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ABSTRACT

Assume that N mutually independent observations have been
taken from the population specified by

PIX, ¢ Mj}=p’, {=1,2,...,N, j=12,...

where Xi denotes the ith observation and Mj denotes the jth

class. The classes are not assumed to have a natural ordering.

Then the entropy is defined by

-?, P, log By .

A PN -~
The natural estimator H = -Z pj log pj {s shown to have certain
i

deficiencies when the number of classes is large relative to the

H

sample size or i{s infinite. A procedure based on quadrature

methods is proposed as a means of circumventing these deficiencies.
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THE STATISTICAL ESTIMATION OF ENTROPY
IN THE NON-PARAMETRIC CASE

Bernard Harris

1. Introduction and Summary. Assume that a random sample of size N has

been drawn from a "multinomial population”" with an unknown and possibly

countably infinite number of classes. That is, if ){1 is the ith observation

and Mj is the jth class, then

(1) P{Xie MJ}:p >0, j=1,2,..., i=12,...,N,

}

o)
and Y p; = 1. The classes are not assumed to have a natural ordering.
j=1
In such statistical populations, the entropy, defined by

(2) H=H(p, Pyy--.) = -

T8

1 pj log pj

is a natural parameter of interest. For technical reasons, natural legarithms
will be employed throughout, rather than the more customary base 2 logarithms.
This modification is equivalent to a change of scale and will have no essential
effect on the subsequent discussion. We also assume throughout H < » .
Some examples for which H = % are given in Appendix 4.

Some concrete examples for which the entropy is a natural parameter
are the frequencies of words in a language and the frequencias of species of
plants or insects in a region. For such populations, the entropy may be re-

garded as a natural measure of heterogeneity. Many other measures of

Sponsored by the United States Army under Contract No. DAAG29-75.C-0024.
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heterogeneity depend on the classes being nume {cally indexed, which is a
stronger assumption than having a naturai ordering.

We define the random variables Yi)’ 1=42,...,N; §=1¢,... by

1 if X e M,, ,
(3) Yﬂ =
0 otherwise.
Then
Y.=N
2 Y
and

N
1; Rt

is the number of observations in the jth class,

The "natural" estimator of H, denoted by B, where

N o ~
4) H = ‘El B, log B,
and
(5) =AM, 1=12,...

has been studied extensively for the case where the number of classes for which

pj >0 is known and finite. We denote the number of such classes by s in

USSP D O U o et o

this case and assume that these classes are indexed by 1,2,...,s. Then,

G. A. Miller and W. G. Madow [9] showed that the limiting (N - =)

-2- #160&
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distribution of N (ﬁ - H) is normally distributed with mean zero and

s
variance cz = Z pj(log pj + H)Z, provided that not all p, = 1/s . They

J
also showed t}jx;}: if pj =1/s, §=12,...,s, then 2N(H- f1) has a limiting
chi -square distribution with s .1 degrees of frcedom. The Miller- Madow
paper is summarized in R. D. Luce [7]. An asymptotic evaluation of E(?I - H)
is given in G. A. Miller [8]. The above results also appear as special cases
of the more general problem of obtaining the limiting distribution of the amount
of transmitted information, studied by Z. A. Lomnicki and S. K. Zaremba [6].
Subsequently G. P, Basarin [1] also obv.ained the asymptotic mean and variance
of H and determined the limiting normal distribution as above, however, he
failed to note that if pj =1/s, §=1,2,...,s, then NN (H - ﬁ) does not
have a proper limiting distribution. Nct2 that in this case,

s
Y, Py(logp, + H)? = 0
j=1 °
The paper by G. P. Basarin was subsequently generalized by A. M. Zubkov
[10], who permitted Pps Pys e v o3 Pg and s todepend on N in such a way
that for some ¢ >6 >0, if
NEf & 2

2
2‘ lo - -
s j.—.ll pj g P]. H

as N-+-o and max (ij
l1<i<s
had a limiting standard normal distribution. He also showed that if s is

)'1 = o(s/N’l'b), then NN (A - Eff)/(= P, lcgz P, -Hz)

fixed, then 2N(H - ﬁ) has a limiting chi-square distribution when

#1605 -3
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H 1

-l -
max |p3~5 | = o(N 7). In particular, note that in Zubkov's theorem, he
1<j<s

considered H - ES rather than ﬁ - H and required the additional condition

yd ~
that S/JN(J.Z: pj log[p -H) -0 as N-o in orderto rspiace EH by H

i
in the statement of his theorem. This last condition will be violated in many
of the aoplications for which the present technique is intended. In Section 2
we will study the behavior of I?I; here we ¢hserve that for the problem at
hand, }? has certain deficiencies. Roughly speaking, if too much of the
probability is distributed over classes with “small p],'s", ﬁ will not be a

satisfactory estimator, A meth-d for circumanting some of these difficulties

is given in Section 3. The alternatives presanted here are arrived at through

intuitive considerations and a detailed picture of their statistical behavior

is not available at present. Some preliminary empirical investigations are

T (ST |
T

presented to suggest the utility of the proposed techniques.

o)
2. Properties of H . Here we present a somewhat refined version of some

of the Basarin, Miller-Madow results. The refinement is needed to -onnect
one known error in Basarin's paper and to also revise his computation of the

asymptotic variance of H, which is inadequate when pl = p2 = ... = ps =1/s

and pi=0. j>s.

