SPONTANEOUSLY COMBUSTIBLE SOLIDS-- A LITERATURE STUDY

By
Eleunore G. Kayser
Carl Boyars

May 1975

NAVAL SURFACE WEAPONS CENTER
WHITE OAK LABORATORY
WHITE OAK, SILVER SPRING, MARYLAND 20910

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
NOTICE

The contents of this report reflect the view of the Naval Surface Weapons Center, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.
This research was monitored by the Department of Transportation, Office of Assistant Secretary for Environment Safety and Consumer Affairs, Office of Hazardous Materials, Washington, D.C.

Existing information on spontaneously combustible solids including pyrophoric-air hazardous materials and water reactive materials has been reviewed. Pertinent data on (a) the causes and prevention of spontaneous combustion in organic and inorganic materials due to air and water reactivity, (b) the application of various mathematical treatments to spontaneously combustible materials, and (c) available test methods for assessing the flammable properties of spontaneously combustible materials, e.g., autoignition temperature and spontaneous heating are also included.
Under Interagency Agreement DOT-AS-40049, the Naval Surface Weapons Center, White Oak Laboratory, has completed a literature survey of all attainable data pertaining to spontaneously combustible solids including pyrophoric-air hazardous and water reactive materials. All available hazard classification systems and test methods relating to spontaneous combustion have been reviewed and evaluated. Pertinent data on (a) the causes and prevention of spontaneous combustion in organic and inorganic materials due to air and water reactivity, (b) the application of various mathematical treatments to spontaneous combustion, and (c) available test methods for assessing the flammable properties of spontaneously combustible materials e.g., autoignition temperature and spontaneous heating are also included. This is the final report under that agreement. Use of trade names herein does not constitute any endorsement of the products named.

Julius W. Eng
JULIUS W. ENG
By direction
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Causes of Spontaneous Combustion in Some Organic Materials</td>
<td>1</td>
</tr>
<tr>
<td>Spontaneous Ignition--Mathematical Treatments</td>
<td>2</td>
</tr>
<tr>
<td>Flammability Determinations</td>
<td>3</td>
</tr>
<tr>
<td>Materials Subject to Spontaneous Heating</td>
<td>6</td>
</tr>
<tr>
<td>Air-Hazardous Materials</td>
<td>11</td>
</tr>
<tr>
<td>Water-Hazardous Materials</td>
<td>12</td>
</tr>
<tr>
<td>Conclusion</td>
<td>23</td>
</tr>
<tr>
<td>References</td>
<td>25</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Materials Subject to Spontaneous Combustion</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Department of Transportation's Hazardous Materials Regulations Board is considering the adoption of regulations that would provide a more complete identification of the stability characteristics and therefore the potential hazards associated in the transport of hazardous materials. A number of materials are designated as flammable solids on DOT's commodity list because of a history of spontaneous ignition occurring either in transit, in handling, or in storage.

Currently DOT/OHM has inadequate technical data to define quantitative criteria for the hazard classification of these materials. Therefore, there is need for a theoretical evaluation of materials which could be designated "spontaneously combustible." The purpose of this investigation is to provide technical background for use in developing regulations for the transportation of such materials. At present, there is neither international agreement on regulations concerning the shipment of flammable solids nor a standard classification test method for flammable solids in the transportation regulations.

In DOT terminology, "flammable" characterizes a greater degree of fire hazard than "combustible" (excluding spontaneously combustible). Spontaneously combustible materials differ from readily flammable materials in that the latter will ignite within a specified time limit (a few minutes) and burn rapidly when exposed to a specific ignition source. Ignition sources include hot surfaces, hot filaments, flames, hot gases, electric sparks, and adiabatic compression of the material itself. Spontaneously combustible materials can inflame even in the absence of what are normally regarded as ignition sources. Although one can regard such materials as a sub-class of flammable solids and liquids (current regulations), many spontaneously combustible substances may not ignite within the specified time limit in a test designed to characterize flammable materials. This is especially true when the heat-generating reaction in the spontaneously combustible material is one involving bacterial action. Also, the test for flammable materials may be performed on a sample size which is less than the critical mass necessary for spontaneous combustion to occur in some substances.

Further sub-classification of spontaneously combustible materials includes pyrophoric materials, i.e., those that will ignite spontaneously on exposure to air (air-hazardous material) and those that will ignite on contact with water or moisture (water-hazardous materials).

Causes of Spontaneous Combustion in Some Organic Materials
(Ref: 1-13)

Organic materials which are subject to spontaneous ignition at ordinary ambient temperatures must have access to atmospheric oxygen or carry oxidizer in some reactive form and be raised to a kindling or autoignition temperature by the exothermic reaction. Moisture is, in some cases of spontaneous combustion, essential for the resulting reaction. Bulk transport and/or storage may result in spontaneous ignition in many agricultural products.
Low temperature oxidations of substances such as beet sugar and coal can be directly related to their adsorption capacities for atmospheric oxygen, with desorption of the oxidized products. Adsorption in general is accompanied by the liberation of energy in the form of heat. The temperature increase depends on the rate of heat transfer to the surroundings. Higher temperature accelerates the chemical reactions with adsorbed oxygen, which in turn provide an even greater heat release. Thus, physical adsorption is followed by subsequent chemical oxidation and spontaneous ignition if the heat is not dissipated to the surroundings sufficiently rapidly to prevent achieving the autoignition temperature in the material.

The oxidizing action of microorganisms in organic materials such as hay and sawdust often produces the initial heat which eventually leads to spontaneous combustion. In this process, the product is changed chemically and physically by bacteriological action. Fermentation and action by microorganisms can raise the temperature to about 130°F. Chemical oxidation of fermentation products then occurs. When the temperature reaches 212°F, the microorganisms are destroyed. Chemical action involving the cellulose can further increase the temperature. If the heat cannot be dissipated to the surroundings, the temperature within the material continues to rise and the rate of oxidation increases. Eventually the material reaches its autoignition temperature, where combustion occurs. In general, the conditions essential for spontaneous combustion where bacteriological action is involved are an existing slow oxidation and good heat insulation.

Spontaneous Ignition--Mathematical Treatments (Ref: 14-24)

Ignition produced by the generation of heat within a material which is decomposing can be treated by thermal explosion theory. Frank-Kamenetskii's treatment is approximately valid for any exothermic decomposition in which heat evolution obeys an Arrhenius law with a constant energy of activation to represent the dependence of zero order reaction rate upon temperature. This Arrhenius relationship of course does not hold for microbiological processes (and is questionable for many complex chemical processes). Walker attacks the approximation involved in application of the binomial theorem to the Arrhenius law by Frank-Kamenetskii. Walker's treatment relates critical size to critical ambient temperature for self-heated materials undergoing reactions of zero order even when the effects of temperature on reaction rate are non-Arrhenius. Van Geel, starting with the Frank-Kamenetskii treatment, introduces the concept of a safe radius, that is, a critical dimension for which the temperature difference between the center of a self-heating material and its surroundings does not increase more than 10°C during the storage period. He shows this to be useful over a considerable range of activation energy values.

All applications of mathematical treatments of spontaneous ignition require a knowledge of the apparent activation energy of the overall heat evolution reaction or some other means of specifying
dependence of reaction rate on temperature. All involve an approximation of zero order reaction kinetics. This is valid in general only for reactions in which nearly all the originally reacting substance is still present or else as an approximation for a specific instantaneous state. Prediction of the likelihood of occurrence of spontaneous combustion depends, in addition, on knowing the specific heat of the material, its bulk density, thermal conductivity coefficient, heat transfer coefficient to the surroundings, and temperature of the surroundings as well as the heat evolution rate per unit mass; it also depends, of course, on the amount and geometric shape of the material undergoing self-heating.

