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NOMENCLATURE

amnlitude at the test section

amplitude at the free surface

added-mass coefficient, C,-1

drag coefficient through Fourier analysis

drag coefficient through least squares methcd
semi-peak-to-peak force coefficient

measured maximum force coefficient

maximum transverse force coefficient

root-mee -square of the normalized transverse force
inertia coefficient, Cm = Ca + 1, through Fourier analysis
inertia coefficient through least squares method
effective diameter

Fm - Fc

force

calculated force

drag component of the force

inertial component of the in-line force

measured in-line force

relative frequency, fVT

frequency of the transverse force

gravitational acceleration

see Fig. 5

Keulegan-Carpenter number, UmT/D = 27A/D
roughness height, k/D = relative roughness

length of cylinder




Re

Re
St

Reynolds number, UmD/v
(also referred to as the diametral Reynolds number)

roughness Reynolds numbet:, Umk/v
Strouhal number, va/Um = fr/K
period of oscillation

time

instantaneous velocity

maximum velocity

velocity in steady flow

width of the test section

frequency parameter, Dz/vT

a coeff.cient, see Eq. {31)

2nt/7T

error parameter, see Eq. {19)

error coefficient, ¢.e Eq. (16)
kinematic viscosity

density of water

goodness-of-fit parameter, see £q. (17)

phase angle
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I INTROOUCTION

The work reported here is part of a wider research prograu undertaken
ét the Naval Postgraduate School to study the characteristics of periodic
flow past bluff bodies. It was prompted in part by.th2 current practical
interest in ocean and wind engineering and in part by the need for more
basic hydrodynamic data on flow-induced forces on structures.

Much of the present knowledge on time-depandent foices acting on bluff
bodies in general and on circular cylinders ir particular has been obtained
by means of model tests in wave channels or in wind- or water tunnels at
Reynolds numbers generally two to three orders of magnitude smaller than
prototype Reynolds numbers. These model tests have relied heavily on the
so-called Morison formula expressing the force as the sum of a velocity
dependent term known as the drag and an acceleration dependent term known
as the inertia force. This formula became a focus for research devoted
primarily to the determination of the appropriate arag and inertia coef€i-
cients and gave rise to large quantities of data. There has veen a yrowing
awareness that the coefficients obtained at relatively Tow Reynoids numbeis
may not be applicable at higher Reynolds numbers, that the transverse forces
acting on the elements of offshore structures may be as much or more impor-
tant then the in-line forces given by the Morison formula, and that the
initial or growing roughness may significantly alter the forces acting on
the structure. This awareness is more of practical than academic inter :st
for the margins of error previously tolerated are nu longer acceptable.

In view of the foregoing consideraticns, the present research program
was undertaken with two main objectives: (2) to identify the physical
mechanisms and parameters responsible for the correlation or scatter of the

force-transfer coefficients; and (b) to furnish data, obtained under

11
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carefully controlled laboratory conditions, about the in-line and transverse
forces acting on smooth and rough circular cylinders in a sinusoidaily
oscillating fluid at relatively large amplitudes and Reynolds numbers.

Tnis report does not deal with ocean waves, non-harmonic fiuid oscil-
lations, wave and current combination and its consequences, diffraction
effects, free-surface and/or wall-proximity effects, fluid elasticity or
hydroelasticity of flexibie or vlexibly supported cylinders in harmonic
fluid motion and with the interference efrfects between neighboring
structural elements.

Furthermore, no attempt is made to offer a chronological and/or
critical survey or a 'state of the art' appraisal of the fluid loading on

cylinders or offshore structures. Fairly complete accounts in the context

of wave forces are given by Wiegel [1], Hogben [2]1, and Grace [3], where
an extensive list of references can be found. Only those works which have
a direct bearing on the evaluation ard/or Jiscussion of the present data

will be reviewed in some detail wherever appropriate.

12
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II. FORCE COEFFICIENTS AND GOVERNING PARAMETERS

A.  CONCEPT

A completely satisfactory analysis of the resistance in unsteady
separated flow has escaped the concentrated efforts of many researchers.
No theoretical model can, at the moment, predict the compiete force and
flow characteristics of a periodic flow about a circular cylinder. In
the absence of such an analysis, the most serious difficulty lies in the
description of the time-dependent force itself. Other difficulties arise
in the description and interpretation of the history of the motion and
of the effect of vortices. One approximate and physically meaningful
way around these difficulties is to assume, following Stokes' classic
analysis of the osciilating pendulum, that the total time-dependent in-
Tine force may be expressed as a sum of a velocity-square dependent drag
and an acceleration-dependent inertial force, each with a suitably-

averaged force coefficient. This then is the basis of the so-called

Morison's equation [4].

B.  IN-LINE FORCE

Data reduction for the forces in-line with the direction of oscillation
is based on Morison's equaticn and three different analysis of the force
records, namzly, Fourier analysis, least squares, and a modified least-

squares method.

The in-line force which consists of the drag force F, and the inertia

d
force F1 is assumed to be given by [4]

F=Fy+F, = o.schDplulu ¥ o.zsanDZCmdU/dt (1)

13




in which Cd and Cm represent respectively the drag and inertia coefficients
and U the instantaneous velocity of the ambient flow. The fact that Cd and
Cm are history dependent may be demonstrated with a rather instructive
example. Consider an impuisive change superposed on an already estabiished
viscous fiow patiern. Just prior to the impulsive change, the drag coeffi-
cient is given by its steady state value at the corresponding Reynolds
number. Sears, as reported by Rott [5], nas showr that “"the initial motion
following the impuisive change of the boundary conditions consists of the
superposition of the velocity pattern existing just befuce the change and
the inviscid flow velocity pattern due to the impulsive boundary values
{together with the corresponding infinitely thin wall vortex sheets)". In

other words, at the initial instants of th2 impulsive change C, is equal

d
to its steady state value and Cm = 2. As time progresses neithev Cd nor
Cm remains the same and changes with the changes in the flow, ever dominated
by the past history and ever affected by thr: gross features of the current
state.

For an oscillating flow represented by U = -Umcose, with 9 = 2xt/T,

the Fourier averages of Cd and C_ are given by Keulegan and Carpenter [6] as

27
c 3 /- chosed (2)
= ow e 3]
d 4 SU2LD
0 ]
and 2n
2U-T F.sine
C, - m f B e ds (3)
=D pU2LD
0 m

in which Fm represents the measured force. Evidently, Cd and Cm are the
first two terms in a complete series expansion of the normalized force in

terms of the odd integers in sines and cosines. Additional coefficients

14




in the series may be calculated in a manner similar to that done by

: Keulegan and Carpenter [6]. An equally satisfactory and somewhat simpler
:'_‘ ’ procedure is to use these two coefficients to evaluate the difference

3  l between the measured and calculated forces as a function of the appropriate

' parameters. The use of such a procedure is preferred herein for two reasons.
Firstly, previous studies by Keulegan and Carpenter [6] and Sarpkaya [7]
have shown that £, and Cp, as given by equations (2) and (3) are the most

; significant ones and sufficient 10 represent the measured force adeguately.
Srcondly, the Fourier analysis, as cited above, assumes the symmetry of

both the measured force and the imposed fluid motion, i.e. F(8) = -F(e6+r).

As will be discussed later, this is not always true and that a perfectly

P 2 A
¢

uniform harmonic motion about a symmetrically situated cylinder can give
rise to an asymmetric flow and unexpected single vortex formation in

?é . certain ranges of the governing parameters. This in turn results in an

asymmetry in the measured force. Obvious consequences of this asymmetry
é are that the maximum force in a cycle is not equal to the mean of the

X maximum forcas (semi-peak-to-peak value) and thot the mean value of the

transverse force is not necessarily zero.

;z The method of least-squares consists of the minimization of the error
;i between the measured and calculated forces. Lettisg Fm represent the
;% instantaneous measured force and F. the force calculated through the use
'g of equation (1), and writing

- 2

¢ B2 = (F, - F)) (4)

Pk

. E and dFZ/dC_ = 0 and dE2/dC, = 0, one has

- |

2 B p 2n Fr |C°S°I cos8 d (5)
: = - — 3
) dis 3 2

: i " pDLUS

X

1 i5

>
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and

Evidently, the Fourier aralysis and the method of least-squares yield
identical Cm valuas and that the Cd aliles differ only slightly.

The error between the measured and calculated forces, particularly in
the neighborhnod of the maximum forces, may be further minimized by choosing
the square of the measured force as the weighting factor in the least-square
analysis. Thus writing,

2 . e2p . p 2
E¢ = Fo(F - F_) (7)

C

and dEz/dCd = 0 and dsz/dcm = 0, one has

2 fsfz - f4fp

C = (8)
dff pLud -
pDLUm f4f] f3f3
and )
fefy _ fof
T 51 - "32
(9)

C =
M n3oLAD? f,f, - fofy

in which A and T represent respectively the amplitude and period of the

oscillation and L the iength of the cylinder. The functions fi are given

by
2n 2 4 Z2n 3
f] =%' Fm cos ede 1’2 =%’ Fo cosa!coselde
(10)
2, &, 21 3
fy =‘€ Fe sina|cose]cose do , fy =%' Frosin‘e ds , f, =g.ﬂ" sing de

Equaticns (8) and (9) may te shown to reduce to equations (5) and (6) by
replacing F; in equations (10) by F;-z and carrying out the necessary
integrations in whica Fm does not appear.

It is recognized that Cm and Lq are only time-invariant averages and

16




are nct constant throughout the cycle. This report will not deal with the
instantaneous values of these coefficients.
. In addition to those cited above, the following coefficients are of
special interest.

The semi-peak-to-peak value of the czlculated maximum force in a
cycle, denoted by Cf(spp), in terms of the diag and inertia coefficients
ﬁd and Cm is given by

A ,

\ =
Cplshp) = Cq +~mTx (%)
4C4

P

in which K = UmT/D = ZxA/D and Um’ T, ana 0 represent respectively the
maximum velocity in a cycle, the period of the sinusnidal oscillation. and
the dizmeter of the cylinder. Thus, Cf(spp) is a measure of the calculated
maximum force.

Measured maximum force coefficient, denoted by Cf(mes), js defined by

maximum 0f the measured force in a cycle

0. sanuf]

(12}

Cf(mes) =

As will be noted later, Cf(mns) i nut necessarily equal to either Cf(spp)
or to a similar coefficient obtained through the use of the semi-peak-to-
peak value of the measured force.

Another important characteristic of the calculated and measured forces
is their rout-mean-square (rms) values. The rms val-.e of the calculated
foroiz, denoted by Cf(rms), may be shown, through the use of equation (1), to
reduce to

4.2
. c.(rme) -Y - c2 +-"--c-‘-.“- (13)
£ ¢ o2
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The rms value of the measured force, dencved by Cf(arms), is calculated

in the usual manner by numerically evaluating the integral given by

) T
Cf(anns) =!r-f-—---m-—- dt (14)
(0.59LDU§‘}2

Evidently, Cﬁ(rms) and Cf(arms) should have compar2tle magnitudes for
identical values of the gover:iing parameters.

It has been evident for quite sometime that equation (1) does not
represent the measured force tc the same degree of accuracy for ail values
of tha governing parameters. It is, therefore, necessary to define and
evaluate suitable coefficients expressing the difference between the
measured and calculated forces. For this purpose three new coefficients

have been defined. The first is the per cent error defined by

A(8) - Fe (15)

Fm(max)
in which Fm represents the measured force, Fc the force calculated through
the use of equation (1), and Fm(max) the maximum of the measured force in a
cycle,

The second error coefficient is defined by

= Fr(mex) - Fgﬁfax)

Fm(max)

Evidently, the maximums of the measured and calculated furces do not occir
at the same t/T because of the difference between the calculated and
measured phase angles. Thus, it should be emphasized that Fc(max) in
eouation (16) represents the maximum of the calculated force, as its

definition cléarly implies, and not the calculated force at t/T at which
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the measured force reaches its maximum. Consequently, the maximum of A(#)

(which may or may not result either from the difference between the maximum
of the measured force and the force calculated at the same t/T or fyom

the difference between the calculated maximum force and the measured force
at the same t/T) is not equal to A*.

Even though x(8) is some measure of fitness, its perusal is practically
impossible for it represents about 50 values per cycle and about 30,000
values for the set of data presented herein. Thus, a simpler measure of
the goodness-of-fit is needed. For this purpose, the following definition

is adopted

! 2
IT (Fp -F )¢ dt

T
2
Fo dt
[ Fn

o =126

(17)

— |._.. O

and evaluated for each run.

C.  TRANSVERSE FORCE (LIFT) COEFFICIENTS

This particular component of the total force has been continuously
recorded and analyzed in as much detail as possible for several reasons.
Firstly, its amplitude could, under certain circumstances, be as large as
that ¢f the in-line force. Secondly, the transverse force could give rise
to flui.-elastic cscillations in wavy flows and to fatigue failure.
Thirdly, even the small transverse osciliations of the body distinctly
reqularizes the wake motion, alter the spanwise correlation, and change
drastically the magnitude of both the in-line and transverse forces.

In the present study no attention is given to structural movemant
and/or response and the test cylinders are held in position with

imperceptibly small motions as will be described later. Thus, in the
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following we will be concerned only with the transverse force coefficients
for rigid cylinders in uniform harmonic motion.

The transvzrse force may be analyzed in various ways. Some of these
are listed below:

a. tne ratio of transverse forces to in-line forces. The reference
forces may be taken as their maximums (maximum peak values, irrespective
of the phase angle between them), as their everage macimuns (mean peal.
values, particuiarly for wave basin studies), cr as their rms values.