Basarin considered a multinomial population with a kn»>wn finite

number of classes, that is, we have p, >0, j=12,...,5 and p, =0,

j J

j >s . For the present, we adopt this assumption. Then, expanding in a

1aylor series, we can write

¥

il

-4 < #1605
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e st ik at MG T a2 2 s
s m-l s B -p)"
g = . (1) b N
(6) H=H - Z‘J (B - p)) logp, + Z ey Y =S +R
j=1 m=2 j=1 pj
where
r s (3 -p)"
) 17
(7) Rr+l ~ r(r+l) Z r
j=1 ﬁj
and
(8) gj = )‘jpj + (l-xj) pj, 0< Xj <l .
From (6), for fixed §, 1<J<s, we have
A A N
r n-1 (p, -1,)
(-1) j -
(9) j logpj + B log p, - Zz mmy AT Ry, |
i
and
s
Ra™ j; R, j

Then for any e, 0<e <1l and Iﬁ) - pjl < (l-e)pj, we can write

m
2 y™ (8 -»)

e+l § - L m(m-1 m-1
’jm r+1m( ) P,

and

#1605
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=3

Now let A (p

(8)

and since 0<p, <1, °<§j<1 and R

on Ae(p, !

Now Ae(p*’?’j) i{s a compact set and x’ = xj(B

P, onthat set. Thus min \ (p.) is attained and is positive. Hence

J

min . min "
IKj<s by A(p,}
Hence define
(10)
-6-

B,),

|1

R, 1<y I8-pI™/0"
H’lvj - ﬂ?:':f‘l'l i ) i
B »1:’j|”'i lﬁ,-pjl
< — -
- r p
Py J
1, - 5, I
S I
- r
ep}
) = (ﬁ I$ ey | > (l-e)pj, 0 -<-Bj <1} . Then from (7) and
A (_l,r (Sj = pj)r+l
R,y = Rear, i = 1D o
)

] r41, § = 0 if and only if pj = pj . Thus

Rr 4, § # 0 . Consequently,
‘. (-lﬁ (pj p) q}} (p
] r(r+l) Rr+1

j) is a continuous function of

A a3
pye A(Pj)

A * .
xj(p\ = x’; >0, Further note that )‘s is independent of N.

]
1
% % r
A = min(xs, e )
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To understand the behavior of H and to motivate the subsequent decision,

we proceed to obtain asymptctic estimates of the mean and variance of ﬁ

by employing (6). To facilitate the evaluation of these expected values, a
tabulation of some required auxiliary formulas and some comments concerning
them are contained in Appendix 1 to this paper. In fact, we provide some-
what more formulas than are actually needed, since both the Basarin paper

[1] and the book by F. N. David and D. E. Barton {3, page i46] contain some
misprints or errors, also these formulas have frequent applications in problems
dealing with muitinomial distributions and hopefully will prove to be useful

in further studies in the direction on ths present paper.

From (6) and (A.l.1-A.l.6), we have
. r (l)m-l s 1 R m
W BH=H+] ooy Lomr ER Rl e ERy
m=2 i=1

Py

Then letting pm(j) = E{(Zj - ij)m} and noting that E{(i?;j - pj\m} = pbm(j)/Nm ,

we have
r m-1 s p (J)
A \ (-l) m ~
(12) EA=H+) = } ——— +ER .
s m{m-1) = N p;n 1 r+l

From (7), (8), (9) and (19), we have

l A 'f‘f'l
T RSt
IR, | < ree)™ 3

j=1 g,
S lA -p !H-l
1 z j i
- r(r+l) £ rr
j=1 N !

#1605 e



Consequently,
+
l ! S Blpj jlrl
R +1' < EIR = r(r+l) =1 W !
v By
and if r is an odd integer >1,
ER, ¢ —ter T 0
ER | ¢ ———r 0 A* 5
r+l r(r+l)Nhl i1 3| )

Thus, from (A.1.16), for r an odd integer >1, we have

- -(!'*l),{/z
(13) IERH_ll = O(N )

Specifically, using (A.1.1)-(A.1.5) and (13), for r = 5, we get,

2

Y T2N P 2 2
j=1 i 6N j=1 pj

3

s (p°-2p.+pH)

_ I omw?

. 4N2 jzl pf

Thus

14 Ef=H-50 + Ly -3
(14) =H - 33 2-—;,+O(N)

Next ve evaluate the mean squared error of ﬁ, that is, E {(ﬁ - H)Z} .

From (6), we have

-8- #1605




S
(15) (@ - B Z Z (pj -p )(pk - P) logp, logp,

s r m-1 s (B -p)
2 (-1 k “k
'2121 (P, - P,) 1ogxoij=2 e b R

r m+f-2 s P)) (B, ~p, )
Z m((ml)l)!(l 1) Z 24 m 1 mk‘ .
=2 k=1 ~a

1 A 1 (-l)
- -D )
2R, }__ (p;-p,) loqpj + ZRMmZ

r+l

We compute the expected value of (15), employing (A.1.1-A.1.13) and (A. 1. 20),

obtaining, for r = 3,

S S
(16) EY Y (p;~P)) (B, -P,) log b, log p,
=1 k=l
2
s log pjuzm 5 logpjlogpkun(j,k) s log Pju 4,1
=L 3 2 2 - 3
j=i N ik N = N
1 S
=;,-(Y, p, log” p, - H) ,
j=1

#1605 -9-
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3 3 +4 -2 s -
(17) EY L "‘:1)?1 T L ( :’)1 (1pk1 i
mez fzz MM-DIL-D o P e
1 uz?_(j,k) \ ALY pzz(j,j) + ON 3)
z 2
an? Ik Py Px j P, i P,

:4;_2 {(3 -2s+5%) + Xs- 2+20\_,,\“ 1‘2+s)}+o(N~3)

L.y +omd

Y
‘ and
! 3 m-1 s s logp(s p,)(P P)m
(-1) \ )ik Tk
(18) -2E e
mz=2 m{m-1) jgl kz=1 p;:"l
L R [ loapk, k1) .5 logpyuy) , 1og By 0y 1)
S
1 logp u31(k 1) .5 logpju4(i) logpjpn(i,i)
ST 1 Z - 2
SO F I I S R
=~ (Z log by + sH) - —-13 (sH + Y, logpj) + O(N'3)
N N )|
= O(N'3)

We now consider the taree terms in (15) which contain R , 3@ factor. To

consider the first of these terms, we write

-10- #1605




- 4
] S 5 ’ 3 (p 'p)
A _ A W (-A) k k
19 R, Z’; (pj-pj)logpj-jzl(pj-p,)logp, L T3
= = = pk

The expected value can easily be estimoted using (A.1.5), (A.1.6), (1), {A.1.7),
{A.1. 2), the Cauchy-Schwarz inequality, (A.l.16) and (A.1.2C). We
obtain

S
~ _ -3
(20) ER, ;Z’l (P, -p)) logp, = O(N™")

The extensive computation indicated in (19) appeared to be essential, since a
direct application of the Cauchy-Schwarz inequality vields an estimate of
O(N'S/ 2) .

