TM-5243/004/00"

INTERACTIVE SYSTEMS RESEARCH:

FINAL REPORT TO THE DIRECTOR,

ADVANCED RESEARCH PROJECTS AGENCY, |
FOR THE PERIOD

16 SEPTEMBER 1974 to 15 SEPTEMBER 1975

i
i

RpA0OZ20314

15 NOVEMBER 1975

| PR
S

e e

System Development Corporation
2500 Colorado Avenue = Santa Manlca, California S0Q406

m_n-—hmﬂﬁﬁ

e —————— - e i Taae Ee e e A SR S S R S e Pemeh g e e ey -



TM-5243/004/00

INTERACTIVE SYSTEMS RESEARCH:

FINAL REPORT TO THE DIRECTOR,
ADVANCED RESEARCH PROJECTS AGENCY,
FOR THE PERIOD

16 SEPTEMBER 1974 to 15 SEPTEMBER 1975

15 NOVEMBER 1975

M. L BERNSTEN
(213) 829-7511, EXT. 6117

{o i THIS REPORT WAS PROOUCEQO BY SOC IN PERFORMANCE OF CONTRACT OAHC
comenco00n 15-73-C-0080, ARPA OROER NO. 2254, PROGRAM COOE NUMBER 5030,

THE VIEWS ANO CONCLUSIONS CONTAINEO HEREIN ARE THOSE OF THE AUTHOR

ANO SHOULO NOT BE INTERPRETED AS NECESSARILY REPRESENTING THE OFF |-

CiAL POLICIES EITHER EXPRESSEO OR IMPLIEO OF THE AOVANCED RESEARCH
" PROJECTS AGENCY OR THE U.S. GOVERNMENT,

il

Svystem Development Corporation
2500 Colorado Avenue » Santa Monica, California 90406




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Enternd)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

t 1. REPO S 2.0 . “CATALOG NUMBER
~ -~ _ . ——
¢ lechuical vepl, ) 74" 15 Sap 794
PEETER- — EPORT & PERIOD COVERED
Interactive Systems Research: Final Report to the Technical
Dirxector, Advanced Research Projects Agencys [for 9/16/74 - 9/15/75
the Period 16 September 13274 to 15 September 1975 |6. PERFORMING ORG. REPORT NUMBER
LAASD =TM-5243/004/00 I
=TT O R A p - Lobbitd UMBER(s)
10 )| I. Aernstein DAHC15-73-C~- 0080 1
y
| ﬁ/ ARPA MFJe;/-aaw_j
9. PERFORMING ORGA'«(1ZATION NAME AND ADDRESS L

. AREA & WOR T NUMBERS
System Development Corporationv’

2500 Colorado Avenue
Santa Monica, California 90406

11. CONTROLLING OFFICE NAME AND ADDRESS -
Information Processing Techniques Office //

ARPA Ordef’ No. 2254
Program Code No. 5D30

CEER AL - on - a0 mas ™4 O I -2

15 Noveaiser 1975
Defense Advanced Research Projects Agency

Arlinton, Virginia 22209 iii, 72 @ Y7,

T4. MONITORING AGENCY NAME & ADDRESS({! dillerent irom Controlling Office) | 15. SECURITY CLASS. (of emu—aﬁ'umzL-
UNCLASSIFIED

1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Cleared for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered in Biock 20, if different [rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revarse alde if neceesery and identily by block number)
speech-understanding research

natural-language understanding

data-base conversion

lexical semantics

acoustic phonetics
20. ABSTRACT (Continue on reveree alde If neceeeery end Identify by block number)

\\ﬁ> Progress in developing a prototype computer system for understanding human
speech is described. The system is designed to respond to queries regarding
characteristics of several hundred naval vessels. This report describes the
acoustic-phonetic and lexical-mapping processes of the system in some detail.
Also described are two other projects--one to develop an archive of lexical-
semantic information on English words and one to develop a system for efficicnt

conversion of data bases from one data mapadement svstem to apother ——
DD ,55n"5s 1473 €0ITION OF 1 N~V 6515 OBSOLETE
UNCLASSIPFPIED.

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) .

389 900 — 4>




System Development Corporation
15 November 1975 i T™-5243/004/00

TABLE OF CONTENTS

1. INTRODUCTION AND SUMMARY . . ¢ ¢ ¢ ¢ ¢ ¢+ ¢ o o o o o s o o s o o o o
2. SPEECH UNDERSTANDING RESEARCH . . . & ¢ ¢ 4 ¢ ¢ o ¢ o o o o o o o s

1
3
2.1 INTRODUCTION & ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o s o o o o o o o o 3
2.2 MAJOR ACCOMPLISHMENTS FOR 1974-1975 ., . . . ¢« + ¢« ¢ ¢ o« « « & 4

4

2.2.1 Language Behavior in Naval Operations . . . . . . « . .

2.2.2 Speech Processor Component Development . .+ ¢« « ¢« + « .« & 15

2.2.3 System Hardware and Software . . . ¢« ¢« ¢« o o o « o o o o 43

2.2.4 CRISP & v ¢ ¢ 4 s o e.0 s o o o o o o o o o o o o o o 45

2.3 PLANS . ¢ ¢ ¢ ¢ cae o o o o o o o o 8 o s s s s o s o s s s 53

2.4 STAFF . & v 4 « o o o o s o o s o o« o o o o 6 o & o o o o o o 55

2.5 PUBLICATIONS AND REFERENCES . « &+ ¢ ¢ ¢ « o o o o o 8 o o o o = 56

| 3. LEXICAL DATA ARCHIVE . ¢ ¢ + o ¢ &+ o o o o o o o o o o o o o o o o o 58
3.1 INTRODUCTION . . & ¢ & ¢ o o o o o« o o o o s o o o o o o o o & 58

3.2 PROGRESS AND PRESENT STATUS . . ¢ ¢ ¢ ¢« ¢ « o o o o o s o o o = 58

3.3 STAFF . o v v v v v v v et h e e e e e e e e e e e e e e 59

3.4 PUBLICATIONS AND REFERENCES ,

4, COMMON INFORMATION STRUCTURES . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o s o 61

| 4.1 PURPOSE AND BACKGROUND . ., 'y & ¢ ¢« ¢« 4 ¢ o o o o o o o s o & 61

s

S s e Y- 3 1!

4,.1.2 History of Research . . ¢ ¢ ¢ v ¢« ¢« ¢ ¢ ¢« ¢ o o « o o 61
? 4.1.3 Present Level of Accomplishment . . . . . .+ « + « « « & 64
4,2 MAJOR ACCOMPLISHMENTS FOR 1374-1975 . . . .« ¢ ¢ ¢« v o « o o o« o 64

4.2.1 The ANAlVZer ¢ « « ¢ « « o o o o o o o o o o o o o o o 65

4.2.,2 The Restructurer , , ., . . . .

4.2.3 The Reformatter

T Y
4 4,2.4 Experimentation and Performance . . . . . . . . . . . . 170
i 4.3 CONCLUSIONS AND RECOMMENDATIONS . . ¢ ¢ « ¢ ¢ o ¢ o « s o « o o 70
4,4 STAFF . . ¢ ¢« ¢« ¢« ¢« o o o o s o s s o o o s o o s s o o o o o » 71

4.5 PUBLICATIONS AND REFERENCES . ¢« ¢ ¢ &« ¢ o ¢ ¢ o o o o o o o o o 71

s R e 0 e




System Development Corporati.un
15 November 1975 ii T™-5243/004/00

TABLE OF CONTENTS (Cont'd)

LIST OF FIGURES

Figure Page
Section 2
2-1 Partial Orthographic KWIC Index for "of" in Various

Contexts . o & ¢ v 4 ¢ o s e 6 6 s s s e s s s e . s 0 0 O 6
2-2 Partial Phonemically Transcribed KWIC Index for "of"

in Various Contexts . . ¢ v v ¢ ¢ ¢ 4 4 o o ¢ 0 s s e 8 .0 . 7
2-3 Partial XWIC Index for Individual Phoneme "TH" . . . .« . . « . 8
2-4 Partial Concordance of Keywords with Sentences . . . . . . . . 9
2-5 Partial KWIC Index with Word Durations . . « « . « ¢« ¢« ¢« « & & 12
2-6 Fundamental Frequency Contour of the Utterance "The

U.S. has Lafayettes." . . ¢ ¢« + ¢ ¢ o ¢ o o s o o o« o o o o o 19
2-7 Example of Formant-Tracking Steps . . & ¢« o ¢« o+ o ¢ o « o o & 21
2-8 Automatic Syllable Segmentation of the Utterance "What

is the spred of it?" 5 O 000D 0O O0ODOOGOG® OGO OO O OGO OGO OGO OO0 O 25
2-9 Automatic Phrase Segmentation of the Utterance "The

Seawolf has six torpedo tubes." . . . ¢ ¢ + ¢ ¢ ¢ ¢ ¢ o . o . 28
2-10 Automatic Phrase Segmentation of the Utterance "What

is the speed of it?" (single phrase) D 0O 0o 00O0O0DOGO OO Q 29
2-11 hutomatic Segmentation and Labeling of the Utterance

"What is the speed of 1t?" . . . &« & ¢ v & v ¢ ¢ o ¢ o o o o o 37
2-12 Stored Spelling Graph of the Word "submarine" Containing

Alternative Pronunciations . . . . . . ¢ ¢ ¢ ¢ ¢ ¢ e b e s . . 39
2-13 Sample CRISP Program to Trace a Path through a Maze . . , . . 54
Section 4
4-1 The Data Conversion ProCeSS . . ¢ « « &« ¢ o o s o o o o o o & 63
4-2 The AnAlyZer « . v ¢ & o+ ¢ o ¢ o = o % o s o s 2 o o o o o o « 66

4-3 The ReStXUCLUXEYr . . + o ¢ o « o « 5 o s o o o o s o s o o o » 68




System Development Corporation
15 November 1975 iii TM~5243/004/C0
(Page iv blank)

TABLE OF CONTENTS (Cont'd)

LIST CF TABLES

Section 2
2-1 Protocol Analysis: Phoneme Fregquency Count . . . . . « « + . 11
2=-2 Protocol Analysis: Sample Frequency and Duration Data for

Terms Occurring More Than 10 TimMe€S . . & 4 « « « o« o o « « o & 13
2-3 Sample Data Base Entries for the USS Constellation . . . . . . 14
2-4 ‘Yowel=Sonorant Table for WAB . . . . ¢ ¢« ¢« « « ¢ ¢« ¢ ¢« ¢ ¢ o 34

A

A




System Development Corporation
15 November 1975 1 TM-5243/004/00

1. INTRODUCTION AND SUMMARY

This report to the Advanced Research Projects Agency (ARPA) summarizes System
Development Corporation's progress during 1974-1975 in an ongoing program of
Interactive Systems Research. During this period, the program included three
projects: (1) Speech Understanding Research, (2) Lexical Data Archive, and
(3) Common Information Structures. The overall intent of the research is to
develop technologies for improved man-machine interaction and for new data
management capabilities. Although this report covers the entire year, it
emphasizes progress made during the six months from March™ to September, 1975;
an Interim Report (SDC TM-5243/003/00, 15 May 1975) described major
accomplishments during the prior six months.

Speech Understanding Research

Our work in speech understanding reswsarch is directed toward the construction,
by the end of 1976, of a prototype Speech Understandinyg System. such a system
requires several sources of knowledge about language and its use for particular
tasks. These include the parameters of speecnh sounds, acoustic-phonctic data,
and stcred information about an ongoing dialogue. SDC is developing the system
in cooperation with Stanford Research Institute {SRI), which is primarily
responsible for the system's parser and higher-ievel linguistic processes.

SDC is primarily responsible for the overall system implementation and testing
and for the modules that process a speaker's input utterances.

The design of our acoustic-phonetic processor reflects the fact that the speech
signal is never wholly unambiguous; any attempt to precisely label phones and
their boundaries must recognize and allow for considerable ambiguity in mapping
the extremely large number of speech sounds into a relatively small set of
acoustic-phonetic transcription symbols. Accordingly, in this processor, each
acoustic-phonetic frame has multiple labels, and each label is assigned a score.
Scores are based on a measure function that is, in turn, based on feature
parameters previously developed for each speaker (usc ).

Late in 1975, a milestone version of the 'system will be demonstrated. The
capabilities of the Milestone System were described in some detail in the
Interim Report; this report adds to that description detailed discussions of
the now advanced versions of the processes through which the system passes

a speaker's utterance in an attempt to derive an acoustic-phonetic representa-
tion of the utterance and to map that representation to words in the system's
lexicon. Also described is the new programming language and system, CRISP,
that we are developing to provide greater capabilities for implementing large
portions of the prototype system.



System Development Corporation
15 November 1975 2 TM-5243/004/00

Lexical Data Archive

The Lexical Data Archive Project was begun ian 1973 to create a centrally
organized archive of lexical semantic information on words in the lexicons
being used by ARPA SUR contractors. Files with a considerable amount of
data on these words were constructed and are now stored on magnetic tape.
The project was terminated in June.

Common Information Structures

The Common Information Structures Project, which was suspended at the end of
this year, has implemented a system of languages and translation interfaces
for semiautomatic conversion of large data bases from one data-management-
system environment into another with minimum cost, effort, and disruption

to users, The system was developed over a period of three years and has
been successtully tested and demonstrated. Its major advantage over previous
designs is that it uses the existing query and generate functions of data
management systems as part of the conversion process, This frees the user
from having to become familiar with the storage-level and hardware-level
data structures of the computer systems involved in the conversion, allowing
him to focus on specifying the logical structure of his data base and the
types of logical conversions that are necessary to move it from one system
to another.



System Development Corporation

15 November 1975 3 TM-5243/004/00
2. SPEECH UNDERSTANDING RESEARCH
2.1 INTRODUCTION

Late in 1974, the first fully integrated prototype of a speech understanding
system developed jointly by SDC and the Stanford Research Institute (SRI) was
implemented. The task domain of that system was data management on attributes
of submarines. The system operated on SDC's Raytheon 704 and IBM 370/145
computers. The Raytheon computer was used to perform an acoustic-phonetic
analysis of a digitized speech waveform. The results of this analysis were
put into an array of acoustic-phonetic data that we refer to as the A-matrix.
The data in the A-matrix are used by lexical mapping procedures to verify the
existence of words hypothesized by a "best-first" parser that draws on a set
of language-definition (syntax) rules and on ccmponents containing semantic
and praymatic (discourse-context) sources of k- wledge.

The acoustic-phonetic processing and lexical mapping procedures were essentially
the same as those used by SDC in its Voiced-controlled Data Management Systenm,
modified to handle a vocabulary of 300 words., The system had a word-strirg
mapping procedure that handles coarticulation between pairs of words.

The goal for this contract year was the Milestone System. The task domain for
the Milestone System is data management with an expanded data base containing
attributes of submarines, aircraft carriers, and ocean escorts of the US, USSR,
and UK. The vocabulary has been extended to 600 words; the system accommodates
six speakers, both male and female. Acoustic analysis is performed on PDP-11/40
and SPS-41 computers, interfaced to the IBM 370/145. Refined and augmented
acoustic-phonetic analysis includes improved formant tracking, pitch tracking,
and vowel-sonorant analysis. Techniques have been developed for handling voiced
fricatives and plosives, and improvements have been made to the present programs
for handling unvoiced fricatives and plosives. A new programming system, CRISP,
will provide efficient arithmetic and array processing, in addition to efficient
symbol and list processing, and will substantially increase the address space.
Two new mapping procedures have been added: one to handle prosodic features

and one to provide word spotting and do lexical subsetting on the basis of robust
acoustic cues. Modifications to the syntax include the addition of time and place
the conjunction and negation of noun phrases, the use of prosodic attributes and
factors (earlier written into the rules), and an allowance for incomplete
sentences to function as utterances. Semantic information guides retrieval

and prediction in addition to interpretation. The discourse model has been
augmented to handle "»nnger dialogue sequences on the basis of protocols

gathered in more carefully controlled experiments. System exercisiang is

being guided by formal test and validation procedures that assess each
component's contribution to system performance.



L A

System Development Corporation
15 November 1975 4 T™-5243/004/00

2,2 MAJOR ACCOMPLISHMENTS FOR 1974-1°75

puring the 1974-75 contract year, the SDC SUR group accomplished several major
objectives in the development of speech processing algorithms, a comprehensive
naval ships data base, and the conduct and analysis of several protocol exper-
iments designed to study the langusy > behavior of naval officers in simulated
command situations. Extensive expansions of a ships data base were coordinated
with technical and military personnel of the Naval Electronics Laboratory Center
(NELC), San Diego. Several important algorithms were developed for processing
speech waveforms, iacluding fundamental frequency extraction, formant frequency
analysis, segmentation and labeling, and various procedures for word and phrase
pattern-matching. A new programming language and system, CRISP, is being
developed to provide more powerful capabilities than are provided by LISP and
its derivatives.

2,2.1 Language Behavior ° : Naval Operations

The conduct of protocol experiments represents an important aspect of our system-
building strategy. The dialogucs ovbtained from these experiments are the basis
for our decisions regarding:

1. discourse context,
. syntax,

. vocabulary,

2
3
4. lexical selection of phonetic base forms,
5. prosodics, and

6

data base content.

Several protocols were gathered at the Naval Postgraduate School in Monterey,
California, during July, 1974. These were followed by a further protocol exper-
iment in the SDC SUR laboratory. The design of a new set of experiments was
then worked out with technical and military personnel at the Naval Electronics
Laboratory Center (NELC) in San Diego, California. The experiments were con-
ducted with military personnel at NELC in May, 1975. The subjects were high-
ranking naval officers with extensive experience in command operations. Each
subject was given the problem of assessing the potential strength and combat
readiness of ships in the U,S. Sixth Fleet during a simulated crisis situation
in the eastern Mediterranean. Updated "intelligence" reports concerning the
movements of foreign ships in the Mediterranean and adjacent areas were issued
to each subject at 10-15 minute intervals during the conduct of each hour-long
experiment.

Orthographic transcriptions of the recorded protocol dialogues have been used
to identify necessary syntax, vocabulary, and data base extensions to the system,
and have provided useful information about discourse context. The transcriptions




System Development Corporation
15 November 1975 5 T™-5243/004/00

also served as prompting material for subjects who participated in an experiment
conducted in the SDC laboratory. The results from the latter experiment were
transcribed orthographically at SDC and phonetically at SCRL. These phonetic
transcriptions guided the selection of lexical base forms and their accompanying
phonology. Also, the phonetic transcriptions, along with acoustic analyses of
the utterances in the dialogues, will be useful in the analysis of prosodic
phenomena.

2.2.1.1 Computer Processing of Protocol Recordings

The major results of the computer processing of the protocol recordings are
KWIC concordances, type counts, and "word"-lists sorted by frequency. Concord-
ances were found very useful in the analyuis of our current protocols. SDC
currently has the followiiig capabilities for concordance generation:

1. KWIC index for orthographic text {(Figure 2-1).

2. KWIC index for phonemically transcribed text (Figure 2-2).
3. KWIC index for individual phonemes (Figure 2-3).
4

. A concordance in which keywords are displayed together with the
entire sentence in which they appear (Figure 2-4).

All versions provide basic statistics of the text processed, e.g., number of
sentences in the text, total number of tokens (words or phonemes, as the case
may be}, number of types, type/token ratio, frequencies, percentage frequencies,
etc.

The four protocol experiments yielded nine recordinys of natural speech for nine
different speakers, comprising a tntal of 955 utterances, a total of 2461 ortho-
graphic tokens, 1791 orthographic types, with an overall type/token ratio of
approximately 19%, It should be noted that the term "utterance" is used somewhat
loosely; it covers single-word fragments such as "all right" and "0O.K.," sentence
fragments, complete sentences, and, in scme «ases, whole paragraphs. This
variety is due to the fact that, during the first two experiments, the subjects'
queries normally took the form of single sentences, while in the last two exper-
iments, especially the experiment involving NTLC personnel, the dialog was much
more complex--a natural consequence of the increased compluxity of the scenario
and the data base. It was found convenient for processing purposes to consider
the whole query as a unit, rather than break it up into individual sentences.

As far as the conccrdances are concerned, an utterance refers to what was said

by the subject between responses from the system.

