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SUMMARY

Probabilities of Excessive Deviations of
Simple Linear Rank Statistics

Let {S I be a sequence of r.v.ts whose asymptotic dist.ibution
N

is N(O, o2) and let {xN) be a sequence of constants with XN ..

(righthand) excessive deviation is an event of the form {SN > x ,.

The asymptotic normality of SN tells us P(SN > YNON} 0, N

but not the rate of this convergence. These rates are needed for

the evaluation of Bahadur (xN - xrN) and Bayes Risk (xN - xlTog, N)

efficiencies. When S is a k-sample linear rank statistic (see
N

Hajek and gidak (1967)), and 2 - o(N), we show

log P{SN 2xNoN} • - x./2, assuming the null hypothesis. Tn the

two-vample case, we establish also that

P{SN >NON} - o{exp[- 2/2 + J(xN, 'N)]}, when N•N ( , 1) is

the size of the first sample and J is a function whose behavior is

analyzed for various xN and AN. For example, if = o(N), then

J(xN, AN) * o(l) as N.

II



introductton.

Simple linear rank statistics arise in a variety of situations,

particularly in the problm of testing the equality of two or more

distributions by non-parametric tests. While the asymptotic

distributions of simple linear rank statistics have been studied

extensively (see, e.g., HIJek and Sidik (1967)), investigations

concerning their large deviation properties have been made only

rec:ently (Stone (1967, 1968, 1969).and Woodworth (1.970)). Tn t-his

paper we study the rates of convergence to zero of null probahili-

ties of excessive deviations of k-sample (k ; 2) simple linear

rank statistics. 'We begin in this section with discussions of the

notions of an excessive deviation and of a simple linear rank sta-

tistic. The results are in Section 2 and the proofs are in

Section 3.

The concept of an excessive deviation of a random variable will.

he discussed here in a general setting. Let {SNo N > 1) be a

sequence of random variables with positive finite variances and

" • • " ". .. ' • ' •' " •"= " ' • . ..• • ' . . . .. . ... • . ... :• "• " ' ' -• ... • .I. .. • :•'-1 -'•', •
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let {oN9 N .' 11 be a sequence of poultive consrnt': mri, ,.

(1.1) sIPIP•SNOXON) - (x)l 0, + ,

where O(o) is the standard normal distribution function.

Let {xN, N • 11 be a sequence of nonnegative real numbers.

We call PN(xN) uP{ > xa the probability of a (right-htnnd)

deviation of size oN Of SN' A trivial consequence of (1.1) is

(1..2) PN(xN) 4 *(-xN), N ÷ -

provided xN - 0(1). However, when xN 4 , (1.2) is clearly no

longer a direct coniequence of (1.1), which leads one to aok;

given (SN} and (xN} where xN + c at nome spacifiled rate, does

(1.2) hold? If not, what exactly is the asymptotic behavior of

PN(xN)? To anawer theme questions, tools more refined than the

central limit theorem are needed.

le will now introduce some terminolotry, due ,. RuLiln and

Sethuraman (1965a). If x. = 0(l), the event (>X7 xCyt in called nn

ordinary deviation of , while, it x it, i ian excessive

devyijon ofSf Two special cases of excessive deviations hnve



separate names, because of the appliesttm they have found in stat-

istics. The case where x2/log IN + c 0 < c < 0 is a moderate

deviation of SN, which arises in the study of Bayes risk effici.i.v•..

(see Rubin and Sethuraman (1965b) and Clickner (1972)). The mosot

ex~tensively studied excessive deviation is the large deln•tiii, In

whic'h x /N e2 . This attettl ,neri.'s from t h(, ratt tiit

probabilities of large deviations must be evaluated in ordor to

compute Bahadur efficiencies (see Bahadur (1960)).