Such a ratio may be useful in providing gross design information:

[d

b. in terms of a Fourier series in which the coefficients for all

the harmonics ot the transverse force will nave tp be evaluated through
the use of the experimential ‘Jata;
c. in terms of the transverse force coefficients for each harmonic

throush the use of the definition

c = F(maximum of the n-th harmonic of the transverse force) (18)
L :
" 0.50DLE

(]
"»

d. in terms of a maximum 1ift coefficient refined by

maximum peak of the transvei'se force (19)

C (max) =
L 2
0.5pDLUm

2. in terms of the mean or semi-peak-to-peak value of the transverse

force as
semi peak-to-peak value of the transverse force

CL(spp) = B P (20)
0.50DLU°
m

f. in terms of the rms value of the transverse force as

CL(rms) _ ms value of the trgnsverse force (21)

O.SpDLUm
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Finally, the frequency of the transverse force may be analyzed in
terms of frequencies of each harmonic and/or in ¢terms of a spectrum
analysis.

Other force coefficients based on velocities such as those corre-
sponaing to maximum in-line force rather than to maximum velocities will
not be cited here in orde: not to confuse an already sufficiently complex
subject.

[r. the present study, the transverse force 1~ evaluated in terms of
CL(max) and CL(rms). In addition, the fregquency of the force oscillations
are detevmined in terms of the governing parameters. No attempt was made
to separately analyze the amplitudes of the harmonics of the transverse

force.

D. GOVERNING PARAMETERS

A simple dimensional analysis of the flow under consideration (uniform
harmonic mction about a circular cylinder placed with its axis normal to the
flow) shows that the time-dependent force coefficients and error functions

may be written as

F(in-line or transverse force)

2
O.SpDLUm

f(UT/D 5 U D/v , t/T) (22)

(K, Re , t/T)

and

a(e) = g(K , Re , t/T) (23)
Evidently, UmT/D may be replaced by 2=A/D or simply by A/D.
Equation (22}, combined with equation (1), assuming for now that the

latte is indeced valid, yields

cd = f](K » Re , t/T) (24)
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Cm = fZ(K » Re , t/T) (25)

There is no simple way to deal with equations (24) and (25) even for the
most manageable time-dependent flows. The evaluation of the instantaneous
values of Cd and Cm in a manner similar to that done by Keulegas and
Carpenter [6] is not always valid for the assumption of the coefficients
Cd and Cm each having equal values at By = /2 + a and 92= /2 - a, where
a is an angle less than /2, or at 6y = 3n/2 + « and 8, = 3n/¢ - a or at
8] =+ 8 and 92 = ¢ ~ 8, wner2 g is an angle less than =, dces not always
hold true. This is because of the single-vortex ‘:hedding shenomenon noted
earlier and the resulting asymmetry in the in-line force. This aspect of
the problem requires a stability analysis of the vortex motion in harmonic
flow about cylinders.

Ancther and perhaps the only other alternative is to eliminate time
as an independent variable in cjuations (22) through (25) and consider

suitable time-invariant averages of the force coefficients. Thus, one has

r 9
Cq
¢
m
) Cd(rms)( = fi(K , Re) (26)
A*
. -

Even the equation (28), as simple and idealized as it is, gives rise
to meny questions: Do th: averaged coefficients really depend on both K
and Re?; are K and Re the most suitable governing parameters?y can one

obtain meanirgiul conclusions by plotting the data for a given coefficient
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with respect to, say, K and connecting points having equal Re or vice-
versa?s how should the experiments be conducted so that equation (26)
yields manageable plots?s which of the two parameters, if any, has a

more pronounced effect on the force coefficient under consideration?;

why has there been considerable scatter [1] in the field data when plotted
with respect to either K or Re?; are there ranges of K and Re in which

the effect of one is obscured by a reasonable correlation of the force
ceefficients with the other? These and similar questions have been raised
by many investigatois and attempts were made to establish suitable
correlations. The state of the art is such that the past conclusions and
conjectures can pbe critically scrutinized only through the acquisition of
reliable data obtained under ccntroiled laboratory corditions with
relatively simple and hopefully two dimensional harmonic flow situations.
The purpose of such an effort is by no means to remove the need for

actual full scale experience. In fact, it is to encourage full scale
experiments and to enabie those concerned to interpret and better under-
stand the factors effecting the force-transfer functions.

Let us now return to equation (26) and to the discussion of the
selection of the most suitable parameters. Past experience [6, 7] has
shown that *he force coefficients are primarily functions of K at relatively
small Reynolds numbers and that the effect of vis¢0sity is obscured Lty th2
~xcellent correlation between K and the force coefficients. Again previous
efforts and the reasoning based on dimensional analysis have shown that
there is an undeniable effect of the Reynolds number. Thus mears have to
be devised to delineste the effect of both K and Re or some other viscosity
dependent parameter.

It appears, for the purposes of equation (26), that the Reynolds number

is not the mos. suitable non-_imensional parameter involving viscosity even
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though in most nther flow situations "Reynolds number is the liveliest

of all the non-dimensional paramefers". The primary reasons for this are
that the effect of viscosity is relatively small and that the maximum
velocity Um appears in both K = UmT/D and Re = UmD/v,

Simple rules of dimensional analysis state that one obtains the
maximum amount of experimental control over the dimensicnless variables
if the original variables that can be regulated each occur in only one
dimensionless product. Thus, if Um is easily varied experimentally, then
Um should occur in only ore of the independent dimensionless parameters.
With this hint in mind, let us reconsider equation (26) and replace Re by
Re/K = DZ/vT. This parameter shall be called the 'frequency parameter’
and denoted by 8 so that

B = D2/vT (27)

Evidently, for a series of experiments conducted with a cylinder of a

given diameter D in water (of uniform and constant temperature) undergoing

harmonic oscillations with a constant period of T, 8 is held constent.

Then the variation of a force coefficient with K may be plotted for constant

values of B. Subsequently, one zan easily recover the Reynolds number from
Re = K8 (28)

and connect the points, on each g = constant curve, representing a given

Reynolds number for suitably selected values of the Reynolds number. Such

a procedure eliminates the difficulty of trying to draw contours of constant

K, or constant Re, or constant Cd or Cm in plots of C, or Cm versus K or Re,

d
or K versus Re.

Suffice it to note that the smooth cylinder data reported herein shall
be analyzed according to the relationship

C.(a coefficient) = fi(K , B) (29)
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and the Reynolds number will be used in the manner described above. The
power of this new pletting procedure (new as far as the wave force analysis
is concerned) will become apparent later.

A few words about the frequency parameter 8 is necessary before
proceeding further. It is oftan encountered in the analysis of periodic
flows. For example, the exact solution of the ilow in a pipe due to a
periodic pressure gradient shows that [8] the velocity distribution is
a function of g, among other parameters. The stability character’'stics
of such flows are also determined by g as shown by Sarpkaya [9]. Additional
discussion of the role played by g will be presented in connection with the
discussion of results.

Let us now re-examine a set of data previously obtained by others [6]
partly to illustrate the use and significance of K and 8 as the governing
parameters and partly to take up, as early as possible, the question of
the effect of Reynolds number on the varicuc force coefficients.

The data given by Keulegan and Carpenter [6] may be represented by
12 different values of 8. The drag and inertia coefficients for each B
are plotted in Figs. 1 and 2 and <onnected with straightline segments.

The individual data points are not shown in order to keep the figures
relatively clean. A careful examination of these figures reveals several
important facts: (a) in Fig. 1, the data corresponding to g = 2935, which
fall in the region where the drag forces are small relative to the inertiai
forces, show peaks and valleys which may or may not be due to the experimen-
tal errors; (b) the data corresponding lo B = 141 appear to be out of place
relative to those corresponding to 8 = 97 and B8 = 217; (c) in both figures
the range of K for each 8 is relatively narrow; and that (d) the identi-
fication of the individual data points in terms of the cylinder diameter,

as was done by Keulegan and Carpenter, irrespective of the g values gives
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the impression of a scatter in the data and invites one to draw a mean
drag curve through all data points. Such a temptation is further increased
by the fact that the data for each g8 span over only a small range of K
values. Evidently, the drawing of such a mean curve eliminates the depend-
ence of Cd and/or Cm on 8 and hence on Re.

Also shown in Figs. 1 and 2 are points representing four selected
Reynolds numbers. The K values for each Re and B were calculated from
¥ = Re/g and are shown in Table-I together with the run numbers (used by
Keulegan and Carpester) and cylinder diameters. Note that for runs 34
through 38, 8 = 217 and D = 0.75 inches, and for runs 90 through 93,
g = 141 and D = 0.75 inches. The difference in 8 values for the same
cylinder stems from the fact that the two sets of experiments were conducted
at different water temperatures. Simila:r comparisons may be made between
runs 20 through 24 and 82 through 85, and between runs 39 through 41 and
86 through 89. In fact, this is the reason why 9 cylinders used by
Keulegan 2nd Carpenter yield 12 different g values.

The points corresponding to the suitably selected Reynolds numbers
(re = 10,000, 15,000, 20,000, and 25,000) are reproduced in Figs. 3 and 4
and connected, as carefully as possible, with smooth curves. These figures
show, within the rance of Re and K values encountered in the data of
Keulegan and Carpenter. that (a) C, depends on both K and Re for all values

d
of K and decreases with increasing Re “or a given K; (b) C deserds on both

K and Re for X larger than approximately 15 and decreases with increasing Re;
and that (c) the dependence of Cd on Re as viell as on K for K > 15 is more

significant than the apparent dependence of C, on Re for K < 15 and of Cm

d
on Re for K > 15. The reason for this is that the experimental errors in
Cm for K > 15 (where the inertial force is relatively small) and in Cd for
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TABLE-1
Diameter in K for K for K for K for

Run No. inches [ Re= 10,000 Re = 15,000 Re = 20,000 Re = 25,000

1- 9 3.00 2935 3.4 5.1 6.8 8.5
10-14 2.50 2106 4.8 7.1 9.5 1.9"
15-19 2.00 1360 7.4 11.0 14.7 18.4"
78-81 1.75 987 --- - I i
20-24 1.50 796  12.6 18.8 25.1 a.4"
82-85 1.50 701 14.3 — —_— -
25-29 1.25 560  16.9" 28.2 34.6 84.6"
30-33 1.00 387 25.8" 38.8 51.7 —
34-38 0.75 217 46.1 69.1 S —---
90-93 0.75 173 J— — —--- -
39-4] 0.50 97  103.1 — ——-- —
86-89 0.50 78 - S - —

* Points plotted with a small extrapolation of the g lines beyond the

limits of the data given by Keulegan and Carpenter [6].
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K < 15 {where the drag force is relatively small) are likely to be large.
Notwithstanding this fact, Figs. 1 through 4 show unmistakably the depend-
ence of Cd and Cm on both K and Re zid help to put to rest the Tong
standing controversy regarding the dependence or lack of dependence of

the Keulegan-Carpenter data on the Reynolds number. These figures also
show the importance of g as one of the governing parameters in interpreting
the data, in interpolating the K values for a given Re, and in providing
guide lines for further experiments as far as the ranges of K and B are
concerned.

The foregoing is not the first attempt to show the role played by
viscosityf The previous attempts have all been based on drawing mean lines
throuah bands of Reynolds numbers or relative amplitudes or K values.
Thirriot, Longree, and Barthet [10] have classified the drag coe‘’ficient
by bands of Reynolds numbers and plotted them as a function of A/D. This
plot then yielded two other plots in which Cd is plotted as a function of
Re for constant values of A/D. One of the plcts is for A/D < 1.6 and the
other for A/D > 2. Such plots do show the dependence of Cd on Re as well
as on K but they are not as unambiguous as those presented herein.

Thirriot et al. [10] did not deal with the inertia coefficient either
in Keulegan-Carpenter data or in their own experiments. Isaacson [11]
replotted Keulegan-Carpenter data by drawing K = constant lines through
bands of K values in a plot of Cm versus Re. This plot shows, as we have

shown in Fig. 4 that, Cm decreases with increasing Re for a given K.

* This writer, working with John S. McNown and Garbis H. Keulegan in
1957, found among many plots and cross-plots of Keulegan's data some indi-
cation of the effect of viscosity. But the plcts were never as clear and

definitive as the ones presented herein 18 years later!
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As we shall see later; this conclusion as well as the data which it 1s
based on appears to be incorrect.

Thirriot et al. [10] have oscillated cylinders in a tank of still
water and carefully recorded all of the experimental difficulties. They
have found that their own data, like those of Keulegan and Carpenter, show
a dependence on both Re and K. Thirriot et al.'s data are not given in a
tabuiated form. Thus, no attempt is made here to replot them through the
use of the parameters K and g. One of the most important findings of
Thirriot et al. was the existence of a second maximum in Cq for very small
values of K or A/D, (e.g. at Re = 1.25x104 the maximums occur at K = 18
and at K = 4). The second maximum at K = 4 is about 60% lower than the
first maximum. Thirriot et 21. [10], having underlined the experimental
difficulties encountered with the free surface, cylinder supports, oscillating
mechanism, etc., did not elaborate further on their data and chose to give
“des résultats a 1'état presque brut."

It was noted earlier in connection with the discussion of Fig. 1 that
.he Keulegan-Carpenter data for g = 2935 show some irregularity which may or
may not be due to the experimental errors. It is noted that for g = 2935,
Cd rises to a maximum of 1.23 at K = 4.3 and then decreases to 0.91 at
K- 5.2 and so on. This maximum occurs at a Reynolds number of 1.25x104
and is about 56% of the maximum value of Cd for Re = 12,500 (see Fig. 3).
It may be concluded tentatively, on the basis of the strong similarity
between these values and those noted above in Thirriot et al.'s data, that
the rapid changes in Keulegan-Carpenter data for g = 2935 are not due to

experimental errors and do indeed reflect the true changes in C We will

”
return to the discussion 4f this point Tater in connection with the discussion

of the data obtained in the present investigation.
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III., EXPERIMENTAL EJUIPMENT AND PROCEDURES

>

OSCILLATING FLOW ABOUT A BODY Av REST VERSUS OSCILLATING BODY IN

A FLUID OTHERWISE AT REST

Mathematically, there is nc aifference between the two situations.

