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1. Introduction

This report is a portion of the research performed under the
Guidance and Control Technolugy Program on Automatic Tracking Systems Yor
Airborne Direct Fire and Integrated Fire Control. The dynamical systems
equations of the MICOM stabilized mirror /gimbal tracking system are
derived in this report. These equations are derived for the purposes
of (1) analyzing design changes in the basic structure and (2) designing
stabilization and servo control compensations for improved accuracy in

tracking and stabilizing a target scene or in stabilizing a2 laser beam
in a helicopter environment.

The system consists of an azimuth gimbal, G, mounted in a base
structure, S, such as that of a helicopter pod (Figure 1). The platform,
P, is gimbal mounted in G and rotates in elevation. Mounted on P are
two rate integrating gyroscopzs used for imertially rate stabilizing P
via feedback to torque motors mounted on the gimbal axes of G and P.
Flgure 2 shows a schematic drawing of the elevation and azinuth gyros
mounted on the platform. The mirror, M, is not mounted on the: platform,
but is gimbal mounted on G with axis of rotatiom parallel to that of P.
The mirror is connected to the stable platform, P, by a wire belt pulley
arrangement with a 2:1 drive ratio. The mirror is not mounf.ed on the
platform because a stable view of a fixed scene and laser team pointing
stability require the mirror to move one-half the angie of pitch of the
gimbal, G. A 2:1drive ratio consistingof abelt drive and an aided inertia
drive can meet this requirement. The inertia drive, or vhat is mis-
nomered the inertia balancer, B, is a gimbal mounted mass with axis
parallel to those of P and M. The balancer, B, is consfructed with the
precise moment of inertia about its axis for "inertially balancing"
the mirror. When the base, S, and the gimbal, G, pitch, the mirror
should move in elevation through one-half the pitch angle so that the
scene does not change when viewing the image of the siene reflected
from the mirror. The "balancer' will accomplish this in the absence
of other forces and 1s especially useful when the frequeiicy of dis-
turbance motion is greater than the bandwidth of the platform stabiliza-
tion loop. Figure 1 shows the balancer, B, in contact with tne belt

drive and only operates correctly when there is no #lip between the
balancer and belt.

The equations derived herein describe the motion of the gimbal,
platform, mirror, balancer, and gyros with the full nonlinear and
cross-coupling terms and such imperfections as friction, deformation
of the wire drive, and spring coupling due to electrical cables con-
nected between elements of the system. The assoclated feedback and
servo-control electronics, as they are presently designed, are given

in transfer function form in the summary block diagram presented in
Section 3,
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(a) SIDE VIE:W {b) FRONT VIEW

Figure 1. Schematic of rigid body system elements.

2. Equations of Motion for Rigid Body System Elements
a. Analytical Approach

In a system of rigid body elements there are for modeling
purposes, three classifications of interactions of the elements. First,
elements of significant inertia interact with each other and all of their
motion variables (generalized coordinates) are coupled dynamically in
the dynamical equations of motion., Second, if scme of the element's
inertias are much larger than those of other elements, the larger iner=-
tias are Insignificantly affected by the motion of the smaller inertias
so that the dynamical equatlons of the larger inertias do not include the
effects of the smaller inertias, i.e., the generalized coordinates of the
larger appear in the equations of the smaller, but not vice versa, TFor
example, the smaller inertixs of the gyroscopes have an insignificant
effect on the platform's motion., However, platform motion significantly
affects the motions of the gyroscopes. Thus, there are equations of
motion for the platform as well as the gyroscopes but the coupling is
from the platform to the giroscopes and unot vice versa except in the
electrical feedback, Third, in a variation of the second classification
is the case when the coupling is one way and the larger inertias have
moticns which canbe measured and prescribed as a fun. tion of time rather

than described by a systemr of dynamical equations, For example, the motion
of a helicopter would not be significantly affected by the motion of

the stabilized mirror/gimbal tracking system so that if we included the
helicopter in the dynamical system (i.e., we determine its motion from

4
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Figure 2. Rate integrating gyro stabilized platform.

its dynamical equations), the effects of the mirror system's motion
would not be included. In this case, however, the helicopter is not
dynamically modeled to determine its motion and, thus, its effect on the
mirror system, but has its motion prescribed from measurement data to
determine its motion's effects on the mirror. In a related program,
linear and angular accelerometers are used to determine helicopter
motion under typical €light profiles with dummy rigid masses simulating
the stabilized mirror system attached.

In this developwent of the system's dynamical equations we use
helicopter motion data as the prescribed motion of the base structure,
S. The base motion can be completely described by three angles and

three coordinates of a point of S as functions of time. Herein, we
prescribe the azimuth, elevation, and roll angles ¢A(t), ®E(t), and

GR(t) and the position of a base point x(t), y(t), z(t). These are

calculated from body-fixed accelerometers outputs. The point x, y, z
of the base, S, can be any point of the rigid base structure.




However, for laboratory tests, we construct the test stand (on which

the gimbal system is mounted) so that rotational motion is simulated
separately from helicopter translational motion. Figure 3 is a schematic
of the base test stand. This separation is accomplished by designing

the test stand with rotational axes colinear with the system's gimbal
axes. The test stand is mounted with either the elevation axis or the
azimuth axis mounted in bearings in a fixed support for rotational
motion. A large shaker provides the prescribed motion through a rigid
linkage. For a linear motion test, the test stand is mounted directly
onto the haker.