Much of the previous work on excessive deviations has been for

sums of independent random variables. When S is the mean of i.i.d.

random variables with zero mean, unit variance and finite moment

generating function, and -= N-½, Cramer (1938) has shown

(1.3) PN (XN) (-x Nex [xp N N

where xN - -, x * 0(N), and where A(z) is a function which admits

a convergent power series expansion for small Izi. A corollary

of (1.3) is that (1.2) holds if x6 - o(N).
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Feller (3.,A3) Peneralize.d Cramdr's (1938) renult to non-

identically distributed random variables. TRubin and Sethurawan

(1965a) considered only moderate deviations4 but, were able to re lax

the requirement of n moment generatinp function. Other work on the

problem has been done by Chernoff (195'!), Linnik (1960, 1961, 1962),

and others.

Only right-hand deviations *SN ( XNSI have been discussed

here. This practice will be continued throughout this paper.

All results for right-hand excessive deviations have immediate

extensions to left-hand deviations (SN < -XNIN) and two-siled

deviations I's

We will now define a simple linear rank statistic. Let

..X , X nI , X . X, be a sequence of independoutXln Xk'' '' ' ''' kn k

iand continuouF; random variables, where k ? 2, ni ? 1, i - I,

k and n1 + ... + nk - N. Let RI1  .... R, be the ranks.. nk

for the combined sample X11 0, 4"9 X Consider the problem of

testing the null hypothesis H: X11, ... , Xknk are identically

distributed versus the k-sample alternative with density

k ni
(1.4) q(xl, "' knk) n n ju (xij - Ai),

where f is a known density and 1', ...' Ak are known constants.



A lt, :ll y Iy o t power fu1 t es t of H versi ts q is •astd(I (in th&, .. hs .

simple linear rank statistic (see H•jek and Sid~k (1967) p. 69).

k nni
(1.5) S N Ai jil aV(Rij)

where aN(l), ... , a,(N) are a sequence of conatanto, called scores.

These simple linear rank statistics include many of the more

common and important rank statistics. For example, if

aN(i) w i/N+l, iml, ... , 1'we obtain a k-sample extension of the

classical Wilcoxon rank-sum statistic. WhenaN(i) & 1 for

i > (N + 1)/2 and -1 for I s (N + 1)/2,SN becomes a median test. With

aN(i) - Et (U i)), i-1, ... , N, where U U(N) areN N N * N ar
the order statistics for a sample of size N froa, the uniform

(0,1) distribution, SN is the Fisher-Yates-Terry-Hoeffding normal

scores statistics

To the authors' knowledge, all previous work on excessive

deviations of linear rank statistics has been for the case

of large deviations only and under the null hypothesis H (Stone

(1967, 1968, 1969) and Woodworth (1970)). In this paper we will

be considering only excessive deviations that are not large

(i.e. xN but 2/N + 0) and only the null hypothesis H. Thus

there is no overlap of the present paper with Stone's or

Woodworth's work. In fact, our results fill in a gap between

their work and the work of these many authors who have studied

.......... ... .. .. .. ....
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the asymptotic normality of simple linear rank statistics (see

Hljek and gidik (1967) for references.

2. Main Results.

We need some notation. Let ANi nI/N, inI, ... , k. Let
bA •I1+ I., + •k and

k
(2.1) 02N a (Ai(i Pam) 2.2 2

ye shell .sure

' (2.2) 0 llminf ANi • wiavu "Ni * 1,t , ... , k

a a )o 0 for all N 'A k. Pluther, let aN(J) 0 and a() - N.
-jul jul

Let SN be as defined in (1.5). Throughout the rest of this paper

we will assume that the null hypothesis H holds. Then ESN - 0

and var SN - N2 2 10/(N-). We define PN(XN) to be



so we define PN(XN) to be

(2.3) PN(xN) = P(SN 2 XN ANN ).

We can now state our main results.

Theorem 2.1. Let SN be of the form (1.5), assume the null

hypothesis H obtains and define PN(xN) by (2.3), where xN "

N N

(2.4) x mxO(N)
N N~

and

(2.5) v•=N ½a()I/.oNIN,:
y 3 3 IJN *o(ON x)s

Then, as N",

(2.6) log PN~ N) • - 2 /2.

