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CHAPTER 1.
BENDiNG OF STRAIGHT SHAFTS AND THE SIMPLEST SRHAFT SYSTENMS

Brief Theoretical Information
The differential equation for the bending of beams with

variable cross sections which support a distribtuted ioad of
intensity q(x) hac the form

(El () wi} =g ), | (1.1)

vhere E is the modulus of normal clasticity of the beam material;

The integral of this equation can be written in the form

xﬁﬁm=jf}“jﬂmaaaa+"
‘.' vo. L e e

of [t [t (1.2)

where No, MO, 00 and fO are the chear force, bending moment, angle
of rotation and bending point of the beam on 1its crocs rection
with coordinate »=0, recpectively, determined from the boundary
conditions for fastening the end sections of the beam,

ted load g(x) is determined by the equation
FTD~ID(RS)I-2386-75 1

I is the moment of inertia of the cross-sectional area of the beaz,

The elastic line for knife-edge beams which support distribu-

et s Wb e .
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If the knife-edge beam is loaded by cc.acentirated force P and
woment M, as well as by a distributed load which haz a different
law of change in different sectionz along the beam, the elastic
line of the beam can be determined by the initial parameters
method, using the expression

22 ex

el = 5 + gt +o.r+f.+-57-“”¢.(x)(dx)‘+

.+| P(‘-'.I..l). + I M_,(‘—, )a,+

% ff g o=t - (1.4)

8,

where a,, a5 and a3 are the cross-sectional coordinates where
concentrated force P and moment M are cpplied; q,(x) and qy(x) are
the load on the section along the beam Osxsa3 and 335 x<1,
respectively (1 is the length of the beam),

If concentrated rioments are not applied to the beam, its
elastic line is found from chear wz(x) by integrating the equation

. : ] Elo; (0
wite) = — 2= — 2L, (1.5)

where G is the shear modulu:; « is the area of the cross csection
of the beam wall, hence

M (x) Elw, (5)

wy () = ~ — =~ = — —— - const. (1°6)

Uw

Jhen the beam load is made up of concentrated momentc,
bending moment L(x) should signify that portion of the total

FTD-ID(RS)1~2386-75 2
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bending moment which acts in cross section x of the beam, which

is created by the external load, with t. e exception of the concen-
trated mounents applied, when determining the elastic line from
shear according to formula (1.6). The concentrated moments do not
cavse displacerents from shear and impart only an additional
rotation which is deterniined by the expression g-_:c.l“. gu, »

where Mi is the i-th concentrated moment acting on the beanm, as
a result of the shearing strain of the entire cross section of the
beam, )

The integration constants in expressions (1.2)-(1.%) should
be determined from the condition for fastening the support sectionc
of the beam. So, if the support sections of the beam (x=0) and
(x=1) are fixed elastically or. elastic supports, the bourndary
conditions are written in the form

x=0 'l;|+m--'—A|[£l(x) o) wi = 9L,E/w; ] (1.7)

Lxml Wt m = AEL @ W] @, =~ —Elw, |

where A4 andG A2 are the pliability coefficients of the elastic
supports; 9,8, are the pliability coefficients of the elastic
fixings, which can be expressed by the coefficients of the support
pair which are the ratio of the support moment for the elastic
fixing of the beam ends Myyp to the moment in tne supporf;' section
of the same beam for rigid fixing of its ends lg,; n'—w:’—,

For a knife-edge beam, when %li™= %, =2 and the load acting on
the beam is symmetrical relative to the middle of its length, the
coefficient of the support pair does not depend on the value or
the nature of the change in load and it is determined from the
formula

i
L (1.8)

FTD-ID(RS)YT-22;RA.7E
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The bending element: of the beams tre the linear functionc of tiiz
support pair coefficient.

Various method:s are used to dirclcse the static uncertainty
of continuous beam:s, If a continuous beam restes freely on inter-
mediate supports, it 1z advisable to take the moments on the
support~ as the fundamental unknown forces (forces method). Thre
angles of rotation of the support sections are used as the funda-
mental unknowns for continuous beams vhich are elastically
fastened onto intermediate supports (strain method).

If the support moments are used as the basic unknowns in orier

to determine the static unccertainty of a continuous beam, the
condition of the equality of the rotation angles of sectionc on a
cormon support for two adjacent beam spans sStressed by the given
external 1load and unknown support mosents chould be used to con-
pose the system of equations w "~h determine these momenté. tYihen
elastic supvorts are present,
taken as the unknowns alcng wi the support moments. In this
case, it 1s necessary to compos.: additional equations to solve the
problem, the equation: obtained fiom examining the equilibrium
state of elactic supports being advisable for this purpose,

In this case the system of equations will be the follouing:
conditions for the equality of the rotation anglesz at the J-th
support

Ml My fr—1ta
1 -GEII + 3EI'I_+¢/(QI)+ ) =

Miliy  Mpadra T ha=l
i alfllol - GEIIOL +al(.Q,d.)‘ ’ 'Iol :

(1.9)

The cordition of the equilibrium of the Jj-th elactic suvvort

My—My, Mi—M,  Q Qi ran —€j00) (1.10)
,’—AI[ U] [y Ui + o fin ! !

where lJ’ zj+1arc the length of the cpan between (J - 1) and the
J-th support and between the j-th and the (J + 1) support,

Y

L—.—._.___ PN
ke St . - N -

sagging of these supports are al:zo




respectively; QJ, Q 15 the external load accing on spans (J - 1),

Jand §, (J + 1), retpect ‘valy; aJ(QJ), j(Q’ 1) are the anglec

of rotation of the section on the j-th support from the load in
span (J - 1), J and J§, (J + 1), respec ively; MJ-i‘ ”j; “J+1 are
the support moments on supports (J - 1), J, (J + 1), respectively;
rJ-i; fd; fj+1 are the sngging of supportz (J - 1), J§, (J + 1),
respectively; AJ is the pliability coefficient of the j-th elastic
support; IJ and IJ+1 are the moments of inertia of the crosc-
sectional area of tie beam in spans (j - 1), J and J, (Jj + 1),
respectively; cJ and CJ+1 arc the distances of cquivalent loads
QJ and QJ+1, respectively, from a support placed to the left of
them,

The condition of the equilibrium of ceparate Jjoints of the beanm
should be uged compoze the sy:stem of equations determining the
angles of rotation of the suppori cgections If these angles are
used as the unknownrs., The dependence between the angles of rotation
of the support sections and the support momonts when elastie supportcs
are present can be written in the form

M=t _i-[2a‘+a,-3(’ “I")], (1.11)

where Mij is the support moment at the i-th support of beam span

"1-3; m is the moment on the i-th support from the load acting

on span i-Jj with the agsumption of the total fixing of the end
sections of this span; oy and aJ are the rotation angles of the
section on the i-th and j-th supports, respectively; ri and fJ

are the sagzing of the i-th and j-th supports. Then the system of
equations obtained from the condition of the equilibrium of thre
moments applied to the i-th joint (support) will be

e S N o) Wi Tam, (1.02)
I [

where i, 1s the external morent which acts on the i-th joint.
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Additional equations should be written in form (1.10). .

The mcments in the Joints and the displacement of moblle joints
(1f there are any) are taken as the unknowns when designing simple
plane asserblies composed of straight shafts. The equations which
determine the static uncertainty of these frames are com osed by
equating the angles of rotation of the shaft sections at their
common Jjoints according to system (1.9). The principle of potential
displacements can be used to compose additional equations, 1In this
case, the sum of the work of all the external forces and the moments
of the Jjoints for potential displacements are equated to zero
(assuming that hinges are mounted on the joints).

when designir.g complex assemblies, i, e,, frames in which
more thar two shafts can converge at the Jjoints, it is advisable
to use the angles of the Jjolnts! rotation from the load and the
angles of obliquity (if mobile Jjoints are present) as the unknowns.
The equations which determine the static uncertainty of complex
assemblies are obtained from the equilibrium equations of the frare
Joints. Additional equations are composed for assemblies with
mobile joints and rsctangular floors on the basis of the principle
of potential displacementc,

The kinematic relationships which relate the angles of
obliquity of the shafts to each other shoulc se used to reduce
the number of unknown angles of obliquity of complex frames,
Complex assemblies can also be designed by using “he method of the
successive balancing of joints.,

When designing simple and comnplex assemblies with sym=etrical
construction, it is advisable to make use of the advantages of
symmetrical construction no matter which method is used. For this
purpose, each unsymmetrical load is separated into symmetrical
and antisymmetrical and the frame is calculated for each load
separately,
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Problems
Bending of Single-Span Beam31

1. Find the eiastic line of a knife-edze beam (cantilever),
the left end of which (x=0) is elastically fastened (plliability
coefficierc %) to a rigid support and the right end of whicn
(x=1) is completely frce. The intensity of the load on the bean

qlz)= '0';‘0

‘2., Find the elastic iine of a knife-edge beam, the 1left end
of which (x=0) is elastically fastened (pliability coefficient a)
and the right (x=1) - resting freely on a rigid zupport., The
load irtensity q = const,

Erssgsms IR gy
‘l x S, c

Fig. 1,

TANRRV Y

3, Determine the elastic line of a knife-edge bea:n in the
section x=0 which is supported by a hinge on an elastic support
with a pliability coefficient A, and in section x=l' - rigidly
fastened. The load intensity q = const,

4, Determnine the support moments as well as the elastic line
of a knife-edge beam which is fastened elastically at the ends
(pliability coefficient %) and stressed in the middle of the span
by force P,

IThe noment of inertia of the cross-sectional area of knife-eige
single-span beams is taken as equal to I in all the problens,

The origin of the coordinates is taker at the left c¢nd of the beam
for single-span beans; the span length *s taken as equal to 1,

T du i

Shecian
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. 5. Determine ‘he values of the pliability coefficient of
elastic fixing 2L at which the greatest bending moment in the span

of a knife-edge beam which is freely supported at one end and
elastically fastened at the sther and which is uniformly loaded

with a distributed load of intensity q will be equal in absolute
value to the bending moment in the fastening. Calculate the greatest
bending moment in the span.

6. Determine the support bending moments as well as the
greatest sagging of a beam which is fixed elastically at tune ends,
the middle portion of which, with length 2., is absolutely rigid
(Fig. 1). a is the length of the end sections of the beam, The
pliability coefficient of the elastic fastening of the beam's
ends is 4. The intensity of the load acting on the middle part
of the beam 1is d9 and that on the eind portions - q,

7. Given the equation for the bending moment of a freely
supported knife-edge beamn which is loaded with concentrated force
P in section x=c:
u-_”[(l—‘c)x ' z—¢

oy .‘-

Determine the equation of the bending moment for the same beam,
but stressed in section x=c¢ with concentrated moment m, , using
the superposition method. i

8. Knowing the expression for the angles of rotation of a
freely supported knife-edge beam loaded with concentrated force
P iIn section x=c

o' () = 651{£:£2[ ﬁ%;n an] " ( )}

deterzine the expression for the angles of rotation of the same
beam, but uniformly loaded with distributed load of intensity aq,
by the superposition method,

By
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9. Using the superposition method, determine the elastic line
of a freely supported knife-edge beam which is under the action of
a load waich varies according to the law 1&P-vy%3 if the elastic
line of the same beam loaded with concentrated force P applied to
section x=c is known:

w(z)--&,— .'_‘:.i ,;_L‘_(l-c)a .xa._]-*_“ x—-e)]

10. Determine the elastic line of a cantilever with a staggere:d
cross section which is loaded on the free end with concentrated
force P and the moments of inertia on the cross-sectional area of

~ the separate sectionc of the beam are I, and I, (Fig. 2).

%ﬁ L s .
. % P z
= 1 : A -
-
2 -1‘
Fig., 2, ’ Fig. 3.

11*, Using the initial parameters method, determine the elas-
tic line from bending of the knife-edge beam shown in Fig., 3. The
intensity of the evenly distributed load it q.

12, Construct the bending moment and shear diagrams of a
beam with a staggered cross section which is evenly loaded by
a distributed load of intensity q (Fig. 4).

IO -
. a . b 3 t . 1 :
Fig. 4. Fig. 5.
9
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13, Determine the ratio of lengths of sections of a knife-
edge beam  (y=1l/h) at which: a) tne bending moment in the
crcess sections above the supports is equal to the mrament in the
middle secti.un of the beam; b) the bending indicators of the ends
of the cantilevar are equal to zero (Fig. 5).

14, Establlsh the values of the support pair coefficients

%, and x, for the support sections of a beam which is fastened

elastically at the ends and which 1s stressed with a load which
varies according to the law = q.—‘r (Fig. 6).

o] T =
. : s 17

Fig. 6. Fig. 7.

15, Determine the bending moments in the support sections of
an elastically fixed beam which 1s loaded with a uniformly distri-
buted load of intensity q (Fig. 7).

16. Using the solution to problem 15, determine the bencing
moments in the fastenirgs and in the middle support for the beazms
shown in Fig. 8.

(
S e :ﬁé
ORI 141111 o A BV
o g&a, I - {? : T "% A.F

Fig. &. Fig. 9.
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17. For a knife-edge beam, one end of which (x=0) is rigidly
fastened and the other (x=1), freely supported on a rigid support,
determine the cross section in which concentrated moment W, should
be applied so that the sagging of this section is equal to zero,

18. Two beams which are rigidly fixed at the ends are con-
nected to each other by an incompressible spacer (Fig. 9) which is
fastened to them by a hinge. At what ratio of the moments of iner-
tia of these beams (11/1) does the stressed beams! support moment
decreases two times relative to the moment without the spacer?

19. Solve problem 18 with the assumption that the beams are
Joined by two incompressible spacers which are fastened by hinges
and placed at distance Y3 from the supgort and from each other.

20*, Compose the differential equaticn of bending for a systex
of two identical beams (Fig. 10) which are joined by incompressible
spacers which work during bending. There are a rather large number
of spacers, Also find the equation for the elastic line of the
beams when they are resting freely on rigid supports.

21. Disregarding the effect of sagging on the change in
support forces, determine the greatest sagging for two cacses of
stress for a floating knife-edge beam: 1) the beam ie stressed in
the middle of its length by concentruted force P; 2) concentrated
forces P/2 are applied at the end sections of the beam.

22, Find the expression for the elastic line of a freely
resting knife-edge beam loaded in cross section c by concentrated
force P with consideration of the effect of shear strain, The
area of the wall cross section is w.

23, A freely resting knife-edge beam with wall cross-sectioral

area w 1is stressed as shown in Fig, 11, Determine the elactie
lirne ol this beam with concideration of zhear,

11
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Fig., 11, Fig. 12,

24, Find the elastic line and bending moment in any cross
section of the knife-edge beam shown in Fig, 12, with considereation
of the effect of tangential stress on its bending. The cross-
sectional area of the beam's wall is equal to w. The pliability
coefficient of the elastic support is A,

25, Find the equation of the elastic line of a rigidly fas-
tened knife-edge beam which is lcaded with a uniformly distributed
load of intensity q with consideration of shear, Take -g%- 0,040,
Find the ratio of the beam's sagging in the middle of its length
with consideration of shear and without consideration of shear.

26, Determine the sagging in the middle of the length of a
knife-edge beam which is elastically fixed on rigid supports due
to shear and bending for two load situations: 1) a uniformly
distributed load of intensity q; 2) concentrated force P, appliesd
in the middle of the beam's length. The coefficient of the support
pair of the fastening of the beuam!s end cections is =,

12

San i et AL o LT AN - oo LN s ol

e

T e A -

R N

e e omm as B ma . e



27. Determine the reaction R of the interaction of two inter-
secting beams (Fig. 1.) with consideration of sagging due to shear.

Fig. 13, Fig. 14,

28. Determine the support bending moments with consideration
of shear strain for three cases of bending of knife-edge beams
(cross-sectional area of walls is w ): 1) one end of the beam is
resting freely and the other 1is rigidly fixed; bendin:; moment m,
is applied to the freely supported end; 2) the bveam is rigidly
fixed at the ends anu 1s stressed with a load which changes accor-
ding to the law qay3¢} ;3 the origin of the coordinates is taken
in the support cross section of the beam; 3) the beam is rigidly
fastened at the ends; one of the support sections received dis-
placement f.

29. Determine the maximum sagging of a rigidly fixed knife-
edge beam (Fig. 14) which is stressed with a distributed load which
varies according to the law 9= 3-(bf653§1); with consideration
of shear strain, - h

Bending of Continuous Beams

30, Determine the pliability coefficients of the elastic
supports of the beam at points C and D (Fig. 15).
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31=, Determine the pliability coefficients of elastically
fixed beam AB, shown in Fig, 16, :

]
B s L R N

; :{.}.;Tf;ﬁ- T
T KK R X :
R xiiXE s ;
. .o ' . . z 0 i
.. Is R R NS . ’
i::i::::t . SEE 7 I N : P 1
B A . i
M Al Y ‘ z [}

Fig. 15. '~ Fig. 16,

32, Determine the bending moment in the support cross sections
and in the middle of a two-span beam which is fastened symmetrically
at the ends, 1s loaded by a uniformly distributed load and rests on
an elastic support placed in the middle of the beam's lerngth (Fig.
17).

« vl ool mas

PENIFRLAPY S T e

Fig. 17. Fig. 18.
33. Determine the ratio between the intensity of loads q, H

and A at which the angle of rotation at the middle support of a
knife-edge beam (Fig. 18) will be equal to zeroj I/ =1,35.

14
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34, Determine the vertical displacement of hinge G as well as

the settling of elastlc support F of a multi-span knifec-edge bean
(Fig. 19). The pliability coefficient of the elastic support
A-!B/NBEI. Construct the bending moment and shear diagrams.

I‘ ”T*
-

Fig. 19,

35. A bridge 1s resting on three pontoons, Find the depen-
dence between the moment of inertia of the bridge I=const and the
water line areas F, and F, of the pontoon if the settling of the
pontoons fi’ f2 are related by dependence -’".-% under the
effect of concentrated force P (Fig, 20)., The specific gravity
of water is «.

t .
! S S A
; — '
- fo,fr Frfr fa,fr :
Fig., 20,

36, A continuous knife-edge bear which is resting on a
rigid shore support and on the edge of an absolutely rigid weight-
less straight-walled pontoon is loaded according to Fig. 21, Find
the bending moment in the beam at x=2!. The pontoon 1s Jolned to

El
the beam by hinges. Let the length of the pontoon L-?ﬁr » where

Y is the specific gravity of water, b=1 is the pontoon'c width,

15
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37. Determine the value of the pliability coefficient A of
the elastic supports of a knife-edge beam (Fig. 22) at which the
calculated value of the bendirg moment will be equal to ‘_"-—'.-’-s

Ty . ;I .
. oo r
—~t i !
I e Rkt S el :
ro |
Fig. 21. : Fig. 22, }

38%, Construct the hending moment and shear diagrams for a
continuous beam with a constant cross section (Fig. 23).

b R i
. . L P‘ @\‘ '! \\o . . ‘
: qg L. / I
. S T - A
- g IRRTRIRRRRILN - .
/ L TR i1 3¢ T {
< b - I'ﬁ _ c !
¥ P & 7 . . | ) . b . ‘
Iy 4 ’ ) :
2 F1g~ 23. ;
Given: Iyw==6ly: 14=-2.08/¢; I3= 192y P, = 05ql; Py=ql, where I0 is a

constant value with the dimensionality of the moment of inertia.

39, Determine the static uncertainty cf the continuous
beams shovn in Figures 24 and 25. Construct the bending moment
and shear diagrams, In Fig. 24 the concentratied force P=0,187 ql
and the load intensity to the right is 0.6 q.

40, Discover the ctatic uncertainty of the continuous beam

shown in Fig., 26, Given: P =20 =3¢ Q= gl We= Ol [y e ly= lg= 2
lg=4&l; Jym= 1. Fird the values of the support bending moments,

16
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~ the moments in the middle of tae span and the shear forces at the
ends of the separate spans of the beam,

Construct the bending moment and shear diagrams,

41, Construct the bending moment and shear diagrams for the
continuous beam shown in Fig. 27.

Fig. 27.

a7




Given: Pw=2¢; Qum 1,5¢h Quue 29k I oo lymelym I; lgm lym ly= 18I
L= QTS [y lym gy fym 2y Iy= 3 [y iy=ly

42, Determine the bending moments in the support cross
sections and the settling of tune elastic support of the continuous
beam shown in Fig, 28 8, = I3Elg A, = (/REL,

43, Determine the angle of rotation of the cross section of
tue continuous beam shown in Fig. 29, stressed by moment M, .,

. R o o .
. - . RS a .. ~
..':‘. . - .4 Ve~ \ 20,6 - T et
. - .. E e L.

- . - PRI “

Fig. 29.

L4, Determine the bending moments MO and M4 at x= z/.’»2 in the
knife-edge beams shown in Fig. 30. Th~ spacer is considered to te
incompressible and is joined to the beams by hinges.” The mcments
of inertia of the cross-sectional area of the beams are Io and Il'

1 '..\
) ‘ ¢
# 7z . 4 z
JHItEEY % i ! 'ﬁ”
1 - 1 )
Fig. 30, Fig. 31,
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45, For a two-span knife-edge beam (Fig. 31) it is necescary
to determine the position of force P which acts in span BC at which
the bending moment in section x=1/3 has the greatest value,

46, Determine the ratiov tatween lines 11 and 22 of a knife-
edge beam (Fig, 32) at which the sagging at point )\ returns to
zero,

e Ly L
St . a
g | |

A > S (A

' Fig. 32.

47, By how much must the middle support of a knife-edge beam
(Fig. 33) be lowered so that the bending moment in the section
above this support wvanishes?

g SR
I’ . &-—‘ 1
L [}
Z . I L .Z‘- ’ _
. I . - -
Fig., 33.

48, Find the support moments in a rigidly fixed Leam with
a stagoercd cross section (Fig. 34).

A AN

P Ka ] o
f I
17 ﬁc i z'1< . '?__fg‘

Fig., 34.
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49, Determine the value of a cpan of a continuous knife-edge
beam (Fig. 35) at which the angle of rotation of the right support
section under the action of concentrated moment M will comprise
0.9 the angle of rotation of this section when the left section of
the beam 1is absen+,

. T | I KL e
Fig. 35. Fig. 36.

50. Find the dependence between the pliability coeffici ¢
of an elastic support A and the bending moment in the section in
tlie middle of the stressed span of the nife-edge beam shown in
Fig. 36, '

51, There is a freely resting knife-edge beam whiech is fixed
in the middle of the span by an elastic support. Determine the
value of the pliability ccefficient of the elastic support A at
which the greatecst bending moment in the span of the beam becomes
equal in absolvte value to the value of the bending moment in the
section which coincides with the middle support if: a) the beam
is stressed as shown in Fig., 37; b) the beam 1s stressed according
to Fig. 38.

e h e b s . aadbdan . imdlara.

-y. ‘..' [} p ‘
:f p . ¥
A
N A
L wji#- )
Fig. 37. Fig. 38. ‘

52, Construct the bending moment diagram for the knife-edge i
beam in Fig, 39, Consider the support structure BSTC to be mz2ie
of absolutely rigid shafts Jjoined by hinges,

20
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Flg. 39.

A bridge i1s bullt across a channel in the form of a

continuous knife-edge beam which rests on rigid shore supports and
the edge of a straight-walled absolutely rigid weightless pontcon,

The pontoon is Joined to the beam by hinges (Fig. 40).

the bending moment diagram for the beam,

Sk,

' p:ﬂgq&

-

L

oL

- T, = E&Z

Fig. 40,

for the middle span of a continuous beam
tion that the moments of inertia of the crosc-scctional areas of
the beams in the adjoining spans are related like the lengths of t

same spans,

55.