The equations of motion are derived in terms of the prescribed
motion variables @A’ ¢E’ QR, X, ¥s 2 for this case in which rotational

ipéut motion is separated from translational input motion.
The method of analytical mechanics used in deriving the equations

of motion of the system is Lagrange's formulation of D'Alembert's prin-
ciple, i.e., Lagrange's Equations ot First Kind, written as

d K oK
ac 35 o8~ Fo @

where X is the kinetic energy of the system, 6 is a generalized coor-
dinate, & is its time derivative, and F is the generalized force of
the system for the coordinate 6.

This method is used since it is conceptually straightforward and,
most Iimportantly, it does not require the inclusion of conservative
forces of interaction between system elements and then their elimination.
We are not interested in determining the forces of Interaction since
we are interested in only the system's motion under external distur-
bances and not in structural limit design.

The kinetic energy of the system is the sum of the kinetic energy
of its parts., Thus,

K=K+ K + K + K, + K, +K, (2)

where KA is the kinetic energy of the azimuth gyroscope and KE is for

the elevaticn gyroscope. The kinetic energy of any single rigid body,
for example, B, can he written as a function of the mass of B, My the

angular velocity w of the body B with respect to an inertial frame,

the velocity ! of the center of mass B¥* ¢f B in an inertial frame,
ard the moments and products of inertia of B with respect to B* which

*
are expressed compactly in the dyadic (or matrix) form ;?/B . Explicitly,
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B. B/B% B 3)

vhere it is implicitly assumed that the axes through B* which define
the moments and products of inertia are parallel to the right-hand set

B
of unit vectors in terms of w 1is expressed; i.e., we express

B _
w = wlbl + wzbz + w3b3 (4)

where hl’ 92, 93 is such a set of unit vectors. Such a set of unit

vectors is sometimes called a basis. Likewise, we can express a vector
%

such as y? in terms of components in this or some other basis. In

this basis

B* _ B B B
V' = Vyby FVoby t+ Vsby )

% %
where V? Ei is simply the component of y? in the gi direction.

The inertia dyadic 1s defined by
5‘ Z B/B*
i=1 j=1
or in matrix rotation

[B1 By B13.] by

) | By By By b, (6)

B/B*
}:— / (bl’ z’b

Bi3 By By 3

where, for a simplier rotation, we have

B/3% _

i =8

B/B*

12 B12 ete.

The kinetic energy of each rigid body in the system can be derived in
this manner,
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b. Kinematics

The kinem-tics of both the gimballed mirror, platform,
and balancer system and the gyroscopes are developed in this section.
Generalized coordinates are selected such that the dynamical equations
of motion will be simple. The outer gimbal motion is described in terms
of angles with respect to the base which has prescribed angular and
translational motion. The other elements of the system have only
angular motion with respact to the outer gimbal or an inner gimbal,

The angular velocities of each rigid body of the system and the
velocities of the mass conters of each body are now derived. These are
used in Section 2.c. in determining the generalized inertia forces,

(1) Gimballed Mirror, Platform, and Balancer. With the
base, S, having prescribed motion, the only generalized cocrdinates
required to specify the motion of the system, G, P, M, and B, are those
of the system relative to the base, Thus, we take the generalized
coordinates

6,: angle of rotation cf G relative to S
6_: angle of rotation of P relative to G
6. angle of rotation of M relative to G
6.: angle of rotation of B relative to G

so that if the base's motion is known, the motion of every point of
the system is also known.,

The system is designed so that if the base is level and a TV
camera is mounted on the gimbal looking vertically down at the mirror,

the TV will see a scene forward of the system, Thus, BM is chosen

to be measured from a line at 45 degrees from the vertical so that under
nominal operation the angles will be small. Tigure 4 defines the gener-
alized cocrdinates and illustrates the TV looking forward at a source of
light.

The angular velocity of G in an inertial frame is
+ w N

where o0 is the angular velocity of S in an inertial frame,

The angular velocity of S is now derived in terms of the base

motion angles relative to an inertial frame, ¢R’ ¢E’ and ®:’ and their

derivatives. The derivation of the equations of motion is simpler if

9
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W is expressed in components for 51’ £95 g3. For convenience the same

order and direction of rotation of the base is taken as the system rela- |
tive to the base. Beginning a rotation in roll of angle OR about a ;

vertical earth-fixed line (the earth suffices for an inertial frame :
in this derivation), let i, j, k be an earth-fixed basis with k vertical,

let Iy Iys Ig be fixed in S and coincide with i, j, k before the °r ‘

notation, and let k and Iy be directed vertically upward. Figure 5

illustrates the description of the rotation of S relative to the earth.
The new ocientation of S is completely determined by the orientation
of Iys Iys Ig and thus by ¢R. Next a rotation °A in azimuth is per-

formed. Let 315 255 24 be a basis fixed in S during this rotation and
R let I35 Eys X4 remain fixed relative to the inertial frame defined by

%, j, k; i.e., hold °R constant. After this second finite rotation,

the new orientation of S is completely determined by the orientation of

215 255 24 and thus by both ¢R and éA. Finally, an elevation rotation

of ¢E is performed, and let 215 295 25 remain fixed; i.e., hold oR and

°A constant, while 815 &> 4 ave fixed in S during this rotation., Now,

the orientation of S is completely determined by the orientation of

245 895 &4 and thus by @R, ¢A’ and Vg and every rotation of S can be

specified by specifying ¢R’ ¢A’ and ¢ With these simple rotations

x
describing the total rotation of S, it is possible to determine the
angular velocity ;QS = 9? of S in an inertial frame, I, from simple
angular velocities., Observing from Figure 5 that