Flammability Determinations (Ref: 25-35)

Spontaneous Ignition Temperature (Ref: 25-30)

The thermal properties of spontaneously combustible materials which are normally determined by the chemical industry include autoignition temperature and spontaneous heating. The autoignition or spontaneous ignition temperature is defined as the lowest temperature at which a substance in either gas, liquid, or solid state, in the presence of air will ignite after a certain delay without the application of any artificial means of ignition. Factors influencing autoignition temperatures include the size and shape as well as the physical and chemical properties of the material being tested. Methods which have been employed for the determination of spontaneous ignition temperatures include (a) crucible methods—static (Moore Apparatus, Krupp Ignition Meter, Jentzoch Ignition Meter and ASTM D 2155-66) and dynamic (The Royal Aircraft Establishment (Farnborough) Spontaneous Ignition Temperature Apparatus), (b) dynamic tube methods, (c) bomb methods, and (d) methods of adiabatic compression. Of the preceding methods, the crucible methods are by far the most popular (25).

The ASTM D 2155-66 may be used for the determination of the autoignition temperature of liquid or semiliquid petroleum products in air at one atmosphere pressure using a sample ejected from a hypodermic syringe. In this method, a heated 200 ml Erlenmeyer flask of borosilicate glass containing air at one atmosphere pressure is used as the test chamber. This test is carried out in a darkened room. A small sample of the test liquid is introduced into the flask. The contents of the flask are inspected during the five minutes following the sample injection. If autoignition occurs, a flame appears in the flask. Observations are carried out at a series of test temperatures and with several sample sizes. The autoignition temperature is taken as the lowest temperature at which ignition is observed (26).

Spontaneous Heating (Ref: 31-34)

The Mackey apparatus is considered a suitable general method for assessing the spontaneous heating and ignition hazards associated with the transport, storage and use of materials that are subject to
atmospheric oxidation at ordinary temperatures (31-33). This apparatus and subsequent modifications are used to detect materials' susceptibility to spontaneous heating. In general, this device consists of a water-jacketed cylinder, 4 inches in diameter and 7 inches high, the top of which is closed by a cover. The cover is pierced by a central hole and by two draft tubes each 6 inches long and 1/2 inch in outer diameter. One of these tubes extends into the cylinder and the other extends upward from the cover. A 30 g sample is placed on cheesecloth, which in turn is placed in a metal gauze cylinder (2 1/2 inches in diameter and 6 inches long, no. 12 mesh). The gauze cylinder is centered in the jacketed cylinder. Water in the jacket is brought to a boil, the sample on the cheesecloth in the gauze cylinder is introduced, and a thermometer is placed in the central hole (31). If the sample temperature does not exceed 100°C within an hour, the material is judged safe with regard to tendency for spontaneous heating. A thermocouple with recorder would provide a safer and more accurate test. The test is useless for substances which ignite as a result of slow oxidation and for materials where biological processes can cause spontaneous ignition.

There is currently, no standard method available for assessing extremely flammable solids (pyrophoric powders) which can ignite spontaneously on exposure to air at ambient temperature. A test developed by the Bureau of Explosives (American Association of Railroads) for pyrophoric liquids is considered by a United Nations working group to be adaptable to some solids but not to powderlike materials. This method requires rather large quantities of material and involves the use of a sawdust reacting medium, although the particle size, moisture content, and type of sawdust are not specified. A maximum relative humidity of 75% is also specified, which according to the Bureau of Mines, may not be high enough to evaluate the pyrophoricity of some substances (34).

The Bureau of Mines has recently developed a method for evaluating the ease of spontaneous ignition of extremely flammable solids by determining their ease of ignition using an environmental chamber at high-humidity conditions. This method utilizes small samples at ambient temperature of 90° or 130°F and at various humidity conditions. The procedure calls for an environmental chamber in which the relative humidity can be varied from 50-90% and controlled to within ± 5%. The sample is placed in the center of a 4 in. diameter by 6 in. long glass reaction tube that is mounted vertically in the environmental chamber to minimize heat losses. The reaction tube is open at both ends to permit circulation of air. The extent of the reaction is determined by visual observations and by measuring the temperature rise near the top of the sample bed using 30-gage iron-constantan thermocouple. The output of the thermocouple is then fed to a continuous pen recorder (34). Further developments of the basic test procedure as well as a hazard classification of flammable solids for transportation can be found in reports prepared for DOT by P. V. King and A. H. Lasseigne, DOT Report TSA-20-72-6, 1972 (NTIS:PB-220084) and R. Hough, A. Lasseigne and J. Pankow, DOT Report TES-20-73-1, 1973(NTIS:PB-227019/AS).
An additional work on the hazard of flammable solids which furnishes supplemental information on important variables occurring in several of the tests proposed by previous investigators can be found in a report recently prepared for DOT by C. B. Dale, DOT Report TES-20-75-2,197 (NTIS: PB 240 878/AS).

For absolute assurance that a material does not represent a spontaneous ignition hazard in transport, an adiabatic storage test should be carried out at the maximum ambient temperature the material is likely to encounter and for the maximum period of time that it will be in transit (plus any additional prior storage time). Failure to achieve autoignition under these conditions, which are equivalent to a mass so large that there is no heat loss from the center by thermal conduction, is conclusive evidence. One applicable apparatus is described in a report prepared for OECD by J. W. Hartgerink (Thermal Analysis of Unstable Substances: The Exothermal Decomposition Meter, Ass. nr. 8357/9569, RVO-TNO, Rijswijk, The Netherlands, May 18, 1973). It may not be necessary to carry out full-term adiabatic storage tests on materials whose self-heating could be established by smaller-scale screening tests such as Differential Thermal Analysis or Differential Scanning Calorimetry, and the Exothermal Decomposition Meter of RVO-TNO.

Water Reactivity (Ref: 35)

Moisture-or water-hazardous materials react violently with water, generating sufficient heat to ignite combustible container materials or the flammable gases generated by the reaction. Although this hazard is recognized by various organizations, currently, there is no generally accepted method to evaluate the water reactivity of materials. A procedure for determining water reactivity by either adding a given weight of water to a given weight of material or vice versa has been proposed by Mason and Cooper of the Bur-u of Mines (35).

In either case, the rate of the temperature increase as well as the total temperature increase are recorded, and the gases evolved are sampled for analysis. The test apparatus consists of a sample container (a pyrex tube 1 3/8 in. dia. and 10 in. long) imbedded to a depth of 3 1/2 in. in a block of insulating foam (polyurethane or polystyrene) 3 in. square by 5 in. high. A thin piece of copper 3/8 in. square and weighing 0.5 gm is silver soldered to the tip of a chromelalumel thermocouple which measures the temperature rise. The thermocouple is placed in the pyrex tube so that the copper square is covered by the sample. The output of the thermocouple is then fed to a recorder. See also DOT reports cited in Ref. 34 discussion.

Using appropriate safety precautions, an initial estimate of the severity of the reaction is made by adding 5 gms. of water slowly to 0.5 gm of material. The temperature rise is measured by adding 10 gms of water slowly (10-20 sec) to 1, 2, 5, 10, and 20 gms. successively of the sample. Measurements are continued until the temperature peaks and then begins to drop. If 1, 2, and 5 gms of the material give virtually no temperature increase in 4 minutes, 10 gms of water are added to 10 gms of sample and the temperature
is monitored for one hour to determine if a slow reaction occurs. If the reaction is not too violent, 10 gms of water are added to 20 gms of the material to see if a temperature rise results. This procedure may also be reversed by adding the material to the water in the container (35).

If gas is evolved, a sample from the reacting material is collected through a flexible needle inserted into the reaction container to within approximately an inch of the reacting mixture. This sample is then analyzed on a chromatograph for flammable and/or toxic gases (35).