As siated by Batchelor [12], "The equation of motion of a fluid in the

moving frame is therefore identical in form with that in an absolute frame

provided we suppose that the fictitious body force -f0 (assuming a non-

rotating frame) per unit mass acts upon the fluid in addition to the real

body and surface forces". "-fo is simply the apparent bcdy-force that

compensates for the translational acceleration of the frame." In other

words, the inertia coefficient Cm for the fluid accelerating about a body

at rest is equal to Cm =1+ Ca where Ca is the added mass coefficient.

For an ideal fluid flow (or for the initial instants of an impulsive change

in the velocity of a real fluid) aoout a cylinder, one has Cm = 2 and

Ca = 1. The transverse force remains unaffected since there is no additional

net 1ift on any body element aligned in the transverse direction [11].
Experimentally, there are significant differences between the difficulties

encountered in the two situations. In fact, the selection of one situation

over the other has to be based on an extremely careful consideration of all

the known and anticipated difficulties, errors to be tolerated, forces to be

measured (in~line and/or transverse), the purpose of the investigation, etc.

Let us now conside some of these difficulties.

1. Advantages and disadvantages of oscillating the body:
a. The effect of waves and Tree surface disturbances in the test
basin created by the oscillating body are difficult to assess;

b. The supporting or driving arms can cause additional disturbances
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and time-dependent forces which are not easy to eliminate or estimate;

¢. Vibration of the ent: "2 system, particularly at low frequencies
of oscillation, is unavoidable. Consequently, one has to draw smootn
lines over the recorded forces or use suitable electrenic filters;

d. The inertial force due to the mass of the oscillating body has
to be subtracted from the total force eithe- electronically by mounting an
image cylinder and force transducer system above the test body or by
carrying out the experiments once in air and once in water. This may be
possible where either the drag or the inertial force is large. However,
in the region of governing paramaeters where both are important, a small
error in the phase angle can lead to ‘arge errors in the coefficients.

e. It may be difficult to give a perfectiy repetetive or harmonic
motion to the body at high velocities because of the possible changes in
the speed of the driving motor due to the chéages in the forces acting on
the body;

f. It s quite difficult to measure simultaneously or independently
both the in-line and transverse forces. Mercier [13] who measured both
the in-line and transverse force by oscillating a circular cylinder had
considerabie difficulties in assessing the degree of accuracy of his
measurements even at relatively small Reynolds numbers. in fact Mercier noted
that "The forces in-line with the oscillation are strongly dependent on the
inertia force associated with the model and apparatus, which accounts for
about three-fourths of the total force for small amplitudes of motion 2ad
about half for large amplitudes." "In view of this, it is considered
difficult and imurecise to attempt to derive hydrodynamic force information
for this component from the oscillograph records", and that "data analysis

of oscillator test rasults must be done with the utmost care because of the

3
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unavoidable large inertia tare." As noted earlier, Thirriot et al. [10]
have encountered similar difficulties in evaluating the dray component of
the in-]#ne force. They were not cpncerned with the inertial component
of the in-line force and the transverse force. In spite of these diffi-
culties, however, both Thirriot et al. and !ercier have b2an reasonably
successful in determining the force coefficients for most of the cases
studi2d by them.

hamann and Dalton [14] oscillated the cylinder in a fluid at rest
and encountered various difficulties which are aptly described by them.
They had to use both low-pass and high-pass filters before feeding the
signals to the amplifier-recorder system. This, in turn, caused phase
shift and it had to be determined through indirect means. It became
clear to them that a real picture of the force on the oscillating cylinder
could be obtained only after the values from the recordings had been
corrected by the dynamic component and were brought into correct relation
with the recorded position signal.

g. The advantages of oscillating the body are that one can
independently vary the Reynolds nuwber and the amplitude and that one
determines, after subtracting the inertial force due to the mass of the
oscillating Lody, the fluid induced forces and hence Cd and Ca instead of
Cd and ]+Ca since no pressure gradient exists in the fluid otherwise at
rest. Thus, the added mass coefficient can be determined more directly
provided that all of the difficuities cited above can be overcome with
sufficient ease and accuracy to justify the achievement of o slightly
better accuracy in Cm or C3. As far as this writer is concerncd, the
difficulties outlined above are next to impossible to overcome particularly

for oscillations in the higher Reynolds number range. Furtnerwore, the
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efforts devoted ricreiy to the determination of the in-line force without
due recard to the transverse force meet the probiem under consiceration
only half way. It is now clear that one must consider a rather large
transverse force as well as an in-line force in the design of structures
subjected to wave forces. It is further clear that the oscillations of
the transverse force and the fatigue which could be caused by them may

be the most important design criteria. Past experience shows that it is
difficult to obtain reliable transverse force data by oscillating the body

in a Tiuid at rest or in motion.

2. Advantagss and disadvantages of oscillating the fluid about a
body at rest:

a. If the 7luid is allowed to oscillate harmonically at its
natural frequency in a U-shaped tunrel [7], or in a wave basin [6] then
the frequency of oscillation is fixed. Consequently, the Reynolds number
cannot be varied independently. However, the frequency parameter g,
introduced in this report, can be kept constant while varying K. The
power of this procedure hac already been demonstrated by re-analyzing the
data provided by Keulegan and Carpenter. Tkus, the constancy of the
period is no longer a disadvantage.

b. The fluid may also be oscillated by a piston in a large water
tunnel at desired amplitudes and frequencies. Such a system will have to

be extremely complex for large Reynolds numbers. Even then it may not be

free from the difficulties described in connection with the oscillating
body.
c. If the oscillating fluid involves a free surface, one has to
deal with the fact that the free surface is inherently unstable, particularly

when the acceleration is directed towards the liquid as shown by Taylor [15]

ST
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and Benjamin and Ursell [16]. Hence, for a fluid oscillating in a U-
chaped tunnel or wave basin, the free surface is unstable in a down motion.
It turns out that this instability is not A serious problem and in fact,

a very easy one to deal with,

B.  THE U-SHAPZD OSCILLATING FLOW TUNNEL

Experiments carriad out [7] in the initial phases of the study with
small smooth cylinders at low: Reynolds numbers have proved the versatility
and usefuiness of a U-shaped osciila.ing-flow apparatus. Thus, in an
attempt to achieve larger Reynolds numbers, it was oniy natural to construct
a larger U-shaped tunnel.

Among the various designs considered, the cne shown in Fig. 5 was
finally selected for construction. A photograph of the completed and
fully-instrumented structure is shown in Fig. 6. It consists of 11 nodules
for ease of construccion, transportation, and final assembly. Each module
is made of 3/8 inch aluminum plates reinforced with 1/2x4x18 inch flanges
welded to the plates. The modules were assembled with the help of an air
drying silicon rubber between the flanges of two adjacent modules and one
inch steel bolts placed 6 inches apart. The inside of each module was
precision machined so that the largest misalignment was 0.04 inches.

Prior to the description of its instrumentation and operation, a few
words are necessary about the general shape of the tunnel. The cross-
section of the two legs is 6 ft by 53 ft whereas that of the test section
is 3 ft by 3 ft. This selection was dictated by several considerations
such as the availabie ceiling height, pressures to be encountered ard
hence the structural and economic considerations. desire to obtain an
actual amplitude or velocity of oscillation at least twice that of the free

surface, period of oscillation, Reynolds number and the relative amplitudes
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desired, possible separation of the flow at the corners, natural damping

of the oscillations, and the magnitude and the fregiency of the forces

to be encountered. The length of the 3 ft by 3 rt horizontal section

was chosen larger than twice the actual amplitude to insure fully developed
uniform flow at the test section. Finally, the two corners of the tunnel
was carefully streamlined to prevent separation. The design proved to be
more than adequate for no separation was encountered, and the desired
amplitude and frequency of oscillations have been achieved.

The auxiliary components of the tunnel consisted of plumbing for
filling and emptying of the tunnel, butterfly-valve system, and the air
supply system, The plumbing consisted of simple pipirg for hot and cold
water (55°to 120’F), heat exchanger, several pumps, and a filter.

The butterfly-valve systen (mounted on cop of one of the legs of the
tunnel) consisted of 4 plates, each 18 inches wide and 36 inches long. A
ore inch steel shaft was placed at the axis of each valve plate. Aluminum
housings supported both ends of the chaft with self-aligning ball bearings.
A 6 inch gear was attached¢ to one end of each shaft which extended beyond
the bearing. Ali four valve plates were then aligned and driven by a
simple rack-and-pinion system. The rack was actuated by an air-driven
piston with the help of a three-way valve connected to the air-supply
5yS cem.

Tae valves, in their closed position, completely sealed the top of
one of the legs of the tunnel (see Figs. 7 and 8). The top of the other
leg was left open. Initially, the butterfly valves were closed and air
was admitted to that side of the tunnel to create the desired differentizl
water level between the two legs of the tunnel. Then the valves were

opened quickly with the help of a pneumatically-driven three-way cuntrol
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valve. This action set the fluid in the tunnel in oscillatory motion with
a natural period of T = 5.272 seconds. Subsequent oscillations were
maiitained either by closing and opening the valves with a suitable period,
in perfect synchronization with the oscillation of water, or by simply
letting the butterfly valves remain open. A series of experiments starting
with the largest ampiitude and cylinder diameter was conducted through the
use of both methods. The following importan* conclusions have been reached.
Firstly, the damoing of the motion is such that the amplitude of oscillation
decreases abcut 0.13 inches per cycle for the largest amplitude and about
0.06 inches per cycle for amplitudes smaller than about half the maximum.

In other words, the amplitude decreases 0.4% per cycle for the maximum
amplitude and about 0.2% per cycle for smaller amplitudes. In fact, an
oscillation beginning with an amplitude of 30 inches damped to an oscillation
with an amplitude of 2 inches over & period of 45 minutes, after about 500
cycles of cscillation. Thus, over a period of 4 complete cycles of
cscillation at any mean amplitude, the amplitude, velocity, and the
acceleration of the fluid changed about 1%. On the other hand, experiments
with forced ascillation about the natural fregquency of oscillation of the
“Tuid have shown that the amplitude cannot be maintained to an accuracy
better than 1% and that one must contend with some high frequency
oscillations, however small, superposed on the acceleration trace due to
the cyclic operation of the butterfly valves.

Following the observations cited aboe, experiments were carried out
with non-forced oscillations and the results were compared from time to
time with those obtained with forced oscillations. The advantages of the
method adopted became apparent very auickly. Firstiy, the oscillations
were so smooth that there was no need for filters between tke transducer

outputs and the recording system. Secondly, one test, over a period of
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about an hour, showed the evolution of the in-line and transverse forces

for all possible values of K for a given 8.

1. Velocity Distribution at the Test Section

There was no easy way to check the uniformity of the velocity
distribu.ion at the test sectjon. This could have been done by recording
the velocity at various points along a vertical and horizontal line at the
tast section through the use of a hot-film anemometer and comparing the
velocity traces and the amplitudes of velocities at the corresponding
times. 3uch a method was seriously considered but the difficulties to
be encountered led to its abandonment. Instead, it was decided to measure
and compare the pressure gradients along the top and side walls of the
tunnel at the test section. A differential pressure transducer was
connected to two pressure taps placed one foot on either side of the test
section, on all three sides of the tunnel. The outputs of all transducers
(each calibrated properly so as to yield the same millivolts of signal
for the same static differential pressure) were recorded simultaneously.
The signals which were in fact measurements of the instantaneous acceleration
of the fluid, were almost identical and did not differ more than 0.5% for
all amplitudes of oscillation. This procedure has shown that ihe instantaneous
pressure gradient or acceleratior along the three faces of the tunnel were
identical.

The above method of measurement of the instantaneous acceleration
was also applied to two other sections, one 4 ft to the left and one 4 ¥t
to the right of the tect section, in order to check the uniformity of the
instantaneous acceleiation distribution in the approach flow. Repeated

experiments with representative amplitudes of oscillation have shown that

the jinstantaneous as well as maximum acceleration alono ihe top and side
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faces of the tunnel do not differ more “han G.5%. 7The foregoing two
sets of experiments were taken as an ind’cation of the uniformity of the
acceleration distribution and hence of the velocity distribution both in

the test section and away from the test section.

C.  CIRCULAR CYLINDERS

Seven circular cylinders with diameters ranging from 6.5 inches to
2 inches were used. The cylinders were turned on 2 lathe from aluminum
pipes and polished to a mirror-shine surface. The resulting surface
texture was as smooth as possible as verified by microscopic inspection.
There is no doubt that it was hydrodynamically smooth #’so. The length
of each cylinder was precisely 35-15/16 inches. This allowed 1/32 inch
gap between the tunnel wall and each end of the cylinder. As will be
noted Tater, the cylinder was prevented from moving towards one or the
other wall by means of small O-rings attached to the end of the force
transducers. A double-ball precision bearing (SKF-2303-J) with an
approximately 0.6 inch bore was inserted into the ends of the cylinder in
3 inch long housings which sealed the cylinder 2ir tight. The outer face
ot each bearing was flush v.ith the end of the cylinder.

Same cylinders were also used as rough cylinders with various types
of distributad surface roughnesses. Some of the cylinders were roughened
with sand. For this purpose, sand was sieved and applied on the cylinder
surface with air-drying 2poxy paint. The second type of distributed
surface rnughness was obtained through the use of commerc.ally available
sand paper pu-chased from the 3M company. The sand papers were carefully
wrapped around the cylinders and glued with the same epoxy paint. The
thickness of the various papers, together with the glue, varied from about

0.03 inch to 0.05 inch. The Reynolds numbers were calculated by adding
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to the diameter of the smooth cylinder twice the paper and paint thickness
plus one half the night of the roughness element. Evidently, the thicknesses
involved were rather small relative to the size of the cylinders used and the
difference between the Reynolds numbers calculated as above and those based
on the smooth cylinder diameter were quite small and certainly within the
range of experimental errors.

