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Preface

Differential gamne models of realistic problems rarely
lead to closed loop laws, Major G. M. Anderson of the
Department of Mechanics has proposed a means of approxi-
mating the closed loop law based on updating the open loop
law. This thesis i3 a result of my work investigating the
applicability of his methoed to the air-to-air missile
intercept problem using nonlincar dynamics.

I wish to acknowledge the assistance ¢of Major Anderson
both in the work on this thesis and in his sequences on
Optimal Control. I would also like to thank Squadron Leader
F. DP. Reddyhof for his assistance with the missile model
and the proportional navigation schenme.

Lastly, I wish to acknowledge the support of my family

throughout my trials and tribulations.

Robin A. Poulter
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Proportional navigation is a closed loop optimal control
% feor the case of a linear dynamic model of the air-to-air
¢ missile intercept problem and a quadratic cost function

{Ref 6).

This paper presents a differential game model of the
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intercept problem using nonlinear realistic dynamics, free
final time and a terminal cost function related to probabil-
ity of kill. With this model proportional navigation is no
: longer cptimal and the extent of its nonoptimality is indi-
» cated for a range of saddle point solutions.

A guidance coucept based on differential game theory

is discussed and is compared to proportional navigation in
an off line simulation. The considerable gains made by this
scheme over proportional navigation provide the incentive

to develop a real time version.
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DIFFERENTIAL GAME GUIDANCE VERSUS PROPORTIGONAL

NAVIGATION FOR AN AIR-TO-AIR MISSILE

I. Introduction

Background

Proportional navigation has been & major guidance law

for some considerable time and at present there does not i
sppear to be any viable replacement from either optimal
control theory or differential game theory. Bryson and Ho
(Ref 6:267) show that proportional navigation is an optimum
guidance law for the simple case of linear dynamics and
quadratic cost function where the evader is not maneuvering.
Qver the years fighter pilots have adopted tactis, based

on experience, that capitalize on the shortcomings of pro-
portional navigation.

Attempts have been made to devise closed loop control
laws based on optimal control theory. Two such examples
{Refs 5 and 7) use linear dynamics and a quadratic cost
function and produced laws that rTequire knowledge of_the
future tactics of the evader. However no allowance is made
for the evaders desire to capitalize on the limnitations of
the missile and the errors in its prediction of the-
evaders controls.

Using differential game theory it is possible to include
in the optimal <¢untrol problem the evaders desire and pos-
sible capacity to escape interception., 1In theory, therefore,

an optimum guidance law could be devised such that for given

a2 2 - o iara
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launch conditions the probability of kill was some minimum

e
“ !

value for the case of the optimum evader. Any nonoptimal
tactics on the part of the evader could be converted into
a higher predirted probability of kill by the closed loop
optimal control.

The optimal controls, for a saddle point solution of

a differential game model of the intercept problem, are
defined in terms of a two point boundary value problem.
For nonlinear dynamics the result is invariabtly an open

loop control law based on the initial states. The only

I e LR
R TR

means of updating the optimal control scheme is by solving
the two point boundary value problem at each instant to

account for the nonoptimal play by the pursuer. A near

optimal scheme may be possible by linearizing the dynamics
of the states and costates about the nominal saddle point

solution and periodically updating the costates. This was
proposed by Anderson (Refs 1, 2, and 4) and has been shown

to be near-optimal and real time for some simple problems

O P S U UUN TG BTN

where closed loop laws existed for comparison.

The principle drawback to the scheme at present is the a

computational burden in that numerical integration is re-
quired firstly to go forward to the predicted final range
generating the nominal trajectory and then backwards from
final time generating an "update" matrix until the backward

intagration meets current real time at which

1
eSS paaecall VT LS (e 9 s &

[y

nonint the on.o
Fgoiny Las ug

date is made. This procedure needs to be repeated often

enough to keep the linearization assumption valid.
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Unfortunately, for a realistic model not only is the dimen-
sion of the equations, that need to be integrated, quite
high but also the amount of computation at each step is

extensive.

Statement of the Problem

This scheme is not capable of being used real time at
present on a small air-to-air missile but could be used in
an off line simulation to indicate the possible performance
of such a control scheme as compared with proportional navi-
gation,

The aim of this thesis was to model the intercept
problem in differential game theory as a zero sum, free
final time, minimax range game with reazlistic dynamics and
a cost function based on the final states. The saddle point
optimality of differential games is valid for the case where
at least one player has a continuously optimal control. Where
both players piay their open loop controls this condition is
met but where either one deviates the open‘loop control is
no longer optimal. By means of a Fortran subroutine (Ref 10)
that solves a set of n nonlinear equations in n unknowns a
grugram was to be developed to provide updates to the open
loop controls by solving the two point boundary value problem
at intervals throughout the interception. The continuously
optimal controls of either pursuer or evader could then be
approximated for the purposes »f evaluating the performance

of proportional navigation.

,M,.,,m,ml.ﬁm.ﬂ;éhum
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The following cases could then be studied:

(a) Optimal pursuer against optimal evader

{(b) Proportional navigation against the open loop
optimal evader of (a)

(¢} Proportional navigation against updated
optimal evadexr of (3)

(d} Updated optimal pursuer against nonoptimal
evader

(e) Proportional navigation against the nonoptimal

evader in (d).

Summary

The air-to-air missile i:terception of an aircraft is
modelled as a two person, zero sum, minimax range differen-
tial game. Chapter 1] presents a brief discussion of game
theory. Chapter III presents the model used for the inter-
cept problem, based on a typical infrared seeking missile
and a F4 type aircraft, and derives the optimal controls
in terms of tire states and costates together with the two
point boundary value problem. Chapter III also presents the
model used for proportional navigation. The results are
presented in Chapter IV with examples of each of the cases

discussed above.
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II. Differential Game Theory

Problem Formulation

The mathematical elements of differential game theory
comprise the state equations, a cost function, control or
path constraints and a terminal surface. The vector differ-

ential equation describing the motion of the twc vehicles is
x = f(x,u,v,t) x(to) = X, (2-1)

where u is the control vecter of the pursuer and v the con-
trol vector of the evader., The cost function in its general

form is

J = ¢(x,t) ¢ * L dt (2-2)
f t
For a zero-sum game the pursuer attempts to minimize J
whilst the evader attempts to maximize J, using their respec-
tive control vectors. These controls may be subject to

inequality constraints of the form

c ’ 0
(xp u) <

-

(2-3)
C(xe,v) < 0

where xp, x, are the components of the state vector x asso-
ciated with the puisuer's and the evader's position and
velocity.

The game beiny considered is a free final time probdlem

with no terminal constraints and "minimax" range as the cost
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function. The "minimax'" range cost function may include
terms associated with the velocity vector.

An augmented cost function is formed

t
~ £ T
J = J jr [A"(f-x) + pLC]dt (2-4)
%o
where
A = costate vector
¢ = Lagrange multiplier vector -

= 0 for C < 0
# 0 for C = 0

A saddle point solution is presumed to exist such that

J(u*,v) < J(u*,v*) < J{u,v*) (2-5)
where
u*,v* = optimal controls
u,v = any other admissible control

The necessary conditions for the saddle point solution
to the game for a Hamiltonian that is separable in u and v,

where the Hamiltonian, H, is given by

H=ATf + o = Ho(x,v) + Ho(x,u) (2-6)
is as follows (Ref 6:277)
il = - n
X
T,, .« _
TR N
£

e

[N
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H(t.) = -¢ (2-7)

t
te

These conditions are for interior controls and shouid the

controls be constrained then the conditions become

AT = -Hx - qu

P
-3
~
(o]
h
s
L}

= 9, (te

Hu = -uly,

v v

H(tg)

]
I
“©-

t (2-8)

These conditions together with the state dynamics are a

two point boundary value problem (TPBVP) of the form

x = f(x,A,t) x(t

o) = %o
: T
A= og(x,A,t) A(tf) = ¢x
t
f
H(tf) = —¢t tf free (2-9)
te

The solution of this TPBVP provides A(to), te such

that the necessary conditions are met., The controls that

i
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need to be applied to optimize the cost function can be

found from

x = f(x,A,t} x(to) = X4

A= og(x,A,t) Atg) = A, (2-10)

and by integrating these state and costate equations forward

to t. the trajectories of the saddle point solution to the

f

game are given.