The orthographic KWIC index (Figure 2-1)} for our current protocol files has
highlighted frequently recurring sentence types and other grammatical construc-
tions. For example, out of a total of 220 sentences, 62--i.e., almost a
third-~-begin with "How many <NP>,.." and another third begin with "What is
“<NP>,,." and "What's <NP>.,." By taking data such as these into accovnt, the
parser can focus on the more likely paths first.

W Ry e =




S3IX93U0D snotaep uT ,3JO, I03J XIpul DIMA otydeaboy3zap feriied 1-z aanbrg

TM-5243/004/00

System Development Corporation

€90€00 CAININIVINOD WOANWININ ONY WIWI XYW 3HL S1 LVHM *3SOMHL 30

8S0€00 ¢I143AV4Y1 3HL JT 033dS 0394INEBNS IAHL ST LVYHM

L%0€00 €3113Av4v] 3HLE 30 043dS CIDYINENS 3IHL S1 LVHM
_%00€£00 €3113Av3ve IHL 30 HIONIT 3HL S 1VHK

Z200£00 ®3113Av3vY 3HL 30 ALLIINVNO ONV SYIHONAVT 371SSIm H0
_.090€00 ENOLONTHSVM 394039 3HL 30 0334S 039u3dRuNS 3IHL

210£00 ¢NOLONIHSVA 390039 3HL J0 HI9NI T IHL ONV

900£00 ¢NULONIHSYM 394039 3KL 30

650€ 00 ¢N3TTV NVHLI3 3IHL 30 033dS 03933mNENS 3HL

6%0€£00 ¢N3TTIv NvHLI3 3HL JU 033dS 037¥3n8NS 3HL )

110£00 ¢NITWV NvH13 3HL 30 HI9N3I T 3HE 3HLE SI LVHAM
. S00€00 ¢N3ITTIV NVHII 3HL 30 IN3IWNIDIVIESIA 3Iv4unNS 3HE S1 1YHM

\© 870€00 ¢33802ve W 3HL 30 U33dS 03I9UIRENS 3HL SI LVHM

Y%0€00 ] *NIVOV SaNIuvKENS 3F0 1S17 1vHL 3w 3A19

B8L0€00  LiSu3HONNVI JTFISSIN 40 ¥IBWON 1S31VIES IHL SVH 3N1YVNGNS 30 SSVID HIIHM .
»10£00 ¢S¥0LIVIN FT sIGNMN ’

[Te}
~
()]
-
L]
m
[V
>
[*]
=
[Te}
-

Y |E . . Ul




System Deve:lopment Corporation

™=-5243/004/00

$3X93U0D SNOTIR\ UT ,3JO, I0J Xapul DIMM pPaqraosues] ATTedsTwduoyd Terixed °g-z 2anb1g

OR- 403XV A7 XY

L00EO0 NL:HIISZ:NI0:138 0:800: (HI/211I)T¥Z:

20: (HI/XI) STAVIX TZ:0¥ ISZ:BIT
INL SXTROZXVIANZIYTY QO:XV EZZ:IVAR RL:XIO:-HAWNAZHYS

QZ:A14S BLZ-¥3WE0:XVS O:XVHO Z0:HI XYAZ-HVHE
0:BNANZIOVYN L BY Z:XIHQ Z:XIW *Z:HIO L:-HY

4z :11d4S HLZ-EdRE0:XYS (:XVEQ

(Z:X14S H{Z:UARHBOXIVS o XIBA ZO:HI XAZ-HVHA
0:40AWZ HYR 1S0:(BI‘XI)XQc:X34D O:XVHA 2Z:EAVHH ML
LSZ *AIT 1) c3VEQ L:XIN AZ:RHID

D:MLANZ BVYN 1S6:(HI/XI)XQZ:X349 O:XVHA ZL:AVHE K
04 NANZ 3HIY ISL:HILZ:X3¥D 0:XVAQ ZL:AVHH NL:ZIO-H

O:¥OQHNZ SHVR I1S0:(HI/XI)XAZ:X3¥49 O HIHA ZL:dVHEB Nl

HINXRZH3T O:XVHA OL:XVHGQ ZO:BI XOZ:EHVYA

IH0: (HI/XI) RSZ 1A TdSL:HIAQ S17 (XI/HI)dZ=83S 0:XVHG
HININZ :H3T Z:AIRG 20:(HI/XI' XAZ:HVA
LZAII0°XVAZ:(VV/0V) RN C3NZ 20:BOEDNZ: (YV/0V)T O°
0:dNENZTRYR ZOIEOINZ AVISZIN AOSXV O dNENZ HYN 28~
O:BNANZHVN Z49Z°ROL L:R0GZ:-XIQEL:ROL AQ:XY 0O:EOEW
0:8NEWZ CBYN H. YXNZ:HIT LNO: (HI/XI)HSZ:iITdSL:HIA
ALZXY ZO:(HI/XI)SZ:aAVI¥ TZ:OV 1SZ-HIT

0:YDBWNZ:HYN OXVHQ KNL:3dV QZ:XIdS HLZ-HAWHO:X¥S 0°
QZ:11dS HLZ:YAWE0XV¥S O XVHA

AZ:AIdS HCLI:83WHOXVS C:XVHA

aZ:XIdS HCLZ-¥43AWHO-XVS O:X¥YHQ 20:HI XQZ:HY %

690€ 00 AZ:IV¥Z O:R3 G0 :ENXAMZ *HVAA 0:XVY A0°
890ENQAY WL XVWS¥Z:3V¢N O-XVHG Z| *HI lZ :H¥YM ZZ:mOHA A0°~¥
850€90 LZ:HILOSHAAL : (VV/0¥)T 0:XVIC A0° ¥
LSOEQOBEO:XVS 0:XVHA ZQ:8NHOAZ : (YV/0V) T 0:1aSZ:HIN - IV
6% 0€00 K0: (HL/XTI)T1Z:3dVY O NEHIZ:AI 0:HIHG . .-IV
Lu0EGD 1Z:B2A0:H3dL - (YV/0V) 1 0:IVHA AQTYIV
91 0€00 ZAZ:POLl | BROQZ SAXIddL :mol ADSXV
tt 0£00 : HZ:BE90:: . ZN) SXI0ZHNRAZ:HYS AQ XV
0n0£90 Z0Z8NHONZ : (YV/0V)1 0:T1dSTZRIR AQ:XVY
SEOEGR 20:80HOM s (VV/0V) 1 0:3dSZ2HIN ROZIV
SEOEO00SI:HILZ: 949 0XVHA Z' :aVAR NL:AJO:HONHZIBYS A0-IV SZ:3IVIN HOZ:RIHM
LEOE0Q 20:808OAZ: (YV/0V¥) T 0:14SZSBIK 20TV
SLOE0® 20:80HORZ : (VV/0VY)T 0:1d4SZ:HIR A0SXV 0:808NZ HVA
_hlQEQR Z0:¥NINZ sVl 2XI8 RO -XV O HNANZ:HVR
e ZLO0E0® f1° (AL/XI) LRO:HIHSZ VYA HCHZ SROHP G:XVHA AQ:XV HANXNZ:HET O:XVHA NZ:3V
LLOE®S H0:(BL/X 1) 1Z:dY 0:RIELZ XTI O:HIBNC AQSX
90 0£00 N1 (BEL/XT) IR0 :HLIYUSZ VYA HCOHZ SMOR[ 0:XVHC AQ°IV
SO0EDS. N0: (HL/XI) TZ:3V 0 NFALZ *AI O:HIHG KOZXV
t00E00 1z:0210: (BF/HI) AL VYT O:XVHQ AQD-XV
Z00S0N. _ 1Z:HEi0:Had) : (YV/0¥)T 0:XVHA AJTIV
ZOOEGO UN/0V) BN 0:R3d 20° apuun~...~\o-.u 0:T4SZ:HIR A0-X
Z00F~~ 33ST YIN AQ XV Q:LOGUNZ HYE Z0:8NINZ:2VL:XI¥ A0
Z0 _sOW A0 XV J:ENEWZ:HVN ZHZ:ADL | SA0OQZ:5iIddL:m0l A0- IV
LOUS@OSZ HIR YL:HILSZ:HIO:T3E 0 :800: (HI/ZI)T¥Z:AON AD:XV
LSOEO00NT:20C 0:XVHA 0c¥nd Nmmunna 1 :A0AZ s iId38l tnol IDTIV
Q90£00. Ei:(BI/XI) LNDIHIHSZ: (VV/OV)A Braz:Borf 0:XvHa 00XV
6S0€£00 KO: .mn\nu,q~ gV 0:RIHIZ LI O:HIHG 0:XV
8%0E00 "L M0N0 SXVEIZ :3¥ O0:HIRA DIV
un
™~
)]
—4
-
3
>
0
z
un
~—t




WJHI, 2u®U>dyg TenpTATPUIl IOF Xapul DJIMY [eTIIed °“g-Z 3InbBTJd

T™-5243/004/00

—

System Development Corporation

s € # A 2:3Y HH # 2:A1 ¥ HI # O:A1 d 2:HV 9 # O:XV HO # 7 O:XV 0 # Z 8 2:MN 1 i |
s9 " € # 1 2:A1 3 # O:Al X0 2:¥3 HI # N 0:X1 HO # S 2:H3 1 # W Z:A1 € & HL T1:HI M ¥ 2
¥ € # 1 Z:AL 3 # 0701 XC 2283 HI # N O:X1 HO # S 2:H3 1 8 W Z3A1 9 ¢ HL T:Hl M 1
€9 € # 1 Z:A1 3 % O:A1 X0 2:¥3 HI # N O:X1 HO # S 2:H3 1 # HL Y XN 23H3 V1 & A 2:3v° I
25 € # 1 2:A1 3 ¥ O0:Al XO 2:93 HI # N T:X1 HU # S 2:H3 T # W 2:A] 9 8 0:XV O # Hi 1
91 € # T:UdN HO # ¥ T:vV # 7 N O:XI 7 223V # O:NI HI 2:A1 # OzAI N 2:H3 W & 2:MV HH # N O:3Vv »
8¢ € # N O:XI 1 2337V # C:N3 HI Z:A1 # O:H] HO # DXV # Q 2:A1 d S ¥ Hf 2:¥3 W 8

@© (74 € # A 2:3V HH # & O:XI 1 2:3v & O:N3 HI 2:A1 # O:XV HG » Z O:XV QG # Z ¢ Z2:MN 1 # 1:M0 G 2 &
6 £ . # N O:XI 1 2:3v # O:N3 HI 2:A1 # O:HI HQO # A O:XV @ Q Z:Al d S # HF 2:¥3 M
o € # N O:X1 7 2:3v # O0:N3 HI 2:A1 # O:XY HO @

wn
~
[=)]
~

-
m

»

O
=
wn
~




System Development Corporation

TM-5243/004/00

15 November 1975

S9DOU93UIS YITM SPIOMASY JO I2URPIOOUO) TeriIed °p-z 2Inbtg

1 SAJNINGIN Y
. éS 111 AddNY AhYm MOH 09 2
) ¢ =AGNINGIYS
o ©_ _&11 AddN9 3HL ONV 111 AddN9 SH1 JO HION3T 3JHL SiiVHM FA- T4
LaIOVINANS 41T AddN9 ONV TTIT AddfiD 3HL 30703395 TIul SUVRA- 19 2 "~~~ ~ -
111 AgdNd LS 2
CTTT T I T T = AIN3INO 3 U -
o S ¢3AViH 3M 00 SeVI1 AddN9 ANVW MMH s 'z .
T e T -7 : 1 SAJNINDIYI T T
L S Vil AddN9 8% 2
B I N e CCl . ———— T
= - e S B LE L ELE
411 AddN9 3IHL GNV 111 AddNO 3IHL1 4C HIONIT 3IHL S IVHA 29 2
$03993IMANS 41T AddM® ONV 111 AddV9 3IHL 40 d33dS JHL S+ivHA 19 ¢ T
_&11 13104 3HL ¥4 SHIHINAYI 31ISSIN ONV $3ANL O03du0L ANVW KOH ‘ONV €% 2 _
T T T oo Tt T : R Y R L e e e
) "V SVH ONV 1334 Of NVl SS31 “And0S wal 18 1
T T T —C € T =KININDIHI T T
*IN]UVHENS SSVID NOLONIHSVM 393039 3SOHD I 99 1
. T w . ZISCHI T 1VHM NOX 1131 01 03S0daNS T'WV 7 g1 -~ ~7 = 7 =~
~ ¢3SUHD 1 1VHM (1IC) 1131 01 Q3ISOddNS 1 wv %9 1
- 1 =A3N3NO3¥d
43A1d ONY GIBONNM ¥V 30 AINIW3INdWOD ¥ SVH INI VNGNS HIIhK HIIHM 69 €

YR b




G

il T

T

il

T,

System Development Corporation
15 November 1975 10 TM-5243/004/00

The KWIC index routine for phonemically transcribed text is designed to group
together all phonetic variants of the same word under its orthographic rep-
resentation. For example, under "of" (see Figure Z-1) we found the folinwing
variants: AX:0, AX:0F, AX:0V, and AX:1V; under "the" we get: DHAX:0, DHIH:O,
DHIY:1, DHIY:2. Such a concordance provides a check on the phonological rules
component, whose function is to generate the variants likely to be encountered
in a speech situation. It also allows us to select the most commonly used
phonetic spelling to be used in the mapper for a first try.

The KWIC index for individual phonemes (in ARPABET transcription) has proved of
interest to all those concerned with the acoustic-phonetic processing component
of the system. For example, the distribution of vowel contexts for initial
plosives, the relative importance of final plosives, and the voicing context of
/3/ were items of immediate interest to the researcher working on fricative

and plosive analysis. Furthermore, the table ranking phonemes by frequency of
occurrence (see Table 2-1) suggests the most pressing areas of research. In
the body of protocol sentences analyzed, the phoneme /n/ appears at the

top of the list, closely followed by /a/, /s/, /i/, /™/, /z/, /4/, /d/, /e/. A
survey of related work revealed that the phoneme frequency distribution in our
protocol sentences largely matches the distributions in Denes (1} and Shoup [2].
We therefore feel justified in using the cutput of this frequency study to guide
our acoustic-phonetic research. Particularly, it is important to note that the
phones /n/, /m/, /1/, and /r/ have a high frequency of occurrence. They exert a
great influence on the vowels in their immediate vicinity. Therefore, research
on the coarticulation effects betwean these phones and neighboring vowels was
one of our primary tasks for this year.

A research plan for a joint SDC-SRI study of prosodic features and their use

in a speech understanding system was developed, Under this plan, SDC performed
acoustic processing on the dialogues obtained from the protocol experiments.
The first experiment dealt with word duration., A-matrices were prepared for
each utterance of the protocol experiment recorded in September, 1974. There
were 69 utterances in the protocol., Word and pause durations were determined
on the basis of the A-matrix parameters described above. This information

was input to a program that created a new file in which each word and pause
occurring in the protocol appeared with its duration. For example, utterance
#44 in the protocol, which in the original file reads:

"Give me that list of submarines again"

now reads:
"givel7 me08 thatl8 list28 of07 submarines54 againd5"

The numbers following each word refer to the number of 10-msec. segments the word
spans. For example, the word "give" in this sentence is 17 segments, or 170 msec.
long. The new file thus obtained was put through the KWIC indexinj routine that '
groups all similar words together and displays them in their context (see

Figure 2-5;.

R . TR = ez iasia s

e




15 November 1975

System Duvelopment Corporation

11

T™-5243/004 /00

TABLE 2-1, ©2®ROTOCOL ANALYSIS: PHONEME FREQUENCY COUNT
Phoneme Phoneme
(ARPABET (IPA
Frequency $Frequency Representation) Representation
! 0.04 EM syl m,m
9 0.40 AA a
9 0.40 Q ?
10 0.45 WH M
12 0.54 NX n
13 0.58 G g
14 0.63 UH U
15 0.67 EN syl a,n
16 0.72 SH s or |
17 0.76 AY al or ay
17 0.76 CH ¢
17 0.76 ER T
22 0.99 F f
22 0.99 W w
23 .03 EY el or ey
24 1.08 TH ]
26 .17 AW aU or aw
26 .17 Uw u
27 .21 AO b
27 .21 EL syl 1,1
28 .26 DX flapped t,r
29 .30 Y v
31 .36 JH ‘J'
33 .48 K k
33 .48 P p
36 .62 OW o
49 2.21 R r
50 2.25 IX £
52 2.34 EH €
54 2.43 HH h
55 2.48 \ v
56 2.52 AH A
6l 2.75 UR r
66 2.97 AE -
66 2.97 L I
68 3.06 B b
76 3.43 DH 3
78 3.52 D d
81 3.60 z 2
30 4.06 IH T
108 4.87 T t
14 5.14 M m
122 5.50 1Y i
134 6.04 S s
145 6.54 AX 3
153 6.90 N n




System Development Corporation

TM-5243/004/00

12

15 November 1975

suoT3eaIng PIOM YITM

8G0€00 IAVAVY] 03H1 1040 22033dS S$%039¥3WENS €13HL 6151 SZIVAR
090€00 Y040 ZEZIEWNN 6E€1SILVvInD €T3HL ¥ZSVH TL3INIEVRENS ZZIVAR
8%0€00 0IVE IV »03H1 2040 9$2033dS %%03944n6NS 113HL T1s1 GIIVAR
110£000240 6104SNVd %%HION3T %23HL L903S1Vd 9E3HL €1SI STIVAR
650€00 dS LGU39u3WENS 06153 1SV TT3HL OELSVH TS3IN1WVAEDS TTYIVRR
$00€00 143Av4v1 %03IHL 0140 €EHIONIT 2103SMvd £E3HL B1S] ZYIVAR
G90€00 Nl 0204SNVd »EQNV €C04SNVd TLhNnlXyw €03HL %151 TTIVRAM

500€00 3 Y03H1 1140 L9IN3W3IVIdS1IQ 2%
600€00 '13H1 80304 9GINIA3SVI4SIT 6%0d

800€00
210€00
090£00
LSOE00
2%0¢00
€10€00
900€£00
0s0€00
$50€00

010€00’

L10£00

120800

0£0£00

620€00
420£00
820£00
100€00
220£00
610£00
$20£00
€20€00
020€£00

37v4uans L04H1 1Sl TTIVAA
9uiwans 013H1 Z1s1 ECIVAM

ZelvHl HTIVE

»zoisnvd TINCIDNTIHSVR
1603snvd SERUISNTHSVR
9003SNyd TSNCIDNTRSVR

£EZNGIONTHASVRA

6LA13AT193653y 623AVH ZTRCLGRTASVR

ZSNOITNTRSVR
TERCIONTASVR

¢Z3AvH BLROIONTRASVM
+103snvd SYNOIONTASVR
$9035nvd TOSNOIDNTASVR
Z90€00 6803ISNVd LEHLIM 9%03SNVd L9SINIYVAENS TESILVIS $ROIITNN
»40E00F M 6003SNVd EZHVY 9603SNVd 6LSINIJVWENS SES3ILVILS I%03ITTINN
£90€00 $T103SNVd ZEIAVH $203SNVd Z2SSINTUVWENS LTIS3LVLS STAITIRN
%003SNvd LEADGON IX HEUSIINA

LZ3AVH
L23AVH

2es3ivis TETIITRAN
0€S31iv1s B20ITTINN

623AVH LECWOUONI ¥ BZCTITNN

SEIAVH
69S 4Nl VAENS
CE3AVH
T1Z3AVH
6Z4AVH

£€s31v1s BEZUITTINN
1€$31v1s FZTIITNND
c€s3Ivls L2GITTINT
g€s31vis IT20IITNN
g€S41v1S FZOITINN

gz3aavH LHROTIRAN
6003Snvd DENUTINT

€T10£002TONY 99N31TIVv 6ZNVHI3 €13H1 1€SICC GZHV €503SNVe &ETIBNT
200E0028WNN 0L03SNVd »9S¥0L3VIY S04L Tex3IOWNN #103SNVd 75338N1

250€00
940€00

1€3AVH £63113Av4V] CU4HI 92540¢ THTITNT

£53I8NT

XSpul DIMM Ter3ixed

600 4SNve

CIhV

824506h1 5040

‘G-z 2anbty

LSINTuUWENIS Z22HDTHM 80¥03 6%HIIHM 91u03

6C3HL 0240 BSHLONIT 603HL HEGKV SO
10311 2040 12G34dS 9€GITY3ImENS 213
§03HL 90u¥04 9€S3dN1 15LA4du01 %140

6239%039
62394339
$€39v039
12394039
62394049
2¢€39¥039
1€3948039
623538039
9¢394039
0€398039

G131 A0S

80441

LIGNV 9%N3T1IV 62NVHI3 £13HL lesS30C
903H1 €140 $003SNVd

H13H1 2103SNvd 12HY £104SNvd

803HL 015300 62S38N1 %%0034¥01 820
6103SNVd €S3HL YLONV

GEANYN HSTMOH ¥S0ONV

611V 22¢3SNvd LEBNS 6111V 281S17

450350Vd €€17V 61NU €91358NS

L003SNVd 6EBYWENS €903SNVd T1YANVA STMOH sL0
903IHL LEONV

€03H1 815300 8SS3NIaVWENS
$03H1 815300 19S3N13VAENS
603H1 1€S300 6SSaNIY¥YVAENS
GO3IHL 225300 66SANTYVRENS
6£03SNVe %411SSIW 726I1151T1vE S%dva1InN 61
GO4H1 025300 9GS INIaVAHNS OHXIVLILIV 65¥VITIIN
903H1 £€2S300 HSSAN1aVWENS
603H1 BIS3IGC BEOISNVd €9SINTUVWENS YYONINIV
0%131A0S CT4HL 61S300 G9S3INIUYWuNS TE€3T1SSI

6C3H1 €703

1€135310 STANYN 1
199NINIVYEL 9003S0
2€13374 £€03sSnvd
9¢31ISSIw 903010

1€3711SS IA €20 350V

Z9003d¥01 OZANVW STIMOH ¥00d4SNivd

06333dYL 1 8Cal PZYIHWNN 6E0:2SHivd TEHIONIT L
690034801 9TANVK STMOH
6S303du04 2040 TE€d3ONNN 9€1SIIVIYD OT3HL 22




T R

System Development Corporation

13 TM-5243/004,/00

15 November 1975

Table 2-2 shows the mean of terms that occurred more than 10 times in the corpus
of utterances. Durations for the same term often vary as much as twice their
shortest duration. The durations of short function words show much larger
variations than those o context words or compound terms.