Similarly, from (11), (A.i.20), and (A.1.16), it follows readily that

3 amU s (p-p)"
(-1 1 3 2 -3
(21 R, : = \ +R =0O(N )
41;1—:2 m(m-1) jzl pm-l 4

]

Combining (16)-(21), we obtain

S
2 1 2 2 1,2 -3
(22) E(B-H) =—-( plog'p -H |+— (s -1) +O(N 7) .
N j; i J an’

\

From (14) and (22), we obtain

2

(23) °4

A 2 A - -
-ed-1° - ef-m’ =-1% (Z pjlogzpj—HZ) + S o)
ZN

#1605 -11-
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The preceding discussion enables us to observe a variety of short-
comings, when one employs H as an estimator in the more general situation
described in section one.

First, from (14), we see that the bias of g depands on s, the number
of classes. If s is known, the bias can be largely removed by replacing ﬁ
by g +-s‘;_-'1%-; however, we have assumed that s is unknown. Secondly, it
should be noted thar the bias increases with s . Thus if we permit s to
grow, or if = is unknown, the bias may be large. In particular, we are
interested in the case where s may be of the same magnitude as N . In
this case, we would have to regard s = s(N) and pi = pi(l\;) . However,
from (22) or (14), it is apparent that ﬁ - H will not generally tent to zeroin
probability. Intuitively, it too much of the total probability is concentrated
on cells that are too small, then H will not be a satisfactory estimator.

In the examination of the properties of 13, we found it desirable to
extend Basarin's computations to terms of O(N-Z) . This is desirable

whenever P, = /s, i=1,2,...,s. Inthatcase,

S

:v
G(p), Pps--+sPg) = P

2 2
jlog P, - H
§=1

1 2 2
=s-§log s=log 5s=0

2 ~ 2
and a useful asymptotic estimate of g or E(H-H) is not obtained.

-12- #1605




In summary, if s is known, or known to be bounded (indeperdent of N)
or if the total probability of "small classes" is known to be small, then &1

will have satisfactory properties. In Appendix 2, the maximum of

G(pl, pz, ceay ps) is obtained. This can be utilized in determining the sample
size necessary to obtain a specified mean squared error when s is known

and ﬁ is used as the estimator of H .

LB o A ORS00 st LA s 0111 b

2, Quadrature methods of estimating H. Let

18
)
2

o)

(24) R(P,P,,---)=) Npe I
1772 5 )
We define the distributinn function
-ij
(25) F)= ), Npje  /R(p,Py---)
Np, < x
j_
Then, it follows that
R(pyy P,y---) N © Np -Np
1’72 x N _1 i N i
(26) 5 [ e log)dFm =5 ), e log(zzo-) N, e
0 j=1 }
o0
=-Y p logp, = H
§=) J j

#1605 _13-
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Thus, it is clear that if we knew Py Py

v oy

we would therefore know
F(x) and consequently know H .

The procedure is to use the data to obtain

an estimates of F(x) and thus to obtain an estimate of H, which we denote
by ﬁ .

Specifically, we propose to write (26) in the form

N
(27)

H=[ g(x)dF(x),
0

and to estimate H by

d
(28)

H=Y alx)w,,
i=]
the points xi and the weights w1 are to be determined from the data. We
now proceed to the construction of quadrature formulas of the form of (28).
Let n
r

be the number of cells occuring r times in the sample.
Triviaily, we have

N
(29)

From Appendix 3, we have that

r
w0 (Np]) -ij

(20) En_ ~ e , r=12,..
T 5 r!

where k does not depend on N . The reader should refer to the appendix
for details concerning the sense in which the symbol *~" is used here.

The
moments of F(x), denoted by pr are given by

-14-
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A = - - - = TER- A

N, w r+l -ij
(31) J x dre= T p) e U /Ripy, py, )
0 7

~ (r+l)!} E(nr +l)/£(nl)

The cbserved ‘salues of nr may be regarded as estimates of E(nr)

whenever n, #0 . In this case, we can regard

(32) m_ = (r+l)! nr+l/n1’ r=1,2,...,k

as estimates of the first k moments.

We proceed as follows. If n, = 0, estimate H by (4). If n #0,
select k and determine m, m,, ..., m, . Using these as estimaces of the

moments, we seek to determine a distributfon function whose first k moments

are ml, mz, ceey mk . Unfortunai _ly, it may happen that the " sample moments"
m, m,,..., m are inconsistent. That is, since these are estimates of the
moments of (25) and subject to sampling fluctuations, it is possible that

there is no distribution function on [0, Nj with m,m_, ..., m as its first k
] P2 *

moments. Consequently, we compare m,m,,...m T ! -k with the con-

sistency conditions, which may be found in B. Harris [4]; the simplest of

2
these conditions is m,>m . If m s 1 <7 <k, is the last moment estimate

which satisfies these conditions, we employ m ,m

1 in determining

P mz, ce
‘}“ , («), the estimator of F(x) used in determining ;I

From (31) and from Appendix 3, we can easily see that it is the "small

probabilities" that contribute to Enr, r=1,2,...,k and thus an estimator

#1605 -15-
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t
=
3
o

T

E

of PF(x) :onstructed in this marner will use mainly the information contained
ir the "small pj's" . For the "large pj's", the =stimation of pj by Sj is
satisfactory. To estimate the part of the data that should be assigned to

"large pj's", the following procedurn is followed. Once f‘l (X) is determined,

we compute

A N "
(33) BT =[x df 0, 1=, ez, .
0

from which, we obtain, using (31),

(34) By = B F) 0 /e r= e, ez,

r+l

From these estimates, we define

(35) wr+l =

0 otherwisc.

