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1. INTRODUCTION AND SUMMARY 

This report to the Advanced Research Projects Agency (ARPA) summarizes System 
Development Corporation's progress during 1974-1975 in an ongoing program of 
Interactive Systems Research.  During this period, the program included three 
projects:  (1) Speech Understanding Research, (2) Lexical Data Archive, and 
(3) Common Information Structures.  The overall intent of the research is to 
develop technologies for improved man-machine interaction and for new data 
management capabilities. Although this report covers the entire year, it 
emphasizes progress made during the six months from March~to September, 1975; 
an Interim Report (SDC TM-5243/003/00, 15 May 1975) described major 
accomplishments during the prior six months. 

Speech Understanding Research 

Our work in speech understanding research is directed toward the construction, 
by the end of 1976, of a prototype Speech Understanding Rysteia,  yuch a system 
requires several sources of knowledge about language and its use for particular 
tasks.  These include the parair.eters of apeech sounds, acoustic-phonetic data, 
and stored information about an ongoing dialogue.  SDC is developing the system 
in cooperation with Stanford Research Institute (SRI), which is primarily 
responsible for the system's parser and higher-ievel linguistic processes. 
SDC is primarily responsible for the overall system implementation and testing 
and for the modules that process a speaker's input utterances. 

The design of our acoustic-phonetic processor reflects the fact that the speech 
signal is never wholly unambiguous; any attempt to precisely label phones and 
their boundaries must recognize and allow for considerable ambiguity in mapping 
the extremely large number of speech sounds into a relatively small set of 
acoustic-phonetic transcription symbols.  Accordingly, in this processor, each 
acoustic-phonetic frame has multiple labels, and each label is assigned a score. 
Scores are based on a measure function that is, in turn, based on feature 
parameters previously developed for each speaker (ust- ) . 

Late in 1975, a milestone version of the system v/ill be demonstrated.  The 
capabilities of the Milestone System were described in some detail in the 
Interim Report; this report adds to that description detailed discussions of 
the now advanced versions of the processes through which the system passes 
a speaker's utterance in an attempt to derive an acoustic-phonetic representa- 
tion of the utterance and to map that representation to words in the system's 
lexicon. Also described is the new programming language and system, CRISP, 
that we are developing to provide greater capabilities for implementing large 
portions of the prototype system. 

iMu, 
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Lexical Data Archive 

The Lexical Data Archive Project was begun in 1973 to create a centrally 
organized archive of lexical semantic information on words in the lexicons 
being used by ARPA SUR contractors. Files with a considerable amount of 
data on these words were constructed and are now stored on magnetic tape. 
The project was terminatod in June. 

Common Information Sl-ructures 

The Common Information Structures Project, which was suspended at the end of 
this year, has implemented a system of languages and translation interfaces 
for semiautomatic conversion of large data bases from one data-management- 
system environment into another with minimum cost, effort, and disruption 
to users. The system was developed over a period of three years and has 
been success!jily tested and demonstrated. Its major advantage over previous 
designs is that it uses the existing query and generate functions of data 
management systems as part of the conversion process. This frees the user 
from having to become familiar with the storage-level and hardware-level 
data structures of the computer systems involved in the conversion, allowing 
him to focus on specifying the logical structure of his data base and the 
types of logical conversions that are necessary to move it from one system 
to another. 
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2.        SPEECH UNDERSTANDING RESEARCH 

2.1        INTRODUCTION 

Late in 1974, the first fully integrated prototype of a speech understanding 
system developed jointly by SDC and the Stanford Research Institute (SRI) was 
implemented.  The tank  domain of that system was data management on attributes 
of submarines. The system operated on SDC's Raytheon 704 and IBM 370/145 
computers. The Raytheon computer was used to perform an acoustic-phonetic 
analysis of a digitized speech waveform. The results of this analysis were 
put into an array of acoustic-phonetic data that we refer to as the A-matrix. 
The data in the A-matrix are used by lexical mapping procedures to verify the 
existence of words hypothesized by a "best-first" parser that draws on a set 
of language-definition (syntax) rules and on components containing semantic 
and pragmatic (discourse-context) sources of krwledge. 

The acoustic-phonetic processing and lexical mapping procedures were essentially 
the same as those used by SDC in its Voiced-controlled Data Management System, 
modified to handle a vocabulary of 300 words.  The system had a word-string 
mapping procedure that handles coarticulation between pairs of words. 

The goal for this contract year was the Milestone System.  The task domain for 
the Milestone System is data management with an expanded data base containing 
attributes of submarines, aircraft carriers, and ocean escorts of the US, USSR, 
and UK.  The vocabulary has been extended to 600 words; the system accommodates 
six speakers, both male and female.  Acoustic analysis is performed on PDP-11/40 
and SPS-41 computers, interfaced to the IBM 370/145.  Refined and augmented 
acoustic-phonetic analysis includes improved formant tracking, pitch tracking, 
and vowel-sonorant analysis.  Techniques have been developed for handling voiced 
fricatives and plosives, and improvements have been made to the present programs 
for handling unvoiced fricatives and plosives.  A new programming system, CRISP, 
will provide efficient arithmetic and array processing, in addition to efficient 
symbol and list processing, and will substantially increase the address space. 
Two  new mapping procedures have been added:  one to handle prosodic features 
and one to provide word spotting and do lisxical subsetting on the basis of robust 
acoustic cues. Modifications to the syntax include the addition of time and place 
the conjunction and »legation of noun phrases, the use of prosodic attributes and 
factors (earlier written into the rules), and an allowance for incomplete 
sentences to function as utterances.  Semantic information guides retrieval 
and prediction in addition to interpretation.  The discourse model has been 
augmented to handle onger dialogue sequences on the basis of protocols 
gathered in more caiefully controlled experiments.  System exercising is 
being guided by formal test and validation procedures that assess each 
component's contribution to system performance. 
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2.2       MAJOR  ACCOMPLISHMENTS FOR 1974-1°'5 

During the 1974--75 contract year, the SDC SUP group accomplished several major 
objectives in the development of speech processing algorithms, a comprehensive 
naval ships data base, and the conduct and analysis of several protocol exper- 
iments designed to study the languav? behavior of naval officers in simulated 
command situations. Extensive expansions of a ships data base were coordinated 
with technical and military personnel of the Naval Electronics Laboratory Center 
(NELC), San Diego.  Several important algorithms were developed for processing 
speech waveforms, including fundamental frequency extraction, formant frequency 
analysis, segmentation and labeling, and various procedures for word and phrase 
pattern-matching. A new programming language and system, CRISP, is being 
developed to provide more powerful capabilities than are provided by LISP and 
its derivatives. 

2.2.1     Language Behavior ' \  Naval Operations 

The conduct of protocol experiments represents an important aspect of our system- 
building strategy. The dialogue ■; obtained from these experiments are the basis 
for our decisions regarding: 

1. discourse context, 

2. syntax, 

3. vocabulary, 

4. lexical selection of phonetic base forms, 

5. prosodies, and 

6. data base content. 

Several protocols were gathered at the Naval Postgraduate School in Monterey, 
California, during July, 1974.  These were followed by a further protocol exper- 
iment in the SDC SUR laboratory.  The design of a new set of experiments was 
then worked out with technical and military personnel at the Naval Electronics 
Laboratory Center (NELC) in San Diego, California. The experiments were con- 
ducted with military personnel at NELC in May, 1975. The subjects were high- 
ranking naval officers with extensive experience in command operations. Each 
subject was given the problem of assessing the potential strength and combat 
readiness of ships in the U.S. Sixth Fleet during a simulated crisis situation 
in the eastern Mediterranean. Updated "intelligence" reports concerning the 
movements of foreign ships in the Mediterranean and adjacent areas were issued 
to each subject at 10-15 minute intervals during the conduct of each hour-long 
experiment. 

Orthographic transcriptions of the recorded protocol dialogues have bean used 
to identify necessary syntax, vocabulary, and data base extensions to the system, 
and have provided useful information about discourse context. The transcriptions 

mtiimi 
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also served as prompting material for subjects who participated in an experiment 
conducted in the SDC laboratory. The results from the latter experiment were 
transcribed orthogiaphically at SDC and phonetically at SCRL. These phonetic 
transcriptions guided the selection of lexical base forms and th^ir accompanyinc, 
phonology. Also, the phonetic transcriptions, along with acoustic analyses of 
the utterances in the dialogues, will be useful in the analysis of prosodic 
phenomena. 

2.2.1.1   Computer Processing of Protocol Recordings 

The major results of the computer processing of the protocol recordings are 
KWIC concordances, type counts, and "word"-lists sorted by frequency.  Concord- 
ances were found very useful in the analysis of our current protocols,  SDC 
currently has the following capabilities for concordance generation: 

1. KWIC index for orthographic text (Figure 2-1). 

2. KWIC index for phonemically transcribed text (Figure 2-2). 

3. KWIC index for individual phonemes (Figure 2-3). 

4. A concordance in which keywords are displayed together with the 
entire sentence in which they appear (Figure 2-4). 

All versions provide basic statistics of the text processed, e.g., number of 
sentences in the text, total number of tokens (words or phonemes, as the case 
may be), number of types, type/token ratio, frequencies, percentage frequencies, 
etc. 

The four protocol experiments yielded nine recordinga of natural speech for nine 
different speakers, comprising a total of 955 utterances, a total of 9461 ortho- 
graphic tokens, 1791 orthographic types, with an overall type/token ratio of 
approximately 19%.  It should be noted that the  term "utterance" is used somewhat 
loosely; it covers single-word fragments such as "all right" and "O.K.," sentence 
fragments, complete sentences, and, in some ■,ases, whole paragraphs.  This 
variety is due to the fact that, during the first two experiments, the subjects' 
queries normally took the form of single sentences, while in the last two exper- 
iments, especially the experiment involving NSLC personnel, the dialog was much 
more complex--a natural consequence of the increased complexity of the scenario 
and the data base.  It was found convenient for processing purposes to consider 
the whole query as a unit, rather than break it up into individual sentences. 
As far as the concordances are concerned, an utterance refers to what was said 
by the subject between responses from the system. 

The orthographic KWIC index (Figure 2-1) for our current protocol files has 
highlighted frequently recurring sentence types and other grammatical construr- 
tions.  For example, out of a total of 220 sentences, 62—i.e., almost a 
third—begin with "How many <NP>...M and another third begin with "What is 
<NP>..." and "What's <NP>..." By taking data such as these into accovnt, the 
parser can focus on the more likely paths first. 

:• 

— - ■ ' 
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The KWIC index routine for phonemically transcribed text is designed to group 
together all phonetic variants of the same word under its orthographic rep- 
resentation.  For example, under "of" (see Figure 2-1) we found the following 
variants:  AX:0, AX:OF, AX:0V, and AX:1V; under "the" we get:  DHAX^, DHIH:0, 
DHIY:1, DHIY:2.  Such a concordance provides a check on the phonological rules 
component, whose function is to generate the variants likely to be encountered 
in a speech situation,  it also allows us to select the most commonly used 
phonetic spelling to be used in the mapper for a first try. 

The KWIC index for individual phonemes (in ARPABET transcription) has proved of 
interest to all those concerned with the acoustic-phonetic processing component 
of the system.  For example, the distribution of vowel contexts for initial 
plosives, the relative importance of final plosives, and the voicing context of 
/5/ were items of immediate interest to the researcher working on fricative 
and plosive analysis. Furthermore, the table ranking phonemes by frequency of 
occurrence (see Table 2-1) suggests the most pressing areas of research.  In 
the body of protocol sentences analyzed, the phoneme /n/ appears at the 
top of the list, closely followed by /a/, /s/, /i/, /m/, /z/, /d/, /3/, /e/. A 
survey of related work revealed that the phoneme frequency distribution in our 
protocol sentences largely matches the distributions in Denes [11 and Shoup [2]. 
We therefore feel justified in using the output of this frequency study to guide 
our acoustic-phonetic research.  Particularly, it is important to note that the 
phones /n/, /m/, /I/, and /r,/ have a high frequency of occurrence.  They exert a 
great influence on the vowels in their immediate vicinity. Therefore, research 
on the coarticulation effects betwean these phones and neighboring vowels was 
one of our primary tasks for this year. 

A research plan for a joint SDC-SRI study of prosodic features and their use 
in a speech understanding system was developed. Under this plan, SDC performed 
acoustic processing on the dialogues obtained from the protocol experiments. 
The first experiment dealt with word duration. A-matrices were prepared for 
each utterance of the protocol experiment recorded in September, 1974.  There 
were 69 utterances in the protocol.  Word and pause durations were determined 
on the basis of the A-matrix parameters described above.  This information 
was input to a program that created a new file in which each word and pause 
occurring in the protocol appeared with its duration. For example, utterance 
#44 in the protocol, which in the original file reads: 

"Give me that list of submarines again" 

now reads: 

"given me08 thatlS list28 of07 submarines54 again45" 

The numbers following each word refer to the number of 10-msec. segments the word 
spans. For example, the word "give" in this sentence is 17 segments, or 170 msec, 
long.  The new file thus obtained was put through the KWIC indexing routine that 
groups all similar words together and displays them in their context (see 
Figure 2-5;. 

■afua^.^ii». 
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TABLE 2-1.  PROTOCOL ANALYSIS:  PHONEME FREQUENCY COUNT 

j . 

Phoneme Phoneme 
j     (ARPABET (IPA 

Frequency 1 %Frequency Representation) Representation 

i        1 j    0.04 |      EM syl m,m 
i       9 0.40 !      AA a 

9 1    0.40 1       Q ? 
s      10 !    0.45 WH « 

12 j    0.54 i      NX n 
13 0.58 !i      G g 

1      14 0.63 !i      UH u 
15 0.67 EN V1 n'r

n 
s or J 16 0.72 SH 

1      17 0.76 i      AY al or av 

1       ,7 0.76 1      CH ^ 
1      17 0.76 !      ER T 
;           22 0.99 F f 
;!      22 0.99 W w 
i                23 1.03 EY el or ey 
!'      24 1.08 \                TH e 
i      26 1.17 AW aü or aw 

i      26 1.17 UW u 
ii      27 1.21 AO 0 

l!      27 1.21 EL syl 1,1 
1      28 1.26 DX flapped t,r 

29 1.30 Y 

! 1       31 1.39 JH 
i       33 1.48 K k 

33 1.48   ! P p 
36   i 1,62 OW o 
49 2.21    ! R r 

[i       50 2.25 IX i 
f                 52 2.34   I EH e 
i:           54 2.43 HH h 
i                 55 2.48 V V 

i       56   j 2.52   ! AH A 
f      61 2.75 UR r 
;       66   | 2.97   | AE 03 
\                 66 2.97   i L I 
I      68   1 3.06   j B b 
f      76   I 3.43 DH 5 
J      78   1 3.52 D d 
i      81 3.60   1 Z z 
i       90   j 4.06   I IH I 
1               108 4.87   \ T t 
1      M4   j 5.14 M m 
I      122   \ 5.50 IY i \               l34   i 6.04 S s 
|      145   j 6.54   j AX 3 

153   ( 6.90   1 N n 
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Table 2-2 shows the mean of terms that occurred more than 10 times in the corpus 
of utterances. Durations for the same term often vary as much as twice their 
shortest duration. The durations of short function words show much larger 
variations than those o2  context words or compound terms. 