+

TABLE 2-2, PROTOCOL ANALYSIS: SAMPLE FREQUENCY AND DURATION DATA
FOR TERMS OCCURRING MORE THAN 10 TIMES

TERM FREQUENCY MINIMUM MAXIMUM MEAN
DURATION DURATION
(NO. OF 10-MSEC. SEGMENTS)

The o4 3 53 11.67
of 29 2 31 8.93
How many 25 24 57 45.12
Submarines 21 40 91 60.57
Have 21 15 38 26.9
Missile 14 26 44 33.64
Number 11 26 51 33.29
Submerged speed 8 54 102 74.13

We anticipate that duration data of this kind will eventually be used by several
componernits of the system, in particular by the mapper, where they could become
the basis for one of its subsetting functions. It is conceivable that informa-
tion on word duration co1ld also become part of the user model, along with the
speaker-dependent vowel tables and other such data.

2.2.1.2 The Naval Ships Data Base

An early version of SDC's Vocal Data Management System (VDMS) contalined a data
base of information about the submarine fleets of the United States, the Soviet
Union, and the United Kingdom. A few of the prelimirary protocol experiments

were conducted with this data base--specifically, those run at the Naval Post-
graduate School and a follow-up experiment conducted at SDC. The simplicity

of this data base restricted the variety of questions that could be asked during
an experiment; it became obvious that in order to obtain more meaningful dialogues,

ESRRE = et = 3 == = e e o e TN T e S




15 November 1975 14

TABLE 2-3.

System Development Corporation
™=5243/004/00

SAMPLE DATA BASE ENTRIES FOR THE USS CONSTELLATION

FIFLD NAME = F%gég_CONTENTS

Country USA
Ship.type cva
Hull.# CVA64
Name Constellation
Class Kitty Hawk
Quantity (in class) 4
Readiness (in hours) "]
Location (port name, sea) Sea
Longitude (° for E, -° for W) 15
Latitude (°N) 34
Heading (direction in °) Unknown
Fuel.Status (% full) 70
Displacement (subm displ, for subs, €0,100

std. displ. for surface ships)

(tons)
Draft (feet) 35.4
Length (feet) 1072.5
Beam (feet) 129.5
ASW (anti-submarine warfare) None

AA (anti-aircraft)

2 Twin Terriers

SS (surface to surface) None

Torpedo tubes None
Aircraft Approx. 85
Propulsion (nuclear/conventional) Conventional

Engines

4 geared turbines, 8 boilers

Max. crusing speed (knots)

35

Complement (total)

2795

|

Builder New York Naval Shipyard
Laid.down Sept. 14, 1957

Launched Oct. 8, 1960
Commissioned Oct. 27, 1961




T i

il

Ll

System Development Corporation
15 November 1975 15 TM~5243,/004/00

a larger and morc re -tic data base was needed. This need raised the question
of how to extend the ¢ a base. Should the primary consideration be usefulness
in the study of speech, or should it be utility in the real world? That is,
should the data base be extended so that it would give rise to linguistically
more interesting dialogues irrespective of its usefulness in some real-world
situation, or should it be extended with some practical application in mind?

The first alternative retains a "toy"” domain but is satisfactory from the point
of view of studying speech understanding; the second has the advantage of
applicability in the real world, but requires considerable effort not only in
buildingy the data base, but also in extending the language-handliny capablilities
of the system. Since the primary objective of the SUR projecc is to study speech
understanding rather than to build a practical system, the first alternative was
favored. The close collaboration of technical and naval expzrts at NELC was
sought, and a great deal of effort was spent in extending the data base to make
it more realistic, without, however, aiming at immediate applicability.

The former submarine data base was extended to include a variety of approximately
250 ships, such as aircraft carriers, destroyers, and frigates. Moreover, many
more attributes were added for each ship. These now include 32 attributes,
including location, fuel status, readiness status, and armament. A sample
content. entry from this expanded data base is shown in Table 2-3,

2.2.2 Speech Processor Component Development

The SDC-SRI speech system comprises three major processing components:

1. The acoustic-phonetic processor, which extracts acoustic parameters
from the speech waveform of an utterance and applies rules to these
parameters to generate an acoustic-feature description of the
utterance;

2. The lexical mapping procedure, which attempts to match words and
phrases hypcthesized by the parser with data generated by the acoustic-
phonetic processor; and

3. The linguistic processor, developed by SRI, which includes a parser
that makes hypotheses about the content of an utterance using syntax
rules, semantics, and pragmatics.

The parser hypothesizes words that it considers highly likely to occur in an
utterance. The hypothesized words are transmitted to the lexical mapping
procedure, which extracts an idealized pronunciation of the word from a lexicon.
This idealized pronunciation, along with a set of alternate pronunciations (as
generated by phonological rules) is then mapped against the acoustic-feature
strings extracted from the utterance by the acoustic-phonetic processor. When
a word has been successfully mapped, this information is returned to the parser,
which then makes further hypotheses about other words in the utterance. The

e e R e e e R e B P i e R et — 5 . - -
s e R Ity F-— ol

il




System Development Corporation
15 November 1975 16 TM-5243/004/00

process continues until the parser decides that the strinj of words it has

found form a complete utterance. Finally, a mechanism is used to extract the
appropriate response from the data base. If the parser is not able to derive

a complete understanding, a partial parsing of the utterance is returned to

the user. A complete descripntion of the parser's operation is contained in

[3]. The remainder of this section describes the operation of the acoustic-
phonetic processor and the lexical mapping procedure, the system hardware/software
confiquration, and the CRISP programming language.

2,2.2.1 Acoustic~Phonetic Processing

The incoming speech signal is a time-varying sound-pressure waveform. A
prelimincry machine representation of this waveform is cobtained by passing it
through an analog nre-sampling filter and digitizing the filter output at the
rate of 20,000 samples per second. Each of the resulting samples is represented
as a 12-bit integer. Thus, for each second of speech, 240,000 bits of data are
generated. This form of the data does not explicitly contain any of the impor-
tant features of the waveform that are needed for subsequent processing. The
initial goal, therefore, is to generate a parametric representation of the
waveform that will contain a number of useful acoustic features.

A variety of parameters can be extracted from a speech waveform. They include
frequency, amplitude, and pitch characteristics. Some relate directly to the
speech production process, while others relate to the auditory processes
involved in speech perception. We have chosen to parameterize the waveform

on the basis of speech-production characteristics--first, because a substantial
body of knowledge about vocal-tract resonance characteristics has been accu-
mulated over the past 30 years through the study of sound spectrograms and,
second, because recently developed signal-processing techniques have .ed to the
development of accurate and computationally efficient procedures for deriving
vocal-tract resonance characteristics.

Parameterization is initiated with the calculation of the root mean square (RMS)
value for each 10-msec. frame of speech. This calculation is followed by
fundamental frequency extraction, formant frequency analysis, syllable
segmentation, phrase segmentation, and other analyses. These analyses are
described below.

Fundamental Frequency Extraction

A number of algorithms have been devised for extracting fundamental frequency
(FO) , or pitch, from digitized speech signals. These algorithms are often used
both to estimate pitch and to distinguish between voiced and unvoiced speech.
Pitch~-tracking algorithms may be divided into two broad classes: frequency
domain and time domain,




il

L

i

I

System Development Corporation

15 November 1975 17 T™-5243/004/00

1. Frequency-domain algorithms extract spectra of some sort, whether
Fast Fourieér Transform (FFT), Linear Predictive Coding (LPC), cep=-
strum, or autocorrelation. The spectra are then analyzed to find the
value of FO. Frequency-domain pitch trackers tend tn be slow because
the extraction of spectra is ordinarily a slow process unless special-
purpose hardware, or a very fast computer, is available.

2. Time-domain algorithms do not extract spertra. Instead, they attempt
to identify glottal pulses in the speech signal and calculate pitch
values from the distance between the pulses. Time-domain pitch
trackers [4,5,0] are the fastest type, running at real time or less
even on minicomputers. Unfortunately, they are too inaccurate for

many applications.

The cepstrum [7,8,9] method, which requires the equivalent of two FFTs per time
frame, is generally considered to be the most accurate. The characteristics

of the voicing source are examined after they are separated from the effects of
vocal-tract resonances. The cepstrum is resistant to phase and amplitude
distortion of the signal but is sensitive to noise and requires more computaticon
time than the other methods. The normalized error function of the LPC [10,11]
can be used to unveil the traia of glottal pulses in voiced speech, which can
then be tracked as in the time-Gomain pitch trackers. FFTs [12,13] have been
used to extract pitch by analyzing the pattern of peaks in the FFT spectrum.

The autocorrelation technique [14,15] generates spectra quantized in period
rather than frequency, which is convenient for looking at low-frequency
phenomena like pitch. Autocorrelation spectra are computationally simple but
do not resolve fundamentals over harmonics and subharmonics as strongly as do

more conventional spectra.

The differences between frequency-domain and time-domain pitch trackers are
particularly sharp in terms of speed and accuracy. Frequency-domain analysis
extracts whatever periodicity information is present, degrading gracefully in the
presence of noise or distortion. On the other hand, with the fast tiwme-domain
pitch trackers, it is assumed that the glottal pulse is necessarily a prominent
feature of the speech signal, or that the wave shape of a pitch period changes
only slowly from time to time. Unfortunately, these assumptions do not hold
for many phonetic environments, speakers, and recording conditions. The pitch
tracker developed by Gillmann [16] is a frequency-domain pitch tracker that
approaches the speed of the time-domain pitch trackers without giving up the
higher relirhility expected of the frequency-domain approach. It operates in

three phases:

1. Down-sampling. A digital filter is used to reduce the original
speech signal (which has been sampled at tiie rate of 20,000 samples
per second) to 2,000 samples per second, thus removing many
frequencies that lie outside the range of possible fundamentals
and improving the speed of the program.




T ——

System Development Corporation
15 November 1975 18 TM~5243/004/00

2. Autocorrelation and pitch extraction. An ant~_.orrelation spectrum
with a window size of 50 msec. is taken every 10 msec. An algorithm
examines these spectra and picks peaks from them., The algorithm
considers the possibility of octave errors [17] (mistaking a harmonic
or subharmonic for the fundamental) and deals with them, To reduce
frequency quantization, a parabola is fitted to the peak chosen in
the spectrum, and the theoretical peak of this parabela is used as
the pitch value.

3. Editing. Tbe FO values obtained above are passed through a median
smoother to eliminate anomalous values, and then a heuristic pitch-
track editor attempts to remove any remaining errors. Figure 2-6
illustrates the results of the progran applied to the utterance

"The U. S. has Lafayettes." Note the discontinuities of the contour
occurring during the unvoiced portions of the utterance (/s/, /z/,
/E/, /8/).

Each 10-msec. frame is labeled voiced if a pitch value has been assigned to it
and labeled unvoiced if a pitch value of zero has been assigned.

Spectral Analysis and Formant Frequency Analysis

Spectral analysis using a Linear Predictive Coding (LPC) algorithm (see, e.g.,
Markel {18]) is applied to a 25.6-msec. frame of speech centered at each voiced
10-msec. frame. The major advantage of using LPC techniques for spectral
analysis stems from the fact that the underlying model from which a spectral
approximation is obtained has a z-transform given by

A(z) = -———--%?———-—
1 - Z akz-k
k=

1

This all-pole representation provides a realistic approximation to the vocal-
tract-resonance charccteristics of most voiced speech sounds. The peaks in the
spectrum correspond to poles of A(z) and are close approximations to the formant
frequencies of voiced speech.

Considerable information is obtainable from formant frequency values taken as
a set of individual 10-msec. frames, but a wealth of additional knowledge
results from construction of a piecewise~continuous time function called a
formant track. This information is critical to the development of acoustic-

= = ” i g g = — EEs e

phonetic algorithms that describe the coarticulation processes involved in
changing from one speech sound to another. An extremely complex procedure is
required to construct a formant tr-rk because of discontinuities in formant

VNI g s TR I




«“S93384egeT sey *s°n 9yL, 9dOURISIN SYI JO INojuo) Adusnbaxg TejuswepuUng 9-z Sinbrg

s O
[o @]
e I
T3 . (SANODISILNID) IWIL
§e oo 0'891 0’9zl 0v8 ozy 0
o] [ | T T T o
CcC N
O
£E
[+]
g
[o}
?
M -1 009
5 ]
49
n 4
H i
wn |
. i
| 00zt 3 m
SILIFAVY V1 SVH s n 3IHL 2 |
il
2 2 |
Q ]
/ )\/ \\/ 40081 &
\ 4 oovz ;
J oo0e

15 November 1975

b st L ol R




System Development Corporation

f 15 November 1975 TM-5243/004/90

20

structure due to changes from voiced to unvoiced speech and because, even within
voiced areas, discontinuities due to the appearance of complex speech sounds
(such as nasal murmurs) can occur. A program developed by Kameny, Gillmann,

and Brackenridge {19] is used to construct the formant track. The result is
similar to a digital representation of a sound spectrogram or "voiceprint” but
with the exact frequency information known. The program assigns frequency values
to each of the first three formants for each 10-msec. voiced segment of contin-
uous speech. Its input parameters are fundamental frequency, RMS energy, and

the frequencies of up to five spectral peaks below 5 kHz. The fundamental
frequency is used as a voicing detector; formant tracking is performed only in
areas of the utterance for which there are fundamentals. The RMS parameter is

a measure of the total energy from O to 10 kHz over each l0-msec. interval.

The frequencies of the spectral peaks below 5 kHr are extracted by the peak-
picker from LPC spectra centered at each 10-msec. interval. The peak-peaker
begins by building first-and-second-difference frequercy tables. By inspecting
these tables, the proyram locates all peaks and inflection points in the 0-5

kHz spectrum. If an isolated large-bandwidth peak is found, an off-axis

spectrum is calcilated in an attempt to resolve the peak into two peaks. If

the total numbzr of peaks and inflection points is greater than five, an off-axis
spectrum is also calculated in an attempt to remove extraneous inflection points.
Step 1 of Figure 2-7 shows the peak selections from the peak-picker,

The formant tracker begins by moving from left to right and linking frequencies
of adjacent segments that are within a threshold difference of each other (the
link is not made if a frequency in one segment could be linked to more than
one frequency in the adjacent seyment). Anchor areas are then established in
which formant labels can be assigned unambiguously; this is done by examining
sequences of three consecutive frames that contain three or more links, Am-
biguity is detected whenever there is an extra peak or peaks or there is a
missing peak. When F1 through F3 are extended to the right and left of the
anchor, they are so extended only as long as the peaks are unambiguous., If an
~xtra peak appears even for one frame, the extension of the anchor comes to a
halt. Step 2 shows the anchor areas.

The remaining logic in the program is concerned with extending the anchors to
the right and left into ambiguous areas and with establishing anchors in the
areas where no unambiguous anchors could be established on the first pass.
At this point, two kinds of context information are used as aids in resolving
the ambiguities. Slope information based on formant movement from the anchor
direction (either to the right or to the left) is used to help select the peak
that best fits the past known formant slope. A search of the unknown area in
the opposite direction from the anchor is made to determine whether a peak
choice would continue to track. The one basic rule is that, whenever a possible
low Fl peak appears for at least six frames, it is incontestably named F1, and
the next higher or possible Fl is relegated to the slot "F4 or nasal formant"
in the A-matrix. All frames tracked after the anchor stage are so indicated in
the A-matrix, since they have less reliable formant information for segmentation
and labeling. The final output of the formant tracker is shown in step 3.

L Step 4 shows the smoothed formant track.

E
ﬁi;ﬂansg;aﬁsgaq = e i == = e = e e ecis o




mm sde3s bBuroeal-juemrod jo ordwexy *,-Z 9InbIa
-\
P
o o 17T7IW) NGLLYHNA
“ m /1) /e / \M\ / \«\. =7 SaNOSs 0
™ U 04 T T T T
h% --{ P —_— / ,
m M I/'\‘\ Ny N N ~—————— N~ ~—~———
&) :w I
~
LE | 2
3 — /\ : ~
~ a . -~
o ) = " S . \\l.\./ /\ 4 000z
v " W a e - : (.\..:
2 \l\l/-\ A N . . .
~ -
o all\lc.\/\ /(' - l\\l\i - DOOE
nWA | o B l/( . .
.. -~ %
\ -~
) \l //\ - . < acox i
L N .\\’\\ o
» . . s z s 3 E
o ¥ 418 5 ~ - . .._Scm 8 W
08 09 or oz ) (] 09 or o« 0 m 4
; . . ———— " T " B ;

2] * o * .0
- * .

/-\f\: o L : . ... . " e, TR
. “oe. . . . cotees’ .

o~

ACTTTIRT T e . . oot et oy

............

. T
£ dlls 0 . - 4000s

15 November 1975
g




T

T

T

System Development Corporation
15 November 1975 22 TM=-5243/004/00

Segmentation and Labeling

During the year, significant progress was made in the development and testing
of our segmentation and labeling programs, which include programs for:

Syllable segmentaticn,

Acoustic phrase segmentation,

Acoustic stress and rate-of-speech analysis,
Vowel and sonorant analysis, and

Fricative and plosive analysis.,

Develorments in these arcas are summarized in the following subsections. An
example ut’erance, "What is the speed of it?", is used to illustrate the
aprlication of the various programs., At the end of this section, that
utterance is displayed after the several programs have beer applied.

Syllablie segmentation., The primary importance of the use of the syllable
as a phonetic unit stems from its use in a mapping strategy. In a good mapping
strategy, it is important to be able to map units larger than phonemes or
allophones since these relatively small units are influenced so strongly by
their neighboring units. The syllable is a logical candidate for mapping,
since it is just about the right length for a rhythm-based articulatory gesture
and thus the unit within which most of the coarticulation should occur. Many other
units could be used; for example, phonemes and various artificially induced
units, such as 10-msec. frames. However, syllable boundaries tend to be more
robust than phoneme boundaries. Syllables are genuine linguistic units (which
assists the system in making a transition from the parametric representation
to a linguistic representation). Moreover, syllables seem to provide natural
breaks in the perception of continuous speech, as opposed to smaller units such
as phonemes or allophones; indeed, Fujimura {20] has argued for the use of the
syllable as a logical unit of speech recognition, largely upon the basis of the
predictability of the concatenation properties of syllables, a property not
shared by smaller, more traditional units of speech recognition.