Materials Subject to Spontaneous Heating (Ref: 1-12, 36-97)

Organic materials subject to spontaneous heating which can be caused by bacteriological action include hay, straw, clover, malt, grains, tobacco, seeds, fodder, fish-meal, fertilizers, garbage, sugar, etc. (1-12, 36-39, 43). The phenomena of spontaneous ignition in these materials exhibit considerable variation according to their specific natures and also the external influences to which they are subjected such as moisture content, size, exposure methods of shipping and storage. The real danger of spontaneous ignition usually occurs when the damp product is piled in large masses for storage. Experiments performed by Rothbaum, have shown that spontaneous ignition is most likely to occur in moist, permeable biological materials at relative humidities in the 35-97% range. An exception to this would be where the oxidation of unsaturated oils is involved. At relative humidity values below 95% no appreciable bacterial action takes place. Fungi are known to grow actively at relative humidities greater than 75%, although most bacteria metabolise strongly only at relative humidities over 95%.

As 100% relative humidity is approached, a rapid rise in thermal conductivity due to water vapor transfer is noted. This is responsible for large heat losses, and therefore subsequent chemical reactions will be less likely to exceed the microbiological maximum temperature limit of 76°C. The thermal conductivity of wet porous materials between 60°C-100°C has been found to be almost entirely controlled by the rate of water vapor transfer. At relative humidity values nearing 100% the thermal conductivity of moist porous materials shows a very rapid rise with temperature. Therefore, a chemical reaction of low heat output will produce a temperature increase more easily when the relative humidity is appreciably below 100%. Thus it seems likely that the biological temperature limit would be passed only by materials in equilibrium with relative humidity readings within a fairly narrow range of about 93-97% (1).

Rothbaum has found that in the spontaneous heating of hay, which is in equilibrium with a relative humidity at 95-97%, microbial action is responsible for temperature increases to about 70°C. Chemical reactions (dependent on the presence of moisture) then increase the temperature to 170°C while further chemical oxidation
of the dry hay then leads to combustion (1). Although hay will self-heat due to microbial action, it has been proven that chemical heating of hay is not necessarily dependent on previous biological activity. Rothbaum has shown that even without previous microbial action, chemical heating can continue in hay for lengthy periods and, under adiabatic conditions, will raise hay to its ignition point. While the self-heating of hay has long been a subject of concern, spontaneous ignition has never occurred in hay containing less than 33% moisture (moisture expressed as % of dry weight). Therefore, moisture control of this material should eliminate the hazard of ignition.

The spontaneous combustion of sugar and bagasse (the crushed juiceless remains of sugar cane as it comes from the mill) (40-43) has also been reported. The self-heating of these materials which occurred in storage bins and silos was found to be due to oxidation influenced by fermentation. Both Actinomycetes and Semiclostridium bacterial strains (bacteria which have been identified with fermentations which evolve heat) were found in the decomposed sugar and in the sugar from the edges of the affected areas.

Specific biochemical processes have a decisive significance in the phenomena of spontaneous heating of many materials. One of these processes is the utilization of proteins and the products of their hydrolysis as a source of energy by microorganisms. The chief energy loss in the decomposition of proteins as reported by Goldin, is connected not with hydrolysis but rather with the decomposition of amino acids. The production of heat at the expense of proteins and the products of their hydrolysis is much greater under aerobic than under anaerobic conditions. It is practically impossible for the decomposition of proteins under anaerobic conditions to result in spontaneous heating since the production of heat is related to oxidation processes. Certain organic acids, such as acetic, propionic, and ascorbic, are strongly inhibitory to mold and bacterial growth. The calcium and sodium salts of propionic acid are normally used in fruits and vegetables to inhibit the growth of molds. Propionic acid has also been used to prevent microbial deterioration in grain (moist wheat and cornmeal) for at least twelve months if the pile is protected from the rain. In addition to being antimicrobial, propionic acid and its salts stop respiration of the living cells in stored grain, thereby inhibiting any heat buildup in the pile.

Mixtures of nitrates with easily oxidized materials (fertilizer mixtures) are also a recognized fire hazard due to their ability to self-heat. Excessive development of heat in curing piles of fertilizers (44, 45) containing superphosphate, organic matter, and large amounts of inorganic material can be traced to the oxidation of organic matter by nitric acid, which is formed in the reaction between the nitrate and free phosphoric acid. The rate of the reaction as reported by Davis and Hardesty, is accelerated by increases in (a) concentration of free phosphoric acid in the liquid phase of the fertilizer, (b) size and insulating properties
of the curing pile, (c) amount and mobility of the liquid phase in the mixture, and (d) degree of interaction among the active ingredients of the mixture. The degree to which these conditions are fulfilled will determine the extent of the temperature rise. Under certain conditions the heat generated by the oxidation reaction is sufficient to cause spontaneous ignition in a base mixture stored at 30°C. The reaction leading to ignition of such mixtures containing superphosphate, ammonium nitrate, and organic conditioner can be prevented by treatment of the superphosphate with ammonia (45).

Animal and vegetable fibers (3,10,11,46) such as wool, silk, cotton, jute, hemp, flax, shoddy, etc., are also susceptible to autooxidation which can lead to spontaneous ignition. Animal fibrous materials are in general less susceptible to spontaneous ignition than vegetable fibers, since hollow fibers (vegetable fibers) constitute a greater danger in their behavior toward fire than do solid fibers because of their tendency to absorb oxidizing foreign materials. Animal fibers, in general, when ignited will not support combustion while vegetable fibers will smolder and burn. Both animal and vegetable fibers which have been in contact with animal or vegetable oils are subject to self-heating and spontaneous combustion.

Cotton waste (4,7,10,11) when in contact with fatty oils is more susceptible to autoignition than animal fiber. The autoignition is dependent on the properties of the oils with which the fibers are in contact. The more unsaturated oils are the most hazardous because of their ease of oxidation. The presence of moisture is also an aggravating factor responsible for autoignition. Mineral oils while less subject to oxidation because of their negligible affinity for oxygen, cannot be absolved from the autoignition hazard, although they are sometimes used as a means of reducing the danger of spontaneous ignition by mixing with other more hazardous oils.

Although heat is developed by friction at baling, by bacterial activity in wet wool, and by moisture adsorption on over-dried wool, direct oxidation of wool (47-53) seems to be the main process leading to temperatures high enough to cause ignition. Sheared and slip wool (wools that contain little or no fat or oil) do not ignite. Experiments by Walker, Williamson and Carrie et al., using ether-extracted fat from pie wools (wools removed from sheepskin by the pie process contaminated with subcutaneous fat) demonstrated that the self-heating reaction is associated with the fat and not the wool. The heating reaction in wool is caused by the atmospheric oxidation of unsaturated components of fat. It has been suggested that traces of water vapor are necessary to catalyse this oxidation, however no such effect could be detected in experiments on dried wool by Walker and Williamson. However, the influence of water is relevant to the problem. Bales of wet or damp wool can become hot due to microbiological action. Microbiological heating of wet wool must therefore be considered as a possible trigger mechanism to preheat bales of wool to a point where oxidation could commence, since previous experiments have shown that the oxidation of pie fat (fat extracted from pie wools) can take place in the presence of considerable moisture.
Soybeans and soybean by-products (3,10,39,55-57) are an example of another common agricultural product in which spontaneous combustion can occur. The oxidation and thermal polymerization of the unsaturated oils present in soybeans (approximately 10 times as much unsaturated oil as wheat) is considered responsible for the ease with which chemical heating takes place. Although a high moisture content is considered a primary cause of spontaneous ignition in some agricultural products (hay, grains, fodder, etc.) the principle cause of spontaneous ignition in soybeans and soybean by-products appears to be the oxidation and polymerization of the unsaturated oils, with moisture considered a contributing factor. As in the case of other common oxidizable vegetable oils, the actual spontaneous ignition hazard presented by soybeans will depend upon the circumstances including (a) the amount of oil involved, (b) the ambient temperature (c) the conditions with respect to heat transfer and dissipation and (d) the presence of other combustible materials.