TABLE 2-2.  PROTOCOL ANALYSIS:  SAMPLE FREQUENCY AND DURATION DATA 
FOR TERMS OCCURRING MORE THAN 10 TIMES 

TERM FREQUENCY MINIMUM 
DURATION 

MAXIMUM 
DURATION 

MEAN 

{NO. OF 10-MSEC. SEGMENTS) 

The b4 3 53 11.67| 

Of 29 2 31 8.93 

How many 25 24 57 45.12 

Submarines 21 40 91 60.57 

Have 21 15 38 26.9 

Missile 14 26 44 33.64 

Number 11 26 51 33.29 

Submerged speed 8 54 102 74.131 

We anticipate that duration data of this kind will eventually be used by several 
components of the system, in particular by the mapper, where they could become 
the basis for one of its subsetting functions.  It is conceivable that informa- 
tion on word duration could also become part of the user model, along with the 
speaker-dependent vowel tables and other such data. 

2.2.1.2   The Naval Ships Data Base 

An early version of SDC's Vocal Data Management System (VDMS) contained a data 
base of information about the submarine fleets of the United States, the Soviet 
Union, and the United Kingdom. A few of the prelimii.^ry protocol experiments 
were conducted with this data base--specifically, those run at the Naval Post- 
graduate School and a follow-up experiment conducted at SDC.  The simplicity 
of this data base restricted the variety of questions that could be asked during 
an experiment; it became obvious that in order to obtain more meaningful dialogues. 
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TABLE 2-3.  SAMPLE DATA BASE ENTRIES FOR THE USS CONSTELLATION 

1                FIELD NAME !     FIELD CONTENTS              | 

1       Country i   USA                           ][ 

1       Ship.type 1  Wh 
j        Hull.# j  CVA64                        j 

|       Name Constellation               i 

[       Class Kitty Hawk                 j 

j       Quantity (in class) 4                          1 

Readiness (in hours) 9 
j       Location (port name, sea) Sea                       j 

j       Longitude (0 for E, -0 for W) 15                        | 

1       Latitude (0N) 34 

;'       Heading (direction in 0) Unknown                    j 

|       Fuel.Status (% full) 70                         i 

1       Displacement (subm displ. for subs, 
1         std. displ. for surface ships) 

(tons) 

60,100                      f 

Draft (feet) 35.4                       j 

j       Length (feet) 1072.5                      j 

j                  Beam (feet) 129.5                      ] 

|       ASW (anti-submarine warfare) None                     6 

|       AA (anti-aircraft) 2 Twin Terriers             j] 

|       SS (surface to surface) None                      | 

j       Torpedo tubes None                      j 

j       Aircraft                       | Approx. 85                 j 

Propulsion (nuclear/conventional) Conventional               j 

l{       Engines 4 geared turbines, 8 boilers  | 

t                 Max. crusing speed (knots) 35 

j       Complement (total) 2795                       j 

I       BuiIder New York Naval Shipyard      j 

j       Laid.down Sept. 14, 1957              | 

|       Launched Oct. 8, 1960                |i 

1       Commissioned                  | Oct. 27, 1961               | 
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a larger and more re   'tic data base was needed.  This need raised the question 
of how to extend the t  a base.  Should the primary consideration be usefulness 
in the study of speech, or should it be utility in the real world? That is, 
should the data base be extended so that it would give rise to linguistically 
more interesting dialogues irrespective of its usefulness in some real-world 
situation, or should it be extended with some practical application in mind? 
The first alternative retains a "toy" domain but is satisfactory from the point 
of view of studying speech understanding; the second has the advantage of 
applicability in the real world, but requires considerable effort not only in 
building the data base, but also in extending the language-handling uapdbilities 
of the system.  Since the primary objective of the SUR projecc is to study speech 
understanding rather than to build a practical system, the first alternative was 
favored.  The close collaboration of technical and naval experts at NELC was 
sought, and a great deal of effort was spent in extending the data base to make 
it more realistic, without, however, aiming at immediate applicability. 

The former submarine data base was extended to include a variety of approximately 
250 ships, such as aircraft carriers, destroyers, and frigates. Moreover, many 
more attributes were added for each ship.  These now include 32 attributes, 
inclading location, fuel status, readiness status, and armament. A sample 
content entry from this expanded data base is shown in Table 2-3. 

2.2.2     Speech Processor Component Development 

The SDC-SRI speech system comprises three major processing components: 

1. The acoustic-phonetic processor, which extracts acoustic parameters 
from the speech waveform of an utterance and applies rules to these 
parameters to generate an acoustic-feature description of ehe 
utterance; 

2. The lexical mapping procedure, which attempts to match words and 
phrases hypothesized by the parser with data generated by the acoustic- 
phonetic processor; and 

3. The linguistic processor, developed by SRI, which includes a parser 
that makes hypotheses about the content of an utterance using syntax 
rules, semantics, and pragmatics. 

The parser hypothesizes words that it considers highly likely to occur in an 
utterance. The hypothesized words are transmitted to the lexical mapping 
procedure, which extracts an idealized pronunciation of the word from a lexicon. 
This idealized pronunciation, along with a set of alternate pronunciations (as 
generated by phonological rules) is then mapped against the acoustic-feature 
strings extracted from the utterance by the acoustic-phonetic processor.  When 
a word has been successfully mapped, this information is returned to the parser, 
which then makes further hypotheses about other words in the utterance. The 

■M '  irminirBittiiMMfT'"^ --"^^^^ 
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process continues until the parser decides that the strinj of words it has 
found form a complete utterance. Finally, a mechanism is used to extract the 
appropriate response from the data base.  If the parser is not able to derive 
a complete understanding, a partial parsing of the utterance is returned to 
the user. A complete description of the parser's operation is contained in 
[3]. The remainder of this section describes the operation of the acoustic- 
phonetic processor and the lexical mapping procedure, the system hardware/software 
configuration, and the CRISP programming language. 

2.2.2.1   Acoustic-Phonetic Processing 

The incoming speech signal is a time-varying sound-pressure waveform.  A 
prelimincry machine representation of this waveform is obtained by passing it 
through an analog pre-sampling filter and digitizing the filter output at the 
rate of 20,000 samples per second.  Each of the resulting samples is represented 
as a 12-bit integer.  Thus, for each second of speech, 240,000 bits of data are 
generated.  This form of the data does not explicitly contain any of the impor- 
tant features of the waveform that are needed for subsequent processing.  The 
initial goal, therefore, is to generate a parametric representation of the 
waveform that will contain a number of useful acoustic features. 

A variety of parameters can be extracted from a speech waveform.  They include 
frequency, amplitude, and pitch characteristics.  Some relate directly to the 
speech production process, while others relate to the auditory processes 
involved in speech perception. We have chosen to parameterize the waveform 
on the basis of speech-production characteristics—first, because a substantial 
body of knowledge about vocal-tract resonance characteristics has been accu- 
mulated over the past 30 years through the study of sound spectrograms and, 
second, because recently developed signal-processing techniques have Yed to the 
development of accurate and computationally efficient procedures for deriving 
vocal-tract resonance characteristics. 

Parameterization is initiated with the calculation of the root mean square (RMS) 
value for each 10-msac. frame of speech.  This calculation is followed by 
fundamental frequency extraction, formant frequency analysis, syllable 
segmentation, phrase segmentation, and other analyses.  These analyses are 
described below. 

Fundamental Frequency Extraction 

A number of algorithms have been devised for extracting fundamental frequency 
(FO), or pitch, from digitized speech signals.  These algorithms are often used 
both to estimate pitch and to distinguish between voiced and unvoiced speech. 
Pitch-tracking algorithms may be divided into two broad classes:  frequency 
domain and time domain. 
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1, Frequency-domain algorithms extract spectra of some sort, whether 
Fast Fourier Transform (FFT), Linear Predictive Codinq (LPC), cep- 
strum, or autocorrelation. The spectra are then analyzed to find the 
value of FO.  Frequency-domain pitch trackers tend fo be slow because 
the extraction of spectra is ordinarily a slow process unless special- 
purpose hardware, or a very fast computer, is available, 

2. Time-domain algorithms do not extract spectra.  Instead, they attempt 
to identify glottal pulses in the speech signal and calculate pitch 
values from the distance between the pulses.  Time-domain pitch 
trackers [4,5,GJ are the fastest type, running at real time or less 
even on minicomputers. Unfortunately, they are too inaccurate for 
many applications. 

The cepstrum [7,8,9] method, which requires the equivalent of two FFTs per time 
frame, is generally considered to be the most accurate.  The characteristics 
of the voicing source are examined after they are separated from the effects of 
vocal-tract resonances.  The cepstrum is resistant to phase and amplitude 
distortion of the signal but is sensitive to noise and requires more computation 
time than the other methods.  The normalized error function o£ the LPC [10,11] 
can be used to unveil the train of glottal pulses in voiced speech, which can 
then be tracked as in the time-aomain pitch trackers.  FFTs [12,13] have been 
used to extract pitch by analyzing the pattern of peaks in the FFT spectrum. 
The autocorrelation technique [14,]5] generates spectra quantized in period 
rather than frequency, which is convenient for looking at low-frequency 
phenomena like pitch. Autocorrelation spectra are computationally simple but 
do not resolve fundamentals over harmonics and subharmonics as strongly as do 
more conventional spectra. 

The differences between frequency-domain and time-domain pitch trackers are 
particularly sharp in terms of speed and accuracy.  Frequency-domain analysis 
extracts whatever periodicity information is present, degrading gracefully in the 
presence of noise or distortion.  On the other hand, with the fast tune-domain 
pitch trackers, it is assumed that the glottal pulse is necessarily a prominent 
feature of the speech signal, or that the wave shape of a pitch period changes 
only slowly from time to time.  Unfortunately, these assumptions do not hold 
for many phonetic environments, speakers, and recording conditions.  The pitch 
tracker developed by Gillmann [16] is a frequency-domain pitch tracker that 
approaches the speed of the time-domain pitch trackers without giving up the 
higher relirhility expected of the frequency-domain approach.  It operates in 
three phases: 

1, Down-sampling. A digital filter is used to reduce the original 
speech signal (which has been sampled at the rate of 20,000 samples 
per second) to 2,000 samples per second, thus removing many 
frequencies that lie outside the range of possible fundamentals 
and improving the speed of the program. 
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2. Autocorrelation and pitch extraction. An a'i^-orrelation spectrum 
with a window size of 50 msec, is taken every 10 msec. An algorithm 
examines these spectra and picks peaks from them.  The algorithm 
considers the possibility of octave errors [17] (mistaking a harmonic 
or subharmonic for the fundamental) and deals with them.  To reduce 
frequency quantization, a parabola is fitted to the peak chosen in 
the spectrum, and the theoretical peak of this parabola is used as 
the pitch value. 

3. Editing. The F0 values obtained above are passed through a median 
smoother to eliminate anomalous values, and then a heuristic pitch- 
track editor attempts to remove any remaining errors.  Figure 2-6 
illustrates the results of the program applied to the utterance 
"The U. S. has Lafayettes." Note the discontinuities of the contour 
occurring during the unvoiced portions of the utterance (/s/, /z/, 
/f/. /s/). 

Each 10-msec. frame is labeled voiced if a pitch value has been assigned to it 
and labeled unvoiced if a pitch value of zero has been assigned. 

Spectral Analysis and Formant Frequency Analysis 

Spectral analysis using a Linear Predictive Coding (LPC) algorithm (see, e.g., 
Markel [18]) is applied to a 25.6-msec. frame of speech centered at each voiced 
10-msec. frame.  The major advantage of using LPC techniques for spectral 
analysis stems from the fact that the underlying model from which a spectral 
approximation is obtained has a z-transform given by 

A(z) = 

!-  I)  a.*"* k 
k=l 

This all-pole representation provides a realistic approximation to the vocal- 
tract-resonance charccteristics of most voicpd speech sounds. The peaks in the 
spectrum correspond to poles of A(z) and are close approximations to the formant 
frequencies of voiced speech. 

Considerable information is obtainable from formant frequency values taken as 
a set of individual 10-msec. frames, but a wealth of additional knowledge 
results from construction of a piecewise-continuous time function called a 
formant track.  This information is critical to the development of acoustic- 
phonetic algorithms that describe the coarticulation processes involved in 
changing from one speech sound to another. An extremely complex procedure is 
required to construct a formant tr-ck because of discontinuities in formant 

^fc-*tt----*iatejT 
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structure due to changes from voiced to unvoiced speech and because, even within 
voiced areas, discontinuities due to the appearance of complex speech sounds 
(such as nasal murmurs) can occur. A program developed by Kameny, Gillmann, 
and Brnckonridge [19] is used to construct the formant track.  The result is 
similar to a digital representation of a sound spectrogram or "voiceprint" but 
with the exact frequency information known. The program assigns frequency values 
to each of the first three formants for each 10-msec. voiced segment of contin- 
uous speech.  Its input parameters are fundamental frequency, RMS energy, and 
the frequencies of up to five spectral peaks below 5 kHz.  The fundamental 
frequency is used as a voicing detector; formant tracking is performed only in 
areas of the utterance for which there are fundamentals.  The RMS parameter is 
a measure of the total energy from 0 to 10 kHz over each 10-msec. interval. 

The frequencies of the spectral peaks below 5 kH7 are extracted by the peak- 
picker from LPC spectra centered at each 10-msec. interval.  The peak-peaker 
begins by building first-and-second-difference frequency tables.  By inspecting 
these tables, the program locates all peaks and inflection points in the 0-5 
kHz spectrum.  If an isolated large-bandwidth peak is found, an off-axis 
spectrum is calculated in an attempt to resolve the peak into two peaks.  If 
the total number of peaks and inflection points is greater than five, an off-axis 
spectrum is also calculated in an attempt to remove extraneous inflection points. 
Step 1 of Figure 2-7 shows the peak selections from the peak-picker. 

The formant tracker begins by moving from left to right and linking frequencies 
of adjacent segments that are within a threshold difference of each other (the 
link is not made if a frequency in one segment could be linked to more than 
one frequency in the adjacent segment).  Anchor areas are then established in 
which formant labels can be assigned unambiguously; this is done by examining 
sequences of three consecutive frames that contain three or more links.  Am- 
biguity is detected whenever there is an extra peak or peaks or there is a 
missing peak.  When Fl through F3 are extended to the right and left of the 
anchor, they are so extended only as long as the peaks are unambiguous.  If an 
"xtra peak appears even for one frame, the extension of the anchor comes to a 
halt.  Step 2 shows the anchor areas. 