L 1.,

h, 1

I/
-—l—,

L 4

Construct

The pontoon length is L=
:'E”“‘-, vhere y is the specific gravity of water,

Determine the mean value of the support pair coefficier.t1
(Fig. 41) with the condi-

Determine the support bending moments of a continuous teanm

(Fig. 42), assuming that the moments of inertia of the crogs-sec-
tional areas of the beams in the adjoining spans are related like

IThe mean value of the support pair coefficient

5 equal to the

ratio of the half-sum of the gsupport moments to the moment of the

rigia fastening.

21
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the lengths of these spans, i, e., -%:---f:---’t Also compute
the mean value of the support pair coefficient for the middle span
of the beam, :

* P
L . o .y
L S ‘. L.

L [ ' '
1431443 THRITE.
A

.Fig. 42.‘

56. Discover the static uncertainty and construct the bending
moment alagram for & continuous beam with a hinge in the middle
span, The beam is stressed with concentrated force P which is
applied to the hinge (Fig. 43), The ends of the beam are fixed
elastical )y (the pliability coefficient of the fastening '”4;Séﬁ)f.

o " . :.‘

I
= AT,
Fig. 43, ' " 77 Fig. w4,

57. Determine the pliability coefficient of an elastic
support arranged in the middle of a freely resting uniformly loaded
knife-edge beam of length 2? with the condition that the greatest
bending moment in the sections will be four times smaller than in
the absence of an intermediate support, i. e., equal to 8.

58. When installiig a shaft line, the axes of two of its
sections were separated by the value f (Fig., 44), Determine the

reactive forces which will be transmitted te supports 2 and 3 when
the sections are drawn together at flange A,

22
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59, Determine the separation f of the axes of two sections

of shaft line (Fig. 44) from the condition that when these sections
are drawn together at flange A, the reaction on support 1 will be
equal to zero, Take the weight of each section of the shaft equal
to P,

Designing Assemblies Made of Straight Shafts

60. Find the relative value of counterpressure q*/q on the
bottom branch of a frame ring (floor) at which the bending moment
in the lower end of the ring will become equal *o the moment for
the rigid fastening of this end (Fig. 45). Givea: f}éia.{--xa

o
Y
v

=

3 \ : ¢

= s ~ &y
1= I A 5

1 . ] <

: l ", 0
Fig. 450 Fig. u6.

61, Determine the support pair coefficient for the floor of
a frame .ssembly (Fig, 46)., The ring frame on the upper deck is
considered to be resting freely, The momenis of inertia of the
cross-sectional area of the ring and the floor are equal to‘1 and
I, respectively.

62, Determine the horizontal displacement of the end cf shaft
AB, which 1s rigidly Jjoined at a right angle to shaft BC, if rori-
zontal force T is applied at point A (Fig. 47). Consider only
the bending strain of the shafts,

63, Calculate a siuple frame consisting of straight knife-
edge shafts (Fig. U48). The sharts of the assembly are Joine.i by

e>3
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hinger at Joints 2 and 2', while Joints 3 and 4 are immobile, Con-
struct the bending moment diagrams.

- 'TT'?'_.U-'?”'

| o 2 2
i F e + ° _
| S G .- : {
i R R 1oadw
l._.:, e A . R . /{l o ’- o * !
,j;; et _ e ! I“ ULl {
e T g " - i L . i
L : oot /2 4 R L. A - R ) ' ;'
Fig. A47. Fig, 48, i
|

64, Considering that the shafts of the frame at joints 2
and 2! are rigidly connected and Jjoints 3 and 4 are immobile,
calculate the assembly shown in Fig. 48,

rdmtbe e Do

65%, Détermine the bending moments and longitudinal forces
in the shafts of the cantilever assembly (Fig. 49) stressed at the
> end of the cantilever by vertical force P, Consider the dilitatio-
p nal-compressive straln and bending strain of the shafts. The
cross-sectional area of the shafts is equal to F, whereupon I=O.5F2.
=30 and F=2-1071%,

A A ah e e e

e & 8 b ¢ Al Tons et

1 X l' P
; A i P
1., «
1.7 :
_ e
: Z . ’ j‘
Fig. 49. | Fig. 50.

66. Find the dependence between the moment of inertia, the
lencth of the beam span supporting the upper shaft of the ascembly
(Fig. 50) and the bending moment originating at Joint 1 of this frane,

A i e ks . A b

24
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67. Determine the bending moments in the joi:ts and the fixing
of simple frames with mobile joints 2 and 3 (Figures 51 and 52) '
with the rollowing data: for the assemtlies in Fig. 51, l-“-
la-ﬂn-lo.lf"-r!‘i for the assemblies in Fig. 52, /,=, ls=lhi=/s

. ‘ : - o
O} "f :. [l
) . \...;i, .-\.'q"", o~ ,."‘ .'.
Sgvy v ““-'J;' e e, ',’-' P _;"'.’ . Tyl ' b .
= T ' S 2 R Ot &
T - — 2 e R P .
?1(’.".[ .-10“ | SR I (S | I
M e e it ‘4,”?! - _’;l?: A TEERVIFUEF
- Fig. 51. Fig. 52.

68, Determine the bending moments in the joints and construct
the bending moment and shear diagrams in the shafts of simple
frames with immobile Jjoints (Figures 53 and 54) with the following
data: for the frames in Fig. 53, A= 8l Li=8yiy=ly=1l,
for the frames in F. z. 54, h=¥climlimig A= m}u.-

T T o Ty s e rmmmme Yy er s T e T e .

! "' l; I.J'&l'
L J ~
. ° SR B S|
L) . P S ==\
R . 1 T Xd—\E
Te 28

Fig. 53.

63, Determine the moments in the Joints of a simple frame
with immobile joints and a pillar in the centerplane (Fig. 55) and
construct the bending moment and shear diagrams in the shafts of
the frame with the following data: u--s-l I, = 5l l.-l.- l. : <

assembliz2s with immobile Joints (Fig, 56, 57, 58 and 59) and con-

i

70, Determine the bending moments in the joints of complex ;

1

struct the bvending moment diagrams in tne shafts with the following ]

25
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data: a) for the assemblies:in Fig, 56, /1= e hail, =1
b) for the assemblies in Fig. 57, [lym8lylymbly ly = li= 3y, ly=lq Js=08/s:

-
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5 ;?‘ ¢) for the assemblies in Fig. 58, /s wbl, ly=lymiy= e ly= e low' Iat
f ¥ Zor the assemblies in Fig, 59, h=8u ly=ly=ds ly= Iy ly= 083 fy=6le
- B G o Gy 080k -
E 20 :
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Fig. 57.
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Fig. 60.
T1. Determine the bending moments in the Jjoints and fixings
of a frame with mobile Joints (Fig. 60) with the following daca:

Iy Iy; 13=0,5504; 13 3. The shafts at Joints 1, 1!, 2 and 2! are
rigidly fixed; Jjoints 3, 3', 4 and 4' are mobile,

72. Calculate the girderless frame with rigid floors (3-4-
-6-5 and 5'-6'-4'-31) shown in Fig., 61 at I,=2I,; I,=I,. The
chaftz at joints 1, 1', 2 and 2' are rigidly fixed.

1. a5t t (X1

=

4t /‘ L S ¢ 3
(HHHHI I
. 7 T
Fig. 61.
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T73. Determine the moments in the Joints of a complex assembly
(Fig. 62) with the following data: Q= 0.5¢l; -Qy=.Q = oli hwUlg lymlymdly

Agmlymiygomly = 1y Iy= lg =080y
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CHAPTER II.
CALCULATING BEAMS ON AN ELASTIC BACE

b e’ s saadihcit el

b nnad

Brief Theoretical Information

The differential equation for the bending of a beam with a
constant cross section which lies on a solid elastic base with
constant rigidity has the form

ElwV (1) + km (x) = ¢ (2). (2.1)

a1 ittt s BN
M e

The common integral of this equation 1s made up of the comzon i
solution to the homogeneous equation corresponding to it [at
q(x)~=0] and the partial solution, depending on the form of the
right slde. The common lntegral of the homogeneous equation can 1 j
be written in one of the following forms:

“wop == e~ (B, cos ax + By sin xx) + e (B, cos ax -+ B sin ax); (2.2)
v..-c,shaxcosax-l-C.shaxs'uax+c.chaxsinax+ :

Gl et 4+ C,chaxcosax; e (2.3)

-':;‘.‘_w...'”-? DyVy(ax) + D,V, (@x) + DV, (@x) -+ DyV, (ax); B (2. 4)

= Ea, @x) + E\W (@x) + EsW, la { — )] +
O 4 EWla@—Ak g (2.5)
n+],g+hn=0123]==0|23
€=0,1,23% h=01213

29




where ¢-~|/‘ “- B,, c,, Dy, 5, are arbitrary integration constants
determined from the boundary conditions; V&@vﬂ are 'the

. Puzyrevskly functions;. W;(ax) are the Klishevich functions.

The values of functions V;(@x) an?! W;{ax) are given in
[3, Table I] and their properties are given in detail in ‘15 (21.

If the load intensity q(x) is a polynomial of uo higher than
the third power, the partial solution ey s written in the foraz

g a2 (2.6)

When a beam is cstresced by concentrated forces, moments or
a distrituted load which has a different law of change in different
sections along the beam, the integral of differential equation (2.1)
can be obtained by means of the initial parameters method. 1In
particular, the elastic line for the beams shown in Fig, 63 is
written in the form

wle).=DaVe (@) + DV (o) D,V. (@) + DyV, (a9 + -
+|m’r Vala (r— 6)l+|| TV 1oE V.lc(x c;)H-

+|4G‘El “ Vol“(‘—c.)ll+|h.5, [(x c.)— :

N

oL V,[a(x—ca)l];/ S

N
V" (2.7)
where m is the angular coefficient for a load which varies acccr=-
ding to the triangle law,

The Puzyrevekiy functlonc rapidly increase with the increarce
in the argument ax; therefore, when they are used for numerical
computations it is necessary to subtract the cmall difference of
the close values., The Klishevich functions do not have thic
defect.
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The integral of the homoge-
neous equation for infinitely long
beams should te taken in form (2.2),
since the condition of the bounded-

s DY Y G ness of sagging at X-so00. 1s satis-~
 IEBRRIZEY R ‘ugafu; -.; fied when constarnts BB and B, are
it Fig: gg: et equated to zero, The two remaining

constants are determined from the
conditions at x=0,

In beams which lie on a solid elastic base with co stant
rigidity whose support sections are fastened identically and in
which the locad acting on the beam 1s symmetrical relative to the
middle of its length, the relationship between the support pair
cocfficient )¢ and the pliability coefficient of elastic fixingdy
does not depend on the nature of the change in the load and is
determined by the formula

'-'A T o . - o.' ... .. c’. :O- :l
SRR L SRR M (2.8)

T ﬂ-)m)

where ﬁ.oo.y.oo are the Bubnov functions for a freely resting
beam which lies on an elastic base and which is streessed by

a support moment (see appendix VI), The bending elements of the
beams are linear functions of the support pair coefficient.

In particular, the solution of the problem of bending of a
round cylindrical shell which is stressed by uniformly distributed
pressure q is reduced to the integration of differential equation
(2.1;. The differential equation which determines the radial
displacement of points of the middle surface of this shell has the
form

D‘,w(x)+ w(x)—q. (2.9)
vhere D -.1?§§737 ig the cylindrical rigidity; w(x) is the
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displacement of the points of the shell in the direction of its
radius R (positive toward the center of curvature); h is the thick-
ness of the shell.

The integral of the homogeneous equation which corresponds to
equation (2.9) is written in one of the forms previously indicated
{(2.2), (2.3), (2.4)], whereupon parameter a is determined from
the formula

o=/ L. (2.10)

A ship which is floating on calm water is a supportless beanm
which is acted upon by the force of gravity and 1ifting forces.
The sagging of this ship as an elastic beam is determined from tre
differential equation in the form

EIxR w ()" + k() w (0 = ¢ (), "(2.11)

where k(x)= (b(x); q'¥) = gy (x) —yF (x); gqo(x) 1is the intensity of the
welght load in cross section x along the ship; F(x) is the loadel
area cf the ring in section x of an absolutely rigid ship differen-
tiated on calm water; ¥ 1s the specific gravity of water; b(x) is
the width of the water line; w(x) is the sagging of the ship as

an elastic beam. Eguation (2.11) describes the bending of a
nonprismatic beam whicl. lies on a solid elastic base of variable
rigidity under the effect of longitudinal distributed force of
intensity q(x). [Certain of the methods of solving differentlal
equation (2.11) will be given in Chapter IV,]

The differential equation for the bending of a knife-ecdge
beam which lies on a solid base can be written in the form

E[wlv(x)—kéla w () + ke (x) = @ (%), (2.12)

with consideration of rhear strain, where wi(x) is the sagging <7
the beam from bending and Gw 1s the beam's rigidity to chear.
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Equation (2,12) is analogous to the differential equation
for the complex bending of beams which lie on a solid elastic
base under the action of tensile force ry-aﬁéﬂ If the besam
is stressed by a symmetrical load and its support sections are
fastened elastically onto rigid supports (pliability coefficienc
81), the boundary conditions have the form at 3,!-\,:!;-;-;'_ ‘

.. Elw;, - - M ’
= g — g =0, (2.13)

where N%. is the value of the bending moment in the support section.,

In order to use the available solutions on the complex bending
of beams on an elastic base to determine the bending eiements of
these beams, differential equation (2.12) and boundary conditions
(2.13) must be transformed, We will introduce a new function v(x)
which 1s related to the elastic line from v.nding wl(x) by dependence

u(x)=w._(i)—%';-. (2.14)

Then differential equation (2.12) and boundary conditions
(2.13) will assume the form, respecti ‘v,

slo'V(x)i-kg";u'(x)-fiko(x)sq(x)—_%‘-; k_éb‘(:f): (2.15)
at xm-:-é
v’ -‘:&lb‘lv'.}'- (2.16)
o=0. .

- Witk boundary conditions (2.16), equation (2,1%5) describes the
complex bending of an elastically fazteneu beam which lles on an
elastic base. Professor KR, V, Matte. obtained simple formulae for
certain of these beams to determine the characteristic bending
element:, The nurerical values of the functionc in thece fornulae
are given in the handbook (Civertsev, I, N., Davydov V, V., lMattes
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g » ‘N, V. Students! Manual on the Strength of Vescels with Internal
; };é Floating., M., 1950) depending on the arguments u and v, which are
% i found from the formulae:
2 G i . . | §
! 1 TN N A TN | T i 4
w= 1V =g} = YIS (2:27) :
:' ,:_%’ . . .. . 5 4
¥ P )
: i 3 A
3 :1' The ecessary functions for beams which are stressed by a ¢ {
S L uniformiy distributed load are given in the tables in appendix VII, ;
¢ S v
L b~ 7E ‘e
g ) pE H
: S Problems 2 i
: Using the Differential Equation for Bending of Beams on an
7 Elastic Base ,
)-' !
i ; 74, Find the sagging and angle of rotation at the origin of 2‘
f i the coordinates of a semi-infinite knife-edge beam which lles on
a solid elastic base with rigidity k and which is stressed by
concentrated force P. At the origin of the coordinates, the beaz i
is resting on an elastic support with a pliability coefficient i
. o l o
¥
g
1
- o
! - SRR S
* H g R . R Ui
- 3 Fig, 64, Fig. 65.
: ' i
; Efs 75. Find the sagging and angle of rotation at the crigin cf ;
; " the coordinates of a semi-infinite knife-edge beam which lies ou :
i - i
E - a solid elastic base with rigidity k and which is loaded by a :
F f ' concentrated moment. The bean is fixed clastically at the origin
i |
E'.vl
o 34
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of the coordinates (the pliability coefficient of the elastic
£ixing  Mwe-gpr) (Fig. 65).

76. Find the elastic line and the maximum sagging index of
an infinite beam which lles on a scllid elastic base with rigidity
k and which is loaded by force P, At the origin of the coordinates,
the beam 1s resting on an elastic support (the pliability coefficient

g -

A kmconst T

Fig. 66. Fig. 67.

T77. Find the elastic line, reaction Ry and support moment
Moy of 8 semi-infinite bveam which is rigidly fixed at the origin
of the coordinates, lying on an elastic base and stressed by a
uniformly distributed load with intensity q (Fig. 67).

78. Determine the values of the characteristic bending
elements for the knife-edge beams shown in Fig. 68: sagging,
angle of rotation, moment and shear in the cupport -uctions and

in the middle. The rigidity of thc elactic bare k= Sl

79. Find the greatest sagging of an infinitely long knife-
cdge beam whicn lies on a solid elastlec base with rigidity k anc
which is loaded ir. a section with a length 1 by a uniformly diz-
tributed load of intensity q.

80, Determine the gap £ betweoon the cnd sectiono of a cemi-
infinite knife-cdge team and the clastic support, the support

reaction being equal to Ro (Fig. 69).
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Fig. 69, Flg. 7C.

81, Determine the support bending moments and sagging in
the midJle of the length of a fixed beam which lies on a solid {
elastic base with rigidity k., The ~iddle portion of the beam is j
absolutely rigid (Fig. 70).
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82, Find the equation for the elastic line of a flexible
straight-walied knife-edge pontoon floating on water which is loaded
in the middle section with concentrated force P (Fig. 71). Compute
the bending moment acting in the section under the force also,

The pontoon's welght is evenly distrijouted along its length ' , the
moment of inertia of the cross-sectional area of the pontoon is I
and the pontoonts width is B, '

S o e e . i i S o I S

C) =g, . pe= — oo :
=1. : B CE = i
: = - i1
VRN, y | ’
- -
R
Fig. 71. g

83, Find the fibrous bending stresses in an infinitely long 1
round cylindrical shell with radius R and thickness h which is
stressed by a uniformly distributed lateral ioad of intensity q
and which 1s supported in the middle on an undeformable dlaphragm,
Determine the distance a to the section of the shell which is
closest to the diaphragm in which the bending stress vanishes.

The origin of the coordinates is considered to be in the crosc
section which coincides with the dlaphragm.

oy

TR

At ar aiMaa

84, A round infinitely long cylindrical shell with thickness
h and radius R 1s stressed on the perimeter of the middle section
by a load of intensity q. Determine the equivalent area F of
a circular ring loaded with a lecad of intensity q which receives
the same pressure as the shell 1n the section ader the load, i

PRSP

85, Determine the support pair coefficient for the middle spzrn
of the continuous beam shown in Fig., 72. ;
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86. Solve problem 85

P B

with the assumption that support sec-

tions 1 and 4 are rigidly fixed,

87. An infinitely long beam on a solid elastic base is

stressed by a uniformly distributed load with intensity q. A

rigid support is installed

in a certain section. Determine the

reaction of this support and the bending moment in the cross sec-

tion above the support,

';§ 88%, A knife-edge beam which lies on a solid elastic base

is loaded on the ends by two concentrated forces Q/2 (Fig. 73).
Considering that the anglec of rotation of the end sections are
equal to zero, find the bending moments and the reaction of the

elastic base in the middle

—— _,_ﬁ

/2,

Fig. 73.

and in the end sections, (This solution

.f_ can be used ‘o check the strength of the keel when docking shipsz,)

Fig. T4,

89, Determine the rotational angles of the cupport sections
of a freely resting knife-cdge beam which is 1ying on a solid

elastic base with rigidity

£q 8nd £, (Fiz. 74).

kK when the support deviates by value

>8
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90. A knife-edge beam with length 2 and weight per unit length .
p lies on a solid elastic base with rigidity k (Fig. 75). The left
end of the beam is lifted by force P-Apio vhere A<1, Compose the
«quation for determining length a by which the beam is torn away
from the base, considering that the elastic base does not recelive
tensile forces at this length.

Fig. 75. Fig. 76.

91*, Find the equation for the curve of f£(x) (Fig. 76) by
vhich an elastic base with rigidity keconst should be described
in order to provide the given bending moment diagram for a bean
vhich lies on this base and which is stressed by a load of inten-
sity q(x) (the broken line shows the beam's axis in the undeformed
state).

g2, Find the bending moments WMe for a freely resting
knife-edge beam of length 2 which lies on an elastic base with
rigidity k which must be applied to the end sections so that these
sections obtain identical positive angles of rotation Qe (The
moments act in the same direction,)

93, Which forces Q/2 must be appiled to the ends of a knife-
edge beam (the section's moment of inertia is I) which lles freely
on an elastic base so that these ends receive the given saggirg £?

94, Find the change in sagging in the middle of the span, as
well as the change in the angle of rotation of the end sections of

29
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a freely resting knife-edge beam lying on an elastic base with
rigidity k and stressed by uniformly distributed load q after the
installation of an elastic support with a pliability coefficient
A in the middle of the span,

95*, Using the initial parameters method, write out the
elastic line of a cantilever knife-edge beam (the moment of inertia
of the cross-sectional area is I) which lies partially on ¢£2 elas-
tic base with rigidity k and which is loaded by force P (Fig. 7T).

., . S

ST -
A - ' .o ! b3 - 3
.; R Y 2 1 § ., 4
a'-*'=====r===~? “a\ \5/}"‘ N

. e . e i

ARAA
A 4 A4
.

A
VAAA/

- A - . ‘Vo- . ! ‘..! =
2o IR SN

Fig. T7. Fig. 78.

96*, Compose the differential equation for the bending and
boundary condltions for a system of two knife-edge beams Joined
by an elastic base of rigidity k and stressed by an equilibrium {
load, end moments and forces (Fig. 78). The solutlon to this
equation can be used to determine the reaction of keel blcocks whan
mooring ships in a floating dock.

97*, Determine the sagging and bending moment in the middle
of a span in the first of two knife-edge beams which are Joined
by an elastic base with rigidity k=const (Fig. 79).

98, A supportless knife-edge beam of length $% which lies on
a solid elastic bace is stressed by a uniformly distributed lcad !
gq. What identical moments e must be applied to the end sections
of the beam so that the intensity of the recaction of the elastic {
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base in the middle of the span of the rveam turns out to be equal
to zero? What will the intensity of the clastic base's reaction r
be in this case at the ends of the beam (Fig. 80)?

th §1> e
T

,(ir T 4 lmI
82 - ll . . .
:' - ,l’ . l ![, . .71",‘ ...‘3~ ‘.'
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Fig. T9. T Fig. 80.

99, Determine the moment in the elastic fastening of a knife-
edge beam lying on an elastic base, one end (x=0) of which is
fastened elastically (pliability coefficient is 41) and the other
(x=1) of which is completely free, under the effect of a uniformly
distributed load of intensity-q and concentrated moment wRe on
the beam, applied in section x=? (Fig, 81),

Fig. 81,

100, Determine the angles of rotation of the support secticns
and the sagging in the middle of the length of a freely recting
kniTe-edge beam which lies on a solid elastic base with rigidity
k with consideration of shear strain and with the asumption that
the support sections of the beam received displacement f (Fig. £2).
The rigildlity of the beam to shear is Gw, i

NP OV U RPRO
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101, With conslideration of shear deformation, determine the
bending momeats in the support sections and in the middle of the
span of a rigldly fixed knife-edge beam which lies on an elastic
base and which 1s stressed in thc middle of the span by concentrated
force P. The beam's length 1s g , the moment of inertia of the
cross-sectional area is I and the wall area is w.
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102. A knife-edge beam with moment of inertia of the cross-
sectional area I and length 2 which lies on a solid elastic tase
with rigidity k and which 1s loaded by a uniformly distributed

4
r oF: load with intensity q has the following arrangement of support 2
EOg sections: a) a beam which rests freely on rigid supports; b) a |
i _kgg- beam which is rigidly fastened onto elastie supports whose plia- Q
)iiz ' bility coefficient is A, Determine the bending moments, the shear E
- . forces, the angles of rotation and sagging in the support sections :
& and in the middle of this beam with consideration of shear strain.