A program that automatically segments a continuous speech utterance into
syllables has been completed. Preliminary informal testing on speech from
six male and two female speakers indicates that the program is about 95%
accurate in isolating syllables. The program was adapted from an algouithm
defined originally by Mermelstein [21] of Haskins Laboratories and was
developed in collaboration with Mermelstein.

The program beqins by dividing an utterance into so-called "voiced blocks",
i.e., areas of contiguous 10-msec. voiced segments. (Voicing decisions

are made hy the pitch-tracking program described above.) Each voiced
block contain: one or more syllables. The program proceeds with the

g S i e A R e TR e g e S s = TR IR S X o




System Development Corporation

15 November 1975 53 TM-5243/004/00

following analysis in order to segment out the potential syllables. For each
voiced block, a sonorant energy function is computed from each LPC spectrum in
each 10-msec. frame in the block as follows:

100
SE, = z w, .5 ,
j i i
i=1
where Sl,...,SIOO are the first 100 spectral values in the LPC spectrum and

where Wirees, W B are a set of weights designed to emphasize the portion of
the spectrun tﬁag contains the major concentration of energy for vowels and
sonorants.

The next step is to examine 2ach voiced block to determine whether it contains
more than one syllable and, if so, to break it up into its component syllables.
This is done by constructing a convex hull function from the sonorant energy
function defined above. Briefly, the convex hull function (HULL.) is defined
as follows: Let SE, denote the maximum value of the sequence SE;,...,SEn-

Then we move from left to right in defining HULLi by

HULL0 = SEO

HULLi+l = max {HULLi,SEi+l} for i=0,1,...,M.

Moving from right to left, we define

HULLN = SEN

HULL, , = max {HULLi,SEi_l} for i=N,N-1,...,M+l.
This convex hull function is monotonically nondecreasing from the start of the
segment to its point of maximum loudness (i.e., SE,), and is monotonically
nonincreasing thereafter. A typical convex hull function is depicted as
follows:

POINT OF
MAXIMUM DIFFERENCE




System Development Corporation
15 November 1975 24 TM-5243/004/00

Within the segment, the point of maximum difference between the convex hull
function and the sonorant energy function is considered to be a potential syllable
boundary. The magnitude of the difference is a primary parameter in determining
whether or not a syllable boundary exists. If his magnitude exceeds a preset
threshold A, then the syllable break is made without further analysis. On the
other hand, if this threshold is not exceeded, but a lower threshold B is exceeded,
then the syllables and acoustic features in the A-matrix are examined to determine
whether a syllable break has occurred. In examining the A-imatrix, features such
as the following are used:

1. Each syllable contains one and only one vowel,

2. The presence of a voiced "flap" (e.g., /d/) or a voiced dip signals
the presence of a syllable boundary.

3. Each syllable must have a minimum duration.

This process is carried out recursively, 3o that if a boundary is found, the
process is reapplied to both halves.

Since the last syllable boundary in an utterance is usually poorly articulated,
thresholds A and B are lowered for this case. Moreover, the beginning of an
utterance can also be problematical due to prevocalization, which produces a
false syllable that the program eliminates based on its extremely low sonorant
energy and short duration.

Figure 2-8 is an example of the processing of the utterance. "What is the speed
of it?" The sonorant energy function is shown (only in voiced areas) along
with vertical lines depicting the syllable boundaries. MNote that the utterance
contains six syllables and that the program automatically determincd the same
number. Listening tests indicate that the syllable boundaries are plotted in
their proper positions.

Acoustic phrase segmentation. An acoustic phrase is a connected group
of syllables having a simple pitch contour. During the contract year, a program
that automatically segments an incoming utterance into acoustic phrases was
completed.

Knowing the locations of the acoustic phrases in an utterance helps to determine
acoustic stress, provides important clues to the syntactic complexity of an
utterance, determines the presence of a pitch rise at the end of an utterance
(which indicates the possibility of an interrogative sentence), and, since
phrase boundaries are almost certainly also word boundaries, permits the parser
to begin a new path when a given parsing strategy must be abandoned. Further-
more, the word-boundary information restricts the mapper's search for words to
either side of the boundary.




Il

m% wé3T Jo poads ay3z ST jeym, 9duUeIDIIN IYI JO uoTjeludwbas ITQeTTAS OoTjewoany °*g-z aInbrg 1
priy ,“
WSS (SANOD3SILNID) INWIL i
o~ . .
m. = ootl 00l 0'8L 0zs 092 (0}
Sa T T T T o
1
2 E T
Q !
5 __
() |
—
Q
>
m -1 0001 |
0 o r
> o ;|
) Z
(o]
v ‘u
>
-1 000 =2
/\l F. “
" z |
o~ b H mﬁ
o ,
|/\ o m
=
H oooe m
) {
T
=
Q
®
. 4 ooov
&l 40 a3ids JHL Si 1LVHM

0°00S

15 November 1975
L

i |

Ul




v

[X TR

TR .

E

System Development Corporation
15 November 1975 26 TM~-5243/004/00

The pitch value in the center of the voiced portion of each syllable (determined
by the syllable segmentation program) is used instead of the sonorant energy
function used above. The convex hull function algorithm is then applied to

this sequence of points. The point of maximum difference vetween the convex
hull function HULL and the pitch contour PITCH is first determined. Next, if
for this point

HULL

—— >
PITCH Aoy

where A is a preassigned threshold, a phrase -oundary is marked. The same
procedure is then applied to the resulting two phrases if a phrase boundary
was found. The program continues recursively until no further boundaries
can be marked. Each time a boundary is located, it occurs within the voiced
part of a syllable. This boundary is then moved to the end of the syllable
having the lower pitch.

Phrase contours are labeled falling, rising, fall rise or rise-fall based on a
parabola least-squares fitted to the non-zero values of the pitch contour. The
parabola is defined by

p(t) = at2+bt+c

where p(t) is the value of the pitch contour at time t. The extremum of the

. -b
parabola occurs at time PK = o Assume that the phrase occurs from t1 to time
t2. Then eight possible cases can occur, outlined in the following table:
VALUE OF a PK LABEL
a<0 PKﬁtl Falling
a<o PK2t2 Rising
a<0 t1<PK<t2 Rise-fall
a>0 PKSt1 Rising
a>0 PKZt2 Falling
a>0 t1<PK<t2 Fall-rise
a=0 b>0 Rising
a=0 b<0 Falling




System Development Corporation
T™~-5243/004/00

15 November 1975

27

Figure 2-9 is an example of the program applied to the utterance "The

Seawolf has six torpedo tubes." The pitch contour is shown, along with the
phrase boundaries (vertical lines), and the fitted parabolas. The labels for
the pitch contours are "rise-fall,” "rise-fall"” for the two phrases. Figure
2-10 shows the result of the program applied to the utterance "What is the
speed of it?"

Acoustic stress and rate-uf-speech analysis, In the mapping strategy, it is
important to know the acoustic stress of each syllable. There are three reasons
for this. First, reduced vowels (primarily schwah) are distinguished more by
their stress level than by their formant frequency structure. Second, in a
"hottom-driving" strategy (in which words are located and recognized purely
on the basis of acoustic clues), it is important to begin the bottom-driving
with a stressed syllable, since this will contain more reliable acoustic-phonetic
information than a syllable with a lower stress level. Third, agreement between
predicted stress levels and machine-generated stress levels is a part of the
scoring function of the mapper.

Three parameters are calculated for each syllable:

1. Duration (DUR) of the voiced portion of the syllable,
2. Intensity (1), defined to be the maximum RMS energy in the syllable,
3. Relative pitch (RP), defined by

t
- 1
RP = f 2 [F_(t) - (at2+bt+c)]dt ,
7% g 0

where t. and t, are the beginning and end of the voiced portion_of the syllable,
F_(t) is the time-varying pitch over the voiced portion, and at +bt+c is the
parabola fitted to Fo(t) over the phrase as above.

The average value of the first two parameters (DUR and f, respectively) is
calculated over all syllables in the utterance. Stress is assigned by con-
_structing a scoring function defined as follows: For a given syllable, if
DUR 2 DUR, then one "point" is assigned. 1If also I 2 I, another point is
assigned. I RP = 0, then still another point :s given. Thus, each syllable
is assigned a score of 0, 1, 2, or 3. Stress levels are then assigned as
follows:

Score Stress Level
o] Reduced
1 Unstressed
2 Medium stress
3 Stressed




«°S9qn] opadiol XIS sey JTomess ayJg, o°UBISIIN dYI JO UOTeIUsWHIS oseayd OTjewolnNy -6-Z 2IN6TJ

s O
0O O
-~ N\
23 %
m. N (SANOD3SILN3D) INIL
™ i
5 0'0SZ 0002 0°051 0001 00S o ﬁﬂ
w =% r T T T T 0o mﬂ
c B
g |
) “
—~ A
Q 3
®
2 - o005 _@
8 :
b 1
n
> 5
@ :
< ooot 3} |
m
@ (@) i
2
(@]
<
—oost £
- 000z ]
0 s3gnli 0d3dHOL XIS SVH 4T0MV3S 3IHL W_AV
A i
N
0 ' m
m J oosz
>
[o]
z
un
—




ﬁ
=) (9seayd s1butrs) ,¢3T JO poads B8yl ST JIRUM,, :
9L 9oueI933n SU3l JO uorjejuldwbhas oseayd oSriewolny “Ql-gz 2anbra X
B3 :
N O i
m.y (SANODJ3SILN3D) INIL A
H'S 00gl 0'v0L 0'8L 0zs 0'9z o :
O 0 y o ;
T T T .
g & ;
[} i
1= |
g _,m
0
o :
o
>
a i
- 005 ,v
m i
px}
n
> ki
-1 0'001 M W_
m
= i
O f
<
—Hoo0st &
it
¢ 1l 40 @33dS JHL SI - LVHM
1
-1 0°00¢C i
n :
.~ :
3 1
~ |
3
Jo L
g o'o0se :
$ i
un
—~
_“
= :

o) Gl i L. E%;i.ﬁwﬂ

A T AR AT




L T A e L  nSnSnnShShSShSE—m——————
System Development Corporation
T™-5243/004/00

}

30

15 November 1975
Since the last syllable in an utterance is generally lengthened and lowered
A word

in intensity, its stress is assigned to be medium stress or unstressed

based soley on whether RP 2 0.
Another parameter important to a mapping strategy is rate-of-speech.
Syllable segmentation is generally about 95% accurate in isolating syllables.
When a word is hypothesized by the parser, the mapper first assumes
Given the rate-of-speech (defined to be the number
This

that the machine-generated syllable boundaries are correct.
match is attempted; if it fails, the failure may be due to the fact that the

of syllables per second), it is possible to remap the word using uniform
syllable boundaries extrapolated from the rate-of-speech measurement.
parameter will also be nseful in determining the applicability of fast-speech
These are smoothed,

boundaries are misplaced.

rules.

The program inverts the duration of each syllable for each 10-msec. frame,
The main purpose of the vowel-sonorant

(VOWSON) program is to locate steady-state segments and to enter segment
The definitions of some events are, indeed, tied to the pat-

using a 100-frame moving average, and the result is inserted into the A-matrix.
Not all vowel-sonorant events

yielding a measure of syllables-per-second for each frame.
The

Vowel and sonorant analysis.
boundary and label information into the A-matrix.
tern movement of the formant frequencies; they make a gesture toward a target
Also, some events do attain a steady-state, but it may have

but do not attain the target or do not hold a fixed position for even a short

period of time.

are steady-state.
been influenced by surrounding sounds and does not match closely to "pure"
VOWSON does

vowel or sonorant targets as indicated in the speaker-dependent tables,
results of a retroflexion experiment indicate algorithms for handling retro-
flexed vowels, but nasalized and lateralized vowels cannot be meaningfully

handled until the appropriate erperiments have been performed and the results

All other voiced areas are left for the lexical mapping

Il

interpreted.
The strategy of the present VOWSON program is to lecate, segment, and label
appropriately only those steady-state areas that it can handle with a high
procedures to interpret in a syllable, word, or phrase context.
provide the mappers with information extracted from the parameters to enable
This information is provided in the form of the

degree of reliability.

them to map more efficiently.
following kinds of indicators:
An appropriate rise or fall indicator is turned on for each frame in

Indications are made in the A-matrix as to discontinuities in Fl, F2,
or F3 based on thke difference in formant frequencies between adjacent

1.

which the frequency of F2 change exceeds a threshold from one frame
This enables the mappers to quickly discern slow-moving

frames.
2.
: to the next.
F2 changes from those that are moving more rapidly.
= o = = 22 - e et B s L Bl o e 5 g A e




System Development Corporation
15 November 1975 31 T™-5243/004/00

3. A sporadic voicing indicator is turned on if the fundamental frequency
goes on and off over a contiguous period. This indicator is used as
a flag to the fricative-plosive program to investigate the area.

4. A retroflexion indicator is turned on for all frames in which F3 is
below a threshold value. The threshold value is defined as being
half the F3 distance between /J/ and /u/.

5. A lateralization indicator is turned on for all frames in which the
F1l, F2, F3 frequency pattern is within a threshold difference of the
pattern given for /1/ in the speaker-dependent table.

6. A nasalization indicator is turned on when the F1 frequency is low
and the F1, F2, F3 frequency pattern is not /i/-like or /u/-like.

7. Contiguous voiced areas not exceeding three frames for which formants

are missing or erratic are labeled "voiced junk.” They may be non-
speech phenomena such as tongue clicks, glottal sounds, or portions
of bursts.

8. A falsetto indicator is turned on for frames having an FO greater than
350 Hz. A vocal fry indicator is turned on for frames having an ®0
less than 65 Hz. ("Vocal fry" refers to what are often called "creaky
voice" sounds.)

. 9. If the number of slope changes in the digitized signal exceeds a
threshold for a voiced frame, a voiced fricative indicator is turned
on.

] VOWSON also detects energy dips in voiced areas and indicates the dip areas in
the A-matrix. The parameter used for dip detection is the RMS after a three-
point average smoothing has been performed. The technique used is similar to
that described by Weinstein et al. [22). Each minimum is tested against its
surrounding maxima to ascertain that the ratio of the minimum to each surrounding
maximum is within a threshold of .80, and that the combined ratios are within
the threshold 1,20. The dip-location technique was applied to 69 utterances

[ from a protocol. Some sample results are given below:




e

System Development Corporation

15 November 1975 22 TM=-5243/004/00

Words or phrase # Times phoneme # Occurrences
(phoneme or boundary (or boundary) of word (or
underlined) found correctly phrase)
submarine(s) 18 21

Detection number 10 11

©IF Tereas submerged 7 11

plosives =

(/v/,/4/,/9/) Albacore 1 1
guided 3 3
guided 1 3
what is 3 10

DeteCtl?n Washington 3 9

of unvoiced =

plosi.as thirty 3 4

B/ /%D onputer ) 1
subseE on 1 1

Detection missile | launchers 3 14

of morph the | Ethan 2 5

boundaries

Some other sounds labeled as dips were: of the Soviet, Lafayette, length,
united, many.

VOWSON utilizes previously constructed speaker-dependent vowel-sonorant tables.
These tables contain entries for the following ARPABET symbols: 1IY, IH, EH,
AE, AA, AH, AO, OW, UH, UW, AX, ER, L, W. Each sound has Fl, F2, and F3
frequency values associated with it. The frequency values for IX, R, L, and W
are assigned by the program from existing sounds in the table. The Fl of IX is
defined as half the distance between the Fls of IY and IH; the F2 and F3 of IX

are defined as half the distance between the respective F2 and F3 values of IH
and AX. The Fl of R is defined as 3/4 the F1 value of ER; the F3 of R is
defined as the F2 ot ER, and the F2 of R is defined as the Fl of R plus 60%

of the distance between the F3 and the Fl of R. The Fl of L and W is defined
as half the distance between the Fls of 1Y and IH. The F3 of L is defined as
the F3 of IH. The F2 of L is .382 of the distance between the F3 and Fl of L.
The F2 of W is 200 Hz less than the F2 of L and the F3 of W is 400 Hz less than
the I'3 of L. VOWSON also assigns frequency values to a group of retroflexed
vowels: 1Y, EH, AH, OW, UW, ER. The algorithms used are those described in
the results of a retroflexion experiment [23].




System Development Corporation
15 November 1975 33 T™-5243/004/00

The Fl, F2, F3 frequency values of the vowels in the speaker table are converted
to a linear scale from 0-99, This allows matching to be done on the basis of
linear distance rather than Euclidean distance, reducing computational costs.
The conversion is made by finding the minimum and maximum F1l, F2, F3 values

from the table (excluding the retroflexed vowels) and extending these minima

and maxima }15%. The distances between the minima and maxima are then divided
by 99 to yield the scale factor for each formant. Each frequency resonance can
then be converted by subtracting the minima for that resonance and dividing by
the respective scale factor. An example table for speaker WAB is shown in
Table 2-4. Also shown are the F1, F2, F3 minima and maxima values and their
respective scale factors. If a formant frequency is below the minimum frequency,
its default setting is 0; if it is above the maximum, its default setting is 99.
All F1, F2, F3 values in the A-matrix are converted to scaled values, and the
scaled values are stored in the A~matrix as additional information,

The first phase of segmentation is to find nuclei within the utterance. Starting
at the beginning of the A-matrix and proceeding to the end, each voiced (V)

area is located and labeled. Voiced junk areas are ignored. The nucleus finder
is run in all areas having the following characteristics:

1. The entire area is labeled V.

2. Each frame in the area has an FO, Fl, F2, and F3.
3. The area does not contain a dip.
4

. The area is >3 frames.

The first task of the nucleus finder is to locate the frame(s) of peak RMS
energy in the defined V area. This is done by using the first-difference
values between adjacent smoothed RMS values. (There may be more than one RMS
peak if the area includes more than a single vowel surrounded by sonorants.)
The other parameter used for nucleus finding is the absolute first difference
in scaled F1, F2, 3 in adjacent frames for the defined area. If this value
for all frames exceeds a threshold, then there is no nucleus, and segmentation
and labeling are not attempted in that area. This is because the formant
frequencies are moving too rapidly to define a steady-state area, and the
problem of how to interpret the area is deferred to the mappers. If there are
first-difference values below the threshold, the frame showing the smallest
difference {least amount of change) is selected as the nucleus. If more than
one frame has the same minimal difference, the frame closest to an RMS peak is
selected as the nucleus.

Once the nucleus is defined, the segment boundaries are determined by moving to
the right and left of the nucleus until a scaled Fl, F2, or F3 value differs
from that of the nucleus by more than a threshold value (one formant frequency
outside the threshold is allowed for one frame), or until the beginning or end
of an adjacent segment is encountered. More than one segment may be defin=ad
in the area if the undefined gaps between segments and/or the beginning and
end of the area are greater than a threshold number of frames. The beyginning,
end, and nucleus indicators for each segment are entered in the A-matrix.




System Development Corporation

15 November 1975 34 TM-5243/004/00 }
TABLE 2-4. VOWEL-SONORANT TABLE FOR WAB
Phone Hz. 0-99 Scaling
1
Fl F2 F3 Fl F2 F3
Iy 273 2304 2851 8 85 81
IH 429 1914 2695 39 66 73
EH 526 1835 2598 58 62 68
AE 625 1660 2343 78 53 55
AA 645 1093 2440 82 i 25 60
AH 585 1406 2539 0 40 65
: 20 645 1054 2617 82 23 69
oW 507 1093 2382 54 25 57
UH 429 1210 2382 39 30 57
Uw 351 1152 2246 23 28 50
AX 546 1367 2304 62 38 53
ER 400 1445 1640 33 42 20
351 895 2695 23 15 73
W 351 695 2295 23 5 53
IX 351 1640 2499 23 51 63
i R 300 986 1445 13 19 10
1Y 351 2109 23 75
! EH 163 1952 46 68 Retro-
AA 645 1073 82 24 \f’i::;‘:
ow 457 993 44 20
3 uw 390 1181 31 29
: ER 414 1679 36 54
Formant Minimum Maximum Scal. Factor
F1 233 741 5
F2 591 2649 20
F3 1229 3278 20




Y T

System Development Corporation
15 November 1975 35 ™™ -5243/004/00

Labeling is done on the basis of the scaled F1, F2, F3 values found in the
nucleus frame., Linear distances are computed from each vowel and sonorant

in tre speaker table, these distances are ordered, and the first four choices
- ‘locast matches) below 50 are selected and entered .in the A-matrix. The
scox at the present time, is simply the linear distance of the match. 1If
the o ‘vrence between a single formant in the nucleus (either Fl, F2, or F3;
and tb orresponding formant in a vowel or sonorant in.the table exceeds a
threshold. the vowel or sonorant is not acceptable as a choice, even if the
composite score is less than 50.