The remaining logic in the program is concerned with extending the anchors to 
the right and left into ambiguous areas and with establishing anchors in the 
areas where no unambiguous anchors could be established on the first pass. 
At this point, two kinds of context information are used as aids in resolving 
the ambiguities.  Slope information based on formant movement from the anchor 
direction (either to the right or to the left) is used to help select the peak 
that best fits the past known formant slope. A search of the unknown area in 
the opposite direction from the anchor is made to determine whether a peak 
choice would continue to track. The one basic rule is that, whenever a possible 
low Fl peak appears for at least six frames, it is incontestably named Fl, and 
the next higher or possible Fl is relegated to the slot "F4 or nasal formant" 
in the A-matrix. All frames tracked after the anchor stage are so indicated in 
the A-matrix, since they have less reliable formant information for segmentation 
and labeling.  The final output of the formant tracker is shown in step 3. 
Step 4 shows the smoothed formant track. 



15 November 1975 21 
System Development Corporation 

TM-5243/004/00 

^ 

{      ' 

1 I 

■   3 

S  f   (\ 

\  i 

ft 
0) 
•p 
w 

■H 

u 

i 
•p 

o 

in 
0 
a) 

i 

tt) 

i'H) ADNinmuj 

^jpfflfftifiitrr'rr irr '~ir^ •'"•'•Mili'rifl 



15 November 1975 22 
System Development Corporation 

TM-5243/004/00 

Segmentation and Labeling 

During the year, significant progress was made in the development and testing 
of our segmentation and labeling programs, which include programs for: 

Syllable segmentation, 

Acoustic phrase segmentation, 

Acoustic stress and rate-of-speech analysis. 

Vowel and sonorant analysis, and 

Fricative and plosive analysis. 

Developments in these areas are summarized in the following subsections.  An 
example utterance, "What is the speed of it?", is used to illustrate the 
appHcation of the various programs.  At the end of this section, that 
utterance is displayed after the several programs have bee»- applied. 

Syllable segmentation.  The primary importance of the use of the syllable 
as a phonetic unit stems from its use in a mapping strategy.  In a good mapping 
strategy, it is important to be able to map units larger than phonemes or 
allophones since these relatively small units are influenced so strongly by 
their neighboring units.  The syllable is a logical candidate for mapping, 
since it is just about the right length for a rhythm-based articulatory gesture 
and thus the unit within which most of the coarticulatlon should occur.  Many other 
units could be used; for example, phonemes and various artificially induced 
units, such as 10-msec. frames.  However, syllable boundaries tend to be more 
robust than phoneme boundaries.  Syllables are genuine linguistic units (which 
assists the system in making a transition from the parametric representation 
to a linguistic representation).  Moreover, syllables seem to provide natural 
breaks in the perception of continuous speech, as opposed to smaller units such 
as phonemes or allophones; indeed, Fujimura [20] has argued for the use of the 
syllable as a logical unit of speech recognition, largely upon the basis of the 
predictability of the concatenation properties of syllables, a property not 
shared by smaller, more traditional units of speech recognition. 

A program that automatically segments a continuous speech utterance into 
syllables has been completed.  Preliminary informal testing on speech from 
six male and two female speakers indicates that the program is about 95% 
accurate in isolating syllables. The program was adapted from an algorithm 

defined originally by Mermelstein [21] of Haskins Laboratories and was 
developed in collaboration with Mermelstein. 

The program begins by dividing an utterance into so-called "voiced blocks", 
i.e., areas of contiguous 10-msec. voiced segments.  (Voicing decisions 
are made by the pitch-tracking program described above.)  Each voiced 
block contain;: one or more syllables.  The program proceeds with the 

.. .M^^. iii 1^;:^ _.:    _ 
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following analysis in order to segment out the potential syllables.  For each 
voiced block, a sonorant energy function is computed from each LPC spectrum in 
each 10-msec. frame in the block as follows: 

SE. = 

100 

i=l 

where S,,...,S100 are the first 100 spectral values in the LPC spectrum and 
where w.,...,Wi are a set of weights designed to emphasize the portion of 
the spectrum that contains the major concentration of energy for vowels and 
sonorants. 

The next step is to examine aach voiced block to determine whether it contains 
more than one syllable and, if so, to break it up into its component syllables. 
This is done by constructing a convex hull function from the sonorant energy 
function defined above.  Briefly, the convex hull function (HULL.) is defined 
as follows:  Let SE denote the maximum value of the sequence SE ,...,SE . 
Then we move from left to right in defining HULL, by 

(HULL = SE 

| HULL. , = max {HULL.,SE. ,} for i=0,1,...,M. 
V   i+l i  i+l 

Moving from right to left, we define 

l™1^ -   SEN 
IHULL.  = max {HULL.,SE.  } for i=N,N-l, ,M+1, 

This convex hull function is monotonically nondccreasing from the start of the 
segment to its point of maximum loudness (i.e., SE ), and is monotonically 
nonincreasing thereafter. A typical convex hull function is depicted as 
follows: 

HULL 

POINT OF 
MAXIMUM DIFFERENCE 

■I 
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Within the segment, the point of maximum difference between the convex hull 
function and the sonorant energy function is considered to be a potential syllable 
boundary. The magnitude of the difference is a primary parameter in determining 
whether or not a syllable boundary exists.  If his magnitude exceeds a preset 
threshold A, then the syllable break is made without further analysis. On the 
other hand, if this threshold is not exceeded, but a lower threshold B is exceeded, 
then the syllables and acoustic features in the A-matrix are examined to determine 
whether a syllable break has occurred.  In examining the A-matrix, features such 
as the following are used: 

1. Each syllable contains one and only one vowel. 

2. The presence of a voiced "flap" (e.g., /d/) or a voiced dip signals 
the presence of a syllable boundary. 

3. Each syllable must have a minimum duration. 

This process is carried out recursively, 30 that if a boundary is found, the 
process is reapplied to both halves. 

since the last syllable boundary in an utterance is usually poorly articulated, 
thresholds A and B are lowered for this case.  Moreover, the beginning of an 
utterance can also be problematical due to prevocalization, which produces a 
false syllable that the program eliminates based on its extremely low sonorant 
energy and short duration. 

Figure 2-8 is an example of the processing of the utterance.  "What is the speed 
of it?"  The sonorant energy function is shown (only in voiced areas) along 
with vertical lines depicting the syllable boundaries.  Note that the utterance 
contains six syllables and that the program automatically determined the same 
number.  Listening tests indicate that the syllable boundaries are plotted in 
their proper positions. 

Acoustic phrase segmentation. An acoustic phrase is a connected group 
of syllables having a simple pitch contour.  During the contract year, a program 
that automatically segments an incoming utterance into acoustic phrases was 
completed. 

Knowing the locations of the acoustic phrases in an utterance helps to determine 
acoustic stress, provides important clues to the syntactic complexity of an 
utterance, determines the presence of a pitch rise at the end of an utterance 
(which indicates the possibility of an interrogative sentence), and, since 
phrase boundaries are almost certainly also word boundaries, permits the parser 
to begin a new path when a given parsing strategy must be abandoned.  Further- 
more, the word-boundary information restricts the mapper's search for words to 
either side of the boundary. 
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The pitch value in the center of the voiced portion of each syllable (determined 
by the syllable segmentation program) is used instead of the sonorant energy 
function used above.  The convex hull function algorithm is then applied to 
this sequence of points.  The point of maximum difference uetween the convex 
hull function HULL and the pitch contour PITCH is first determined.  Next, if 
for this point 

HULL 
PITCH 

> A 

where A is a preassigned threshold, a phrase boundary is marked.  The same 
procedure is then applied to the resulting two phrases if a phrase boundary 
was found.  The program continues recursively until no further boundaries 
can be marked.  Each time a boundary is located, it occurs within the voiced 
part of a syllable.  This boundary is then moved to the end of the syllable 
having the lower pitch. 

Phrase contours are labeled falling, rising, fall rise, or rise-fall based on a 

parabola least-squares fitted to the non-zero values of the pitch contour.  The 
parabola is defined by 

2 
p(t) = at +bt+c 

where p(t) is the value of the pitch contour at time t.  The extremum of the 

parabola occurs at time PK = TT • Assume that the phrase occurs from t1 to time 

t2.  Then eight possible cases can occur, outlined in the following table: 

VALUE OF a PK LABEL   | 

i   a<0 

a<0 

a<0 

PK-ctj^ 

PK?t2 

tl<PK<t2 

Falling I 

Rising i 

Rise-fall 

a>0 

a>0 

PK<t 

PK>t2 

t1<PK<t2 

Rising   ! 

Falling 

Fall-rise 

a=0 

a=0 

b>0 

b<0 

Rising j 

Falling   | 
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Figure 2-9 is an example of the program applied to the utterance "The 
Seawolf has six torpedo tubes." The pitch contour is shown, along with the 
phrase boundaries (vertical lines), and the fitted parabolas. The labels for 
the pitch contours are "rise-fall," "rise-fall" for the two phrases. Figure 
2-10 shows the result of the program applied to the utterance "What is the 
speed of it?" 

Acoustic stress and rate-uf-speech analysis. In the mapping strategy, it is 
important to know the acoustic stress of each syllable. There are three reasons 
for this. First, reduced vowels (primarily schwah) are distinguished more by 
their stress level than by their formant frequency structure.  Second, in a 
"bottom-driving" strategy (in which words are located and recognized purely 
on the basis of acoustic clues), it is important to begin the bottom-driving 
with a stressed syllable, since this will contain more reliable acoustic-phonetic 
information than a syllable with a lower stress level.  Third, agreement between 
predicted stress levels and machine-generated stress levels is a part of the 
scoring function of the mapper. 

Three parameters are calculated for each syllable: 

1. Duration (DUR) of the voiced portion of the syllable, 

2. Intensity (I), defined to be the maximum RMS energy in the syllable, 

3. Relative pitch (RP), defined by 

RP 
t„-t, •' t 
2  1     1 

[F0(t) - {at2+bt+c)]dt 

where t and t are the beginning and end of the voiced portion of the syllable, 
F (t) is the time-varying pitch over the voiced portion, and at +bt+c is the 
parabola fitted to F (t) over the phrase as above. 

The average value of the first two parameters (DUR and I, respectively) is 
calculated over all syllables in the utterance.  Stress is assigned by con- 
structing. a scoring function defined as follows: For a_ given syllable, if 
DUR ^ DUR, then one "point" is assigned.  If also I > I, another point is 
assigned.  If RP > 0, then still another point :'.s given. Thus, each syllable 
is assigned a score of 0, 1, 2, or 3.  Stress levels are then assigned as 
follows: 

Score Stress Level 

0 Reduced 

1 Unstressed 

2 Medium stress 

3 Stressed 
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Since the last syllable in an utterance is generally lengthened and lowered 
in intensity, its stress is assigned to be medium stress or unstressed 
based soley on whether RP 5 0. 

Another parameter important to a mapping strategy is rate-of-speech. 
Syllable segmentation is generally about 95% accurate in isolating syllables. 
When a word is hypothesized by the parser, the mapper first assumes 
that the machine-generated syllable boundaries are correct. A word 
match is attempted; if it fails, the failure may be due to the fact that the 
boundaries are misplaced.  Given the rate-of-speech (defined to be the number 
of syllables per second), it is possible to remap the word using uniform 
syllable boundaries extrapolated from the rate-of-speech measurement.  This 
parameter will also be useful in determining the applicability of fast-speech 
rules. 

The program inverts the duration of each syllable for each 10-msec. frame, 
yielding a measure of syllables-per-second for each frame.  These are smoothed, 
using a 100-frame moving average, and the result is inserted into the A-matrix. 

Vowel and sonorant analysis. The main purpose of the vowel-sonorant 
(VOWSON) program is to locate steady-state segments and to enter segment 
boundary and label information into the A-matrix. Not all vowel-sonorant events 
are steady-state.  The definitions of some events are, indeed, tied to the pat- 
tern movement of the formant frequencies; they make a gesture toward a target 
but do not attain the target or do not hold a fixed position for even a short 
period of time. Also, some events do attain a steady-state, but it may have 
been influenced by surrounding sounds and does not match closely to "pure" 
vowel or sonorant targets as indicated in the speaker-dependent tables.  The 
results of a retroflexion experiment indicate algorithms for handling retro- 
flexed vowels, but nasalized and lateralized vowels cannot be meaningfully 
handled until the appropriate experiments have been performed and the results 
interpreted. 

The strategy of the present VOWSON program is to locate, segment, and label 
appropriately only those steady-state areas that it can handle with a high 
degree of reliability. All other voiced areas are left for the lexical mapping 
procedures to interpret in a syllable, word, or phrase context. VOWSON does 
provide the mappers with information extracted from the parameters to enable 
them to map more efficiently.  This information is provided in the form of the 
following kinds of indicators: 

1, Indications are made in the A-matrix as to discontinuities in Fl, F2, 
or F3 based on the difference in formant frequencies between adjacent 
frames. 

2. An appropriate rise or fall indicator is turned on for each frame in 
which the frequency of F2 change exceeds a threshold from one frame 
to the next. This enables the mappers to quickly discern slow-moving 
F2 changes from those that are moving more rapidly. 
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A sporadic voicing indicator is turned on if the fundamental frequency 
goes on and off over a contiguous period.  This indicator is used as 
a flag to the fricative-plosive program to investigate the area. 

A retrofLexion indicator is turned on for all frames in which P3 is 
below a threshold value.  The threshold value is defined as being 
half the F3 distance between /f/ and /u/. 

A lateralization indicator is turned on for all frames in which the 
Fl, F2, F3 frequency pattern is within a threshold difference of the 
pattern given for /I/ in the speaker-dependent table. 

A nasalization indicator is turned on when the Fl frequency is low 
and the Fl, F2,  F3 frequency pattern is not /i/-like or /u/-like. 

Contiguous voiced areas not exceeding three frames for which formants 
are missing or erratic are labeled "voiced junk."  They may be r.jn- 
speech phenomena such as tongue clicks, glottal sounds, or portions 
of bursts. 

A falsetto indicator is turned on for frames having an FO greater than 
350 Hz.  A vocal fry indicator is turned on for frames having an FO 
less than 65 Hz.  ("Vocal fry" refers to what are often called "creaky 
voice" sounds-.) 