The wall cross-sectional area is w,

103, A rigidly fixed continuous knife-edge beam which is
supported in the span by five equidistant elastic supports with
identical rigidity (Kﬁ%=const) and which are stressed in the sup-
{ port sections by concentrated forces P (Fig., 83) 1s replaced by
'5'3 a beam which lies on a solid elastic base with rigldity k=§ and
which is loaded by a uniformly dicstributed load of intensity

[OOURRNI

. P
p q=‘a .
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Fig. 83.

The moments of inertia of the cross-sectional area of the
beam Io:=229.9-:1.03 ch&; the pliability of the elastic suvnports

l.('_-.ls.az_ﬁ;-'; the length of the separate span of the beam a=78 cm,

Using the solution to problem 102, determine the bending
moment and shear force in the fastening (Mo, N_O)’ the rending
moment (Mi) and the sagging in the middle of the span of the indi-
cated beam on an elastic base,

104, Solve problem 103 with consideration of shear strain.

The cross-sectional area of the wall w=15,6 cm2. ;

e e A A
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CHAPTER III.
BENDING OF FIAT COVERINGS

Brief Theoreticel Information

Coverings with one cross connection., The assumption that
only the concentrated reactions Ri perpendicular to the plane of
the covering originate in the points of Intersection is generally
accepted when designing tops consisting of beams in two directions.
Furthermore, 1t is aczcepted that the external distributed load is
taken directly by the beams in the main direction, and the cross
connections are only stressed by the reactions of the interaction
of the beams in the two directlons.

Pesigning coverings with a large number of supports for the
beams in the main direction1 with identical rigidity and arrange-
ment a~d one crecss connection is reduced to calculating tre cross
connection as if 1%t were a beam lying on a solid elastic base [see
(2.1)]. 1In this cece, the rigidity of the elastic base, the inten-
gsity of the load and the argument u are determined by the formulae:

1 " Ei .
ke (3.1)
ol =£2. 20 (3.2)
_“ T 1 iaf{L\sL
w=V w5 (F) = (3.2)

1It is poscible in practice to consider the number of beams in the
main direction to be large if there are more than 4-5 of them.

by
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‘where L is the length of the covering (the span of the cross

e i A e L

connection); g is the width of the covering (the span of the beams
in the main direction); a is the distance between the beams in the
main direction; I 1s the moment of inertia of the ¢cross-sectional
area of the cross connection; 10 is the moment of inertia of the
cross-sectional area of the beams in the main direction; x is

the coordinate rcad along the cross connection; Q(x) is the load
on the beam in fhe main direction which is located at distance x
from the origin of the coordinates; ¥ is tha coefficient of the
effect of the concentrated force applied to the beam in the main
direction at the point where it intersects the cross connection
on sagging at this point; P(x) is the coefficient of the effect

of load Q(x) on sagging of the beam in the main direction in the
place where it intersects the cross connection, If the load aloung
the top is constant and coefficient B=const, q=const.

In order to design any beam in the main direction, it is
necessary to find the sagging at the point where it intersects
the cross connection, The value of this sagging is found by
calculating the cross connection, When determining sagging, the
reaction of the interaction of the cross connection with the i-th
beam in the main direction 1s found:

tllonsiinatiiiiien Miisn SRl i s i e . it 2tk

. ,'E'r. A v,
Ry — QW (3.4)
vhere wy is the sagging of the i-th beam in the main direction at
the point where it intersects the cross connection, and then the

bending moment and shear diagrams are constructed,

If a covering with one crosg connection 1s stressed by con-
centrated forces, the calculation of the cross connection is
reduced to calculating a beam on & solid elastic base which 1s
loaded by concentrated forces, If concentrated force P is applled
directly to the becam in the main direction, the cross connection
proves to be stressed in the corresponding section with force

. g o s o v i AR RS . o) s - A
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et (3.5)

where B is the coefficient of the effect of force P on sagging at

“the pdint of the beam in the main direction's intersection with

the cross connection,

The reactions of the cross connection's interaction with the
beams in the main directlon, to whish the external forcer are
directly applied, are calculated after determining sagging accor-
ding to formula (3.%).

If the rigidity and the fixing conditions of one of the beanms
in the main direction are different from the conditions of fixirg
and the rigidity of the remaining beams, the calculation ol the
cross connection is reduced to calculating a beam which lies on an
elastic tase and which 1s fastened at the point where 1t intercect:s
a variable beam in the main direction by an elastic support with
rigidity

.f_x;-(g,n_i).ﬁi,.i' (3.6)

and which 1s stressed by concentrated force P, instead of q(x),
which is determined by formula (3.2):

. Py= (.%,'. —'%)‘Q_(x). (3.7)

where ¥' is the coefficient of the effect of the concentrated
force applied to- the varictle beam in the main direction at the
point of its intersection with the cross connection on ragging at
this point; B' is the coefficient of thc effect of the evternal
load acting on the variable beam in the main directicn on 1its
sagging at the point of intersection with the crocs connection;
n=11/1o; 1, is the moment of inecrtia of the cross-sectioral area
of the variable beam in the main dircction,
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Covering with several cross eomnect . Diliesr i v ~ads
can be used to calculate coverings with » iarge nimber of

in the main girection and several cross connections (Fig. 8},
Below we will consider thz method of "main bends" and the n2thod
of the "load selection" cf crose connectionc,

Method of ilain Bends, Assuming that the interaction of beams
at Joints results only in the same tyze of rcactlons perpendiculas
S to the plane of the covering and considering only bouding strain
t:’ of the beams, the system of differential equations which determine
the static uncertainty can be written in the form

v ‘. R t., .
.”a-pt'q'é%ﬂ_':'Z?uﬁ'E?’_ﬂ-. (3.8)
. Y 2T U Pt

where L is the sagging of any beam in the maln direct. ..: at the ..
point of inters:ction with the l-th cross conrection; 3, 1s the 1
coefficient of the effect of loud Q(x) on sagging of the i-th Joint
of a beam in the main direction; 713 is the coefficient of the
effect of the reaction in the Jj-th crose connection on sagging

of the i-th beam in the main direction; a is the dilistance wetveen
the beams in the main direction; IJ is the moment of inertia ol

f, ] the cross sectional area of the J-th cross connection; i=1, ..., n
)' (1n s the number of cross connections)
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System of equaticiis (3.8) can be integrated in the following
manner. Let : ‘

8 0= 4 B v 4 | (3.9)

¥, where Io.is a certaln constant value which has the dimensionality
“ f‘ of the moment of inertia; »;, are constant coefficients which
designate the types of main bends; P (x) are the functions which
satlisfy the equation for bending of a knif{e-edge besm which lies
on a solid elestic bLase (main bends):

Elpl! () +kapn () =g () &t w=1, 2 ...n,  (3.10)
in whichh the rigidity coefricients of the elastic bace km and the
load intensity q, (x) must be determined. The following system =<f
algebraic homogeneous equations should be used to calculate the
types of main bends im and ccefficients L

(?n "*"‘ A-m) 1 \'u"m + + ‘Yu*'m = 0

' \'n\'m \Yu T;‘") Van: + 'I' 'fm\’m-o
Coe e (3.11)

l,o R B L LS

: N ' - PO . N

4 Ynx”xm‘i"?na‘:m'f‘ \1‘,“—'—,—0...)‘\! =U l
where ,_m__ f‘:.
o AUy

System of equations (3.11) has a solution which is different than
zero only when its determinant is equal to zero, i, e., if

E | (?u - ‘,L:" "m Tis» - : Via 1;1
F T (?xé"“';ln): ’ Yn =0 (3.12) :
2 snle Yns» ' ’ (YM - ';:‘.Am) j
2
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The characteristic numbers and, consequently, alsc the rigidicty
coefficients of the elastic base

et (3.13)
are determined by equations (3.12),

Since the types of main bends are determined from equations

(3.11) with ac~iracy up to an arbitrary multiplier, all ¥pim

can be consldered to be egual to one (v, .

=1) and the remaining

| 4

can be determined from any n-1 of the equations in system

(3.11), substituting all the

roots A

, to equations (3.12) in

them in turn. The types of the main bend~ va satisfy the following
condition, called the condition of orthogonality:

YU ',. (3.14)
ETv,..v‘,=0 at m+r

A=) “

System of equétions (3.11) and orthogonality conditions (3.1%)

make it possible to defermine the intensity of the load Ay

(x):

z Fm:n

3.

Olr\ .

0-! (x)

xm x'r"uu

The roots of the characteristic d-tcrminant (3.12) for a
coverir.,, with two cross connections, as well as for & covering
with three cross conr.ections and symmetrical load and structure,

are determined from the formula

11 1= —:t : VA|+4A2.

Ce e

vhere
. .u'l . . . , :‘A
Ax'—"-?u”""*‘?n’ll; .
/
Il .
('fu Y\.?zz) e

1}9

{

>

-
P

o

A
!

(3.16)
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In this case, the types of main bends are determined by the
formula

V=V =l
Vn-‘-

m-#u . (3.17)
‘ u-'f‘h

o,
Vg = —
- " )

When the ends of all the cross beams are fixed identically,
the boundary conditions for each of the main bends prove to be
the same as for the sagging of the cross beams in quesfion. If
the conditions for fixing the support sections are not the came
for different cross connections and have the form
at x=0 i Tl ;'”'_.,*' .
wi=—AEl ), W)= N}ELu];

at x=L ST T e (3.18)

W= A?f' Elw; wy= —?J.f'El o

where Ag; Ag and ﬂﬂ;qﬂ- are the pliability coefficients of the
elastic support and fasting of the J-th cross connection, the
bouncdary conditions in the main bends are not separated, i. e.,
the main bends will be connected to each other. In this case,
using (3.9), condition (3.18) can be written as follows:

at x=0

- ST
, ‘n - .. " .
-7?.- I, vimon(0) =.-_A7 2 Mpvimi

I 3 D (0)im = U S My

T e p—r—————— -

R L A s

L S SRR AT, - 5 YN

C camml s

et xeL bl AT (3.29)
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where Ng, Ng' and =, Qnﬁ'.\ are the shear forces and bending

moments which correspond to the m-th main bend:

M El.p.. (0). N" = £l.p,. (L).

sn..=£lop..(0) 2 = Elupn (1), (3.20)

. The types of main bends in condition {3.19) and their first
derivatives at x=0 and x=L can always be expressed by the load
which acts on a beam lying on an elastic base and by the value of
the shear forces and bending moments in the support sections.

In particular, these dependences for a beam which is uniforaly
stressed by load a,, and cymmetrically fastened at the ends will

b TRl Cun o

o A ) o edaiteil

23%: be the following

G’ P-(°)='Pu(l~) W+ '.|"~ ‘ ;
* Do +lei(uﬂ)-vl(“n)ln _ (3.21) i

’..’ A ——P.,(L) = 'mT"Pa( . ' ) %

y . !R L .
- :_ 1 [wo( ) + vl(“ﬂl)] pﬂ(o) u:‘vz (um)" j
=% $

where p,(un), vy (4n), vy (4)» ©tc. ere I, G, Bubnov's functions for
beams which lie on an elastic base,

In the case in question, the values of the bepding elements
in the middle of the length of the beam which corresponu to tre
m-th main bend will e

o \ - __' qmld . 2N° ‘ﬁ("m) ° ] .
. Pmcp = Y] [ + ml l‘a(“m) + am L' s(u"') ' (3.22)

0 L Xo (um)
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2 ) m b () g1 1) ki (ua (3.23)

P 7 ~ .

The bending elements of the croés connections are determined
from the formulae

LN

@@ =gt B vimbm (e .

-

Mya) = L) = B VinElopa(s) = T, vinta (o)

Nix) = Elw ® = _};‘.‘ Vim Elop}, (x).= ﬁ‘v,...ﬁ;._ @),

where Puae ‘m.;..'N.‘.' are the bending elements of the beam for the
m-th main bend,

The consideration of shear deformation in the beam walls in
both directions has considerable significance in the calculation
of bottom coverings with 2 double bottom, This scheme for cal-
culating coverings with consideration of shear strain can only
be used when the ratio of the cross-sectional area of the beam
wall w Lo the moment of inertia of all the cross-sectional areas
of this beam 3:'1 for all the cross beams is a constant value at
any 1:

Wy

T;%=;éonst. (3.26)

In this case, the calcul~tion of the covering is reduced to cal-
culating n (the number of cross connections) knire-edge bLuams
which lie on an elastic base with rigidity k, [formula (3.,13)]
and which is stresc.d by distributed load q, [formula (3.15)] ans
axlal tensile f..ce -5‘;%#..

The equation for determining the main bends in this case 1is
the following
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;:.,?::'55& hupi + knpm = l m=1,2, . oo n (3.27)
vhere
-.-‘_k. .‘,.‘c (3.28)

The summary elastic line of the i-th cross connection is
determined by the equation ’

() =y () g (), (3.29)

where w,, (x) is the elastic, line from bending;. ¥y (x) is the
elastic line from shear, whereupon '

w0y () o= = L wis (x)' (3.30)

[}

. ) N ‘“, _.)‘_L'.- ¢
L. A .31
Wy, (3)= -;f'.g V:-l_’-o(x)-‘ \3.31) _
The formulae and equations used to detefmine Mo and 'im remain
the same as in the problem in which shear is not considered.
¥ S The coefficients of effect should be calculated in this case with
'ff;' consideration of shear in the beam walls in the main direction.

As ve have already indicated, the auxiliary functions put
into tabular form by Professor N, V., Mattes can be used to deter-
N mine the design elements of bending of beams on an elastic base
N5 with consideration of shear., If condition (3.29) is not satisfied,
A

chear can only be calculated approximately when designing coverings
- by the method of main bends, For this purpose, it 1s necessary to
fﬁ{. use the reduced values Ii of the moments of inertia of the cross

% conrections Ii’ calculated according to formula

= (2.32)
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e characteristic equation (3.12), the types of main bends (3.11)

gg\ and load intensity, where
‘o RN KA (3.33)
¥ A= Ve

The coefficients of effect v 13 and Bi must be computed with
consideration of shear strain in the beams in the main direction.
The bending elements in the cross connections will be determined
in this case by formulae

.

"a (3) -y (‘) 3: = 7" 5 2 V:uP- (x).

» E
‘. 1
. . -
. ..

.
O i £ AR o i R
sttt

um(:)==-—'~2 w-P-(t)--_ . :‘7 (3.2%) S

Mu (x)- Elou’u (3)'= E Vm‘“n(x) — |
'_".:, N,(x)::Elow“(x) 2 VlmNn(x)v\ . %‘
P A l 2

where Pp (x) are the main bends determined by differential

) equation (3.10); p. (x); e (x); Nm(x) are the angle of rotation,
the bending moment and the shear in the m-th main bend, respec-
tively.

e 8 SARDGRRARDONT™ i el

Method of "Load Selection" of Cross Connections., The
calculation of coverings with several cross connections using the
load selection method is based on the concept of the intensity of
of the load acting on the J-th cross connection, as follows

W =g —amb J=0 2% L (3.25)

where q (x) is the intensity of the load, calculated with the }
assumption of the undeformability of the cross connections; @r(x) ‘
is the selected function whose {orm 1is similar to the elastic !
itine of the cross connection [¢,(’2‘)= l] 9 is thc unkncwn




intensity of the load, whose determination requires the use of
the equatlion for sagging of the joint cross sections of the beams

in both directions, The system of equations which determines
qJ will be the following

£ (ot + b B B (3.5
Ely \*a .m_ T«EE!Y‘,’?’.’; oty

where L is the length of the cross connection;,Io1 is thg mean
value of the moment of inertia of the i-th cross beam; a4 is the
mean value of-the load in the i1-th cross connection; 713 1s the
coefficient of the effect of force RJ on sagging in the i-th
Joint; oy and Bi are the coefficients of effect on sazging in the
middle of the length of the cross beam under the action of loads
with intensity qg and Qq, respectively,

When calculating bottom coverings with half-partitions in the
diametric plane, it is expedient to take the intensity of the lcad
acting on the vertical keel in the form

=g 6 g () (3.37)

where q&?) 1s a constant coefficient whose determination requires
using the condition of equating the sagging of the beam in the
main direction at the point where it intersects the keel in its
support section to zero. It is advisable to use the auxiliary
functions given in [3, Table I] to simplify the calculations
according to the method of load sclection,

Wher lesigning cross connections using the method of load
sele :tlon, shear deformation can be considered in the following
manner: the beams in the main direction are calculated with consi-
deration of shear; the coefficlente of effect 713; Bi; ai are
determinied with consideration of shzar deformation; shear defor-
mation 1s considered vhen determining sagging of cross beams,
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Calculating Rectangular Flat Coverings

Problems

105, An edge covering consists of a large number of equi-
distant ribs with a moment of inertia of the cross-sectional area
1 and one edge stringer, As Fig, 85 shows, concentrated force P
acts on one of the ribs, Considering that the covering is infinite-
ly long, at what value of the moment of inertia of the cross-sec-

: tional area of the edge stringer
I will the sagging of a ridb stres-
sed at the point of intersection
with the stringer be n times less
than the sagging of the rib
without the stringer? The width
of the covering is V¥ and the
distance between ribs is a.

106. Let councenirated forces P be applied to m rivbs in the
covering exemined in problem 105 (Fig., 85). Determine how much
greater the sagging of the middle of these stressed beams is than
the saggine of a stressed beam when one concentrated force 1s act-
ing on it. When solving the problem, consider that the concentrated
force P is equivalent to a uniformlydictributed load of intensity

qn§ on a section with length a,

107. A covering of length L and width ¥ with one cross
connection and a large number of beams in the main directlon,
separated by distance a, is stressed by concentrated force P at
the point where the middle beam in the main direction intersects
the cross connection. The cross connection (moment of inertia cf
the cross-sectional area is I) is rigidly fastened at the ends,
while the beams in the main direction (moment of inertia of the
cross~-sectional areau is 1) are resting freely. Determine the
greatest bending moment iIn tnc middle beam in the main directio:r,
if the cross connection passes through the middle of the width of

i
i
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the covering.

108. A covering with length L and width 2=0,8L that has one
cross connection and a large number of beams in the main direction,
the distance between which 3=0,1L, is stressed according to Fig.
86a, b, ¢, d and e, The boundary conditions for fixing the cross
connection (the moment of inertia of the cross-sectional area 1s
I) and the beams in the main directlon'(the :noment of inertia
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Fig. 86.
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of the cross-sectional area 1=0.1L) are shown in the same figure,
Determine the bending moments in the middle beam in the main Jdircc-
tion m(y) and in the cross connection l(x) in the support cectiors
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and at the point of their intersection, as well as the reaction of
the interaction botween the cross connection and the middle bean
in the main direction.

109*, A covering with cne cross connection and a large nurber

of beams in the main direction, the distance between which is a,

is loaded by a unitormly distributed load of intensity q. The

beams in the main direction with length ! are freely resting at the

ends; the moment of inertia of their cross-sectional areas 1is equal

to i, except for the middle beam, whose moment of inertia is

equal to mi, The cross connection with length L (the moment of iner- %
H
i
¢
|

tia of the cross-sectional area is I) is rigidly fastened at the
ends and divides the span of the beams in the main direction in

half. Determine the reaction of the interaction of the cross -
connection with the middle beam in the main direction.

110, An evenly stressed covering consists of a large number
of beams in the main direccion, the distance between which 1is a,
and one cross connection. What ratio should there be between the
moment of inertia of the cross-sectional area of the cross connec-
tion and the moment of inertia of the beam in the main direction of
this covering so that the bending moment in the middle beam in the
main direction turns out to be four times smaller in the middle of
its span than in the absence of the cross connection? The cross
connection with length L is rigidly fixed and divides the width of
the covering in half; the beams in the main direction with length
¢{ are resting freely (L: 2=1; L: a=10),

111, Establish the dependence
of the bending moment in the sup-

T |
1 [ port sections of the beams in the :
{
1 'y [~ main dircction of a uniformly strecz- i
‘v : ced bottom covering consisting »f ?
[ |
| knife-cdge beams (Fig. 87) on the |
cy % & f 14
Fig. 87. change in the moment of inertia of |
the crosz connection, The crocs :
58 |
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! )
o connection and the beams in the main direction are rigidly fixed.
gﬁ: Only the beams in the main direction are stressed by the external
s load, The moment of inertia of the cross-sectional area of the
g%f beams in the main direction is i, .
: .
} »i?,\ 112, Determine the value of the moment of inertia I of the
;}f cross connection in problem 111 at which the bending moment in
1 WA the middle cross section of the beams in the main direction will
r 3;$ be equal to zero.
Tﬁ?‘ 113, Determine the bending moments in the festening, in the
_jﬁ; middle of the length of the cross connection and in the middle of
: ) %é& the length of the middle beam in the main direction of a covering
' :Eiﬂ which consists of ordinary and reinforced bpamslin the main direc-
% tion (Fig. 88) with the following data: -':-'-'7"23 T s e 1S T30

The load along the cross connection does not vary,

g . ’i }, ¢
L J -
R :

Fig. 88,

114, Determine the bending moments in the cross connection
.%f" ' of a covering which is reinforced by a rigid pillar at x=0; x=%;
x=% (Fig. 89). Also find the greatest fendinf momen; in the middle
beam in the main direction. Given T8 =10 /=3  the load
along the cress connection does not vary. ’

115, Determine the reaction of the pillar in probler 11k
considering its compression, if the cross-secticnal area of the
pillar is F and the height of the pillar is .
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Fig. 89,

116, Determine the bending moment in the fastening and in

) ' -‘": the middle of the length of the cross connection of a covering
B 4 23 in which one beam in the main direction is absent at x=0 (Fig. 90)
2 with the following data: —','-,-'- LS -2--10;[-3.01. The load along the
cross connection does not vary, '
..‘>_ . .-‘-. ‘/z A‘ -' ‘,z. ) . .-:.._4.. o
. 1 . [ (]
< Eu ) : '
' IR NI
Fig. 90,

| I ._ 117. Determine the bending moments in the fastening, the

: middle of the length of the cross connection and the middle of the
length of the middle beams in the main direccticen of two coverings
which are joined by a rigid piller, ac shown in Fig., 91, The
load intensity on the lower covering q0=const; L-‘l.&;r.%- 10; 7y =

[}
-2‘.-‘;!-3‘.

118+, Derive the differential cquetion for the bending of
the cross connection of the coverinc showsn 1n Fig, 92 with the
conditioun that the beamz in the main direction are accomporuled ty {
torque., The proportionality constant between the angle o twiat 11
of the beams in the main direction and the torque 15 equrl to o '
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rig. 92,

there are a rather large number of beams in the main direction,
Obtain the general expression for the elastic line of a cross
connection in the form of a trigonometric series, considering that
the end sections of the connection are resting frecely on rigid

supports.

P

119*%, Calculate a bottom covering which is uniformly stressed
by a load of intensity q (Fig. 93). The cross connections, strin-
gers and vertlical ctabilizer are rigidly fixed, while the beems
in the main direction (floors) are freely supported, HMHake the
calculation using the method of main bend. without con-ideration
of shear in tihe walle (using appendix VITI) and with ﬂon"idcration

of chear in tle walle, Givens I 08 Seorl: £. -
C 1 1 T 08; T 0.1; i 0.25; -’— 08;

b _os: 2 L 0g; oy = 0015,
In Oy
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120*, Determine the sagging and moments in the supnort sec-
tions of the croes beams in each of the main bends for a symmetric
uniformly stressed bottom covering with three cross connections,
assuming the keel [vertical stabilizer) to be freely supported and
the stringere rigidly factened to the partitions.