This crude estimate of PN(XN) can be improved somewhat in

the two-sample case (k * 2), provided (2.4) and (2.5) Are

strengthened a little, When k - 2, without loss of generality,

we may set A Iu, 2 0 0, which gives (with nun1 ),

(2.7) SN = ! aN(Rlj).
Jul

Letting AN Ni and XN N2 we get N and n 2 X
N' N IN N' WA N J M'O

(2.3) becomes
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(.) P N (x N) P{S N Z! xN (MN -A½N

We now state our additional results for the two-sample case.

Observe that (2.9) includes both (2.4) and (2.5).

Theorem 2.2. Let the null hypothesis H obtain, let SN be of the
2

form (2.7), and define PN(XN) by (2.8), where XN + -, XN/N ÷ 0.

if

(2.9) N N-o( /),

then, as N -

(2.10) P A (X)N o(exp[-xN/2 + J(XNXN)]},

where

(2.11) (x N,'N x (x 212)(1 X p-.N~vq) + N I(ANp)

where

(2.12) I(X,p) - Alog(X/p) + Tlog(X/q),

where q -- p, q -PN, and p, is the unique solution of the equation
N

(2.13) n + { (1 + P -xN&N(.)(A N"N/N) /PNq N')

Theorems 2.1 and 2.2 are the best results obtainable with pre-
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sently available methods. However, it would be desirablE to iniprove

on these results to obtain a better estimate of PN(XN). one

comparable to Cramer's (1938) result (1.3). To do this in the

two-sample case a certain rate of convergence to norma•lity of the

normed distrihution 0N(.) of the mean of certain dependent random
N

variables arising in the proof of Theorem 2.2 is required. This

convergence rate has not been established. Let

(2.14) AN - sup ItNxW - O(),
x

where 0N(.) is defined in (3.39). It follows from Hkjek (1964)

that AN 4 0 as N + =. His result is reproduced here as Lemma 3.7.

The required convergence rate is ANxN - o(1) where xN - (See

(3.46)). If it can be verified that this rate holds then the

following estimate is obtainable:

(2.15) P N(XN) N Z(-xN)exp[J(xN,XN) , N - =.

To extend Theorem 2.2 to the case k > 2, a multivariate gen-

eralization of HAJek's (1966) asymptotic normality rvsult is

required. Unfortunately, It too, is not yet available.

The conditions of Theorems 2.1 and 2.2 are stronger than

those required to establish the asymptotic normality of simple
v

linear rank statistics SN (See, e.g., HRjek and Sidik (1967)

pp. 193-195). This is to be expected since these theorems give
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more dettailed and precise 'nformnation nbout the asymptutIc behav-

ior of SN thar does a statement of asymptotic normality. Even so,

it is natural to ask whether these stronger conditions are very

restrictive, in terms of potential applications Many simple

linear rank statistics S have scores of either of the forms

(2.16) aN(i) - E 0(U0i))

or

(2.17) aN~i) - I
where * is a non-constant function on (0,1) and, further, S is

12
Psymptotically normal if fl*2(u)du < w (See, e.g., H•jek and

0
V
Sid~k (1967) Chapter V). Clearly, if

(2.18) f1(u)I3du <
0

then (2.9) holds for the scores aN and and we may apply

Theorems 2.1 and 2.2 to SN. Some simple linear rank statistics

that have scores of the form (2.16) or (2.17) where 0 satisfies

(2.18) are: median, Wilcoxon, Van der Waerden and Fisher-Yates-

Terry-Hoeffding, all tests for location shift, and Capon, Klotz,

Ansari-Bradley, quartile, and Savage, all tests for a shift in

scale. See Clickner (1972) for details.