The controls defined in Eq (2-10) are valid for the case
where both the players use the saddle point controls. Should
one player use nonoptimal controls then the value of the
cost function may change in his opponent's favor provided his
opponent can adjust his controls to capitalize on the non-
optimal play.

Where the optimal controls are determined from Eq (2-10)

in the form
u(t) = u(xo,xo,t)
v(t) = v(xg,24,t) (2-11)

the controls are known as open loop controls and will not
automatically adapt to changes in the game. n order to
capitalize on nonoptimal play the values of A(tl} must be
amended by some amount Gx(tl] based on the difference be-
tween the value of x(tl) from the saddle point solution and

the actual value of x(tl) as a result of some nonoptimal

play. -
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Pseudo Closed-lLosp Scheme

In some neighborhood of the saddle point trajectery

the expressions of Eq (2-10) zan be expanded about this

nominal trajectory ignoring terms of second order and

higher to give

.

&x

i

fx{x,k,t)éx 5 fl(x,x;t)SX

61

gx(x,A,t)ﬁx + gl(x,l,t)ak {2-12)

By similar reasoning the transversality conditions can
be considered as linear functions of éx(tf), Gk(tf) and dtf.
Anderson in Ref 1 shows that for any set of transversality ;
conditions the small change in the costates can be repre-

sented by

ELCATEY Je

§A(t.) = ASx(tg) (2-13)

The matrix A is evaluated at the nominzl terminal

states, costates and final time. :
The corresponding change in the state at some prior

time, t due to smal! changes in the terminal states can

1)

be expressed as
Ex(t)) = @ (t),t)8x(t.) + ¢ (), )8A(t,)  (2-14)

where

’xA are state transition matrices.

¢

xx'’
The changes in the costates are then

6a(t)) = 4, (Ti,v)ix(tg) + 4y, (1), t)82 () (2-15)

A

|
L
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Hence for a small deviation from an open loop optimal
trajectory due to sub-optimal play on the part of one player
the change Bx(t]) can be used to predict a change in costates
Gxttl) that updates the costates, and hence the open loop
controls, to account for the small divergsnce from the
previous saddle point solution,

The relationship between 5A(t1} and éx{tl} is found by
integrating back from the expected terminal state either a
matrix ricatti equation or the time derivatives of the transi-
tion matrices of Egq {(2-14) and similarly for the costates.
This integration backwards from the expected final time is
terminated as it reaches the current real time state. The
difference between the states at that time if both players
had played optimally and the actual states prcvides the
vector Gx(tl). This small change in state is then used to
update the costates to convert the suboptimal play of one
player into a gain for the other.

Anderson (Refs 1, 2, and 4) has proposed such a means
of updating the saddle point solution to capitalize on non-
optimal play and the references give comparisons with closed
loop laws for some simple problems. The updating is done

in real time and is shown to be near optimal.
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iii. Intercecpt Problem
The particular game considered is a zers sum differen-

tial game between an air-to-air miszsile and an sircraft

with final time free.

Game Scenarie

The game scenario is as follows:

{a) The aircraft model i3 based on the F4, with
altitude and velocity dependent stull limits, thrust and
drag.

(b) The missile is based on typical boost-coast
air-to-air missile with an infro-red seeker. The missile
guidance scheme begins at the end of the boost phase and,
as for the aircraft, has altitude and velocity dependent
drag.

{c¢} The vehicles are 1zpresented as point masses
flying co-ordinated turns in 3 dimensions.

(d) Gravity is include?® tut taken to be constant
in direction and magnitude.

{e) Final time is lefy free.

(f) The game ends when %? (Jy = 0.

Aircraft Model

The F4 has been the basis for the aircraft model with
polynomials used to represent the variations in stall limits
and maximum thrust with velocity and altitude. The vehicie

dynamics are
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where

The controls are

TV 35 v ¢85 ©
y = v ¢os ¥ sin o

. - - cos u
= {L + T sin a
Y { ] e
. sip u
o = [L + T sin g} wemenmd
WY CoS ¥

distance north

distance west

haiohy
eignt

velocity magnitude

angle velocity vector makes with the

horizontal

{3~

angle between the velocity vector projected

into the horizontal plane and the x axis.

angle of attack

angle betwegen thrtust and velocity vectors

bank angle

drag force

1lift perpendicular to wing plan form and

perpendicular to velocity vector

gravity

thrust, along a/c centerline.

[
L

load factor and bank angle.

Rank

angle is unconstrained and for this problem max throttle
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has been specified, with thrust then dependent upon alti-
tude and speed. The constraints on the load factor are
taken to be a function of altitude and speed below the
corner velocity and a structural limit above the corner
speed of 6 g's.

Finally the drag force is taken to be

D = C, QS (3-2)
where
2
Cp = Cpo * kCp
_ 1 -Bz ,2
Q""'z—poe A4

reference2 area

192]
n

Missile Model

The missile model is similar to the aircraft model but
has the following differences.
(a) Thrust = 0
(b) No aerodynamic constraint on load factor.
The missile is considered in the coast phase only.
The load factor constraint is taken at 15 g's independent

of speed and altitude.

Cost Function

The cost function for the game, which the evader wishes

to maximize and the pursuer to minimize, is

J = AR%? - B cos (TCA) (3-3)
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where

o]
]

fistance between the a/c and the missile

TCA = anzle between th-ir respective velocity
vectors (Track Cros: i ng Angle)
A,B = positive weighting facturs

The justification for using "R" is that, although it
produces large values of some of the costates at ts through
the transversality conditions, the effectiveness of the
missile warhead will probably be inversely proportional
to Rz. The justification for using "-cos (TCA)" is that
the cost function should in some way represent the problems
associated with fuzing a warhead. By amnd iarge,. to achieve
a high probability of kill, a missile should fly a parallel
flight path with the a/c at the final time. The term in
TCA represents a minimum cost of -B for a tail-on chase in
the firnsl stages. The cost varies slightly fox small values
of TCA but increases rapidly for angles above 45°., It will
also penalize the pursuer for a head-on attack on the basis
that the relative range rate is very high, wbich makes
fuzing very difficult.

At a later stage, when investigating the behavior of
the game where the missile had more than sufficient control
necessary to intercept the aircraft, the cost function was

changed slightly. In order to provi‘e a cost function that

was capable of directing the missile to chee

cna hAadunasn =
H S aTv% H

-~ -
™ w 1=

unique cptimal controls, a small penalty related tc final

time was sdded. Its magnitude was cuch that if the missile

14
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¥ &
P E
Ly
%?’ o could not intercept the aircrafi¢ at all, or if the missile
I
7 %
?g could intercept the aircraft but not at an acceptable track
f g crossing angle then the time penalty was insignificant,
e However for situations where the missile could bring the
v
- . . . L. .
- original cost function to its absolute minima then the time
: ; penalty became significant.
P .
: The cost function used was therefore
. 2
. J = AR™ - B cos (TCA) + C te (3-4)
2
L with
: A =
- '
B = 10
: ; C=1/6
35 These values were chosen to make the TCA term signifi-
f
i
o cant below 10 ft and the tf term significant near the minimum
= value of the TCA term when R(t.) —»0.

Differential Game Guidance

By application of the necessary conditions for a saddle
point solution the controls can be expressed as functions of
the states and cestates.

The costate dynamics are found from the partial deriva-

tive of tne Hamiltcnian with respect to the corresponding

state e.g.

A, = o oo (3-5)

producing the following
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v

Z 2z a3z

A cos u A sin u
- Y + S )4
mv mV COS Y
{ .