Labeling proceeds a: follows. If a segment is immediately preceded, within
six frames, by two cunsecutive fran2s that have retroflexion indicators turned
on, then the retroflexed I: from the speaker's vowel table is used instead of
the non-retrctlexed 1Y, and only the Fl1 and F2 distances are measured for the
other sounds. Likewise, if the segment is followed within six frames by two
consecutive frames that have retroflexion indicators turned on, then the
re+rofleved vowcl table replaces the non~retroflexed vowel table. If the
nasal iraicator is turned on for the segment, then a NA (nasal) choice with

a default d:stance of 50 is inserted as the last possible choice in the
A-matrix. The default is used because the locations or effects of nasal
formants and zeroes are not known at present. No special handling of vowel
lateralization or nasalization is attempted at this time.

The nucleus finder, segmenter, and labeler are also run on dips if they exceed
a threshold number of frames and all frames have an FO, Fl, F2, and F3., 1If
the dip is short, a default nucleus is defined to be the middle frame.

Fricative and plosive analysis. Major advances have been made in automatic
acoustic-phonetic analysis of fricatives and plosives. Appropriate portions of
the A-matrix are seygmented and labeled P, T, K, B, D, G, HHi, ¥, TH, S, SH, V,

DH, Z, and/or DX by the program that performs this analysis (FRICPLOS). FRICPLOS
is a cont.nuation of work begun in 1973 on the application of linear prediction
to the acoustic-phonetic analysis of unvoiced speech [24,25], Our progress

this year in this work has been extensive; che following are some of the
highlights: '

-

1. The fricative-plosive spectrum analysis process has been extended tr
yield useful spectra oi voiced {ricatives and plosives through the
use of digital filter techniques. These sounds _.eviously could not
be analyzed successfully.

2. An efficient parametric representation of fricative-plosive spectra
has been developed and extensively tested. It preserves acoustic-
phonetically useful information while condensing each spectrum to
five integers and two bits per A-matrix frame. Most usefully, the
parameters enable numeric evaluation of how a fricative or plosive
sound is changing with time.

LA
:

PR g o




L

|

il

bl it

System Development Corporation

15 November 1975 36 TM-5243/004/00

3. A highly successful segmentation and labeling technique for fricatives
has been developed. Frames in the A-matrix are grouped on the basis
of spectral parameter stability, then labeled on the basis of spectral
parameter average values within each group.

4. Reliable silence and plosive-burst-location algorithms have been
develcped. Spectral parameters for the entire utterance are considered;
the definition of silence adapts for each utterance. Bursts are located
by amplitude pattern analysis.

5. An effective method for labeling plosives has been developed by combining
detailed analysis of the plosive burst with information on its phonetic
context. For each burst, a central collection of data is accumulated:
burst spactral parameters for up to 40 msec. after onset, presence or
absence of following retroflexion or lateralization, presence or
absence of closure as evidenced by first-formant motion, voice onset
time, formant frequencies at voice onset, presence or absence of
preceding or following /s/, and other data. (Much of this data is
based on preceding speaker-dependent analysis, the results of which
have been placed into the A-matrix.) Independent burst-analysis
routines then operate, each attempting to find its pattern in the data
and thereupon label the burst. S-clusters {e.g. /ks’, /ts/, /st/,
/prs/, /sp/) receive special consideration. Alsc taken specifically
into account are plosive-sonorant coarticulation effects, such as
occur in /t+y/ and /kl/.

6. Techniques have been developed to make the voiced/unvoiced decision in
labeling fricatives. (This is by no means a simple task in continuous
speech, in which devoicing of "voiced" fricatives and overlap of
voicing with "unvoiced" fricatives is common.) Information employed
in making the decision includes the presence and exact extent of
voicing, the presence or absence of preceding closure as evidenced
by first-formant motion, duration of the fricative, and the presence
of adjacent fricatives.

All the a! »ve techniques are included in the currently operational version of
FRICPLOS. Well over a hunured continuous-speech utterances have been processed
by FRICPLOS in performance testing.

Summary example. Figure 2-11 is an example of the utterance "What is the
speed of it?" as processed by the phrase segmentation, syllable segmentation,
vowel/sonorant, and fricative/plosive programs. The doubled slashes (//)
indicate the phrase boundaries (only a single phrase exists in this case).
Syllable boundaries are shown by double asterisks (**). The phonene-label
choices are the standard two-character ARPABET machine representation. The
first line contains all of the first choices, the second line contains the
second choices, etc.




Systen Development Corporation

T™M-5243/004/00

37

15 November 1975

/] wx
/] wx
/7 %
/] xx

43T 3o poads 8yl ST IBUM, DDUBIDJIN

ay3 jo buriaoqeT pue uoIljzejuswbes OT3RWOINY

H3 »% HG *%
HN xx I * %
X_ ID * % X_ X_ * ¥
Hl A xx XV XV #x

0ZI61="0ON

* ¥
HG *%
8 *%x Z
X0 Al 8 xx S

153rans v

¥* ¥
Hi »x HQ
MN HC  xx A
X1 A xx 2 Z
="0ON 31dWVS
el

HO
X1
Hl

v

* ¥
* ¥
* ¥
* %

*II-g 2aInb1g

HY
HG HN
£ MO WN
X0 Xv M

="0ON NOISS

40 033d4S 3HL SI L1vHM ==

//
//
//
//

as
v

e




System Development Corporation
15 November 1975 38 TM-5243/004/00

2.2.2.2 Lexical Mapping

The lexical mapping procedure, and the phonemic lexicon and its associated
phonological processes, form the interface between the parser, which hypothesizes
words and phrases, and the acoustic-phonetic data, in which the hypothesized
words must be found. Various types of mapping capabilities are used, each
designed to satisfy a particular requirement of the parsing strategy. The
predictive mappers have a verification function; they attempt to give the parser
a decision score as to whether a predicted entity actually could be present in

a specified time region of the acoustic data. The predictive muappers include
various "lookasides" for storage of prior mapping data, a short-word mapper, a
word/phrase mapper, and a phone/cluster mapper. The subset mapper has a
filtering effect; given some time point, it returns to the parser a small list
of lexical items that the acoustic data suggest could begin at that point.

The phonemic lexicon, the central data structure for all of the mapping modules,
contains the possible phonemic spelling variations a given word might have.
These spellings are derived by the application of phonological rules to one or
more root or "base" phonemic forms; they are then stored as a graph to minimize
storage and processing time during mapping. The spelling graph of the word
"submarine" is shown in Figure 2-12,

The Predictive Mappers

A predicted item may be a word or a phrase. Some time information is included
in the prediction. VWord boundaries are often imprecise, and one of the initial
tasks in predictive mapping is to resolve time-boundary issues. In particular,
phones overlap, or extensive coarticulation allows two words to merge together,
Affixes tend to make word edges fuzzy. Pauses between words cause time gaps.
These rhenomena confuse the parser as to where to predict new items. The
mapper attempts to reconcile predicted time information with what it already
knows about mapped items. Time data may consist of either a boundary B (a
specific time at which a word is hypothesized to begin or end) or a limit L

(a minimum or maximum time at which a word can begin or end). Thus,

there are four possibilities for boundaries: B-B, B-L, L-B, and L-L.

The first three of these are the usual and expected forms; if an L-L search

is called for, the mapper interprets this as a request for a bottom drive.

The predictive mapper begins by trying to eliminate requests with unreasonable
boundaries. If the left boundary is greater than or equal to the right boundary,
the mapper rejects the request. Similarly, if the request is too short or (with
B-B} too long, the mapper eliminates those also. This check is made by cef-
erence to three factors: (1) the nominal length of the word as recorded in the
lexicon (if there is more than one word in the request, the sum of lengths will
be used), (2) an indicator of rate-of-speech, and (3) the pause structure of the
utterance. Of course, if the requested word or phrase cannot be found in the
lexicon, it is rejected. The high-level (word-and-phrase) lookaside is
consulted to determine whether the requested word or phrase has been mapped

e e e e i i = s = PRI AR = B A




SUOT3ETOUNUOIJ PATIPUISITY HuTuTE3UOD ,PUTIPUqNS, PIOM ayz go ydexn burrieds paiolds “TI-Z aanbTa
(@]
5 e
[o I
&3 AHVANNOS GHOM = ¢
o Wa AHVANNOS 318VTIAS =
m 3A371SS34LS = 2°L°0:
,m. j
m |
a
: ¥ —*—XV f
CGAl—/—*—0- 43— N *—8— LHV
o
#N S#
/ A—H XY |
. . . |
PAl—*—0 3 —IN— *— 88— ¢'HV
A
"
o
%
i
>
2
b

T ——

- i




System Development Corporation
15 November 1975 40 T™=-5243/004/00

before. If it has, the earlier mapping results are returned, and no further
processing is required. If a word is determined to be a "short word," it is
passed off to the short-word mapper. Otherwise, it is passed off to the reqular
phonological-rules pass to be mapped by the usual procedures.

Much information about previous mappings is stored in the lookaside memories.
After making time adjustments, the mapper can see whether the predicted word

or phrase has been predicted in the general time region before. If so, it can
return this information without having to go through the actual exercise of
mapping. A lookaside memory is a bi-directional array whose elements have a
one-to-one correspondence with the 10-msec. frames in the A-matrix. Positive
and negative results are stored here, the primary entry being an orthographic
spelling or syntactic terminal name. (A lookaside memory is in fac*t a lattice,
since it is possibtle for more than one lexical item to be mapped beginning at

a given time frame.) Special routines exist to update and retrieve information
from the two types of lookaside memory. The high-level (word/phrase) lookaside
deals with words and phrases. When a word has been found with a high score,

it is entered into the high-level lookaside memory. Also, if a word with
reasonable time boundaries has been rejected, it too is entered into the high-level
lookaside memory. The boundaries indexed in the high-level lookaside memory
indicate where the word was found, rather than the boundaries given it by the
parser. This increases the likelihood of a "hit." The purpose of this look-
aside is to avoid duplication of effort: if the same request is made twice,

we wish to repeat our first answer. Each entry in the high-level lookaside
memory contains time boundaries, the orthographic spelling, the phonemic
spelling, and the score of the word.

T T T sy e "'"'vmﬂ \gwwummmmww

il

et o RO

il

The syllable lookaside memory is used tc save the mapper from remapping syllables.
If a syllable is found with a good score, the result is saved in the syllable
lookaside memory. Since it is possible to map more than one candidate in the

same time region of the A-matrix, there is provision for storing a mapping score
with each syllable. Modules that may update this memory are the predictive short-
word and word/phrase mappers and the bottom driver. Two types of entries are
provided: one for bottom-up (syllabary) information, and the other for top-

down (phonemic) information. The syllable lookaside memory also provides a

means of bottom-driving. If two consecutive syllables are found with high

scores, the syllable-lookaside program subsets the lexicon to all words that

- contain those two consecutive syllables and requests a top drive on *the subset.

Rt T )

- =
gl it et R

The short-word mapper looks for all words that meet our definition of "short."

3 Each lexicon entry is marked by hand as to whether it is short or not. The

z length of a word in phones or number of syllables, its syntactic behavior, and

its acoustic characteristics influence this decision. We can expect that the

number of "short" words will grow only slowly with vocabulary size, since most

of them are common function words that all English subsets must use. The short-

S word mapper is heavily biased in favor of responding positively to the parser's
! hypothesis. 1Its primary function is to determine the length and location of the

e

g
p— L e R T T L T it i e s e e A




=
-
S
:
E
.
:
-

E

R Ll e

System Development Corporation

15 November 1975 TM-5243/004/00
41

short word. Short words include affixes; some short words have no vowel at all
in the context of adjacent words. The short-word mapper tries first by looking
in the syllable lookaside memory for its answer. If the answer is found there,
no further processing is done. Otherwise, it will attempt a mapping. The spell-
ings of the short words are found entirely in the lexicon and are not generated
bv rule. This is to account for the extreme variability of these words. The
mappings generated are scored generously, but only those with a very definite
result are recorded in the syllable lookaside.

The objective of the word/phrase mapper is to take a spelling graph from the
phonological rules pass (see below) and try to map it. The mapping will take
place in a left-to-right or right-to-left direction, but will not go back and
remap from the beginning for every spelling variation. While this results in a
slight loss of mapping power, a large savings in computation is achieved.

The mapping and scoring process consists of two coroutines: a scorer and a
mapper. The scorer calculates syllable scores from the scores of the phonemes
that make up each syllable. If the score for a syllable falls below a threshold,
the syllable is pruned from the graph. If this causes the graph to become dis-
connected into two sub-graphs, the word is rejected. The mapper proceeds as
follows: The graph is searched to find the set of first vowels. These are
mapped, using syllable boundaries marked in the A-matrix to isolate position,

The mapper next returns and fills in any consonants preceeding *he first vowels.
The process is now repeated by locating the second vowels and returning to f£ill
in consonants between the first and second vowels. If at any time a phoneme
cannot be located, that phoneme is pruned from the graph; if this causes the
graph to separate into two halves, the word is rejected. Finally, a word score
is calculated from the surviving syllables by a full backtracking search of all
possible syllable seguences. If the word cannot be mapped, the entire process
is repeated using syllable boundaries extrapolated from the rate-of-speech.

The phone/cluster mappers ("sniffers") share a common calling sequence. They

are parameterized in such a way as to use the results of the phonological rules
to deal with duration variations, lateralization, nasalization, etc. The sniffers
return a score (0-99) and boundaries that indicate the probability of a given
phoneme in a given spot. They can look at the left and right context phonemes,
if available. The sniffer scores are not normalized to necessarily return 99

at some time or another; they try to estimate probabilities and let processes

at higher levels resolve those probabilities. Because of context sensitivity and
cross-coarticulation, phonetic units may not correspond one-to-one with predicted
phones. 1In some cases, a phonetic unit will be a phone sequence. A large number
of acoustic-phonetic processes are incorporated into these low-level mappers. 1In
general, they have access to all of the A-matrix information that is relevant to




T

HMWWWWW‘WWMWWMWWMWWWMWW i el e i e i R S e

L

-

=3
ey 3
3

System Development Corporation

15 November 1975 T™-5243/004/00
41

short word. Short words include affixes; some short words have no vowel at all
in the context of adjacent words. The short-word mapper tries first by looking
in the syllable lookaside memory for its answer. If the answer is found there,
no further processing is done. Otherwise, it will attempt a mapping. The spell-
ings of the short words are found entirely in the lexicon and are not generated
bv rule. This is to account for the extreme variability of these words. The
mappings generated are scored generously, but only those with a very definite
result are recorded in the syllable lookaside,

Ll

The objective of the word/phrase mapper is to take a spelling graph from the

phonological rules pass ({see below) and try to map it. The mapping will take ‘
place in a left-to-right or right-to-left direction, but will not go back and ?
remap from the beginning for every spelling variation. While this results in a :

slight loss of mapping power, a large savings in computation is achieved.

The mapping and scoring process consists of two coroutines: a scorer and a
mapper. The scorer calculates syllable scores from the scores of the phonemes
that make up each syllable. If the score for a syllable falls below a threshold,
the syllable is pruned from the graph. If this causes the graph to become dis-
connected into two sub-graphs, the word is rejected. The mapper proceeds as
follows: The graph is searched to find the set of first vowels. These are
mapped, using syllable boundaries marked in the A-matrix to isolate position.

ittt i bt bl

The mapper next returns and fills in any consonants preceeding *he first vowels.
The process is now repeated by locating the second vowels and returning to fill
in consonants between the first and second vowels. If at any time a phoneme
cannot be located, that phoneme is pruned from the graph; if this causes the
graph to separate into two halves, the word is rejected. Finally, a word score
is calculated from the surviving syllables by a full backtracking search of all
possible syllable sequences. If the word cannot be mapped, the entire process
is repeated using syllable boundaries extrapolated from the rate-of-speech.

The phone/cluster mappers ("sniffers") share a common calling sequence. They
are parameterized in such a way as to use the results of the phonological rules
to deal with duration variations, lateralization, nasalization, etc. The sniffers
return a score (0-99) and boundaries that indicate the probability of a given

phoneme in a given spot. They can look at the left and right context phonemes,

if available. The sniffer scores are not normalized to necessarily return 99

at some time or another; they try to estimate probabilities and let processes !
at higher levels resolve those probabilities. Because of context sensitivity and
cross-coarticulation, phonetic units may not correspond one-to-one with predicted
phones. In some cases, a phonetic unit will be a phone sequence. A large number
of acoustic-phonetic processes are incorporated into these low-level mappers. In
general, they have access to all of the A-matrix information that is relevant to




=
=
X
—
=
E
s
=

"

fm

i

T

il

e O

i e

il

System Development Corporation
15 November 1975 42 T™-5243/004/00

them. Both the word/phrase mapper and the phone/cluster mappers have been
completely flowchartad, and all coding has been completed for the phone/cluster
mappers.

The Subset Mappers

Some progress has also been made in the construction of the subset mappers.
Frequently, the parsing system needs to know what items are prime candidates
for the next stage of predictive mapping. The subsetters provide a fast
analysis of the A-matrix beginning at a given time frame, classify the phonetic
patterns, and select items from the lexicon that belong to the classes. This
provides a considerable reduction in the number of choices the parser must
consider. The answer in this case is based on a bottom-up analysis of the
A-matrix parameters. The subset may be performed either to the left or to

the right of the specified boundary,depending on the form of the call. The
subsetter also considers the possihility that the boundary has been shifted

due to the mapper's "eating up"” two identical phonemes in a row by accident.
The lexical subsetter is used mainly by the parser, but it will also be possible
to bottom-drive by doing a subset at the beginning of each phrase in the utter-
ance, as determined by prosodics, and then top-driving on the most likely
subclass. The analysis and classification techniques are identical to or
compatible with those used in the bottom-driving module; some of the routines
are common to both modules. The subsetters take advantage of any work already
done by the bottom-driver by checking the appropriate data structures before
beginning the processing.

Lexicon

The lexicon entries contain: an orthographic spelling, a phonemic spelling
graph, a nominal duration, bottom-up syllabary indices, and a short-word flag.
The phonemic entry in the lexicon is a spelling graph that is constructed prior
to syscem run time during compilation or during a pre-processing step. The
graph allows alternative spellings to be mapped simul taneously; consequently,
phonemic rule application results in a linear rather than an exponential
increase in mapping time.

A specialist contractor, Speech Communications Research Laboratory (SCRL), has
been actively assisting in the development of lexicons for the system. They
have provided support in helping to develop base forms to be used for lexical
entries. They have also been active in the related task of defining and eval-
uating rules for generating pronunciation variants from the base form. For
part of this task they have used our phonological rules system.

Phonological Rules System

An early version of a phonological rules system was developed for generating
variant pronunciations of lexical entries. It assumed thet rules were applied
in an unordered, optional manner. A different set of assumptions is required

BT I i M i e el i e o e e e e i e e i e T ]



TR

v R bl R

ikin

il

bl

AT T

il

AT A A

Gl

okt

EWMW ittt e il i
il

i

i

System Development Corporation
15 November 1975 43 TM-5243/004/00

for rule sets whose task is to derive inflectional or morphological endings.
These rules are ordered and obligatory (if the context criteria are met), and
successive rules operate on the output of the preceding ones so that only one
spelling is derived. (These are the types of rules more often discussed in
the linguistic literature.)