':. « "r : i‘ ~~’ ..
. ti ' £ In bt
i | .. e .
.'. ‘— LP“_ { .‘ ,‘ P .- N
T L
Fig. 93. Fig. 94,

121, ~Zompose the equation for determing the sagging and
moments in the support sections for the first and second main bLends
in a covering with two different cross connections with the
condition that one of the cross connections is rigidly fixed and
the other is completely free in the end sections (the load is
evenly distributed),

122, Determine the bending moments and sagging in the end
scetions and in the middle of the length of the cross connections
of a symmetric coverirg (Fig. 9%) which is stressed by an evenly
distributed load for the following cases: a) the vertical stabili-
zer and stringers are rigidly fixed; b) the vertical statilizer
is completely free at the ends and the stringers are rigidly
fastened; c) the covering nas no verti a1l stabilizer. The {loors
are freely supported on rigid supports in all the versions,

. L = 29. L - i . 4 —-‘— 1.1 ¢
GiVQn. ‘a" 29, T= §,38; ‘=' 0,25; le ?"7| 75": 1,2,

123, Using the main bends method, determine the beniing mozents
and shear forces in the cupport scctions and i the middle of thre
span of cros: cornections of an ecge covering winlch is stresced by
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directionless pressure (Fig. 95). The upper ends of the ribs are
freely supported, while the lower ends are rigidly fixed. The
st-ingers are rizidly fixed at the-ends, Carry out the calculation
with and without consideration of shear.

. -4 _I__t_.,l-.r__l_
Given: T-o.e. -;i-; 0,015; -i- e; dre(f.gl._ -+ ‘o.ac. -,:- 0.5;

-

1 t. 1,8
%“13’ -,.‘.-—3—. -z‘--o,m..
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Fig. 95.

124, Using the method of main bends, determine the bendir.c
moments in the support sec’ions and in the middle cf the span of
the cross connections of a uniformly stressed bottom covering with
lengthwise hilf-partitions in the center-1line plare, The bacic
dimensions of the covering are given in Fig, 96. The vertical
stabilizer and the stringer are rigidly fastepcd; the- floors are

le 1

freely supported, Gilven: 3 73 b= il = 0.5/
[ .

St osdaa
BRVR

e maans

125, Solve problemn 124 using the method of the "leoad selec-
tion" of cross connections, The intensity o the reaction of the
elastic base 1s given in the following for::
for the stringer

vzﬂ—o‘\ _m_'{?) +-%-¢, (l—co.~Z'):-
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for the vertical stabilizer
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-fw(n--mr)-c-. s

Equate the following points when composing the basic equa-
tions for sagging of cross connections and beams in the main
direction: x1=5.5a; x2=3a.

.......

126, Determine the bending moments in tne calculated cross
sections of the vertical stabilizer and stringer of the covering
considered in problem 119 with the condition that the covering 1is
stressed by one concentrated force in the middle of the stabilizer,
Make the calculetion using the method c¢f main bends in two versions:
a) without consideration of shear; b) with consideration of shear.

[RPRIP PP

127. Determine the sagging (in cm) and bending noments in
the middle of the span and also the bending moments in the support
sections of a vertical stabilizer and a stringer (in t.m) for a ‘
uniformly stressed bottom covering (Fig. 97). The stabilizer and i
the stringer are rigidly fastened to the partitions and the floor: {
are resting freely on the cdges. Make the calculaticn with and ﬁ

64
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without consideration of shear strain by neans of the method of
main bends,
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Fig, 97.

Given: L{= 22,1 m; 1=16.1 m; am0.762 m; b=3.86 m; Ie=370 cmem;
Ic=310 cm m2; i=75 cm® m2; the areas of the beam walls w=147.5 cn®;
w =49 ch;“=65 cm2; the calculated precssure q (t/m2).

128, Solve-problem 127 by the method of "load selection" of
- cross connections (wlthout consideration of shear).

129, Solve problem 127 by the "lcad selection" method,
considering that the keel is rigidly fixed and the stringers are
elastically fastened (the support pair coefficlent x=0,6%).

130, Calculate the covering in problem 127, assuming that
it is stressed by two concentrated forces P which are applied to
the keel at points B at a distance of d=571 cm from the partitions.

131, Determine the connection between the reactions and the
pliability coefricient A of elastic supports installed at points =
of fhe covering described in problem 127, assuming that the coverir:
is stressed by a uniform load and the ends of the cross conneztion:
are rigidly fastened. Use the main bends method without
concideration of shear,
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CHAPTER 1IV.
GENERAL THECRENMS OF STRUCTURAL MECHANICS

Brief Theoretical Information

1, The strain energy of an elastic system (beams) is desig-
nated as the werk which must be expended to transform this system
from the undeformed state to the deformed state, In the simplect
strain situations, the strain energy of a bean (generally,.a
curvilinear beam) is expressed by the following dependences:

potential energy of bending

- " Aidd ML o )
Vow = A5t = B (i s, (4.2)

X ]

where the integrals are computed along the entire length s of the
shaft's axis;

potential shear strain energy

Nid 1 o .
Vo [ 2532 = [ s (4.2)
s . N A

potential dilatational-compressive energy

. : | Tids .
Voer= g | 73 (4.3)

]
potential twisting energy

Voo = 1 ME,, ds
Py = 90 ’T—c"" []
. ' - -

e e e mmah Ah 2 i
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xhere M,’ is the torque; C is the rigidity of the beam to twisting.

S8ince the previously considered situations of beam strain
are independent, the beam strain energy is equal to the sum of
the potential energies of the separate types of strain:

orY
TR (TR ot Y
V=y\Trt ettt % (4.5)
R T 'ﬂ..'.: b AN et et

We will note that the formulae above are only correct for
linearily deformable systems, i,e., for systems in which the
generalized forces and generalized displacements1 are related by
linear dependences with constant coefficients. Furthermore, these
formulae can only be used to compute the potential energy of chafts
with little curvature, since the situations of strain in question
cannot be considered to be independent for shafts with large
curvature,

If a beam is rigldly fixed and supported on an elastic support
or it is on a solid elastic base, the strain energy of the elastic
fastening, the elastic support and the eiastic base can be computed
using the following formulae:

the strain energy of an elastic fastening arranged in section
g=C
Voup 3 = 3 UMY 0) =7 [0 (4.6)

the etrain energy of an elastic support arranged in section
Sﬁcl

1The concepts of gencralized dicplacement and generalized force
are given in the theoretical mechanics course,
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where R (c,) is the reaction of the elastic support;

' the potential strain energy of the elastic bdse
Vym sin= 3 [ &0+ 00ds, (4.8)
. - [N °. . ..
whefé 84 is the length of the elastic base,

The following theorems ara correct for linearily deformable
systems: the Castiglliano theorem, the theorem of the least work
and the theorem of the reciprocity of displacement:.

The (astigliano Theorem, The partial derivative of the
potential energy for a generalized force is equal to the genera-
lized displacement corresponding to thic force:

‘%':' -1"4{.. (u' 9)

where Qk is the generalized force; Q. is the generalized displace=~
ment which corresponds to generalized force Qk‘ The generalized
displacement will be positive if the generalized force of this
displacement genere*es positive work,

Tre Castigliano theorem 1s used to determine the generalized
displacements of static determinable elastic systems, In order
to do this, it is necess&ly to write the expression of the
system's potential energy [¢g., according to formula (4.5)) as a
function of the assigned exte:nal load and the corresponding
unknown generalized displacements of the generalized forces, If
the load of the elastic system in question does not include a
generalized force which corresponds to the unknown generalized
displacement qp, it is necessary to introduce fictitious force Q¢
and to set this force equal to zero after finding the generalized
displacement, i.c.,

68
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. 0:"('33; Q' (4.10)

e It is more convenient to differentiate by the sign of the
; : integral whan determining the generalized displacements using the
- Castigliano theorem than to compose the expression for the -

} potential energy in form (4.5) and then differentiate it, The

' 3 formula for determining the generalized displacer:nt obtained

, S from this operation is called the Maxwell-Mohr formula:
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1 oyF o= (S + 0o 3 e o + 18 ) - ~

, = B :
¥ ["ff_ The Theorem of the Least Work, The partial derivative of the
' P*'f system's potential ctrain energy with respect to the excess

- unknown is equal to zero

= | =0 (4.12)

1

' , used to disclose the static indeterminance of systems, The static
i - indeterminable recactions imposed on the system of connections

r ] (the support reactions and moments) or the forces of the interac-
‘ tion of parts of the system on the cross section can be uced as

i - : the excess unknowns., Differentiation by the esign of the integral
} '{ is recommended during the use of the theorem of the least work

¥ in practice,

i

i

i

where R is the excess unknown, The theorem of the least work 1s ‘

i 1

ffi The Theorem of the Reciprocity of Displacements, When two

' eystems of loads arc acting on an elastic body, the work of the
forces of the first state on the displaccments in the cecond ctate
corresponding to them is equal to the work of the forces of the
second state on the displacements irn the first state corresponiing
to them,
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It follows from the theorem of the reciprbcity of displace-
ments that if two separate generalized forces act on an elastic
systet:, the generalized displacement correspondirig to the first
generalized force, which is caused by the action of the second
force, is equal to the generalized displacement corresponding to
the second generalized force, which 1s caused by the action of .
the first force.

Since the generalized coordinates for linearily deformable

systems can be expressed by the generalized forces using the
equation

TS T A K ‘F ;-.‘ . . _
3@:"’,,%%@. t-l.g «od "f» : (4.13)'

o the basis of the beginning of the reciprocity of displacements,
coefficients O 1 must satisfy the condition of reciprocity, i.e.,

Oy = Opye . (4.14)

Coefficients a4y are called the coefficients of effect,

2. The Ritz method, based on the principle of possible
displacements, can be used to study the equilibrium state of an
elastic system (linearily and nonlinearily deformable). This
method can be stated in the following manner for systems under
the action of forces with a potential: the partial derivative
of the total energy of the system with respect to the generalized
displacement 1s equal to zero, i.e,,

.89 o 4,15
‘Wﬂo..~ ( )

where SmlU—V is the total energy of the system; U is
the power function of the external load (the work of the externsl
load); V 1s the system's potentlal energy.

The Ritz method is used in particular in bending oroblens
to find the elastic line of beams and in stability problems to
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determine the Euler load of beams, In both cases, the clastic
1ine of the beam will have the form of a series

w (x)ifi-.g;o,v-. ), (4.16)

where'qn are the unknown generalized displacements; 9n(x) are the
functions selected in a like fashion (the fundamental functions).
The fundamental functions in (4.16) must satisfy the kinematic
boundaiy conditions, i.e., the conditlions regarding sagging and
the angles of rotation, Here the fundamental functions need not
satisfy the excess kinematic conditions, or else we will obtain
the solution for a beam with other boundary conditions.

Having selected the system of fundamental fuactions, it is
necessary to compute the power function for the external load U
and the strain energy V. When a distributed load acts on the shaft
and concentrated force P and moment <R, , respectively, are applled
to cross sections x=c and x=d, the power function will take on tie
form: '

. L.
P

e

U— qu (.g)vwl(x) dx + P.té{'(x' = ¢) 4 ¢ ?;-'-'_'-.(x__ﬂ* d). (4.17)

vhere 3 1is the length of the shaft, When longitudinal compressive
forces T (x) are acting on the beam, the power function is calcu-
lated according to formula
o ST

Us -3 [T @Pdr. (4.18)
Formulae (4.17) and (4.18) are correct for a linearily deformabie
system. The values of the power functton components’are positive
if the corresponding forces generate joclitive work at the dicplace-
ments, The strain energy V for lincarily deforzable systems is
determined from the formulae given in p. 1 of thic cection.

i
i

The following system of equations can be writtea after compu- i
ting U and V according to (4.15): 1

;Both bc?ging)and chear indices of team ragging cuan be represented
n form .10),
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g : 1‘%;'—‘9 =0 kwml; .2.:_‘3: Suim, (%.129)

O where m 1s the number of terms in series (4.16), which must be
b limited when solving specific problems,

Since potential energy V for linearily deformable systems

is the quadratic function of generallzed displacements of q, and
_ power function U is the linear function of qn in bending probleas
R (the term which is the quadratic function of q, is added in complex

3 bending problens), system of equations (4,19) 1s a system of hetero-
o geneous linear algebraic equations with respect to Q0 from which
)b = they must be determined, The strain energy V and work of the
- - external forces U for linearily deformable systems in stability

L problems are the quadratic functions of the generalized coordinates,
resulting in the fact that system of equations (4.19) is a systen
of homogeneous algebraic equations with respect to the generalized
3 } coordinates of qn. This system allows solutions other than zero
only when its determinant is -equal to zero., The unknown value of
the Euler force is the smallest root of the characteristic
{ . equation,

e

3 ,{ Problems

Bending of Straight Beams

132, Using the Castigliano theorem, determine the sagging from
vending in cross section A of a knife-cdge beam which is resting
freely on two rigld supports £for the following load situations:

a) the beam is stressed by two concentrated forces (Fig. 98);

b) the beam 1s stressed by two concentrated forces and a distrituted
load (Fig. 99); c) the beam is stressed by two corcentrated forces
and a cupport moment (Fig., 100); d) the beam is stressed by two
cupport moments ligg (Fig. 101). Section A i5 at a distance of

3/4 from the left support.

T2
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Fig. 100, Fig. 101,

133, Using the Castigliano theorem, determine the settling of
an elastic support which is freely supported by a knife-edge beam
(Fig. 102) with consideration of only displacement due to bending.

B i s

p ......‘nmH!!Hﬂ"m"‘
o 15k

1) b s j.

Fig. 102, Fig. 103,

134, Using the Castigliano theorem, find the angle of |
rotation of the cross section which coincides wi.h the =iddle i
support of a knife-edge beam (Fig. 103). Thec moment of inertia
of the crocs-sectional arca of the beam is I.




135. Determine the moment which muszt be applied to the right
support section of a knife-edge beam (Fig. 104) so that the angle
of rotation of this cross section is equal to zero.

o

Fig. 104, Fig. 105,

136, Dectermine how much greater the elongation of a stretclred
broken beam (Fig. 105) is tnan that of a straight beam which is
stretched by the same forces T ., The moment of inertia and the
cross-sectional area of the beams are equal to I and F, respectively

137. Using the Castigliano theorem, determine the sagging of
a cross section under force P o a knife-edge beam which is resting
freely with consideration of shear. The moment of inertia of the
cross-sectional area and the arra of the wall of the beam are equal
to I and e , respectively (Fig. 106).

+ [ 4 ’ ’ . ) v’ N kH

Iz .

- ] i 1 i

} P v < P
Fig. 106. Fig. 107.

138, Using the theorem of tiie least work, rind the moment in
a rigid beam (Fig. 107) with consideration of chear strain, ko

'{u
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noment of inertia of the cross-~sectional area and the wall area are
equal to I and g, respectively.

139. Using the Castigliano theorex, find the sagging of
the free end of a cantilever beam stresscd by a concentrated force
at the end, with consideration of shear strain, The momnent of
inertia of the cross-suctional area and the wall area of the beam
are equal to I and e, respectively.

140*, Under the action of concentrated fcrce F, which is
applied on the end of a canti’ever knife-ndge beam, the elastic
line .s equal to

' PP ITxd(3 =
vw=4r [F(T77)]-
Determine the cagging of the end of the cantilever under the action
of a load of intensity q, as shown in Fig. 108,

. : €.
F ) - S
't'-
b _J -
: o a s’ . . )
Fig. 108, Fig. 109,

141, Given the e¢lastic line of a betm with a constant cross
section which rests freely on rigid cunports under the effect of
moment W, which 15 appiied to the right suppoit (x=2):

o= 228 (5-%).

Find the zouent in the fixing for the Leaw In Fig, 109, The momant
of inertia of the cross-~sectlional arca of the bearn 13 I,

142, A knite-cdze Yeam vhich 13 eluatically fixed at x=1
(pliability coufficlent of the elastic fixing 1= %) and wnich
reats freely on an clastic support at  x=20 (pllabllity coeificlent

HONe R 1t N e Wt
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of the elastic support is A) is stressed in sectior x=¢ by concen-
trated force P, Determine the settling of the elastic support
using the bheginning of the least work,

143, Using the theorem of the least work, how car. the equation

fo, deteraining the static inde erminance of a beam (Fig. 110) be
composed if the following are taken as the unknown: a) suppost
reaction R on the middle support (the reaction is directed douwn-
ward); b) bending moment Mgy in the middle support?

Fig. 110, Fig. 111,

144, Given an elastic line o a cantilever beam with a
constant cro.. scction under the action of concentrated force P
which is applied to the end (x=1%):

co~r [ (3= 7)]-

Find the rcaction of the right beam support (Fig. 111) using the
theorem of the reicprocity of disrclacemenc..

145, Find the line of the effect of a single load on the
bending mozent at point B of a two-span beam (Tif. 112) which is
fastencd c¢la. tically on the left by a rigid support with the fol-
lowing Jdata: hh=le Iy 15l 1= 1€ 1, =3 U= _?,.-

14€, Tind ti.e line of the effect of a single losd on the
chear force ut peint 3 of a bean (Fig. 3313) which 15 rigidly fas-
ten~d on thie left erd, Cne intercediate cupport is clactic anid

7€
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| o the other is rigid. Given: Il =iy lym 2y iym/lymls; €= 0.50; 4'..“?7:',

o
. “ﬂ_ “ 8 Lo ]" l' /" Jl"
-4 an, ; : Eﬁ % _
l's ll 7 . .—.—L—
Fig. 112, Fig. 113,

147, Using the Ritz method, determine tne clastic line of a
knife-edge beam (Fig. 114). The fundamental function is taken
as eo(x) = x°,

-"_- } ‘ [

fa ,grg

ot e ¥

1; TN

. .

= Fig. 114, Fig. 135,
Hik 148, Select the ‘unda:2ntal function in the form of t.e
= polynomial fo: a knt“c-¢dge beam which is5 rigidly fixed on the
fﬁ— left end and freely supported oa the right, Find the elastic
?;1 lire of this beam. leaving two terms of the reric: in the expanzion
2 of sagging. The beam 1s stresced by a unifor=ily distributed load
- of intensity q.

f;%' 149, Find the static nieterminance o® a ri.cidély fastened
eI nonprismatic T-beasu (Flg, 11%) which 15 ctrecaed bty a uniformly

distrituted 1lcad of Intersity g unld deterine it ca-wring o thz
middle of the span, Culzulate the integpqras: In the coupatario
[rocess in the tabular fors, divi:ino the lepsti, o1 teo boun rl:

1

cew

%
t4
3
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ten equal sections, The wall height in the middle portion ic h
and at the fastening - 2h, The width of the bands is constant along ﬁ
the entire beam and is equal to 0,5h; the band and beam thicknesses
are identical and are equal to t,

CXAN Lol TN

Bending of Curvilinear Beams and Frames

150, A curvilinear frame (Fig, 116) is stressed by horizontal
force P, Determine the moment in the fixing.

Fig. 116, Fig. 117,

151, Disregarding potential shear and dilatational (com-
pressive) energy, find the static indeterminance of curvilinear
assemblies composed of shafts with a constant cross section (Fig.
117, 318). Alco constrict the bending moment and shear diagrams,
Take h = r; p = 2r,

78
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152, Disregarding potential shear and dilatational (compres-
sive) energy, find the static indeterminance'of a curvilinear
knife-edge beam (Fig. 119) whose moment cof inertia of the cross-
sectional area is I using the theorem of the least work,

'153. Considering only potential bending energy, determine
the vertical displacement of cross section A of a curvilinear
knife-edge beam loaded in cross section B (Fig. 120) by conccatrated
moment Ne using the Castigliano theorem, The moment of iner-
tia of the cross~sectional area of the beam is I,

-~

. Fig. 121,

Fig. 120,

154+, Determine the angle at which force P cshould be directed
to the horizontal axis of a curvilincar knife-cdge beam (Fig. 122
so that the displacement of the point where the force ic applied
de to the bending of the beam alone only takes place In the
direction of this force,

155, Determine the bending moment in any cross cection of a
round ring which is stresczd: a) by two concentrated forces (Fig.
122); b) by concentratcd force P and tangential forces balancirg it
which are distributed on the perimeter of the ring and which vary
according to the law ,.,{}u;o (Fig. 123).

156, Deternire the bending moments, rchear forcec ang axial
forces in cections 1, 2, 3 and alvo the foree In the partition
under tre effezt of & uniform pre:-cure of :iterncity q on the ring




-y

for an oval ring composed of .. ~. shzafts with a constant moment
of inertia anrd which is fixed "+ lai‘ u:2ition (Fig. 124).
Take R = 2r,

14 N .
e et -

Fiz. 122, Fig. 123, Fig. 124,

157. Determine the bending moments, shear forces and axial ‘
Corces in sections 1, 2 and 3 of an oval ring composed of round o
rhafte, the momentc of inertia of whorse cross-sectional areas are i
equal to I, and I2 (Fig. 125), which is stressed by a uniformly
distributed load of intensity q. Take R = 2r; = 211.

oo il

In

PRI e .

" Fig. 125,

Bending of Eeame on an tlactic buce

158, A cemi-infinite beam which liec on an elactic barce
with rigicity ¥ = con:st 4= ctresced by & load (Fig. 126, 127).
Determine tl.¢e bending moment in the cro<x rection of  the bec:
which coluciites with the orfgin of the coordinates (rigid fixirg
on & s1iding cupport) 4ir we know that the elartic line of the

80
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:3;;-, semi-infinite beam is determined by the expression
s o (5) = ;;.iy(euu-shcm-"
¥
“§ 5 under the effect of moment M. applied at the origin of the
‘%’.’}’1 coordinates.
'-‘H‘,
2& o
;3;;“1: B .~'-. \
Fig. 126, Fig. 127,

S

159, Determine the angle of rotation of the cross section
which coincides with the origin of the coordinates for a semi-
infinite beam which lies on an elastic base with rigidity k and wnich
is stressed in cross section x = § by concentrated moment
(Fig. 128) if we know that the angles of rotation of the cross sec-
tion of the beam in question are determined by the expression

-(x)--a-rc"“cuu
under the effect of the moment applier at the origin of the coor-
dinates.
A m, ‘ :
Fig. 128, Fig. 129.

160, Determire the bending index at the origin of the coor-
dinates of a semi-infinite knife-edge bean which lies on an elac-
tic base with rigidity X and wiilch is stresrced accurding to Fig.

81




129 if we know that the elastic line of the beam is equal to

U (x) = -u;;r e,

under the effect of concentrated force P applied at trhe origin of
the coordinates,

161, Using the theorem of t! - least work, corpose the equa-
tion for calculating a rigidly fixed beam stressed by 2 uniformly
distributed load of intensity q which lles on & s0lid elastic buse
of rigidity k. Take Mo as the unknown support moment at x = O and
Mi at x = 2 &and the intensity of the reaction of the elastic
buef-ggmigf

162, How does the solution to problem 161 change if chear in
the beam wall is also taken into consideration? The well's crosc-
sectional area is .

163, Using the theorem of the ieast uork, comnpose the cqua-
tion for calculating rectangular coverings with one crosg connec-
tion which is rigidly festened to partitions. The cross connec-
tion'!s length is L; the moment of inertia of the cross-sectionail
area is I. The width of the coverirg is 1 and the moment of
inertia of the cross-sectional arca of the bears in the main direc-
tion is 1, Take the intensity of the reactions of the interaction
of the cross connection and the beams in the main direction as the
unknowns .

rmred B rmsin 25,

vhere ro is the intensity of the reaction in the case of an abgeolu-
tely rizid cross connection, Consider that there are large nusber
of beams in the main dircction.

164, oObtain the exprecsion for the clastic line of a &Knirfc-
edge beam (Fig. 130) ucing the Ritz methol).  Take

w (x) = 8z + axh; 4 v .3{7; A w 43_%'._




'Fig. 130.

Complex Bending and Shaft Stability

165. Using the Ritz method, determine the elastic line of the
knife-edge beam in Fig. 131, Look for the elastic line in the
form w(x) = alxe.