IS_AS RA,IR_.: . :
w ="w + w +w = ¢E£1 + ¢A53 + ¢R£2 (8)

where, for example, Agf is the angular velocity of the S frame (whose
orientation is determined by €15 s 33) relative to the A frame

(determined by 215 355 33). Equation (8) is an expression for gs but

is net convenient to use until it is expressed in a common basis. For
this purpose, Figure 5 expresses

33 = S8y T Cgly 5

Ly T Sp2p T Gy (10
a =e (i)
8y = Ca&p - Sg83 (12)
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(b} AZIMUTH ROTATION OF BASE, S, AND ORIENTATION OF A BASE-FIXED BASIS 24, 35, 33

(c) ELEVATION ROTATION OF BASE, S, AND ORIENTATION OF THE FINAL BASE-FIXED
BASiS§_1. 89: 83

Figure 5. Unit vectors and angles for describing the orientation
of the base, S, in an inertial frame, I.
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vhere, for example, sg = sin ¢E and C , = cos ° e Now substitute

Equations (11) and (12) into Equation (10) and substitute this result
with Equation () into Equation (8). This gives

S
(¢ + ¢ )e + (¢R NS + 6 4S5 )e + (¢A?E n‘{,'. )e .

(13)

Since &4 = B3> &) T By = SgBps and &y = 88 + Cng, it is possible
to substitute Equation (13) into Equation (7) to obtairn © in the g.,

Bys 83 basis as

o = (wslcg +og G)gl ( 5% - wslsG)gz (e + wu:‘)g_B
= o +oE, “’353 : s
vhere we define
w, =%+ b8 A
1
o, = $:C,Cp, + $ A5z
ws3 = éACE - é’RSECA . (15)
Since
Mo THo G, T o + L8 (16)
PolP-CP s TE oy 4 I an
Lo TP oGPy L G+ L8 (18)

it is possible to determine W and w in their respective bases by

R | s .
expressing g_)G in these bases, There is no need to express QB in the
b—l’ 22’ p_3 basis since the "balancer" B is symmetrically constructed

about its axis of rotation and its inertia properties do not vary with
respect to the 85> By By basis with rotations of B. Thus, since
~

g.l=§‘.1=21

13




By = CpBy = Sp3 = Cym, + symg

]

B3 = Spky T CpRy = ;M) + Cymy (19)

where & = 45 deg ~ 6,,, and Equation (16) can now be written in the m

M? 13
m,, Wy basis and Equation (17) in the Bj» Pgs By basis., Substitution

of Equations (19) into Equation (16) gives

M_ [+ ., G ¢ __ ¢ G, o, G
w = (SM * '“‘1)31 + (Ca“’z sa‘*’3) m, * (Sa“’z + Ca*’3) L

4

M M M
wl 1_1_11 + w, m, + .03 my . (20)

Similarly, Equations (17) and (18) become

ie
1

P . G G G\ G G
<9P + wl) 2 + (prz + srm3) 2, + (CPm3 - spwz) Py

P P P
u)l Py + wz R, + w3 p_3 (21)

G G G
= (—-GB + wl) 51 + u)z g_z + w3 g3

lfi‘:d

|

I
o

(22)

In the begimning of Section 2.b., it was mentioned tha* the system
is designed so that the mirror will have an orientation of 45 degrees
with reepect to the gimbal. With no torque motor power and no distur-
bances, the mirror-platform-wire drive is statistically balanced to
seek a 45-degree orientation from vertical. This is accomplished by
having the mass centers of M, say M*, and P, say P*, displaced from
the axes of rotation of M and P. Let m be the position vector of M*
from the center of rotation of M, say MO. Likewise, let p be the posi-

tion vector from Po to P*, It has been observed that

m=mm

m=mm, (23)

p=-P p, (24)

where m and P are the scalar distances,

14
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Figure 6 gives the geometry of centers of rotation, centers of
masses and vectors between these,

These are now used to compute the
velocities of mass centers, If P, and P, are two points of the same
N 1 2
rigid body, B, then /
P P P_/P
!'2 = !-1 +_£? % 2.2 1

p,/pP
where p is the vector from Pl to P2. Thus, it is possible to write
M
*
Wey®+u'xn (25)
vhere
Mo Go G
V =V 4+ Xnm
= -~ = =0
and
P Po P
vV =V +w Xp (26)
where
P G

v =y %+ QF XB,. -

Previously, x, y, and z were allowed to be any point c¢f S for prescribing
its motion. Taking that point to be the point Go which is common to S

and G and fixed in both. Thus,

2 29 353=VG131+V3252+VG353

@27

wherein Vl, V2, V3 are computed from base-fixed accelercmeter data.
The vectors m_ and p, can be expressed as
=0

H

m, =My &y Ty Ay

Bo = By By TPy 8y

so that

G a G G
X By = (‘“3‘*’2 - “‘z“’s) B~ Ma¥y By tmyUy £y (28)




[

Figure 6. Centers of rotation, centers of masses,
and their position vectors.