W provides an estimate of the contribution to the cccupancy numbers

accounted for by the "large cells", that is, not included in F ' (x). A
further modification is necessitated in th~ case of Gauss quadrature formula,
which will be discussed subsequently.

Thus combining the heuristic arguments given above, we obtain

N W+l W+l

n
~ I X N .»
(36) H, =g foe log(;)dFl(X)-kM N logt——)

which is easily seen to have the form (28).

~16- #1605




To amplify and illustrate the above principles, we proceed by using

the Gaussian quadrature formulas, which are the simplest to employ.

Then we have for ?‘l (x), £ =1,2,3, the following:

" 0 X < m1 ,
(37) Fl(x) =
1 m <x ;
l_
Nm -mn
(~ 1 2
0 X < —-—-—N_ml ,
n (N-ml)2 le-m2
(38) F. (x) = <x<N,
2 2 2 N-m -
(N-ml) + (mz-ml) 1
\ 1 X > N ;
mz+m_-m
r 0 X < 1 2
z
z2 mlz+m2 -m
(39) ?3(3() = < > <x<m-z
z +mz-ml
s 1 m-2<x,
whare
E -M -ﬂdzn(m -m2)6
E 3 3 2 1
(40) Z = 2
: Z(m2 - ml)
and
41 M, =m_ - 3m(m mz) 3
(@h 5 T My - 2mimy-m ) - m
#1605 -17-
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The Gauss quadrature formulas 1!sted here have the attribute that for
f arit even integer, positive probability is placed at N. Thus as N~ o,
this provides an asymptotic lower bound for B (see E. B. Cobb and B. Hzrris

[2]). Simultanecusly, the use of (34) prcvides overestimates for ﬁr In

+1°
odd values of f, the use of ?‘l mir.imizes the higher moments, suggesting
that this will account for the information contained in the "small pj's" in a
reasonable way. Accordingly, in the examples that follow, we have used the
minimum values of the moments in (34), feeling that this will be appropriate.
Thus (34) and ?‘2 (x) for odd value of ¢ are to be regarded as providing the
estimates we seek. We report the results for even values of ¢t as well in
the numerical examples that follow for purposes of comparison. The apparent
negative bias is to be noted in each example.

We now turn to some numerical examples to clarify the preceding dis-

cussion and to provide numerical compariscons for purposes of justifying the

proposed technique and the heuristic arguments which suggest it.

4. Numerical examples. The examples which follow are intended tc provide

comparisons between H and H . We present these in substantial detail
with extensive discussion so that the ideas and computational procedures

are clear. Some are artificial in the sense that expected values are employed
instead of "random data". This has the following purpose - if the techniques
described here perform poorly when the data is "perfect”, then it should do

even worse when random fluctuations are im >osed.

-18- #1605
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Example 1. pj = -}-}-, i=12,3,4, Z
N =100, H = log 4 = 1. 38629, H = 1. 37556.

=30, 2. =27, z_, =21, z, =22,
< 3

!

From (14), we have that ER ~ 1. 37117, and from (25), o-zﬁ= . 00015
and E(ﬁ - H)Z = .000375. Note that if s is assumed known, we can improve

i by correcting for the bias, obtaining 8+ 52—'-1\%- = 1. 39056.

3

Example 2. p, = 10’3, j=42,...,10°, N=100. In such a popu-

|

lation, A should not perform too well, since the cell probabilities are all
very small compared to N. Here H = 6.90776. Thus type of populstion is
very favorable to the quadrature method, since F(x) is a degenerate distri-
bution with probability one at ij = .1 and is therefore completely determined

2 3 ;
by My (that is, By My, Ba =y, .en) . The data is nl-85, n, = 6,

n, = 1. Thus, m, = . 14118, m, = . 07059. Further note that H= 4.48903,

also we always have ﬁ < log 100 = 4. 60517,

For k =1, we have W, = .71765. Thus él = 6.49982 . For k=2,

we have HZ = 6.42456. We are not able to proceed to k = 3, since n, = 0

insures that the consistency conditions for m ,m_ to be a valid moment

1M My

sequence on [0, N] are not satisfied.
The estimates Hl and H2 are lower than H . However, this is

precisely as it should be, since En_ ~ 90, En2 ~ 4,5 En_~ .15 and

1 3

thus, as a consequence of sampling fluctuations, the data looks as if it

came from a distribution which does not have equal precbabilities for all cells.

Exampie 3. P = 10'3, i= 1,2,...,103, N = 1000, n =373, n, = 199,

g = 1, ng = l, H=6.90776.

#1605 -19-
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For this data H = 6. 36438, m, = 106702, m, =.99732, m, = . 5475,
m, = . 32172, mg = 1.93029.
To compute I:il, we first set k = 1, obtaining w, s 0, w, = 0, we = 0,
w, = .28345. Thus, we get
;I =7.42779

1

2
Since m, <my, the process terminates here. Here, the overestimate

is precisely what one would expect from the data, since I:‘.n1 ~ 368 . The
observed valuve of n, suggests a larger number of c2iis than are actually
at hand.

Example 4. This example is identical with Example 3 except that

n1=341, n2=179, n3=70, n, =17, n5:2, r:6=1. n, =1. Then
A = 6.29417, m, = 1.04985, m, = 1.23167, m_ = 1.19648, m, = .70381,
m, = 2.1144, m = 14.78006.
For k = 1, we have w, = 7.35875, W, T 55897, we = 0, W = - 39596,
w, = . 90941 and hence ﬁl = 6. 86725.
For k=2, w, =0, i=4,5 w, =.05808, w, =.84214, {iz = 6.71320.