It is not Immediately obvious from Theorem 2.2 as presented,

rate, say 4 = log N,• or perhaps x• M I. t is neceenary to

analyze J(x.,AXI) for various x. and AN to see more clearly the

behavior of P (x). This is done in Corollaries 2.5 and 2.6

following the preliminary Lema. 2.3 and 2.4.

benm 2.3. Let t) be the solution of equation (2.13). Let (2.9)

hold. Then

(2.19) Xx / k k(l )/

where (c (M), k > 1) is a sequence of functions of A whose first
k

two elements are

(2.20) el(;) -

(2.21.) C2(X •-I( -i(••)

Fiarther, If At I, + O(Uf, 1 ) then p, =½ ~'I OW"

Lemma 2.4. Define I(A,p) by (2.12) for 0 ( A < 1 and 0 < P 1.

If JA-pj < min (p,q). then

(2.22) I(Xp) U½( l) (2pqP 2 Aq2 ) (i+ +
pq iM3 q (
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Corollary 2.,. In Theorem 2.2 assume A +4÷ OW(/N). Then

J(xN,A1t) - o(i).

C. Under the conditions of Theorem 2.2,

(2.23) N'(NN' - ill N
i=O

where (d(A), i . 0) is a senuence of functions of x i•hose first

element is

(2.24) da(A) _ -(1-2h)2/8X '.

Further, if, a'or somce integer k 1, 2, ... ,

(2.25) liminr(x (0+÷l)Nk) ,. :1 0mt ad (k+2) . 0 (I•,l),

then

(2.26) J(xll,,x ) = n(i), tf 1 ( M 0

4 2X' It-1 x i
Sd()() x o~i), if )t > 0.

NE
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4.Proof no

We begin the proofs with some preliminarles and four lemmas

which will be used in proving both Theorems 2.1 and 2,2.

To siaplify notation, we will often write a± for aN(i), A, for

xNit OA for aON etc., suppressing the dependence on N.

LetW < .. W be the order statistics for the combined
(1) '(N)

sample Xll, ... , 4 and let

I it W(,) is from the i-th sample,

(3.1)

0 otherwise,

for 1 1, ... , k, • s 1, ... , N. Clearly, Ci + + n C ni

1 ., k. Then, by rearranging the sum,

N k

(3.2) SN A= I AiN Ju imi

Let IF - M(, 0, 0... 0), (0, 1, O, ., 0),. .. (0, .. , O, )}

be a set consisting of k points with z - (zi, ... , 2k) a typical

element and let ZM1), ... , Z(N) be a sequence of independent and

identicalll, distributed random vectors taking values in Y with

probabilities pl ">" P' Pl • 0, i 1, ... , k, p1 + + '" k

that is,

k z
(3.3) Pez(1) •Z n Pi •

:1.l
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Let z(H) * z + ... + Z () (N), ).... (N)]. Derine a

statistic TN by

N k
(3.4) TN= N 1 ill i Zi

and let tN be a realization of T. The Ai•,y to these proofsa is the

observation that

(3.5) P{S- tl) P{TN tNIZ(N) Ti),

where n - (n1 , ... , nk), and, further, (3.5) is an identity in the

probabilities p,.,'"Pk

For each h > 0, define a new joint distribution for the

random vectors (i,), ... ,Z(N) by

N k zfj )

(3.6) Q{Z(J) 7 J
JWAl i-l i

where

haj k hajA *.1
(3.7) qij "pe ha A i k[ hi

Observe that, under Q, Z Z a( e independent random

vectors taking values in T, but art not identically distributed.
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LemMID Li. Let S1 be given by (3(1, TN hy (J.4). m Pd by

(2.3). For any h > 0 and any pw p ,, ... , ,k,

P * + ... + 1, we have

(3.8) PN(xIj) F ZA T Ti ± it ' A I,

wherc

-htN

(3.9) AN £,N o QaTN t•IZ(N)
N

and E denotes uiation crvuv thooe tN .tisiyitc tr .
N

Proof. From (3.6) and (3.7),

"(3.10) P (xN) [P{Z(N)-ln}]- Ex Z(N)-n.)