G _ G G G G
@ Xp = (%3w2 P2w3> g1 - Py g, + Pyuy By - (29)
From Equations (20) and (23) the following is derived:

M o ( M M _ M M N
QX m= Ry - W) Wy ) =m0y g, - Wy (8489 qagS) .
(30)

Likewise, Equations (21) and (24) give

P P P
w Xp= P<w3 Rp ~ W Rq) . (31)

~

xa *
At this point VM and VP can be expressed in terms of the generalized
coordinates, their rates, the prescribed motion ¢A’ QA’ ¢E’ éE’ ®R’ oR,

Vl’ V2, V3 and a common basis. The basis 81> By> B4 is a convenient

basis, On substituting Equations (27), (28), and (30) into Equaticn
(25) the result is

M¥F G G M G M
v = <VG1 + matly = Mm,Wy mw3) 8 + <VG2 mauy + msawl>g2
G M
+ (VG3 + m, Wy + mCawl>g3 . (32)

16
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Similarly, from Equations (26), (27), (29), ard (31)

Y v = v+ Pl - Pl + put
‘ A 6, " 327 2" 3) B

- e - w—— —

ERE e

+(VG2-Pw + Ps “’1)1=2

. 5 8
+ (VG3 + By = P C wl) £y (33)

G Ty O R
-

%
is obtained. Likewise, for y? similar terms are obtained but with g9
and 84 instead of, say, P, and P, and with P = 0. Since B* coincides

N AL 7T

2 3

3 with B ,

o
v
] B G
g &
2 ey %=y %+l b
2 - - - -0
£
¢ = (Vg + byt - byl ) &
: 6, 23 )&
¢
§ +<VG2-bw)gz <V3+bw>3 . (34)

(2) ZKinematics of Gyroscopes. The gyroscopes are mounted
on the platform, P. One gyroscope has its sensitive axls parallel tc
the axis of the gimbal, G, to sense azimuth rates. The other gyroscope
has its sensitive axis parallel to the axils of the platform, P, to sense
elevatisn rates, A schematic of each gyroscope is shown in Figure 7.
The gyroscopes are single degree-of-friedom rate integrating gyros with
their gimbals mounted on the platform, P. The gyro's rotoxr Rss i=1, 2

TR T ARG v R TR R Y

is motor driven at a constant rate w with respect to the gyro gimbal Ci'

Doy en¥an 08 ¢

The rotor is symmetric about its axis of rotation so that all lines
through the mass center, Ri, and perpendicular to the rotation axis are

principal axes for R?. The center of mass of Ci’ Ci, coincides with Ri.

The generalized coordinates of the siaigle degree-of-freedom gyros in an
inertial frame are Bi, i=1, 2, and the coordinates of the platform, P.

The angular velocity of the rotor Ri is

R C
i_ i
WTEY T 00, . (35)
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{a) GENERALIZED COCRDINATES AND VECTOR BASES FOR THE AZIMUTH GYRO.

~
>

(b) GENERALIZED COORDINATES AND VECTOR BASES FOR THE ELEVATION GYRO.

Figure 7. Schematics of azimuth and elevation gyroscopes
mounted on platform,
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L ' The gyro gimbals have angular velocities
&‘ :

|

I

C
1_ P -
. L =0 - 61 .(_:11 (36)
T c
| P .
1 wl=u+ By Co3 . 67

Previously, QP was determined in the Pys 22, By basis. From Equation
(21) the following is obtained in the C

Cy1 Eyg» Gy basis:

p_ P P p
W o=l ¥ (‘*’2%1 “’3ssl>-°-12 * (*’2361 Cal>913 - (38)

Likewise, in the C

Cy1» Cy9s Cyy Dasis,

P_(P P P P P
w = (wlcsz + wzsﬁz)g:_21 + (w2062 wlsﬁz) €y T Wy Cyse (39)

Finally, note that the velocities of the mass centers R% and C do
not denend on B and Bi

e T T
B

C. Inertia Forces

e T T

D'Alembert's principle states that a reference frame
exists such that the systeuw’s active forces with the inertia forces in
the frame are a zero force system, This frame is called an inertial
frame, 1If certain forces of interaction within the rigid-body system
are not to be determined, then the use of D'Alembert's principle is
worthwhile since standard operations on zero force systems in statics
allow one to equate moments about any point to zero. (We take moments
about pcints on lines of action of forces that we wish to eliminate

from the dynamical equations and thereby reduce the number of unimpor-
tant variables.)

;,
[ig
%
:
r
|
i
;

g
b
|

Lagranye's formulation of D'Alembert's principle allows ome to

elininate all unnecessary forces of interaction dire-tly without using
time-consuming algebraic elimination methods,

(1) Lagrange's Form of Inertia Forces for Gimballed

In this section, we shall deal with only inertia forces
which are derived only from properties of the system's elements and
kinenatics, The generalized inertia forces of Lagrange are given by

Mirzor System.

o 4 X
F§ =36 = 3t o8 (40)
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where 6 represents each of the generalized coordinates, To determine the
generalized inzrcria forces in terms of the generalized coordinates,
their derivativesé and the prescribed motion it is necessary tc deter=~

mine OK/06,,, OK/d BK/BGP, etc. where K is given by Equations {2) and
3).

If the basis for each body of the system has unit vectors parallel
to principal axes of inertia of the body for its mass center, themn the
products of imertia in Equation (6) are zero, The system is designed
so that an axis of rotation of an element is precisely parallel to a
principal axis of the body for its mass center., Thus, the kinetic
energy of each body can be written as

2 3 2
1 B B
Ky=5(m 2 ;) + % B, (;) (41)
i=1 i=1
since the products of inertia, B12, B23, etc., are zero. We now take

the partial derivatives of the total kinetic energy [Equation (2)] with
respect to the generalized coordinates. Since some of the velocity and

angular velocity components are not functions of all of the generalized
coordinates, we have

3 3
% %
/38, = m, M v+ Y u) m (42)
M Oy 1 1,0,
i=1 i=1
3 3
“ _ B B B
ax/oeB = m, > v v. + Z B, w, 0, (43)
i=1
3 3
_ % _pw PP
K/, = m, ¥ Ji, P+ Y B, ‘*’i,ep
i=1 i=]1
+ aKE/aeP + aKA/aeP (44)
3 3
- Gx G G G
OK/08, = m, I VJ G+ Y 6w “1,0,
i=1 i=1
3 3
M M M
tm XYy Ve ¥ 2 Mo “ g
i= G =1 G
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= ca Wheoeagy