We are unable to proceed to H3, since the cequence ml, mz, m3 is not

4 realizable moment sequence.
We now choose an example fcr which F(x) is again a one-point

distribution, but since N By = 2, the n's will be non-zero for larger value

]
of §.
Example 5. P, = 2/1000, i=12,...,500, N= 1000, nl = 139, n, = 146,

n, = 78, n4=42, n_. = 21, n, = 5 ng =2, ng = 1, Ny = . Then m, = 2.10072,
-20- #1605




so that we

,. 2
m, = 3. 36691, m, = 7. 25180, m, = 18.12950. Here m, < m

compute él . H=6.21461 and A = 5. 9257. We obtain I:il = 7.06270 .

Example_§_. Let pl =P, = p3 = p4 = 1/8, pi =1/2 10'3, i=5,6,...,1004,

N = 200. The data obtained is n = 86, n, = 4, ng N,y =1, n,, =

For this population H = 4.84017. From the data, we have A= 3. 59686 and

I-I1 = 4.75552.

=1, 1, 2, n, =1

The following examples are artificial in the sense that instead of

random data, the expected values of the n, are employed for " small" values

A A o AT s SR 11 e

of r.

Example 7. We are given 2000 cells, 1000 of which have p =1/4000
f and the balance of which have p, = 3/4000. Two thousand observations are
taken. We will examine the behavicr of ﬁ and f—lk as if the ni's were

exactly equal to En1 . Such examples serve to illustrate the motivation for
the quadrature method. In this example En

1

En, = 35.2414, En, = 6.3543, Eng=.9404, Eng = U7, En, = .0125,

En8 =,00l, H =7.47009, and ﬁ = 6.52939. Thus, even with the use

= 548.9751, En, = 157.1906,

Eni in or H has a sizeable negative bias. On the other hand, }31 = 7.41776,

-

H2 =7.280l6, and H_ = H. This last occurs since

3
0 x<.25
F(X) = . 35466 .25 <x<.75
1 x>.75
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That is, F(x) is a two-point distribution and it can easily be seen
that every two-point distribution is uniquely characterized by three moments.
Thus, if rx1 = Eni, it follows that ?3(5) = F(x) and éB = H.

Example 8. This example is extremely artifical, but serves neverthe-
less to illustrate one of the possible boundary situations which clarify the
differences between ﬁ and I:i . Assume that we are sampling from a
probability distribution that is absolutely continuous with respect to Lebesgue
measure on the real line. Every real number is considered to be a separate
class. Then n = N with probability one. Here, one should define H=w,

ﬁ=logN and H =,

Example 9. The Zipf Distribution. A common mathematical model

for describing linguistic as well as other data is the Zipf distrioution given
by

j-S

(42) pj=(§.(s))"1 s>1, j=12,... ,

where {(s) denotes the Riemann zeta function. This distribution is suited
for a test of the quadrature es*timates proposed in this paper, since for "small
values" of [, there are both classes with large probabilities and a sub-
stantial concentration of the total probahility in small cells. For a specific
numerical illustra:ion, we will take s =3/2 .,

We evaluate H and E(n,) forthe Zipf distributions by means of the

}

Euler-MacLlaurin formula, which is particularly suited for this case.

First wz have
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T 45 (s)) (s log§ + log L(s))

[* o]
(43) log £(s) + s(t(s)™ T logi/s®
=1

20
We employ the Euler-Maclaurin formula to evaluate Z logj /jS . To ac-
j=1

complish this we write

» s M-1 s 2 s
Y, logi/i” =}, logi/t” + Y, logi/s
j=1 j=1 =M

Then

) M-1
s S -s+l /IogM I
(44) 121 log /] =j§l logi/i” + M7 \ =5 + (s-l)z)

m-1 B 2v-l
log M,_ Z 2v d logM) ' Rm(M) ,

oM R @V gt ( M

+

where B, are the Bernoulli numbers.

i
We can similarly estimate E(nr), r=12,... . Thatis,

fe o]
~d r_-Np
E(nr) oy z-,l (ij) e M)

r S
(N/r,(sns) e N/ Us

1
Tt

w8

1

#1605
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Here the Euler-Maclaurin formula is also applicable and we obtain,

using only the initial term cf the expansion

NS rros7h
(tsn 5ris

(43) E(n)~

We now apply this to a specific numerical illustration setting s = 3/2,
N = 1000.

Thus, we have, for i=1.7,...,10

E(n)) ~ 94.15584
E(n,)~ 15.69264
E(n,)~ 6.97451
E(n,)~ 4.06846
E(ng)~ 2.7123l

E(n 1.95889

o)~
E(n,)~ 1.49249
E(ng)~ 1.18155
Eing)~ 96275

En,)~ - 80229

To determine H, we note that using (41) with M =4 and m=3 we

get

w 3
., 3/2 1 3/2  -1/2 (log4 Ll \
jZi logi/} —1%1 logj /™"~ + 4 /2 T/

4 ogd _% Bov g?2v-! (logM)] + R (M)
2'43/2 & (2v) 1 dMZV—l M3,/2 | 2
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= .45649 - 3, 38629 + .08664 + .0928] + RZ(M) ,
where |R2(M)l <2.5X% lO'6 . Thus it follows that we can write

o0
H = log 4(3/?) + (3/2 §(3/2))(; 109j/13/2)
=]

~ 3.21811.

We make the assumption that foreach §, j=12,...,n = E(nj) .
This enables us to compare ﬁ and Hk when the datz aro perfect, that is,
the data is completely devoid of sampling errors. Given this artificial

- -~

assumption, we have H = 2.82871, H, = 3.00146, H, = 2.84048, é3= 3. 03918.

~

Specifically H, ﬁl’ HZ’ and H , were computed here as follows in
order to obtain a reasonable comparisor- of their behavior. For pll, Pyy--s Py
the assumption that Sj = 1::j was made. This was employed, since when p
is large, both techniques gives virtually the same result. The remaining p's
were distributed according to their contributions to E(nr), as in the pre-
ceding examples. For detailed information ahout the Zipf distribution and

extensjve references t¢c articles about the distribution and its aprlications,

see N. L. Johnson and S. Kotz [5, pp. 246-247].