N k hai
U ml [p-ht Q{t,

P{Z(N).-n) ×

which is equal to the rigfht hand sidc of (3.8). L- 1,-, .. 1 io nc.r

proved.

Observe that (3.8) is an identity in the k+l arbitrary

variables p1 , ."'" Pk and h. We will later exploit this fact by

making convenient choices for these quantities. But first we

will obtain asymptotic approximations to all the factors in the

itght-hand side of (3.8) except AN. We begin with P(Z(N) - p,
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Lemma 1.2. For any pl, "" such that Pi 0 0, 1 I 1 ... , k und

p1 + ... + pk I 1. we have, under (2.2), as N 3.

(3.11) P{Z(N)un} 1% (2ffN)C1(-)/2 1I AAeXP(-N I o(X 106h/p1)Jul Jul!,

Proof. Apply Stirling's formula.

le=m 3.3. Let t (•3 + a)IN dnd = (a 0

k-1), where

0) * q(-q i f It ) 1

-4qU qif 1 0 L.

Assumelim (N )] - Z (say) is a positive definite matrix. Thei

we have, uniformly in n,

(3.12) (21MN) k')/2(dot L)iz(N)nR) - exp{-½ s.j ) o, N 0 -,

where - {N-1(n -Nql.),... ,NA(nkl-Nqk-.l)).

Proof. Loet • (N['7z.•(N)-Nq. ],... , [Zk.Z(N)-Nq 1).

Clearly 5N is asymptotically normal vith zero mean vector and
v

covariancs matrix E. Rvaceva (1954) has proven a local limit

theorem for sums of i.i.d. lattice vectors. To prove (3.12)

we follow her argument in outline, varying the details to

handle our non-identically distributed vectors and takinA ad-

vantage of the special structure of Z(N). See Clickner (1972),

for the details.
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We no. need some notation. Let E0, var., etc., denot,,

expectation, variance, etc. under Q. Then

N k

(3.13) EQT N aiqi4

and

N k

(3.14) V varQT 4 * j iq (l-q1j).

Also, define v- + ... + PAA and

k

(3.15) T 0 V

The motivation for the bound on h in Lamma 3.4 will be made clear

in (3.24) and (3.25).

Lemma 3.4. Let h - hN, where hN i LY/N , for some K, 0 K < .

Assume x N IN -" 0, and (2.4) obtains. Then, as N

N k hNajA) 2 2 3 3
(3.16) log( pie N|NT/2 + O(NhNYN),

j-1 i-i

2 )2  2+(3.17) qi. p" + hpi•hic(6 1 - VA) TA + O(NYN). i-, ... ,k

2 2 3(3.18) EQTN T NhNT2 + O(NhN*YN),

k
2 k3(3.19) VT N AtP (1-pi) + O(Nhy ),

T il
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N
(3.20) qIj(l"qij)/ p1 (l-pi) + O(hN), i-I., ... ,k

Jul

2
(3.21) pqlqjN pt, + O(hN) ,

jul

Proof. Consider the left-hand side of (3.16):

k * 1: + 2 2 k 2

a~ ~ • 1 .~ N l

i-i

where 1 1 1. Then

k h 2hjI N) ,2 2.2 3 .3I

Slog( E p e I {hNa v^ + Nh~ajT + O(KI*I
Jul i-i ji N Aj-1~ ~ 2 2- 3- "" la •J• 1))

a Nhj T, + o(h NJ _l , 1 3

2 22 330NhRT,&/2 + (hy)

Expressions (3.17) - (3.21) follow similarly. The proof of Lemma

3.4 is complete.
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Irof of Theorem 2.1

In addition to Laneu 3.1-3.4, we need two lomas specif-

It'ally for Theorem 2.1.