166. Using the Ritz method, determine the elastic line of
a knife-edge beam which rests freely at the ends and is stressed
by constant lcngitudinal dilitational forces T for the following
situations of stressing the beaw with a transverse load: a) concen-
trated force P acts in the span of the beam at x = ¢; b) the beanm
is stresced by a uniformly distributed load of intensity q. The
beam'!s length is 1 ; the moment of inertia of the cross-sectioneal
arca is I. Search for the beam's elastic line in the form

LCEDIATE N
Am)
167. Using the Ritz method,
determire the elactic line of a

knife-edge beam which 1is rigidly

e s factened at the ends and strecced

T ¥ by constant longitudinal compres-
W%"" _ sive force: T anJ a uniformly dis-
' 3 -4 0 tributed load of intensivy q. The

! ' beumts length ic f and the moment

of inertia of the crocc-cuectional
area is I, Gearch for the bearn's elastic line in the form

Flg. 131,

-(l)-%‘-( l—m%"i . Find tle bendins index of the bearn in tie

Bk Ak e 2B T e el ORI . e lges:
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midéle of its length (x = ¥2) at 1’-”‘—",’1 and compare
fgif "with the precise solution, '
o
A 168, Using the Ritz method, determine the value of the
‘fgf Euler force for a frecely resting knife-edge beam which is compressed
;é, by a constant force and which 1s resting on an elastic base with
Ff~ piecewise-constant rigidity (Fig. 132), taking the form of the
o stabilit, loss in the form  w@=Asua . The moment of
i?‘ inertia of the beam's cross-sectional area is I and the length - ¢,
Be \
L)
. & , .
8 . Y N L R
.32. s s ¢ Ul ‘ L -
Bi Sl T |
~'. ) " -'“ o ~‘~. .' .
T Fig. 132,
T
o b 169. Using the Ritz method, determine the Euler force of a
e freely supported beam whose cross-sectional area morent of inertia
';fi varies according to the law (the origin of the coordinates is taken
g in the support section of the beam) I=in2, , where § is

the length of tha beam, The form of the stability loss is taken
in the form:

f a) '.(l)"_iu"‘ﬂ—a[": 4,
- .. ' .
.'-."-" b) w(x) -a.:ln—“]"'.'.a.un:_‘.‘"_;

170, Using the energy method, obtain the value of the criti-
cal rigidity K,, of the elastic supports of the knife-edge bean
in Fig. 133, |

171, Using the enecrgy method, obtain the value of the Euler !
force for a freely recting knirfe-edge beam, part ot the length of |
which is supported by an elastic tase with a rizidity coefficlent

84
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k (Fig. 13%). Take thc form of the stability loss of the shaft
a8 follows: e()maun23L,

Fig. 134,

172, Using the Ritz method, determine the Euler force for
& freely supported beam with a staggered cross section which 1is
compressed by a stepped-variable force (Fig. 135), Take the forna
of the stabllity loss as follows: ww=~esa-J=, , where L = 21 +
+ 1, Hox does the expression for the Euler force change if we
consider the effect of deviation from llooke's law on stabllity?

r al ‘ar . i , . 8 .
B RAATE e |
_ ! L
. [} . . . A. .' "I. .
.‘ ."-' R B T e e . T-?
Fig. 135, Filg., 136,

173*, Using the Ritz method, determine the Euler force for
the assembly shown in Fig, 136, aczuming that trhe chafts in the
frame bond one half-cycle of a sine wave, Concider the effect of
deviation from Hooke's law on stability,

174, Ucsing the Rit: umethod, £ind the Fuler force of a




centrally compressed knife-edge beam which is freely supported on
the ends with consideration of shear strain. The beam's length is
§ , the moment of inertia of the cross-sectional area and the area
of the wall section are I and w , respectively. Express the
potential bending energy of the beam by bending moments and the
potential shear energy by shear forces,

175. Using the Ritz method, determine the Euler force of
a knife-edge beam (Fig., 137) which is under the effect of a com-
pressive load distributed according to the law ‘“""0"]" The
form of the stabllity loss 1s taken in the form ei=

..'.(.--} .-++‘.-).

-

I |

Fig. 137, Fig. 138,

176. Determine the Euler load of a knife-edge column (Fig.
138) under the effect of its own weight, using the Ritz method,
The weight of a unit length of the colurwn is q. The form of the
stability loss is taken as follows: w(hwe a4 e,

177. Using the Ritz method, determine the Euler force on a
nonprismatic bean which 15 rigidly fixed at x = 0 and which is
conpletely free ut x a8, Take the form of the stabllity loss as
followss w(x) = ux2. The moment of Inertia of the benn's cross-
sectional urea varies according to the law '(l)-'o(l—-'-;-).

178, Uring the kitr wothod, detersaine the Enler force for a
rhiife-cige heun vhien is clastically fastencd ut the cuds (rlia-
bility cocetflcient u-—éq-) and which 1s factened in the




middle of the span by an elastic support, The pliability coeifi-

clent of the elastic support A=-gor Take the form of the
studllity loss in the fors ewmewm - 4+am -2,

179. Solve problem 178 for the situation in xhich one
end of the beaz is freely supported and the other is completsly
free. The form of the stability loss is taken as follows:
w(x) = aGyx + aexa. The pliability coefficiei.. of the elastic
support A.--;&-.
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CHAPTIER V,
CONPLEX BENDING, SHAFT STABILITY AlD THE SINPLEST SHAFT SYSTE:S

Brief Theoretical Inforration

1. The differentia: equation for bunding of a beaw which
supporte transverre q(x) and longitudinal dilitutioral T(x) lou.s
(complex bending) end which has iritial sagzing wo(x) is written
in the for=

B @ = [Tww )] ~ew+ [T W (5.1)

The differentia) equation for complex bending of beams witkh

a constant cross scction which are under the action of a constarn
' longitudinal force (I = const, T = const) is written in the for=-

m-"u) r-m-q(x). (5.2)

) C) - c(x)-f- Tw, (v).
The integral of equation (5.2) can be written as follows
W)= Ao+ ANx + Agch s+ Agsh kx+ w,, ()
where A are the random constants; ", is the partial soluticnj

-VF

If the intenrity of the tratcverce lead varier acceriing o
the linear law q(x) = g, + mx, in the abrence of in {tial) cagssis
the partial solution hao the following appearanes

where

ms?

() — Sy 2 (5.4)
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If the axial force is compresaive, we should set

T = T», (505)

in all the preceding formulae, where T* is the absolute value of
the axial compressive force. Then the irtegral of equation (5.2)
will be as follows

W () = Bo+ Ed’s + By cos Ax + Bysin A + wey (), (5.6)

..-vw’.
tnd the partial sclution to (5.%) is transformed to the form

o p () = 7+ (5.7)

It 1s necessary to write osut two boundary conditions each in order
to determine the integration constants at each end of the beam,

In general, when the ends of the beanm are fixed elastically onto
elastic supports, the boundary conditions have the form (the origin
of the coordinates is taken on the left end of the beam) at x = O

AT+ w) — Ela]s )
e =L, Ele; (5.8)

DW= AT (e + @) + El0T);
W o~ — YLEl,

where A, and A2 are the pliubility coefficients of the left and

right elactic supports; 4, and s are thc pliabllity coefficlents
of the elastic rastening in the same cupports,

The boundary conultions for all of tle simpler situations can
te obtained frea (£.2). T =u-t be replacet by -7* for cospressive

forcez in coniitions (5,8),




r—;—w—————v-np- ey /=

Tw T TR O TR e T RS A e i e s ot T ST

Remember that the principle of the addil_on of the action of j :
forces can be used in problems of complex bending only when each . ‘i
of the terms corresponds to the same value of the longitudinal force., ]

2. ™hese dependences can be used to solve problems of the

complex bending of flexible plates of a cylindrical surface. For
this.purpgse, the cylindrical rigidity of the beam of tand D = :
.f!jfé%};TQ, should be used in these expressions instead of beam !
rigidity EI, while we mean the pressure and axial force vhich act
on a beam~band of identical wilth by q and I, If the bLean-band
subjected to complex bending is located on a solid elastic bacse
(the problem of bending of a round cylindrical chell under uni-
directional load), the differential equation for berding, its

integral and the auxiliary tunctions which make it possible to i
1
i
1
]
i

P T P I o

determine the bending elements of the beam-band can be obtained
by using dependence [3, Table II].

3. The Euler force of single-span shafts cun be determined
using integral (5.6) at We.p (x) = 0, Maxi:g this integral adhere
to the boundary conditions, we wlll have a system of homogeneous _
aljgebraic equations with regard to the integration constants, !
Equating the determinant of this system to zero, we cshould find the :
smallest value k* = k*min‘ Then the value of the Euler force will
be equal to

T = Elk2|;- (5.9)

Formula (5.9) can only be used when the Euler stress '0,’= T/F,
where F is the cross-szctional area of the shaft, does not excced
the proportionality 1lirit, If thic condition is not caticfled,
the actual stresses at which loss of the beam'!s stabllity occur.
(eritical stress egp) are determined from formula fg = o,
vherc 9 1c the coefficient which accounts for tie 2ffoect of the
deviation from liooke's law on ctability (deiermined :depending on
the ratio of the puler ctress to the yield point of the shaft '
raterial (1, Fig. 1%,]).

90

M mdaasesad o a kol e

-~ « .

- . . NI T T R Y TN
RSN g R e PSSR A R e e NG TR , R4 Cteth - Tt AT




TRy FTETT) T NUTTRRR TY SYTWRNREYYT ST T ey ¥ RS E TR RSN TR e o ST T T, S T T TEETnRT e e ST T

- e e e ,.._—“

T TR

TENRTE SOOI YOI TR R e £ e AN e R e o . s g
—" .
Iy R : i ST v g v o4a - . P A
* q . P TSP Y ‘ ) sy ¥ et P p g LY » K7 e SN
” Y 4 sl ak AN B dx g Lttt iy AN NI Yhha it e sl A A e ’ .

I W TR W TR gy T e e e
}
h
i

Bl ety » -3 e b M 2t i
]
.

When studying the stability of shafts which lie on a soligd
elestic base, the differential equation
b r . . - . ”
E(1=F) o @+ (Pob ) v rmn=o,  (5.20)

can be used with consideration of shear deformation, where w (x) 1s
the sagg'ng from bending; Ge 1s tie rigtdity ol the shaft to shear;
k is the rigid“ty coefficient of the elastic base.

The form of the integral in equation (5.10) is gencrally very .4
complex; however, for a beam whicli is freely supported at the ends i
it is possible to set 3 1‘

Wy = a,sin ":" ’ (5.11) i ‘
) L
where n is the number of half-waves of stability .= ss, b

If sh=ar strain is not taken into consideration (Gw = ®), the
integral of cquation (5.10) is writter in the form

PR I

w(x) C,cospx+c.slupx+C,Losn-}-c.sm l.x. (5.12)
vhere ;
-. P"“]/z(’o'l-]/ﬂo—l) :-a;fz(p.—lfm—n) ) f
. pee¥ /_r_ ) (5.13) 4
’ . . ‘ "=|W; Q==
saking (5.12) adhere to the boundary conditions, we will have i
a system of homogeneous equations, The Euler forca should be G

determined as indicated above.

If trere is no elastic base, but she - -iraiu 25 taken into
consideration, the value of T, ls determined according to formula
)
(5.9), substituting _____‘g'_n_ = in 1t for k"2

min'
T+ 0
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k, The equatiors for the contiruity of the angular deformations
on the supports with consideration of axial forces T and moments

H, (the type of scheme with five or three moments) should be composed
when studying the stability of continuous shafts which are supported
on elastic (or rigid) supports. In addition to these equations,

the dependences which relate the displacements of these supports

wy to thelr reactions Ri are composed for beams on elastic supports.
In order for the system of linear homogeneous algebraic equations
thus obtained to allow the solutions Mi,# 0; w, ¥ 0 (or My ¥ O for
shafts on xigid supports), it is necessary -~ -:.:ate the determinant
of thils system to zero, the least root of v....h will be determined -
by the system's Euler load. If a shaft of length t is freely.supu
ported on two edge supports and the intermediate elastic st rorts
have identical rigidity and are the same distance from each other,
the relationship between the required rigidity of these supports K
and the compressive load T is established by the formula

K“ﬂ"‘"l‘(")-u (5'12‘)

where 1 = o,/0,; Ei is the beam's rigidity; “;"':‘-'FTJ 3 the

distance between supports; s is the number of elastic suppo~ts;

”?.':—;E'_ is a parameter; o.=-%;§i-.7f"oﬂ F is the cross-
sectional area of the beam; () 1is the function of par -eter

A and numbers n and J (1€ J<n), determined according to Table 1
of Appendix V.

The critical rigidity of the elastlic supports can be deter-
mined from formula (5.14), assuming that A =1 and n=oa )
where oﬁ is the critical stress which corresponds to -» The
increase in the rigidity of the supports above the critical value
does not result in an increase in the compressive load supported

by the shaft,

5. The problem of the stability of a flat rectangula Jeck
covering concisting of Knife-eage (generally, different) compressed
lengthwise beams which rest freely at the ends on rigid supports
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and which are equidistant from identical transverse beams which are
arbitrarily fastened at the ends is solved on the basis of the
assumptions given in p, 4 of this section and by means of the pro-
blem of the vibrations of a weightless transverse beam which supports
concentrated masses at the points where it intersects the length-
wise beams.

Using the solution to these proble s, it is possible to obtain
the equations for the stability of various types of coverings. The
basic design formulae are given below, in which the following nota.
tions are used:

1 - the length of the covering;
L - the width of the covering;
11- sL, - the middle portion of the width of the covering which is
not reinforced by lengthwise beams;
7= the distince between beams;
s - the number of beams;
- the distance between ordinary lengthwise beams;
b; - the distance between reinforced lengthwise beams (carlings);
F - the cross-sectional area of ordinary lengthwise beams with
given bancs of width b;
Fi - the cross-sectional area of a reinforced lengthwise beam
(carling) with the given band of width b,;
i - the moment of inertia of the cross-sectional area of an
ordinary lengthwise beam with a given band;
11 - the moment of inertia of the cross-sectional area of a i
reinforced lengthwise beam with the given bend;
xp - the critical stress of the covering;
# - the coefficient which accounts for the effect of deviation
from Hooke's law on stability;

LR |
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() y @) - the functions determined from Table 1 of Appendix V
depending on paramcter N (or xl) and numbers n and
Js where J is the nurber of half-waves of the form of
] - stability loss (1€ $<n),

T RIS VR YT | (g

-y

The covering consists of a large number of identical equidis-
tant lengthwise beams and identical equidistant beams which are ;
elastically fixed at the ends (see Fig, 159). The moment of iner- E 1
tia of the beams which provides the covering with the assigned '

compressi-:: stress 1s determined by the expression
T ra N\ LN\IL .
1=(%) (7) F P (5.15)

where coefficient ( ) for coverings which are reinforced by 1 ,
lengthwise beams along their entire width is determined eccording
to Table 2 of Appendix V depending on the conventional support

pair coefficients of the beam fastenings: %‘

- »,’ . - , - o
%y == Ry = =33 FT"} ’ 1

l "—"'E] '\l. l+ ‘!.l. '

. a1, and g, are the pI:lability coefficients of elastic fixings of i
the beams onto supports.

(-:;';,)‘ are determined according toc Table > of Appendix V for
E N coverings in which the lengthwise assembly ic missing in the middle

section at length 1, = sL (see Fig. 160) and the beams are fixed
symmetrically, depending on the conventional support pair coeffic-

[P

N " . ient of the beams! fastening » = 1- wﬂ_‘ and number 0-1’-

: ’ The values of ¥ (A) are determined f;}n_ Table 1 in Appendix V., 4
_",_ A specific value of the moment of inertia of the transverse beams,

’ . f} called the critical value, exists for this type of covering. The

= further increase in the moment of inertia does not result in an

increase in the compressive stress which the covering can support. i

The critical moment of inertila can be computed according to for-

mula (5.15) at A = 1 and 1,=°7';'—. where o° 1s the critical :
» : :

LT e

stress which corresponds to O
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The covering consists of a large number of equidistant length-
‘wise beams, some of which are reinforced, and equidirtunt identical
beams which are elastically fastened at the ends (see Fig, 161),
The moment of irertia of the beams which provides the covering with
the assigned compressive stress ’

P (2) (A) (1 + ) en (5.16)

where p--‘-{.-’#&l ~1, and (-:T)‘ is determined from Table 2 in
Appendix V. At assigned A and A, functions x(\) and () which
are entered in formula (5.16) must be determined for the value of
J at which the moment of inertia of the transverse beans is the
greatest,

The covering consists of a large number of identical equidis-
tant lengthwise beams and identical equidistant beams which are
resting freely on a carling and are elastically fixed to the edge
(Fig. 162), The moment of inertia of the beams which provides the
covering with the assigned compressive stress is determined from
the formula

=) (4 S e 1)

Parameter ”J is the root of equation

: uy b LR (AN
Flui¥) = [1 —4HeLl,

and the numerical values of function F (uJ, x) are given in Table
17 of textbook [1]. The value of J is selected so that the moment
of inertia of the beams is the greatest,

Sometimes it is necessary to determine the critical stress
according to the given ‘dimensions of the covering when studying the
stability of these coverings. This problen is solved graphically,
subsequently assigning the values of %p for otherwise it is
impossible to determine the value of n .,
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Probleaxs

Using the Differential Equation for Complex Bending

150, Find the equation for the elastic line of a cantilever
knife-edge beam which is stressed on the free end by transverse
force P and which is compressed by axial forces T. Determine the
bending moment in the fastening at 7= '%'—

181. Find the equation for the elastic line of a beam (Fig,

. 139) and the value of sagging in “he middle of its span,
ST AT St B
LAY 4 T
f;"é?-_-, 7 T3
R (RN MCIDSEN Lo S |
-'-"-;-‘z{_ CoeetNR I e |
Fig. 139.
. 182. A rigidly fastened knife-~edge beam is compressed by |
_ forces T. Determine the reactions and the support moments if the *
M support cross section of the beam (x = T) rotated by angle w!(0)=1,

183. A rigidly fastened knife-edge beam is compressed by
forces T. Determine the reactions and the support moments if the

2487 L% A L

right end of the beam (x = Z) received sagging w(z)=1.

184, Find the static indeterminance of a continuous knife- |

edge beam which 1s compressed by force Tw=04 "—;,E—' where I is thc

: moment of inertia of the cross-sectional area of the beam, 31 1.
L 4 ‘ |
54 the length of the beam (Fig. 140) and A=<y |
‘\

E’ }
. ]
i

1

I

I
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- Fig. 140,

185. Find the value of the dilitational axial force which
acts on a beam (Fig. 141) if the sagging of the elastic =upport
increases two times in its absence; A= -gF7 me:’-

SRR & et e
[T 2EN Ty D "'.~' °
5 . T 7 .,'/ AT N T
© ; "“ i ..:{?\"’ ‘ D %.
R \.f‘. ';....'..
i : A N R -
< e A A e '.f.c. Lo l.. .
Fig. 141, Fig., 142,

186. Obtain the approximate equation for the elastic line of
a freely supported beam-band with an initial sagging w, (x) =

;--L(L-un3§5 which is stressed by a uniform load of intensity q
and compressive forces T. Solve the problem by the Bubnov-Galerkin
method, leaving one term of the series in the expansion for sagging.

187. Determine the maximum summary stress in the meridional
and cross sections of the covering of a round cylindrical shell
which is reinforced by ribs and stressed by an omnidircctional
uniform pressure with the following initial data: shell radius of
2,75 m, shell thi-zkness of 0.02 m, distance between ribs (spacing)
of 0,60 m, cross-cectional area of the rib of 3.5.107 3 m , pressure

of 39 kg/cmz,shell material normal elasticity modulus of 2-106 kg/ch.
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188,

Obtain the eauat:ion for the stabilicy of the shaft depic-

ted in Fig. 142, Deter=mine the Euler force at “"é%Tf

189. Find tre Euler force for the structure in Fig, 143,

Lot r
L. i 34
! /
Fig. 143,

¢

Fig. 144,

190. Study the ctability of a knife-edge beam with an inter-
mediate elastic support (Fig. 144) by integrating the differential

n

equation of equilibrium., Determire the Euler force at 'il;{""iﬁ?T'

1391, Determine the Euler force and critical rigidity of the
supports of the knife-edge beam shown in Fig., 145.

J. -—
A x4
; 2 T
Fig. 145,

ige,
is rigidly farten.d

R

!
Fig

s N

o2 Ceteraine the Euler force T for a knife-edge beam which
i to cliding ela-tic ruppurts (Fig. 146a) without

m e sl alabal
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resorting to integrating the differential equati'on for neutral
equilibrium, He-.lg;.ow that the Euler force of the beam shown in
Fig. 146b Ty=G—.

i93. Determine the Euler force of the knife-edge beam in
Fig. 147 by integrating the differential equation of equilibrium.

T
—-.F

il ' LT T
' - . . I M ot
Fig. 147. Fig. 148.

194, Using the solutions to problems 190 and 193, determine
the Euler force for the knife-edge beam shown in Fig. 148; ‘.-G’:zf:

135. Compose the equation for the stability of a beam with
alternating rigidity which is freely supported on rigid immobile
and mobile supports and which 1c stressed by an axial compressive
force applied at the point where the beam's rigidity changes (Fig.
149). Determine the Euler force at a=-y and £
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196*, A freely supported compressed beam is connected to a
freely supported beam with the same length T and moment of inertia
11 (Fig. 159) by equidistant frequertly placed partitions with
rigidity XK. Determine the Euler force of the compressec beam,

197. Find the Euler load for the structures shown in Figure:s
151 and 152, '

.l'-ll‘ ”“
1!'- I.',
- V -
N ‘ 1 4 .
.. =7 | .
Fig. 151. Fig. 152. " Fig. 153.

198, Find the Euler force for a knife-edge beam, the left end
of which is supported on a rigid support and the right end of which
is rigidly fastened, with consideration of shear strain. The beam's
length is 2, the moment osfl inertia of the cross-sectional area is
I and the wall area is ®. ggr = 0.02. :

199, Determine tnhe Euler force of a knife-edge shaft which
lies on a solid elastic base with rigidity @-300%’-. and
is freely supported on the left end and rigidly flxed on the right.

200. Obtain the expression for the Euler force of a freely
supported knife-edge beam which lies on a =olid clartic barce of
rigidity k with consideration of chear ctrain., Determine T, and
the number of waves of ctability lo:s n for the situation when

100
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- 10— o — 9.035. How doer the recult change if shear ic

not taken into concideration?

201, A freely csupported ccmpresced b. = (Fig. 153) is
supported through an incompresscible piller in the midile of the
span on & cross connection of the same length and rigidity. The
cross connection .s connectcd to the beams in the main direction.
The latter, with length 1 , are freely supported and are installed
at distance a fromr each other, what moment of inertia i muct the
beams in the mein direction have so that the Euler force of the

compressed shaft 1is T.--‘—"if(—?

202, Determine the moment of inertia i of the cross-cectional
area that cantilever rigidly fixed knife-edge beams in the main
direction which support a compreccsed freely supported knife-edge
cross beam must have so that the Euler force of the latter is cgual

to r,-'i’i'ﬁi.. The length of the cantilever beam: is T ; the

distance between them a&L (Fig., 154),

t- P4
Fig. 154. Fig. 155,

203, Solve problem 202, assuming that the beans in the main
direction are freely supported at the ends and tkat the cross beam
passes through the :iddle of thre width of the rcovering. The momnent

of inertia of tre cross connection ic equal to I, Ar:ume
L:l=1; L:aw= 0.
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204, Study the stability of a knite-edge beam which is
fixed in the middle of the length by a rigid pillar which is con-
nected to the covering (Fig. 155). F2nd the critical momeat of
inertia of the cross :onnection 4w for the ratios --,'3-‘1.&
%-lo; =3 1.e., that moment of inertja whose further increase does -
not result in an increase in the Euler force of the compressed beam,

Fig. *56. Fig. 157.