The third type of distributed surface roughness was obtained through
the use of commercially available polistyrene beads of uniform diameter,
glued to the cylinder surface as described above.

The following tables summarize the characteristics of the cylinders
used.

Smooth cylinders:

Dimater in iches D/w* L/D DZ/vT
6.475 .18 5.52 5259.9 and 8370
5.975 0.17 5.99 4480.2
4,990 0.14 7.17 3123.2
3.978 0.11 8.99 1985.2
2.970 0.082  12.05 1106.6
2.500 0.069  14.31 783.8
1.991 0.055  17.97 497.2

* w is the width or hight of the test section, w = 3 ft.
L=w=23ft,
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Rough c¢viinders:

Diameters of the cylinders used before roughness is applied:
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.
.
.

D= 6.475"  5.975"  4.990"  3.978"  2.970"  2.500" 1.991"

Relative roughness k/D used for each cylinder:
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H
k/D ® 1/50 17180 1/360 1/500
F*= 55 65 75 és 100 120
D.  FORCE MEASUREMENTS

Two jdentical force transducers, one at each end of the cylinder,
were used to measure the instantaneous in-line and transverse forces. The
basic transducer was purchased from the BLH Electronics, Inc. under the
trade name of Type LBP1 and catalogue No. 420271. The important dimensions
of the transducer are shown in Fig. 9. The gage had a capacity of 500
pounds with an overload capacity of 200%. The deflection of the gage

under a 50C -ound load was 0.01 inches. For the largest cylinder used

; and the amplitude of oscillation tested, the maximum load was about 100
pounds and the deflection of the cantilever end of the gage was less than
0.002 inches.

A srecial housing was built for eacn gage so that it can be mounted
on the tunnel window and rotated tc measure either the in-line or the
transverse force alone. Figure 10 shows the entire gage assembly,

The bellows which protected the strain gages had to be water proofed
in such a manner that they would not adversely affect the operation of

the gages when subjected to about 20 ft water pressure at temperatures
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65 F*to 165 F. For this purpose, the bellows were filled complately with
a liquid silicon rubber (Dow Corning 3140 RTV coating} without bringing
the rubber into contact with aiv during the filling operation. Then the
ends of the bellows were sealed air tight with special clamps. The silicon
rubber remained in its original liquid form throughout the operation of
the gage.

The cylinders were placed in the test section by retracting the
gages from their housing and then pushing them into the bearings mounted
at each end of the cylinders. As noted earlier, the 0-rings placed on
the cantilever end of each gage prevented the test cylinders from moving
side ways towards one or the other wall and helped to set exactly 1/32
inch space between the cylinder and the tunnel wall. The cylinders were
free to rotate, as they should be, at the application of a slight torque
by hand.

After mounting the first cylinder, the exact angular position of the
gages within their housing had to be determined and set with a pin so that
the gages measure either only the in-line or the transverse force. For
this purpose, a 200 Pound lcad was hung on the cylinder with a lubricated
nylen rope. The in-line force {(acting ir the horizontal direction) was
observed on the amplifier-recorder system. Then the gage was rotated in small
increments until the in-line force was exactly zero. A final check was
made by measuring the outputs of the gages with a precision voitmeter.
Then the position of each gage was marked and set with a pin. Finally,
four bolts were placed on the gage housing to hold the gages rigidly in
position. Removal of these bolts and the pin allowed the rotation of the
gages for exactly 90 degrees. Then the bolts and a new pin were placed

in position. In this manner the gages were capable of measuring either
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the in-line or the transverse force without a cross-talk between the two
forces. At times both gages were used to measure only the in-line or only
the transverse force.

The calibration of each gage was accomplished by hanging loads in the
middle of the cylinder after setting both gages to sense only the transverse
force (here in the vertical direction). The directional sensitivity of
the gages was also checked by applying identical loads upwards on the
cylinders with the help of a hook-cantilever arm attached to the top of
the tunnel outside the test section. Repeated cailibrations have shown
that (a) the gages were absolutely linear up to 500 pounds; (b) the gages
yielded the same signal for loads applicd either upward or downward; and
that (c) the gages, together with the electronic system to which they were
attached, were capable of sensing loads as small as 0.02 pounds, (this
corresponded to a 1 mm deflection on a 50 mm wide recorder paper).

The natural frequency of vibration of the cylinder-gage assembly in
water was found to be in excess of 100 Hertz for all cylinders tested.
This frequency was severusl times larger than the largest vortex shedding

frequency encountered.

E. DATA ACQUISITION SYSTEM

It was deemed desirable to have both analoc and digital outputs of
the in-line and transverse force versus elevation. For this purpose, the
output of the force transducers were first fed to an 8 channel carrier-
amplifier-recorder system. The output of the 8-channel system was then fed
to two two-channel amplifier-recorder systems. One of the recorders gave
a simultaneous recording of the in-line force versus elevatior. The other
recorder Jave a simultaneous recording of the transverse force versus

elevation. The force signals from the 8-channel recorder were branched
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off to two DC amplifiers and then to a Varian computer for analog-to-digital
conversion. Also fzd into the Varian computer were the signals received
from other pressure transducers which did rot require further amplification
after leaving the 8-channel recorder. The analog output of the 8-channel
recorder and the digital output of the Varian computer were calibrated

for a series of loads applied on the force gages and pressure transducers.
Frequently, both the analog and digital data for a given tast have been
evaluated to check the consistency of the data acquisition system. As

will be amplified later, the analog data have been read at every 0.1
seconds which corresponded to every 6.8285 degrees in a cycle. The

digital sampling rate was set at either 10 samples/second/channel or at

20 samples/second/channel.

F.  ACCELERATION, ELEVATION, OR VELOCITY MEASUREMENT

It is becauce of the extreme importance of the accurate measurement
of the instantaneous values of these quantities that they are discussad
here separately.

Firstly, it shou'd be noted that the measurement of the amplitude of
either the accelerzt101, or elevation, or the velocity is more or less a
matter of intevpretation of the signal received from the appropriate

transducer in light of one of the following expressions
U= 2ah/T , a = (dU/dt) = (20/T)PA = 2l T

in which T is constant and equal to 5.272 seconds for the experiments

=

TR

reported herein.

Three transducers were used to generate three independent DC signals,

AL T K A e

each rroportional to the instantaneous value of one of the quantities

-y

—— e

cited above. The first one consisted of a six feet long platinum wire

43




PP A WL ATV Pl SO IR WITVIRT IS F A A et T SRTARIIN S O A et S AR T D T Lol Ll N . - CEEE o

stretched vertically in one leg of the tunnei. The cutput of the capaci-
tance-wire bridge was connected to the 8-channel recorder as noted above.
The response of the wire was founa to be perfectly 1inear within the range
of oscillations encountered. The wire was capable of yielding a measurable
signal for chi.'.ges in water elevution as small as 1/32 inches. Such a
sensitivity was not, however, always desirable for the small instabilities
previousiy noted on the water surface gave rise to small oscillations in
.he analeg recorders. The effect of such instabilities were practically
eliminated by placing the wire along the axis of a 1 ft diameter and 8 ft
long thin plastic pipe.

The second method consisted of the measurement ,f the instantaneous
acceleration by means of a differential-pressure tr.nsducer connected to
two pressure taps placed horizontally 2 ft apart and 4 ft to one side of
the test section, The output of the transducer was connected to the 8-
channel recorder and then to the Varian computer. The instantaneous
acceleration was then calculated from Ap = ps dU/dt where Ap is the
differential pressure, s the distance between the pressure taps, and du/dt
is the instantaneous acceleration of the fluid. The effect of the pressure
drop due to the viscous forces over the distance s was calculated and
found to be negligible.

The third method again consisted of the measurement of the differential
pressure between two pressure taps. The two taps were placed symmetrically
on the two legs of the tunnel at an elevation H = 50 inches below the mean
water level about which the fluid oscillated (see Fig. 5). Applying
Bernoulli's equation for unsteady flow between each pressure tap and the
instantaneous level of water, one can easily show that twice the amplitude

of the free surface oscillation (virtual amplitude) is given by
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A= 28 = (ap/v)/[1 - (20/T)2H/g] (30)

in which g, v, and T are constants and H is kept constant. Thus, the
signal of this tvansducer yieided the virtual amplitude or the maximum
velocity in each cycle. It was entirely free from noise or small free
surface effects. Before each series of experiments a static calibratien
of the transducer was obtained by applying known differential pressures
to the transducer. As noted before, the calibration was not only
consistent but also perfectly linear. The transducer did not have to be
dynamically calibrated for it had a fequency response in excess of several
hundred Hertz,

A11 thres methods cited above were used to monitor the osciilations.
The results were most gratifying and yielded the amplitude, velocity, or
acceleration to an accuracy of about 1% of the amplitude of each of these
variables. These comparisons as well as the perfectly sinusoidal character
of the traces speak for the suitability of the unique test facility used

in this investigation, (see Figs. 11 and 12).

G.  DATA REDUCTION

The in-line and transverse forces were reduced from both the 2-channel
recorder traces and the Varian-computer output. Furthermore, the frequency
or frequencies of the transverse-force oscillations were recorded for each
run.

Experiments were repeated at least five times for each cylinder. Only
two of such runs were evaluated, however, because of the enormity of the

effort involied in data reduction. Initially, at least three runs were

- - g

;- evaluated and it was found that the differences in the results obtained

from a set of three runs were always less than 5%.
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The tabulated data were punched on IBM ¢ .5 and combined with a
computer program to evaluate all of the coefficients previously discussed.
Some of the coefficients and the correspoiding governing parameters are
presented in Appendix-A in tabular form. Tables for raw data for each Re

and K are not presented due to space limitations {about 2000 pages).

H.  BLOCKAGE AND LENGTH-TO-DIAME.cR RATIO EFFECTS

Attempts to achieve as high Reynolds numbers as possible in conducting
wind-tunnel and water-tunnel experiments invariably give rise to wall-
interference effects which, of course, influence whatever measurements a
made. There are several blockage ccrrection formulas for steady flows

which might be used so that the wall-interference effects on the calculated

force coefficients might be minimized. Unfortunately, none of these
formulas could be used in the present study for no one has demonstrated that
the blockage effects in oscillatory flows are identical to those experienced
in steady flows.

The blockage ratio D/w and the length-to-diameter ratio L/D, for the
cylinders used in the present study were [reviously tabulated. For
comparison, it should be noted tha* in the cylinder experiments of Achenbach

‘ [17] and in some of the experimenis of Fage and Falkner [18] the blockage

ratios were 0.166 and 0.185 respectively. Guven et al. [19] used cylinders

with a blockage ratio of 0.178. The length-to-diameter ratio in Fage and
Warsap's [20] experiments was 20.2 or 7.88, depending on the diameter of
the two cylinders they used, as compared to 3.32 in the experiments of
Achenbach [17] and 3.08 in the experiments of Guven et al. [19].

, It is generally observed that values of Cd are smaller for cylinders
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with larger length-to-diameter ratio. Furthermore, the wake of the cylinder,
near the cylinder ends, is supplied with high pressure fluid from the front
;Bd as a result smaller values of Cd are expected since the base pressure is
increased over the value it would otherwise attain. Thus the presence of
gaps and the larger L/D ratios could result in lower drag coefficients. In
the subcritical range of Re, however, these effects appear to be negligible.
In fact Morsbach [21] tound that in the subcritical range there is no effect
of length-tc-diameter ratio.

In the present experiments, the gap cannot be eliminated by extending
' ihe cylinder into a cylindrical cavity within the two windows supporting
the gages and the cylinder because of the fact that several cylinders of
different diameters were used. It would have been too costly to build a
pair of windows for each cylinder. It is believed that the very small gap-
to-diametar ratics encountsred plus the cantilever end of the gage
extending into the cylinder minimized the supply of high pressure fiuid into
the wake of the cylinder during part of the cycle.

Returning to the discussion of the blockage effect it must be
emphasized that the formulas used for steady flow correction effects cannot
be applied to oscillating flows and that there is not a unique blockage
correction for the entire period of the harmonic flow. This is evident
from the fact that within a given cycle the fluid undergoes varying
accelerations and velocities and the wake width, momentum deficiency, and
the wake pressure change accordingiy. Thus, a blockage correction made

for the instant of maximum velocity is not applicable to the instant at

G urab i o

which the maximum acceleration occurs.