A
A= - —1-[31 cos & - T sin o 2a _ EE]
m 8z

9

=

ar

T sin a + T cos a —g]
z 3z

-xx[cos Yy cos o] - ly[cos y sin o] - Xz[sin v]

- EI-cos a - T sin a da 32
m 3 av FRY
+ A L aa g
Yy v oV
A cos u A sin u
- [ Y + g ] b4
nv - mv cos Y

iﬁ + 31 sin o + T cos @ 35
v v v

AY = -Ax[-v sin y cos a]

-Xy[-v sin y sin ¢}
-Az[v cos v]
-2, [-g cos vl
_y [g_sin y]
Y v

—xo[a tan v]
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The controls used are n, the load factor and u the bank

angle.

A
o

= -AY[-V cos Yy sin o]

-Ay{v cos vy cos 0]

(3-10)

The evader's thrust is set to max throttle and is

then state dependent while the pursuer's thrust is zero.

Hence

with

with

with

with

the unexpanded partial derivatives above beconme

L = nW
aL _ 3L _
3z " 3v - °
Tmax = A + Bz + Cv
aT _ AT _
3z - By = C
D = & e'Bzvzs(C + kC 2)
2 Po P, L
3D _ 1 -822
2z © T BD + > poe v s 2kCL
_ 1 -gz_2
-‘Bipoe VS[CD - kC
0
G:KCL
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{3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)
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g _ L
3V K v etc, (3-18)
with
_ nW
CL =1 LD r3-19)
2z Po
2C C
L _
woo TV (3-20)
aCL
33 = BCp (3-21)

The load factor contrel is constrained and so account
must be taken of the effect of the constraint on the costate

equation.

v
(=

C,(n,z,v) (3-22)

Cy(n) 2 0 (3-23)

where C1 is the constraint below the corner speed and C2 the

constraint above the corner speed and,
C1 = nl(z,v) -n2>0 (3-24)

C, =6 -n20 (3-25)

Where the control is constrained

A = - H - uC (3-26)

z z z LY 7

AV = - Hv - qu (3-27)
18
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uo= - c =H (3-28)
Hence
Ay = - H, - HC, (3-29)
iv = -H - HC (3-30)

for constrained load facter below the corner speed and since

the constraint above the corner speed is state independent
A= - H (3-31)
A = - H : (3-32)

as before. In the case of the pursuer the missile is con-
sidered to have sufficient control at all speeds of interest
that only the state independent constraint is in force.

For numerical purposes a Fortran integer variable '"mu"
was used to switch the additional terms on and off as neces-
sary in the costate equations so that as the load factor
selected by the control algorithm was consyrained to the
state dependent limit "mu" was set to 1, otherwise it was

left at 0.

Optimal Contro!s

For an unconstrained control such as the bank angle
the first order necessary conditions for an optimal contral

require that

19
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H =0 (3-33)
Hence
Ly
Hu = - (L + T sin a] sin p (3-34)
Aa
v Eos T fL + T sin a] cos u {3-35)
The second order necessary conditions require that
H <0 -
pp S (3-36)

for a maximizing player. Combining these two equations we

are able to define

lce
sin p_ = (3-37)
€ Z ,
V(A cos ye) + AG
e e
Aye cos Ye
COS u_ = {3-38)
¢ 2 ,
'/(x cas y ) + A
Y e a
e e
For the minimizing player we find
-2
0
sin u_ = P (3-39)
P 2 Z
(AY cos Yp) + Ac
P P
-AY cCOs Yp
cos u_ = P (3-40)
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. In the case of the load factors we solive for the uncon-

strained load factor that is a stationary control of the P

R A i R L)

Hamiltonian. Should there be an interior control that opti-

A

mizes the Hamiltonian we check the sufficient conditions to

i ensure maximization or minimization as the case may be.

Where however there is no interior control that is a station-
ary control with respect to H we choose either maximum or
minimum load factor to achieve coastrain:d optimization.

For the evader then we consider the first order neces-

A LA i

3 sary conditions

R =0 (3-41)
n
3 |
3 A
= H = -2]-T sin a 3a _ 3D
n m an 3n

A
+ X [3£ + T cos a 35] cos

mv | 9an an
Xa 9L da ;
where 2

9 (KC

an an an
- kKN ;
Qs :
3D _ 3 (c__+kcyas (3-44) '
an an Do Lo - iy i
{
, é
- _ 2knW’ 2
q §
21 g
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and
oo (3-45)
Thu§
H =0=2 |-7T sina X _ 2knw?
n v Qs TS

A_cos u A_sin g
Y g KW
+ [ =V * IV cos ¥ ] x [ N + T cos a 6§] (3-46)

Substituting for cos u etc and making small angle approxima-

tions

ML orkZaw? | 2kaw?
m

0 = -
Q%s? Qs
| TKW ‘/ 2 A2
+ N o+ — x 2 e —9 x 1 (3-47)
[_ as ] Y eesm? |
, A
A, + ——3  [QS+TK]QS
n = (cos v) (3-48)

vav[sz + 2kQS]

For an interior control the second order conditions are

‘v [ Tk 2kw?

fa ]
nn n | %52 Qs

o4
H
)
|

LA

(=]

(3-49)

i.e., Av > 0 for n, above, to be a maximizing control.

22
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For a constrained lopad factor the choice is either max

P s
%"mae

ny min load factor. The Hamiitonian terme that contain

TR T

load factor dependent terms are

KIS

A A
= __V_ - -...Y.- i
H1 = (T cos a D) + v (L « T sin a} cos yu

A
a . .
H av cos (L + T sin a) sin ¢
i Av (L + T sin a) 2 Az
] = = (T cos « - D) + e A +-—-JL——7 (3-50)
{ Y (cos ¥)

For Av > 0 we can look for an interior control and if

T TY

n so defined is too large we chocose n = n max. For xv < 0 ;

we find that our sufficient condition predicts a minimiza-

tion of H in some region of negative load factor. 1In order

b M e L

1 to maximize the Hamiltonian we select n = n max for xv < 0.

<

The exact opposite arguments are used to select the

optimum load factor for the missile. Thus, for interior

s B . S e il

controls

\ H
xz i

= -qs. (A2 . ’p : 1 (3-51)
n o= -QSgfAl 7 Wvi 2K
P (cos 1)) v, e

which requires Xv < 0 for an interior control to be possible.
Sufficient conditions for a minimum with respect to the

Hamiltcnian are

Ho . 20 (3-52)
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2
J _ 2k¥W ;
. Hin = - S (3-53) ;
% i Hence ky < 0 for minima and following similar arguments

for the pursuer az for the evader we choose the constrained

load factor to be

ne=ono o for kv > 0 (3-54)
3
: and

no=mnooo for Av <0 {3-55)
3 Proportional Navigation Scheme

In order to check the validity of the results a propor-
tional navigation algorithm was produced for the missile and
used against an open loop optimal evasion scheme.

We expected to find that the proportional navigation
scheme (PN} would fly a similar course to the open loop
optimal missile but would not get as close to the evader.

For the purposes of the t2st the PN scheme was allowed

to use the exact current va2lues of the vehicle velocities

and positions to measure the spin rates of the line of
sight. The line of sight was defined by two angles, one
an azimuth angle and the other the angle out of the hori-
zontal plane. For the Cartesian frame centered on the

missile as in Fig. 1 the two angles are respectively 8, y.
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Fig. 1. Line of Sight Angles.

z(xx-yy) (3-57)

Similarly

tan @ = % (3-58)

. 1 y y
e=-—-—-—-—-——-{-§-l§} (3-59)
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We wish to fly the missile so that ;p’ and &p are

some multiple of $ and 8.