9.  If the number of slope rhanofis in the digitized signal exceeds a 
threshold for a 
on. 

voiced frame, a voiced fricative indicator is turned 

VOWSON also detects energy dips in voiced areas and indicates the dip areas in 
the A-matrix. The parameter used for dip detection is the RMS after a three- 
point average smoothing has been performed.  The technique used is similar to 
that described by Weinstein et al. [22].  Each minimum is tested against its 
surrounding maxima to ascertain that the ratio of the minimum to each surrounding 
maximum is within a threshold of .80, and that the combined ratios are within 
the threshold 1.20.  The dip-location technique was applied to 69 utterances 
from a protocol.  Some sample results are given below; 

 ■    -•inffmrnr'TfTir-rrr 
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Detection 
of voiced 
plosives 
(/b/,/d/,/g/) 

Detection 
of unvoiced 
plosi.as 

(/p/,/t/,A/) 

Detection 
of morph 
boundaries 

Words or phrase 
(phoneme or boundary 
underlined)  

submarine(s) 

number 

submerged 

Albacore 

guided 

guided 

what is 

Washington 

thirty 

computer 

subset: on 

missile | launchers 

the I Ethan 

# Times phoneme # Occurrences 
(or boundary) of word (or 
found correctly phrase) 

18 21 

10 11 

11 

1 

3 

3 

10 

9 

4 

1 

1 

3 14 

2 5 

Some other sounds labeled as dips were:  of the Soviet, Lafayette, length, 
united, many. 

VOWSON utilizes previously constructed speaker-dependent vowel-sonorant tables. 
These tables contain entries for the following ARPABET symbols:  IY, IH, EH, 
AE, AA, AH, AO, OW, UH, UW, AX, ER, L, W.  Each sound has Fl, F2, and F3 
frequency values associated with it.  The frequency values for IX, R, L, and w 
are assigned by the program from existing sounds in the table.  The Fl of IX is 
defined as half the distance between the Fls of IY and IH; the F2 and F3 of IX 

are defined as half the distance between the respective F2 and F3 values of IH 
and AX. The Fl of R is defined as 3/4 the Fl value of ER; the F3 of R is 
defined as the F2 of ER, and the F2 of R is defined as the Fl of R plus 60% 
of the distance between the F3 and the Fl of R.  The Fl of L and W is defined 
as half the distance between the Fls of IY and IH.  The F3 of L is defined as 
the F3 of IH. The F2 of L is .382 of the distance between the F3 and Fl of L. 
The F2 of W is 200 Hz less than the F2 of L and the F3 of W is 400 Hz less than 
the r3 of L. VOWSON also assigns frequency values to a group of retroflexed 
vowels:  IY, EH, AH, OW, UW, ER. The algorithms used are those described in 
the results of a retroflexion experiment (23]. 

»mv-^^^^mmi^mstakui^ii. 
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The Fl, F2, F3 frequency values of the vowels in the speaker table are converted 
to a linear scale from 0-99. This allows matching to be done on the basis of 
linear distance rather than Euclidean distance, reducing computational costs. 
The conversion is made by finding the minimum and maximum Fl, F2, F3 values 
from the table (excluding the retroflexed vowels) and extending these minima 
and maxima il5%.  The distances between the minima and maxima are then divided 
by 99 to yield the scale factor for each formant..  Each frequency resonance can 
then be converted by subtracting the minima for that resonance and dividing by 
the respective scale factor.  An example table for speaker WAB is shown in 
Table 2-4. Also shown are the Fl, F2, F3 minima and maxima values and their 
respective scale factors.  If a formant frequency is below the minimum frequency, 
its default setting is 0; if it is above the maximum, its default setting is 99. 
All Fl, F2, F3 values in the A-matrix are converted to scaled values, and the 
scaled values are stored in the A-matrix as additional information. 

The first phase of segmentation is to find nuclei within the utterance.  Starting 
at the beginning of the A-matrix and proceeding to the end, each voiced (V) 
area is located and labeled.  Voiced junk areas are ignored.  The nucleus finder 
is run in ail areas having the following characteristics: 

1. The entire area is labeled V. 

2. Each frame in the area has an F0, Fl, F2, and F3. 

3. The area does not contain a dip. 

4. The area is 53 frames. 

The first task of the nucleus finder is to locate the frame(s) of peak RMS 
energy in the defined V area.  This is done by using the first-difference 
values between adjacent smoothed RMS values.  (There may be more than one RMS 
peak if the area includes more than a single vowel surrounded by sonorants.) 
The other parameter used for nucleus finding is the absolute first difference 
in scaled Fl, F2, F3 in adjacent frames for the defined area.  If this value 
for all frames exceeds a threshold, then there is no nucleus, and segmentation 
and labeling are not attempted in that area.  This is because the formant 
frequencies are moving too rapidly to define a steady-state area, and the 
problem of how to interpret the area is deferred to the mappers.  If there are 
first-difference values below the threshold, the frame showing the smallest 
difference (least amount of change) is selected as the nucleus.  If more than 
one frame has the same minimal difference, the frame closest to an RMS peak is 
selected as the nucleus. 

Once the nucleus is defined, the segment boundaries are determined by moving to 
the right and left of the nucleus until a scaled Fl, F2, or F3 value differs 
from that of the nucleus by more than a threshold value (one formant frequency 
outside the threshold is allowed for one frame), or until the beginning or end 
of an adjacent segment is encountered. More than one segment may be defined 
in the area if the undefined gaps between segments and/or the beginning and 
end of the area are greater than a threshold number of frames.  The beginning, 
end, and nucleus indicators for each segment are entered in the A-matrix. 
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TABLE 2-4.  VOWEL-SONORANT TABLE FOR WAB 

Phone Hz. 0 -99 Scaling 

El    ! F2 F3      ! 
T 

F1   1 
F2 F3         | 

1  IY 273 2304 2851     | 8  ! 85     1 81 

1  IH 
429 1914 2695     j 39 66      j 73 

1   EH 526 1835 2598 58 62      i 68 

ij  AE 625 1660 2343     1 78 53      , 55 

AA 645 1093 2440 82 25 60 

j  AH 585 1406 2539     1 70 
l 

40 65 

AO 645 1054 2617 82   1 23 69        i> 

ow 507 1093 2382 54 25 57 

1  UH 429 1210 2382 39 30 57 

uw 351 1152 2246 23 28 50        | 

i  AX 546 1367 2304 62 38 53 

1   ER 400 1445 1640 33 42 20 

i   L 351 895 2695 23 15 73         \ 

i   W 351 695 2295 23 5 53         j! 

IX 351 1640 2499 23 51 63         ! 

1  R 
300 986 1445 13 19 1 10 

1  IY 
351 2109 23 75 |  \        | 

!  EH 463 1952 46 68 1   IRetro- 

AA 645 1073 82 24 
|  f flexod  ( 
j  )Vowelb  j 

1 ow 457 I  993 1    44 ' j    20 l             ! 
UW 390 1181 31 29 

i  ER 414 1679 1    36 !  54 1    '            | 

Formant Minimum Maximum Seal. Factor    J 

Fl 233 741 5          j 
F2 591 2649 20 

I     F3 1229 3278 20          | 

- ^...^—.  



System Development Corporation 
15 November 1975 35 TM-5243/004/00 

Labeling is done on the basis of the scaled Fl, F2, F3 values found in the 
nucleus frame. Linear distances are computed from each vowel and sonorant 
in the speaker table, these distances are ordered, and the first four choices 

■]oo°st matches) below 50 are selected and entered in the ^-matrix.  The 
scar.       at the present time, is simply the linear distance of the match.  If 
the c.   rence between a single formant in the nucleus (either Fl, F2, or F3; 
and tt   jrresponding formant in a vowel or sonorant in. the table exceeds a 
threshold,- the vowel or sonorant is not acceptable as a choice, even if the 
composite score is less than 50. 

Labeling proceeds at follows.  If a segment is immediately preceded, within 
six frames, by two consecutive fraii.os that have retroflexion indicators turned 
on, then the retroflexed i; from the speaker's vowel table is used instead of 
the non-retrotlexed IY, and only the Fl and F2 distances are measured for the 
other sounds.  Likewise, if the segment is followed within six frames by two 
consecutive frames that have retroflexion indicators turned on, then the 
re^.roflaved vowel table replaces the non-retroflexed vowel table.  If the 
nasal Indicator is turned on for the segment, then a NA (nasal) choice with 
a default d;stance of 50 is inserted as the last possible choice in the 
A-matrix.  The default is used because the locations or effects of nasal 
formants and zeroes are not known at present.  No special handling of vowel 
lateralization or nasalization is attempted at this time. 

The nucleus finder, segmenter, and labeler arc also run on dips if they exceed 
a threshold number of frames and all frames have an FO, Fl, F2, and F3.  If 
the dip is short, a default nucleus is defined to be the middle frame. 

Fricative and plosive analysis.  Major advances have been made in automatic 
acoustic-phonetic analysis of fricatives and plosives. Appropriate portions of 
♦-he A-rnacrix are segmented and labeled P, T, K, B, D, G, HH, F, TH, S, SH, V, 
DK, Z, and/or DX by the program that performs this analysis (FRICPLOS).  FRICPLOS 
is a continuation of work begun in 1973 on the application of linear prediction 
to the acoustic-phonetic analysis of unvoiced speech [24,25].  Our progress 
this year in this work has been extensive; Jie following are some of the 
highlights: 

1, The fricative-plosive spectrum analysis process has been extended tr- 
yield useful spectra OL voiced fricatives and plosives through the 
use of digital filter techniques.  These sounds ^.eviously could not 
be analyzed successfully. 

2. An efficient parametric representation of fricative-plosive spectra 
has been developed and extensively tested.  It preserves acoustic- 
phonetically useful information while condensing each spectrum to 
five integers and two bits per A-matrix frame.  Most usefully, the 
parameters enable numeric evaluation of how a fricative or plosive 
sound is changing with time. 

i~.—.  -   ■_-.:..,.. -r- t,-trt,rjmc^. .   ■-^ ....... .^- -...:-. ^n,. j. u^MMl. 
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3. A highly successful segmentation and labeling technique for fricatives 
has been developed. Frames in the A-matrix are grouped on the basis 
of spectral parameter stability, then labeled on the basis of spectral 
parameter average values within each group. 

4. Reliable silence and plosive-burst-location algorithms have been 
developed.  Spectral parameters for the entire utterance are considered; 
the definition of silence adapts for each utterance.  Bursts are located 
by amplitude pattern analysis. 

5. An effective method for labeling plosives has been developed by combining 
detailed analysis of the plosive burst with information on its phonetic 
context. For each burst, a central collection of data is accumulated: 
burst spectral parameters for up to 40 msec, after onset, presence or 
absence of following retroflexion or lateralization, presence or 
absence of closure as evidenced by first-formant motion, voice onset 
time, formant frequencies at voice onset, presence or absence of 
preceding or following /§/, and other data.  (Much of this data is 
based on preceding speaker-dependent analysis, the results of which 
have been placed into the A-matrix.)  Independent burst-analysis 
routines then operate, each attempting to find its pattern in the data 
and thereupon label the burst.  S-clusters (e.g. /ks/» /ts/r /st/, 
/ps/, /sp/) receive special consideration.  Also taken specifically 
into account are plosive-sonorant coarticulation effects, such as 
occur in /tr/ and /kl/. 

6. Techniques have been developed to make the voiced/unvoiced decision in 
labeling fricatives.  (This is by no means a simple task in continuous 
speech, in which devoicing of "voiced" fricatives and overlap of 
voicing with "unvoiced" fricatives is common.)  Information employed 
in making the decision includes the presence and exact extent of 
voicing, the presence or absence of preceding closure as evidenced 
by first-formant motion, duration of the fricative, and the presence 
of adjacent fricatives. 

All the al ove techniques are included in the currently operational version of 
FRIOPLOS. Well over a hvr.jred continuous-speech utterances have been processed 
by FRICPLOS in performance testing. 

Summary example.  Figure 2-11 is an example of the utterance "What is the 
speed of it?" as processed by the phrase segmentation, syllable segmentation, 
vowel/sonorant, and fricative/plosive programs.  The doubled slashes (//) 
indicate the phrase boundaries (only a single phrase exists in this case). 
Syllable boundaries are shown by double asterisks (**).  The phoneme-label 
choices are the standard two-character ARPABET machine representation. The 
first line contains all of the first choices, the second line contains the 
second choices, etc. 

M^ ""T *11~~l 
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2.2.2.2 Lexical Mapping 

The lexical mapping procedure, and the phonemic lexicon and its associated 
phonological processes, form the interface between the parser, which hypothesizes 
words and phrases, and the acoustic-phonetic data, in which the hypothesized 
woids must be found. Various types of mapping capabilities are used, each 
designed to satisfy a particular requirement of the parsing strategy.  The 
predictive mappers have a verification function; they attempt to give the parser 
a decision score as to whether a predicted entity actually could be present in 
a specified time region of the acoustic data.  The predictive mappers include 
various "lookasides" for storage of prior mapping data, a short-word mapper, a 
word/phrase mapper, and a phone/cluster mapper.  The subset mapper has a 
filtering effect; given some time point, it returns to the parser a small list 
of lexical items that the acoustic data suggest could begin at that point. 

The phonemic lexicon, the central data structure for all of the mapping modules, 
contains the possible phonemic spelling variations a given word might have. 
These spellings are derived by the application of phonological rules to one or 
more root or "base" phonemic forms; they are then stored as a graph to minimize 
storage and processing time during mapping.  The spelling graph of the word 
"submarine" is shown in Figure 2-12. 

The Predictive Mappers 

A predicted item may be a word or a phrase.  Some time information is included 
in the prediction.  Word boundaries are often imprecise, and one of the initial 
tasks in predictive mapping is to resolve time-boundary issues.  In particular, 
phones overlap, or extensive coarticulation allows two words to merge together. 
Affixes tend to make word edges fuzzy.  Pauses between words cause time gaps. 
These nhenomena confuse the parser as to where to predict new items.  The 
mapper attempts to reconcile predicted time information with what it already 
knows about mapped items.  Time data may consist of either a boundary B (a 
specific time at which a word is hypothesized to begin or end) or a limit L 
(a minimum or maximum time at which a word can begin or end).  Thus, 
there are four possibilities for boundaries: B-B, B-L, L-B, and L-L. 
The first three of these are the usual and expected forms; if an L-L search 
is called for, the mapper interprets this as a request for a bottom drive. 

The predictive mapper begins by trying to eliminate requests with unreasonable 
boundaries.  If the left boundary is greater than or equal to the right boundary, 
the mapper rejects the request.  Similarly, if the request is too short or (with 
B-B) too long, the mapper eliminates those also.  This check is made by ref- 
erence to three factors:  (1) the nominal length of the word as recorded in the 
lexicon (if there is more than one word in the request, the sum of lengths will 
be used), (2) an indicator of rate-of-speech, and (3) the pause structure of the 
utterance.  Of course, if the requested word or phrase cannot be found in the 
lexicon, it is rejected.  The high-level (word-and-phrase) lookaside is 
consulted to determine whether the requested word or phrase has been mapped 
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before.  If it has, the earlier mapping results are returned, and no further 
processing is required.  If a word is determined to be a "short word," it is 
passed off to the short-word mapper. Otherwise, it is passed off to the regular 
phonological-rules pass to be mapped by the usual procedures. 