In view of the fact that there are no previous investigations, a series

TENTT T,

. of experiments had to be conducted to determine the role of blockage in the
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flow under consideration. For this purpose a differential-pressure
transducer was connected to two pressure taps on the same side of the tunnel
wall. One of the taps was placed on the wall directly above the axis of the
test cylinder. The other tap was placed 30 inches to one side of the first
tap along a line parallel to the flow. A series of experiments was carried
out with the 6.475 inch cylinder and the differential pressure was recorded
and compared with the differential pressure obtained from the acceleration
transducer. Furthermore, to simplify the comparison both transducers were
calibrated so as to render exactly the same output under identical calibration
loads. The results have shown that the two differential pressures were
nearly identical during the entire cycle and that they were certainly within
3% of each other, This somewhat surprising result is a clear indication of
the fact that the blockage effect in harmonic flows is negligible at least
for D/w ratios less than 0.18. Although no special attempt was made to
interpret the lack of blockage effect in such flows it is believed that the
presence of vortices on both sides of the cylinder together with the high
periods of acceleration and velocity render the flow relatively more uniform
at short distances away from the cylinder in the test section. Therefore,
for the reasons cited above no blockage-2ffect corrections were applied to
the data presented here. It might be of interest to note that had the flow
been assumed steady and had the maximum velocity for the largest cylinder
and the Reynolds number were used to calculate a blockage-eftect correction
through the use of one of the existing formulas, one would have found a

correction of about 6% in the drag coefficient.
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IV. RESULTS AND DISCUSSIONS

IN-' iNE FORCE COEFFICIENTS FOR SMOOTH CYLINDERS

The drag, inertia, and the maximum-force coefficients are presented
in Figs. 13 through 20, 21 through 28, and 29 through 36, reipective'y, as
a function of K for constant values of 8. In each figure, the Reynolcs
nuhber increases with increasing K in accordance with Re = 8. Thus, one
can determine K in each figure for a given Re and examine the variation of
any one of these coefficients with the Reynolds number. For this purpose,
the mean lines drawn through the data shown in Figs. 13 through 20 have
been reproduced in Fig. 37. Similar plots for the inertia and the maximum
force coefficients are shown in Figs. 38 and 39 respectively. Also shown
in Figs. 37 through 39 are the constant Reynolds number lines obtainec
through the use of K = Re/g. Evidently, there is a remarkable correlation
between the force coefficients, Reynolds number, and the Keulegan-Carpenter
number. The smoothness of the constant Reynolds number 1ines is another
indication of the consistency of the data from one cylinder to another.
Figures 37 through 39 show that Cy, Cy, and Cf(mes) do not vary
appreciably with Re for Re smaller than about 20,000 and help to explain
the conclusions previously reached by Keulegan and Carpenter [6] and
Sarpkaya [7]. These figures also show that the drag, inertia, and the
maximum force coefficients would have appeared to have had considerable
scatter when plotted with respect to K had their variation with Re been
ignored. Same could be said for a plot with respect to Re in which the
dependence of the coefficients on K is ignored.
Figure 37 shows that there appears to be a second maximum in the drag

coefficient for small values of Re and K (see for example g = 1885 line).
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The presence of such a second maximum has previously been noted by Thiriot
et al. [10] as discussed earlier. Figure 37 also shows that the drag
coefficient goes through a minimum and then increases with increasing K
for large values oV B8 (see 8 = 8370 line).

The data similar to these given in Figs. 37 and 38 are also plotted as
a function of the Reynolde aumher for constant values of K in Figs. 40 and
41. These figures dramatically show that Cd decreases with incrcasing Re
to a value of about 0.5 (deperndent on K) and then begins to increase slowly
with further increases in Re and reaches a value of about 0.62 at Re = 7 x 105.

A comparison of the variation of Cd with Re for steady and harmonic
flows shows that the transition in C4 in harmonic flow starts at lower
Reynolds numbers and spans over a larger range of Reynolds numbers. In fact,
it may be said that harmoi ic flow about a cylinder is in a continuous state
of transition. The said comparison also shows that Cd for harmonic flew is
about twice that ‘or steady flow at both the lower end of the Re values
(say Re = 0,000) and at tir.> keynolds numbers at which the drag coefficients
go tnruugh their corresponding minimum values.

The inertia coefficient Cm increases with increasing Re, rcaches a
maximum, and then gradually approaches a value of about 1.75. It will be
recalled that vhe Keulegan-Carpenter data indicated an opposite trend. It
is believed that the Keulegan-Carpenter data for Cp are not quite reliable
for K > 15.

The foregoing discussion of the force coefficients raises seveval
questions which may be explained only partially on the basis of the
observations with steady fiows. Some of these questions are: why deres ihe

transition begin sooner and span over a largar range of Reynolds numbers;
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why does the added mass coefficient Ca' (Ca=cm~1), become negative for
certain values of ¥ and Re (see Fig. 41); is there ¢ unique relationship
between Cm and Cy; etc. It is a well-known fact that the occurrence of
drag crisis in steady fiow about a cylinder depends on the length and

scale of turbulence in the ambient flow, blockage and the legth-to-diameter
ratio of the cylinder, the vibration amplitude and frequency of the test
body, surface roughness, and on other particularities of the wind- or water-
tunnel in which the experiments are performed. In fact, it is for this
reason that the minimum value of the drag coefficient in steady flow is
widely scattered. Since the formation of laminar separation bubbles are
largely responsible for the low values of Cd, one could state that the
formation and the extent of the separation bubbles are very sensitive to
the factors cited above. A priori, one would expect the same to occur in
harmonic flow about a cylinder. During a given cycle, the flow at both
sides of the cylirder contains a number of vortices and large scale
turbulence. Thus, it is natural to assume that they would give rise to a
larger time-averagec¢ drag coefficient and to earlier transition.

The effect of the yrowth and motion of vortices on the increase of the
drag coefficient relative to that for the steady flow needs further discussion.
It has been shown that [22] the variation of the characteristics of vortices
in the neighbortiood of a cylinder strongly affects the 1ift, drag, and the
inertia coefficients, It has also been shown by Sarpkaya [23] that the
drag in the initial stages of an impt '=ively started flow about a circular
cylinder can exceed its steady value by as much as 30%. These findings ure
relevant to the present study in a qualitative sense. During the periods of
high acceleration in harmonic flow, vorticity is slow to diffuse and therefore

accumulates raoidiy in the close vicinity of the cylinder. Although the
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growing vertex soon reaches unstable proportions and separates from its
shear layrr, the growth of the vortices are so rapid that the vortices
become much larger than their quasi-steady-state size before they separzte
from their shear layers. This would ordinarily lead to a larger drag force.
However, the maximum drag does not occur at the time of maximum acceleration
or maximum velocity. Evidently, at the initial stages of acceleration, the
vortices in the downstream side of the cylinder are not yet fully grown.
Furthermore, the convection of the vortices shed in the previous cycle
towards the cylinder help to reduce the pressure on the upstream side of
the cylinder and prevent the drag force from reaching large values. As the
velocity increases, the vortices on the upstream side move towards the top
and bottom of the cylinder and loose their influence on the pressure
distribution on the upstream face of the cylinder. The vortices on the
downstream side of the cylinder, now fully grown and ready to shed, give
rise tc a large drag force. By the time tie velocity reaches its maximum,
the vortices coming from the upstream side are fully carried away and

the vortices which are now shed from the downstr:am side of the cylinder
are further convected downstream partly by the action of the other vortices
existing in the flow and partly by the base flow itself. Thus, the drag
force begins to decrease by the time the velocity reaches its maximum.

The role played by the vortices becomes most pronounced on both the drag
and inertia coef Icients if the duration of flow in one direction is not
too long (e.g. A/D = 2). In this case, the variation of the drag and inertia
coefficients are further complicated by the locking of the vortices to the
cylinder and fractional eddy shedding as will be discussed later.

The number of vortices shed in each cycle and the intensity of

turbulence depend on the relative motion of the fluid and the Reynolds number.
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Furthermore, there are as many as four separation bubbles in a given cycle
during certain fractions of the cycle. Thus, in a given cycle the flow may
start in one direction as a subcritical flow with boundary layvers separating
in a Taminar state. As the flow speed or the instantaneous Reynolds number
increases, the flow may enter a critical state and give rise to separation
bubbles. However, the disturbances surrounding the cylinder (turbulence
and vortices) may easily and often locally disrupt the separation bubbles
(one or both). When this happens the flow may ve affected over a considerable
length of the cylinder and the base pressure along the span is no longer
uniform. Such phenomena have been carefully noted by Bearman [24] in
connection with steady flows. If the flow continues in the same directicen
with ever increasing instantaneous Reynolds numbers, the separation bubbles
may completely disappear and part of the boundary layer may bacome turbulent.
In other words, the flow enters a post-critical or transcritical state. The
foregoing discussion helps to show that the time-averaged drag and other
coefficients reflect only in a very crude way the state of an extremely
complex time-dependent flow. For a given K and Re, the flow may be covering
both subcritical and critical states or subcritical, critical, and transcritical
states, or all of the states from subcritical to supercritical. The extend
of each state depends on both K and Re {for smooth cylinders). Evidently,
the transition starts at lower Reynolds numbers (anything that disturbs the
boundary layer gives rise to an earlier transition provided that the
Reynolds number is sufficiently high) and thus spans over a wider rangc of
Reynolds numbers., The transition must depend on both K and Re since these
two parameters in some way classify the events that occur in a given cycle.
The minimum value of Cd in harmonic flow is larger than that in steady

flow and varies more gently around the the Reynolds numbers at which it
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occurs. Its magnitude is explainable partly in terms of the formation,
growth, and decay of vortices and partly in terms of the overall turbulence.
Altogether these disturbances serve as a triggering agent such as the

artificial roughness on a smuoth cylinder in steady fiow. The gradual

variation of Cd with Re in the neigborhood of Re = 300,000 is unde:standable
if we consider the fact that Cd is only a time-invariant average and that it
reflects an integrated average of the various states of flow occurring in a
given cycle. Lastly, the scatter in Cd in the drag-crisis region appears

to be less than that encountered ir. steady flow due to the already stated
fact that Cd in harmonic flow is an averaged value over a cycle.

The foregoing serves to partly explain how much more complex the flow
is about a vertical pile subjected to ocean waves. With waves, assuming
that they are unidirectional and there are no currents, the fluid has both
a horizontal and vertical velocity component, the Keulegan-Carpenter number
and the Reynolds number increase towards the free surface, and the flow
varies from subcritical to supercritical state in a given cycle not only at
a given depth but also along the pile. Furthermore, the flow at a given
depth is not identical to plane harmonic flow at the same K and Re because
of the influence of the prevailing flow states at the lower and higher
depths and because of the vertical ccmponent of velocity. Furthermore, it
is apparent that the differences between the wave flow and harmonic flow
depend on the depth at which the measurements are made. The flow is more
Tikely to behave like harmonic flow where the wave characteristics along
the pile vary very slowly (at greater depths). If the foregoing is combined
with free-surface effects, diffraction and aperiodic nature of the waves,
and the effect of currents, one begins to understand the reasons for the

scatter in the field data and cannot help but wonder why the drag and
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and inertia coefficients obtained with harmonic flows work as well as they
do in the design of the offshore structures.

It has previously been noted that the inertia coefficient shown in
Fig. 41 may, for certain values of Re and K, be smaller than unity or the
added mass coefficient may become negative. There is nothing mathematically
or phenomenologically profound about it. The added mass coefficient,
according to one definition, is a measure of the additional force needed
to accelerate or decelerate the fluid particles exterior to the body
undergoing a time-dependent motion. The time-average of this force in
harmonic flow may simply become negative. According to another definition,
the added muss is a measure of the mass drifted along the direction of flow
[25]. The magnitude and relative direction of such a drift vary with time
in a given cycle in harmonic flow and its average may be in a direction
opposite to the direction of positive acceleration. Thus, a negative
time-averaged added mass coefficient for certain ranges of K and Re means
that the total drift mass during the period of flow deceleration is larger
than that during the period of acceleration.

The relationship between Cm and Cd has been of special concern [26]
and will be re-examined here. A plot of Cm VETSUS Cd shows that there is
not a unique relationship between them, independent of K and Re. The said
relationship may be shown to depend either on K or Re {see Fig. 42). A
similar plot may be prepared by maintaining Re constant at suitably selected
values and plotting Cm versus C, corresponding to the same value of K.

The maximum force coefficient (see Fig. 39) shows that in the drag
dominated region of the flow the constant 8 lines are very similar to those
shown in Fig. 37 for the drag coefficient. In the inertia dominated region,
the maximum force coefficient is nearly independent of Re and increases with

decreasing K.

T
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A11 of the coefficients plotted in the figures cited above have been
obtained with the Fourier analysis. A careful examination of the similar
coefficients obtained through the use of the least-squares and modified
least-squares methods have shown that they do not differ more than one or
two percent from those obtained with the Fourier analysis. In fact, the
inertia coefficients obtained with the Fourier analysis and the method of
least squares are exactly the same, as noted earlier. For this reason and
partly for sake of brevity, the coefficients obtained with other methods
have not been plotted.

The error parameters A* ard ¢ are tabulated in Appendix-A. In general,
they show thai the correspondence between the measured and calculatad forces
is very cocd except for K values in the neighborhood of 12. This may be
partly dus to the oscillations induced by the shedding of vortices in the
in lire force. This impcrtani point will be taken up again following the
discussion of the transverse force.

Mo attempt was made to piot the error parameters as a function of Re
and/or K to establish relationships similar to those done for the force
coefficients. Cvidently, the inclusion of additional terms in the Morison
equation to accourt for the lift-induced esciliaticns in “he in-line force
can improve the correspondence between the neasured and caiculated forces
in the neighborhood of K = 12. Even without such an improvement, it appears

that the Morison equation represents tne measured force fairly accurately.

B.  TRANSVERSE FORCE COEFFICIENTS FOR SMOOTH CYLIMDERS
Vortex shedding and the resulting aiternating force in steady flow have
been studied extensively. In spite of the considerable interest, however,

the transverse force or the 1ift force in narmonic flow, received very littie
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attention. Recently, it became clear from the observations of the oscillations
of long piles and strumming of cables that the 1ift forces are important not
only because of their magnitude but also because of their alternating nature,
which under certain circumstances may lead to the phencmenon known as the
Tock-in or vortex synchronization. This phenomenon may cause failure due to
fatigue and increased in-line force. Obviously, the total instantaneous
force acting on the structure is increased by the 1ift force and modified
by the oscillations of the body. This increase refers to the vectorial sum
of the in-1ine and transverse forces and not to the aforementioned oscillations
in the in-line force due to vortex shedding.

Some of tha previous studies include those carried out by Chang [27],

Bidde [28], Wiegel and Delmonte [29], Mercier [13], and Sarpkaya [7, 30].

Bidde [28] dealt primarily with the ratio of the transverse force to in-line

force in wavy flows and concluded that the 1ift force bzhaviour is primarily
dependent on K rather tnan Re end that the predominant 1ift frequency is
twice the wave frequency. Bide2's data are difficult to interpret because
of the fact that the Reynolds number and the Keulegan-Carpenter numbér were
calculated in terms of some average alues, that the force measured was the
total force on the complete length of the pile, and that the submerged end
of the vertical cylinder was completely free to generate a complex three-
dimensional flow and influence the vortex shedding.