Y = RK1 § = Z- cos u - 85221 (3-60)

T

¢ = RK2 6 = =510 ¥ _

P il - h)
mv CoOS ¥ (3-613
Hence
RK2 8
tan y = - (3-62)
RK1 ¢ + &_E%E_l
and then
L = RK20mv cos v nw (2-63)

sin u
If n so defined exceeded 15 it was set at 15.
These values of p, n were then used in Eq (3-60) and
Eq (3-61) to give the time rate of change of y and o for
the missile.
Tn the case whers 8 is very small or zero the evalua-

tion of the load factor in Eq (3-63) leads to numerical

inaccuracies. In this case Eq (3-60) is used
N S . g €05 ¥ -
n = g cos [RKI g+ v ] (3-64)
26



IV. Results

TPBVP Solution Method

The results can be divided into two phases namely

(a) nominal saddle point solutions

(b) variations about the nominal solution.
Subroutine NSOIA was utilized in both phases. Firstly, it
was used to provide a one dimensional search for a point
on the terminal surface, and secondly it was used to solve
two point boundary value problems, both in the refining of
the nominal saddle point solution so as to minimize the
errors resulting from numerical integration and in the up-
dating schemes to solve the two point boundary value préb»
lem (TPBVP) at each update point. Appendix B presents a
short discussion on the principles of the subroutine and
on an aspect of the numerical integration of the state and
costate equations that is the probable cause of variations

in a Hamiltonian which should be constant.

Saddle Point Solutions

In order to produce a large number of saddle point
solutions covering a wide range of terminal conditions,
points on the terminal surface were found Ly selecting
eleven out of twelve of the terminal states and varying
the remaining state until the transversality condition on
H(tf) was met. Reference 3 provides justification for this

approach since it is shown that barriers do not occur in

the game formulation.
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By integrating backwards from the terminal surface it
was possible to construct saddle point solutions to games
which ended at 30,000, 20,000 and 16,000 £t with final miss
disfances from 0 to 200 ft and with a variety of track
crdssing angles (TCA). TCA was defined as the angle b . tween
the missile and aircraft velocity vectors at te. By iante-
grating forward again to te it was found that there were
errors, due to the numerical integration scheme, and the
transversality cocnditions were not met exactly. These
could be reduced by letting NSOlA vary thke initial costates
slightly until these errors in the transversality conditicens
were reduced to some acceptable level,

The measure of convergence for the TPBVP was the sum

of the squares of these errors, namely

T r- -
2 )
e = |acey - 3 M(tg) - 5%
te te
L ! 4
r T r ' -1
+ H(tf) + %% H(tf) + %% (4-1)

t t

! £ i f |

Because of the dynamics and the cost function it was
possible to reduce the TPBVP to eleven states by removing
lxp and Ayp' Hence for 2 value of ¢ = 121 the average error
in ‘he transversali-y conditions would be 1. With the pro-
graim coded in fi, fi/sec etc. ihis represents an error of
1 ft in the fiual range. For values of ¢ less than 100 the

trajectories showed little change as : was decreased and it

28
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was possible to keep NSOIA searching until ¢ was less than
.001 at which poiut the terminal miss distance was fixed

to within a fraction of an inca. € was therefore usea to
define acceptable convergence in the solution of TPBVP's.
For refining nominal solutions € was set at 20 and for the
updating scheme € was set at 400 so as to reduce computer
time. In a typical updating scheme approximately 25 TPBVP's
were solved and it was necessary to sacrifice some accuracy

to keep total running time to a minimum.

Opcn Loop Controls

With final time free and with the cost function used
the copen loop optimal trajectories looked realistic. The
optimal evader normally turns across the missile's path and
in most instances descends. The aircraft was kept subsonic
because polynomials representing load factor limit, maximum
thrust and drag as functions of height and velocity were
only valid subsonic. As a result the aircraft was usually
below its corner speed in the cases considered and by
descending it was able to turn faster, The aircraft also
gained thrust and Jload limit advantages by descending.

Both missile and aircraf* used maximum load factor along
smooth arcs to the terminal surface. This was, for nonzero
final range ,the point at which each had the same radius of
turn and the aircraft was on the inside of the missile.

The missile paid a large drag penalty using maximum load

29
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factor ard would typically give up 1500 ft/sec in velocity
during the 6 second engagement,

The initial relative position of the two vehicles
6 seconds sway from termination varied from a beam attack
at 5000 ft range for a final range of 0. ft to 12,000 ft
with the missile about 40° off the front of the aircraft
for final ranges of 200 ft.

In all the cases studied interior controls were never
used and despite attempts to force interior controls by
2tilizing zeroc final range and a TCA of zero and forcing
intsrior ceontrols at Te when integrating backwards, interior
control solutions were never found.

The justification for free final time is not only that
it is more realistic but also for terminal pay off it is
essential for valid results as the following example shows.
The work of Ref 9 uses a comparable game model as the model
of this thesis and it presents one solution for an air-to-
air missile using fixed final time. The cost functions are
different but the small difference should not affect the
game significantiy. 1In the problem of Ref 9 a beam attack
at 30,000 ft results in the aircraft turning away from the
missile and both missile and aircraft use interior controls.
At te = 5 secs the missile is 1300 ft astern of the air-
craft flying a parallel trajectory., It appears that in
about 2 secs at most the missile will achieve a maximum
hit. The same problem under a free final time formulation

is shown in Figs. 2 anu 3. The 3D trajectory is given in

30
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Fig. 2 with the ground tracks of the two vehicles plotted

|

e

on the bottom of the box containing the trajectories. The
57 : bank angle selected in the saddle point solution is plotted
aloﬁg with the proportional navigation (PN} choice of bank
angle. The PN plot represents the choice of bank angle

é based on line of sight (LOS) considerations as the missile
3 flies along the optimal trajectory. The aircraft flies
across the path of the missile and dives. The missile is
then forced into a maneuver whereby it begins to fly to

: the right of the initial position of the evader and then
continues to climb above the evader for an approach with

the minimum TCA it can achieve. Both vehicles use maximum

B et b St

load factor throughout the 5.108 secs.

It appears that the fixed final time problem guarantees

RS

the aircraft's safety provided R(tf) is nonzero. It also
dces not prevent range going to zero at some intermediate
stage. The trajectory in Fig. 2 has a smaller final range
than that of Ref 9 in similar times and yet ultimately the
result of Ref 9 will be more in the missile's favor than
that of Fig. 2.

A selection of cpen loop saddle point trajectories are

shown in Figs. 4 through 15. For comparison purposes plots
are made of the bank angle selected by the missile on the
basis of optimal control and proportional navigation. Since
the ﬁissile flies along only one of these paths the bank
angle selection of the alternate scheme is not accurate.

In the very early stages the inaccuracies will be small and
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iﬁ} comparisons can be made between the two schemes. The plot

of bank angle immediately following an optimum pursuit tra-

jectory plot is made along the optimum pursuit path.

Proportional Navigation Versus Cptimal Control

The variations of optimai control (OPT), nonoptimal

control (NONOPT), and proportional navigation (PN) considered

are:
Eg ' (a) saddle point solution
% (b) open loop OPT evasion versus PN pursuit
%é {(c) wupdated OPT evasion varsus PN pursuit
:2 (d) updated OPT pursuit versus NONOPT evasion

(e) PN pursuit versus NONOPT evasion.
The open loop optimal cvader results demonstrated that
for all but a few cases the open loop optimal evader gained

against proportional navigation. The few cases were the

problems where the saddle point solution lay in a plane of

f constant X or Y and hence bank angle was predetermined.
Since PN used maximum load factor in these cases the out-
come was the same as for the saddle point solution. Figures
12 and 13 are two such cases. Figures 16 through 23 present
two cases for comparison of open loop optimal control versus

proportional navigation for an open loop optimal evader.

In each case the open loop optimal evader gains against
proportional navigation. In this group ol figures the bank
angle selection of the two schemes when flown along the

proportional navigation path is given after the proportional
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navigation pursuit trajectory plot. Plots are also given
of the rontation rates of the line of sight (L0OS) whilst
guided by the proportional navigation scheme.