Clay-diluted chlorinated insecticides (54) occasionally decompose, sometimes becoming sufficiently hot to ignite spontaneously. The decomposition of insecticides occurs in wettable powders and dusts as a result of the catalytic action of the clay diluent. Investigations have shown that this decomposition is promoted by the acid sites of the clay. The rates of reaction of these insecticides in the presence of various clay diluents were found to increase with the increasing acidity of the clay surface. Treatment of the clays with volatile organic bases or basic substances such as urea or hexamethylenetetramine, has been found to reduce the acid strength and diminish the rate of decomposition accordingly. Since the introduction and use of these clay-deactivators, the problem of decomposition has virtually disappeared.

Animal and vegetable oils (10,25,58-60) in the presence of air and at ambient temperatures, undergo oxidation with the evolution of heat. Although their ignition temperatures are comparatively high, the heat generated by oxidation is sufficient in some cases to cause ignition under favorable circumstances. This susceptibility to spontaneous ignition is greatly increased by exposing a relatively large surface area of the oil to the oxygen in the air (e.g., impregnating a waste material such as sawdust, cotton, rags, etc.). The form in which the oily fibrous material is exposed to the air also influences the reaction and affects the rate of dissipation of heat. If the oily mass is compact, the oxygen supply from the atmosphere is necessarily restricted, and if exposed to air currents, the heat loss may prevent a rise in temperature. However, a reaction can begin (given enough oxygen) that can generate considerable heat which is accumulative due to the insulating power of the waste and this heat can then accelerate further reaction and finally result in ignition.

Available evidence indicates that wood when subjected to continuous heating will form a pyrophoric type carbon which is liable to ignite spontaneously at low temperatures. Sawdust and wood chips (10,11,61-75) also have a tendency to spontaneously
ignite when stored in large piles. This tendency is increased when the materials are impregnated with vegetable or animal oils, glue, organic dyes, etc. Nitric acid which fosters internal heating and combustion can also cause spontaneous combustion in sawdust. The initial heat release in a chip pile is the result of oxidative processes occurring within or on the surface of the wood chips. This heating is the direct result of (a) respiration of the living cells, (b) bacterial growth-microorganisms on or within the wood indirectly oxidizing the various wood constituents, (c) direct chemical oxidation - readily oxidizable materials such as unsaturated fatty acids and other extractives entering into combination with atmospheric oxygen by direct chemical reactions, and (d) fungal growth. The initial heating observed in the first few days of chip storage is apparently caused predominately by (a), (b), and (c). The direct chemical oxidizations probably become important above 42°C. The contribution of fungal growth to the heating observed in wood chips is most likely significant only after several weeks of outside storage. Several factors which influence these oxidative processes include (1) chip pile temperature, (2) species of wood, (3) moisture content, (4) climatic conditions, (5) pile size and height, and (6) the amount of foreign material. Losses in wood substance from the action of microorganisms in wood chips stored outside average roughly about 1%/month, although these losses can range as high as 2.5-3.0% in the South. Propionic acid, a biocide used successfully to protect stored grains from microbiological attack and from destructive self-heating, can be absorbed by wood chips and effectively prevent the fungal degradation of the chips. The cost for the quantity of acid required to protect chips during outside storage is high.

Wood fiber insulating boards (8,11,12) have been known to undergo spontaneous ignition, while in transit, due to insufficient cooling after drying. This hazard can easily be eliminated by maintaining sufficient moisture and by cooling the boards before stacking, rolling, and shipping.

Paper rolls (2300-2800 lbs.) (7,11,61) are also subject to spontaneous combustion while in transit. This can be due to several factors (a) very dry rolls (<?3% moisture), (b) tight winding of the rolls, (c) size, and (d) a high initial temperature. This hazard can also be eliminated by increasing the moisture content to 5% or greater.

The spontaneous combustion of coal (10-12,76-97), has been a topic of interest and difficulty for the past two centuries. The factors which are generally agreed to have the greatest effect on the oxidation rates and ignition temperatures in coal are: (a) particle size and pore structure -- the ignition temperature generally decreases with decreasing particle size and oxidation rates generally increase with decreasing particle size, (b) oxygen concentration -- increasing oxygen concentration increases the oxidation rate and decreases the ignition temperature of a particular coal sample, and (c) amount of volatile matter -- as the volatile matter
increases, the ignition temperature decreases and the rate of oxidation also tends to increase. Moisture also plays a pronounced role in the oxidation of coal. The effect of moisture in favoring the oxidation and self-heating of coal has been confirmed by various researchers. It is evident from both practical and experimental studies that coal-oxygen complexes are formed when freshly powdered coal is exposed to air at ambient temperatures. These oxygenated complexes are unstable and readily decompose to oxides of carbon and water. The presence of adsorbed water has been proven to be a necessary condition for the formation of these complexes, which appears to be an essential step in the overall oxidation process of coal. Preventive measures include (a) ventilation, (b) limited mass, and (c) low temperature immersion carbonization -- immersing the coal for short periods (5-15 minutes) in an inert liquid such as silicone oil at temperatures between 350-460°C. This carbonization technique effectively reduces the accessible pore volume of the coal to levels at which heat generation through subsequent sorption of moisture and oxygen is too slow to cause significant temperature rises in a stockpile. It has also been established by infrared spectroscopic scanning of the washed coal samples that little if any oil penetrates into the coal during the immersion heating process (95).

Chemically activated carbon (11,79,88-94) is known to undergo self-heating and ignition in transit and therefore must be adequately cooled before it can be shipped and stored safely in bulk. Available studies on charcoal and activated carbon show that the self-heating is principally a consequence of the occlusion of oxygen. Moisture contributes significantly to the initial stages of self-heating of dry material at ordinary temperatures. The self-heating characteristic of powdered activated carbons is also dependent on their manufacturing process, e.g., steam activated or chemically activated. The use of polyethylene liners or covers where practical, has proven successful in the prevention of self-heating by restricting the flow of air through these oxygen sensitive materials.

Lampblack (11,79) is subject to the same conditions only to a greater degree. Ignition is fostered by its oily character. Lampblack from tar, tar oils, mineral oils, coal lignite, and peat contains sulphur which on contact with iron can spontaneously ignite. Storage and transport in large heaps should be avoided as far as possible. Careful handling of this material can eliminate the danger of spontaneous combustion.

Air-Hazardous Materials (Ref: 10,98-104,128,130,133, 140)

The exposure of a relatively large surface area of some metals e.g., titanium, zirconium, iron, promotes its rapid reaction with the oxygen of the air causing spontaneous combustion. It has been suggested that there is a great probability that all metals become pyrophoric when the ratio of surface-to-volume becomes sufficiently high (98). By decreasing the particle size, the ratio of surface to mass increases and the reaction (oxidation) on the surface generates more heat per gram, resulting in a larger rise in temperature.
The degree of a material's pyrophoricity is critically dependent on its particle size. Pyrophoric action results from the inability of a material to dissipate its heat of oxidation (even slow oxidation) in air rapidly enough, thus causing a rapid rise in temperature (100). The large amounts of heat liberated during oxidation of a pyrophoric powder can also cause explosion if the powder is suspended in air as a dust. Pyrophoric action is not limited to powders of substantially pure metals but includes compounds as well as alloys. This behavior occurs in the lower oxides of iron, manganese, and uranium, the hydrides of uranium and cerium, and the carbides and nitrides of uranium. It is generally true that the higher the heat of formation of the metal oxide, the larger the particle size may be and yet retain the ability to burn spontaneously. Almost any alloy or compound will be pyrophoric if it is in fine enough particles and if its heat of oxidation is strongly exothermic (100, 103). Examples of other pyrophoric materials include (a) metal alkyls -- trimethyl aluminum, triethyl aluminum -- compounds containing a very active organometallic bond capable of high reactivity with oxygen, (b) metal carbonyls -- iron pentacarbonyl, potassium carbonyl, and (c) metal hydrides -- aluminum hydride, barium hydride, beryllium hydride. Pyrophoric substances can be inactivated by opening the container under liquids such as acetylene cellulose in acetone, 96% ethyl alcohol, and in the case of pyrophoric cobalt, even hydrocarbons. On evaporation of the solvent, the pyrophor is protected against spontaneous ignition by surface oxidation which occurs during the slow evaporation of the solvent.