+ BKE/BGG + BKA/aGG . (45)

Terms in Equations (44) and (45), such as E;KE/?JQP and BKA/BQG, are

due to the elevation and azimuth gyroscopes., They are insignificant
compared to the other terms and will not be included until the gyro-
scopes' inertia forces are derived in Section 2.c.(2). Th2 task now
is to express the terms in the summations as functions of the general-
ized coordinates. From Equation (32), the following is derived:

\
Mx G G\ _ M
V1,9M = m<Caw2 - saw3) =m uz
My b GY_ M
'»[* L3 M
V13’6 m sa(GM + wl) =m s, wl
M J
M G e N
\Y = V. C, ~V.s, + mw -m s, W,
1,9G 2°G 1°G 3 2,9G (0 Z,GG
- } G
VG2 (m3 msa) wl
M= G M
\ = «y,s, = V.C., ~ m,w + s O (47)
2,0G 276 1°G 3 1,9G o 1,6G >
= . - G
= VG (m3 msa) w,
1
M% G _ G
v3’9(; = (mCa + m2) wl,GG = (m2 + mCa) 0y J
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The partial differentiation
to 6G results in

of components of Equation (14) with respect

N
uF =w, C, -, 8,= uP
1,9G S2 G S1 G 2
G G >
W, =, 5, ~W, C, k6= - o (48)
Z,BG S2 G S1 G 1
G
W, =0
3,6G y
Differentiation of Equaticn (20) gives
0\
w? 6 = 0
b
M
M _ G G_ M
ub’eM Sy + inS w3 P . (49
M __ G G_ _M
w3’eM = Sy - Gy Wy
/
\
uy = uF = wG
1,6, L6, 2
_ |
W = C_ W, = «C_Ww . 50)
2,05~ ‘2,0, T "% (
wM =g uF = =g wg
3,9G (o 2,eG o1 y
From Equation (21), the following 1s obtained:
P _ )
wl,GP =0
P _ G G_ P .
wZ,GP CP Wy = Sp Wy = g > . (51)
P_ G G_ _P
93,0, = ~°p “3 Cp Wy = =W,
/




3
: 2N - - A
1,6, ‘1,6
P G _
: Wy T Cp g T Cp¥y > . (52)
_ G G
: o 5 X
» - -S - s
3,9G P Z,GG Pl J
3 Differentiation of Equation (22) gives
']
B _ B _ 'B _
: “1,0, = 2,0, T “3,0, = ° (53)
1 2 T ¢ )
1,6, 1,6, 2
B G C
3 W = = =) . (54
: 2,6, = “2,6, "1 > )
2 B
) =0
39 y
3
The differentiation of the components of Equation (32) with respect to
4 6 and €, results in
; P G
: JPF G G\ _ )
v1,9P = "P(SP(.O3 + Csz) = =P w2
3 (6 + e, = N
% VZ,OP P\QP + wl CP P CPwl (55)
.
3 pr < c) _ P
- \Y =Pl6_+ w )Js, =P s_w
¢ 3,€P P 1/°?p P1 p
p* G G A
) = - - P = - - ’
\71’0 VZCG VlsG + (P3 'SP)NZ,G VG (P3 PsP)wl
G G 2
: P G G
5 = - - - = o -
: V2,8 V1CG VZSG (P3 PSP)wl,Q VG (P3 PsP)w2 5. (56)
) G G 1
4 p¥ G G
2 v, = (P, = PCHw = (P, -~ PCw
3,9 (Py = ECp) 1,0, - %2 p)¥ )
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Similarly, Equation (39) gives

B% B* B*

V=BT =BT 2 57
Lo, ~ V2,0, " V3,0, N
B G R
V1,6 = Vol = ViSg T b3 9, g
G G
G
=V, -b,0
¢, ~ "3
Bx G
Vz,eG = “Vpsg = V€ - byy > . (58)
G
= - G
Ve, = P3¥
1
B* G G
v = b,W = b,
3,85 - 21,6, T P2 )

The substitution of Equations (32), (46), (20), and (49) into
Equation (42) results in

_ G - G - M\ M
o~ mM m[(VG1 + m3u2 m2w3 mw3>u)2

G M G M
- (VG2 - m3w1> (,01 + V3 + mzwl)sawl]

M M
+ (M2 - M3) W, W, . (59)

QO

From Equation (43) with Equations (22), (58), (34), and (57), the
following is obtained:

yg—=0 . (60)
B
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From Equat:on (44) with Equations (21), (56), (33), and (55) ana with
ol(E/oQ = oK /89 = 0, the following is obtained:

oK _ G G P\ P
So. = mp P (Vo T Pyuw, - Fyuy o+ Pug )

1
¢\, P c\. P
- (Vc2 - P3"’1)°z>“’1 - <V3 Pz“’l) Pl
P
+ (P P3) Wy . (1)