Tables II and III give the initial conditions for the
two cases presented in Figs. 16 through 23. Table I gives
the final ranges for the two cases for the optimal control
and proportional control missile against open loop optimal

evader.

Table I
Final Ranges for OPT and PN
Fig. No. Final Range
16 182
17 440
20 1.76
22 11

Tuned Proportional Navigation

An incidental result, on which little time was spent,
is mentioned here because it greatly improved the perfor-
mance of the PN scheme. For a given set of initial condi-
tions and for an evader playing the open loop optimal control
the PN scheme could be "tuned" to improve its performance.
The two navigation gain constants for PN had previously been
set to the same value. By introducing a ratio between these
gain constants considerable improvement in the performance

was achieved.
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The case considered was the problem in Fig, 16. The
PN scheme used maximuw load factor throughout the flight
and only the bank angle differed between PN and OPT guidanc .,
The bank éngle selected by PN had similar characteristics
and so the initial bank angle of the PN scheme was btirought
closer to the initial bank angle for the OPT guidance. The
means of varving the PN bank angle was to select some ratio
for RK1:RK2, the vertical and horizontal gain constants.

For a ratio 1:2 the final range had been brought down from
440 feet to 207 feet which compared very favorably with the
OPT scheme result of 182 feet.

An example of the advantages of the tuned navigation
scheme is given in Figs. 24 through 27. The ratio used for
RK1:RK2 was 1:2 and this ratio was not optimized. It was
merely a first estimate of an improvement and since ratios
of 1:1.7 and 1:2.3 gave similar improvcments 1:2 was used
to present the results. Figures 24 and 25 are the open loop
saddle point solution with the '"tuned" proportional naviga-
tion bank angle plotted whilst flying the optimal trajectory.
Normal prcportional navigation achieved a 478 ft miss and
with "tuned" proportional navigation the result was 191 ft
against the 173 ft for the saddle point solution. Table IV

presents the initial conditions.

Pseudo Closed Loop Guidance

For an open loop soiution to De useful the evader must

play optimally or the open loop soliution must be updated.
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K«f The open loop scheme was updated at approximately .3 sec
intervals throughout the attack by solving the associated

two point boundary value problem. The solution was considered
acceptabl? when the sum of the squares of the errors in the
transversality conditions was less than 400. The new solu-
tion could then be used to update the optimal missile attack-
ing 1 nonoptimal evader or an optimal evader escaping a PN
missile. This was an expensive process in terms of computer
resources and is completely out of the question for real time
guidance. It does however provide valuable information as

to the magnitude of the changes in the costates and demon-

strates what gain could be made in the "cost" for whichever

player was heing updated.

el bl

"

The motivation for this approach is that a proposed
real time pseudo-closed loop scheme {(Ref 1, 2, and 4) will
probably have to give up some of the realism of the model
for the advantages of a better behaved two point boundary
value problem. In order to test simpler models for their
ability to provide sufficient advantages over proportional 4
navigation, or in fact any other scheme, to warrant imple-

mentation, then some means of comparison is required. The

work of this thesis is therefore intended to provide a ref-

erence performance standard. Table V and Fig. 20 provide

a saddle point solution as the basis for the various compari-
sons that can be made. These are:
(a) open loop optimai evasion versus proportional

navigation
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updated optimal evasion versus propertional

.

navigation

(¢} wupdated optimal pursuit versus nonoptimal
evasion

{d) proportional navigation versus nonoptimal
evasion.
These cases are presented in the same order in the following

sections.

Open Loop Optimal Evasion

The saddle point optimaiity condition for differential
games requires that at least one of the players uses an
optimal control. The open loop solution for the evader
against propor:iaunal navigation has neither player playing
optimally. ¢o~over the result dones indicate that the evasive
maneuver capitulizes on the nonoptimality of proportional
navigation. ‘>igures 30 through 32 present the trajectories,
the bank angie ¢ the proportional navigation missile and
the optimal g:i:i<ed missile whilst flying the proportional
navigation trajecctory and the line of sight rates resulting
from the proportional navigation scheme. The result is 2

20 ft miss witn a TCA of 1.1 radians,.

Updated Optimal Evader

Where the optimal evader, pursued by the proportional
navigation missile, is allowed to update its controls at
intervals to c¢apitalize on the nonoptimal play of the

pursuer considerable gains are made. The predicted final
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the missile reverts to optimal control given by the
solution at each update are given in Table VI. The

R is in feet and the track crossing angle TCA is in

G SAL ALt S AR S C e B ' S et o T €1

The cost function and the degree of convergence are

VT TR AL R DR BT T e

actually perturbed by being forced along the PN traj

date points was realistic.

are presented in tabular form in Tables VIII and IX.

is then integrated forward to the next update point

- range, track crossing angle and the cost function assuming

TPRVP
range
radians.

also

1 given., 1t is the predicted time to go, again assuming both
players play optimally, and the column T - ¢ gives a compar-
ison with the column t to show how the game is extended by

the updating optimal evader to gain further advantage.

evader. The bank angle selected by the optimal missile is

ectory

in Fig. 34. It does show, however, that the PN scheme is

1 near optimal and that the solution to the TPBVP at the up-

For the case of the updated optimal evader the costates

At

each update point the current values of the costates are
given in the "in" column. The values ¢f the costates after

the return from NSOlA are given in column "out". The game

and the

The entry at line 22 in the table is the final range (180 ft).

Figures 33 and 34 present the results for the updated optimal

current values of the costates are used as guesses and appear

in the "in" column. The change in costates between updates

is therefore the difference between the costates in

update.
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The close similarity between proportional navigation
bank angle and optimal control bank angle in Fig. 34 sug-
gests that “tuned" proportional navigation may well have
made considerable improvements., Unfortunately, no time was

available to consider this case.

Updated Pursuer

These cases are those where the missile is allowed an
update at .3 second intervals against a nonoptimal evader.
The evader flies max g load at a bank angle of 90° 35 a
nonoptimal evasion.

Flying optimally the evader could only achieve a final
range of 1.5 feet. The final time was 6.004 secs. During
the updating computer run a less accurate solution was taken
to be acceptable. The first call to N30lA solves the initial
two point boundary value problem and the time to go was set
at 6 sec. The answer was acceptable within the new accuracy
requirements but the small change in time alone of 4/1000
secs changed the terminal miss to 4.4 feet with a sum of
squares of the transversality errors at 240. The results in
Table V represent a solution with an error of 14.

Table IX gives the results from the computer run. The
overriding factor in determining the number of updates, the
acceptable accuracy and the maximum allowable number of
iterations in the solution of the TPBVP was the central
memory time requirements. These results are therefore not

ideal in that the trade offs between accuracy and central



memory time have not allowed convergence in many instances.
The instability cf the resulting controls reflect this lack
of convergence but at intervals the solution converges and
the‘missiie promptly makes up lost ground. However, in the
last time period the missile is flying open loop against a
nonoptimal evader who is able to double his miss distance
during this last critical stage,

An interesting aspect was the fact that at updates 12,
13, 14 the 11th update open loop solution remained accept-
able. With no update made the evader gaimed ground against
the missile. Figures 35 and 36 represent the trajectory and

the optimal bank angle respectively.

Proportional Navigation with Nonoptimal Evasion

In this case the nonoptimal evasion maneuver is used
against a proportional navigation missile. The result is a
20 ft miss with a TCA of 2.02 radians which is more in the
evader's favor than the open loop optimal evasion. Where
neither player plays a game optimal strategy the saddle point
optimality is not meaningful. It does suggest that only a
poor estimate of the open loop evasion strategy makes
reasonable gains against proportional navigation. The up-
dated evader however makes considerable gains for this
problem. That the updated optimal evader cannot always
make such siartling gains can be seen in Tables X and XI.
These two problems are based on saddle point solutions that

gnd in similar ranges but different TCA's. In the first

is

amna et

Proury
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case the saddle point solution is given in Table III and
Fig. 20. The bank angle plot of Fig, 21 indicates the near-
optimal nature of proportional navigation. As a consequence
the updated evader can only extend the range to 22 ft.