Water-Hazardous Materials (Ref: 103,111,121,127,130,140)

In general, active metals, hydrides, carbides, and phosphides are incompatible with water because of the generation of flammable, toxic, and/or explosive products. Cesium, potassium, sodium, and the alloys of these metals can ignite spontaneously on exposure to air and/or moisture. The degree of hazard depends to a great extent on the probability of collecting a dangerous concentration of flammable products. This depends on factors such as quantity of material involved, ventilation, etc.

The following table (Table I) lists solid substances that are subject to spontaneous ignition as well as materials that are flammable due to reaction with air (air hazardous materials) and/or moisture (water hazardous materials). The hazardous material listing reported in Table I is compiled from data obtained from the open literature, the Code of Federal Regulations (CFR-49) 1972, and the Transport of Dangerous Goods (1970) – United Nations recommendations, as well as unclassified government reports.
TABLE 1

Materials Subject to Spontaneous Combustion (105-130,137-141)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerene (para nitroso dimethyl aniline)</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Alfalfa Meal</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Aluminum - Triethyl, Methyl, Palmitate, Diethylmonochloride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Aluminum - Dust, Powder, Hydride</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Aluminum Phosphide</td>
<td>on reaction with water yields phosphine which is spontaneously flammable</td>
</tr>
<tr>
<td>Aluminum - Carbide, Ferrosilicon Powder</td>
<td>water hazardous material</td>
</tr>
<tr>
<td>Aluminum Silicon Powder</td>
<td>water hazardous material</td>
</tr>
<tr>
<td>Azido Thallium</td>
<td>explodes in air</td>
</tr>
<tr>
<td>Bags, Used - Burlap, Jute</td>
<td>tendency to ignition dependent on previous use</td>
</tr>
<tr>
<td>Barium</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>Barium Azide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Barium Carbide</td>
<td>spontaneously flammable on contact with water</td>
</tr>
<tr>
<td>Barium Hydride - Fine Powder</td>
<td>can spontaneously ignite in dry and moist air</td>
</tr>
<tr>
<td>Barium Perioxides</td>
<td>can react explosively with large quantities of water</td>
</tr>
<tr>
<td>Barium Sulfide</td>
<td>can ignite in dry and moist air</td>
</tr>
<tr>
<td>Beans - Locust, etc.</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Benzyl Sodium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Beryllium Powder</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Beryllium Dimethyl</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>Bis-Cyclopentadienyl Manganese</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>Bismuth</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Bismuth Ethyl Chloride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Bismuth Pentafluoride</td>
<td>reacts violently with water sometimes with ignition</td>
</tr>
<tr>
<td>Bone Meal, Bone Black, Bone Charcoal</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Borohydrides of Al,Be,Zr,Hf</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Boron Dust</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Boron Chloride Tetramer</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Cacodyl Cyanide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Cacodyl Phenyl</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Cadmium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Cadmium Amide</td>
<td>can explode in water</td>
</tr>
<tr>
<td>Cadmium Nitride</td>
<td>spontaneously flammable in water</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Calcium Carbide</td>
<td>yields C₂H₂ on contact with water which can ignite.</td>
</tr>
<tr>
<td>Calcium Hydride</td>
<td>dust can explode if dispersed in air decomposes in water, vapors produced are flammable.</td>
</tr>
<tr>
<td>Calcium Hypochlorite</td>
<td>finely divided material is spontaneously flammable in air.</td>
</tr>
<tr>
<td>Calcium Metal</td>
<td>spontaneously flammable in air.</td>
</tr>
<tr>
<td>Calcium Nitride</td>
<td>violently reaction with water sometimes with ignition.</td>
</tr>
<tr>
<td>Calcium Oxide</td>
<td>reacts with water yielding phosphine which is spontaneously flammable.</td>
</tr>
<tr>
<td>Calcium Phosphide</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Calcium Silicide</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Calcium Silicon (Calcium Manganese Silicon)</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Calcium Sulfide</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Calcium Dithionate</td>
<td>subject to spontaneous ignition.</td>
</tr>
<tr>
<td>Celluloid, Scrap</td>
<td>spontaneously flammable in air.</td>
</tr>
<tr>
<td>Cerium</td>
<td>spontaneously flammable in air.</td>
</tr>
<tr>
<td>Cerium III Aluminohydride</td>
<td>spontaneously flammable in air.</td>
</tr>
<tr>
<td>Cerium Amalgam</td>
<td>spontaneously flammable in air.</td>
</tr>
<tr>
<td>Cerium Hydride Amalgam</td>
<td>spontaneously flammable in air.</td>
</tr>
<tr>
<td>Cerium Indium Alloy</td>
<td>spontaneously flammable, 0-30% Ce alloy has greatest pyrophoricity.</td>
</tr>
<tr>
<td>Cerium Nitride</td>
<td>spontaneously flammable in moist air.</td>
</tr>
<tr>
<td>Cesium Amide</td>
<td>possible explosion on contact with water.</td>
</tr>
<tr>
<td>Cesium Antimony Alloy</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Cesium Arsenic Alloy</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Cesium Bismuth</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Cesium, Metal</td>
<td>spontaneously flammable in moist air at room temperature.</td>
</tr>
<tr>
<td>Cesium Oxide</td>
<td>spontaneously flammable in water.</td>
</tr>
<tr>
<td>Cesium Phosphide</td>
<td>spontaneously flammable in moist air and on contact with water.</td>
</tr>
<tr>
<td>Cesium Silicide</td>
<td>ignites spontaneously on contact with water.</td>
</tr>
<tr>
<td>Chromium</td>
<td>spontaneously flammable.</td>
</tr>
<tr>
<td>Chromium Cobalt Alloy</td>
<td>spontaneously flammable when particle size is less than 1 micron.</td>
</tr>
<tr>
<td>Chromocum Monoxide</td>
<td>spontaneous.</td>
</tr>
<tr>
<td>Coal - Bituminous, brown, fossil</td>
<td>subject to spontaneous ignition.</td>
</tr>
<tr>
<td></td>
<td>tendency to self-heating depends on origin, nature and degree of volatile ingredients.</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Cobalt</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Cobalt Amalgam</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Cobalt Nitride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Cobalt Resinate</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Colophony Powder, Gum Rosin</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Copper</td>
<td>fine powders are spontaneously flammable (.01-.03 microns)</td>
</tr>
<tr>
<td>Copper Aluminoxydride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Copper Pyrite or Copper Ore Concentrates</td>
<td>in large bulk - subject to spontaneous ignition</td>
</tr>
<tr>
<td>Copra</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Cork</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Cotton, Cotton Waste, Wet Cotton</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Cupric Phosphide</td>
<td>spontaneously flammable in moist air and on contact with water</td>
</tr>
<tr>
<td>Decaborane</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Dibutyl Magnesium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Diethyl Magnesium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Diethyl Zinc</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Dimethyl Magnesium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Diethyl Zine</td>
<td>explodes when in contact with water</td>
</tr>
<tr>
<td>Dipotassium Nitroacetate</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Disilamino Dichloroborine</td>
<td>subject to spontaneous ignition, maintain moisture content between 7-10% and cool below 100°F before storage</td>
</tr>
<tr>
<td>Distillers Dried Grains</td>
<td>explodes in air above 30°C</td>
</tr>
<tr>
<td>Disulphur Dinitride</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Dust from blast furnace filters</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Ethyl Lithium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Ethyl Sodium</td>
<td>oxidizes rapidly in air and may ignite spontaneously</td>
</tr>
<tr>