With BKE/BBG = BKA/BQG = 0, the substitution of Equatioms (14), (48),

(32), (47), (20), (50), (34), (58), (22), (54), (33), (56), (21), and
(52) into Equation (45) results in

oK _ G G G N
o, ™ [ z(V3 t gy 1) o <g3 1 VG2>] + (G - 6y) vy W,

+mM (m2+mCa) [w2V3+mCG +w1(m +mC)

wg(VGZ - u)(i (m3 - msa))] + éMmsa[VG + (m + ms ) w

1
G . 8.8 2 G
+ MIGM(" + (M 4) 093 + (Ml - M?_Ca w W,
+ bwGV -bwv +bw bw +bw -Bew +(B )wGwG
Tg | 2% V3 = P2™s G, " 31 3% 1°B 2 By)w;
+m @, - ey | oClv, -~ pcd + oC(p, - PC.)
p Y2 p’ | %2\V3 pp T ¥ T e
G G .. . G
-0y (Vg = wy (B3 - PSP)/] - OpPsp [VG1 + (B, - Psp)wz]
e GG 2 2\,6.8
+ PIBPWZ + (P3 - Pz) CPst3w1 + (Pl - szP - P3SP> 1 2 . (62)

It is necessary next to determine the partial derivatives of the
system's kinetic energy with respect to the derivatives of the general-
ized coordinates. Since some of the velocity and angular velocity com=
ponents are not functions of all of the generzlized coordinate rates,
we obtain only the following terms:

3
. M*  M#

= 7 o
Kby =mg 2 Vi Vi

b
i=1 Mooy

+ z M, W o wi’ém (63)
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3 3
. Pt _p% P P
= T . . - 4 .
KOp=my ¥ Vi Vi + 2 B w g TR0 TR o (69
= I P P p
i=1 i=1
3
Le B B .
h,OB = z Bi mi mi,OB (65)
i=1
3 3
. ME M MM
6 = - ' -
K0, =my 2 Vg 1,0, 7 X, L 1,0,
i=1 i=1
3 3
pr P, PP
tmp X Vi V5ot X P wy g
- G .. G
i=1 i=1
3 3
B% _B*, B B,
g Y vy 1,057 2 By “1,0,
i=1 i=1
3 3
G G e
T v, . 2+ . . . A
T g z V:. V:.,GG z 6; “i w:.,GG
<1 i=1
+K, s *FK, o2 . (66
4,0, KE,()G )

(Again we neglect the gyroscopes' inertia terms such as K, » and KE * )
A OP ’UG

We now express Equations (63) through (66) in terms of the generalized
coordinates and their derivatives, TIrom Equation (14) we observe that

wG [ = u)G ° =0
1,0G 2,OG
N (67)
G
w, 5 =1
3,0G
From Equations (20) through (22) we obtain
M,
“1,0, 1
(68)
oo M, 2
2,0M 3,0M
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=
7
3

:"; Similarly, Equations (32) through (34) give
1 M g h
'!.,9M
i
N (74)
SIET
M
vV, 5 =mC
3,6, o )
p* )
P =0
1,6,
P, _
Vp o = PSp ) (75)
P
p*
vV, 5 = -BC
. 3,6 P y
3
= v 7':. —
1,6, 2
,‘ *
: vos =0 ) (76)
4 e
%
vg 5 = 0
ac /
p e . N
B s = -m, - m
7 1,90 2 o
= L3
é Ve =0 77
3 2,0, >
%
VI; 8 =0
4 e
P, = op, +BC )
6,7 2T
3 G
3 P
v, s =0 (78)
? Z,GG >
3 %
' Vi = O
E 76 J
28




e s T s o

B 3
¢ = uh
L6, ™2
B¥
v ® = 0 9
2,8, > (79)
B*
VSSGG 0
A

The substitution of Equations {(32), (74), (20), and (68) 1nto
Equation (63) results in

M mM m[? v, + s VG

G M M
+ (mZQJ - m3§1) Wy +m wi] + Ml Wy . (80)

2

From Equations (21), (33), (64), (69), and (75), we obtain

6, = m, P[sp Vo = CVy = (Bgs, + BC )w

2
P P
+p “’1] + Py Wy . (81)
From Equations (22), (34), (65), and (70), we obtain
K6y = =B, & . (82)

Substitution of Equations (14), (20), (21), (22), (32), (33), (34), (67),

(7L, (72), (73), (76), (77), (78), and (79) into Equation (66) results

in
s .6 G_ . .G G
Ky8g = Gguwy + mygy <g2“’3 83y Vcl) + Byuy

2 2 G
+PCP+P28> -*-(P--Ps)spP2

8
3 3
2 2\ 6
<M30a + M8 ) y (M = M )Sacoe“’z
+ v - B,)

6 [my (BC - mpb, = m(m, + mC,)]
+my (m, +m(:)(gI zg-m3w2>
+my (2 = C) <P§ ZG-Png>
+ mb, (bzw - bu ) (83)
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We now take the time derivatives of Equations (80) through (83).
They are requived in the generalized inertia forces given by Equation

(40).

These derivatives are

_ 2\*M °
= (Ml + mMm )(.-)1 + mM m[CaV3 + GaVG + (mZCa - m

o
<

+ My m[saV3 - CaVGz + (m + my C )w]

2

+mPP[P3+C\G2+(P2P 3P)w] o

°B
By 9

2 E M
(G3 B3 P3CP PZSP C sa) 3

+2 (2, 6+2(M Mz)ste

P3)SPP3 aa3’M

.G G,
- +
tmeg, (gz“’3 83% Vcl)

G 2 2\ 6
. . - 6
(P, = Pg) spCpw, + (P = P3) (CP sp) w

-+

+

M

-G 2 2\ G
- - - 6
3 MZ) SOfCamZ + (M2 M3) <C ) %)

o4 2°M

- Vg [m, (P, - PC,) + mb, + my (m, + wC,)]

30

.G
%x)wl]

(84)

2\*P . . ,
- I -
(Pl + mPP )wl my P[CP'\3 SPVG + (PZCP _3 P)w ]

(85)

(86)
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B S e s

SR, g e

LR e ek AT,

- P -G *G
+ m, (I’2 - PCP) (P 3 + P2m3 - P3w2)
M P G G
+ mP P SP BP (Pw3 + P2w3 - P3w2)
-G -G
+m b2 (bzu.s - b3 2) . (87)

The generalized inertia forces cam mow be written in equation form.