205, Determine the Euler force of a freely resting shaft
which consis*: of two shafts with infinitely high rigidity Joined
together by a hinge and whick is reinforced at the place where the
hinge is located by an elastic support of rigidity K (Fig. 156).

206, Find the Euler force for a ccntinuous knife-edge bLeam
(Fig. 157) with the condition that ly=idl

207. "Solve the preceding problem with the assumption that the
left end of the oeam is rigidly fixed.

208, Determine the Fuler force of a knire- ige beam (Fig. 158),
if A %‘E’ijf and 3= 2.
L 209. How many intermediate
E{ equidistant identical elastic
:}c supports must a shaft with length
o . ¢ and rigidity Ei which is freely
E Jo ‘Jt ‘ 11 - supported at the ends have so that
' % ) '?“ . 2’ _ its Euler force incrcases seven
ot s =! times? The rigidity of each sup-
Fig. 158. port is equal to K=&l "'E'
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The effect of deviation from Hooke's law on stability i: not taken
into consideration. ’

210, DPetermine the critical stress of a knife-edge shaft which
is freely supported at the ends which is on three equidistent iden-
tical elastic supports of rigidity K = 610 kg/cm with the rollowing
initial data: 7 = 8 m; F = 41072 n2; 1 = 8.10°6 n; ¢ =2000 kg/cm2;
E = 2.106 kg/bma.

211, Find the Euler force of a beam which 1ls r'reely supported
at the cuds and reinforced Ly five equidistant identical supports
with rigidity ,K'-,G..i -"15'- The beam's rigidity is Ei and its
length 1c 2 -, :

How doés the result change if the rigzidity of these supportc
is "spread" and we consider the stability of the beam on a solid
elastic base whose coefficient of rigidity is _jual to k = é,
where a is the distance betueen the supports?

212, Using the data in problem 211, show that the acceptence
of the "spreading" of the supports' rigidity leads to a substential
error in the value of the beanm's Euler force if the rigidity of
the supports 1s equal to the critical rigidity.

Stability of Flat Coverings

213, Determine the compressive (critical) stress which a
deck covering (Fig. 159) can support with the following initial
data: 2=8m; L =16 m; a=2m; b= 0,4 m; *=%=025 I=
=34.6-10"% n*; 1 = 6.8:.20°% m¥; F = 4.3:1072 n2; ¢ = 3000 kg/cm?;
E = 2100 kg/cm=.

214, The necessary moment of inertia for the ovean of the
covering considered in the preceding problem, ccmpuced without
consideration of the effect of deviation from Hooke's law on
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stability, is I = 16.6.10"% mu. How do the support pair coefficients

%=% of the beams! fastenings change if the deviation from
Hooke's law is taken into consideration at the same values of the
beams' rigidity and the compressive load? ’

. . v oo . v - ‘-‘7— . '.‘,.-'. . . -

Lo - L ~ A -~ L .
> ) -‘-' [ , 'II Lo ?'
! - TIEP . s
:. ¥ ~_', ] . . \—‘
) ll .(.’ '.'A'

. -8 . K
53 1 9 R ) N NIE T 3
o - ,- o] - -t
N ’ . 1Y ’ i. - A e
a1k : . 14 = 1 e T
i . ’ . - . '0‘ - -*_» ,' - .' ~:
. il § ! . - )
ST TTTTTot SRt LN Y Siemn on o 3 S

Fig. 159. - Fig. 160,

215, Determine the necessary moment of inertia I of a beam
in order to provide the cc rering (Fig. 159) with a critical stress
Of g = 2700 kg/cn® with the following initial data: 3 = 15 m;
L=20m am2.5m; b=o0.4m  M=%=0m% 1= 9.10-6 n*;

F o= 5.2'10'3 mas e, = 3000 kg/cm2; E = 2.106 kg/cma.

Compute the moment of inertia 1 of the lengthwise beams at
vhich the necessary moment of inertia of the beam can be decreased
by 30%. Take the area of the lengthwise rib equal to /f,=04V7,
and its area with the adjacent band F=f4 M, in the 2alcula-
tions, where t = 0,01 m is the thickness of the deck of the
covering,

216. Find the necessary and critical moments of inertia
uf the beams for a covering (Fig. 160) at the following initial
data: 2 =12 m; L =10m; a = 2 m; b = 0,5 m; =g g6 04
1 = 10-100 n*; F = 5.75.:1073 n?; ¢, = 3600 ke/cn; e, = %000
kg/en®; E = 2,300 kg/cme.
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217.

Determine the necessary moment of inertia of beams
providing the covering with ®m= 3000 kg/cm® for a covering which
consists of a large number of lengthwise beams and three equidistant

carlings (Fig, 161). The beams are freely supported on the edges,
Also determine the necessary moment of inertia of the beams for

a covering without carlings, which are replaced by ordinary length-
wise beams, Given: 2 = 15 m; L= 12 m; a = 2 m; b= 0,4 M;

by =La3m; Fe6.20207 0% 1 = 11,2200 &Y F, = 11,8.2073 u?;

1, = 3.8 10” -4 4; < = 4000 kg/cm?‘; = 3600 kg/cmag E = 24405

L i T R L S

NSRS

kg/ene,
- et . P N T e L
S‘a- . T ‘ . . ;i~‘. . ..:‘t:- “f.':i," _.f~‘,‘ ,4.-_ LIS :_
N I o . 4_: : ...": A 1~ 3
e 1l - » BN ] » - .
=0l SR T
- - v T
'-' h i ,r\.:‘ 3 . " X
.it ; . : “t‘: Tt ."
5_' -. . . "\"::':.' :- " . .,7 - ..
’::‘ig' A ULL YY)-T"‘.‘ LT T,
A i -’ L TT L 1 T l
y Fig. 161 Fig. 162
e 218, Determine the value of the compressive stress which the
T covering in Fig., 162 can support at the following initial data:
% £ =12 m; L=36m a=2m b=0,4m; x=08§ Fa= 4103 meﬂ
i 1 =8.1-106 n*; F, = 10.10°3 n?; 1, = 2.8.10"¥ m¥; 1 = 1,89-10"
i mu; ey = 4000 kg/cm2,
£
S
'.?".
pY;
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; ANSWERS, INSTRUCTIONS AND SOLUTIONS \
S )
v i, w(x) -Tzo-ET(T—W +20——+40 M’l-)
% f(x @ - I 3 o | =
= 2. et=qimr{T i ""Tf["".mw)] Tt
where . 3NEl
iy
N \ : - 9 3AE!
- 3. w = [ +"‘T £ '(T_F FraR) where !,
= e _'('-)-W[—-“—“’ T T 7“*' (T‘T) ]'M--T-.
where )
:.'); .- 'l+ ‘!}z]
, | 5. u-o"s‘z-é’-;.h’-“---l_:%‘

6. M...-x(“' +gh ), um-—gT(S-hH-@?éi-(‘_fan):y(a)-

—x [lg'—(_w 3"‘,’5’) 9ot (l+ UE/ )]s shere xa T;—l-"—?z_
T == (4 -1,)
8. v o=y (16 +457)-
9. ,w(x)=-3—g—;%-(-_’;_ '°“+°T)
A T T

P (=) 1o b2 (1 £) (- 2
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11, Solution. The general expression for 4n elastic beam
line can be written in the form

cn=cicara o f | EE 2L, (g

where R is the reaction on the middle su'pport-(the positive
direction coincides with axis z)., The integration constants and
the unknown reaction can be determined from conditions:

x=0 wm g =0;

at s=l we ' =0; t
smg wm0. (2)

Making (1) 'safisfy conditions (2), we have

. Com C‘-O'

AR i o

Gad st s+ R

LK 0.~—~+c.-3--o ;.'}‘

Hence we find

Ci e Qa1
el "‘1‘57_ W—a

3 q—ap - 1
c.-—»—c.-—( BT e@i—a)
'R q(l—a) dt4-4al—at
S S S

Therefore, an elastic beam line will have the form

‘ - qU—a . @ [xt
) .(;)__%i 4—a [:' n'+‘

;L;b(al_qh‘);,’""“"" (x—a) .' (4:f.a) (I —a) x....)]

{—a {—a

12. M (x) = _“_l) N (x) == gx.

Figure 210 shows the bending moment and shear dlagrams.
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Fig, 211,

(the solution of equation

13. o 0,352; b) y=o0375
wtor—1=
75-3 8a,—7 .
1"’. (ﬂ‘ﬂ.—l) o " x’ 3(010.- I) ’
where msl o 1y I8LE!
-:-’(' T ).».-""?’.("f'-.—:'—).:
_q!_ o al
15, ,‘!'- TG T W=
T LA o .
M ,!9. L @ _afl’ g da-TU
16, Ma=-g _—_—T(¢+2l) W M= gy Mom it I m
where a = GE/L.
17‘ xos ¢ 0,500
18, .!}...2.
19. ) i}-gl,ﬂ.
20. Solution. The elastic beam lines are identical; the

braces' bending point is halfway up their height. Because of this,
each of the beams bends under a load with intensity of 0.5 q and

6E¢

a bending moment whose intensity is equal to —f;--‘ » where ¢w=——
is the proportionality constant between the angle of rotation of
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the final cross section of the brace and the' bending moment applied
to this section, ' '

Composing the equilibrium equatic.i for an element isolated
from the shaft (Fig. 211), we obtain

CE I TR T I
or

81-“’—-—.- T d-—!—'

We can write the integral of this equation in the form
(M) = — 0 4 A4 Br - Cchox 4 Dihar,

where

Determining the integration constants A, B, C, D from the
boundary conditions

.

E=0; -’.-:'-7',_;-0: xd-'-'-z"—-l: -—d’g-o._
we will find

b (w2 b 20 chas
w=gT\— o~ TFt W “au )

where U la,
i PB - <o $. pp
21, Woux = o3 FT 2) Wmex =~ 3g “Er-

1. x—¢ (x_r ] El v
= [(5F5) s wa])-

2%, The elastic line will be antisymmetrin relative to the
middle cross section of the beam, The origin of the coordinates
is taken in the middle crozs zcction of the beam, axis x is
directed toward the right,

22, TOE TR “aer Y- ‘){'??'fﬁ!-'; i:'*'['."(’_:-"“f)']‘;"*j
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where

25.

The origin of the coordinates was taken half-way down the

axl+gor+ 250 p-s+1z%+ai§£-§;

e=m o =gler (e (r) ()Y

o (14 () ]}

length of the beam.,

26. 1)

2)

Poisson'!s ratio

27. Instructions,

; .;:."'.1&:!7'?,('*1&;;. -;,.-) (5-4::).

Rl (e )

v=0,3,

problem 26,

where

28. 1)

2)

3)

29.

KT Tay g

h,ax-{;izs_;lf' -|+|25
v g7 @,

3'3.

u:-%'-

M..-—G.E_’. %.

(l-klow :

where -6sl+lz%.

._.;.ﬁggr(l+4m§1££r).
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20. The pliability factor at point D

‘°"-+'agr;+ g. b

the pliability factor at point C

Fig. 212, Fig. 213,

’

31. Solution. Since point A of beam I-I is immobile, this
beam's angle of rotation at point A is determined from the beam's
design diasgram (Fig. 212) from the system of equations

M M T
ok R

hence
: ] N !
RS R Y (B e JEL
Therefore,

The pliability factor

e (i 74) 7

In order to determine the pliability factor of beam AB in
cross section B, we find the angle of rotation at the free support
of the beam (Fig. 213) from the concen‘rated moment M applied to
the free support :
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Therefore, the pliability factor of the elastic fixing

?
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32, In the middle of the span

6WUE] | 4BAEl IUE!
o '+'—z—+—T'£‘+""f—)
M‘T"H‘ .

4L 4 A
|+_T.+__“._(|+.._‘_)
In the support cross sections

A'fon - ———5-—51"‘ +.l‘-li.— ('!:-"’ Mf)..'

33. &y 57,
L)

R

34, The sagging of the elastic support ,,__fé‘ .« The
vertical displacement of Jjoint G k--&-'-%-,.

The bending moment and shear diagrams are given in Fig. 214,
F PN
; ANy . » TG -

» = s IR nlf

¥ [ e IS
E. .- . T'-ﬂv

A A .

5 v i ~

. A Uh AN ‘ b,

Fig. 214,
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' A
37. A= T
38. Solution. The pliability factor of the elastic fixing
at the left end of the beanm
TR T | B
Yo = o= Y, T LT, "W
The pliability factors of the first and second intermediate

supports
. ‘n'-szr'-n‘% 'sm;-

a%—? “?“?

The equations for the =quality of the angles of rotation
at the supports can be written in the form

y -

e e Gl el W o o
posapr—.

PTIwe

-

udu--qﬁ$- 1ﬂ~+- +1L
1‘3— ol 3
4‘&1'—4'"'33'-*'51'#‘
__hl,.g+mw g +_z.m¢.__
B
- RER- -I"° '.".'.

.

Here f, and f, (sagging of sections 1 and 2) are related to the
support moments and the load by equations

My— M, S~ My—M,  q8t
""""(—"“" T“"“"W“"‘_T)' (5)
(i 98, Mt ol

15 T .

Substituting (5) in (4) and using the previously found values for
the pliaoility factors of the elastic fixing and the elastic
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equations:

2 0.8M, + 0
oﬁ%ﬂ“': :

,08M
I&f'»!.t

4 O.MM; + 0.0M. + 2,06M,

'y

it =

°l
o.uw'

Tolen

suph .. .- (!o, A, and Aa) , we obtain the following system of

_ The system of equations is solved according to the Gauss
system in tabular form:

Table 1.
. s B : T ol smoer
B ) 'l‘q‘:;::on ~, : M| M, -M | et | coeffi-
. . ' cients
! 232 | o08-]|'00s.| — | o | 26
‘2 0,80 |. 836 1. | 004" | 08 8.3
3 008 | 1, 522 | 09 | 01,0 8.51
4 = | 004 | o090 208 | 03 3%
1 b | 0384 | 0,034 - 0,198 1,587
: K R o8 |83 | 130 | o004 08| 81
1-(=0.% ~08 | —0278 | —0027| —~ |01 —1,262
3 = <] sS04} 1373] 004 | o671 7,068
o - 100 | 6381 | oo0e | 0,132 1,91
3 008 | 130 |- 82| o%0 | 1o 851
. 1+(=0,08) ~0,08 | —0028| —0003 | =~ |.—0016| —0,127
: He(—~1212) |- — |'=1,272| <032 | —0010 ]| 0,168 | —1.77
j . -3 = | =] 4 | om | ose| ees
1 i , )
t » mo. - | w00 | -o1e2 | aie9 1,381
4 o 004 | 090 | 206.| 03 | 3.
1)+(—0,04) — | =004 | <001 | —0.00" |-~0,005 055
m.{_o,,g = - | —0,89 | —0.162 | —0.150 | ‘ —1,202
- z - ‘(” . — V" -— . l.m * o. 2.'33
: v - - -_ ) - 1 . 0,124 -
. n - - K - 0.146 -
: - 1l - ! — - 0,095 -
.1 1 - o - 0,160 -
:
i
Thus, M= 0,16090%; M, = 0,095¢0%; My = 0,146q/%; M, = 0,124¢F,
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The shear forces on the beam supports: on the leit support
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)l.--__-‘_--‘!!-_:"—._ﬁl‘-‘-o.w-;'-(v.mqh to the left of the first support

to the

to the

to the

at the

Nig = — 2o 0500 m 042801,

right of the first support

¥.ys m —HAT 0750t = 0TI

left of the second support

Ny = — 2oy om0 ©

right of the second support

Moy — M2 _ 051 m — 052301

right end of the beam

Ny — M= My
R

+0,5q1 = 0.478¢1.

Figure 215 shows the bending moment and shear diagram of
the beam in question,

39.

"

Fig. 215.

For the beam chown in Fig., 2%, support moments M, = 0,046¢8;
My= 0,015¢0; M, =0,022¢0; the cl.ear forces in the support sections

Ny= —031ql; Ny 0,064g; Ny = —0Ctql Ny =30,232¢l.

Figure 216 chows the bending moment and shear diagrass,

For the bram shown in Fig, 25, support moments M, = —0,135,

ulﬂﬂ-

145

My=0,0130: M, =0.120Q:; the chear forces in tha support sections
O.b'lQ‘. l\",q - U.JUQ. I""n = —o.l‘o; N“ = O.SGQ.

()
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Fig. 216.
Figure 217 suows the bending moment and shear diugrams,
i
! N o
i AR
. '."\. '
; D | ]
5 , =N '
i ] .
i3 - ) u i
K4
.. Fig., 217.
40. The support moments: M, ="—0,00069PYM, = 0.677¢n; M, x'=0,1185¢0.

[ 4

The moments in the middle of the spans

Moy =0,1(7q3; Pijg= —04T¢%; My_y= —0,184¢8.

bRl NS T SUT R RIS

The shear forces on the supports Ne= —0.2133 Ny, =179 Nye=

—2,4qL Ny.o== 0,6 Ny,o= —0,33ql; Pyq==0.67qlL

Figure 218 shows the bending moment and chear diagrams,

085
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41, Support moments Mee= 0,087yl ¥ = 0,i33¢R; My 0,040 M= 039,

Fig. 2180

Shear forces No= —0955¢5 Ny.ow LOASE Nyp=e0813¢h
' Ny ™= 0,687gL: Nypy = 043¢k No= 1,57¢l. ' :

Fig. 219 shows the bending moment and shear dlagrams.
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vhere Q1 is the load on the upper beam; QO is the load on the
lower beam,.

ERY

45 z= 14230 MD wux = O.omlfg.
: 45. Instructions. Use the theoram of three moments.
Ratio &= 1'-

is determined by equetion i ggm: 2“__5__ o, the

solution to vhi.h am077

o
u7, I= 25T
48, Instruct ons, Use the hypothetical support method.
The support moment . determined by the equation
vl'_' < . 1.
4 Moo= [ +z( )+e(1+—,—)7(—+ ]———,—
AL
49, a== |5/
;
| o - .
3 . 50, M "‘"6'( —m-l)
. . 1+—’,—
F p
; 51, a) A= 0011 —p7—; Mumex = 0.08620%;
52. Figure 220 shows the bending moment diagram,
53. Figure 221 showec the bending moment diagram.
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54,

55.

The moments at the fixing

56.

57.

58.

7. 2

: !||"|I|| ot

L i M~
Fig. 220

[ ‘Ilfl‘! 7 &f’fl" 4”-"3 - .
Fig. 221,
spmonss S (4) ror 2 (4)'

The moments on the second and third supports

A s () -m2 (4]

M.-—r,- [om+o4eo-!l- (-2-) om-ﬂ-(—l-) ]

Ad,;. of VI|,237—0333-'!-(-!) +oos1.!|.(.h.) ]:
- ,‘p [nm — 03335 (-’!-) +ooe1-!.(7t) ]

- s _L 4 §
"’ 03 _ .°'9’f?'.f’o. (.) '*f°'°""$'.'('2' .
Figure 222 shows the bending moment diagram.

0.‘. ’
A= yaT -

Ry=- 'Rl"‘"lsll"
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Fig., 222,
59. . 1-4%';'.

60, o,

: 2 HC - -
61. . l+-l—.';-87%!?l'[8+9” f.'+3 (M C)l]

T HY, .
: 12 BT s
o '7"3 BT R 4 L

. (- (e i)

63. My = —0,16q%; My~ 0.21q8; M, = 20,1340,

Flgure 225 shows the bending moment diagram,

Fig. 223, Fig. 224,

B8, A, = 0025407 M, = 00072505 My = —0,1123qM% - M, = —0,00367¢P.

65. Solution. Separating the rods in bundle B and loading

them with the forces applied to the ends of the rods (Fig. 22%4),

120
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we will write the conditions for equilibrium and fheieqmality of
the displacements of the ends of the rods, The equilibrium
conditions: )

'I""l”"" T.slnc- P; p.ll““"‘ Tl-T.enoc-O

The conditions for the equality of the diaplacement of the
ends of the rods:

p.c' m, . (‘é?“" m’»)‘;._i__#_'m.
i (’*’ i
P,G Mig.: 5

From the Joint solution of the system of equations we find:

Ty 1,65P: Tom 1\03P; Py = 0,075 Pyw= 0017P; M = —3,1.10~%P,.

The approximate solution to this problem can be obtained in
the following manner, Without consideration of dilatational-
compressive and bending strain of the rods

r,--.“—--nm r.--—’—--zr
In order to determine the bending moments in the rods of an
outrigger assembly, one should find the vertical displacement of
the bundle B due to extension of rod AB and compression of rod
BC. This displacement can be determined from the expression

S AR AR By T v T
I=Trgs +_1ﬂf',.7 = g7 LPPh + FPh) ==t

The displacement of the end of rod B perpendiculer to the
axis of rod BC

7.84P1 Pl

Iu-lutou- 10,065 = 0,66 -

The forces which act on the ends of rods AB and BC (see Fig.
224) are deteruined in this case from the equations for the
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[Ty PP PO |




R D TRt (o s et s BT T T WA Wy VATV ST T
e mnre e o st b AR i il . VT T YT . I -

equali‘:.y of the displacements of the rod ends:

) : P8 M P
\ - 5t ﬁ"fm‘% =i
. x Pily ", 3

m‘*‘%" LXK ‘Agf

Substituting the values of fBA and fBC in these equations

and solving them, we will find: P,=0, 025P, P2=O 0145P; Mm-1,23.
'10 3P1 *

If the results of both solutions are compared, it turns out
that the simultaneous consideration of the dilitational-compressive
and bending strains of the rod has a substantial effect on the val-
ue of the bending moments in the rods when determining the stresses
in the rods of the outrigger assembly in question.

' pre
66. Mn ?’ ——;—I—-.-z?‘g“g, .
RS ]

67. For the assemblies depicted in Fig. 51, M;="-0047¢0%
"My 0011¢P; M, = —0,010891%; M, = 0,052¢P. For the assemblies shown in
Fig. 52, M,=0425PI+0,05Q! Mqy= —0,075P! + 0.05Q/; My=0.

68. For the assemblies shown in Fig. 53, M. = 0.041¢8 M, = —0064%;
Ny = —0,5¢l, N; sm= 0,249, Ny.y=™ 0049/, Nyg= Nyg = —U,U2¢!1. The bending
moment and shear diagrams are shown in Fig, 225,

N

Fig. 225. Fig. 226.
122
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For the'assemblies shown in Fig. 54, M= Ny '-:.ooa:‘l’. Ny.y == -0.85P,
Ny = 045P, Ny —0,13P, My me =0023P,: Nyego ™ 0009P; My=.
SBOCTIPL, My NOGIPE, Ay = —O0LIPL, Aly. =.0,002P1 '

Fig. 226 shows the bending moment and ehear dlagrams,

9. M= My = 003748, M,- M..- —0,0185qM%; R = 0,174¢5; Ny.poo=
L w - -0 413 q‘. . - 0 q . N..‘ = 0, ll". gets ™ -”.o.. -

»

s MR A e

-y
o

LSRRI R

The bending moment and shear diagrams are shown in Fig. 227.

o05q18 -
e

.
S |
1y

Fig. 227.

70.. For the assemblies shown in Fig. 56, M, =0,0i¢n; My = 0,0651%; M,
= 0,091 M= —0005¢". The bending moment diagram is shown
in Fig. 228.