5. Concluding Remarks. The estimator I:i described in the preceding sections

is to be regarded as a first attempt to produce an estimator which can circumvent
the deficiencies of the natural estimator I:i . The procedure is by no means
completely analyzed and it is hoped that this work wili stimulate further in-
vestigations into its behavior,
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The following remarks are therefore relevant. We have chosen the Gauss
quadrature formulas, because they are among the simplest. If we fail to
analyze completely the problem for Gauss quadracure formulas, then we are
unlikely to be successful in more complicated situations. The selection of
k produces problems, since for greater values of k, we utilize more information
from the sample ; however, the higher moments are less reliable statistically.
Thus, a way of balancing these two properties is needed. Second, if m_ < m2

2 1°?

we have set m, = mf . However, we could also have increased m, to 'J;z- ’
or chosen any alternative in between. Here again, further investigation is
needed. The same remarks apply to the determination of Wy (35) . The pro-
cedure that we have used provides a sequence of quadrature formulas which
give better estimates as we increase k, when the data are perfect, that is,
En,=n, i=12,... . This is an ad hoc procedure and has not taken ade-
quate account of samp!ing fluctuations.

The-e are two sources of errors in the quadrature methods. Quadrature
formulas of the Gauss type integrate polynomials exactly, but e” log I-i— is
not a polynomial. Secondly, we are aggregating the "small pj's" and treating
them as if they possessed relatively few values, whereas they are in general
distributed over a .egion. This is a form of smoothing, whose properties
are not completely understood at this time.

Further work in this direction is being continued by myself and my students

and we hope to be able to report further results in this direction in the near

future.

-26- #1605




Appendix 1

Some formu.as and relationships for multinomial distributions

In the evaluation of (10) and (22), the central moments of the
multinomial distribution have been used. As a convenience tc the
reader, they have been tabulated here, along with some identities

and inequalities which have been used to obtain order estimates.

3 j )

1 2 s
We denote E{(Z1 - Npl) (Z2 - sz) ces (Zs - Nps) }

by p forevery 1<j, <o, 1<s<o
jljz. [ ] .js - 1 -
(A.1.1) Ky = 0
A.1.2) u_ = N(p, - pd)
i 2 1 1
_ - 2 3
a2, 2 3, 4 L2 3 4
(A.1.4) u4-3N (pl -2p1+pl)+N(p1- ipy +12p -6p)
2, 2 3 4 5 2 3 4 5
.1, = - - ~1 + -6
(A.l.5) ,us 10N (p1 4p1 ~i-5p1 2p1)+ N(p1 Spl 50])l Opl + 24pl)
a3el3 4 5 6
pb =N (151::1 45pl + 4:5pl - 15pl) +
k3
(A.1.6) + N2(25p12 - 180p; + 415pf - 390pi" + 130;{’)
2 3 4 5 6
+ N(pl - 31}:»1 + 180p1 - 390p1 + 360p1 - 120pl)
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(34.1,7) g = -Nplpz
A.1.8 = N(2p°
(A.1.9) B © 2Np1p2'p3
232 3 2
(A.1,10) By = 3N (plpz plpz) + N(-6plpz PP, + 6plp2)
2,22 2 2
Moo = NP P, - PP, - PPy + Pi5,)
(A.1.11)
22 .2 2
+ N(-6plp2 + Zplp2 + Zplpz - plpz)
(A.1.12) b = N%(3p%p.p, - p,p.p.) + N(-6p2p_p_ + 2p.p.p,)
. 211 1P2P3 = PIP,P, 1PoP3t “PP,P;
(A.1.13) = 3N° - 6N
A Foa T 0N PiPRPsPy PIP,P4P, -

These formulas mav be obtained by completely elementary
methods. Further, a number of these are given in G, P. BasSarin [1],

although & is incorrectly stated there. Similarly, all of the above

3
with ZJ, < 4 may be found in F. N. David and D. E. Barton {3,
p. 1461, although LS is incorrectly given there,

From (A.1.1)-(A.1.6), we note that

(A.1.14) by, O, k, =0 ), r=1,2, 3.

2

From the well-known recursion p 0° 1,




- 2 a4 -1
(A.1.15) Frel ” (p1 pl)(Nmr-l + dp pr), r=1, 2, ...

+ 1

it follows that

(A.1.16) b, = O(N), u _1=0(N"1), r=1,2, ... .

2r

We get order estimates for the product moments, that is,
those indexed by more than one subccript by use of repeated
applications of the Caucuy-Schwarz inequality. Specifically, let

g >1 be an integer. Then for arbitrary random variables W.,, W

r o2
ey W q such that the moments given below all exist, we obtain
2
29 2’
(A.1.17) EW,W,... W ) < T EW]
1he 2T T g

When q =1, this is the customary form of the Cauchy-Schwarz

inequality. To apply (A.1.17) to the situation at hand, we define
i
i
W, =(Z, - Np,)  and if in u, s s
i i 1 11]2' . ‘ls
then we define Wi =1, 1=-s+l s+2, ..., 2%, We write (A.1.17)

9-1

in the form 1
d < »4

(A.1.18) leew. w....w )l < {TT Ew!