Much information about previous mappings is stored in the lookaside memories. 
After making time adjustments, the mapper can see whether the predicted word 
or phrase has been predicted in the general time region before.  If so, it can 
return this information without having to go through the actual exercise of 
mapping.  A lookaside memory is a bi-directional array whose elements have a 
one-to-one correspondence with the 10-msec. frames in the A-matrix. Positive 
and negative results are stored here, the primary entry being an orthographic 
spelling or syntactic terminal name. (A lookaside memory is in fact a lattice, 
since it is possible for more than one lexical item to be mapped beginning at 
a given time frame.)  Special routines exist to update and retrieve information 
from the two types of lookaside memory.  The high-level (word/phrase) lookaside 
deals with words and phrases.  When a word has been found with a high score, 
it is entered into the high-level lookaside memory.  Also, if a word with 
reasonable time boundaries has been rejected, it too is entered into the high-level 
lookaside memory.  The boundaries indexed in the high-level lookaside memory 
indicate where the word was found, rather than the boundaries given it by the 
parser.  This increases the likelihood of a "hit."  The purpose of this look- 
aside is to avoid duplication of effort:  if the same request is made twice, 
we wish to repeat our first answer.  Each entry in the high-level lookaside 
memory contains time boundaries, the orthographic spelling, the phonemic 
spelling, and the score of the word. 

The syllable lookaside memory is used tc save the mapper from remapping syllables. 
If a syllable is found with a good score, the result is saved in the syllable 
lookaside memory.  Since it is possible to map more than one candidate in the 
Sdine time region of the A-matrix, there is provision for storing a mapping score 
with each syllable. Modules that may update this memory are the predictive short- 
word and word/phrase mappers and the bottom driver.  Two types of entries are 
provided;  one for bottom-up (syllabary) information, and the other for top- 
down (phonemic) information.  The syllable lookaside memory also provides a 
means of bottom-driving.  If two consecutive syllables are found with high 
scores, the syllable-lookaside program subsets the lexicon to all words that 
contain those two consecutive syllables and requests a top drive on the subset. 

The short-word mapper looks for all words that meet our definition of "short." 
Each lexicon entry is marked by hand as to whether it is short or not.  The 
length of a word in phones or  number of syllables, its syntactic behavior, and 
its acoustic characteristics influence this decision. We can expect that the 
number of "short" words will grow only slowly with vocabulary size, since most 
of them are common function words that all English subsets must use. The short- 
word mapper is heavily biased in favor of responding positively to the parser's 
hypothesis.  Its primary function is to determine the length and location of the 
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short word.  Short words include affixes; some short words have no vowel at all 
in the context of adjacent words. The short-word mapper tries first by looking 
in the syllable lookaside memory for its answer.  If the answer is found there, 
no further processing is done.  Otherwise, it will attempt a mapping.  The spell- 
ings of the short words are found entirely in the lexicon and are not generated 
bv rule.  This is to account for the extreme variability of these words.  The 
mappings generated are scored generously, but only those with a very definite 
result are recorded in the syllable lookaside. 

The objective of the word/phrase mapper is to take a spelling graph from the 
phonological rules pass (see below) and try to map it.  The mapping will take 
place in a left-to-right or right-to-left direction, but will not go back and 
remap from the beginning for every spelling variation. While this results in a 
slight loss of mapping power, a large savings in computation is achieved. 

The mapping and scoring process consists of two coroutines:  a scorer and a 
mapper.  The scorer calculates syllable scores from the scores of the phonemes 
that make up each syllable.  If the score for a syllable falls below a threshold, 
the syllable is pruned from the graph.  If this causes the graph to become dis- 
connected into two sub-graphs, the word is rejected.  The mapper proceeds as 
follows:  The graph is searched to find the set of first vowels.  These are 
mapped, using syllable boundaries marked in the A-matrix to isolate position. 

The mapper next returns and fills in any consonants proceeding the first vowels. 
The process is now repeated by locating the second vowels and returning to fill 
in consonants between the first and second vowels.  If at any time a phoneme 
cannot be located, that phoneme is pruned from the graph; if this causes the 
graph to separate into two halves, the word is rejected.  Finally, a word score 
is calculated from the surviving syllables by a full backtracking search of all 
possible syllable sequences.  If the word cannot be mapped, the entire process 
is repeated using syllable boundaries extrapolated from the rate-of-speech. 

The phone/cluster mappers ("sniffers") share a common calling sequence.  They 
are parameterized in such a way as to use the results of the phonological rules 
to deal with duration variations, lateralization, nasalization, etc.  The sniffers 
return a score (0-99) and boundaries that indicate the probability of a given 
phoneme in a given spot.  They can look at the left and right context phonemes, 
if available.  The sniffer scores are not normalized to necessarily return 99 
at some time or another; they try to estimate probabilities and let processes 
at higher levels resolve those probabilities.  Because of context sensitivity and 
cross-coarticulation, phonetic units may not correspond one-to-one with predicted 
phones.  In some cases, a phonetic unit will be a phone sequence. A large number 
of acoustic-phonetic processes are incorporated into these low-level mappers.  In 
general, they have access to all of the A-matrix information that is relevant to 
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short word.  Short words include affixes; some short words have no vowel at all 
in the context of adjacent words. The short-word mapper tries first by looking 
in the syllable lookaside memory for its answer.  If the answer is found there, 
no further processing is done.  Otherwise, it will attempt a mapping.  The spell- 
ings of the short words are found entirely in the lexicon and are not generated 
bv rule.  This is to account for the extreme variability of these words.  The 
mappings generated are scored generously, but only those with a very definite 
result are recorded in the syllable lookaside. 

The objective of the word/phrase mapper is to take a spelling graph from the 
phonological rules pass (see below) and try to map it. The mapping will take 
place in a left-to-right or right-to-left direction, but will not go back and 
remap from the beginning for every spelling variation. While this results in a 
slight loss of mapping power, a large savings in computation is achieved. 

The mapping and scoring process consists of two coroutines:  a scorer and a 
mapper.  The scorer calculates syllable scores from the scores of the phonemes 
that make up each syllable.  If the score for a syllable falls below a threshold, 
the syllable is pruned from the graph.  If this causes the graph to become dis- 
connected into two sub-graphs, the word is rejected. The mapper proceeds as 
follows:  The graph is searched to find the set of first vowels.  These are 
mapped, using syllable boundaries marked in the A-matrix to isolate position. 

The mapper next returns and fills in any consonants proceeding ^le first vowels. 
The process is now repeated by locating the second vowels and returning to fill 
in consonants between the first and second vowels.  If at any time a phoneme 
cannot be located, that phoneme is pruned from the graph; if this causes the 
graph to separate into two halves, the word is rejected.  Finally, a word score 
is calculated from the surviving syllables by a full backtracking search of all 
possible syllable sequences.  If the word cannot be mapped, the entire process 
is repeated using syllable boundaries extrapolated from the rate-of-speech. 

The phone/cluster mappers {"sniffers") share a common calling sequence.  They 
are parameterized in such a way as to use the results of the phonological rules 
to deal with duration variations, lateralization, nasalization, etc.  The sniffers 
return a score (0-99) and boundaries that indicate the probability of a given 
phoneme in a given spot.  They can look at the left and right context phonemes, 
if available.  The sniffer scores are not normalized to necessarily return 99 
at some time or another; they try to estimate probabilities and let processes 
at higher levels resolve those probabilities.  Because of context sensitivity and 
cross-coarticulation, phonetic units may not correspond one-to-one with predicted 
phones.  In some cases, a phonetic unit will be a phone sequence. A large number 
of acoustic-phonetic processes are incorporated into these low-level mappers.  In 
general, they have access to all of the A-matrix information that is relevant to 
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them.  Both the word/phrase mapper and the phone/cluster mappers have been 
completely flowchartad, and all coding has been completed for the phone/cluster 
mappers. 

The Subset Mappers 

Some progress has also been made in the construction of the subset mappers. 
Frequently, the parsing system needs to know what items are prime candidates 
for the next stage of predictive mapping. The subsetters provide a fast 
analysis of the A-matrix beginning at a given time frame, classify the phonetic 
patterns, and select items from the lexicon that belong to the classes.  This 
provides a considerable reduction in the number of choices the parser must 
consider.  The answer in this case is based on a bottom-up analysis of the 
A-matrix parameters.  The subset may be performed either to the left or to 
the right of the specified boundary,depending on the form of the call.  The 
subsetter also considers the possibility that the boundary has been shifted 
due to the mapper's "eating up" two identical phonemes in a row by accident. 
The lexical subsetter is used mainly by the parser, but it will also be possible 
to bottom-drive by doing a subset at the beginning of each phrase in the utter- 
ance, as determined by prosodies, and then top-driving on the most likely 
subclass.  The analysis and classification techniques are identical to or 
compatible with those used in the bottom-driving module; some of the routines 
are common to both modules. The subsetters take advantage of any work already 
done by the bottom-driver by checking the appropriate data structures before 
beginning the processing. 

Lexicon 

The lexicon entries contain-  an orthographic spelling, a phonemic spelling 
graph, a nominal duration, bottom-up syllabary indices, and a short-word flag. 
The phonemic entry in the lexicon is a spelling graph that is constructed prior 
to syscem run time during compilation or during a prci-processing step.  The 
graph allows alternative spellings to be mapped simultaneously; consequently, 
phonemic rule application results in a linear rather than an exponential 
increase in mapping time. 

A specialist contractor. Speech Communications Research Laboratory (SCRL), has 
been actively assisting in the development of lexicons for the system.  They 
have provided support in helping to develop base forms to be used for lexical 
entries.  They have also been active in the related task of defining and eval- 
uating rules for generating pronunciation variants from the base form.  For 
part of this task they have used our phonological rules system. 

Phonological Rules System 

An early version of a phonological rules system was developed for generating 
variant pronunciations of lexical entries.  It assumed that rules were applied 
in an unordered, optional manner.  A different set of assumptions is required 
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for rule sets v/hose task is to derive inflectional or morphological endings. 
These rules are ordered and obligatory (if the context criteria are met), and 
successive rules operate on the output of the preceding ones so that only one 
spelling is derived.  (These are the types of rules more often discussed in 
the linguistic literature.) 

During this year, the phonological rules system was expanded to a much more 
generalized facility.  It now provides for the building of lexicons and sub- 
lexicons.  A lexical item may be tested individually or as part of a sub-lexicon 
In this system, there are three types of rule-driver subroutines:  ordered, 
unordered, and nondeterministic. Unordered and nondeterministic rule applica- 
tions are very similar, the only difference lying in the fact that, in a small 
number of cases, a rule that would apply after a previous rule in a non- 
deterministic case would not apply in the unordered case because its left 
context was altered by the previous rule.  The phonological rules system was 
designed as an independent rule-evaluation program.  It has been slightly 
modified and incorporated into the mapper. 

Lexical base-form spellings exist as properties of the orthographic words in 
a specially coded array structure.  The phonological rules system makes use 
of this array coding during rule application; the result is that new coded 
arrays corresponding to variant spellings are produced. Under the old technique, 
tiie orthographic word was predicted, and its base-form property was extracted 
in the mappers.  When a word can be predicted with one or more affixes, then 
the old approach is not adequate; the entire phonetic string must be derived 
and mapped as a whole.  Routines were developed to construct new coded spelling 
arrays by copying one or more old ones.  The mappers now receive as one input 
parameter a list of one or more worls and/or suffixes.  The spelling of each 
word is extracted; if a word has suffixes, they are derived using the ordered 
rule driver. The result is a single coded array, which may then be passed to 
the unordered rule driver for generating alternative pronunciations and mapping 
each one of them. This allows whole phrases to be mapped, with the added 
advantages that variants may be generated that result from applying 
coarticulation rules across word boundaries that are internal to the phrase. 

2.2.3     System Hardware and Software 

2.2.3.1   Digital Record/Playback Subsystem 

A digital record/playback subsystem has been assembled for our PDP-H/40 
computer based on experience with our Raytheon 704 computer system. As on 
that system, an amplified speech signal is digitized directly in real time 
with no intervening analog recording and is stored on a fast fixed-head disk. 
This recording process is reversed for playback. All data are moved using 
automatic direct-memory-access (DMA) hardware to allow high sampling rates; 
additional hardware assures unbroken continuity of sampling.  The sampling 
rate is crystal-controlled for high absolute accuracy and long-term stability. 
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Speech enters the new system at high quality via an AKG condenser microphone 
or a Sennheiser headset-mounted microphone.  The speech signal is amplified 
u&ing low-noise, low-distortion equipment and is bandlimited by a 9,000 Hz 
low-pass filter (having 40 dB attenuation at 10,000 Hz) before being sampled 
at 20,000 samples per second. 

Our experience with user variability has led us to employ a 14-bit analog-to- 
digital conversion system (Analogic AN5800); excellent digital recording can 
thus be obtained without any user gain adjustments.  Employment of wide dynamic 
range in conjunction with a low-noise environment ensures good speech input 
during interactive discourse. The use of analog compression, limiting, or 
AGC circuits, whose unpredictable dynamic effects would complicate subsequent 
parameter extraction, is thus avoided. 

A Stanford DEC DR11-B DMA interface provides block-transfer input/output for 
speech data to the PDP-11/40 Unibus.  In order to ensure continuous sampling 
during the time required to reinitialize the DRll-B between block transfers, 
an SDC-designed controller provides a  64-word first-in, first-out buffe--.  Vhis 
controller also includes timing and Analogic-to-DEC interface circuits. 

2.2.3.2 Laboratory Facilities 

A new physical facility has been designed and built to our specifications.  It 
approximately triples our laboratory floor area.  Included is an appropriate 
area for the PDP-11/40 and SPS-41 systems, an area for the IMP and 370/145 
interface hardware that is sufficiently close to allow Local Host interfacing 
of the PDP-11/40 to the ARPANET, and a new IAC sound booth.  The entire area 
was completed and in use by June. 

2.2.3.3 Network Hardware Activities 

In late 1973, an ARPA Network interface for the PDP-11 was developed at SDC. 
Designated the HSI-11A, this interface has been operational at SDC since 
January, 1974.  In March, 1974, SDC was asked by the ARPA Interface Steering 
Committee (ISC) to submit HSI-11A for possible selectiDn as a standard ARPANET 
interface for PDP-11 computers.  In May, the HSI-11A design was selected.  For 
several months thereafter, ISC members and the SDC staff conducted technical 
discussions, primarily by ARPA Network Mail, to specify an HSI-llB design 
suitable for production by some organization for widespread, general use on 
the ARPA Network.  These discussions resulted in 11 engineering changes to the 
original HSI-11A design in order to meet ISC requiremeniö. A documentation 
package on the HSI-llB was released in November, 1974 (Molho [26]). Also, SDC 
has assisted in prototype-building activities at Rand and BBN and has provided 
consulting services, as required. The prototype design has been forwarded to 
DEC at ISC request. The result of SDC's effort in this area will be that 
PDP-11 computers may be interfaced to the ARPA Network using reliable, off-the- 
shelf hardware. 
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2.2.4     CRISP 

As research on the Speech Understanding System progressed, and as the size, 
complexity, and processing requirements became better defined, it became obvious 
that LISP or its derivatives (other languages are even less well suited) were 
not adequate to produce a system that could meet all of the research objectives. 
The most severe shortcomings were: 

1. the extreme inefficiency of numerical computation (of which there is 
a large amount); 

2. the inability to properly limit the scope, visibility, and access 
of names; 

3. the inefficiency in saving, switching, and restoring processing 
context (a frequent occurrence); 

4. representational limitations imposed by the available data structures; 

5. constraints imposed on programs and data by address-space limitations; 
and 

6. lack of formatted data output. 