Filg. 228,

For the assemblies deplicted in Fig. 57T,
My = 0,0165¢8% M, . = —0,0165¢08;

My = —My o= 0,419 My, == —0,024qi; My == 0,045¢i% Mgy =
-—002 198% M.. = 0,127¢; M, 3= =0, Iuhq[' Myoge = 0,061 98,

Figure 229 chows the bending moment diagran,

For the assembly shown in Fig ‘;
A e =0 Olaoql‘ "l- B 0.08711':
My_y = -0,06697

M —0 0964". \ Mg.] = -'I"g 52 0 ldﬂql ) , =
=‘—'0 008ql' A” = = ( 07oql' A'. F Sand ——ﬁ" "ad 0 W]ql’ 133

The bending moment diagram is shown in Fig.
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Instructions, When determining the bending moments in the
units of the assaemblies shown in Fig. 59, divide the load into the
symmetrical and axisymmetrical parts. '

The moments in the assembly units are equal to:

- My = —0,07198% M -oooﬂ'-
. } M'..- - w, Mys &—o,m'[' h._' - I_‘AI g0 = —o'. ..‘ ‘.‘.-
1 Moy == M‘.p - 0. 21 h..l = 0,34. 10' .Q M._. =
'- -0.91 -8 " M.. . -0.63 10~ ’ ] ‘c. — |:.|n- 0.3 1022 "'. roys W8
- - :g.z‘l'o..'l‘. M.o.. = 0,29. lo- "‘. Mgn.]t - 0.5 lO"ql' M".. - ‘-.'od
- - 0 " . .

..
. . e e R

The bending moment diagram is shown in Fig. 231

al11]111lg

! L1111

Fig. 229. Fig. 230, 'Fig. 231,

Mo o U Mg 0TGN 06 R My = —004Igl + D124 -
' -"°°‘° - -Mﬂ Mg g ="0,086 ‘g = .-.-"—0433'
t +o.szz. ; 6‘5 —026441"-}-0.10!0, M....-blmo —'0,099¢,5%; M...-

) M --—0.“7FM -M--—O I'M » -
- —O.qu" M‘.... 8 -1 q - -4 .2509 8t

O Myy = —My o = —T05.10°3gM% My, = 1,37. 10390 M,y = —0,5X
L xno-tw M...--'-o‘,u 10-%qP; A’,..-';’ ...-—0.310' Wt M=
1

. - M..[o - —%‘M‘-' - -6.‘6 lo"" M’.. - M'-.' - ‘-Ml..-' 62. lo‘"ﬂ

T Mag e —0,54.107%8; M =072, 10°2¢s8; M...a-—Oll 10-%0%; * My y =
L -.5700 10-%¢; M'..- -o"o's 10-%q1; M,-..-o.ol [10°¢P..

.14.'(0)-—’5[; .’(0)-— P e o .

GG’EI *
7. "“”"4?51' ” O =~ g

- 76 ®(x) = ——bve (cos ax 4 sin ax); -(0)-.-:

P
16a%E} *

77.0(:)-——[!-:“‘(cosax+sinu)] R.-:.:; M.,=§:-f._‘
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~m)-m-o°°°°-':"r lat)=romfrs oot
@ e (*-r - s o

~ .
~ ., . ~
' . -

. . N
‘e . ?

(z-,—)-gomp

.o . f. - * ve LA to.
c) .’(0)-—0.25le- -'(o om_ﬂ'. DU T
e n(o).._lm-’&- N(r,--.o,m_!. '.'_.'-f s .

d) -'m)-omT..M(o-olgll N(o)--oalw N(:)-o.wu

e)-m-om-i‘-;- M (0) = 00386915}
u(-,-)-oo?w N(: )-:0“"
. r)-(o)-ooma-n- M( )-olom.
M) = —O.11P; N(:-,—)-:omp o

T s) o'm-owol-%';- M () = 0.066¢0%;

--—oaml [ Tql.~
'c«l”x) N") 035 ' -00451#'.
. NM-—O'S"“ N(o

| '.. .m-T"ll -“.C“.“] ‘-V‘BT.“-"‘T..- . .
""WFI""*‘“""‘W“‘"M'*'W('- ) ‘K" ,
v»here_ Na-ql-R.. M-T_.R,z;:l,_ 457‘ T

'.“. ..- Tll - (u)l +-.."—ET ™ (,,)":\ ] :

L] . - v
] .,

l+ 248[ 'h (") :

;," : M,.-...i‘_ % (u) L Ml W),

where “'“1/’4_1' and e, (¢). % @) e () and \e are I, G, Bubnov's
functions for beams which lie on an elastic base.

RS IR P SRR

82. The elastic line of the pontoon is symmetrical relative
to the middle crozs cection., At the pocition of the coordirate
axes indicated in Fig. 71, the displacement of the pontoon's

w SIS MR e w0

125

&




AN N

et 1

AR LIRS

1

5 SN

Vo }'1‘@4 -.-‘.‘_‘ FS LN 5"3:'?‘ g

L)

section, counting from the equilibrium position in the absence of
force P, is determined by the expression

N AL ACEAAD) .
Ml T ol [V‘ i+ ADTATETATI AT i

L Ve () V() = Vi) 1
R ATIATEIACIAT R ‘“‘?]
The bending moment in the middle cross section
M wPL ) Vo(u)Va(w)=Vi(w -
. -,- 4 Vi V;(u)(V.(u)+V.(u)V.(a)’

where .u.;_.;..,]‘/ 21, 1s the specific gravity of water.

83, o=} B ar— ) am e ie.uyv-l—k".,
LA e = ML S

: M=)
where “_1/ (Rl- )
o AR oo GoR
84, T T_o._xsim VTI
S (WY v )
85 R e o
b : |+_|_ 2o (14,) N
Tﬁ.Tu) +n;

where % () are the Bubnov functions for beams which lie on an

elastic base; .--_—'i-f/—‘_*-ﬂ-—:'ux' ]/451,

+£_ )’ 1. 4 () P ) (uy)

86 q9 Ty ¥ () l 2‘9, (uy)
‘ ’ +—"—_’.. 2% (w1) [l _%i(w)
1 1y 2%y (u) + ¥y (0) AWy (w)

95 Moo= =25 VALY
87.R=27, Mon = 55 Where o=V

88. Solution. Ve will write the differential equation for
the bending of the beam

Ele' (x) + k() ~ 0 (6)

and the boundary conditions

12¢

SNy Wt o ey L
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8-0\ .'—'f-Q" " _
3-1 --0 .-' ‘ (7)

vhere £ is the sagging of the end sections of the shaft, ‘We \'eill

introduce the function of %o which ic related to the elastic lina
of beam w by the dependence

Lo T2 4 ' (8)

into the deliberation.,

Substituting (8) in (6) and (7), we will have

B
.‘,‘“"0 '0-'h-° (9)

-

—e . T Y o e TN e ST T T T
! . . R ‘_‘_._.__._,.
3 - - . _ _
t . -

k .

] . ' ’

3

!

]

k

]

1

i

3

3

F

§

-

3

3

5 :--’- -.-q-o.‘ ) (10)

. -

The elastic line of a rigidly-fixed beam loaded by an evenly
distributed load of int.asity q=-kf is determined by equation (9)
and boundary conditions (10). Using I. G. Bubnov's solution, we

will f£ind the shear force at x:--;-: N .;- -..%‘_'... (.)»---g-. Therefore,

_Q
I= &y () °

The bending moments

n
de-f‘!"—l:(') ‘-a—ln() g: :::::,
’ M,_{_- n -..l.!'—‘i).

12 p(u)”
The intensity of the reaction of the elastic base

fems = by =k [ (1= (W] +1] == 11— (] + o =y ) =

Q ) .
T D‘t(l) :

_’,‘4{‘-_‘?-“,,\-‘ N

SR Rl Tnm

T -

o. -'(0)-—1- 3w @+ 1 3 wtm @] 5

SRS - TP S
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. 4 . .
where u--;-]/ -‘-3.,. and =x,(» &and p,(w are I, G. Bubnov's functions

for beams which lie on an elastic base,

9. _J‘—"!ll pol)+e (.;- - u) 0:;-:)- - (M=),

where =6 Y ¥ and pe0wy are I, G. Bubnov's function:z.

=3V ar

91, S8olution. The differential equation for the bending of
the bean

IEF () w° (1" + & (w— N = g la1. (11)

El ()} »° (x) = M (x), : (12)

where M(x) is the given bending moment, then, substituting (12)
in (11) and considering that

-m- “ ”i:’) dx‘+u+ .

we will have

,‘(,)-M.'.'”:::; dx'+u+b (13)

where a and b are constants determined from the condition: when
x=0 and z=1](x=0.
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95. Solution., We will designate the elastic line of the bean
in section 0<sge Dby w; and in section ¢zl , DY W= w, + Opa-
Then the differential equation which determines %y will be

Elw}Y m o, (14)
and its integral o
= AP+ B+ Cr + D, (15)
The differential equation which determines %5 will be
Eta}Y + kwy= 0. (16)
Subtracting equation (1%) from equation (16) and considering
that wy=w; + ey we will obtain the differential equation for
Ot _
Elwlyy + hwpy, o= — bw,, (17)

The general integral of (17) can be written in the form

Waen = DoV (8 (x —~ )] +-D\Vy (& (s — ) 4 D4V, la (x — ] +
DY, le e — ) = (At =P+ B — P+ Clemiy 4 D, (18)

4 ‘T‘
where s-}/-;ﬂ-: Vile(ix—¢)) are N, P, Puctvrevckiy's functions,
In order to determine the integration constants, we will

. &
write the following rccnditions: at x=0 Wy=w =05 At *=¢ Saon ™ Vel = Tien
- ':..- vand at xw= Efu, =0, Elwy = —P.

From these conditions we will find: .
Cx=Dw=0; n.-b.-o;n.--g;: D,-V;‘—..-;
A.-_' [id - v.‘“', ——
o V() + V2 vy (a6) + ¥, (26} Vy (o)
c+—tvie) g (19)
P Y2a :

b=

TET Vi(ac) + VZacv,(ac) + V,(ac) ¥, (ac)

The elastic line o the beam in1 the final form
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where A and B are determined by formulae (19).

96, Solution, The differential equations for the bending
of beams I and II, respectively, are written in the form

ELwlY + b (wy— e }

Elpal¥ — & ()~ w)) = —1,. (21)

In this case,'wl(x) and we(x) must satisfy the following boundary
conditions: at x=0

Elg e Ry, Elywym ~W;; Elw; = Py Elw =03

ot st R (22)
Ele s ElLw,m — S} El ] = Py Eliw; = Q,. '

Adding equations (21) we will find '

El Y+ Bl = 0=y (23)

Dividing the first equation in system (21) by EI, and the second,
by E12 and subtracting the second equation from the first, we
will have

. : R
E,!w +h-—i’-"ﬁ"j7;‘,_ql- (eu)

where

AL L Bl

Based on conditions (22), the boundary conditions for function
w(x) at x=0 are written in the form

-1 I oo Y
Bl =gy Tt gy i (25)
P 1,
E'd",--i.-P'+—l:_0'"
130
(3

. e
FERTEDV PSR W IR URRVEIP SLL 4t N

oy

RPN PR Y T SRl SR AR PYY

BN e ek e he s

e mieiaae e e e oia

[P



e - pre T Y . Shic o o T R i e R e andadan P

Ty

f .

E o

i

.

é at ’-: ¢ ’s.

E -

] Bl. - ﬂ:“' u:.

T T (26)

;'I EIU"-——I-Pn—TQI

3 4

4 Thus, equations (23) and (24%) and boundary conditions (22)
and (25) make it possible to determine the elastic lines of the
beams in question,

97. BSolution. 1In the case in question (see the solution
to problem 96), in order to determine the elastic lines of the
beams it 1s possible to write the following differential equations
and boundary conditions .

mm"" Y
~—

W e 8'.-"+e'=- LA
K] E _' El!lv.*.h-"T_; .. ‘.' . T"'.;" &7)
. T
at EEETL Dol Tk
T ' 'l"'r.'.i'f'-.o;, e ol . ' (28)
where I- 1'4" " W u.--.. . ;f. o toe '.:"f,.'.: .
g Using I. G. Bubnov's solution, we will write _
3 )= 2L =) (29) |
E an X
] Integratiig the first equation in system (27) four times and
determining the 1ntegration constants from boundary conditions
(28), we wil) have at x=0

AN

L rwwenr

-
3{:': + !”ﬁ - 0 (30)

hence, if we take (29) into consideration
L ' 0 l - " L1
¢ : ..(0)-———17-‘1-_-*_—1-— l""!(“)]t \}1)
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On the basis of I. G, Bubnov's solution
."."IJ'(O)-';'_'- 'l'"'l'o.?':-'
v "i— 7;10(0)

From the first equation in system (27) at x=0, we will have

81,0, )+ Bl O im - 2 | (32)

From the Joint consideration of (31) and (32), we will finally

find RN 7. e .
0= 2O [ 1 e ) :

m.(-oa-mun RS e
(t -r 2_%?( u

A .‘,'T.- -

wheren-'.};]“/ 'ET;"("" 0, (.), 1.(.,), e (9" ,. ‘(@) are I, G. Bubnov's functions
for beams which 1lie on an elastic base.

%—W [t"(za)-V.m)v,m)]+n.v.au) S
99. M (°) 3 I,
- Vs (20) Va (2v) +-vg (3“) + ﬂcuE { lvx(m') Vs (2“) —Vo(24) Vu(z")

PR LIN

100, _'i(*-;.)- 'A%T"""’r 'M-l—mrvo(u. ’)-

where @ (v. o) ¥ (v, 0 are N. V. Mattes's functions;
"--—V ; : v-4uﬂV'z’ ': :
’ 101, “o-- ls(u- v)-——-—;———-——— P
. . T l+Tw- LA

. k ) 7.- : l.(u v‘ .. »‘ . B
) T : l+T xl (“l ’)M

L l-“—']/—,.’T' o dut VGonl"

where  xi (4 vk X (4, o) % (%, ) Xg (u. v) are {i, V, Mattes'!s functions, ‘f

. . ' ' . “
102, a) M(o)-....!ﬁ.l.(u,y); N(-_m,-ﬁ-)n:.l..c.(u.v). x
L] (°) - WT'V'("' o). -'( -—) -3 '_ET" (4. 9),
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where 9o(s o) % (5 ). ss (. ). %o (. Ware N, V. Mattes's functions;

% TV P Vs 1018
E The origin of the coordinateg is located h'alfway- down the
3 bean, ' :
;,: o - RESVET I
s ':‘. * ‘.‘ (“")' { L '{‘..': YR P
. b) J"(‘!‘) ’1";' t+o v)x.(u.v)o'-}-ﬂ, A PR

AP SR v ’ '.— .

. .‘..- ‘,":"-.' " -— ‘ ) . o _' . Ty
: A ‘M(o) T" l+o.lu+v)x.(u.o)v'+b"' BRI :
{ ) KN \- . . ;
. .' " 4 -t
E e ( T)

AL 11, (u, v)+o'l0256 l+v)
: : '-...')_":..‘. .: .m + +°' +')z’ 4, 0} 0 +B.

P '71_.' e [0.lu(l+v)z|(u.v)+0.7TA—‘—§,(u. _

: N _'.\‘ - ,'*‘ l+ ) +v za(u. v+ B, S -:'

Sl '
where .- " T“‘"' o); “'—2- V I v-w V ?_(17_‘_)7

1:('- 0. h(l. v)
are N, V. Mattest!'s functions,

The origin of the coordinates is located halfway- down
the beam,

N\ .
T “3. M.- l.GOPa. M;- —069?4:. g = 226-—5— No= l97P o

. )- ‘~..- l“o MO- o.”P‘o Ml.b —ol‘l"l -l" 2!“T‘ N.- "4P
. 108, .o ' .
N . . e et ’ : . N
(g ) el

where v is the coefficient of the effect of the concentrated
force applied to the beam in the main direction at the point where
it intersects the stringer on bending at this poirt.

106, Sagging increases n, times:
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Ry == ’
s v I-V. T“
X 4 - )
where c-l/m-=+ -'WT%* W,(a¥) are G, V, Klishevich's
functions, '

s =B e e/ TR

where wi(w) is I. G, Bubnov's function for beams on an elastic
base, . )

I 0 M (050 = ~2401020L% M QL) = 154100 R BEX ¢
e , _ .
: o i 0=2, 16:10-%01%, m 50 = = 131-10°%L% m (0 = S18-10°*4L%

- MEsh —4.65-10-2g0%: 'R = 2+10-4qL.

- n @40 = s P 10-4PL, m (n = 142-10°%PL: M (o) - M (L) = 0181PL,

_ mo.s:.) —0.0738PL; R = 0 ) ,
L o AL, M (080} = —O.SPL; R = .

i (0,40) = — 27,4-10°% L' M (0).= M (L) Wo.w‘ssc’-' M O.5L) = _ . '
3 3.24 0"1’.‘ R= 52:10-%gL%. . .

Reactlion R is positive in these answers if the cross
connection supports the middle beam in the main direction.

109, Solution, ‘When a beam reinforced in the main direction
is present in the covering, the calculation of the cross connec-
tion is reduced to calculating a beam which lles on an elastic

base and which is supported by an clastic support with rigidity

- (m=NEi
——;Ta— [see formula 3,6] at the point where it .utersects

the reinforced beam, For a cross connectlion which is rigidly
fastened at the ends, the reaction of the elastic support 1is
determined from the equation

N R R
-':—ll - _l“)l — JooET M W) =g,
~ 4
where 0--$-cl [see formula (3.2) at Q=qal];u--%'|/ -‘—5,—, @1 () W (v
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are I. G, Bubnov's functions for beams on an elastic base; e, 7 , .
are the coefficients of the effect (y= ! b= W,) i- 2‘3 is the ' |
r¥zidity of the elastic base. Hence

(WA (ll—l g~
R.- «l
2 T (T) m.(-m—u( )
Since the reaction of the middle beam in the main direction is
equal to R,= agn: (o), at m=1l, the total reaction of the middle
beam in the main direction is determined by the expression

- [RY

‘R-R|+R--TF' 'a(l)+4(_-’_-)' L (.;)—'";"(('q—l]

_ (ﬂ— 1)in; (w) 4- 4
N m. -:.lo S ST ST RN L R 1
' m-m \a 7’ - . o
, ‘, . '.‘ '". M-‘-g— \here .-(T) -r S . . . ‘
' "I- ’--ﬂ-(T) i o -_. ' -‘ : _:T\f; f'.

113, Instructions, The presence of reinforced beams which !
are rigidly fixed at one end in the covering can be taken into
consideration by loading the cross connection with additional
forces P1 and installing additional supports with rigidity K at
the point of intersection with the reinforced beams., In the case
of a large number of reinforcecd beams, forces P, and rigidities
K are spread to a length of 2a,

The moments in the cross connection M,= 0,203QL; Mgy = —0,06QL.

The moments halfway down in ordinary and reinforced middle

: !
beams in the main direction m,= —0,020Qi myy. = —0,10Q, where Q=%-. ¢,

114, The moments in the cross connection:
M (l ”-’5-:)- M (z=0)=0,123QL; M (;— -l"—) - —0,060QL.

The greatest bending moment in the middle beam in the xmain
direction will be halfway down (on the pillar); mmi%. rae Q = gal.
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115, Instructions. The unkno¥n reaction of the pillar is
determined from the condition of the evenness of sagging of the
cross connection due to the pil}ar's pressure:
:R' " 053 +-,-,-i'um
116, Instructions. The calculatioxi of the cross connection

is reducéd to calculating a beam on an elastic base upon which
an elastic support with negative rigidity --f‘f-) 1s installed
halfway down, -

The moment in the span M(0)=-0,154QL and the moment in the
fixing n(* -!-)-oml-. where Q=q,la.

EEEU NS S see.

B B e 117, The moments in the cross
"'nuan e - -
4 PRI connection of the upper covering:

"' .) : y 'f‘-’- - My '—0,033QL; Mgy = 0,061QL. The moment half-
wil/ ?-T, AT way down the middle beam in the main
3% PRV T direction of the upper covering
LTI LT T Mpay=C+142QL. The mozent in the

U R T n cross connection of the lower cove-

Fig. 232, ring: M, = —024QL: M= 0,047QL"The moment
halfway down the middle beam in the

main direction of the lower covering g x™" -0,06QL, where Q=q4al.

118. Solution. Reaction intensity -2- and bending moment

intensity Zww), act on the cross connection in the case of a
large number of beams in the main direction, where R is the
vertical reaction at the intersection point of the c¢ross connec-
tion with the beams in the main direction; w'(x) is the angle of
rotation of the cross connection which coincides with the beam -
in the main direction,

We will write the equation for the equilibrium of an element
in the cross connection which hac length dx (Fig. 232) in order
to derive the differential equation for the sagging of the cross
connection., Equating the projections of all the forces on axis
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0z to zero, as well as the sum of 1its momeni:s, we will have:

. R M &
iy i el )

(33)

o _ R ey (34)

Since V=T e 1111 obtein the differential equation for the
‘sagging of the cross connection in the form

2o (35)

El-"’ == - (x) o

The sagging of the beam in the main direction at the point
of intersection with the cross connection

-—a-‘—”—_ i C(26)

where Q(x) is the load on the beam in the main direction; B and
¥ are the coefficients of the effect. Eliminating reaction R
from equations (35) and (36), we will have

iy =5 208 (37)

ElV (n— 5w )+ Yf,,.

For a freely supported cross connection, it 1s possible to
distort the solution to equation (37) in the form

-(x)—Za,sln-[— (38)

Aw]

Expalnding load Q(x) inco a series of sines, we will write

Q= 2 Qn'sin 275 (39)
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119, Solution. Calculating the Covering by the Method of
Main Bends without Consideration of Shear Deformations. Using
appendix VIII in dependence on parameters 7’5-; and %, let us
determine the characteristic numbers A4 and LYY the fcrms of the

main bends 40 and o9 and the intensities of distridbuted loads
q; and q,. In this case, when -;!- ' 135.-‘--0,3; we will find:

'u"' l- M 1.03. vig = —0,7048; ves = 1}

h"&; l1l' _5,‘_ 02«51"“

. * \u.,q
‘ cn-o.lm-g- ﬁ"ow‘g

e
acl

The load on the beam in the m&ain direction
2
Q=qal=0,08qL",

The rigldity factors of the elastic base:

by = 211 T- k.- 15 s £l

The argument of the elastic base

u,-"/-dﬂ--lln. u,-l/ -MIG

We find the values of I, G, Eubnov'" function according
to appendix VI:




B Rt o e P e Sdcas =gt il

We will determine the sagging in the middle of the vertical
stabilizer from the formula

Uu-o'ﬁ-('uh'i"u'a)-‘n lo"-g-.

- — -g . 'L‘ '
- -,,'_Ll: m».n'.f.m-'m.

The bending in the middle of the stringer
e = Yoty Voudy = 32871070

The bending moments in the middle of the vertical stabilizer
and stringer span:

T T ST

-2 35 [0+ 2] a5

P PR -

The bending moments in the support section of the vertical
stabilizer and the _tringer:

g s 4w

"'l. c‘u""lql;'. [v"g'. xs (4y) + v,,q,

% x4 (up)| = 0015691
Mo s .?_:7' [‘n?l‘

G+ 0y, (.,)] = 0,00320L9.

The shear forces in the support section of the vertical stabi-
lizer and the_stringer:

Q

Neon=2% [M"‘, () + 2080, (uy) | = 0006915

V1920
n
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II1. Caleulating the Covering According to the Method of

Main Bends with Consideration of Shear in the Walls, With consi-
‘deration of shear, the coefficlients of effect Bys Bos Y445 V40
and Y,, for beams in the mair direction have the following values:

p.-w(n-nsa)-qom. ’-'m(' +m;a-‘)-ma.' |

Y""'ﬂ'(' +axz;ﬂ)- 0.0608;

1.-1..—3(14-2&1% - om

.:'u--}'(lﬂua‘)-o_m. '
We will take the moment of inertla /o= 058/y; = 080 lam /.