During this year, the phonological rules system was expanded to a much more
generalized facility. It now provides for the building of lexicons and sub-
lexicons. A lexical item may be tested individually or as part of a sub-lexicon,
In this system, there are three types of rule-driver subroutines: ordered,
unordered, and nondeterministic. Unordered and nondeterministic rule applica-
tions are very similar, the only difference lying in the fact that, in a small
number of cases, a rule that would apply after a previous rule in a non-
deterministic case would not apply in the unordered case because its left
context was altered by the previous rule. The phonological rules system was
designed as an independent rule-evaluation program. It has been slightly
modified and incorporated into the mapper.

Lexical base-form spellings exist as properties of the orthographic words in

a specially coded array structure. The phonological rules system makes use

of this array coding during rule application; the result is that new coded
arrays corresponding to variant spellings are produced. Under the old technique,
the orthographic word was predicted, and its base-form property was extracted
in the mappers. When a word can be predicted with one or more affixes, then
the old approach is not adequate; the entire phonetic string must be derived
and mapped as a whole. Routines were developed to construct new coded spelling
arrays by copying one or more old nnes. The mappers now receive as one input
parameter a liszt of one or more woris and/or suffixes. The spelling of each
word is extracted; if a word has sutfixes, they are derived using the ordered
rule driver. The result is a single coded array,which may then be passed to
the unordered rule driver for generating alternative pronunciations and mapping
each one of them. This allows whole phrases to be mapped, with the added
advantages that variants may be generated that result from applying
coarticulation rules across word boundaries that are internal to the phrase.

2.2.3 System Hardware and Software

2.2.3.1 Digital Record/Playback Subsystem

A digital record/playback subsystem has been assembled for our PDP-11/40
computer based on experience with our Raytheon 704 computer system. As on
that system, an amplified speech signal is digitized directly in real time
with no intervening analog recording and is stored on a fast fixed-head disk.
This recording process is reversed for playback. All data are moved using
automatic direct-memory-access (DMA) hardware to allow high sampling rates;
additional hardware assures unbroken continuity of sampling. The sampling
rate is crystal-controlled for high absolute accuracy and long-term stability.

e et T e e A TR T - o e PRI e R e P L Ty et SR e




System Development Corporation
15 November 1975 44 T™-5243/004/00

Speech enters the new system at high quality via an AKG condenser microphone
or a Sennheiser headset-mounted microphone. The speech signal is amplified
Using low-noise, low-distortion equipment and is bandlimited by a 9,000 Hz
low-pass filter (having 40 dB attenuation at 10,000 Hz) before belng sampled
at 20,000 samples per second.

Our experience with user variakbility has led us to employ a 1l4-bit analog-to-
digital conversion system (Analogic AN5800); excellent digital recording can
thus be obtained without any user gain adjustments. Employment of wide dynamic
range in conjunction with a low-noise environment ensures good speech input
during interactive discourse. The use of analog compression, limiting, or

AGC circuits, whose unpredictable dynamic effects would complicate subsequent
parameter extraction, is thus avoided.

A standard DEC DR11-B DMA interface provides block-transfer input/ocutput for
speech data to the PDP-11/40 Unibus. 1In order to ensure continuous sampling
during the time required to reinitialize the DR11-B between block transfers,

an SDC-designed controller provides a 64-word first-in, first-out buffe-, "his
controller also includes timing and Analogic-to-DEC interface circuits.

2,2.3.2 Laboratory Facilities

A new physical facility has been designed and built to our specifications. It
approximately triples our laboratory floor area. Included is an appropriate
area for the PDP-11/40 and SPS-41 systems, an area for the IMP and 370/145
interface hardware that is sufficiently close to allow Local Host interfacing
of the PDP-11/40 to the ARPANET, and a new IAC sound booth. The entire area
was completed and in use by June,

bl i e Rl i

bl

2.2.3.3 Network Hardware Activities

bl

In late 1973, an ARPA Network interface for the PDP-11 was developed at SDC.
Designated the HSI-11A, this interface has been operational at SDC since
January, 1974, In March, 1974, SDC was asked by the ARPA Interface Steering
Committee (ISC) to submit HSI-11A for possible selection as a standard ARPANET
interface for PDP-11 computers. In May, the HSI-11A design was selected, For
several months thereafter, ISC members and the SDC staff conducted technical
discussions, primarily by ARPA Network Mail, to specify an HSI-11B design
suitable for production by some organization for widespread, general use on
the ARPA Network. These discussions resulted in 11 engineering changes to the
original HSI-11lA design in order to meet ISC requirements. A documentation
package on the HSI-11B was released in November, 1974 (Molho [26]1). Aliso, SDC
has assisted in prototype-building activities at Rand and BBN and has provided
consulting services, as required. The prototype design has been forwarded to
DEC at ISC request. The result of SDC's effort in this area will be that
PDP-11 computers may be interfaced to the ARPA Network using reliable, off-the-
shelf hardware.

AT

R et T e T T i)
!‘ F}
i
i
i/
i
I
il
i




TR, T AR

(it

T AR e

bl

AR

TR SR

T

m il i
it ‘\'

System Development Corporation
15 November 1975 45 TM-5243/004/00

2.2.4 CRISP

As research on the Speech Understanding System progressed, and as the size,
complexity, and processing requirements became better defined, it became obvious
that LISP or its derivatives (other languages are even less well suited) were
not adequate to produce a system that could meet all of the research objectives.
The most severe shortcomings were:

1. the extreme inefficiency of numerical computation (of which there is
a large amount);

2., the inability to properly limit the scope, visibility, and access
of names;

3. the inefficiency in saving, switching, and restoring processing
context (a frequent occurrence) ;

4., representational limitations imposed by the available data structures;

5. constraints imposed on programs and data by address-space limitations;
and

6. lack of formatted data output.

To remedy these deficiencies, a new programming system called CRISP has been
developed that not only incorporates all of the capabilities of LISP but removes
the constraining limitations and provides the missing capabilities. More specif-
ically, CRISP:

1. produces object code that is efficient for both numerical and symboclic
processing;

2. provides facilities for proverly limiting the scope, visibility, and
access to names and properties, permitting several people to
cooperatively produce large complex programs with minimal
housekeeping distractions;

3. efficiently saves, switches, and restores processing context;

4, provides generalized data structures, i.e., multidiménsional arrays,
n-tuples with repeating groups and elements, generalization on the
two-pointer LISP node to nodes permitting from one to eight pointers,
and functionals;

5. increases address space to a maximum of 16 megabytes and provides
facilities for cooperating with virtual memory management;




System Development Corporation
15 November 1975 46 TM-4243/004/00

6. produces formatted output, binary input/output, and general free-form
input and output of any data structure;

7. provides the ability to freely mix infix, prefix, and machine-oriented
language forms;

8. incrementally recompiles or batch compiles with the ability to
redeclare data types in either case; and

9., provides means for modules in different virtual machines to communicate
via the virtual channel-to-channel-adapter facility available in IBM's
VM/370 system.

2.2.4.1 Present Status

During the latter part of 1974, the CRISP language and system were designed.

The language design specification [27] was then publisi.nd and distributed to
potential users for comment and critique. In addition to presenting a semi-
formal description of CRISP, the document attempts to illuminate the mocivations
fcr certain decisions and gives many example programs.

During the current year, large portions of the system have been programmed and
debugged, and the following are operational: syntax analyzer, declaration
mechanism, CRISP Assemnbly Language (CAP) assembler, I/O package, trigonometric
functions, dynamic data structure allocators, and the context-of-evaluation
primitives. The garbage collector has been programmed but has not yet been
debugged. The detailed design of the compiler is nearing completion, and
implementation has begun. The first usage of the system is the coding of the
lexical mapper portion of the SDC-SRI system in CAP. As the compiler becomes
available, portions of the mapper will be rewritten in CRISP, and the parser
will be translated from LISP into CRISP,

The major technical obstacle in the implementation phase has been with the
declaration mechanism. The specific issues were the handling of recursively
defined types and allowance for redeclaration of the types of names without
causing excessive recompilation. Satisfactory solutions have been found for
both problems.

2,2.4.2 Technical Approach

One of our major technical goals is to program the system in its own language.
This provides two important advantages: (1) the sophisticated user may access
al) parts of the system, code and data, to achieve capability extensions with
relative ease, and (2) maintenance of the system is simpler (and significantly
cheaper) because modifications can be made using the incremental assembler rather
than regenerating the entire system.

AT e e PR e W —



|
§

— i —

4
;
|

b e

il

System Development Corporation
15 November 1975 47 T™™-5243/004/00

Building the system in its own language implies the utilization of a bootstrap
procedure. Our original intention along this line was to implement (in LISP)

a compiler for a subset of the CRISP language. The approach we followed instead
was to fully implement “he CAP assembler in LISP, then hand-translate the
assembler into its own language. Our reasons were: (1) needed parts of the
system could not adequataly be developed in higher-level language, (2) the
assembler was needed as the final "pass" for the compiler, and (3) less effort
was expended in recoding. As a result of the decision to implement the system
in assembly language, CAP has been further developed than originally planned.

2.2,4.3 The System

Memory Allocation and Data Spaces

The heart of the CRISP system is the dynamic data allocator and memory management
mechanism. The IBM 370/145 has a maximum address space of 16,777,216 bytes that
is internally subdivided by CRISP into 4,096 quanta, each consisting of 4,096
contiguous bytes (and corresponding to the hardware page size used by VM).

Memory is allocated in regions--a region is a set of contiguous quanta. A (data)
space is a set of not necessarily contiguous regions. All data elements in the
same data space are of the same kind.

There are three basic kinds of data spaces: static, selectable, and special.
A static data space is completely allocated (but not necessarily filled) at
system generation time. Its size does not vary dynamically during execution,
An example of a statically allocated data space is the one~quantum area that
holds character identifiers (identifiers with one-character print names).
Other static datc spaces are the pointer and numeric pushdown stacks (PDP and
PDN, respectively), NAMEA, and NAMEB. One object in each data space is asso-
ciated with each global name; the named object is the "value."

For a space to be selectable, it is necessary that more than one space of the
same kind exist. An example of a selectable space is NODE2-~a NODE2 object is
the binary tr.e node of LISP created by the allocation function CUNS. At any
moment, one of the (possibly many) NODE2 spaces is selected. A use .f CONS
automatically allocates the new structure in the selected NODE2 space. The
creation and selection of new spaces are easily accomplished using primitives
provided in the system. Selectable spaces are valuable in many programs to
overcome page thrashing. Specifically, if structures are built that will be
heavily referenced at "nearly the same time" and they are placed in the same
space, then, because of the increased likelihood that the structures will be
on the same pages, the working set size will be decreased. Also, the garbage
collector compacts (rather than building availability lists) so that structures
remain in the space in which they were originally created. Further, spaces of
the same kind may be merged into a single space.

Therc are three kinds of special spaces: IDENTIFIER, HEAP, and HANDLE.
IDENTIFIER objects are hashed and singularized, i.e., there are never two
identifiers in the system with the same print name. "herefore, the existence

e A _ e = o R A e SRR T e Wr P s = o Pt |




b TR i,

i

i el |

i

i

(it e b b

il i 2 Gl

System Development C rporation
15 November 1975 48 T™=-5243/004/G0

of more than one identifier space is not meaningful and could, in fact, be
harmful because singularity is used to support property objects for identifiers
in a manner similar to LISP. HEAP spaces are used to allocate blocks of storage
for specialized purposes. Associated with ecct process is a handle object (kept
in the single HANDLE space); the handle contains the process's current status
and its context of evaluation.

input/Output Primitives

There are two general categoriec of I/0 primitives: (1) file control and (2)
data movers. The file-control primitives include: OPEN, SHUT, selection, and
positioning. OPEN establishes a logical connection to a physical file through
the operating system; SHUT severs such a connection. The possible media in
which files may exist are disk, tape, terminal, card reader ({spool), card punch
(spool), printer (spool), and core (internally maintained by CRISP for intra-
program communications). In the near future, it will also be possible to use
files through virtual channel-to-channel adapters (CTCAs) provided by VM. This
will make it possible for different virtual machiness to communicate efficiently.
The CTCAs also make it possible for a virtual machine to connect to the user
TELNET as an ordinary I/O device.

The symbolic read and symbolic print primitives, respectively, operate on the
current read and print "selected"” files. When a symbolic input (or output)
operation is initiated, the data are read (or written) from the file whose name
is the value of the global variable RFILE (or PFILE). RFILE and PFILE may be
rebound (and/or set) so that, as code blocks and processes are entered, exited,
- . resumed, the proper files are automatically selected.

The operation of the positioning primitives depends on the storage medium. The
capabilities provided are: rewind, unload, skip file, backspace file, positio.
at ith record in a file, continue a spooling operation, ease (purge) a file,
write an end-of-file mark, and turnaround. (Turnaround is used to change the
read/write direction of a file. For instance, turnaround of an output file
does the equivalent of: write an end-of-file mark, backspace file, shut file,
and reopen the file for input with the same line size, margins, etc.)

The data-moving I/0 primitives are used to transfer information to and from

t.les, Different primitives are used for binary and symbolic transfers.

sinary transfers occur directly between heaps (or data structures containing

ne pointers) and files in a byte-for-byte serial manner, with no interpretation

py the system. Symbolic transfers convert to (or from) an EBCDIC (or ASCII, if

s specified) external representation. Any structure--including nodes, arrays,
d n-tuples--may be read and printed symbolically; symbolic input 1s always
rree-form," Syml olic output may be "ugly," explicitly formatted, or automat-
11ly "pretty"” printed. Ugly printing outputs a structure as a token string--

‘ne only concession to legibility is that tokens sre not unnecessarily cplit

wer line boundaries. The present, explicit format primitives allow data to be




P

S o it SR

System Development Corporation
15 November 1975 49 ™-5243/004/00

printed left or r.ght justified to a specified column. Future plans are for the
inclusion of a format specifi-.. ion form similar to FORTRAN. Pretty-printing
primitives automatically format the exterral representation of structures that
do not fit on the current line. The technique we use is the standard one of
using indzntaticn to shew structural nesiting.

Process-Control Primitives

The process-control primitives provided by the CRISP system are a "parts Kit"
with which the user can fashion the set of contro’ regimes that best serve his
needs. The fundamental statir units are blocks, . 1ctions, and processors.

The fundamental dynamic unit is the process--an executing entity. A process
may be in one of three states: active (presently computing), suspended (may

be reactivated), or dead (may no longer be reactivated). Associated with each
process is an objuct called a handle, The handle contains a process's complete
internal and external states. The internal state is two pushdown stacks (a
number stack and a pointer stack) that contain current variable bindings active
in the process, return addresses to functions and blocks invoked in the process
that have not ;/«t exited, and th: proyram counter. The external state contains,
among other things, a context link and an abort link to other processes. The
context link is used when global variables, not bound in a process, are
referenced. When such a reference is made, a binding is searched for, through

the chain formed by the context links.* To ensure termination of this searching
nrocedure, a restriction 1is imposed--the processes considered as nodes and the

context links considered as arcs must form a tree (no loops) with the NIL process
as the root node. (The NIL process is the collection of all "top-level" variable
bindings.) The abort link names the process that is to receive control if this
process is aborted because of circumstance: that cannot be handled internally.
The processes considered as nodes -nd the abort links considered as arcs must
form a tree (with UIL as the root unode) so that a propagated errcr will not

cycle indefinitely. The tree formed by the context links and the tree formed

by the abort links reed not be isomorphic.

Try-and-exit logic is also provided. UNWRAP is used to signal the occurrence
of un unusual condition. The arguments to UNWRAT are: (1) the class of the
condition cansing the unwrap (there are sixte :n possible classes; eight are
reserved fur system-detected occurrences such as T/O errors, and eight are left
for user assiynment), and (2) a message detaitin, the reason for the unwrap.
UNWRAP aborts the present computation state by popping the stacks antil an

*In actual operation, no searching is perforred. All global variables are
shaliow bound for efficiency. The preocess control primitives are responsible
for correcting tre bindings whenever a new process is created or a suspended
process is resumed. This tactic is ader ted on the bet that context switching
is a relatively infrequent occurrence .- rpared to variable referencing.

Gk e e = : e oes, =




T s S

System Development Corporation

15 November 1975 50 T™-5243/004/00

active TRY is found.* The internal process state that existed when the TRY was
entered is re-established. The TRY consists of several statements (expressions).
The first is executed. If no unwrap occurs, then execution of the TRY is
completed. Otherwise, the second statement is executed, and so on, until a
statement is executed without the occurrence of an unwrap. If an unwrap occurs
while the last TRY statement is executing, the unwrap is continued outward to
the next active TRY. There is a TRY in the NIL prccess that will catch any
unwrap that is not handled by an inferior process.

TRY and UNWRAP are extremely useful in two quite differen* contexts: (1) In
"structured" projrams, the occurrence of unusual (error) conditions is signaled
by using UNWRAP. (2) If, in programs that use several algorithms in attempts to
search for a solution, an attempted algorithm does not work, an UNWRAlI returns
control to the TRY, and the next algorithm is attempted.

2.2.4.4 The Language
In a programming language system such as CRISP, it is difficult to clearly
distinguish language features from system features. This section will describe

those features most often thought of as belonging to a langvage.

Language Formats

The CRISP system makes available to the user two basic languages: (1) CRISP--

a high-level, pirocedural language, and (2) CAP--a machine-coriented language.

Both languages are block structured and include a wide variety of data-structure-
accessing primitives. Both languages share the same variable declaration and
scoping raechanism, and CAP forms may be embedded into CRISP programs. Either
language may appear in one of two formats: (1) Source Language (SL)--ALGOL-

like with infix operators, or (2) Intermediate Language (IL)-~LISP-like with
Polizh-prefix list structure. SL is ordinarily used as the programmer's
language, and IL s used by programs that write or manipulate other programs.

Data es

CRISP provides the user with a variety of atomic and non-atomic data types. The
allowed non-atomic data typesare nodes, arrays, and n-tuples. There are eight
kinds of nodes: NODE1l, NODE2...NODE8. A NODEi object has i ordered elements

of type general. (NODE2s are the LISP binary node.) There are also eight "union"
or multi-node types: MODEl...MODES.

*A TRY spégffies the class of error conditions that it is willing to accept.

If the unwrap is for one of those specified conditions, then the TRY "catches"
the unwrap. Otherwise, the TRY is bypassed and the search continues for
another TRY. If no appropriate TRY exists in the currently active process,
then the search continues into the process located by the abort link.




e e

System Development Corporation

15 November 1975 T™-5243/004/00

51

MODE8* = NODES8

MODE7 = NODE7 \UJ MODE8
MODE6 = NODE6 U MODE7
MODE5 = NODES5 \U MODE6

MODE4 = NODE4 U MODE5
MODE3 = NODE3 \)MODE4
MODE2 = NODE2 U MODE3
NODEN = MODE1l = NODEl \JUMODE2

Thus, the type MODEi includes all nodes with at least i data fields. (Obviously,

a node can be simulated with an array of general elements, but in many applications
nodes are more natural. Also, because nodes are stored without any header
information, they save four memory locations per occurrence.)

CRISP supports multi-dimensional arrays from O through 255 dimensions. Each
dimension may have an extent of up to 32,767, An array type includes only the
number of dimensions and the element type--not the extents. When an array is
created (dynamically) the actual extents are specified. Extents specified in
a declaration are used only as defaults in certain situations. When an array
is created, its actual extents are stored in the header. The compiler always
generates code that uses header information (rather than the default) to cal-
culate element position from subscripts. (This tactic loses efficiency when
constant subscripts are used to reference an array element but usually breaks
even when all subscripts are non-constant expressions.) Array elements can
be any kind of elements, even arrays.

The other kind of non-atomic type provided by CRISP is the n-tuple. An n-tuple
comprises named elements and groups--a group is alsoc a collection of named

items and groups. Elements and groups may be repeated in much the same way as
array elemerits. (However, the extents of repeats in n-tuples must be fixed at
declaration time. If the extent(s) is not known, then the n-tuple element can
be an array.) N-tuples are extremely useful because they provide a compact way
of containing mixed-type data gygregates and because n-tuple references are highly
mnemonic--thus improving a program's readability. Like array elements, n-tuple
elements may be arrays or n-tuples. Also, an element that is an n-tuple may be
flattened into its parent structure in order to conserve storage. (Normally, an
element of type n-tuple is a pointer at the n-tuple; when flattened, there is no
pointer, and the n-tuple is resident in place of the pointer.)