To remedy these deficiencies, a new programming system called CRISP has been 
developed that not only incorporates all of the capabilities ot LISP but removes 
the constraining limitations and provides the missing capabilities.  More specif- 
ically, CRISP: 

1. produces object code that is efficient for both numerical and symbolic 
processing; 

2. provides facilities for properly limiting the scope, visibility, and 
access to names and properties, permitting several people to 
cooperatively produce large complex programs with minimal 
housekeeping distractions; 

3. efficiently saves, switches, and restores processing context; 

4. provides generalized data structures, i.e., multidimensional arrays, 
n-tuples with repeating groups and elements, generalization on the 
two-pointer LISP node to nodes permitting from one to eight pointers, 
and functionals; 

5. increases address space to a maximum of 16 megabytes and provide;; 
facilities for cooperating with virtual memory management; 

,-i 
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6. produces formatted output, binary input/output, and general free-form 
input and output of any data structure; 

7. provides the ability to freely mix infix, prefix, and machine-oriented 
language forms; 

8. incrementally recompiles or batch compiles with the ability to 
redeclare data types in either case; and 

9. provides means for modules in different virtual machines to communicate 
via the virtual channel-to-channe]-adapter facility available in IBM's 
VM/J70 system. 

2.2.4.1 Present Status 

During the latter part of 1974, the CRISP language and system were designed. 
The language design specification [27] was then publisi.^d and distributed to 
potential users for comment and critique.  In addition to presenting a semi- 
formal description of CRISP, the document attempts to illuminate the mocivations 
for certain decisions and gives many example programs. 

During the current year, large portions of the system have been programmed and 
debugged, and the following are operational;  syntax analyzer, declaration 
mechanism, CRISP Assembly Language (CAP) assembler, I/O package, trigonometric 
functions, dynamic data structure allocators, and the context-of-evaluation 
primitives.  The garbage collector has been programmed but has not yet been 
debugged.  The detailed design of the compiler is nearing completion, and 
implementation has begun. The first usage of the system is the coding of the 
lexical mapper portion of the SDC-SRI system in CAP. As the compiler becomes 
available, portions of the mapper will be rewritten in CRISP, and the parser 
will be translated from LISP into CRISP. 

The major technical obstacle in the implementation phase has baen with the 
declaration mechanism.  The specific issues were the handling of recursively 
defined types and allowance for redeclaration of the types of names without 
causing excessive recompilation.  Satisfactory solutions have been found for 
both problems. 

2.2.4.2 Technical Approach 

One of our major technical goals is to program the system in its own language. 
This provides two important advantages:  (1) the sophisticated user may access 
all parts of the system, code and data, to achieve capability extensions with 
relative ease, and (2) maintenance of the system is simpler {and significantly 
cheaper) because modifications can be made using the incremental assembler rather 
than regenerating the entire system. 

ii i fr n 111 
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Building the system in its own language implies the utilization of a bootstrap 
procedure. Our original intention along this line was to implement (in LISP) 
a compiler for a subset of the CRISP langvage.  The approach we followed instead 
was to fully implement *-.he CAP assembler in LISP, then hand-translate thf 
assembler into its own language.  Our reasons were:  (1) needed parts of the 
system could not adequataly be developed in higher-level language, (2) the 
assembler was needed as the final "pass" for the compiler, and (3) less effort 
was expended in recoding. As a result of the decision to implement the system 
in assembly language, CAP has been further developed than originally planned. 

2.2.4.3   The System 

Memory Allocation and Datd Spaces 

The heart of the CRISP system is the dynamic data allocator and memory management 
mechanism. The IBM 370/145 has a maximum address space of 16,777,216 bytes that 
is internally subdivided by CRISP into 4,096 quanta, each consisting of 4,096 
contiguous bytes (and corresponding to the hardware page size used by VM). 
Memory is allocated in regions—a region is a set of contiguous quanta.  A (data) 
space is a set of not necessarily contiguous regions. All data elements in the 
same data space are of the same kind. 

There are three basic kinds of data spaces:  static, selectable, and special. 
A static data space is completely allocated (but not necessarily filled) at 
system generation time.  Its size does not vary dynamically during execution. 
An example of a statically allocated data space is the one-quantum area that 
holds character identifiers (identifiers with one-character print names). 
Other static data spaces are the pointer and numeric pushdown stacks (PDP and 
PDN, respectively), NAMEA, and NAMEB.  One object in each data space is asso- 
ciated with each global name; the named object is the "value." 

For a space to be selectable, it is necessary that more than one space of the 
same kind exist. An example of a selectable space is NODE2—a NODE2 object is 
the binary tr-e node of LISP created by the allocation function CONS. At any 
moment, one of the (possibly many) NODE2 spaces is selected.  A use f CONS 
automatically allocates the new structure in the selected NODE2 space.  The 
creation and selection of new spaces are easily accomplished using primitivey 
provided in the system.  Selectable spaces are valuable in many programs to 
overcome page thrashing.  Specifically, if structures are built that will be 
heavily referenced at "nearly the same time" and they are placed in the same 
space, then, because of the increased likelihood that the structures will be 
on the same pages, the working set size will be decreased. Also, the garbage 
collector compacts (rather than building availability lists) so that structures 
remain in the space in which they were originally created.  Further, spaces of 
the same kind may be merged into a single space. 

There are three kinds of special spaces:  IDENTIFIER, HEAP, and HANDLE. 
IDENTIFIER objects arc hashed and singularized, i.e., Miere are never two 
identifiers in the system with the same print name.  rherefore, the existence 
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of more than one identifier space is not meaningful and could, in fact, bt 
harmful because singularity is used to support property objects for identifiers 
in a manner similar to LISP.  HEAP spaces are used to allocate blocks of storage 
for specialized purposes. Associated with 6c."^ process is a handle object (kept 
in the single HANDLE space); the handle contains the process's current status 
and its context of evaluation. 

input/Output Primitives 

There are two general categories of I/O primitives:  (1) file control and (2) 
data movers.  The file-control primitives include:  OPEN, SHUT, selection, and 
positioning.  OPEN establishes a logical connection to a physical file through 
the operating system; SHUT severs such a connection.  The possible media in 
which files may exist are disk, tape, terminal, card reader (spool), card punch 
(spool), printer (spool), and core (internally maintained by CRISP for intra- 
program communications).  In the near future, it will also be possible to use 
files through virtual channel-to-channel adapters (CTCAs) provided by VM-  This 
will make it possible for different virtual machines to communicate efficiently. 
The CTCAs also make it possible for a virtual machine to connect to the user 
TELNET as an ordinary I/O device. 

The symbolic read and symbolic print primitives, respectively, operate on the 
current read and print "selected" files.  When a symbolic input (or output) 
operation is initiated, the data are read (or written) from the file whose name 
is the value of the global variable RFILE (or PFILE).  RFILE and PFILE may be 
rebound (and/or £.et) so that, as code Mocks and processes are entered, exited, 
- .r* resumed, the proper files are automatically selected. 

rhe operation of the positioning primitives depends on the storage medium.  The 
capabilities provided are:  rewind, unload, skip file, backspace file, position 
at ith record in a file, continue a spooling operation, ease (purge) a file, 
write an end-of-file mark, and turnaround.  (Turnaround is used to change the 
read/write direction of a file.  For instance, turnaround of an output file 
does the equivalent of: write an end-of-file mark, backspace file, shut file, 
and reopen the file for input with the same line size, margins, etc.) 

The data-moving I/O primitives are used to transfer information to and from 
♦ les. Different primitives are used for binary and symbolic transfers. 
Dinary transfers occur directly between heaps (or data structures containing 
no  pointers) and files in a byte-for-byte serial manner, with no interpretation 
oy the system.  Symbolic transfers convert to (or from) an EBCDIC (or ASCII, if 
ä<   specified) external representation. Any structure—including nodes, arrays, 

■ id n-tuples—may be read and printed symbolically; symbolic input is always 
rree-form."  Syml olic output may be "ugly," explicitly formatted, or automat- 
nLy  "pretty" printed. Ugly printing outputs a structure as a token string— 

■ ne only concession to legibility is that tokens rre not unnecessarily L-plit 
■ver line boundaries.  The present, explicit format primitives allow data to be 
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printed left or r^ght justified to a specified column.  Future plans are for the 
inclusion of a format specifi:.. ion form similar to FORTRAN.  Pretty-printing 
primitives automatically format the ext^rral representation of structures that 
do not fit on the current line.  The technique we use is the standard one of 
using indontatic-. to show structural nesting. 

Process-Control Primitives 

The process-control primitives provided by the CRISP system are a "parts Kit" 
with which the user can fashion the set of contro1 regimes that best serve his 
needs.  The fundamental static units are blocks,   ictions, and processors. 
The fundamental dynamic unit is the process—an executing entity.  A process 
may be in one of three states:  active (presently computing), suspended (may 
be reactivated), or dead (may no longer be reactivated).  Associated with each 
process is an objt-ct called a handle.  The handle contains a process's complete 
internal and external states.  The internal state is two pushdown stacks (a 
number stack and a pointer stack) that contain current variable bindings active 
in the process, return addresses to functions and blocks invoked in the process 
that have not /*t exited, and thJ program counter.  The external state contains, 
among other things, a context link and an abort link to other processes.  The 
context link is used when global variables, not bound in a process, are 
referenced.  When such a reference is made, a binding is searched for, through 
the chain formed by the context links.* To ensure termination of this searching 
nrocprlure, a restriction is imposed—the processes considered as nodes and the 
context links considered as arcs must form a tree (no loops) with the NIL process 
as the root node.  (The NIL process is the collection of all "top-level" variable 
bindings.)  The abort link names the process that is to receive control if this 
process is aborted because of circumstancet that cannot be handled internally. 
The processes considered as nodes rnd the abort links considered as arcs must 
form a tree (with UIL as the root node) so that a propagated error will not 
cycle indefinitely.  The tree formed by the context links and the tree formed 
by the abort links need not be isomorphic. 

Try-and-exit logic is also provided.  UNWRAP is used to signal the occurrence 
of ^n unusual condition. The arguments to UNWRAr are:  (1) the class of the 
condition causing the unwrap (there are sixti '.u  possible classes; eight are 
reserved fci" .^/stem-detected occurrences such as I/O errors, and eight are left 
for user assignment), and (2) a message detaiiin, the reason for the unwrap. 
UNWRAP aborts the present computation state by popping the stacks until an 

*In actual operation, no searching is performed. A.i 1 global variables are 
shalxuw bound for efficiency. The process control primitives are responsible 
for correcting tha bindings whenever a new process is created or a suspended 
process is resumed. This tactic is adc ted on the bet that context switching 
is a relatively infrequent occurrence v.- Tpared to variable referencing. 
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active TRY is found.* The internal process state that existed when the TRY was 
entered is re-established.  The TRY consists of several statements (expressions). 
The first is executed.  If no unwrap occurs, then execution of the TRY is 
completed.  Otherwise, the second statement is executed, and so on, until a 
statement is executed without the occurrence of an unwrap.  If an unwrap occurs 
while the last TRY statement is executing, the unwrap is continued outward to 
the next active TRY.  There is a TRY in the NIL prrcess that will catch any 
unwrap that is not handled by an inferior process. 

TRY and UNWRAP are extremely useful in two quite different contexts:  (1) In 
"structured" projrams, the occurrence of unusual (error) conditions is signaled 
by using UNWRAP.  (2) If, in programs that use several algorithms in attempts to 
search for a solution, an attempted algorithm does not work, an UNWRAI returns 
control to the TRY, and the next algorithm is attempted. 

2.2.4.4   The Language 

In a programming language system such as CRISP, it is difficult to clearly 
distinguish language features from system features. This section will describe 
those features most often thought of as belonging to a language. 

Language Formats 

The CRISP system makes available to the user two basic languages:  (1)  CRISP— 
a high-level, procedural language, and (2) CAP—a machine-oriented language. 
Both languages are block structured and include a wide variety of data-structure- 
accessing primitives.  Both languages share the same variable declaration and 
scoping Mechanism, and CAP forms may be embedded into CRISP programs.  Either 
language may appear in one of two formats:  (1) Source Language (SL)—ALGOL- 
like with infix operators, or (2) Intermediate Language (IL)--LISP-like with 
Poliih-prefix list structure,  SL is ordinarily used as the programmer's 
language, and IL is used by programs that write or manipulate other programs. 

Data Types 

CRISP provides the user with a variety of atomic and non-atomic data types.  The 
allowed non-atomic data typsare nodes, arrays, and n-tuples. There are eight 
kinds of nodes:  NODEl, N0DE2...NODES.  A NODEi object has i ordered elements 
of type general.  (N0DE2s are the LISP binary node.)  There are also eight "union" 
or multi-node types:  MODEL . .MODES. 

*A TRY specifies the class of error conditions that it is willing to accept. 
If the unwrap is for one of those specified conditions, then the TRY "catches' 
the unwrap.  Otherwise, the TRY is bypassed and the search continues for 
another TRY.  If no appropriate TRY exists in the currently active process, 
then the search continues into the process located by the abort link. 

^:4_ ^?. .^-^^ ^ 
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MODE8* = NODE8 
MODE? m NODE? U MODES 
M0DE6 s= NODE6 U MODE? 
M0DE5 at NODE 5 UMODE6 
MODE4 = NODE4 UMODES 
MODE 3 m NODE 3 UMODE4 
MODE 2 m NODE2 UMODE3 

NODEN = MODE1 m N0DE1 UMODE2 

Thus, the type MODEi includes all nodes with at least i data fields.  (Obviously, 
a node can be simulated with an array of general elements, but in many applications 
nodes are more natural. Also, because nodes are stored without any header 
information, they save four memory locations per occurrence.) 

CRISP supports multi-dimensional arrays from 0 through 255 dimensions. Each 
dimension may have an extent of up to 32,?6?, An array type includes only the 
number of dimensions and the element type—not the extents. When an array is 
created (dynamically) the actual extents are specified.  Extents specified in 
a declaration are used only as defaults in certain situations. When an array 
is created, its actual extents are stored in the header. The compiler always 
generates code that uses header information (rather than the default) to cal- 
culate element position from subscripts.  (This tactic loses efficiency when 
constant subscripts are used to reference an array element but usually breaks 
even when all subscripts are non-constant expressions.) Array elements can 
be any kind of elements, even arrays. 