<td>Europium</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Feeds, various</td>
<td>ignites on contact with water</td>
</tr>
<tr>
<td>Ferrosilicon - containing >30% and <90% silicon</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Ferrous Oxide</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Fertilizers, Manure</td>
<td>subject to spontaneous combustion, safe moisture content <6>20%</td>
</tr>
<tr>
<td>Fibers - Bast, Cocoa, Coir, Esparto, Flax, Hemp, Jute, Okum, Palmetto, Sisal, etc.</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Fibres - if base is nitrocellulose</td>
<td>subject to spontaneous ignition, safe moisture content between 6-12%</td>
</tr>
<tr>
<td>Fish Meal, Fish Scraps</td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Grains, various</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Hafnium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Hay</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td></td>
<td>moisture control will eliminate this problem</td>
</tr>
<tr>
<td>Hexachlorethane Mixture</td>
<td>spontaneously flammable on contact with water</td>
</tr>
<tr>
<td>Hexamino Calcium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Hides, various</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Indium Monoxide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Iron - filings, turnings, borings, powder, scrap, chips wool, etc.</td>
<td>subject to spontaneous ignition when present in large bulk, also when damp can under certain conditions liberate hydrogen which is flammable and explosive on mixture with air</td>
</tr>
<tr>
<td>Iron Amalgam</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Iron II Hydroxide</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Iron Pyrite, Iron Sulphide, Iron Disulphide</td>
<td>subject to spontaneous ignition in large bulk</td>
</tr>
<tr>
<td>Iron Oxide, spent or Iron Sponge, spent</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Ixtle</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Jaggery or Jaggery Sugar</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Lamp Black</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Lanthium Antimony Alloy</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Lead</td>
<td>pyrophoric powder produced from Fe(OH)₃, if reduction temperature is lower than 550°C</td>
</tr>
<tr>
<td></td>
<td>explodes on contact with water</td>
</tr>
<tr>
<td></td>
<td>reacts with water and moist air</td>
</tr>
<tr>
<td></td>
<td>forming hydrogen which is spontaneously flammable</td>
</tr>
<tr>
<td>Lead Imide</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>Lithium Aluminum Hydride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Lithium Borohydride</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>Lithium Dimethylamide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Lithium Hydride</td>
<td>spontaneously flammable on contact with water</td>
</tr>
<tr>
<td>Lithium Hypochlorite</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>Lithium Metal</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>Lithium Nitride</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lithium Phosphide</td>
<td>spontaneously flammable in moist air and on contact with water</td>
</tr>
<tr>
<td>Lithium Silicide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Lycopodium, Club Moss Seeds, Earth Moss Seeds, Vegetable Sulphur</td>
<td>can spontaneously ignite when scattered in air</td>
</tr>
<tr>
<td>Magnesium Aluminum Phosphide</td>
<td>spontaneously flammable on contact with water</td>
</tr>
<tr>
<td>Magnesium Cyanide</td>
<td>spontaneously flammable on exposure to air</td>
</tr>
<tr>
<td>Magnesium Diamide</td>
<td>spontaneously flammable on exposure to air</td>
</tr>
<tr>
<td>Magnesium Diphenyl</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>Magnesium Ethyl</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Magnesium Hydride</td>
<td>spontaneously flammable on contact with moist air and tap water</td>
</tr>
<tr>
<td>Magnesium, metal-powder, ribbon, chips</td>
<td>reacts with air and moisture evolving H₂ which ignites spontaneously</td>
</tr>
<tr>
<td>Magnesium Methyl</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Magnesium Phosphide</td>
<td>spontaneously flammable on contact with water</td>
</tr>
<tr>
<td>Manganese II Aluminohydride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Manganese Bismuth Alloy</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Methyl Aluminum Sesquibromide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Methyl Aluminum Sesquichloride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Methyl Magnesium Chloride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Methylene Dilithium</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Methylenne Magnesium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Methyl Lithium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Methyl Sodium</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Molybdenum Metal</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Molybdenum Dioxide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Molybdenum Trioxide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Monomers - for polymerizations</td>
<td>subject to self-heating from spontaneous polymerization caused by heat and light</td>
</tr>
<tr>
<td>Nickel - Finely divided, activated or spent, wetted with not less than 40%, by weight, of water or other suitable liquid</td>
<td>spontaneously flammable (.01-.03 microns) in the presence of air forms a deposit which becomes peroxided which then tends to decompose and ignite</td>
</tr>
<tr>
<td>Nickel Carbonyl</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Nickel Iron Alloy</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Nickel Lanthium Alloy</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Oils, animal and vegetable*</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Oleic Acid</td>
<td>impregnated fibrous materials may</td>
</tr>
<tr>
<td></td>
<td>self-heat unless ventilated</td>
</tr>
<tr>
<td>Paper, waste paper - treated</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>with unsaturated oils,</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>incompletely dried (includes</td>
<td>explodes when dried in air</td>
</tr>
<tr>
<td>carbon paper)</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Pentaborane</td>
<td>explodes at room temperature</td>
</tr>
<tr>
<td>Phenyl Diazosulfide</td>
<td>subject to spontaneous ignition in</td>
</tr>
<tr>
<td>Phenyl Magnesium Chloride</td>
<td>thick layers, critical thickness of</td>
</tr>
<tr>
<td>Phenylsilver</td>
<td>layer defined by (Y = 2X \cdot \left[\frac{K(To-Ta)}{Q} \right]^{1/2})</td>
</tr>
<tr>
<td>Phosphorus red-commercial</td>
<td>where (Y) = critical thickness of</td>
</tr>
<tr>
<td></td>
<td>layer in centimeters, above which</td>
</tr>
<tr>
<td></td>
<td>spontaneous combustion occurs, (X) =</td>
</tr>
<tr>
<td></td>
<td>distance in cm from plane of wax,</td>
</tr>
<tr>
<td></td>
<td>(K) = heat transfer coefficient,</td>
</tr>
<tr>
<td></td>
<td>(To) = autogenous temp., (Ta) =</td>
</tr>
<tr>
<td></td>
<td>ambient temperature, (Q) = heat</td>
</tr>
<tr>
<td></td>
<td>of reaction in cal/cc/sec. The</td>
</tr>
<tr>
<td></td>
<td>thickness of the layer above which</td>
</tr>
<tr>
<td></td>
<td>spontaneous ignition occurs is</td>
</tr>
<tr>
<td></td>
<td>inversely proportional to the temp.</td>
</tr>
<tr>
<td></td>
<td>of the rate of generation of heat</td>
</tr>
<tr>
<td></td>
<td>which is directly proportional to</td>
</tr>
<tr>
<td></td>
<td>the rate of oxidation of red</td>
</tr>
<tr>
<td></td>
<td>phosphorus.</td>
</tr>
<tr>
<td>Phosphorus white or yellow</td>
<td>spontaneously flammable in air at</td>
</tr>
<tr>
<td></td>
<td>34°C, preserved under water</td>
</tr>
<tr>
<td>Phosphorus Pentasulfide</td>
<td>spontaneously flammable, can ignite</td>
</tr>
<tr>
<td></td>
<td>on contact with moisture</td>
</tr>
<tr>
<td>Plastics</td>
<td>subject to spontaneous ignition</td>
</tr>
<tr>
<td>Plutonium</td>
<td>explosive reaction with water, ignites</td>
</tr>
<tr>
<td></td>
<td>spontaneously in dry air</td>
</tr>
<tr>
<td>Plutonium Hydride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>p-Nitrosodimethylamine</td>
<td>spontaneously flammable in air, also</td>
</tr>
<tr>
<td>Potassium</td>
<td>possibility of explosion</td>
</tr>
<tr>
<td>Potassium Antimony Alloy</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Potassium Arsenic Alloy</td>
<td>spontaneously flammable</td>
</tr>
</tbody>
</table>