However for the case of Table XI the updated evader makes

considerable gains against proportional navigation. The
saddle point solution is given by Fig. 6. The 1.73 ft of
the saddle point solution is converted to 370 ft by the up-

dating evader.

Summary

The problems associated with the solution of the TPBVP
for very small final ranges is reflected in the instability
of the updating scheme for the pursuer. Where he has an
open loop final range that is small, noncptimal play on the
part of the evader is difficult to convert to a decrease in
the payoff. Where the saddle point solution has a much
larger final range, initially, while the pursuer is convert-
ing nonoptimal play by the evader into a decrease in the
payoff, the TPBVP is amenable to updating within the number
of iterations allocated. However as the final range gets
smaller the TPBVP becomes more awkward. In one case the
pursuer converted a 240 ft final range to .7 ft at some
intermediate stage. The updating scheme was able to keep
the final predicted range to about 2 ft despite lack of

convergence at some update points. However in the last

40



phase under open loop control the predicted final range of
2 ft became 11 ft,

The updating evader has this aspect in his favor since
he is continually increasing the final range. The problewm
becomes more well behaved and hence easier for hin to update.
Even if he doesn't update the open loop saddle point strategy
provides s-me small gain against proportional navigation
missiles.

In the cases considereu no interior contrels were found
even for proportional navigation. This is probably becausse
for an open loop optimal evasion or even for a rough approx-
imation to optimal evasion the missile is forced into maximum
g maneuvers. Hence proportional navigation loses because
of its inability to lead or lag its bank anglc¢ based on
considerations other than the immediate line ¢f sight rate.
Many cases in this thesis show bank angle patterns very simi-
lar to optimal control with only a constant offset. Inmn
other instances, Fig. 3 for examplzs, theres is considerabile
difference in the dynamic behavior, even though at a later
stage the bank angle selections are essentially the same.

The gain constants for the PN scheme were normally 10.
This represents a performance for PN beyond the current

capabilities,
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V. Conclusions and Recommendations

Conclusions

This thesis compares the principle of proportional
navigation to differential game optimal control. But for
a few cases presented where launch conditions are very
favorable to the missile, proportional navigation normally
pays a considerable penalty, in terms of the cest function,
in that the missile has the eaergy and the maneuverability
in greatly improve the probability of kill under optimal
control. The realistic dynamics used in this thesis are
unlikely to provide the basis for a pseudo-closed loop
optimal control scheme as suggested in Refs 1, 2, and 4.
Huowever the considerable -ains that can % - made suggest
that simpler modcls may be used so as tc :ompromise between
gains in the payoff and in achieving a real time capability.

It appears that the optimal evader has most o2 gain
using this scheme since the numerical problems improve as
the final range increases. The open loop control is effec-
tive against proportional navigation sn that any failure
to update thz control does not relinquish existing gains.
Whereas any failure to update the missile control increases
the final range.

Lastly I conclude that the subroutine NSOlA is a power-

ful means of solving the TPRVYP'c acscciated with saddie

-
o ~

-
w

point solutions. Considerable care should be used in

selecting the parameters that control NSOlA's pecrformance
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and in this respect NSOlA remains in the same class as
most other schemes in that a good understanding of the
nature of the solution is essential to obtaining a solu-

tion, no matter how powerful a numerical method is used.

Recommendations

It is recommended that further work in this subject
should concentrate on finding simpler game models that
behave in the same characteristic manner as the nonlinear
model of this thesis. Since interior controls have not
been found it may be possible to fix load factor at its
maximum value and reduce the problem to a single uncon-
strained control in bank angle for each player. .Under
these conditions a simpler drag model may well prove suf-
ficiently accurate. If a simpler model produces similar
behavior then a pseudo-closed loop real time optimal
guidance scheme may well prove to be possible for simula-

tion purposes if not eventually for missile guidance,
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Appendix A
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Table II

Saddle Point Solution

Evader
4972 ft
2986 ft

33150 ft
706 ft/sec
- B46 rads
-.632 rads
209
211
180
179
681248

847488

60

Pursuer
9199 ft
10260 ft
33170 ft
2219 ft/sec
-.619 rads
-2.41 rads
-209

-211

-211
2563-

-60792¢6

-1478936

parwy




LEGEND
o - EVADER
o = PURSUER
a = GND TRK(E)
+=GND TRK(P)

AR e ol ke bk B



= :rmw»w:ﬁm, e




[

WIL
0-¥ S-£ 0-€ s 0-2 S-i

LINBYNd AUN d0Md =0
LINS¥Nd Ldo =0

N33

J13NY

@

|

ANHE ABN d0¥d SNSYIA Ld0

LN ¥ T
g-o¢fL 0-021 0-001

T
0-0381

¥
0-081

TONH MNYg
Fif.

3

18

63

ki



T WP TP T B 10 e e g

0-S

i did R W ; R MR M = g ML e e e e

NLL
Sy 0% S-€ 0-¢ S-2 02 S-1

1 1 L i

0l

50

0-0

1

&

#
)

JLYy 30IS€ 0L 30IS=~0
JdId¥ NMOd dn~0a

- ON39I

- S3IBY FT8NY SO

LR Rk g Rl ¢ e sy E

wome . re we
s HA

1

S-0

-t

0-1

1-

0

¢-0-

0-0

S-1

0-2

i SRR IR

Fig.
64

S0 40 3ILY NIdS
19




o

State

Table 171

Saddle Point Solution

Evader
6457 ft
3807 ft

13625 ft

773 ft/sec

-078 rads
~2.03 rads
2.02

2.02

1.78

-7.8

-5698

6796

Pursuer
9249 ft
6667 ft

16112 ft
2065 ft/sec
-.38 rads

-2.57 rads

-2.02

-2.02

-1.88

20.8
8178

-6959
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Table IV
Saddle Point Solutiog

Evader

4936

3013

33198

703

-.84

-.64

200

199

171

174

650585

814617

ft

ft

ft
ft/sec
rads

rads

Pursuer

9341

10358

33326

2235

-201

2473

-554517

-14099n6

ft

ft

ft
ft/sec
rads

rads
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Table V
Saddle Point Solution
Evader Pursuer
tyg = 0 te = 6 ty = 0 te =
4178 8003 10920 8002
4435 1999 10242 1998
11123 10003 7782 10002
49 799 2491 999
-.5 .1 -.29 1.08
-1.2 0 -2.18 .79
2. 2 -2, -2
2. 2 -2, _9
2.02 2. -1,77 -2.
-. 2.3 0 13. 0
5533. -8.4 ~23734, 5.6
12518. 3.4 -10647. -304
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Table VI

"GPT'" Evasion

R TCA Cost Error T T, -

0 4.39 1.14 15 239 6 6

1 31.45 1.10 985 2767 5.74 5.707
2 58.12 1.05 3374 16541 5.49 5.414
3 56 1.00 3131 129 5.24 5.121
4 68.9 .97 4747 196 4.97 4.828
5 79.5 .94 6329 259 4.70 4.535
6 88.3 .90 7795 304 4.43 4.242
7 95.5 .88 9125 268 4.16 3.946
8 101.7 .85 10337 25 3.88 3.656
S 107 .1 .82 11467 48 3.61 3.3063
10 112.1 .80 12560 55 3.327 3.070
11 l116.9 77 13661 31 3.04 2.777
12 121.7 .75 14811 22 2.76 2.484
13 126.6 .73 16639 21 2.47 2.191
14 131.7 70 17363 7 2.19 1.898
15 137 .1 .68 18748 33 1.990 1,605
16 142.7 .66 203¢2 3go 1.62 1.313
17 150.3 .63 22584 228 1.33 1.01¢
18 160.8 .63 25860 24 1.02 726
19 171.1 .65 29284 229 71 433
FAY 178.3 66 31791 80 L4 140
21 180 .1 S66 32442 2 11 152
22 1890.2 .65 32404 Y 445
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BT TR

