similar to those of Lemma 3.4 yield V2 ~ HANXN. Consider
(3.45) B = v, (00 By ()]

=Xy - pqh(N/A"fo€+ o[(Nhe)'h]

- O(xgl),




L b o T

=26=

with h piven by (3.41). Hence
2,4
(3.46) cy = [1+o(1)][(2ﬂxN) + A“].

It follows from (2.9) that Ae is empty for large N; hence AN + 0
by Lemma 3.7. Since XN + «, Lemma 3.8 follows.
To complete the proof of Theorem 2.2, apply condition (2.11)

and the selections of p, and h, (3.42) and (3.43), to Lemmas 3.1 -

3.4 with k=2 to obtain

(3.47) Pylxy) ™ Cy exp[-x§/2 + Iy AP

Proof of Lemmas 2.3 and 2,4

Lemma 2.4 {s proved by expanding the logarithnms.

In Lemma 2.3, the case AN - g+ O(N-l) is proved by substi-
tuting Py " s + O(N'l) to verify that it 1s a solution of (2,13).
Otherwise, recall that

(3.48) Ay =p+ (p-k)xtjnxﬁlpqu + o(N'l).
using (3.17) and (3.42). Now, suppose x; = o(N) and propose
(3.49)  p = Ay + e x/N + o)

a# a solution of (3,48). Substitute (3.49) in (3.48) and solve for

e

5

b




-27-

' ¢, to obtain ¢, °1( A") “hie Ay 08 4n (2.20).  Next, suppose

xg = o(N) and try

" (3.50) p = '°1("N"" /N-h. 4y /n “wo (N )

as n rolvtion of (3.48). Apain, colve for e, to obtain ¢, = cy(hy),
[

g' av in (2.21). e hipher otder cocfiinients {c N)} enn be found
( successively ty continalng this iteative procedus:, This is not
Jé done here becnuse the wlgebra beuomes vory cunberucie. The proof of
\:f Lerma 2.3 18 completo.

psll

Proof of Corollaries 2,5 and 2.6
Corollary 2.5 is an immediate consequence of Lemmas 2.3 and

2.4, and Corollary 2.6 is proved in essentially the same manner as

!Jm 2.3.

g produe ed) from
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