*Some of the more common animal and vegetable oils in decreasing tendency to spontaneously ignite -- cod liver oil, fish oil, linseed oil, menhaden oil, perilla oil, > corn oil, cottonseed oil, olive oil, pine oil, red oil, soybean oil, tung oil, whale oil > castor oil, lard oil, black mustard oil, oleo oil, palm oil, peanut oil, -- avoid contact with any fibrous combustible materials.
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Borohydride</td>
<td>spontaneously flammable in water</td>
</tr>
<tr>
<td>Potassium Carbide</td>
<td>explosive reaction on contact with water</td>
</tr>
<tr>
<td>Potassium Carbonyl</td>
<td>detonates on contact with air and water</td>
</tr>
<tr>
<td>Potassium Chlorate</td>
<td>spontaneously explosive</td>
</tr>
<tr>
<td>Potassium Dithionite</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Potassium Graphite</td>
<td>spontaneously combustible in air</td>
</tr>
<tr>
<td>Potassium Hydride</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Potassium Metal Alloys</td>
<td>spontaneously flammable in water</td>
</tr>
<tr>
<td>Potassium Nitride</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Potassium Nitromethane</td>
<td>spontaneously flammable in water</td>
</tr>
<tr>
<td>Potassium Peroxide</td>
<td>spontaneously combustible and possibly explosive on contact with water</td>
</tr>
<tr>
<td>Potassium Phosphide</td>
<td>spontaneously flammable in moist air and on contact with water</td>
</tr>
<tr>
<td>Potassium Silicide</td>
<td>water reactive material</td>
</tr>
<tr>
<td>Potassium Sodium Alloys</td>
<td>may ignite spontaneously in air when anhydrous or containing < 30% water of crystallization</td>
</tr>
<tr>
<td>Potassium Sulfide</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Prosiloxane</td>
<td>spontaneously combustible tendency depends on previous use ignites in air and on contact with water</td>
</tr>
<tr>
<td>Rags, used</td>
<td>spontaneously combustible</td>
</tr>
<tr>
<td>Rubidium</td>
<td>spontaneously combustible</td>
</tr>
<tr>
<td>Rubidium Antimony Alloy</td>
<td>spontaneously combustible</td>
</tr>
<tr>
<td>Rubidium Arsenic Alloy</td>
<td>spontaneously combustible</td>
</tr>
<tr>
<td>Rubidium Bismuth Alloy</td>
<td>spontaneously combustible</td>
</tr>
<tr>
<td>Rubidium Hydride</td>
<td>spontaneously flammable in moist air and water</td>
</tr>
<tr>
<td>Rubidium Phosphide</td>
<td>spontaneously flammable in moist air and water</td>
</tr>
<tr>
<td>Rubidium Silicide</td>
<td>spontaneously flammable in moist air and water</td>
</tr>
<tr>
<td>Samarium Carbide</td>
<td>evolves acetylene and hydrogen on contact with water</td>
</tr>
<tr>
<td>Samarium Dichloride</td>
<td>evolves acetylene and hydrogen on contact with water</td>
</tr>
<tr>
<td>Sawdust</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Scrap Leather</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Scrap Rubber</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Seeds, seed cakes, seed expellers - containing vegetable oils</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Silicides (of light metals)</td>
<td>decompose in water yielding hydrogen</td>
</tr>
<tr>
<td>Silicocyn</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Silicon, dust</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Silicon Hydride</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Silicon Monoxide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Siloxane</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Silver-fine powder</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Soap Powder</td>
<td>subject to spontaneous combustion when uninhibited</td>
</tr>
<tr>
<td>Sodium Acetate</td>
<td>possibility of spontaneous ignition when in contact with moist air or water</td>
</tr>
<tr>
<td>Sodium Aluminum Hydride</td>
<td>spontaneously flammable in water</td>
</tr>
<tr>
<td>Sodium Amalgam</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>Sodium Amide</td>
<td>ignites spontaneously on contact with water</td>
</tr>
<tr>
<td>Sodium Borohydride</td>
<td>ignites spontaneously on contact with water</td>
</tr>
<tr>
<td>Sodium Carbide</td>
<td>explosive reaction on contact with water</td>
</tr>
<tr>
<td>Sodium Carbyronl</td>
<td>detonates in air and water</td>
</tr>
<tr>
<td>Sodium Dithionate</td>
<td>may ignite on contact with water</td>
</tr>
<tr>
<td>Sodium Dithionite (Sodium Hydrosulphite)</td>
<td>may ignite on contact with water</td>
</tr>
<tr>
<td>Sodium Hydrazide</td>
<td>spontaneously flammable in moist air and water</td>
</tr>
<tr>
<td>Sodium Hydride</td>
<td>spontaneously flammable in moist air and water</td>
</tr>
<tr>
<td>Sodium Hydroxylamine</td>
<td>spontaneously flammable in air and water</td>
</tr>
<tr>
<td>Sodium Lead Alloy</td>
<td>spontaneously flammable in water and moist air</td>
</tr>
<tr>
<td>Sodium, Metal</td>
<td>decomposes in water forming hydrogen which ignites spontaneously</td>
</tr>
<tr>
<td>Sodium Nitromethane</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>Sodium Phosphamide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Sodium Phosphide</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>Sodium Potassium Alloy</td>
<td>spontaneously flammable in moist air and possibly explosive on contact with water</td>
</tr>
<tr>
<td>Sodium Silicide, powder</td>
<td>spontaneously flammable on reaction with water</td>
</tr>
<tr>
<td>Sodium Sulfide</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Stannic Chloride</td>
<td>spontaneously flammable on contact with moist air and water</td>
</tr>
<tr>
<td>Stannic Phosphide2</td>
<td>heats spontaneously</td>
</tr>
<tr>
<td>Stearic Acid</td>
<td>subject to spontaneous heating and combustion</td>
</tr>
<tr>
<td>Straw of Flax, Maize, Oats, Rice, Rye, Wheat, etc.</td>
<td>spontaneous flammable in moist air</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Strontium Azide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Strontium Metal</td>
<td>if finely divided ignites on exposure to air, also liberates hydrogen on contact with water</td>
</tr>
<tr>
<td>Strontium Phosphide</td>
<td>spontaneously combustible</td>
</tr>
<tr>
<td>Sulfur</td>
<td>possibility of spontaneous ignition</td>
</tr>
<tr>
<td>Sulfur Trioxide</td>
<td>violent reaction with water</td>
</tr>
<tr>
<td>Tankage</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Textile Waste, wet</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Tetrabromosilane</td>
<td>violent reaction with water</td>
</tr>
<tr>
<td>Thorium Hydride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Thorium, metal</td>
<td>spontaneously flammable (high as powder, moderate as chips)</td>
</tr>
<tr>
<td>Thorium Nitride</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Thorium Oxysulfide</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Thorium Silver Alloy</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Tin</td>
<td>spontaneously flammable when finely divided</td>
</tr>
<tr>
<td>Titanium Bichloride</td>
<td>spontaneously flammable in air and water</td>
</tr>
<tr>
<td>Titanium Bromide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Titanium Carbide, dust</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Titanium Chloride</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>Titanium Dibromide</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>Titanium Diiodide</td>
<td>ignites in moist air</td>
</tr>
<tr>
<td>Titanium Monoxide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Titanium Trichloride</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Triazide Borine</td>
<td>spontaneously flammable in air and water</td>
</tr>
<tr>
<td>Trichlorosilane</td>
<td>reacts with water</td>
</tr>
<tr>
<td>Triisobutyl Aluminum</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Triphenylaluminum</td>
<td>decomposes explosively in water</td>
</tr>
<tr>
<td>Tungsten, β</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Uranium Bismuth Alloy</td>
<td>spontaneously flammable, over 30% U very pyrophoric</td>
</tr>
<tr>
<td>Uranium Borohydride</td>
<td>spontaneously flammable and liable to detonate in air</td>
</tr>
<tr>
<td>Uranium Carbide</td>
<td>spontaneously flammable if particle size < 40 microns</td>
</tr>
<tr>
<td>Uranium Hydride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Uranium Metal, powder</td>
<td>spontaneously flammable, if dry ignites in air, if dispersed it can explode in air</td>
</tr>
<tr>
<td>Uranium Monocarbide</td>
<td>spontaneously flammable, if < 40 microns - very pyrophoric</td>
</tr>
<tr>
<td>Uranium Nitride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Uranium Oxide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Vanadium Sesquioxide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Varnished Fabrics</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>Wood - chips, excelsior, sawdust</td>
<td>subject to spontaneous combustion</td>
</tr>
<tr>
<td>shredded wood, wood flour,</td>
<td></td>
</tr>
<tr>
<td>wood shavings, wood wool</td>
<td></td>
</tr>
<tr>
<td>Wool</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Zinc Dithionite</td>
<td>in the damp state may heat spontaneously</td>
</tr>
<tr>
<td>Zinc Metal, dust, ashes, powder</td>
<td>and ignite on exposure to air</td>
</tr>
<tr>
<td>filings, dross, chips, shavings,</td>
<td>spontaneously flammable in moist air</td>
</tr>
<tr>
<td>etc.</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Zinc Phosphide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Zirconium</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Zirconium Borohydride</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Zirconium Carbonitride</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>Zirconium Dibromide</td>
<td>spontaneously flammable</td>
</tr>
<tr>
<td>Zirconium Metal, powder sponge,</td>
<td>spontaneously flammable in air</td>
</tr>
<tr>
<td>strips, coiled wire, sheets, etc.</td>
<td></td>
</tr>
</tbody>
</table>