Variable Names and Scoping

In CRISP, there are two kinds of variable bindings--local and global. A local
variable can be bound as an argument of a function or as a block variable. A
local var ble is visible only in the body of the function and in the interior
of blocks lexically nested within the binding entity. The name of a local

*The usage of the word "mode" in this context should not be confused with its
usage in ALCOL68,.




T T

System Development Corporation

15 November 1975 TM-5243/004/00

52

variable is an identifier. 1In no case is a local variable visible outside the
function containing its binding. A global variable can also be bound as an
argument of a function or as a block variable. A global variable is visible

in all places at which a local variable bound in the same spot would be visible.
In addition, the binding of a global variable is visible in all function calls
made within the variable's scope and in all processes that have the process
containing the binding in their context chain. (This scoping strategy is called
dynamic and is a replica of LISP's special-variable handling with a generaliza-
tion to handle multiple processes). In addition to the dynamic bindings of a
global variable that may exist, each global variable has a top-level binding
(and value) in the NIL process. Thus, there is no such thing in CRISP as a
reference to an unbound global variable.

Use of dynamic scoping of global variables (as opposed to the lexical, or
static, scoping in ALGOL) has three major advantages. The most important is
that it is possible to modify and recompile a small piece of a large program
(e.g., a single function); it is not necessary to compile everything in the
scope of the change, and incremental compiling (a function at a time) and
interactive program testing are more efficient and more effective. A second
major advantage is the ability to divide the programming load among several
persons because they are able to produce separate lexical entities. Thirdly,
programs can be organiced in a more flexible manner because run-time decisions
can be made on the binding set that is visible--in other words, the global
context of evaluation can be computed.

The disadvantages of dynamic binding arise in large programs--problems arise
when an intervening function call rebinds a variable used for communication
between the "upper" and "lower" levels of evaluation. 1In general, when reading
a program, it is difficult to determine what binding of a variable is being
referenced. To help alleviate these problems, and other '"name conflict" problems,
CRISP provides a name-pool facility. All global names (variable names, function
names, etc.) have a first and last name, each of which is an identifier. For
example, the full name of the tangent function is TANSCRISP. 1Its first name

is TAN ard its last name (or tail) is CRISP. In most CRISP programs, it is
possible to reference or declare global entities by using only their first
names; this is controlled by use of a default form. For example, assume that
the following default is in effect.

DEFAULT XYZ (ABC,QRS) ;

All declarations and definitions that are not explicitly tailed receive the
last name XYZ (the first argument of default). For instance,

DEC I INT, JS$Q INT;
declares I$XYZ and J$Q to both be global integer variables. The second argument

to default is used to tail identifiers that make frece references (not lexically
bound at the point the reference occurs). For example, suppose that the




System Developmen* Corporation

15 November 1975 TM-5243/004/00
53

identifier VAR occurs freely and that the above default is in effect. Then the
compiler (assembler) first looks for a declaration of VARSABC--if none exists,
then VARSQRS is attempted.

By proper use of name pools--a name pool contains all entities with the same

last name--most name-conflict problems disappear. A natural approach to the
construction of a large program is to assign a unique tail to each module
(collection of functions and declarations written by an individual that performs
a set of related computations). Each module is compiled with a default that
"sees" only its own name pool, appropriate system common pools, and the universal
pool, CRISP (which holds all user-level functions and declarations provided by
the CRISP system). Within each module, the (free) references to entities in any
other modules not on the default list are explicitly tailed. (This is necessary
because the pool name of the module is not on the default list of tails.) Another
common tactic to avoid name conflicts is for a module to export (by use of
explicit tails) those entry-point names and declarations that are documented
as usable by others and to keep all other global names used by the module in
its own pool.

Programming Example

Figure 2-13 shows a complete example of a program that traces a path through a
maze. The purpose of the example is to indicate the flavor of the CRISP language
and demonstrate several language features--it is not an example of an interesting
or efficient algorithm.

2.3 PLANS

The major activity during the 1375-1976 contract year will be the integration,
testing, and demonstration of the five-year system. The system will have a
vocabulary of 1,000 words and will allow many speakers of the general American
dialect to maintain a dialogue with a data management system with reference to
attributes of warships of the US, USSR, and UK. Acoustic feature extraction
and acoustic-phonetic processing will be performed on the PDP-11/40 and SPS-41
computers. All subsequent processing, such as that required for parsing,
semantics, pragmatics, and word verification, will be done on the IBM 370/145
computer, connected to the PDP-11/40. Programming on the PDP-11/SPS-41
configuration will be done in FORTRAN, PDP-11 assembly code, and SPS-41 machine
code. The use of CRISP on the IBM 370 will greatly enhance the efficiency of
the higher-_level processing.

L e il R GRL Tl R e e b | e g S

In addition to supervising the integration and testing of the system, SDC will
also conduct research, development, and refinement of the acoustic-phonetic
processor, the word-verification procedures, and the prosodic-analysis functions.
Capabilities of the acoustic-phonetic processor will be enhanced with the
addition of acoustic-phonetic rules to handle vowel lateralization. Moreover,
research will be conducted to determine a set of rules to handle nasal murmurs
and nasalized vowels. Specifically, some recent results of Kopec

et ai. [28) and Mermelstein [29] will be implemented in computer programs,

.

Ll

T
]




rkwmm$

Ubiioicttt i Sl istom bR B

System Development Corporation

15 November 1975 54 TM-5243/004/00
DECLARE point<ngme 1D, 2°neme of point in meze
path ARRAY(®*) point>, x°set of reschable points
visits NODER, 1°'path to-date
end points %2°end point of search

X°Findpeth sttempts to locete & psth through the maze from the point,
%°beg, to the point, end. If e path is found, it is printed and find-
%“path returns true. Otherwise, no printing ig done and findpath
2°returns fglse. The try-exit 10gic is used for communicetion. Unwrap
2°category | is used when @ circuler peth is encountered snd unwrap
2°category 2 is used to indicets success-.the path is returned es the
2'unwrap messsge. for simplicity, {t is essumed that there is at least
2°one path sway from each point “in" the maze.

FUNCTION findpeth BOOL(beg point, end GLOBAL point)
TRY 1°°2 (BEGIN visits GLOBALs=NIL}
trypath(beg)
END,
IF UNWVRAPMASK=2 THEN (PRINT(UNVRAPMSG),RETURN TRUE)
ELSE RETURN FALSE)

2°Trypath rirst checks for 8 circular path. If found, the troubdble is
2°reported by a category | unwrep. If the current point is the end
2°point, then the good news is reported by & cetegory 2 unvwrap. Else,
2°esch path auay from p is tried. All except the lest such sttenpt is
2°protected by & try. On the lest sttempt, feilure is rippled upverd
2°t0o & spot where an alternative {s yet to be tried.

FUNCTION trypath NOVALUE(p point)
IF p_ngpe IN visits THEN unwrep(l})

ELSE BEGIN visits GLOBALssp_nsmesvisits;
IF p=end THEN UNWVRAP(2,REVERSE(visits));
FOR i:sl TO ARLN(p_vath)

DO TRY | (trypath(p_pethtid, NIL)}
END;

trypeth(p_peth(ARLN{DP_pP8th)1)}
end;

Figure 2-13. Sample CRISP Program to Trace a Path through a Maze

Y e et s ST o ST e e P =i

fl
i




i

i

T

il

System Development Corporation
15 November 1975 55 T™-5243/004/00

which will form the basis of a number of experiments designed to study nasals

and nasalized vowels. Research on isolation and characterization of fricatives
and plosives will continue, with an emphasis on the use of formant frequency
trajectories from a plosive into a vowel to enhance recognition accuracy.
Specifically, a voiced plosive will be labeled on the basis of both its release
and frication properties and via an analysis of its formant-frequency transitions
into the following vowel or sonorant.

Early in the 1975-1976 contract year, a 400-word extension of the 600-word
Milestone System will be decided upon, and work will be initiated to develop

a set of base forms for the resulting 1,000-word vocabulary. A vocabulary

of this size will require major portions of the lexicon to be encoded in

terms of morphs and their affixes, in order to avoid excessive storage require-
ments, since so many words can occur in a multitude of forms, as for example,
"do," "does," "doesn't." Some limited use of derivational phonology rules will
be made in the Milestone System. The five-year system will feature an expanded
use of such rules.

An important extension to the present lexical matching procedures will be the
development and use of analysis-by-synthesis techniques, alsc known as parametric
mapping. For these types of techniques, a set of formant-frequency trajectories
will be hypothesized for a predicted word or phrase. Using time-warping
techniques, these formant trajectories will be adjusted to synchronize with the
formant trajectories in the A-matrix, and a comparison will be made between
these two sets of trajectories to determine the existence of the predicted word
or phrase. This procedure is expected to yield better results than current
mapping procedures, since it will be based on parametric, rather than phoneme-
label, matches. This will also allow us to incorpora*e all of the theory of
synthesis-by-rule and use it in the mapping procedure.

Some limited bottom-driving techniques will be used in the Milestone System.
These will be based on the use of syllabic segmentation described earlier.
The techniques will be refined and extended for use in the five-year system.

2.4 STAFF

Dr. H. Barry Ritea, Project Leader
James A. Balter (System Programming)
Jeffrey A. Barnett (CRISP)
William A. Brackenridge (Parameter Extraction)
Richard A. Gillmann (Lexical Mapping)
Iris Kameny (Acoustic-Phonetics)
Dr. Peter Ladefoged (Acoustic-Phonetics Consultant)
Lee M. Molho (Acoustic-Phonetics and System Hardware)
Douglas L. Pintar (CRISP)
Dr. Georgette Silva (Protocol Analysis and Lexicon Construction)
Rollin V. Weeks (Lexical Mapping)

e .
Ty e e T S R X e g T el




Gt

iitich

Emmmwm TIATIHMHTN
ot
o

System Development Corporation
15 November 1975 56 T™-5243/004/00

2.5 PUBLICATIONS AND REFERENCES

(1] Denes, P. B., "On the Statistics of System English," JASA 35(6):892-904,
1963.

[2] shoup, J., "Phoneme Selection for Studies in Automatic Speech Recognition,"
JASA 34 (4):397-403, 1962.

[3] Paxton, W. H., and A. E. Robinson, System Integration and Control in a
Speech Understanding System. Technical Note 111. Menlo Park: Stanford
Research Institute (Artificial Intelligence Center), September, 1975,

(4] Gold, B., "Computer Program for Pitch Extraction," JASA 34(7):916-921, 1962.

f5] Miller, N. J., "Pitch Detection by Data Reduction," Proceedings of the
IEEE Symposium on Speech Recognition, 1974, pp. 122-130.

[6] Reddy, D. R., "Fitch Period Determination of Speech Sounds," CACM 10(6),
1967, pp. 343-348.

[7] Noll, A. M., "Short-Time Spectrum and 'Cepstrum' Techniques for Vocal-Pitch
Detection," JASA 36(2):29€-302, 1964,

[8] Noll, A. M., "Cepstrum Pitch Determination," JASA 41(2):293-309, 1967.
(9] Ritea, H. B., The Cepstrum, the Cepstrally Smoothed Log Spectrum, and the

Chirp Z-Transform, System Development Corporation Report No. TM-4857/200/00,
1972.

[10] Markel, J. D., "Automatic Formant and Fundamental Frequency Extraction from
a Digital Inverse Filter Formulation," Proceedings of the IEEE Conference
on Speech Communication and Procvssing, 1972, pp. 81-84.

(11} Markel, J. D., "The SIFT Algorithm for Fundamental Frequency Estimation,"
IEEE Transactions on Audio and Electroacoustics AU-20, 1972, pp. 367-377.

[12] Aschkenasy, E., M. R. Weiss, and T. W. Parsons, "Determining Pitch from
Fine-Resolution Spectograms,” Proceedings of the IEEE Symposium on Speech

Recognition, 1974, pp. 288-289,

{13) Harris, C. M. and M. R. Weiss, "Pitch Extraction by Computer Processing of
High-Resolution Fourier Analysis Data," JASA 35(3):339-343, 1962.

{14] Moorer, J. A., The Optimum-Comb Method of Pitch Period Analysis in Speech,
Stanford Artificial Intelligence Laboratory Memo AIM-207, 1973.

{15] Skinner, T. E., "Autocorrelation Method for Determining Fundamental
Frequency," Univac Intercommunication, April 23, 1973.

e =




ikt Ry R e e Gl

System Development Corporation

15 November 1975 57 TM~5243/004/00

[16]

[17]

(18]

[19]

(20]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

Gillmann, R., "B Fast Frequency Domain Pitch Algorithm," JASA 58
(Supplement No. 1) :5S62(Abstract), 1975,

Skinner, T. E., "Fundamental Frequency Determination - Analysis of an
'Octave Error,'" Univac Intercommunication, April 25, 1973,

Markel, J. D., Formant Trajectory Estimation from a Linear Least-Squares
Inverse Filter Formulation, Monograph No. 7., Santa Barbara: Speech
Communications Research Laboratory, Inc., October, 1971,

Kameny, I., W. A. Brackenridge, and R. Gillmann. "Automatic Formant
Tracking," JASA 56 (Supplement):S28 (Abstract), 1974.

Fujimura, 0., "Syllable as a Unit of Speech Recognition," Proceedings of
the IEEE Symposium on Speech Recognition, April, 1974, pp. 148-153.

Mermelstein, P., and G. M. Kuhn, "Segmentation of Speech into Syllabic
Units," JASA 55 (Supplement):522 (Abstract), 1974.

Weinstein, C. J., S. S. McCandless, L. F. Mondshein, and V. W. Zue, "A
System for Acoustic-Phonetic Analysis of Continuous Speech," IEEE
Transactions on Acoustics, Speech and Signal Processing ASSP-23(1), 1975,
pp. 54-67.

Kameny, I., "Comparison of Formant Spaces of Retroflexed and Non-
retroflexed Vowels,”" IEEE Transactions on Acoustics, Speech, and Signal
Processing ASSP-23(1), 1975, pp. 38-49,

Molho, L. M., "Automatic Recognition of Fricatives and Plosives in
Continuous Speech Using a Linear Prediction Method," JASA 5(2):411
(Abstract), 1974.

Molho, L. M., "Automatic Recognition of Fricatives and Plosives in
Continuous Speech,”" Proceedings of the IEEE Symposium on Speech
Recognition, April, 1974, pp. 68-73.

Molho, L. M., HSI-11B~--An ARPANET Interface for PDP-11 Computers, System
Development Corporation Report No. TM-5434/000,/00. October, 1974,

Barnett, J. A., and D, L, Pintar, CRISP: A Programming Language and
System, System Development Corporation Report No. TM-5455/000/00 (Draft),

31 December 1974,

Kopec, G. E., A. V. Oppenheim, and J. M. Tribolet, "Speech Analysis
by Homomorphic Prediction," JASA 58 (Supplement No, 1):597 (Abstract).

Mermelstein, P. "On Detecting Nasals in Continuous Speech,” JASA
58 (Supplement No. 1):597 (Abstract).

m\
|
4
i
')
i
M
!
)




il

System Development Corporation

15 November 1975 58 ™-5243/004/00
3. LEXICAL DATA ARCHIVE
3.1 INTRODUCTION

The Lexical Data Archive (LDA) project addressed itself to the task of providing
the ARPA Speech Understanding Research (SUR) projects with semantic and syntactic
data for the woids in their lexicons. The project sought to provide the following
services for each SUR project: monitor a variety of lexical data sources, select
the data having potential payoff for speech understanding, format those data for
archival purposes, and provide for their dissemination to the appropriate SUR
projects. The data in the archive are centered on thc 3,000 or so words

appearing in the oarly lexicons used by the SUR projects at Bolt Beranek and
Newman Inc., Carnegie-Mellon University, and System Development Corporation,

3.2 PROGRESS AND PRESENT STATUS

The data archive, called the Semantically Oriented Lexical Archive (SOLAR), was
designed during the 1973-1974 contract year. The methodology of construction
decided upon was then implemented. Files with a significant amount of high-
quality data became accessible via the ARPA Network, and data were distributed
upon request to more than 65 researchers across the nation and abroad.
Implementation was begun for the first eight of the following ten files:

1. A word index, which allows a user to easily determine the words for
which data are being collected and the types of data currently
available for a given word.

2. A bibliographic reference file, intended primarily as a resource for
accessing the literature.

3. A file of semantic analyses, which contains formal treatments of the
semantic properties of individual words as found in the literature.

4. A file summarizing the theoretical backgrounds of the technical
documents from which the semantic analyses have been extracted.

5. A file explaining and commenting on the semantic components used
in the semantic analyses.

6. A file of integrative summaries of conceptual analyses given in the
literatures of philosophy and artificial intelligence for notions
coinciding with or underlying the semantic components.

7. A file of collocational information extracted from definitions in
Webster's Seventh New Collegiate Dictionary (W7).

S e croi i e et W S i




i e

”mm}wﬂmm

R R e

System Development Corporation
15 November 1975 59 TM~-5243/004/00

8. A keyword-in-context (KWIC) file containing every context of each SUR
word as found in the W7 definitions, in the Brown Corpus, and in
selected speech dialogues.

9, For each SUR lexicon, a subfile of definitional links between words
within that lexicon.

10. A file of semantic fields, designed for each SUR word by tying to it
words found in certain definitional, synonymitive, and antonymitive
relationships in W7, Webster's New Dictionary of Synonyms (WNDS),
and/or Roget's International Thesaurus (Roget).

From the start of the period covered by this report, anticipating early
completion of the project, we concentrated on checking out the programs

required for constructing SOLAR's Definitional Expansions File (see pp. 307-309
of [1]), writing user's guides to the existing SOLAR files, and refining the
ARPA network interface with those files., By midyear, the Definitional Expansion
programs had been successfully run on test data, and user's guides to the
Semantic Component and Conceptual Analysis Files [2,3] had been added to the
four previously prepared user's guides (4,5,6,7].

The SOLAR data files have been stored on magnetic tape for use by linguists,
researchers in artificial intelligen e, and philosophers. A paper explaining
how to access the SOLAR files that had been submitted to the American

Journal of Computational Linguistics was withdrawn so as to convert it into an
account of what was learned in the course of building SOLAR. Meanwhile, the
23 integrative summaries now entered in the Conceptual Analysis File are being
reformatted as an appendix to a report on the construction of that file (8]
that will soon he submitted to The Philosophy Research Archive,

3.3 STAFF

Dr. Timothy C. Diller, Project Leader
Thomas Bye (part-time)
Enrique Delacruz (part-time)
Frank Heath (part-time)
John Olney (Consultant)
Nathan Ucuzoglu (part-time)

3.4 PUBLICATIONS AND REFERENCES

{11 Diller, T., and J. Olney, "SOLAR (A Scmantically Oriented Lexical Archive):
Current Status and Plans," Computers and the Humanities 8(5-6):301-312,
September-November, 1974.

{2] Diller, T., T. Bye, and J. Olney, User's Guide to the SOLAR Semantic
Component File. System Development Corporation Report No. T™-5292/003/00,
July, 1975.




b

éystem Development Corporation

15 November 1975 60 T™™-5243/004/00

(3]

[4]

[5]

(6]

(7]

(8]

Olney, J., E. Delacruz, T. Diller, and N. Ucuzoglu, User's Guide to the
SOLAR Conceptual Analysis File, System Development Corporation Report
Na. 5292/004/00, June, 1975,

Bye, T., T. Diller, and J. Olney, User's Guide to the SOLAR Semantic
Analysis File, System Development Corporation Report No. TM~5292/001/00,
April, 1975.

Diller, T., User's Guide to the SOLAR Bibliography File, System Development
Corporation Report No, TM~5292/000/01, December, 1974.

Diller, T., and T. Bye, User's Guide to the SOLAR Theoretical Backgrounds
File, System Development Corporation Report No. TM-~5292/002/00, April,
1975.

Diller, T., and F. Heath, User's Giide to the SOLAR KWIC File, System
Development Corporation Report No. TM~5292/008/00, May, 1975.

Olney, J., E. Delacruz, T. Diller, and N. Ucuzoglu, "A Partial Integration
and Formalization of Conceptual Analyses given in the Recent Philosophical
Literature for 23 Notions" (in preparation).