The combination of Equaticns (59) and (84) as in Equation (40)
results in

2y M M r G G\ M
% = - - -
FeM (Mz M -mm ) Wy Wy + mm L(VG + mgw, mz"’s) @,

]
=
[
+
N
S
£
ol
]
="
(]
Q<
w
3
<
(2]

Gl
+ (mzsa + m3Ca) wl] GM N (88)

Equations (61) and (85) are substituted into Equation {40). The result
is

2 P P G G\ P
% = - - - -
Fe (P2 P3 mPP )w2 w3 mP P[(VG1 + P3w2 P2w3> w2

G P G P
- (VG2 - P3w1‘> CPwl - <V3 + P2w1> stl]

2\ P . e
- (Pl + mPP >w1 + my, P[CPV3 - SPVG2 + (PZCP + P3sP) wl]

G
~ my P [SPVB + CPVG“ + (PZSP - PBCP) wl] GP . (89)

&
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The generalized inertia force for 6 obtained from Equations (40), (60),
and (86) is

F* = B,w. . (90)

Similarly, from Equations (40), (62), and (87) we obtain

_ 2 2
Fgc = {Gl G, +m g2 mH(m + mC, ) + My - MGy - Mysy

2 G G
+me3+B - B +mP(P —PC) +P1-P2CP P3SP]wl w,

+ [mM(m2 +mCy) (my - msy) + M, M) C
+ me2b3 + mP(P2 - PCP) (P3 - PSP) + mngg3
G
+ (1’3 - PZ) CPSP] W,
+m) + M,] o 6, - B,»
1 M2 M

+ [m.M m(Cam2 + SoM3

[
N
4]

G .
+ [an P(P ~ CPPZ - sPP3) + P1] W, GP

+ V3w2 [m + mM(m2 + mCa) + meZ

G
- 1 -
+ mP(P2 PCP)j VG2w3 [mM(m2 + mCa) + meZ + mng
- b . 0
+mp (R, - BT + vcl(“‘m m Sy "y "M P Sp7p
2 2 2 2
- [G3 + B3 + P3CP + stP + M3Ca + MZSO’.
+mg2-‘~ (m, +mC.) m, + m (P, - PC.) P
G°2 MY 2 (o 2 P2 P 2

21 G
+ meZ] Wy + [mngg3

+ (P3 - P2) SPCP
+ (M2 - M3) SaCOL + m (MZ + mCa) m,

+my(P, = PCy) Py + mpb,b ]wG
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- VG [mGg2 - m.P(}?2 - PCP) + meZ + mM(_m2 + mCa)]

1
oM P
- mM(m2 + mCa) m w3 - m.P(}?2 - PCP) P 0)3

+ [2(1>3 - B)) spCpf, + 2(, - M.) 5,C.0,
L ] - G
---mMmsOtm2 GM-mP PsP Pz GP] w3

2 2\ - 22 2\ ¢
+ [(P3 - P2) (CP - SP) GP + (M3 - MZ) (("O! - sa) GM

[ " G

+mMmsCtm3eM+mPPSPP3eP w2

+m. P s v Pt o + v a6 91
"p ¥ %%, 3Pp T M ™ SalYe, "™ (1)

(2) Lagrange's Form of Inertia Forces for Gyroscopes.
Here, as in the last section for the gimballed mirror system, we derive
the generalized inertia forces of Lagrange for the gyroscopes. For
any system of rigid bodies, the Lagrange generalized forces are
expressed as in Equation (40), The kinetic energy of each rigid body
element of the gyro can be expressed as in Equation (4l1).

Since the velocities of the mass centers of Ri and C, do not

. i
depend on Bi and Bi, there is no need to include the translational

velocity terms in the kinetic energy. Thus, we simply write the kinetic
energies of the systems as

KA = KR + KC (azimuth gyro) (92)
1 1
KE = KR + KC (elevation gyro) (93)
2 2
where
0 KRR
KR = > Ri w,” + Ri w2 + Ri w
i 1 2 3 y
K =l<c cocii-c wC§'+C wci)
Ci 2 il 1 12 2 13 3

and Rij’ Cij’ i=1,2, j=1,2,3, are principal moments of inertia of Ri
and Ci for their mass centers.
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We now determine the gencralized inertia forces as expressed by
Equation (40) for the gyroscopes. The gyroscope's Equation (40) is

written as
o BKA 4 axA
By By dt 3
F* = aKE - —d- g-'K-F:
By B, ~ dt Iy

(94)

(95)

The derivatives in Equations (94) and (95) are to be expressed in
terms of the generalized coordinates, their rates, and the prescribed
motion of the system's base mount. From Equations (92) and (93) we have

¢, 4

+ Gy wy wi,Bl

2 2
+ Coy 1y wi’ﬁz

3
oK R, R
A _ 11
®, " ) <R11 “ “1,8,
=1
3
BKE R, R
A 2 2
*, ) <R21 “i L,
=1
3
BKA._ s (x le le-
5;'3; 111 1,8y
i=1
3
%L 3 (a0 o2
yz 21 1 1,8,
i=1
vherein from Equations (35) through (39) we find
R c
1 1
w = W =0
1,8, 1,6,

2,8, " “2,8, 2 %, " Y3
R C
1 1 P
-— C -
0)3’61 w3’61 (1)2 Bl u)3SBl
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T FPSRTEs

awer wﬁ“m&

T g,

R C
2 2 P
(A = = . C - WS
L,Bz 1,62 2 62 1 Bz
R C
2 2 P P
, -~ fw,C w,.s
B B (1 B, :32)
By L mcz o
3,6, 3af,
R C
1 10 - -
wl ‘31 wl,ﬁl 1
R C
3] 1{3 wzlé =0
1 ™1
Rl wcl .
’Bl ,51
R C
2 2
. = = 0
“1,6, T “1,8,
sz' = 02. 0
2,62 2,62
R C
2 2,
w3’62 w3’62 1 .