Lemma 3.5. Define AN by (3.9). Then for each N and any h > 0,

(3.22) n z log AN +

S-4VTh + losg1 - [Q((T- 2V¶ - ZON ) IZ(N)- T/4VT)

Proof. Clearly AN q exp[-hNOAN"]. On the other hand,

AN 2! oxp[hx'N% a -A 4VTh] Q(XNQA 5 TN 1 YNN + 4VTIZ(N)unl

Sex p1-h--Na' - 4VTh]{(3 - E ((TN-xN NN - 2VT) 2 IZ(N)•-hi/4V ),

by Chebyshev's inequality. Lemma 3.5 follows.

We will now choose values for p1, p ,k and h for the

k-vFtmple case. Let

(3.23) p, a ± * i ... , k

and let h w h be the tAq7,).o tlutic 0.'

(3.24) NQTI• - xNoAN ÷ 2 VT.
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This choice of hN maximizes a term in the lower bound of AN I"

Lemma 3.5. A simple argument shows that hN in well defined by

(3.24), and, further

(3.25) h• • xN/O•!.

Le•=a 3.•6. Let (3.23) hold and lot ha be the solution of (3.24),

satisfyins (3.25). Then, as N -,

(3.26) EQ(TIzTWN) - n) N "q T.

and
(3.27) v, a(,IZ(N) V2

Proof. Consider, for! * 1, ... , k, j a I, ... , N,

Q(Z(N) - ad
(3.28) Q(z) - 1tZ(N) a n) -qlj Q(Z(N) .n_)

where a, (n 1 , ... , ni, ni-1, n ... , ni), ± - 1, ... , k,

From (3.17), (3.20), (3.21) and (3.23), l unm N" ) T has

elements of the form A (I-Ai) on the main diagonal and -A off the

k k
main diagonal. Since • A1  1 , det E R X A1 . Hence, by Lemma 3.3,

(3.29) Q(ZIH) - ad exp(12  [(A .2 -q. -

exp((A -qi.)/xi - 1/21I 1x i

exp(O(.N2/N)),
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uniformly in i A 1, ... , k, j 1, N..., . Hence,
N k .

(3.30) EQ(T 14 IZ(N)-!n) * • aj AQ(Z.J) * 1IZ(N)-n) • EQTN

Similarly, for t, , .i 1 k, J, J' 1, . N, i t ,'

(3.31) Q•Z U al, Z M,') (lz(.)._) .r o q ,u,

uniformly in it ±l, J end ' The Joint prob'Lbility on the loft-hand

aide of (3.31) is zero if j . Hece

(3.32) E,(T2IZ(N)-_n) a' I a Q(z4)-IlZ(q)-mn)

+ a caA A al~~u, Zt MuIJZ(N)un!) EQ, 2
jOJ'. or ii JQTit

Lemma 3.6 follows.

We can now prove Theorem 2.1. This will be done by sub-

stituting Lemmas 3.2-3.6 in Lemma 3.1. More specifically, let

(3.23) hold and let h - h N solve (3.24) which entails

hIN xIN /Nd From Lemao 3.2 and 3.3,

N A
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(3.33 (OJ) - all exp[- A

'4
e.xp[lO(x•N/)ly

using (3.17). From Lem 3.4, specifically (3.16), we have

N k h Ni a) 1 2

(3.34) 1 log( I •i N /2.

By the definition of hN,

EQ:T ½2V 2 _3 2
E, •C( N. - x. -2vT)2 IaN T Z(N)._ varQ(T.IZ(N)-fl.) VV

by Leima 3.6. Hence, from Lama 3.5,

(3.35) log AN N -x.

Theorem 2.1 now follows by substituting (3.33), (3.34), and (3.35)

in Lemma 3.1.