4
= Table V11
Evader®s (ostate Histery
A Ay x,
In Qut in On¢ In Out
, D 1.99 1.99 1.9% 1.98 Z.00 2.
f ) 1.99 13 1.98 12 2.00 12
2 13 42 12 36 12 30
: 3 42 71 36 57 39 63
Q ¢ 71 90 57 67 63 77
F 5 99 108 67 74 77 89
4 6 108 123 74 78 89 98
% 7 123 136 78 80 98 3
i 8 136 148 80 81 105 111
9 148 160 81 80 111 115
10 160 171 80 78 115 119
il 171 133 78 75 119 122
12 183 195 75 70 122 125
13 195 208 70 64 125 127
14 208 222 64 56 127 128
15 222 237 56 46 128 128
16 237 252 46 31 128 126
17 252 279 31 -14 126 109
18 279 302 -14 -65 109 88
19 309 314 -65 -121 88 61
20 314 311 -121 -169 61 37
21 311 305 -169 -189 57 27
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-48
-104
-55
-40
30

106

245
299
343
377
398
408
403
384
346
302
233
141

39

Qut
-12
-60
-136
-140
-87
-14
66
146

221

342
387
429
441
449
442
416

386

241

141

39

Table VIII

Evader®s Costate Hictory

in
6518
6596
42496
132856
213396
255299
28%010
298234
2016989
29641
384018
2658627
243345
217102
187930
156455
123596

91235

Out
6518
42452
134076
217525

262847

294299

313289
320258
318128
3G&454
252586
271695
246556
217828
186023
151907
117088
77421
420706
15017
1491

~168

In
12453
1188:%
71511

210976
321156
365283
TRAZT
389568
378058
356930
328969
296252
260503
222745
183983
145141
107267
71922
30068
339
~-13174

-6844

Out
12453
75319

223344
341921
391233
416446
42294°
413679
394004
366781
334749
297838
258884
218235
176725
135257
95047
41846
515
~-24454
-26901

~-8703

e m—— e

it e



TR SO

S

= 91'

Table X

B R B 15O Lt D E

.
P
@

. YOPT" Pursuit

Update R(ty) TCA Cost Error T g -t
0 4.4 1.14 151 238 6 6 f
1 27 .22 780 4931 5.64 5.707 ¥
;
2 44 1.4 2003 11645 5.2 5.414 .
3 8.6 1.55 73 3752 4.8 5.121 ;
4 17.4 1.55 303 2086 4.41 4.828
5 1.19 1.49 .64 2109 4.067 4.535
g 6 4.18 1.46 16.49 1995 3.72 4.242
g 7 1.40 1.6 2.67 825 3.17 3.949
E 8 2.5 1.87 9.26 254 2.69  3.656
9 .95 2.01 5.17 65 2.31 3.363
10 9.04 2.01 85.9 390 2.02  3.070
11 6.942 2.06 52.9 37¢ 1.70 2.777
12 4.8 2.06 27.9 195 1.41 2.484
13 1.91 2.06 8.39 36 1.12 2.191
14 5.66 2.06 36.8 191 .828  1.898
15 6.19 2.07 43 .2 202 $32 1.605
16 6.33 2.08 4s . 220 239 1.313
17 13.03 2.08 164 . 0 1.019

86




1 NON OPT EVASION-0OPT PURSUIT

:

i LEGEND.

: o - EVRDER
o = PURSUER

+~GND TRK(P)

:

g

§ | A= GND TRKIE)
; :

g

g

87

e et et {0 rada S 1 K 2



HIL
59 5§ 0:s  S¥ 0-% §.€ 0-€ -2 0-2 §-1 0-1 §:0

pery
pan
b
b
=3
-
=
r
b
han
e

P ——
:

<
[ ]
i SRR

1

B
0-08i- 0-002~

-
0-00f~

—
0-0s-

09,
D .
prad 1
= o
o - i
LINSHNd AUN dOYd 3 22" .,
LINSHNd LdO - f mﬂ ot o
GN38T1 IR
1..n.u M
TW !

Q

J
051

0

f
J-002

J1ENE ANBG AUN J0¥d SNSYIA 1d0

g

WA 8 RN ¢ A A B T B TS GENIITS TRl WA TS e 4 e e s e 4 d AT v v

N - N T

D it 2 IF s st o o8 b b o Al Pl e s At aerstin P e ae D s M B e



lﬂfm

~

L a. i

Nt Nt §

- YN i

Ol vaa® s i

U3 D e !

Ll o i

LS55 “

£t QT 5B .
oy " A
D) ao«< +

37

Fig.

* \

>
g
<D

id
Z

oYty oQ.u: aamau aamc« O0S8 aa,gm oorwb oo0n 00SL

[y

,.,; N A e e . Lok NN o Blle ob £a ] O ome LT e e et Tire mwew g wn *y -
I . L Tt e e e e e el L

e e sl - it ki o e e 2 Khade - o Lt o

S ehs s B 38l s ity G (ko e At e



/// WIL
R S8 8 ww ?.« ..own o“n €2 02 S-1 01 L= 0.0 -
: A

S

G-0

[ 22

P

®

1\
0-02

1 ]
@
1]

h

h

d
T
C-0%

-
G-0S

T
0-08

JIING JINLE
Y0

38

LINGUNd AUN dOVd = 0
LINS¥Nd L0 =1

D ias

UN38937

T 1
0-020 0-001
Fig.

v
0-0kl

- ]
0-031

3
G-081

JT1INY MNBE AN d0dd SNSYIA L1d0

G




-3 58 oS S‘¥ 0-% S 0-f §-2 0-2 S-1 0-1 S-0 0-0
i L ) 1 1 1 ! ! 1 1 1 ! .
o
1
- <
%)
zﬁﬁlw‘ﬂg@ﬁ m © ©- © 2,

JLYy 30IS QL 30IS -o
JibY NMOO dn =0

ONJ931

SZLHY JTEONY SO

"
"
S8Rl s a v wd h xae e h ot s At B e D PR oAt 6 by 285

S0 40 3IBY NIdS




% 3
2
g {:} Table X
3 "OPT" Evasion
a. R TCA Cost Error T T - t
E 0 1.7% .086 -6.85 i8 6 6
: 1 11.8 .04 131 2205 5.77 5.765
? 2 12.7 .06 151 1357 5.56 5.531
: 3 10.0 .06 $0 295 5.38  5.296
_ 2 4 11.6 .C5 124 105 5.2 5.0663
- 5 15.5 .05 232 421 4.99  4.828
& 6 15.0 .05 216 176 4.81 4.593
: 7 15.9 .04 245 184 4.61 4.359
® 8 16.3 .04 277 141 4.41  4.125
= s 17.2 .05 287 112 4.21 3.891
: 10 17.5 .05 297 141 4.00  3.656
11 17.6 .05 302 219 3.78 3.422
L 12 17.7 .06 304 15 3.56 3.188
13 17.7 .05 304 249 3.32 2.953
14 17.7 .06 304 126 3.09 2.719
15 17.8 .06 307 6 2.386 2.484 g
16 18.0 .06 315 291 2.62 2.250 ‘
17 18.3 .06 3236 17 2.39 2.016 i
18 18.7 .06 340 68 2.16 1.781 §
19 19.1 .06 353 200 1.92 1.547 :
26 19.3 .07 362 257 1.69 1.313
21 19.8 .07 382 265 1.46 1.078
22 19.4 .07 368 176 1.23 .844
23 19.8 .07 381 242 1.00 .609
24 21. .07 432 287 .76 .375
25 21.4 .07 448 281 .52 141
26 21.9 .06 472 235 .29 -,094

92 o i



A St e

R LA L -

ST IR IR R IR T s e e
[+ T ¥ B ¥ % T e

~J

10
il
: 12
- } 13
. 14

15

17
18
19
20
21
22
23
24
25
26
27

7]

86.