Wiegel and Delmonte [29] extended Bidde's work and used the Keulegan-
Carpenter number based on the wave-surface kinematics. They have in general
confirmed Bidde's conclusions except for the fact that the 1ift frequency
was irregular and varied from about 1.3 to 6 times the wave frequency.

Sarpkaya [7] measured the transverse force on cylinders in plane

harmonic flow at relatively low Reynolds numbers and found that the maximum
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1ift coefficient is primarily a function of K and that it can acquire large
magnitudes near K = 15. This work was subsequently extended to cylinders
in the vicinity of a plane wall [30].

Isaacson [11] measured the 1ift force on vertical cyiinders in wavy
flows within a Keulegan-Carpenter number range of about 0 to 25 for
intermediate depth waves. The Reynolds number range covered was from about
100 to 5000. Isaacson concluded on the basis of his and others' work that
1ift is dependent both on Re and K and that the dependence of 13ft on K is
considerably stronger and tends to obscure the weaker dependence on Re.

He also argued that for higher ranges of K the predominant 1ift frequency

must increase with K. Isaacson's dissertation [11] contains a great deal

of discussion of the 1ift force which the reader may find both interesting
and useful in perusing the data presented herein.

Some of the data obtained in the present study with smooth cylinders

are plotted in Figs. 43 through 49 in terms of C, (max) and K for constant

L
values of B, (see also Appendix-B). The random nature of the 1ift force is
evident from the scatter in the data. Nevertheless, th. variation of CL(max)
with K is unambiguous and permits one to draw mean lines through the data
as shown in Fig. 50. Evidently, CL(max) reaches its maximum value in the
neighborhood of K = 12 and decrcases rapidlv with increasing K. Furthermore,
CL(max) decreases, for all values of K, with increasing 8.

The minimum value of K at which 7ift or the asymmetry in the vortices
develop is, by the very nature of vortices, extremely sensitive to the
experimental conditions. OQur observations show that the onset of 1ift

depends not oaly on K and Re but also on noise and vibrations external to the

tunnel. In certain runs, 1ift will first disappear for long periods of time

58




o g-’.Wrﬁﬁvﬂ?\ﬁﬂ,ﬂi\\"m!Kﬁl‘m‘”&]}zﬂWﬂﬂyﬁ}:ﬂwaﬁﬂ;ﬂ%l:q}?\w<@ﬂm§wﬁ\, i v - e e e e e g e 3evs
S —r—t—— . o e e v e —— A0S M T M Ty 0

when K drops to about 6 and then will reappear, for no apparent reason, for
one or two cycles and then disappear again. Suffice it to say that the
asymmetry may be assumed to begin in the range of K values from 4 to 6.

. Attempts to further narrow down this range of K require a statistical
approach. The concept used here is similar to that used in the determination
of the intermittency factor and the critical Reynolds number in pipe flows.
Evidently, it is not the highest value of K at which the symmetry of the
vortices can be maintained with extensive care but the lowest value of K
below which asymmetry cannot be initiated in spite of the magnitude of
external disturbances. A careful analysis of all the 1ift traces have
shown that there is a 90% chance that the asymmetry will occur at K = 5,

At K = 4, there is only a 5% chance that the asymmetry will appear for
very short periods of time. It should be noted in passing that the
determination of the lowest value of K for the onset of asymmetry is of more
than academic interest not only in connection with ocean structures but also
with bodies of revolution flying at high angles of attack.

A11 of the transfer force data for smooth cylinders are summarized in
Fig. 51 in terms of CL(max) and Re for constant values of K. This figure
may be divided into chree regions as far as the dependence of CL(max) on K
and Re is concerned, For Re smaller than about 20,000, CL(max) depends
primarily on K as previously shown by Sarpkaya [7]. In the Reynolds number
range from about 20,000 to 100,000, CL(max) depends, to varying degrees,
both on Re and K. Above a Reynolds number of about 100,000, the dependence
of CL(max) on Re and K is quite rnegligible and certainly obscured by the

% o scatter in the data {see Figs. 43-49). .lowever, the magnitude of CL(max)

relative to Cf(mes) is not negligible. For very large values of Re and X,

CL(max)/Cf(mes) approaches 0.20.
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The r.m.s. values of the transverse force exhibit the same functional
dependence as the peak values. The plots of the r.m.s. valurs are not
reproduced here for sake of brevity but may be plotted by the reader using
the data presented in Appendix-B.

Aside from its magnitude, the most important feature of the transverse
force is its frequency of oscillation. For this reason the frequency ratio
fr (the ratio of the frequency of the alternating force fv to the frequency
of oscillation f of the water in the tunnel) has been evaluated for each
run, rounded to the nearest whole number, and tabulated in Appencix-B
together with the Strouhal number adefined by St = va/Um = fr/k. The data
so obtained have been plotted in various ways such as fr versus K, fr versus
Re, etc. It became clear that the only plot through which meaningful
conclusions may be reached is the one shown in Fig. 52. Individual data
points are not shown since they may be found in Appendix-B. In Fig. 52,

a point on each line represents the maximum value of K for a given Re and

fr‘ In other words, a line such as fr< 4 means that the aiternating force
does not contain frequencies larger than f. = 4 for K and Re values in the
region to the left of the line. Intermediate values of fr such as fr =3, 5,
etc. are not shown to keep the figure relatively simple.

Several facts are of special importance and will be discussed in detail.
Firstly, Fig. 52 begins with X = 5. As noted earlier, there is an occasional
v.rtex shedding for K values between 4 and 5. Secondly, each fr = N Tine
does not represent an absolute line of demarcation between the frequencies
N-1 and N+1. Occasionally, a frequency of N+1 will occur on the N-1 side
of the N line, and vice versa. A plot of the tabulated data will bear out
this fact. Fourthly, the frequency of vortex shedding is not a pure multiple

of the flow cscillation frequency (see Figs. 53 and 54). At first this
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would appear anomalous but a closer examination of the behaviour of the
vortices shows that a fractional value of fr is perfectly understandable.

Evidently, f_, as an integer, is a measure of the number of vortices actually

r
shed during a cycle. However, all of the vortices are not fully developed
or completely shed. Leaving aside, for the purpose of this work, the
detailed discussion of what is meant by shedding, let us simply adopt the
definition that those vortices which do not break away from their shear
layers before the flow is reversed are partially developed and result in
incomplete vortex shedding. Thus, the fractional part of fr indicates an
incomplete shedding. The occasional shedding of one of these not-fully-grown
vortices gives rise to an observation noted earlier, i.e., for a transverse
force condition where the fractional part of fr is fairly large (say fr = '
3.45), the vortex will shed, for one reason or another, and yield an fr
value of 4 for a set of Re and K values for which fr is normally equal to 3.
This becomes particularly true for fr in the neighborhood of 3 and also for
large values of K and Re where the oscillations of the transverse force
become quite irregular. The significance of the foregeing relative to the
in-1ine force will be taken up separateiy.

Flow visualization with fiydrogen bubbles has revealed a related

phenomenon, namely, the single eddy shedding or non-alternating vertex

shedding at a preferred location. Thc numerous photographs are not
reproduced here but will be discussed in general terms. The vortices are
not always shed alternatingly from the top and bottom of the cylinder.
For small values of ¥, two vortices begin to develop at the start of the
cycle in one direction but the vortices do not acquire the scme strength
due to various reasons. As the flow reverses, the iarger of the vortices
is swept past the cylindar but the weaker one dissappears partly due to

turbulent diffusion of vorticity and partly due to laminar diffusion which
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is proportional to exp(-8). The consequences of this single shedding are
that the in-line force bacomes asymmetrical (see Fig. 55 where F(8) #-F(e+r))
and the vortex whick is swept away plays an important role in the formation
of new vortices when the flow reverses its direction once again. In other
words, the dominant vortex establishes, by its sense of rotation, a preferred
location for the generation of a new dominant vortex. Such vortices remain
close to the cylinder and give rise to larger 1ift forces not only because
of their proximity to the cylinder but also because of their apparently
larger strength (accumulation of vorticity). It has been shown by Sarpkaya
[31] that in an impulsively started flow the weakest and the strongest
vortices form at the start of the motion and that the strength of the
dominant vortex is considerably larger than that of a vortex shed in the
later stages of the motion. A similar phenomenon seems to be occurring in
harmonic flow. Isoacson [11] and Namork [32]* noted observations similar
to those cited above. A computer simulation of the single vortex shedding
through the use of the discrete vortices is presented in Appendix-C. The
details of the analysis will not be presented here. A description of the
method and its application to the flow past an inclined plate may be found
in [31].

The Strouhal number defined as St = va/Um = fr/K is tabulated in
Appendix-B toyeiier with the 1ift coefficients and fr' Several facts

become apparent from the perusal of this data and of their plotting with

* The author is grateful to Dr. M. M. Zdravkovich of the University of

Salford for bringing this work (done under his direction) to his attention.
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respect to K or Re (see Figs. 56a and b). Firstly, the Strouhal number
does not remain constant at 0.2 as in steady flow for the Reynolds numbers
under consideration. Secordly, St depends on both K and Re. Similar
wonclusions may bz rezched by calculating fr/K along each line shown in
Fig. 52. However, for Re smaller than about 50,000 and fr larger than
about 3, the upper limit of the Strouhal number is about 0.2 (in Fig. 52,
one has fr/K ~ 4/21, 6/30, 8/40, 10/52, 15/82, etc. at the lower end of
each fr line). Rance [33] claimed that St remained nearly constant at 0.2
and showed no variation with either K or Ro*. Finally, it is noted that
at large values of K& the Strouhal number increases to about 0.3. This is
consistont with che measurements made in steady flow at transcritical and

supercritical Reynolds numbers [34].

C. COMMENTS ON MORISON'S EQUATION

The occurrence of relatively large 1ift forces, single vortex shedding,
asymmetry in the in-line force, and the negative added-mass coefficient, all
in the range of K values from 10 to 20, are directly related to the occurrence
of relatively larger differences between the measured and calculated forces
in the <ame range of K values. Thus, it is only natural that not only the
limitztions of the Morison's equation but also the reasons for them be
discussed in some detail.

It should be stated at the onset that it is rather surprizing that

¥srison's equation holds as well as it does even in a range of K value’,

where the vortex shedding is most sensitive to external disturbances.

* Rance's definition of Re is based on the velocity pr -vailing at the

AT R

instant at which the maximum force occurred. He used only the maximum forces

A aiad i

to determine Cd by assuming Cm = 2.
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it appears that the mechanism responsible for the larger differences
between the measured and calculated forces in the neighborhood of K = 15

is the vortex~ or 1ift-induced oscillations in the in-~line force.

In the disturbance-sensitive region of vortex formation the onset of
asymmetry and the subsequent growth and shedding of single or alternating
vortices have profound effects not oniy on the measured in-line force but
also on the coefficients calculated. Morison's equation assumes that the
in-1ire force F is an odd harmonic function, i.e., F(8) = - F(e+n), for a
flow represented by U = -Umcose. Furthermore, the Fourier-ave:aged
coefficients are derived on the basis of this assumption. Thus, the drag
and inertia coefficients calculated through the use of an in-line force

trace for which F(6) # ~F(e+r) are not quite correct. Furthermore, they

i are not equal to the corresponding coefficients which could have been
calculated by consideriny only part of the measured in-line force in the
range 0 < 8 < mor m < 8 < 2r and assuming the remaining half to be its
odd harmonic or mirror image snifted by T/2 or ». Evidently, had one
used only that portion of the measured force for which the maximum value
of |F| is larger, and assumed the remaining portion to be given by its
mirror image in calculating the force coefficients, one would obtain
better agreement between the measured and calculated forces. Thus, it is
clear that part of the reason for the larger differences betweer the
measured and calculated forces is due to the use of the force-coe /ficient
expressions which are derived by assuming the in-line force to be given

by an odd harmonic function. In the range of K values from about Tu to

; 20, particularly for relatively low values of Re, this assumption is not
quite correct as evidenced by the experiments (see Fig. 55).

The reasen for the asymmetry in the magnitude of the in-line force
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and differences between the measured and calculated forces is primarily

the fracticnal shedding of vortices and vortex-induced oscillations in the
in-line force. It is a well-known fact that in steady flow the vortex
shedding causes a gradient of fluctiuating pressure across the bedy. This,
in turn, gives rise to periodic force fluctuations in the in-line direction
on bodies with curvature or on plane surfaces not parallel co the ambient
flow. These fluctuations have twice the 1ift frequency and c.n cause an as
much as 40% fluctuation in the mean drag coefficient with somewhat lower
values occurrirg in the supercritical range. Evidently, the physical
moveme~t of a pile in th2 in-line and/or transverse direction can significantly
change the mean as well as the oscillating component of the force. leaving
aside this possibility, the instantaneous value of the 'steady drag' coeffi-

cient may be written as

Cy = Cy nC, sin(2nf % +4) (31)
in which CL is the 1ift coefficient appropriate to the particular Reynolds
number and nCL represents the amplitude of the drag oscillations. Note that

there is a phase angle, even in steady flcw. between the occurrences of
maximum 1ift and the maximum fluctuation in the drag force.