Proof of Theorem 2.2

The main difference between the proofs of The•,rems 2.1 and

2.2 lies in the treat-uent of the asn A., de.fined in (3.9). Hern,
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we write AN as N - exp[-hEQTN]CN,

where

(3.36) CN = jehVy dO (y),

B.

where

N N
(3.37) a a' qj (lql.j)/ I ql.jJ Iuql Jul ('l)

N

(3.38) V N(a a - jj

(3.39) oN(y)- Q{TN < yV + EQTNIZ(N)un)}

and

(3.40) B -xN(XXNN) - QTN)/V.

Observe that 0 (.) is the conditional distribution referred to in

the discussion following Theorem 2.2 (s;ee equation (2.14)).

Now select p, and h. Choose p1 a pN to be the solution of
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N
(3.41) i" E (1+(q:;/Pp) e"pl-xei~x- NA x IN) lt 'U

This is the PM1 of (2.13). Choose

(3.42) h hN HASX

Note that P1 is well-defined by (3.41) and we have

PN N X, and h. ' so these choices are only slightly

different from those in the proof of Theorem 2.1 -- but are more

convenient for the proof of Theorem 2.2. The reasons for these

choices will become apparent in Lemma 3.7 and display (3.45).

Lemmas 3.7 and 3.8 constitute the analysis of AN.

Lemma 3.7. (Hdjek (1964s)). Let e3;4l) hold. A necessary and

suftficient condition for a * 0, where

end , is defined in (3.39) 1,s



(3.43) V , (,-a),ivI *O.
± cA

for all c 0 0, where A. - {i:l-.aI • cV).

Proof. This is Theorem 7.1 of HfJek (1964).

SLms 3.8ý Let p and h. be given by (3.41) and (3,42), respectively,

and let (2.9) obtain. With C as in (3.36), we have, asN N
N

C 40.N

Proof. We can write

(3.44) C f -e (y)
B

+ -N(0N (B)-O(B)J + hV ef 0 ry)-Osyfldy.

Techniques sinilar to those of Lemna 3.4 yield V2 II NA . Consider

(3.45) B a- v-[I (A )'-SQ (T ,)]

a x,, -Qpqh(N/A N o[ (1h

0 -1o•

... .. ... .. .. . ......... ... .
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with h piven by (3.41). Hence

It follows from (2.9) that A is empty for large N; hence AN+ 0

by Lemuna 3.7. Since xN , Leaus 3.8 follows.

To complete the proof of Theorem 2.2, apply condition (2.11)

and the selections of p1 and h, (3.42) and (3.43), to Lenoas 3.1 -

3.4 with k-2 to obtain

(3.47) PN(xN) p + J(xC, 2N'

Proof of Lemma 2.3 and 2,4

Lama 2.4 is proved by expanding the logarithms.

In Lemma 2.3, the case t N veif + t (Nhat i s proved by substi-

tin + (-1 ) to verify that it is a solution of (2.13).

Otherwise, recall that

(3.48) A p . (p-J).1l:/pqiN + o(-1),

using (3.17) and (3.42). Now, suppose x4 - o(N) and propose

(3.49) p + clxT/N + °(N-)

if a bolution of (3,48). Substitute (3,49) in (3,48) and solve for
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01 to obtain c , aZ) a s. • ,i• (2.20). Next, uuppose

3xi- o(N) knd try

2 2-1
(3.50) p - ,,.c (A.• IT/I•2 H /T o(IT( )

as it chalion of' (3.48). Again, .olve for c2 to obtain c2U c2(A1),

aw in (2.21). Thc hirhi4T order coci'fi'•ients {(c(x}enn be found

9uc:ueiLv(ly lyy contlrnnp this itej-ativy, przucadttc , This is not

done hore bactau.',Au tl'e tigalwa. bci•wse v'ry, cxniberurc,-i. Tli proof of

"Lomna 2.3 is eormplete.

Proof of Corollaries 2.5 and 2.6

Corollary 2.5 is an iumediate consequence of Lemmas 2.3 and

2.4, and Corollary 2.6 is proved in essentially the same manner as

Lemia 2.3.

,ipo~1m~
but va
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