164
125
158
150
218
2462

264,

283
299
312
324
333
341
346
X51
354
356
357
358
358
358
358
359
361
366
371

.868
.820
775
.732
.693
.657
.6258
.598
.577
.56
.55
.54
.54
.53
.53
.53
.53
.53
.52
.52
.51
.48
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Tabkl

I'OPT”

69819

BO106

86522

97011
105175
111295
116291
120242
123256
175443
126920
127806
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128362
128540
129242
130832
133954
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Error
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148

297
75
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65
.53
.37
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TPBVP Solution Msthod

A saddle point sclution to a differential game forru-

lation is defineg by 2 two point bonndary value problsm in

the form
A~ = £{x,%, ) x(to] = X4,
Ao og(x, ,t) (tg) = |
e
. = } (B-13
te = free H(tf) "—¢ti? (B-1}
-

where there are n+l unsbnowns at t namely A{t andg te and

0’ o’

at some time te chere are n+l1 relationships that must hold.

The problem could be more generaily stated as follows
F(x) = 0 {(B-2)

where x = estimates of n+l unknowns in Eqs (B-1) and the
vector function F represents the relationsnhips rhat must
hold to some acceptable degree of accuracy at time te The
solution of Eq (B-2) provides the appropriate unknowns 2t
tinme ty such that if both players play optimally throughout,
the terminal conditions for the came will be met. Evalua-
tion of F requires integration of the system dyvnamics using
some present estimate of the X(tQ) for a period (tf - to),

given a current estimate of the final vtime te- Now consider



the minimization of the scalar cost function
T .
min F (x)F(x) = J* (B-3)
X
The first order necessary conditions are

%0 = 2F'F
Ix =" "x (B-4)

the solution of which is either

T T

F

F = [0]

=0
(B-5)

Another solution exists when Fx is singular for some F # 0.
Using these three possible solutions together with Eq (B-3)

the three solutions can be separately identified as follows

(a) FT(x)F(x) < ¢ (B-6)
(b) F'F > kFTFx (B-7)
() |F | =0 (B-8)

In (a) the solution of Eq (B-2) has been achieved to
within €. In (b) the gradient of F, Fx is such as to pfedict
a very large step & in a Newton-Raphson search for the minima
of PTF. The constant k allows some control over what is and
what is not an acceptably large step. Normally in gradient

search techniques a singular matrix Fx precludes finding the

gradient direction unless the generalized inverse of Fx is

used.
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A Fortran subrouti-e published at Ref 10 searches for

I3 5 D RN e e | aule

o

a solution to Eq (B-2) until F'F is less than some £, w ich

timates

U

¢
&
¢
E
{
H

is part of the calling pavameters. It initially e

F_ by numerical differentiation using a user supplied step :

size and after taking the inverse of F_ thereafter uses
A

. . -1 \ ; N
approximaticns of Fx based on the steps it takes in the

TR T W YT AT T T

search. Should the gradient scheme define an unacceptably

large step, as controlled by k in Egq (B-73}, then control is

T T T T

returned to the calling program. By continuously approxi-

-

é mating rx_l then the problems associated with Eg (3-8) arc
avoided.

. Since the scheme uses an épproximation to Fx_l it tends

£ to take cautious steps in the search for a solution so that

; the assumptions in making the approximation are not violated.

Changes in this step size arec made if the predicted value

of F(x+&§) and the actual valuec arc either very cioze in

] which case & the step size is increcased or wildly different

‘ in which case &4 is reduced. In the zlgorithr the Newton-

Raphson step is calculated and if this is less than or equzl

to A it is used directly. If this is not the case the algo-

rithm predicts the optimum step sire in the direction of

steepest cdescent assuming that it is searching on a quadratic
surface. This step size is compared with A as before.
Should neither steepest descent nor Newton-Raphson predict

ze less than A a combination is veed to calculate

it

4 step s

a sien of A in a direction somewhere between the twu,
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Because the scheme has : pseudo cost function FTF
which has a minima at the solution of F(x) = 0, it retains
the veive of x that has produced the smallest value of FTF
anﬂ‘on anAerror return to the calling program usually re-
turns this "best" value of x no matter how far away the
current estimate of x may be.

This then is the algorithm that has been used through-

out to solve the two point doundary vziue problems that

represent the saddle point solution.

Numerical Problems

The Hamilteonian in the game formulation was independent

of time and hence

aH _ aHl dx |, aHl a3
dt ~ 3x dt 3x dt ot
T
_ 84 T dA IH
T T I T
« cATE 4 £5% = 0 (B-9)

The Hamiltonian at final time was zero and hence should hzave

remained so. When a set of states, representing the termina-

tion of a differential game with a miss of 100 feet in each

direction, was integrated backwards in time, the Hamiltonian

oscillated rapidly and then gradually settled at scme value.
The differential game was coded in an unnormalized form,

that is pesitions in feet, velocities in feet per second,

etc. Even when the integration step size of 5 usec was used

87
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and the Hamiltonian oscillated, but to much smaller limits
than previously, the trouble seemed to lie in the integra-
tion and not the equations being integrated. The integration
routine used was a 4th order Runge-Kutta to start and there-

after a 4th order predictor-corrector. The choice of fixed

or variable step size could be made in the calling parameters.

For a variable step size the routine would increase or de-
crease the step size as necessary to keep the error bound
below some given value. As the step size required changing
the scheme would use Runge-Kutta to start afresh before
moving to predictor-corrector integration. It was noticed
that it was always the Runge-Kutta steps that produced the
oscillation which would then settle dewn considerably during
predictor-corrector integration. When, in variable step
size mode, the Runge-Kutta scheme was used to start afresh
after each change of step size, back came the oscillations.
With a miss distance of some 176 feet the vaiues of AY(tf)
and Ao(tf) would lie between +10 and -10 but their slopes
would be of the order 1.E5. Since the states and costates
were being integrated by a single routine the range of
slopes that the one routine had to handle was from -1E5 to
+1ES5. The value of iY was largely aerermined by such terms
as Ax-v where Ax was 200 and v was B00.

The expression for iY contained Ay, Av and Ao' Both

i and i" contained terms in XA so that
" H

98

B v



uni,

|

A

A= AAY + BXG + Clv + .., (B-10)

¥
ic = DA_ + ... (B-11)
A, = EA_+ ... (B-12)
and thus
[ 13 2 .
AY = (A +BD+CE)AT + ... {B-13)

and further differentiation would not separate the costates.
However it does show that an exponential form of the homo-
geneous solution could contribute the stiffness seen in
integrating the costate equations. .

That the trouble was largely independent of the large
value of the slopes could be seen later in the integration
where the slopes were still in the range 1ES5 but the
Hamiltonian had more or less stabilized and despite the error
generated initially was stable to 3 or 4 significant digits.

By splitting the integration of the state equations
into two phases good results were achieved and if the inte-
gration procedure was reversed the original states could be
returned to,within about 6 or 7 significant digits on a
15 digit machbine. The total time was divided into 256 steps
and the last 6 steps were further subdivided into 200.

This gave a very fine step size around the final time
and an acceptably coarse step size away from te which kept

the time spent on integration as small as possible without

99
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3
‘ sacrificing accuracy. When integrating forward into ts the

points in time at which Runge-Kutta steps were taken would

AR Y

be different from the points when integrating away from t

e R T

f

o m"}"-'

thus causing differences. The values of the states and

costates achieved by integrating away from te were therefore
used as an initial guess for the two point boundary value
problem, and when subroutine NSOlA had reduced the errors

in the transversality conditions to some prespecified level

AT

it was found that the terminal state had changed slightly.

For the situation where the missile hit the aircraft
the values of the terms A, B, C, D and E in Eq (B-13) were :
such that the Hamiltonian remained at 2.E-14 throughout the 3

integration. :
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