172 g’ -], i

2 i=1
Thus, for Al < zq, a>1
j i i s
&.1.19) |EQz,-Np,) Yz -Np_) 2...z_-Np) S} | <[TTE(z,-Np
1 1 2 2 s s i=i i

<s<2q, q >1, then

-29-




- From (A.1.14), E(Z-Np,) = =O(N ), 1=1,2, ..., s andhence

‘ q s
3 ] 27 q-!
T B@-Np) -om?  Zyliy .

i=t

: Thus

g s
| [ = 4,/2)
(A.1. 20) byg...g =OM 1=l )3
1'2°""’s
the integer part is a consequence of the fact that N can only appear

in integer powers.

i e e o e sl b e
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Appendix 2

The Behavior of the Asymptotic Variance and Mean Squared Error of B. mn

this appendix we shcow that

S
2 2
(w2.))  max  G(R,P,-.-,B) = max () plog”p -H')
pl, pz, -+ oy Pg P pz, -+ sPg j=1

* % *2
=4p (l-p )/(1-2p )" ,

*&
where p is the largest solutior, in p of

ez 1-p 1-2p
= (s-1)p )

*
This can be used to specify the sample size N necessary to obtain estimates
of H cf a given precision when using B and therefore is of importance when
%
s is bounded; or mcre precisely, when s/N is sufficiently small. The

minimum of G(pl, Py .} = 0 and is trivially attained when

pj:O iel , 1cC{,2,...,s},

-1
pj=|Ic| ) 1eIc, Ic¢¢.

This is easily verified as follows, since then

S
2
log p p, log” p
Ik JeZIC ’

= 1 117 1062 1€
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Further, in this case

Al

-1
H=-3 plugp = %1 1117 10g11°1
51

thus verifying the assertion.

To determine the maximum, we first note that

*
(A.2.2) G (s) = max G(pl, ceey ps) > max G(pl, s P ps 0)

pl,u-,P pl,...,p

s s-1

*
G (s-1

= max G(Dl, ceey ps-l)
Pp+esPg

-1
Now let ps =1 -jzl pj and note that for j

m

H

Dot
-

oo

3G(p}, - --,P,)
(A.2.3) apj = (log pj -lcg ps)(log pj +1c; ps +2 + 2H)
Setting
8G(pl, ceey ps)
(A.2.4) =0, i=hL2,...,s-1,

0
By

we note that in each equation we must have either log pj - log ps =0 or
log pj + log ps +2+2H=0. Clearlyif log pj = logps for j=12,...,s-1,

we have p,=1/s, j=12,...,s and G(pl, Pyse-es ps) = 0, a minimum.

J
Hence there must be at least one j with log p]. + log ps +2+2H=0. Since
for any solution of (A.2.4), any permutation of the indices 1,2,...,s is

also a solution, with no loss of generality, we can set
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logpj+logps+2+2H=0, i=L2,...,t; 1<t<s-l ;

then we have

(A.2.5)
p.=p , j=t4], te2, ..., 8-1 ,

the set of indicirs j for which pj = ps possibly being empty. From (A.2.5),

we have

-

-2-2H
(A.2.6) Py Py = Pl - (s-t)p ) = te

j

L e

For fixed t, let H be any ¥ in the solution set of (A.2.6). Then,

ok = $
pS = pS(H ) has at most two scliations, say psl(H ) and P H ). Thus,

2(
from (A. 2. 5), we have, for every ¥ and every psi(H,r), i=12,

% %
p(H)=p (5} l<jk<t,

j
(A.2.7) y B}
Dk(H )#psi(H y, l<k<t ,

Thus every solution to (A. 2. 5) has the form

8 1-(s-t)ps

(A.2.8) {

This yields
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1-(s-t)p_
H=-(s-t) p_log p_-(l - (s-t)p) log|——zm

Substituting this into (A. 2. 6), we obtain

l--(s-t)ps
tps

2

(A.2.9) e =

l-Z(S-t)pS
, 0<p < (s-t)'1 .

Now the logarithm of the right hand side of (A.2.9) is s convex function of
Py which assumes the value +o at P = 0 and P, = (s~t)"l and the values

0 at p_= 1/s and 1/2(s-t) . Thus there are exactly two solutions of (A.2.9),

1
psl and P, with 0 < Py < \/s 5—2(5-&) <P, < 1/(s-t) . As a consequence

of the preceding discussion, we have that

* 1-(s-1:)psi l--(s-t)pSi
{\.2.10) G (s) = max max G(_'—t—_”""_?—" psi""’psi)
I<t<s-1 i=1,2
= max max Gl(t’ psi) .

I<t<s-i i=1,2

1-(s-tp
Further, note that if (t, psl’ is a solution of (A.2.5), then (s-t, ______t___s_i)

is also a solution and

1-(s-t)p
Gt Pgy) = Gy 8-t =

Thus, we can reduce (A.2.10) to

*
G (s) = max max Gl(t’ psi) .
s/2<t<s-1 i=],2

Hence one can determine the maximum by evaluating Gl(t, psi) for s-1
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choices of (t, psi) . However, an exact computation is possible. Hence

we proceed further.
Note that by using (A.2.1), we have, for i =1,2 ;

1-(s-t)p 5[ 1-{s-t)P

si 2
G(t, psi) = —_— log — + (s-t)psi log psi
l-(s-t)p 1-(s-t)p \
si si 2
- 0 -
Q= 9 s } + (s-t)p_, logp )

2
= (1-(s-t)p,)(s-t) p , (log(l-(s-t)p_,) - log(tp ) .

Then, since Pgy is a solution of equation (A.2.9), we have

log(l-(s-t)p ) - log(tp_)) = 2/(1-2(S-t)psi) ’

hence
4(s-t) p_,(1-(s-t)p )
(A.2.11) Gl(t, psi) = > , =12 .
(1-2(s-tp_,)
Consequently, we define
q‘
(A.2.12) G,(p) = =R gepcr

(1-2p)

where (R (s-t)p31 . Thus GZ(pi) = Gl(t, psi)’ i=1,2. Clearly Gz(p)
is symmetric about p=1/2 . Further, G,(p) is increasing for 0 < p< 1/2
and decreasing for 1/2 <p<1. Consequently

- * *
;ll?xz Gl(t’ P = Glt, p)=Gylp) ,
it
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*
where p* = if Py - 1/2 <1/2 - Py and Py otherwise and P, = p*/(s-t) .

P2
E

We now show that p =p 5

We transform (A, 2. 9) similarly, obtaining

(A.2.13) [15—‘%-:)1'—‘3—)-]1'2"= e, 0<p<l .