The roots.cf the characteristic determinant found according
to formula (3.,16) are equal to: x1-0.1034; A2=0.0060. The forms

of the main bends determined according to formula (3.17) are:
The verification cf the orthogonality condition:

Tw.vu+-f--..v..-—om+1%f 0.

The intensity of the distributed load in the first and second
main bends, calculated by formula (3.15):

Q +' l’ OIMI.’

“n (+’ h ,.) -
. Q (v

The rigidity factors of the elastic base:

};-9421—. n.-lezo%'l.

The argu‘nentu of the elastic base:

- .
e V el - '-31: w=Y ﬁ—z'b ';,.-2.61.
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The arguments which account for the effect of shear-

o.-G,f&{ V m’ -l.a. -,-u&’]/—d-,-m

We will find N, V., Mattes's function from the tables in appendix
VII and the handbook (Sivertsev I. N,, Davydov.V. V., Mattes N, V.
Students' Handbook on the Strength of Vessels with Internal Floa-
ting. M., 1950):

" m\_nt ’ . h'l';- »

- 130 = 136 © 0,602
' ::-2.5. :-5.52 0,153 .

The bends in the middle of the vertical stabilizer and the

stringer: .
.L."' - " X - s
'n-‘uh""nh-m 10-'.57:. \.

* "'-L' 2 4 i b g 800 S
"-{Ll"’l("l!'l)'*",[_fh(.l' )+T1l(“u'l)]

. ‘j. .‘ ST .
o vt el 0.

l+T 1,(&,,9,)7’ “."""

%,_,,@,.»w[Tw»va)w-‘ J

Cun ety o)}
3 QL .
. —4&5 10"27;

o

~

3 .
. Ca T

R el
The bending moments in the middle of the vertical stabilizer and
the stringer:

Ml. cp™ 2 ('.‘“‘ [3) + '“m; ¢’) -‘~—0.w49¢l.';'
* Me, ep = VIRy cp + Vas TRy cp = ~—0,0026943, ,

1 }l (4, ty)
"‘*"3"1:(“1-"1)"1 ’
X1 (5. 1) = —0,00063 qld.
] . % )
Lt 5=ty (w3, 9)) 0] . 12

qL
-'-00298 i

14




The bending moments in the supporting sections of the vertical
stabilizer and the stringer:

Men=2 (“u’u-*"n'l-)'-ool“ﬂ-'
Mc -"‘n’u-""n-:u-““nﬂ-'

et

-omh—’

I+ 'j'.li(.lo'l) -
Lo ‘
-o-"' hr:—h;.b(':':-.’—).—’-om‘l'-,.-.

The shear forces in the supporting sectior.s of the vertical
stabllizer and the stringer:

Ny=2(vyNyon +'n~u-) - 0.0714qLs;
”c = (v + \n"l ") = ”mﬁ'-'
where

bnm.w)

”1 -

;.. _!_l-i--s-;,(l,,v,)v’
u,...«'- b w)
BRI AT

=004qL; -

o= 0,0061qLS,

N 3

A summary of the results obtained is given below:

——
.

oo ".l'li‘ol‘l -

. Bending monents in |
middle of span

* . support seetion

Bending moments {n .

- stabil lzer

Vertical Lo oo
Stringer

Vertical
stabilizer

: Strimr .

|=7.4e10m (L‘ 241070 gL3
b0 1o | —28-10° 10

15,6:10°% gL% [ ' 9,3-10~? ¢L?
1-1073 oLt »ﬁ.?-lﬂ" oL

Shear forces in
support sactions

Sar,gtng in middle

Verslon | tear . : ertica: : ‘
. :g:billzgr Stringer v ‘st Ablnzer Strtm:.x-. {
e 0,096qL5 | ooescu " |ars. nw L ;28~10;‘;'s7—L. ‘ |
; .“ : . .. ..5’ .: . e L ,' R . - ;
C Y s | . s ) .!!'" 10-09L* !

n 007ieLt | . -00sieLt 93)'10-0 T oss 10 g ;
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120>, Snlution, As we know, the chave - -:l..:. .- . arg
x1 and Aa, the forms of the main Lends »

110w Mg o
given distributed loado q4 =2nd 9~ and 2lso tue arguments of -

elastic base in each of the msin bends 9 ani Uy do not depend ah

the beundary conditions of the cross conmections and can be detor-

mined from appendix VIII depeniing on values %.and {%.

In order to determine the elements of hending in each of the
main bends, it is necessary to write out the boundary conditions
at the ends of the corresponding beams which lie on an ele;tic
base, In this cace, in each main bend it suffices to determine
only bends p,{0) and P,(0) and bendirg moments ®} and w8 in the
supporting sections., 1In accordance with the condition Almo,u.-e.
(the vertical statilizer is freely supported), A2=0~ ~9 (the
stringer is rigidly fixed). Using equations (3.19) and (3.21)
anc taking p1(0)=p? and p2(0)=pg, we will obtain six equations:

u+'.'a"° '.":n'i"‘"n"" nn"n'i'“%u'“ "'n""g'a"o
' o’ - (-.)——w-[v.(u,n }-ll]

e.zf--;"‘-ﬁ—rv,(-.)- [Mu.)+—¥‘*’-]

Solving these equutions, we will have:
-"-0' - : - .-a..'.‘ i
m«.)+—t -‘Jﬁ-v.(u.) .
% (14y) v W, Py (ug) ) ;
e B o ]

- 2Lt

= (”'n; —iv¢"')+f(v,, ;»__%,n;;n)_ :

- "’1!‘2"'! - \P\-Jh '3;

1

L£ Y

0 W_ ¥ D h M X m)
™y ("u" Vit ) + (‘u" ™ "
= —vniey —vnfen!

0 0 V. \ 9 Yar -
!R-“-‘Dl. o . #3"’.';;'. .

k3

g Pt - AR
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R
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122, The bending elements of the covering:

‘e
o*
-0,18
0,175
29

123, Without consideration With consideration
of shear shear

M‘ on= o.ml 50(.’: M| on == 0(02354[," . 1
My p == — 0,000925¢L; My ep = — 0.00055qL":
Ny o2 0,0284L8; " Njoa = 0,02¢9L%; . |
". on oowmql-‘; H'. - O,NIMQL" | |
‘M. cp w= — 0,000734L3; Myep ~— O.Cm&fl."
Naon m 0,0199L8. Ny oa= 00173000,

My onmT9Mga%; My.,,  36069a% M, oo = 3,35)¢a%;
Meep = — 1918900, ‘

Mu.on == 8.4600%; My cp = — 4,08490%; M, on = 6,08,
Mcep = — 3,019a%.




126. The values of the bending moments:

SO R W SO RIS

" version - .

Yortical ~n ° Vertical

: : ’ inger
stabidizer | Stringer P § golpiyie,, | SEFANEST.

<°°

aow | Toms | o | swm
;giom‘- _"&ow. 0,104 . ‘_oﬁ%%

127. Without consideration With consideration of
of she:r . sheer

Ma.cp = 00083041 ¥ M. p 000030
© Me,on = 000788013 T Meden v 0003060LY;
Moy = 000251 2\, Mo op = —000i640L]
Ew-m#ﬂ ."'-":.;"‘.“#;' .
_ e Ble o, - biw

“ql.-‘

e D
.l.g,-oalm‘.‘ -.."_-°fsl‘m'..' .

M._,'.. =00117¢L};

M 0.0083%0L2 My cp == 0,00674L;
€. on = 0.0083¢L; -

My~ -m““-{

My oq = 001310LY; My Lo0000Y;

MG- on - o'm"l'"; Mg. e - e olm‘-'o

Mg_ o™ O,WPL';

. My, cp inm 0,0008PLS; '
Me. on m 0,0016PLY;

. ‘Mg, cp e O,WPL.._

R =09.10%. g -

1 pp,

AT W T
-4? (P+-3-0) -5‘;-. rae Q--’,‘-:
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133. | "'!T’!"%‘;" where Q-q-’
134, "'ilﬁ"%"T’ where . Q?-!.!-
1%5. M= 0;
6. "'"Tﬂ'(l;—:;_;'r) ("'T)‘;“'".'.T; .‘

where n-is the ratio of the elongation of a broken beam to that of
a straight beam.

. PP l-c . t—c é' ' L £ .
the shear modulus. . s .

‘ R

| e
138. o, T "*'W),
139. Vomph (14 2k

140, Solution. On the basis of the theorem of the recipro-
city of displacements, the bending in section x from concentrated
force P=1 which is ., plied at the end of the cantilever is equal to
the vending in section x=2 from a concentrated force equal to 1
vhich is applied in section x.

Therefore, the bending in section x=1 from the load applied

will be _
. b'-d' N~ .

.'x-;t. "_GZE’.TIT _:—— 2()“-' J"T —’.
151, '."9"?15’:' [_;_(‘b.';.s)__'_i_; u_.c]
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142,

w3, a) WLl b)) SfLsllih,
3 W<l P — -
14k, "'%‘_T*r-—lw-'r gt roey):

145, The line of the effect on the bending moment at point
B of the beam is shown in Fig. 233, where

| : ',"., W .‘81)-"’%[ (37“-&'1 -{- I 4(!—2-‘1)]
-“.;\.'.:J', V. e 0<x.<l,. FURRE R Rt
e '.’.“.’,'.ﬁv.[.., o Tt : B LN ‘.‘.

RS . ,
Fig. 233. Fig. 23,

146, The line of the effect on the shear Yorce at point
B of the beam is shown in Fig, 234, The ordinates of the line
of the effect in the first and second spans

: 2 2 N
'(xl) .."“,7?' - 00“6 "'"3‘ + “0179"’ '025—‘7"*-0.” ?’) H
’ et e . 1 - alr

> -‘i‘

o= () e (- 4)6-)-

In the cantilever portion of the beam v(x.);-0.223"-;0<n .s.h:s'h <‘x.Fl.+l.:

ht+ hagneh+ hte

47
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Er'S -m- L‘-v.(x).v.(x)-x'(l"’ s“"’)- ".

.- -(x)--u- 'E'(’T) (l-—) (3-—-:-,-)

m. """‘ET —‘TT (...) L ,' S e '

149, The moments in fixings M,--‘y,;’,.m!n,p, The bvending in
the middle of the span .,._93{2,_2‘;,. where "."-;-.F:b

150, M,=0,85Pr. The moment is directed along the hour hand.

151, For the assemblies shown in Fig. 117, the horizontal
reaction of the support

ST PR PR AT .
Hogth—g—— 37"
S B A i

The vertical reaction of the support is R=qr; at hwr H=0, 68

qr.

Figure 235 shows the bending moment and shear diagrams.,

mul.'.\\\\\\

-
]

Fig, 235. Fig. 236,
For the sasemblies shown in Fig, 118, the bending moment at

the point of applicatlon of gpressure P iz equal to M=-0,37Fr.
The bending moment in the rigid fixing .'-’,=-0.047I’r.

148
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The horizontal reaction in the fixing H=0, 2P. The vertical
reaction in the fixing R—z The bending moment and shnr diagrams
are shown in Pig, 236, : :

152, Rt-Rn"-"v?lh-*-lh- ..?.i,
’ "i,l,",-" ™ . .n..; haq"

' 153- | I-—ﬁ‘-mc

154, Solution. 1In order to determine the unknown angle,
it is necessary to compose an axpression for displacement in the
direction perpendicular to that of the effect of force P and to
equate this displacement to zero,

Hg t;ill apply' concentrated force Fp which 1is directed perpeh-
dicular to force P to cross section A, Then the equation of the
bending moment for the beam is noted in the form:

Mitg) = (P 0+ Pyciua) 3 92 (Peosa Py oin ) r st 3.,

vhere r¢ is the length of the arc counted off from se.ction A,

On the basis of the Castigliano theorem, the displacement in
the direction of force Fp will be

'.'{T Polnuaujsmwdﬂ-zr(eugu—s'm'c)!m'o,x m‘-}h—»mulmt-}h .

Equating this displacement to zero, we will find g,a.-,.;_‘_i_u'._'.
155, a)m-_;‘;!.(-,"-—slno):;b) M-—-g-[l-i-;-;v cuo—(s—O)m\O].
156, The bending moments: M,=0,0814 qr?; M =-0,0306 qrZ;

M3-0. oh1y qra. The force in the spacer T,=0713¢ . The shear

forces: Ni=0,3568¢gn Ny=0,128¢r; Ny=0. The axial forces: Tye —|,138
* Ti= -1y, T,=~1i4e (Fig, 237).

149
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157. The bending momente: M,=—0393¢*: Myw 0,102¢% M, =030¢%.  1he
shear forces: N,=0.59 qr; “1'“3"°°

'1‘2--1.50 qr; T3-~1-7°? qr (Fig. 238).

s _..'.s\‘:

' .. S
5 YRR

r’.%_' _I_l g

= N EARR *

! . -"."
Fig. 237. Fig. 238,
158, Solution. We will designate the angle of rotation at

the origin of the coordinates of an infinite beam which lies on
an elastic base and is under the effect of arbitrary loadq(z)-q.v(z)
at qo-1 by $ . Then th is possible to write J.. 0(')4:-112.,.0

on the basis of the theorem of displacement reciprocity. Hence,

substituting expression ®m, in q(x), we will have

\b. ‘.‘.-

a- mlq(s) (mu— sln u)c"'"d:. "

The unknown moment in the fixing is determined frorn equation

i+ epmy  since wp@=—fr) then Wmeld At
iy e 0 (Fie 126)
| b= gy Hane
and, consequently,
Wy = 1‘.:"' .lll.l al;

at v(x)- q.—[v () = ] (Fig. 127)
8= gz 1101 + 200 sinol + coval] 1]
and, consequently, ;

ARy = - lc"‘"' |(I + 2al) sln al +cos ul] —_ l}l;

150

The axial forces T,=-1,293 qr;

oo st v
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159, o-'-."'"'mu

L 1IN

160, .= + ( sia ol —cosal + T:I""-" .,),-«u -

161, Instructions. Determine the bending moment in the
beam by integrating the differential equation (&%) m ¢—¢ and
using the boundary conditions: x=.0, E/e®= My xm I, Elw* s M;.

The unknown -noments Mo and M1 and coefficients r

mined from the system of equations-
v -
Wy =0 i =5 =0,

n are deter-

‘ ‘ S
where T 1 ¢ M 1 ¢
u ""TI-ET"+TJ “ .,
M-"‘?("")‘*'Mv("-—‘)'i'ul 7 +( ) 2”‘ 'MT
162, The expression for potential energy must be supplemented

with the poiential shear energy _ Vu '!‘ IT 4, “here

N-.-‘--i-(l-—zx)-l-—l-r—“ —M 4:—:‘-.2%:«-"%,
. . . . M . -
163. Instructions, When calculating the generalized dis-
placemnents of the beams in the main direction which correspond
to generalized force T, consider the fact that bending of the

beam in the main direction at the point f intersection with the
cross connection can be determined from formula .-pw_,.‘%';_

vhere R 15 the interaction reaction of the beams in both directions;

Q is the load on the beam in the main direction; 1 is the length
of the beam in the siain direction; 1 is the moment of inertia of
the beam in the main direction; B and ¥ are the coefficients of
the effect,

When there are many beams, the potential energy from sagging
of all the beamg;L in the main dircction can be computed from the
formula Vg —;- V1 dx, where a 1s the distance between the beams
in the main dii’ection; V:L is the potential cnergy from sagging of
one beam in the maln direction,

151
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The unknown moments M, and M, and coefficients r

n
mined from the system of equations.‘ _:, Tl W"" W"" -

are deter-

.

¥a "J ("Er';"gr ’I"" -L;-) s T“'“

where V is the potential energy from bending of the cross connec- -
tion t .~ ~ V--!-I +TI T .‘:A\‘ :"”

‘\

~-~.('-T>+~‘T patan(d )z-,f-w.-'%

t

e R T

164, '\x)-m -T(ooeu.oan—r)
165, ,(,)_ ?
. “ g
- “'* +twt T

7 ..sh .
166, a).(,)--—‘n-27 -‘T—’h'_r'i b)-(x)"'

WZT—” =

where L NE!

T,.'—-F—-
167 bt where Tym SWE/.
. .(x) 1;:#1*"——-7—- hidastey o2
-1

When 1. 0 .1-,, (’i’) -0 oosaa-!';- The precise value of sagging

o ()= om0

168. = o1 () +a () + 2 ()" (o s 20,

169. &) Tym L2 Sopp 2y, D) maomriZl,

|
|
|
170. Instructions. The form of the loss of stability of
} the rod at an elastic support rigidity which is less than the
|

eritical rigidity is a straight line which is anticymmetrical to
the middle of the span

K.,-Z—“—:E!

152

_ o




171.'.. " WEl ["‘f"{l'(ﬂ"" lb —r'-)]vmere - T;%%' ' |

The number of half-waves of the form of stability loss n
nust be selected from the conaition of obtaining the smallest
value of T,. :

' . 3=x1 .
172, g/ ""T‘f‘""‘!’i‘ 1) s
T2. B ( T

R S l+.'.—ﬂ-ulh—r-

.

_If we consider tne effect of deviation from Hooke'!s
law, E=E!', where E' is the given modulus of elasticity for the
portion of the beam with inertial moment of the cross section I
and ratio -'}- is introduced instead of °'° » where Ej is
the given modulus for the middle section of the beamn,

o 173, Solution., Let the lower rod bend according to the ‘law
s A S, quring the loss of stability, the upper - according
to the lav .w=Asusn X, and the vertical rods bend according
to the law 4 = Ausin %2 Then, from the condition of the equality
of the angles of rotation at the Jjunctions it is easy to obtain
the following relationships between the coefficients Ao, Ai and
Aaz . . R mn
hgmhTpi Ay oAb
or A
M oA g h= A

With consideration of the effect of the deviation from
Hooke'!s law on stability, the potential energy of the deformation
of the rods in the assembly arc written in the form

.
ol

I ¢ - a - _— ‘e e ]
‘ v..--;-e,l,].;'a:+-‘-s,:,j~?a+u,]-?¢:.

The work of the co-npresqive f‘orces will be
u.._f.r‘[ ’dx+TM“]
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T ———

where Eo is the given modulus for the lower rod; E2 1s the given
modulus for the upper rod,

Substituting the values of bends Wos Wy and wo in these
expressions and 1ntegrat1vg, we will have:

P (o) ] i o () e (—) *,
e[ e '

Since -%-‘D." L =0, then ' N z.l.+£.l.+28h-;-
B ] r._.’.!r - : l-+l 1

175. Ty ML
176, ".'_ 7:” ‘%‘.
- Re
178. ro=s L,
179. | frymsa £l

180. %) -,;Tg’;rrl(l —coskz) g 2u-"h':'+: sind*sp, , where =A% M= 1,86p1.

1810 ".lo .(‘).-—2—“%%7_{%'__*-('_‘”") shi's +

¥ T!"'""“”"f‘"""(—"°_’) }.' '(-r) m-r;r(.. w-
where ’0“‘)""‘+-—|,— ; u-k'l/‘l

El  sin2u—2ucos2u ', o .

182 M(O) =~ ¢ T Tu—usin 74

> 2u — sin 2u

M= T RO==RO= .7
261 1—cos2u L
"-_F-.“' T—tos2u—usiniu * “here “-TV—’. . ‘

1o3; M(O)--M(o-_-’—ﬁ-'-ut-iﬁ{—;

4El ) . Tresrere ! "/ T I o
- ut-‘—g—.;-:._—u-. where - jT' . ~‘.‘-_. -
154 -

;"R(9)='-R(l)-f.

\\ N
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186. -m-(—:ﬁ- T—'""G"' 1———) un : }\'heré .-_’"‘z;;

187. Instructions, Use graphs [3, T II] to determine the
stress. In the cross section ¢ . «-5660 kg/cm® (in the bulkhead
frame); in the meridional section - *2na --5420 kg/cm (in. the
middle of the spacing).

188. h(l—? ")ms_shu-o r;..'n':—,’- where ‘a-m

Warote 0y, s\r"o‘l R

189. T=s g

190. Instructions, Write the expression for the bending
of the beanm with consideration of a jump in the shear force at
x=a, The stability equat:lon

i% e via r (:-- f) - [r- "T (m)'] sio m.

: \L'O

Bl ?,‘-

491, Instructions, The form of the stability loss will be
symmetrical or antisymmetrical to the middle of the length of the
beam.,

, .
-ausi".- at K‘il'> “::, ;

Tom

L
."To-T at K'-;/'l'< MEL

a'l:' I

K.p -t-

192, Instructions. The shape of the stability loss will be
antisymmetric to the middle of the span r.--“—ﬁ'-
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193, We will use the instructions to problem 190, n-gL.

198, The shape of the beam's etability losse will be
symmetrical to its middle 7, -_"'.f.'_

e B () [0+ e (el
At u--,- and c-.;. » the stability equation will have the
form (—r-t)tt--u. , where --3;1: , hence r.-‘—‘;,“_'.

196.' The system of differential equations which describe
the neutral equilibrium of the upper and lower beams is written
in the form

EI-"’+T-,+-—(-|--.) -0’

Y+ K () =0, - ()

where L7 dnd ¥y are the bends of these beanms,

The solution to system (40) which satisfies the boundary
conditions is determined in the form:

"o m%"‘—:.]
n 28L (42)

" sin S5,

Substituting (4#1) in (40), we will obtain a system of homogeneous
algebraic equations relative to the unknown ay and a5, Equating
the determinant of this system to zero, we will ottaln the follow-
ing expression for the Euler force: :

. - 'E - ‘ . .
Tom o (a0 41, ,
T T e, (-’;-)' o +ar ]
where the number n must be selected from the condition of obtaining
the smallest value of T,,

% - A P N 4 . I e Sy . .
. AL N .“ \’(’ v s ..— . Y S "@
oy B A AR SR S 2 (o "“‘?‘L S RN We,ﬁ‘._‘.’?:,"a b




197. Instructions. In order to find <he Euler load, one
should write the structure's equilibrium equation for the deviating
position, considering that the angle between the rods remain right
angles in the deviatiug position too., Then for the structure
shown in Fig. 151, """'ﬂ" and for the structure shown in Fig.
152, p.-%i_

198, Tom IS.S-%'- .
4
1 99 . r. - ‘3:‘ -E?'-. !%
Al -

- 1 _N
200, r’ 7' "g'na"'l"l") [ "“.T‘,?rzr] ;3 with consideration of shear

T--"’—p- 4 uithout consideration of shear, ;= o.s‘-"—'g-'f.-:.
201, 1<sm g ()i

202, ' .;_;,,.,_z_( _11:_ )-.

203, {204l

208, =088 Tym ANEL at  asosw, At h<osw 7,
1
{
]

T, 1s determined from the equation

. A .Ag’ ’-
( ) (w') -m-,-—. where ga °-|“;L'~.
)
‘1 205- TD-K ",:‘ :
206. r.-s.é%!-'.
: 3
- 207, 7= 1005 EL, ,
! {
208. r,nlu_f.’. .
A i
157 |
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209,
210,

211,

215,
216.

217.

218,

I=22,7° 10"" mu.

Three supvorts,

s 7 2700 kg/ca®.

1-;.'.,‘,;;‘#, During "spreading” r.-y.«;‘,‘i'.
J',-'a",""" . During "spreading" i---c«.cf‘—"fl.

Oy = 2400 kg/cma.

Hi'm g -0.72,
I= |.§|s-|o" X% fm 12,6:10°¢ a0,
= 311070 &% [oumm 731076 at,

1=4,13:107¢ o ; for a covering without carlings

Opp = 3600 kg/c:na .
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