The other kind of non-atomic type provided by CRISP is the n-tuple. An n-tuple 
comprises named elements and groups—a group is also a collection of named 
items and groups. Elements and groups may be repeated in much the same way as 
array elements.  (However, the extents of repeats in n-tuples must be fixed at 
declaration time. If the extent(s) is not known, then the n-tuple element can 
be an array.) N-tuples are extremely useful because they provide a compact way 
of containing mixed-type data aggregates and because n-tuple references are highly 
mnemonic—thus improving a program's readability. Like array elements, n-tuple 
elements may be arrays or n-tuples. Also, an element that is an n-tuple may be 
flattened into its parent structure in order to conserve storage.  (Normally, an 
element of type n-tuple is a pointer at the n-tuple; when flattened, there is no 
pointer, and the n-tuple is resident in place of the pointer.) 

Variable Names and Scoping 

In CRISP, there are two kinds of variable bindings—local and global. A local 
variable ran be bound as an argument of a function or as a block variable. A 
local vai ble is visible only in the body of the function and in the interior 
of blocks lexically nested within the binding entity. The name of a local 

*The usage of the word "mode" in this context should not be confused with its 
usage in ALGOL68. 
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variable is an identifier.  In no case is a local variable visible outside the 
function containing its binding.  A global variable can also be bound as an 
argument of a function or as a block variable.  A global variable is visible 
in all places at which a local variable bound in the same spot would be visible. 
In addition, the binding of a global variable is visible in all function calls 
made within the variable's scope and in all processes that have the process 
containing the binding in their context chain.  (This scoping strategy is called 
dynamic and is a replica of LISP's special-variable handling with a generaliza- 
tion to handle multiple processes) .  In addition to the dynamic bindings of a 
global variable that may exist, each global variable has a top-level binding 
(and value) in the NIL process. Thus, there is no such thing in CRISP as a 
reference to an unbound global variable. 

Use of dynamic scoping of global variables (as opposed to the lexical, or 
static, scoping in ALGOL) has three major advantages.  The most important is 
that it is possible to modify and recompile a small piece of a large program 
(e.g., a single function); it is not necessary to compile everything in the 
scope of the change, and incremental compiling (a function at a time) and 
interactive program testing are more efficient and more effective.  A second 
major advantage is the ability to divide the programming load among several 
persons because they are able to produce separate lexical entities. Thirdly, 
programs can be organised in a more flexible manner because run-time decisions 
can be made on the binding set that is visible—in other words, the global 
context of evaluation can be computed. 

The disadvantages of dynamic binding arise in large programs—problems arise 
when an intervening function call rebinds a variable used for communication 
between the "upper" and "lower" levels of evaluation.  In general, when reading 
a program, it is difficult to determine what binding of a variable is being 
referenced.  To help alleviate these problems, and other "name conflict" problems, 
CRISP provides a name-pool facility. All global names (variable names, function 
names, etc.) have a first and last name, each of which is an identifier.  For 
example, the full name of the tangent function is TAN$CRISP.  Its first name 
is TAN and its last name (or tail) is CRISP.  In most CRISP programs, it is 
possible to reference or declare global entities by using only their first 
names; this is controlled by use of a default form.  For example, assume that 
the following default is in effect. 

DEFAULT XYZ(ABC,QRS); 

All declarations and definitions that are not explicitly tailed receive the 
last name XYZ (the first argument of default).  For instance, 

DEC I INT, J$Q INT; 

declares I$xYZ and J$Q to both be global integer variables.  The second argument 
to default is used to tail identifiers that make free references (not lexically 
bound at the point the reference occurs).  For example, suppose that the 
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identifier VAR occurs freely and that the above default is in effect.  Then the 
compiler (assembler) first looks for a declaration of VAR$ABC—if none exists, 
then VAR$QRS is attempted. 

By proper use of name pools—a name pool contains all entities with the same 
last name--mo3t ncune-conflict problems disappear.  A natural approach to the 
construction of a large program is to assign a unique tail to each module 
(collection of functions and declarations written by an individual that performs 
a set of related computations).  Each module is compiled with a default that 
"sees" only its own name pool, appropriate system common pools, and the universal 
pool, CRISP (which holds all user-level functions and declarations provided by 
the CRISP system). Within each module, the (free) references to entities in any 
other modules not on the default list are explicitly tailed.  (This is necessary 
because the pool name of the module is not on the default list of tails.)  Another 
common tactic to avoid name conflicts is for a module to export (by use of 
explicit tails) those entry-point names and declarations that are documented 
as usable by others and to keep all other global names used by the module in 
its own pool. 

Programming Example 

Figure 2-13 shows a complete example of a program that traces a path through a 
maze.  The purpose of the example is to indicate the flavor of the CRISP language 
and demonstrate several language features—it is not an example of an interesting 
or efficient algorithm. 

2.3       PLANS 

The major activity during the 1375-1976 contract year will be the integration, 
testing, and demonstration of the five-year system.  The system will have a 
vocabulary of 1,000 words and will allow many speakers of the general American 
dialect to maintain a dialogue with a data management system with reference to 
attributes of warships of the US, USSR, and UK.  Acoustic feature extraction 
and acoustic-phonetic processing will be performed on the PDP-11/40 and SPS-41 
computers.  All subsequent processing, such as that required for parsing, 
semantics, pragmatics, and word verification, will be done on the IBM 370/145 
computer, connected to the PDP-11/40.  Programming on the PDP-ll/SPS-41 
configuration will be done in FORTRAN, PDP-11 assembly code, and SPS-41 machine 
code.  The use of CRISP on the IBM 370 will greatly enhance the efficienr-y of 
the higher-1.eve 1 processing. 

In addition to supervising the integration and testing of the system, SDC will 
also conduct research, development, and refinement of the acoustic-phonetic 
processor, the wurd-verification procedures, and the prosodic-analysis functions, 
Capabilities of the acoustic-phonetic processor will be enhanced with the 
addition of acoustic-phonetic rules to handle vowel lateralization.  Moreover, 
research will be conducted to determine a set of rules to handle nasal murmurs 
and nasalized vowels.  Specifically, seme recent results of Kopec 
et al. [28] and Mermelstein [29] will be implemented in computer programs. 
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DECLARE  polnt<n8Bt  10, %'naat of   point in mare 
path ARRAY«») point>,    x'set of   reachable points 

visits NODES, X'path to-date 
end  point} S'and  point of  search 

s'Findpath atteapts to locate a path through  the mere from the  point, 
x'beg,   to the  point,  end.    If  a path is found,  it is printed and find, 
x'path  returns true.    Otherwise, no printing is done and findpath 
»'returns false.    The  try-exit  logic is used for coanvnication.    unwrap 
»'category  1  is used when a circular path  is encountered and unwrap 
«'category 2 is used to indicate success--the path is returned  as the 
»'unwrap message,    for siaplicity,  it is assumed that there  is at  least 
x'one  path awey from each point  'in" the maze. 

FUNCTION findpath BOOLCbeg point,  end GLOBAL point) 
TRY   1""8   (BEGIN  Visits  GLOBALt-NILl 

trypathcbeg) i 
END, 

IF  UNWRAFMASK-2  THEN  <PRINT(UNVRAPMSG) ,RETURN   TFl'I) 
ELSE  RETURN  FALSE)} 

x'Trypath first checKs for a circular path,    if  found,  the trouble  is 
»'reported by a category  1  unwrap.     If  the current point  is the end 
»'point,   then the good news is reported by a category 2 unwrap.  Else, 
»'each   path away from  p is tried.    All   except the   last  such  attempt is 
»'protected by a try.    On the last attempt,  failure  is rippled upward 
»'to a spot where an alternative is yet to be  tried. 

FUNCTION trypatn NOVALUECp point) 
IF p.name   IN visits THEN unwrap«l) 

ELSE BEGIN visits QLOBALt■Panama#visits; 
IF  p>end  THEN  UNWRAP«2,REVERSE«visits))» 
FOP   iJ-1   TO  ARLN<p_path) 

DO TRY  i  (trypathcp.pathCii, NIDI 
ENDl 

try path« p.patht ARLN« p.path) I > > 
endi 

Figure 2-13.  Sample CRISP Program to Trace a Path through a Maze 
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which will form the basis of a number of experiments designed to study nasals 
and nasalized vowels.  Research on isolation and characterization of fricatives 
and plosives will continue, with an emphasis on the use of formant frequency 
trajectories from a plosive into a >/owel to enhance recognition accuracy. 
Specifically, a voiced plosive will be labeled on the basib of both its release 
and frication properties and via an analysis of its formant-frequency transitions 
into the following vowel or sonorant. 

Early in the 1975-1976 contract year, a 400-word extension of the 600-word 
Milestone System will be decided upon, and work will be initiated to develop 
a set of base forms for the resulting 1,000-word vocabulary. A vocabulary 
of this size will require major portions of the lexicon to be encoded in 
terms of morphs and their affixes, in order to avoid excessive storage require- 
ments, since so many words can occur in a multitude of forms, as for example, 
"do," "does," "doesn't."  Some limited use of derivational phonology rules will 
be made in the Milestone System.  The five-year system will feature an expanded 
use of such rules. 

An important extension to the present lexical matching procedures will be the 
development and use of analysis-by-synthesis techniques, also known as parametric 
mapping.  For these types of techniques, a set of formant-frequency trajectories 
will be hypothesized for a predicted word or phrase.  Using time-warping 
techniques, these formant trajectories will be adjusted to synchronize with the 
formant trajectories in the A-matrix, and a comparison will be made between 
these two sets of trajectories to determine the existence of the predicted word 
or phrase.  This procedure is expected to yield better results than current 
mapping procedures, since it will be based on parametric, rather than phoneme- 
label, matches. This will also allow us to incorporate all of the theory of 
synthesis-by-rule and use it in the mapping procedure. 

Some limited bottom-driving techniques will be used in the Milestone System. 
These will be based on the use of syllabic segmentation described earlier. 
The techniques will be refined and extended for use in the five-year system. 

2.4       STAFF 

Dr. H. Barry Ritea, Project Leader 
James A. Baiter (System Programming) 
Jeffrey A. Barnett (CRISP) 
William A. Brackenridge (Parameter Extraction) 
Richard A. Gillmann (Lexical Mapping) 
Iris Kameny (Acoustic-Phonetics) 
Dr. Peter Ladefoged (Acoustic-Phonetics Consultant) 
Lee M. Molho (Acoustic-Phonetics and System Hardware) 
Douglas L. Pintar (CRISP) 
Dr. Georgette Silva (Protocol Analysis and Lexicon Construction) 
Rollin V. Weeks (Lexical Mapping) 
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3. LEXICAL DATA ARCHIVE 

3.1 INTRODUCTION 

The Lexical Data Archive (LDA) project addressed itself to the task of providing 
the ARPA Speech Understanding Research (SUR) projects with semantic and syntactic 
data for the wo ds in their lexicons.  The project sought to provide the following 
services for each SUR project: monitor a variety of lexical data sources, select 
the data having potential payoff for speech understanding, format those data for 
archival purposes, and provide for their dissemination to the appropriate SUR 
projects.  The data in the archive are centered on the 3,000 or so words 
appearing in the jarly lexicons used by the SUR projects at Bolt Beranek and 
Newman Inc., Carnegie-Mellon University, and System Development Corporation. 

3.2 PROGRESS AND PRESENT STATUS 

The data archive, called the Semantically Oriented Lexical Archive (SOLAR), was 
designed during the 1973-1974 contract year. The methodology of construction 
decided upon was then implemented.  Files with a significant amount of high- 
quality data became accessible via the ARPA Network, and data were distributed 
upon request to more than 65 researchers across the nation and abroad. 
Implementation was begun for the first eight of the following ten files: 

1. A word index, which allows a user to easily determine the words for 
which data are being collected and the types of data currently 
available for a given word. 

2. A bibliographic reference file, intended primarily as a resource for 
accessing the literature. 

3. A file of semantic analyses, which contains formal treatments of the 
semantic properties of individual words as found in the literature. 

4. A file summarizing the theoretical backgrounds of the technical 
documents from which the semantic analyses have been extracted. 

5. A file explaining and commenting on the semantic components used 
in the semantic analyses. 

6. A file of integrative summaries of conceptual analyses given in the 
literatures of philosophy and artificial intelligence for notions 
coinciding with or underlying the semantic components. 

7. A file of collocational information extracted from definitions in 
Webster's Seventh New Collegiate Dictionary (W7). 
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8. A keyword-in-context (KWIC) file containing every context of eacli SUR 
word as found in the WT^ definitions, in the Brown Corpus, and in 
selected speech dialogues. 

9. For each SUR lexicon, a subfile of definitional links between words 
within that lexicon. 

10.  A file of semantic fields, designed for each SUR word by tying to it 
words found in certain definitional, synonymitive, aid antonymitive 
relationships in W7, Webster's New Dictionary of Synonyms (WNDS), 
and/or Roget's International Thesaurus (Roget). 

From the start of the period covered by this report, anticipating early 
completion of the project, we concentrated on checking out the programs 
required for constructing SOLAR's Definitional Expansions File (see pp. 307-309 
of [1]), writing user's guides to the existing SOLAR files, and refining the 
ARPA network interface with those files.  By midyear, the Definitional Expansion 
programs had been successfully run on test data, and user's guides to the 
Semantic Component and Conceptual Analysis Files [2,3] had been added to the 
four previously prepared user's guides [4,5,6,7]. 

The SOLAR data files have been stored on magnetic tape for use by linguists, 
researchers in artificial intelligen e, and philosophers.  A paper explaining 
how to access the SOLAR files that had been submitted to the American 
Journal of Computational Linguistics was withdrawn so as to convert it into an 
account of what was learned in the course of building SOLAR.  Meanwhile, the 
23 integrativo summaries now entered in the Conceptual Analysis File are being 
reformatted as an appendix to a report on the construction of that file [s] 
that will soon be submitted to The Philosophy Research Archive. 
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4.        COMMON INFORMATION STRUCTURES 

4.1       PURPOSE AW BACKGROUND 

4.1.1 Goal 

The need to share data for multiple applications, and the need to move existing 
data bases to new systems, make general techniques for data-base conversion 
desirable.  These needs are especially apparent when the data are created and 
manipulated by increasingly complex data management systems. 

The goal of the Common Information Structures project has been to develop 
techniques for data base conversion that can be applied to both existing and 
future data bases. It is assumed that the data bases are typically created by 
a data management system (DMS) that uses the operating system functions avail- 
able on a particular hardware/software system. This is not to exclude sequential 
files that are created by special-purpose programs (rather than a DMS). Our 
purpose is to be able to convert and restructure a source data base into a newly 
defined target data base using generalized data conversion tools. 