In harmonic flow, the fully grown vortices move back and forth about
the cylinder and do not necessarily shed alternatingly. Thus, it is quite
possible that the oscillations in the in-line force due to eddy shedding
are relatively larger thaa those in steady flow. The magnitude of these
osciilations may be expressed in a manner similar to that suggested above

for the steady flow. Thus, we have

2 AF = nC pLDU:‘COS(Zﬂfrt/T - ¢) (32)

L
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Evidently, one can consider the additional harmonics of the lift force by
summing the above expression over all harmonics. This is not necessary

at this stage of the discussion. As to the value of fr to be used, it
should be remembered that it is the fractional shedding of vortices that
gives rise to the largest asymmetry in the in-line force. Thus, fr should
be taken equal to 3, 5, 7, etc. It turns out that fr varies from 2 to 3

in the range of K values from 10 to 20 with considerable fractional shedding
and this is the region where A* is largest. Thus, it is sufficient to
consider only the correction due to fr = 3. Morison's equation may then

be written as

2 2 .
F/(0.50DLUT) = (aD/U,T)C sine - C,|cose|cose - nC cos(3e - ¢) (33)

in which Cm and Cd are assumed to be the usual Fourier averages, calculated

using the actual in-line force data. For smooth cylinders C, is Reynolds

L
number dependent and varies from unity to 3 in the range of K from 10 to 20.
Sample calculations th»ough the use of the appropriate values of CL and ¢
with n = 0.2 have shown that the above correction considerably reduces the
difference between the measured and calculated in-line forces and phase
angles. These calculations will not be reproduced here for their purpose
was simply to demonstrate that the eddy-induced in-line oscillations can
account for most of the error in the predictions of the Morison's equation
in the range of K values from 10 to 20. Even without such a correction,
Morison's equation predicts remarkably well the measuved force provided
that the kinematics of the flow field is known accurately.

It is noted in passing that the 'remainder function' introduced by
Keulegan and Carpenter [6] is another means of correcting the predictions

of the Morison's equation. It is not, however, related to vortex shedding

in the manner described above.
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D. IN-LINE FORCE COEFFICTENTS FOR ROUGH CYLINDERS

Experiments with artificially-roughened cyl’nders are an order of
magnitude more complex and time consuming than those with smooth cylinders
partly because of the number of cylinder-roughness combinations to be
tested at various temperatures and partly because of.the increase in the
number of governing parameters.

The governing parameters for the smooth-cylinder results have been
taken as K and 8 or Re and the in-line force coefficients have been
expressed in terms of some time-invariant averages. With rough cylinders,
one or more additional parameters are needed to express the effect of
roughness. Ordinarily, the average roughness height k is taken as the
additional independent variable and normalized with respect to the diameter
of the cylinder. Such a simple procedure particularly for a flow as complex
as the one discussed herein raises the question as to what is meant by
roughness. The question is further complicated by the increase of the
diameter. One may, for example, ask: What is the effective diameter
and the effective roughness of a 3 ft diameter pile on which there is a
6 inch marine growth? Evidently, one would like to devise roughness
parameters with which model laws or the similarity of roughness can be
established. This cannot be done with a parameter k/D alone without taking
into consideration the packing, size distribution, and shape of the grains
used to obtain the roughness. To overcome some of these problems and to
simplify the experiments, one can attempt to define an equivalent roughness
height k  as in Schiichting [8]. Such a definition may be perfectly
useful for steady flow in channels and pipes but it may not be the solution
for the unsteady flow over a cylinder wiiere the characteristics of the

boundary layer are changing along thr. cylinder and at a point with time.
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In this case, one may need to express a roughness-length parameter based
on the boundary layer characteristics in an effort to characterize the
overall roughness geometry. It is evident that one-parameter characteri-
zation of roughness is quite limited. However, the experiments necessary
to obtain one or two equivalent roughness parameters are extremely time
consuming. Leaving aside, for the time being, the investigation of the
roughness characterization in time-dependent flows, we will, in the
present investigation, use the roughness height k as the characteristic
length.

A1l cylinders have been carefully coated with roughness elements
and inspected with a microscope to determine the height of the grains
above the epoxy surface. Furthermore, photographs of the rough surface
were taken with a camera attached to the microscope in order to compare
the packing of the grains from one surface to another. Such photographs
have shown that the grains were fairly uniformly distributed and closely
packed. It is hoped that such qualitative descriptions of the rough
surface will, with further research, be transformed into quantitative
parameters.

Fully aware of the limitations of the use of one-parameter roughness

characterization, the force coefficients are assumed to be given by

(Cd, Car Cpo etc....) fi(Re, K, k/D) (34)

or

75(8 + K, k/D)

The complexity of the experiments with rough cylinders now become
clearer. If we assume that one would like to see the effect of a given

relative roughness on Cd as the Reynolds number is increased say from

68




PTRRmTm

&> it

Bt k)

ORISR T VSR R0 R TIANET SN T e S OSSR U AL ST TR

. ey s e D IR i S SURSRTR W

10,000 to 500,000, one has to maintain K constant. Alternatively, one

can carry out the experiments with a given cylinder and roughness element
for all values of K at a given water temperature. Then increase the
temperature, repeat the experiments, and raise temperature again. Such a
procedure yields an as much as 100% increase in the Reynolds number but

it is not sufficient to cover the entire range of the Reynolds numbers,

This difficulty is overcome by using other cylinders with the same relative
roughness. Then the entire set of experiments are repeated with a different
relative roughness. This procedure, however time consuming, is still
preferable to oscillating a cylinder of a given relative roughness at various
amplitudes and frequencies because of the difficulties encountered with
severe vibrations.

The voiume of the data obtained in the manner just described does not
lend itself to simple reporting. A decision has been made to report only
the data for a given cylinder and relative roughness and the summary of
the entire data for only one Keulegan-Carpenter number. This procedure
will prove to be sufficient to show the role played by roughness in harmonic
flow.

Figures 5/ and 58 show the variations of Cd and Cm with K for a given
value of 8 and k/D. Also shown in these figures are the mean of the same
coefficients for the smooth cylinder with identical g values. The effect of
roughness is quite clear. For large values of K, the drag coefficient for
the rough cylinder is larger than that for the smooth cylinder and does not
vary appreciably with K. The inertia coefficient is considerably lower than
that for the smooth cylinder. It too does not appreciably vary with K for
sufficiently large values of K. It is through the use of such plots that

the results shown in Figs. 59 and 60 have been obtained for Cqand G as a
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function of Re for K = 50 and k/D = 1/50, 1/180, 1/360, and 1/500. The
results do not appreciably depend on K for K larger than about 25.

Figures 59 and 60 show that the effect of roughness on the resistance
to harmonic motion is quite significant. The entire motion becomes reiatively
more drag dependent. In other words, the phase angle between the occurrence
of the maximum force and the maximum velocity considerably decreases relative
to that for the smooth cylinder, at the same K and Re values (see Fig. 61).
As will be seen shortly, this also indicates larger 1ift forces.

Figure 59 shows the occurrence of an earlier transition for a given

roughness. In fact, for relatively small Reynolds numbers, the drag coeffi-

cient goes through a drag crisis and then following the transition of the
entire boundary layer to turbulence, both the drag and the inertia coeffi-
cients acquire nearly constant values.

Why does roughness increase the drag coefficient and decrease the
inertia coefficient? This is not an easy question to answer. One may look
into the behavior of steady flow over a rough cylinder with an awareness of
the additional complexities due to the unsteadiness of the harmonic flow.
Roughness in steady flows (see, e.g. Schlichting [8]) precipitates the
occurrence of drag crisis by causing earlier transition in the boundary
layers and gives rise to a minimum drag coefficient which is larger than
that obtained with a smooth cylinder. Following the disappearance of the
separation bubbles and the transition of the entire boundary layer to

turbulence, the separation points situate themselves in such a manner that

the drag coefficient rises to a new valus of about 0.9 at supercritical
Reynolds numbers [8, 19, 34]. Thus the rise of the drag coefficient with

roughness in harmonic flow over a cylinder is not too surprising even though

Fa A iy

there are no fixed -eparation points at supercritical Reynolds numbers.
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In harmonic flow the entire boundary layer cannot be turbulent at all times.
As K or the relative duration of flow in one direction increases, the
entira front half of the boundary layer may become turbulent for a period
of time spanning over the maximum velocity. This would preclude a turbulent
reattachment of the boundary layer as in the case of smooth cylinders where
the boundary layer is either not yvet fully turbulent or turbulent only for
a very brief period of time. This action will maintain the separation
point at a more-or-less fixed position for the time period during which
the boundary layer is turbulent. This, in turp, should give rise to an
in-line force trace which is considerably flatter at its maximum , with a
peak at about the time of maximum velocity, (see Fig. 61). The decrease
of the phase angle almost always leads to smaller inevtia coefficients.
An alternative explanation of the decrease of the inertia coefficient is
that the increase in Cd is nearly always accompanied by a decrease in the
inertia coefficient (see Fig. 42).

The reason for the experiments with rough cylinders is, of course,
more than the desire to exemine the effect of relative roughness cn Cd’ C,

m
and C,. It is prompted essentially by an attempt at artificially increasing

L

the Reynolds number to supercritical regime by means of suiface roughness.
Recent experiments [19, 35] with steady flow cver rough cylinders have shown
that (a) a change in flow regime takes place at a roughness Reynolds number
Vk/v of about 200 independently of the diametral Reynolds number; (b) a
correct surface roughness condition provokes supercritical flow for Vk/v >
200, (the condition that must be respected is k/D < 0.0022); (c) a smooth
cylinder 15 not a special case but behaves as if it had a roughness of k/D =
3.5 x 10-5; and that (d) the apparent diametral Reynolds number is increased

by a factor of k/3.5 x ]O"SD for a cylinder of diameter D and surface

roughness k. The importance of these conclusions is self evident for
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supercritical Reynolds number simulation for flow about circular cylinders.
In order to carry over these ideas to harmonic flow about rough cylinders,
the data given in Fig. 59 were replotted in Fig. 62 as a functior of Umk/v
for various values of k/D. A similar plot for Cm has been prepared but
will not be presented here. Also shown in Fig. 62 are the mean lines
corresponding to steady flow data as compiled by Szechenyi [35]. Figure 62
shows that a change in the flow regime takes place at a roughness Reynolds
number of about 130 and that the drag coefficient approaches values between
0.9 and 1.0 for k/D smalier than about 0.002. Evidentiy, the change in

the flow regime occurs at higher values of Umk/v with increasing k/D. Of
special interest for simulation purposes, however, is the smaller relative
roughnesses.

The magnitude of the apparent increase in the diametral Reynolds number

can be estimated by fitting the curve obtained for smooth cylinders for

K = 50 onto the rough cyiinder results shown in Fig. 62. Working back

from the resulting values of Ugk/v on the abscissa, this procedure gives

an effective relative roughness between 0.0004 and 0.0006 for the 'smooth
cylinder'. In other words, the presence of surface roughness (for K larger

than about 25 and k/D smaller than about 0.003) is roughly equivalent to an

o AP ———— e S ——"p_S

increase in the diametral Reynolds number by a factor k/5 x 10'40 for a
cylinder of d°-meter D and surface roughness size of k. Further exploration
of these ideas will be extremely useful in model tests and in the simulation

of supercritical Reynolds numbers.

E.  TRANSVERSE FORCt COEFFICIENTS FOR ROUGH CYLINDERS
The representative data for CL(max) are presented in Figs. 63 througn

4 68 as a function ¢f K for various values of k/D and 8. At first it would
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appear that these data cannot be related to each other because of the
variation of k/D and 8. A closer examination of these figures reveals
the very interesting fact that CL(max) does not vary witn either k/D or B.
If there is some variation with these parameters, it is certainly masked
by the scatter in the data. In fact, by plotting the entire data on one
graph (see Fig. 69), one observes that the difference in CL(max) from one
B8 or k/D to another g or k/D for a given K is no more than the scatter of
CL(max) in any one plot for the same K. Furthermore, in comparing Figs. 63
through 68 with Fig. 50, one observes that a mean curve drawn through the
entire rough cylinder CL(max) data nearly coincide with the maximum of the
smooth cylinder data. In other words, CL(max) for rough cylinders is
independent of Reynolds number for the roughness ratios larger than about
0.002 and is nearly identical to those for the smooth cylinder at relatively
Tow Reynolds numbers. Thus, it may be concluded that CL(max) for rough
cylinders depends only on K (within the range of the parameters used) and
constitutes the unper limit of the transverse force data for smooth cylinders.
A similar conclusion may be tentatively arrived at for the drag and inertia
coefficients by comparing Figs. 40 with 59 and 41 with 60. In other words,
the drag and inertia coefficients for rough cylinders approach those obtained
with smooth cylinders at relatively Tow Reynolds numbers. This is perhaps
why the smooth cylinder drag data form the upper envelope and the inertia
coefficient the lower envelcpe to the corresponding data obtained in the ocean.
as noted by Wiegel [1].

The frequency of vortex shedding and the Strouhal number have been
examined in a manner similar to that for the smooth cylinder. The results
have shown that not only CL(max) but also f,. is independent of Reynolds

number ¥ithin the range of parameters encountered. In other words, the
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constant fr lines for K > 15 are vertical lines in a plot of Re versus K.
These lines have satisfied the relationship of f /K = St = 0.22 + 0.02 for
K larger than about 15. A plot of Re versus fr/K for smooth cylinders
could not have reduced to such a single line,

The minimum value of K at which the onset of asymmetry was observed
was slightly lower than that for the smooth cylinder. At high Reynclds
numbers there is a 90% chance that the asymmetry will develop at K = 4.6.
The Strouhal number between K = 5 and K = 15 varied from 0.45 to 0.15
and there was considerable single shedding of vortices. At about K = 15,
the Strouhal number jumped from 0.15 to 0.27 and then decreased quickly to
0.22 at K = 20, (see Fig. 70). The jump for all rough cylinders occurred
between K = 12 and 15 regardless of the Reynolds number or 8. It is
evident that the facts noted above greatly simplify the experimentation
with rough cylinders.

The power of prediction of the Morison's equation for harmonic flow
over rough cylinders has been examined in a manner similar to that for the
smooth cylinders. The comparison of the measured and calculated in-line
forces for all values of K, Re, and k/D has shown that Morison's equation
predicts the measured force through the use of the Fourier-averaged
coefficients with an accuracy equal or better than that for the smooth
cylinders.