If t=s/2, then the left hand side of (A.2.13) is symmetric about p= .5

and consequently p, -1/2 =1/2 - p in that case. Further, since t >s/2
2 1 ’ 28/%,

for p<1/2,
l-p 1-2p = (s-t)(l-p) 1-2p
A 2.1 —
and for p>1/2
(A. 2.15) dmei-2e  (s-t)0-p) \1-2p

P - tp

Thus in general, P, - 1/2 <1/e - Py and p"' - Hence p; = p

Py - S

Consequently, in (A.2.12) and (A.2.13), we can restrict attention to the region

p>1/2 . Thus, we have shown that

G*(s) = max G(t, Py

2) :
s/2 <t<s-l

Further, note that (A.2.13) depends on t and s oaly through (s-t)/t .

Now let s and p> 1/2 be fixed and consider tl’ t2 with s/2 Stl <t, < s-1.
Then
s-t, . s-t
Y )
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and hence

1-2 1-2
(s-t)(l-p) Y7 [(s-t )1 | 7P
———————— < e ————
tlp - tzp

Thus the root ps,(tz) of (A.2.9) is smaller than the root psz(tl) of (A.2.9)

and we conclude

(A.2.16) G (s) = G\- -~

%
whare Py, = psz(s-l) .
The above argument can also be employed to demonstrate the mono-

sk
tonicity of G (s) as a function of s, however this follows immediately from

(A.2.2).
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Appendix 3

In this appendix we justify some of the app.oximations
used in the quadrature method. In the subsequent discussion T
and N will be given real numbers with 0 <7 <1/2<\X <1 and

T+ XA <1l. We now establish the following computational lemmas.

Lemma A. 3.1. Let N - o, Then for any integer r > 0, and any

T
c>0, and r<CcN ,

a+onNZ Yy,

(A.3.1) (I;_I) = ;I!:—

The proof of this lemma is trivial and therefore omitted.

-\
Lemma A.3.2. For r< cN' and p<cN as N-w,

’

(A. 3.2) 1-p)N T = e NP oYy .
The proof of this lemma is trivial and therefore omitted.

-\
Lemma A, 3.3, For r< cN' and p>cN |, forevery ¢ >0

there is an Ne sufficiently large so that for N > Ns

1-\-¢
N N- -
(A. 3. 3) (r)pr(l-p) e e
and
r Tl-)\-e
(A.3.4) Mp) -Np - .

r!

The proof cf this lemma is trivial and therefore omitted.
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Lemma A.3.4. If n is the number of clarses occurring r

times then

S N
En)= ), ()el-p

N-r
=R !

}

Proof. Let Zj =1 if the jth class occursr times in the N

o0
observations and Zj = 0 otherwise. TtThen nr = E Zj and
=]

[+ o] [+ o] o0 o0 N N r

En =E), 2, = Y E2, = Y P(Z, =1} = Y, () j-p))
j:l j:l j:l j:l

Combining al! of the above, we have the following theorem.

Theorem A.3.1. Let 7 and M be given real numbers with

0<7 <-zl<x<1 and T + A <1. Then given a random sample

(xl, Xz, coey XN) of N observations from the population with

P(xleM ) = pj, i=1,2, ..., %, and if n. is the number of cells

)

such that exactly + X'se M

i e then

o0
_ N r, N-r

and for r< N and for every ¢ >0 there is an Ns such that for N > Ne

iAo

e Pra + o)) + Ofe” ).

r
%

I(n) =
r ij.N r!

A -
Proof. There are at most N cells with pj >N )‘; hence from

Lemma A. 3.3 and A. 3. 4,

I_ - ~N-¢ - ‘-)\-61
Z (f)p;(l-pj)h' f< N'e v Le o



The first term is direct from Lemmas A, 2.1 and A. 3. 2.

We now obtain:

Tucoren. M. 3.2, For T and N suchthat 0<7T< —;-< A <] and

T+ X<1, we have
, I;ij
{Np,) 1-N-¢
-\ -
Em)=a+oN )y § o —L o™y,
Y r!
pjsN

Procf. We utilize the easily established fact that if a, bi are
a a,

pocitive numbers, { =1, 2, ..., and B zgi, i=12,... then
0 i
a_ag § Z‘..ai
-_—%
b0 “bi
-\ T
Then for pjg_N , T<N | we have
N r N-r
( )p,(l-p,) . TP, T -\
-1)...(N- Y
r jr i o N(N 1)1r (N rHLe ]seN =1+ O(N" )
Np,)’ -N N
{ P . P,
ri
Thus
N r N-r
Z ) (r;pj(l-p.)
p,<N
- T-\
] - =14+ O(N )
. (Np,}' -Np
: y e
3 - !
3 p<N
j—-
3 The conclusion follows from Theorem A. 3.1,
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Appendix 4

In this appendix we provide two examples of populations for

which H = o,
T 1
Example 1. Since Z =c<%. Let

171 (1+1)log2(1+1)
P, = 1/o(i+l)log?(j+1), §=1, 2, ... . Then log p, = -log ¢

-log(j+l) - 2loglog (j+1). Then

+_2 log log(j+1) 1
-ijlogpj:_z Jog c + log(j+1} + 2 log log(j+l S _?

j cli+)logZ(j+1)

Example 2, Let my be the smallest non-negative integer such that

Zk k mj
mkzr-k, k>1. Let M0=0, Mk=jz_;12 . Define
-k-m
= k
P, 2 for Mk_1<15_Mk, i an integer. Thus 0<pi<l,
i>l,
M m
o0 00 k o k o
1 : 2 1
) L ) e ) e
i1 0 kA eM i 2k k2 kL 2K
Using logarithms base 2, we have
M m
Z E ;“ L 2 k(k+mk)
-p,log_p, = ), -p,logp, =) ——— =
e BRI il R Vi 13 k+m,
k-1 2
2k
=§ k+mk >§9 k+(-k—-k) =§ -lz .
k1 25 Tka X vz K

#1605
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