4.1.2 History of Research 

The difficulties in converting a data base arise from the fact that data base 
structures are system (including hardware) and application dependent. Data 
bases are organized in the computer in ways that reflect different efficiency 
requirements, such as response time, storage space, and total cost. The 
organization of a data base can be viewed from three levels: 

1. the logical level, which involves the description of field types, 
the grouping of fields into groups, and the relationships between 
groups; 

2. the storage level, which involves access paths, inversion on data 
fields, and indexing mechanisms; and 

3. the physical level, which depends on physical devices used and 
record/block organization of data on them. 

Accordingly, two data bases, having the same logical organization, could be 
implemented in different DMSs and on different hardware, and would consequently 
have different storage-level and physical-level characteristics. 

The conventional method of converting data bases for new applications is to 
write a special-purpose conversion program for each data base. The programmer 
WHO does this must know the storage-level and physical-level characteristics 
of the particular DMSs involved in great detail. Another, more general, approach 
is to define data description languages for all three structural levels, then 
specify in these languages the structures of the source and target data bases, 
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as well as the conversion statements [1-6]; discussions of this approach are 
presented in [7,8,9],  The necessary data description languages are complex, 
detailed, and difficult to learn and to use because they involve information 
at all three levels.  In addition, because the data must be converted from the 
source physical environment to the target physical environment, implementation 
is complicated. 

In examining the existing approaches, we concluded that another approach would 
more likely lead to ease of use and simpler mechanisms. This is the common 
information structures approach that we have developed over the past two years. 
This approach rests on the assumption that the data base conversion process can 
depend on conversion at the logical level to a maximal degree. Just as high- 
level programming languages are intended to divorce the structural and functional 
properties of programs from specific physical environments, we needed data-base 
conversion mechanisms that will move data in and out of specific physical 
environments. This can be achieved by using the existing query and generate 
capabilities of DMSs, which move data from their physical representation to 
the logical level and vice versa. Once the data and their relationships are 
represented logically, they can be restructured and manipulated with no 
reference to any storage-level or physical-level characteristics. 

There is, of course, a trade-off between using the logical-level rpproach and 
using the approaches that have previously been proposed.  It is between the 
need to deal, in the translation process, with many different formats (of 
input and output data to DMSs) in the logical-level approach, and the need to 
deal, in the other approaches, with the different internal data structures at 
the storage and physical levels.  We believe that eliminating the complexities 
of storage and physical data structures from the conversion process far out- 
weighs the complexicies of dealing with different data formats. Moreover, our 
approach simplifies the languages required for specifying conversions, thus 
enhancing the ability of unsophisticated users (by whom, in this context, we 
mean applications programmers as distinguished from system programmers) to 
specify data-base conversions relatively easily. 

As shown in Figure 4-1, the conversion system has three principal components: 
(1) a source reformatter, which reformats the output of the source DMS into a 
predefined standard data form (the standard form is an internal representation 
of data values and their relationships to achieve high efficiency in the 
translation process); (2) a translator, which logically restructures the data 
from the source standard form to a target standard form; and (3) a target 
reformatter, which reformats the target standard data into an input data stream 
for the generate facility of the target DMS. The reformatting process does 
not involve any logical restructuring of data, but is a one-to-one mapping of 
data values. The data translator operates only on logical data. 
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Figure 4-1. The Data Conversion Piocess 

The conversion system uses the following three languages as shown in Figure 4 

1. A co^jnon data description language (CDDL).  This language is used to 
express only the logical properties of C.ata bases.  The user can 
describe in it how fields are grouped together, the relationship 
between groups, and field properties. 

2. A common data transition language (CDTL) .  i is language expresses 
logical restructuring functions, primarily in terms of field-i-o-field 
mappings. Functions included are repetition ar.J elimination of field 
values, creation and elimination of group levels, and modification of 
data values.  In addition, the user can describe the «concatenation -• 
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source fields into one target field, subset the records to be converted, 
and order the records after conversion. A more detailed description 
of these func.ions is given in [7]. 

3. A common data format language (CDFL).  Statements in this language are 
used by the reformatting processor at both the source and target ends. 
I. this language, the user specifies the input and output format conven- 
tions used by the target and source DMSs, respectively. 

4.1.3     Present Level of Accomplishment 

Most of the work to date has concentrated on the central component of the system: 
the logical data translator. The translator comprises two main components: the 
Analyzer and the Restructurer. The Analyzer performs syntax analysis on the 
CDDL and CDTI statements and semantic analysis to determine whether translation 
requests are legal.  The restructurer uses a conversion table generated by the 
Analyzer to convert the source records into target records.  A prototype of 
the logical translator is now implemented on SDC's VM-370/145 system. 

In addition, source reformatters were built for files in TDMS (an SDC DMS) and 
for sequential files.  Target reformatters were built for ORBIT (an SDC bib- 
liographic search system) and for report display.  The reformatters and the 
translator were used to convert and restructure several large data bases. The 
system is highly efficient; current tests show that a data base of 5 million 
bytes is converted in about one minute of CPU time. 

4,2 MAJOR ACCOMPLISHMENTS FOR 1974-1975 

Major accomplishments during this contrac year were made in the design, 
implementation, and performance testing of the several elements of the 
conversion system.  Because we wanted to demonstrate that our approach leads 
to a practical, efficient, user-oriented conversion system, the implementation 
of the system and the demonstration of actual data base conversions were the 
major tasks for the year. Before expanding on accomplishments during the year, 
we describe briefly the status of the project at the beginning of the year. 

After our approach was selected and specified, the Common Data Description 
Language (CDDL) and the Common Data Translation Language (CDTL) were defined. 
Defining the CDDL was an easy task, since it involved only a representation of 
logical structures of data. Defining the CDTL was e  major task that included 
the selectioa of the desired restructuring functions and their representation 
in a ur,er-or 'ented form.  In addition, a set of semantic rules were developed 
to ensure that a combination of restructuring functions specified by a user 
produces a semantically meaningful target data base description. These 
accomplishments were described in our final report to ARPA for 1973-74 [10]. 
Another design that was already accomplished was that of the "standard form." 
Also, modules that can read and write a stream of data in the standard form 
were developed.  A description of the "standard form" and the considerations 
affecting its design is given in [11]. 
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With this at our disposal, we proceeded with the tasks of designing and 
implementing the several components of the conversion system. The following 
sections describe the operation of these components as presently implemented. 

4.2.1     The Analyzer 

'"he Analyzer is responsible for a syntax parsing and analysis of the CDDL and 
CUTL «statements and for performing a semantic analysis of the restructuring 
functions according to the set of semantic rules.  (A description of the rules 
is given in [7] ,)  An algorithm was developed according to these rules and was 
incorporated in the Analyzer. The output of the Analyzer is a conversion 
table, which is used by the Restructurer for actual restructuring of the data 
stream. 

The Analyzer is diagrammed in Figure 4-2.  It operates as follows. First, 
syntax analysis is performed on the source and target data description state- 
ments (in CDDL). if no errors are found, source and target tables are produced 
that contain precise information about the data base. If an error is found, 
an error message is issued to the user.  Errors discovered at this stage are 
more than strictly syntactical; for example, a missing description of a field 
will be detected at this stage. The next step is the association process, in 
which source and target fields are associated according to the conversion 
statements.  In this step, the translation statements are also checked for 
syntax legality. This process produces the association matrix, which is used 
by the semantic analyzer. The association matrix has an entry for every pair 
of source and target groups. When a mapping is requested from a field in a 
source group to a field in a target group, the type of mapping is recorded in 
the appropriate entry. 

The purpose of the semantic analyzer is to determine, from the collection of 
conversion functions requested by a user, whether the request is semantically 
meaningful. To determine this, the semantic analyzer examines the association 
matrix for possible conflicts; if none are found, it determines the 
correspondence between source and target groups. 

After the semantic analysis is found to be correct and the correspondences 
between source and target groups have been determined, the conversion table 
is constructed. Every entry in the conversion table contains a coded instructioij 
to the Restructurer to perform one of the translation functions required. The 
entry includes information about the source field from which a value (or values) 
is to be extracted, the target field to be created, the conversion function 
required, and additional operations (such as 'string modification" and 'subset') 
if specified. The conversion table is the sole input to the Restructurer. 
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4.2.2 The Restructurer 

The Restructurer is diagrammed in Figure 4-3.  Basically, it is driven by the 
conversion table (CTAB) and keeps track of the current CTAB entry.  As it 
proceeds, it also keeps pointers to the current instances of both the source 
and target data for all the levels of the hierarchy involved. 

The controller reads the current CTAB entry to determine which module to call. 
The different modules correspond to restructuring commands in CDTL (such as 
DIRECT, REPEAT, GROUP, etc.).  These modules in turn call the READER module 
(possibly more than once) to extract the desired value(s) from the appropriate 
level of the source hierarchy. The READER uses the pointers embedded in the 
source standard form to extract data values efficiently.  The CONCATENATE 
module can call on other modules to extract the values to be concatenated. 
Then the value returned to the controller is written into the target record 
in the standard form by the WRITER module.  The GROUP and END modules are 
responsible for repositioning the current CTAB entry and the current pointers 
to the source and target data when a new (lower-level) target group is to be 
formed or the current group is to be "closed." Some of the modules mentioned 
above can call additional modules to perform lower-level functions, such as 
string modification or subset.  All modules except the LEVELUP module have now 
been implemented. 

The controller continues to move up and down the CTAB entries until all source 
instances have been exhausted.  Then it gets the r.«t source record and repeats 
the operation. When all source records have been processed, the restructuring 
process terminates.  Since the Restructurer produces the target data in the 
standard form, these data can be used again as input for an additional pass of 
restructuring if necessary.  Multiple-pass restructxiring is sometimes useful 
for complex conversions that cannot be readily expressed in CDTL because of our 
desire to keep that language simple enough to be used by applications 
programmers. 

4.2.3 The Reformatter 

The reformatters do not perform any restructuring of data.  Rather, they 
perform a one-to-one mapping of values and instances to and from the standard 
form.  On the input side, the source reformatter is responsible for locating 
the source values and instances, using the source data description statements, 
and generating the equivalent standard form.  On the output side, the target 
reformatter is responsible for generating records in a format acceptable to 
the target system, using the standard form and the target data description 
statements.  In either case, a description of the format (input or output) is 
necessary. 

Rather than have a single refor. atter for all types of formats, we found it 
preferable to classify the reformatters by type of formats. There are two 
major categories: the pair type and the report type.  In the pair type, the 

„^^ 
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data base is represented as a contiguous data stream, with values being preceded 
by field identifiers.  The field-value pair identifies uniquely the field that 
the value belongs to.  In addition, group identifiers designate new instances, 
and group or record terminators are al'.o sometimes used. A group identifier 
can be the field or group name, a number, or another designator assigned to the 
group. The report type format can typically be found in the output from data 
management systems.  In this type, fields and groups are assigned positions (such 
as column number), and the start and end of instances follow some convention 
(e.g., two line-feeds). A variation of this type, although not common, is the 
use of separator markers to separate values or instances. 

Another important format type that should be considered is the sequential type. 
It is typically found in COBOL or PL/1 sequential files and requires a language 
to describe its characteristics. It is important to have a reformatter for 
this type when we wish to handle data bases that were not generated by a data 
management system.  A language for the sequential format was Investigated by 
Housel, Smith, Shu, and Lum [12] , who have taken a similar approach to data 
conversion  [13]. The sequential format must also deal with physical char- 
acteristics of the data that depend on the particular computer hardware involved 
(such as the physical representation of numbers). 

In order to test the converter and experiment with large data bases, we have 
built several reformatters. We found it practical to have different reformatters 
for the different format types. 

For the input, we implemented two types of reformatters.  The first was a pair 
type that could be used with files generated by TDMS (an SDC DMS).  The oth^r 
was a generalized reformatter for directory-type sequential files.* These 
are sequential files organized with a directory in front of the different 
records types.  Each directory has a predefined number of blocks, and each block 
contains information about the value of a given field.  Since this is too much 
detailed information to be specified by means of parameters, a language 
definition was necessary. Essentially, the language consists of global state- 
ments for the directory and the blocks and local statements associated with 
each group and field of the data base. 

For the output, we implemented a reformatter to a bibliographic search system 
called ORBIT.  (ORBIT employs a format so different from those described above 
that a special formatter had to be built specifically for it.) Tht other 
reformatter generated a report from the "standard form" and is used to display 
records at each stage of the conversion process.  This was a useful tool for 
debugging, and it is also useful for displaying a subset of the records to be 
converted before committing an entire data base for conversion. 

*By "generalized" we mean a reformatter that is driven by a language or by a 
set of parameters to describe the format of the data stream. This is in 
contrast to a special-purpose reformatter for each and every data stream. 
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4.2.4      Experimentation and Performance 

In addition to multiple conversions of small experimental data bases, two large 
data bases were converted.  The small data bases were used in conjunction with 
numerous combinations of conversion functions in order to test the restructurer 
fully.  The large data base conversions were done primarily for performance 
measurements.  Two large existing data bases (several million bytes each) were 
converted.  One was a TDMS data base with very latge records (our system can 
accommodate records up to 70K bytes); the other was a directory-type sequential 
file with bibliographic information.  The results demonstrated the 5-million- 
bytes-per-CPU-minute conversion rate mentioned earlier. 

4.3        CCNCLUSIONS AND RECOMMENDATIONS 

The logical-level approach developed by this project proved to be very successful 
in that it provides practical, useful, and efficient user-oriented Luols for 
data base conversion and restructuring.  With a relatively small effort, we have 
shown that efficient tools can be implemented and used for converting even very 
large data bases. 

The dissociation of the conversion process from ~he storage and physical 
representations of data led to the definition of languages (CDDL, CDTL) that 
are simple enough to be used effectively by a programmer who is not sophisticated 
in dealing with the internal structures of computing systems.  No knowledge is 
required of inversion tables or of the hashing of data elements; all that is 
required is a knowledge of the logical organization of the data base to be con- 
verted and of the format of the data stream.  The restructuring functions were 
designed to be intuitive, involving primarily field-to-field mappings. 
Practical considerations, such as the ability to convert only a selected 
number of records (rather than committing an entire data base for conversion) 
and the ability to run any of the system components separately or together, 
were also implemented for user convenience. These facilities are described 
in a user's guide [14]. 

We recommend further work in two areas: 

1. The development of generalized reformatters for both input and 
output for the different format types.  We concluded that multiple 
reformatters for the different types of formats will be more 
practical and less confusing to the user.  The reason is that 
different format types have very little in common. 

2. The development of mechanisms for multiple-hierarchy correlation. 
This is necessary in order to accommodate network and relational 
data bases. Although most existing data management systems deal 
only with hierarchical data bases, the trend is towards more 
generalized data structures. 

^„1^ ;: 
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