Finally, as regards physical applications of the fcregoing data, the
following points need mention:

a. The drag and inertia coefficients have been obtaine’ only for
harmonic flow over smooth and rough cylinders. Factors such as wave
nonlinearity, variation of the characteristics of waves with depth,

free-surface effects, flexibility of piles, currents superposed on waves,
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proximity effects of adjacent piles, etc. have not been considered.
Some or all of these factors may be important in the design of structures
in the real ocean environment.

b. The ratio of the transverse force to in-line force is not negligibly
small. At high Reynolds numbers, it has a value of about 0.2 for smooch
cylinders. For rough cylinders, it varies from about 0.15 to 0.25 with
decreasing raughness. Consequently, the transverse force should be taken
into consideration in calculating the total force acting on the pile.

c. Roughness increases not only the in-line force on a cylinder of
given diameter but also the effective diameter of the cylinder. In oceans
where such roughness is 1ikely to accumulate, the effective diameter and
the effect of apparent roughness on the in-line and transverse forces should
be carefully conzidered. In this regard, it would be difficult to predict
the practical 1im,tations of the data presented herein, and the matter is
best left to be settled by carrying out experiments in the field.

d. It appears from the foregoing that a pile designed with a safety
factor of 2 using Cd = 0.6 and Cm = 1.5 with no regard to roughness and the
transverse forces may not in fact enjoy that safety partly because of the
effect of transverse forces, partly becauce of the effects of roughness and
increased diameter, and partly because of the probable fatigue of the

structure.

V. CONCLUSIONS

The results presented herein warrant the following conclusions:
a. For smooth cylinders, the drag, 1ift, and the jnertia coefficients

depend on both the Reynolds numher and the Keulegan-Carpenter number;




b. For rough cylinders, the same coefficients become ir_ 2pendent
of the Reynolds number about a critical value and depend only on the
Keulegan-Carpenter number and the relative roughness;

c. Correct artificial roughness may be used to provoke and simulate
supercritical flow in model tests in steady as well as oscillatory fiows;

d. For both smooth an- rough cylinders, the relationship between the
drag and inertia coefficients is not uniaue and depends on the particular
value of the Keulegan-Carpenter number;

e. The transverse force ic a significant fraction of the total resistance
and must be considered in the design of structures;

f. The Strouhal number for smooth cylinders varies with the Reynolds

and Keulegan-Carpenter numbers. For rough cylinders, it is essentially

constant;

g. The results reported herein and the conclusions arrived at are
applicable only to cylinders in harmonic flow with zero mean velocity.
The force coefficients for harmonic flow with a mear velocity superposed
on it may differ significantly from those reported herein;

h. It is hoped that the data presented wiil accentuate the need for
actual full scale experiments and enable those concerned to interpret and
better understand the factors affecting the force-transfer coefficients

in the ocean environment.
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Fig. 49 CL(max) versus K for 8 = 5260.
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SPECIAL COMMENTS ABOUT FIG. 55,

5 A il " Do

The computer output for the data plotted in Fig. 55 is presented
in the next two pages. The nomeclature is listed betow:

DIA = Diameter in feet
AMP = Anplitude at the test section in feet
PER = Period of oscillatiors in seconds
UMX = Maximum velocity in the cycle, Um in ft/sec.
TIME = Time/period
F = Normalized measured force
F1 = Normalized calculaied force with the Fourier-averaged

drag and inertia coefficients.

REMF = (IF[ - [FV])/ [PMAX]
FMAX = Novmalized maximum force in the cycle.
FLS = Normalized calculated force with tre Least-squares ;
averaged drag and {nertia coefficients.
RLS = (iF] - IFLS])/ |FmaX]
= Fourier-averaged inertia coefficient
CD = Fourier-averaged drag coefficient
BETA = Keulegan-Carpenter number, K, UmT/D.
REYNO = Reynolds number x 1073
CMLS = Least-squares averaged inertia coefficient.
COLS = Least-squares averaged drag coefficient.
CFSPP = Normalized semi-peak-to-peak maximum force coefficient.
CFRMS = Root-mean-square, normalized force coefficient calculated
CFMAX = Normalized max1mumt¥;$22hc;2$fgzﬁe::,Eg;(élg :
CARMS = Normalized root-mean-squure force coefficient calculated

through the use of Eq. (14).
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3 COMPUTER OUTPUT OF THE DATA PLOTTED IN Fig. 55
K
3
! DIz (43315 AMP=  G.8510 PER= 5.272C 1MX=  1.0150
TIME F Fl REMF FLS RLS
€) ~1.5225 -1.4953 Je)158 -1.479¢ 0.0250
1 040196 -1,5157 -1.3510 0.0725 -1.3754 6.0816
3 V379 -1.4207 -1.2471 941010 ~1.2322 0.1096
0471569 ~1.2579 -1.2683 0.1102 ~1.0545 0.1163
; o755 =1.1137 -0.8613 G.088¢ ~0.8489 0.0959
, £ 943 -0,7289 ~0.6345 046549 -G 45236 0.0612
0e1133 -0,4515 ~0.3974 C.13349 -0.3484 0.0402
0.1328 -0.1998 -5.16C7 340227 -9.153% 0.026Y
941517 349037 040651 ~040257 340704 -0.0384
Cai 707 (420872 042594 ~0,3361 0.273" -0.0382
Uel897 Cos107 De4427 -0.0186 04440 -0.01v9
04286 0.5667 0.5767 ~0.ui53 0.5778 -0.0965
¢e2276 047363 0.6653 140413 06656 0.0611
042406 0.8448 047040 0.0819 0.7340C 0.041Y%
Ue26506 Ne9543 Ce7l4b 0.1384 047145 0.1389
C+2845 l.0u08 6,753y 0.1436 0,75 32 041460
0.3035 l.0212 J.8218 Gell59 0.8202 0e1169
G.3225 le0212 0.913¢ 0.N626 0.%107 0.,Ch43
01414 1.0212 1.0228 =2.0069 1.0183 C.0nLY
043604 l.ti6ly 1.1416 -0.0463 1,1353 -0.3427
643794 1.1229 1.2613 -0.0895 1.2532 -0.0757
0013983 1.1568 1.3729 -0.1256 1.3624 -0.1198
fo4173 1.1365 Y -0.152¢ 1.4557 -0,1456
Jetr363 11365 1.53068 -0.2327 1.52306 -0.2251
0.4552 1.22417 1.5738 -0.2030 1.5594 ~0.1947
Coal42 1.3693 1.5733 -0.1239 1.5581 -0.1150¢
(005932 1.5299 1.5319 -040012 1.5162 0.0080
! (o5121 1.6995 1.4483 0.1461 1.4526 0.1552
] G.5311 1.6995 1.3237 0.2185 1.3095 0.2274
o 7.5501 14960 1.1617 041944 1.1472 0.2027
; 245690 l.2247 09079 Celty3 09547 0.1576
; Ce3680 0.0523 0u745R 0.1182 0.7381 0.1251
: De60T0 Oebabl 2.5166 0.0765 C.5G66 0.032%
340259 C.3429 0.2783 JeC3T5 0.2702 046422
006449 0.6715 34058 0.6150 049395 0.0126
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S

TIME

t 6639
N.&820
tie7718
Ve 7208
ie?396
G.1587
CoTT17
UeT767
Ue3156
Uel3406
{:a 3536
S5 125
E915
CaI105
Ve9294
(07484
Cevb 1o
Je9863
(v=
le134C
CrSsPp=
1.5787

F

=Ce1T94
-0.4033
~0.5864
~C.T424
-N.8781
“e9798
-1.0639
~1¢1494
~1.2172
-1.2511
-1.2376
~1.1697
~1.G81¢
~l.N316
-1l.3816
-1.1219
~1.1223
=1.2037
Co=
1.4953

CFRMS=

1.0430

F1

~0.1705
~0.3004
~Le5150
~0.6270
-Ne 631y,
=G 7366
-d.7304
~0.7845
=0.8650
-N.5664
=1.0515
-1,2018
-1.3186
~1.4228
~1.5)57
~1.5597
~1.5786
=1.5579
BETA=
16,1297

CFMrMX=

1.7198
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REMF
0.,0n52
€249
CeN415
0.2671
N.1788
J.1589
0.1663
fe2122
0.2048
0.1656
U908
~-CeN1&7
-D,1374
-Ne14984
=3, 246¢
~0e2€62
=0626513
=0,2G69
FrYh=
32,1450
CARMS=
1.,0504

e e

PR T

FLS
~0.1752
~0.3633
~0e3167
~0.6277
~046911
~}eT( 66
=3.7301
~).TH34%
~0.8628
~2.9627
~1.0761
~1.1947
=1e3096
~1l.4119
~1,.,4932
~1.5458
~1.5637
~1.5423

CML S=
l.154¢C

RLS

0.0026
0.0232
0.0406
0.0667
Goind87
0.1589
D.1965
6.2128
0.2C61
0.1677
0.0939
-0.014%
=0.13206
~0.1921
~0.2394
-0.2561
~0a2567
-0s19¢9
cOLS=
1.4796
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APPEXDIX A

SPECIAL NOTES:

1. 8= DzlvT and cylinder diameter D, given on top of each page,
identify the data set;

2. K= UmT/D is the Keulegan-Carpenter number;

3. Ch represents the inertia coefficient calculated through the usz
of the Fourier analysis;

4, Cd represents the drag coefficient calculated through the use of
the Fourier analysis;

5. cf(mes) represents the maximum measured-force coefficient;
6. o represents a measure of gocdness-of-fit, see Eq, (17);
7.2% represents the error coefficient, see Eq. (16);

8. A1l of the data given in Appendix A are for smooth cylinders.
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APPENDIX A - IN-LINE FORCE DATA FOR SMOOTH CYLINDERS

B =497 D =1.,991"

- *

K Re x 073 Cm Cc| Cf(mes) o A
194,78 96.87 1.12 1.20 1.323 11 8
175.50 87.28 1.20 1.25 1.35 9 0
149,33 74.24 1.10 1.29 1.38 7 ]
142.63 70.93 1.20 1.24 1.30 8 1
126.69 62.99 1.09 1.31 1.37 8 0
116,20 57.78 1.20 1.33 1.36 6 2
107.94 53.67 1.15 1.37 1.40 38 3
100.55 50.00 1.16 1.35 1.36 8 4
94,07 45,88 1.10 1.39 1.42 6 -1
88.7u 44,11 1.15 1.36 1.42 9 2
84.04 41.79 1.12 1.39 1.47 8 -1
79.15 39.36 1,20 1.38 1.41 7 3
74,27 36,92 1.07 1.45 1.47 8 0
64,08 31.87 1.10 1.53 1.60 7 3
59.73 29,70 1,05 1.52 1.51 10 1
56.24 27,48 1.10 1.54 1.60 6 0
53.02 26.34 1.10 1.55 1.59 6 2
49,69 4.7 1.05 1.59 1.61 6 0
47.00 23.37 1.10 1.55 1.66 3 9
45,41 22,59 1.02 1.66 1.63 9 -1
42,95 21,36 1.17 1.64 1.69 8 3
40.41 20,10 1.00 1.63 1.72 7 2
38.44 19.12 1.05 1.68 1.73 9 1
36.47 18.14 1.00 1.70 1.80 9 9
34,35 17.09 1.03 1.74 1.80 9 3
32.50 16.16 1.01 1.63 1.80 8 2
30,37 15.10 0.9¢ 1.73 1.92 8 8
28.82 14,33 0.94 1.79 1.90 10 8
27.42 13.63 0.96 1.85 1.95 14 12
25.83 12.85 .90 1.7 1.96 9 4
24.47 12.18 0.92 1.86 1,87 N 6
171.11 85.08 1.10 1.17 1.39 8 0
153.65 76.41 1.17 1.25 1.31 6 0
135.1 67.18 1.12 1.24 1.40 5 1
119.0 59.20 1.08 1,30 1.34 5 2
94.3 46.9 1.15 1.35 1.42 7 1
85.4 42,5 1.17 1.39 1.43 8 3
73.9 .8 1.16 1.42 1.45 6 1
65.5 32.6 1.13 1.44 1.46 6 1
58.6 29.1 1.15 1.56 1.57 10 3
51.9 25,8 1.15 1.51 1.55 8 2
46.] 22.9 1007 1062 ].65 9 "'2
44,0 21.9 1.04 1.61 1.64 8 -1
40,5 20.2 i.10 1,61 1.70 9 2
37.6 18.7 1.06 1.65 1.79 12 -3
35.0 17.4 1.02 1.63 1.75 8 2
32,0 15.9 0.99 1.70 1.89 7 1
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TR TR T T A RV am oitifay

g =784 D = 2.500"

*

K Hex10™3 Co Ca Celmes)  gima 2
144,2 711341 1.31 1.08 1.15 10 2
123.5 96.8 1.30 1.12 1.18 13 3
65.1 51.1 1.24 1.27 1,29 7 5
43.7 34,2 1.20 1.38 1.47 1 -2
33.5 26.2 1.15 1.50 1.59 9 ]
28.1 22.0 1.06 1.65 1.63 12 5
26,0 20.4 1.02 1.68 1,80 N 7
21.8 17.1 .98 1.77 1.55 10 6
20,3 15.9 0.93 1.82 2.07 13 8
19.0 14.9 0.88 1.90 2.17 14 7
17.2 13,5 0.54 2.10 2.33 13 6
16.2 12.7 0.80 2.07 2.50 14 6
15.1 11.9 0.74 2.02 1.60 16 8
14,1 n.Ja 0.78 2.14 2.74 12 4
13.2 10.4 0.65 2.20 2.74 18 10
11.8 9,2 0.65 2,20 2,57 16 8
12.4 9,8 0.69 2.21 2.65 20 n
11.3 8.8 0.65 2.22 Z.49 19 9
10.2 8.0 0.80 2.12 2,30 16 6
9.6 7.5 0.9 2.05 2.30 12 4
9,2 7.2 1.05 2,00 2,31 n -3
8.6 6.7 1.30 1.95 2,32 8 -2
8.0 6.3 1.50 1.92 2.40 6 -1
746 6.0 1.60 1.85 2.50 4 0
97.7 76.6 1.30 1.15 1.22 7 2
71.6 56.1 1.26 