. 4

System Development Corporation
TM-5243/004 /00

15 November 1975 61
q. COMMON INFORMATION STRUCTURES
4.1 PURPOSE AND BACKGROUND

4.1.1 Goal

The need to share data for multiple applications, and the need to move existing
data bases to new systems, make general techniques for data-base conversion
desirable. These needs are especially apparent when the data are created and
manipulated by increasingly complex data management systems,

The goal of the Common Information Structures project has been to develop
techniques for data base conversion that can be applied to both existing and
future data bases. It is assumed that the data bases are typically created by

a data management system (DMS) that uses the operating system functions avail-
able on a particular hardware/software system. This is not to exclude sequential
files that are created by special-purpose programs (rather than a DMS). Our
purpose is to be able to convert and restructure a source data base into a newly
defined target data base using generalized data conversion tools.

4.1.2 History of Research

The difficulties in converting a data base arise from the fact that data base
structures are system (including hardware) and application dependent. Data
bases are organized in the computer in ways that reflect different efficiency
requirements, such as response time, storage space, and total cost. The
organization of a data base can be viewed from three levels:

1, the logical level, which involves the description of field types,
the grouping of fields into groups, and the relationships between
groups;

2. the storage level, which involves access paths, inversion on data
fields, and indexing mechanisms; and

3. the physical level, which depends on physical devices ugsed and
record/block organization of data on them.

Accordingly, two data bases, having the same logical organization, could be
implemented in different DMSs and on different hardware, and would consequently
have different storage-level and physical-level characteristics.

The conventional method of converting data bases for new applications is to
write a special-purpose conversion program for each data base. The programmer
wno does this must know the storage-level and physical-level characteristics

of the particular DMSs involved in great detail. Another, more general, approach
is to define data description languages for all three structural levels, then
specify in these languages the structures of the source and target data bases,




System Development Corporation
15 November 1975 62 TM-5243,/004 /00

as well as the conversion statements [1-6]; discussions of this approach are
presented in [7,8,9). The necessary dazta description languages are complex,
detailed, and difficult to learn and to use because they involve information
at all three levels. In addition, becaute the data must be converted from the
source physical environment to the target physical environment, implementation
is complicated.

In examining the existing approaches, we concluded that another approach would
more likely lead to ease of use and simpler mechanisms. This is the common
information structures approach that we have developed over the past two years.
This approach rests on the assumption that the data base conversion process can
depend on conversion at the logical level to a maximal degree. Just as high-
level programming languages are intended to divorce the structural and functional
properties of programs from specific physical environments, we needed data-base
conversion mechanisms that will move data in and out of specific physical
environments. This can be achieved by using the existing query and generate
capabilities of DMSs, which move data from their physical representation to

the logical level and vice versa. Once the data and their relationships are
represented logically, they can be restructured and manipulated with no
reference to any storage-level or physical-level characteristics.

There is, of course, a trade-off between using the logical-level #pproach and
using the approaches that bave previously been proposed. It is between the
need to deal, in the translation process, with many different formats (of
input and output data to DMSs) in the logical-level approach, and the need to
deal, in the other approaches, with the different internal data structures at
the storage and physical levels. We believe that eliminating the complexities
of storage and physical data structures from the conversivn process far out-
weighs the complexities of dealing with different data formats. Moreover, our
approach simplifies the languages required for specifying conversions, thus
enhancing the ability of unscphisticated users (by whom, in this context, we
mean applications programmers as distinguished from system programmers) to
specify data-base conversions relatively easily.

As shown in Figure 4-1, the conversion system has three principal components:
(1) a source reformatter, which reformats the output of the source DMS into a
predefined standard data form (the standard form is an internal representation
of data values and their relationships to achieve high efficiency in the
translation process); (2) a tranglator, which logically restructures the data
from the source standard form to a target standard form; and (3) a target
reformatter, which reformats the target standard data into an input data stream
for the generate facility of the target DMS. The reformatting process does

not involve any logical restructuring of data, but is a one-to-one mapping of
data values. The data translator operates only on logical data.

s Nk G a5 = e — e e I ot SRS T v = e — = ==




System Development Corporation
15 November 1975 63 TM=~-5243/004/00

oglecal
Target

Descrip-
tion in

Trans)ation

Snurce Data Logical Data Target Data

Reformatter Translator Reformatter
- T T T T T T T T
| Query Functionsl iGenerate Functiong
I' of Source DMF | i of Tar ‘2t DMS
s = = = — =L = = = = = =

Target
Data
Base

Figure 4-1. The Data Conversion Process

The conversion system uses the following three languages as shown in Figure 4

1. A cormon data description language (CDDL). This language is used to
express only the logical properties of CJata bases. The user can
describe in it how fields are grouped together, the relationship
between groups, and field properties.

2. A common data translation language (CDTL). 1 1s language expresses
logical restructuring functions, primarily in terms of field-to-field
' mappings. Functions included are repetition arnd elimination of field
values, creation and elimination of group levels, and modification of
data values. In addition, the user can describe the concatenatior. -*

slge sl i T L5 Fahs e o =il ol R L S aasa e




k.

O T

p

R

L O e

i

T T T

il

=
5
=
=
=
=
=

W E——

System Development Corporation

15 November 1975 TM-5243,/004/00

64

source fields into one target field, subset the records to be converted,
and order the records after conversion. A more detailed description
of these funclions is given in [7].

3. A common data format language (CDFL). Statements in this language are
used by the reformatting processor at both the source and target ends.
I. this language, the user specifies the input and output format conven-
tions used by the target and source DMSs, respectively.

4.1.3 Present Level of Accomplishment

Most of the work to date has concentrated on the central component of the system:
the logical data translator. The translator comprises two main components: the
Analyzer and the Restructurer. The Analyzer performs syntax analysis on the
CDDL and CDTL statements and semantic analysis to determine whether translation
requests are legal. The restructurer uses a conversion table generated by the
Analyzer to convert the source records into target records. A prototype of

the logical translator is now implemented on SDC's VM-370/145 system.

In addition, source reformatters were built for files in TDMS (an SDC DMS) and
for sequential files. Target reformatters were built for ORBIT (an SDC bib-
liographic search system) and for report display. The reformatters and the
translator were used to convert and restructure several large data bases. The
system is highly efficient; current tests show that a data base of 5 million
bytes is converted in about one minute of CPU time.

4.2 MAJOR ACCOMPLISHMENTS FOR 1974-1975

Major accomplishments during this contrac’' year were made in the design,
implementation, and performance testing of the several elements of the
conversion system. Because we wanted to demonstrate that our approach leads

to a practical, efficient, user-oriented conversion system, the impleme.tation
of the system and the demonstration of actual data base conversions were the
major tasks for the year. Before expanding on accomplishments during the vear,
we describe briefly the status of the project at the begirning of the year.

After our approach was selected and specified, the Common Data Description
Language (CDDL) and the Commor. Data Translation Language (CDTL) were defined.
Defining the CDDL was an easy task, since it involved only a representation of
logical structures of data. Defining the CDTL was 2 major task that included
the seleciicn of the desired restructuring functions and their representation
in a user-or ‘ented form. 1In addition, a set of semantic rules were developed
to ensure that a combination of restructuring functions specified by a user
produces a semantically meaningful target data base description. These
accomplishments were described in our flnal report to ARPA for 1973-74 [10}.
Another design that was already accomplished was that of the "standard form."
Also, modules that can read and write a stream of data in the standard form
were developed. A description of the "standard form" and the considerations
affecting its design is given in [11].

e e e e e e e e e e Semoaa s




pwmwmﬂmwmmmmwmm R e
i

System Development Corporation
15 November 1975 65 TM-5243,/004/00

With this at our disposal, we proceeded with the tasks of designing and
implementing the several components of the convergsion system. The following
sections describe the operation of these components as presently implemented.

4.2.1 The Analyzer

"he Analyzer is responsible for a syntax parsing and analysis of the CDDL and
CLDTL statements and for performing a semantic analysis of the restructuring
functions according to the set of semantic rules. (A description of the rules
is given in [7].) BAn algorithm was developed according to these rules and was
incorporated in the Analyzer. The output of the Analyzer is a conversion
table, which is used by the Restructurer for actual restructuring of the data
stream.

The Analyzer is diagrammed in Figure 4~2. It operates as follows. First,
syntax analysis is performed on the source and target data desoription state-
ments (in CDDL). 1If no errors are found, source and target tables are produced
that contain precise information about the data base. If an error is found,
an error message is issued to the user. Errors discovered at thies stage are
more than strictly syntactical; for example, a missing description of a field
will be detected at this stage. The next step is the association process, in
which source and target fields are associated accordirg to the conversion
statements. In this step, the translation statements are also checked for
syntax legality. This process produces the association matrix, which is used
by the semantic analyzer. The association matrix has an entry for every pair
of source and target groups. When a mapping is requested from & field in a
source group to a field in a target group, the type of mapping is recorded in
the appropriate entry.

The purpose of the semantic analyzer is to determine, from the collection of
conversion functions requested by a user, whether the request is semantically
meaningful. To determine this, the semantic analyzer examines the association
matrix for possible conflicts; if none are found, it determines the
correspondence between source and target groups.

After the semantic analysis is found to be correct and the correspondences
between source and target groups have been determined, the conversion table

is constructed. Every entry in the conversion table contains a coded instructio
to the Restructurer to perform one of the translation functions required. The
entry includes information about the source field from which a value (or values)
is to be extracted, the target field to he created, the conversion function
required, and additional operations (such as 'string modification' and 'subset'),
if speciried. The conversion table is the sole input to the Restructurer.




= O 1
o O |
N i
& T
~ m agzATeuy 9YL °z-p 2aInbty
g

b
O N
©
o=
[ =3 3
Q
&,
0
—1
()
>
Q
a S378vL SISATYNY
g 1394yl XV.LNAS
Fe )
m
>
wn

\O
\O
$S3204d
318vL SISATYNY NOILVIJ0SSY m»zm%w&w
NOI SHIANOD J1INVA3S D ? SISATYNY V1SNV
XVINAS 1

S3nevl SISATVNY
334n0s XYINAS

wn
~
=)
—~

~
-m

>

(¢}
=
[Te]
—~




dliia)

Jio b

i

e T

i

=
.
=
3
=
E

I

gé
.
=
.
1
:
£
I
e
4
:
i
.
:
.
:
£
z
3
g
|
-2
P
E

System Development Corporation

15 November 1975 - TM-5243/004/00

4.2.2 The Restructurer

The Restructurer is diagrammed in Figure 4-3. Basically, it is driven by the
conversion table (CTAE) and keeps track of the current CTAB entry. As it
proceeds, it also keeps pointers to the current instances of both the source
and target data for all the levels of the hierarchy involved.

The controller reads the current CTAB entry to determine which module to call.
The different modules correspond to restructuring commands in CDTL (such as
DIRECT, REPEAT, GROUP, etc.). These modules in turn call the READER module
(possibly more than once) to extract the desired value(s) from the appropriate
level of the source hierarchy. The READER uses the pointers ambedded in the
source standard form to extract data values efficiently. The CONCATENATE
module can call on other modules to extract the values to be concatenated.
Then the value returned to the controller 1s written into the target record

in the standard form by the WRITER module. The GROUP and END modules are
responsible for repositioning the current CTAB entry and the current pointers
to the source and target data when a new (lower-level) target group is to be
formed or the current group is to be "closed." Some of the modules mentioned
above can call additional modules to perform lower-level functions, such as
string modification or subset. All modules except the LEVELUP module have now
been implemented.

The controller continues to move up and down the CTAB entries until all source
instances have been exhausted. Then it gets the nixt source record and repeats
the operation. When all source records have been processed, the restructuring
process terminates. Since the Restructurer produces the target data in the
standard form, these data can be used again as input for an additional pass of
restructuring if necessary. Multiple-pass restructuring is sometimes useful
for complex conversions that cannot be readily expressed in CDTL because of our
desire to keep that language simple enough to be used by applications
programrmers.

4.2.3 The Reformatter

The reformatters dv not perform any restructuring of data. Rather, they
perform a one-to-one mapping of values and instances to and from the standard
form. On the input side, the source reformatter is responsible for locating
the source values and instances, using the source data description statements,
and generating the equivalent standard form. On the output side, the target
reformatter is responsible for generating records in a format acceptable to
the target system, using the standard form and the target data description
statements. In either case, a description of the format (input or output) is
necessary.

Rather than have a single refor. atter for all types of formats, we found it
preferable to classify the reformatters by type of formats. There are two
major categories: the pair type and the report type. In the pair type, the




23INIONAISBY DY

(hRi04 QY

T™-5243/004/00

*€-F 2anb1y

System Development Corporation

-ONYLS NI) ¥3LIuM ¥3av3y
_ S1-SV dM3A3 370NN8 mzo_p<mumo JONVLSNI 1V3dR 193410
© ﬂ
0
aN3 no¥o ILVNILVYONOD

un
r~
% 318Vl
) ¥317081NOD DIt s
g
>
[o]
=z
wn
-4

i

B

ST T




e e WW‘WWWW W‘""’“‘”“"W‘W’w’”!l

i ST . T = e

System Development Corporation

15 November 1975 69 TM~-5243/004/00

data base is represented as a contiguous data stream, with values being preceded
by field identifiers. The field-value pair identifies uniquely the field that
the value belongs to. In addition, grouvp identifiers designate new instances,
and group or record terminators are alro sometimes used. A group identifier

can be the field or group name, a number, or another designator assigned to the
group. The report type format can typically be found in the output from data
management systems. In this type, fields and groups are assigned positions (such
as column number), and the start and end of instances follow some convention
(e.g., two line-feeds). A variation of this type, although not common, is the
use of separator markers to separate values or instances.

Anothaer important format type that should be considered is the seguential type.
It is typically found in COBOL or PL/l sequential files and requires a language
to describe its characteristics. It is important to have a reformatter for

this type when we wish to handle data bases that were not generated by a data
management system, A language for the sequential format was investigated by
Housel, Smith, Shu, and Lum [12]}, who have taken a similar approach to data
conversion [13]. The sequential format must also deal with physical char-
acteristics of the data that depend on the particular computer hardware involved
(such as the physical representation of numbers).

In order to test the converter and experiment with large data bases, we have
built several reformatters. We found it practical to have different reformatters
for the different format types.

For the input, we implemented two types of reformatters. The first was a pair
type that could be used with files generated by TDMS (an SDC DMS). The othzr
was a generalized reformatter for directory-type sequential files.* These

are sequential files organized with a directory in front of the different
records types. Each directory has a predefined number of blocks, and each block
contains information about the value of a given field. Since this is too much
detailed information to be specified by means of parameters, a language
definition was necessary. Essentially, the language consists of global state-
ments for the directory and the blocks and local statements associated with

each grouvp «nd field of the data base.

For the output, we implemented a reformatter to a bibliographic search system
called JRBIT. (ORBIT employs a format so different from those described above
that a special formatter had to be built specifically for it.) The other
reformatter generated a report from the "standard form" and 1s used to display
records at each stage of the conversion process. This was a useful tool for
debugging, and it is also useful for displaying a subset of the records to be
converted before committing an entire data base for conversion,

e S e R e R e e e e R e R N RS ikt s TS

*By "generalized" we mean a reformatter that is driven by a language or by a
set of parameters to describe the format of the data stream. This is in
contrast to a special-purpose reformatter for each and every data stream.




System Development Corporation
15 November 1975 70 TM-5243/004/00

4,2.4 Cxperimentation and Performance

In addition to multiple conversions of small experimental data bases, two large
data bases were converted. The small data bases were used in conjunction with
numerous combinations of conversion functions in order to test the restructurer
fully. The large data base conversions were done primarily for performance
measurements. Two large existing data bases (several million bytes each) were
converted. One was a TDMS data base with very large records (our system can
accommodate records up to 70K bytes); the other was a directory-type sequential
file with bibliographic information. The results demonstrated the 5-million-
bytes-per-CPU-minute conversion rate mentioned earlier.

4.3 CNCLUSIONS AND RECOMMENDATIONS

The logical-level approach developed by this project proved to be very successful
in that it provides practical, useful, and efficient user-oriented tools for

data base conversion and restructuring. With a relatively small effort, we have
shown that efficient tools can be implemented and used for converting even very

large data bases.

The dissociation of the conversion process from the storage and physical
representations of data led to the definition of languages (CDDL, CDTL) that
are simple enough to be used effectively by a programmer who is not sophisticated
in dealing with the internal structures of computing systems. No knowledge is
required of inversion tables or of the hashing of data elements; all that is
required is a knowledge of the logical organization of the data base to be con-
verted and of the format of the data stream. The restructuring functions were
designed to be intuitive, involving primarily field-to-field mappings.
Practical considerations, such as the ability to convert only a selected

number of records (rather than committing an entire data base for conversion)
and the ability to run any of the system componernts separately or together,
were also implemented for user convenience. These facilities are described

in a user's guide [14],
We recommend further work in two areas:

1. The development of generalized reformatters for both input and
output for the different format types. We concluded that multiple
reformatters for the different types of formats will be more
practical and less confusing to the user. The reason is that
different format types have very little in common.

2. The development of mechanisms for multiple-hierarchy correlation.
This is necessary in order to accommodate network and relational
data bases. Although most existing data management systems deal
only with hierarchical data bases, the trend is towards more
generalized data structures.

= 2 e e = T e i T = IR,




-

e e e T

TR

System Development Corporation

15 November 1975 711 TM-~5243/004/00
4.4 STAFF
Dr. Arie Shoshani, Project Leader

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

{10]

(11]

(12]

Kenneth M. Brandon

PUBLICATIONS AND REFERENCES

Merten, A. G., and J. P. Fry, "A Data Description Language Approach to
File Translation,” 1974 ACM SIGFIDET Workshop, pp. 191-205.

Ramirez, J. A., N. A. Rin, and N. S. Prywes, "Automatic Generation of
Data Conversion Programs Using a Data Description Language," 1974 ACM
SIGMOD Workshop, San Jose, pp. 207-227.

Sibley, E. H., and R, W, Taylor, "A Data Definition and Mapping Language,"
CACM 16(12), December, 1973, pp. 750-759.

Fry, J. P., R. L. Frank, and E. A, Hershey III, "A Developmental Model
for Data Translation," 1972 ACM SIGFIDET Workshop, pp. 77-106.

Smith, D. P., "A Method for Data Trawslation Using the Stored Data
Definition and Translation Task Group Languages," 1972 ACM SIGFIDET

Workshop, pp. 67-77.

Smith, D. P., "An Approach to Data Description and Conversion," Ph.D.,
Dissertation, University of Pennsylvania, 1971.

Shoshani, A., "The Logical Approach to Data Base Conversion,” 1975 ACM
SIGMOD Workshop on Management of Data Control, San Jose, May, 1975,
pp. 112-122,

Shoshani, 3., and K. Brandon, "On the Implementation of a Logical Data
Base Converter," presented at the International Conference on Very Large
Data Bases, Boston, September, 1975,

Fogt, K., Data Structure Levels in Information Systems, System Development
Corporation Report No., ™-5123, June, 1973.

Bernsteir, M. I., Finil Report to the Director, Advanced Research Projects
Agency, for the Periou 1 October 1973 to 15 September 1974, System
Development Corporation Revort No. TM-5243/002/00, November 15, 1974.

Shoshani, A., and K. Brandon, The Implementation of a Logical Data Base
Converter, System Development Corporation Report No. TM-5590, October,
1975.

Housel, B. C., D. P. Smith, N. C. Shu, ard V, Y. Lum, "DEFINE: A
Nonprocedural Data Description Lanyuage for Defining Information Easily,"
Proceedings of ACM Pacific '75 Symposium, April, 1975, pp. 62-70.

et A e s e = o T T

=i Hairae S R

A



3
g'
=
.
.
§
:
4
=
%

g
E,
E

System Development Corporation

15 November 1975 72 T™=-£243/004/00

(13]

[14]

Shu, N. C., B. C. Housel, and V. Y. Lum, "CONVERT: A High Level
Translation Definition Language for Data Conversion," presented at the
1975 ACM SIGMOD Workshop on the Management of Data, San Jose, May, 1975
(published in CACM 18(10) October, 1975, pp. 557-567).

Brandon, K. M., CODS User Guide, System Development Corporation Report
No. TM-5600, November, 1975.

e e b