Other materials subject to spontaneous combustion include: desiccated leather, leather scraps, dried blood, dried blood tankage, garbage tankage, leather meal, slaughter house tankage -- liable to spontaneously ignite which is dependent on (1) composition of the products, (2) method of drying, (3) degree of moisture, and (4) temperature at time of loading. The following materials are subject to spontaneous ignition especially when damp, greasy, oily or mixed with varnish - artificial wool, automobile brakeband lining, batting dross, canvas, feathers, felt, filter press cloth, hair, mungo, shoddy, twist, waterproofed cloth, waste wool, wool pickings, wool waste.
Substances subject to spontaneous combustion can be divided into the following categories:

(a) Substances which are noncombustible but can cause ignition as a result of spontaneous heating (calcium oxide, alkali, alkali earth oxides, etc.).

(b) Substances with low ignition temperature whose oxidation is allowed to proceed freely. The ratio of the surface exposed to the mass being heated is so great that heat is generated by oxidation more rapidly than it can be dissipated, and the temperature rises locally until the ignition point is reached. Pyrophoric character in general depends upon the nature and chemical reactivity of the material and varies with the amount of exposed surface and the physical condition of that surface (finely divided metals, hydrides of phosphorus, white phosphorus, etc.).

(c) Combustible substances which ignite spontaneously as a result of slow oxidation -- vegetable and animal fats and oils containing glycerides of unsaturated fatty oils that absorb oxygen into double bonds producing heat, coal, wood charcoal, wood products, etc.

(d) Materials where biological processes cause spontaneous ignition as a result of the metabolism of living organisms subsequently furthered by the absorption of oxygen - hay, grains, fish meal, sugar, peat, and other agricultural products.

(e) Materials which react with water, forming flammable or explosive products (active metals, hydrides, carbides, phosphides, etc).

Although the causes of spontaneous combustion are few, the conditions under which these factors may operate to create a dangerous situation are many and varied. In some cases more than one factor may be operative (oxidative and/or biological) and one may initiate conditions favorable to the functioning of another.

Except for air-hazardous (pyrophoric) and water-hazardous materials, the tendency of susceptible materials to heat is generally increased by elevated temperatures and by the insulating effect of the material alone or by surrounding conditions in transit or in storage. Spontaneous heating does progress in various materials without hazardous effects if the conditions are such that the generated heat is dissipated at a rate that prevents the material from reaching its critical temperature. This temperature varies for different materials but once reached, combustion can occur. Ventilation is thus an important factor in preventing many instances of potential spontaneous ignition, although a complete lack of ventilation is also a certain deterrent against combustion in cases
where fixed oxygen is not present in the material. This fact may be utilized where small quantities of material make practical the use of air tight containers or compartments.

Temperature measurements in the interior of a mass of material will give an indication of the progress of spontaneous heating. These temperatures, taken at various locations within the material would detect localized focal points where spontaneous heating could be occurring.

In the shipping and storage of agricultural products, the use of moisture control and biocides could reduce the hazard of spontaneous combustion and the self-heating of these materials.
REFERENCES

35. Department of Transportation No. TSA-20-72-2, by C. M. Mason and V. C. Cooper, Bureau of Mines (Pittsburgh Mining and Safety Research Center Report No. 4160, 10 March 1972).
58. N. J. Thompson, Oil and Fat Industries, Nov., 317, 1928.
87. M. Güney and D. J. Hodges, Chem. and Ind., 42, 1429, 1968.

100. B. Kopelman and V. B. Compton, Metal Progress, 63, 77, 1953.

108. Bureau of Fire Prevention - City of Los Angeles, Dangerous
Chemicals Code, Parker and Co., Los Angeles, CA, 1951.

112. European Agreement Concerning the International Carriage of
Dangerous Goods by Road (ADR): Annex A - Provisions Concerning
Dangerous Substances and Articles, Her Majesty's Stationery

113. International Regulations Concerning the Carriage of Dangerous

117. H. C. Kaufman, "Handbook of Organometallic Compounds,"

118. National Fire Prevention Association, National Fire Codes,

119. E. G. Rochow, D. T. Hurd and R. N. Lewis, "The Chemistry of
Organometallic Compounds," John Wiley and Sons Inc., New York,
1957.

120. N. I. Sax, "Dangerous Properties of Industrial Materials,"

8, 227, 1963.

123. J. R. Van Wazer, "Phosphorus and its Compounds," Vol. 1,

124. W. Ripley, RDTN, No. 32, U.S. Naval Ammunition Depot, Crane, IN,

135. V. Virtala, Valtion Teknillinen Tutkimuslaitoksen - Summary Translation, Julkaisuja, Helsinki, 14, 57, 1949.

<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Transportation</td>
<td>6</td>
</tr>
<tr>
<td>Office of Assistant Secretary for</td>
<td></td>
</tr>
<tr>
<td>Environment, Safety and Consumer Affairs</td>
<td></td>
</tr>
<tr>
<td>Office of Hazardous Materials</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20590</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. Erskine E. Harton, Jr.</td>
<td></td>
</tr>
<tr>
<td>Defense Documentation Center</td>
<td></td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td>12</td>
</tr>
</tbody>
</table>
TO AID IN UPDATING THE DISTRIBUTION LIST FOR NAVAL SURFACE WEAPONS CENTER, WHITE OAK LABORATORY TECHNICAL REPORTS PLEASE COMPLETE THE FORM BELOW:

TO ALL HOLDERS OF NSWC/WOL/TR 73-159
by Eleonore G. Kayser, Code WR-11
DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)

NEW ADDRESS (Show Zip Code)

B. ATTENTION LINE ADDRESSES:

C. □ REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.

D. NUMBER OF COPIES DESIRED __________________________