Thus, we can write Equations (96) through (99) as
;— = e < Rl + C (J.)Cl) ( P )
61 12 ) 1272 Wy 8 61 3 Bl /

R C
1 1 P P
+ (RIBQB + CqqWy > (u&CBI - ubsﬁl )

:>7<
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[IWﬁ*vrvwmw,_ w,,p

Ry Cy \
- (R22w2 + szmz ) (u)ICB + wsz ] (101)
2 2
oK R c
A 1 1
BBT = (Rllwl + Cllwl ) (102)
o K, C
B'éKE = (R23w3"- + 023w32) . (103)
2
The time derivatives of Equations (102) and (103) are
d .01
Tt KA’él = -(Rll + Cu)wl (104)
d 002
T KE,éz = (R23 + 023)w3 . (105)

The substitution of Equations (3100), (101), (104), and (105) into
Equations (94) and (95) results in

R C
= 1 1 P P
F*Bl = e (R12w2 + Cl?_w2 ) (wzsﬁl + w3cf31)

R C
. 1 1 P P
+<R,.w + C, W )(wC - W,s \
1573 1373 2[31 3{31/
C

1
+ <R11 + Cll) wl (106)
R c
. D2 2y (. _ P
e ”<R21“’1 +C21‘*’1) (“’206 Y153 )
2 2 2
R C
2 2 P P )
<R22w2 + 022w2 > (wlCBZ + mzsB
2
.G
- (R23 + C23) w3 (107)
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where from

N& =
Pt

NE O
=
]

w

£
d
=
it

= HF_'o %
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P

£
1=
i

N

]

ONEFU

g
)
1)
Il

.
L»)E (@]
N

Equations (35), (36), and (37)

<w§c3 - u):l.;s6 )- W
1 1

wPC - uPs
2 51 3 Fq
C
3

OP e
w3 t+ 52

so that Equations (106) and (l07) are finally written as

i

F*

-(R,, +
31 12

P
R]_2 m<w3

-+

F*ﬁ = (R

1
~
-~
N
N
+
(@]

P P P P
c )(»C - Ww,s )6»3 + w,.C )
12 2(31 361 \251 331

P
C + Ww.s
Py 251)

11)<‘."§ - 51) (108)

21) (“’Il)cfiz + wgssz)(ngcaz - wi’c%)

22) (wgcﬁz ) 0{8‘32)(@%52 ’ wgssz)

%y " (%Psﬁz)

23)<&)§ + {3‘2) . (109)
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d. Active Forces

Active forces acting on the system of rigid bodies ave
those due to friction, gravity, deformable wire drive (massiess) con-
nections, spring tension due to electrical conductor connections between
moving parts and torque motors.,

The wire drive is assumed to deform according to linear elasticity.
The wire drive is attached to the platform and mirror wheels in tensionm.
That is, there is a2 force of Fo in a wire segment when there is no

movement of Py, M, and B and GP =6 = 9B = 0. The wire can be stretched

M
or its tension can be reduced by relative move~cnt of the wheels of P,
M, and B, Figure 8 shows the configuration of the wheels and wire drive
with critical dimensions. Free~body diagrams of the wheels showing the
wire drive forces and the relative rotations of the wheels are zlso
depicted, Consider first the wire of length S1 between the mirror and

plaetform wheels, The wire has a cross-cectional area, A, and a modulus
of elasticity, E. The increment in force in this wire due to the
relative rotation of P and M is

£ = (EA[S)) (0, = 1,8+ (110)

Similarly, the increment in force in the wire between P and B is
= - (
AF, (EA/SP) (rg0p = Tp0p) (111)
and the increment in force in the wire between M and B is

OF, = (EA/SM) (ry By = Tx08) - (112)

The moment of the forces due to the wire acting on M obtained from
Equations (110) and (112) is

Ty = Ty(Fp T OFy = F - AR g

= Iy [Kl(rPGP - rMQM) + KM(rBGB - rMQM)j -9 (113)

where

K, = EA/Sl

-

EA/SM . .

=8
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{a) CONFIGURATION OF THE WHEELS AND WIRE DRIVE WITH DIMENSIONS.

0
F, +AF M
> 1
|
P M
Op
‘. )

F_+AF w
0 P

‘ F0+AFM

g

{b} WIRE DRIVE FORCES ON WHEELS FOR RELATIVE ROTATIONS.

Figure 8. Wheels and wire drive configuration, dimensions, and forces.

Equations (110) and (111) are used to obtain the moment of the forces
due to the wire acting on P and give

IPW - rP(Po * AFP h Fo B AFl) By

= rP[KP(rBOB - rPOP) + Kl(rMOM - rPGP)] B (114)

where

KP = EA/SP. Likewise, from Equations (111) and (112) we obtain

for B under the assumption of no slip between B and the wire
= w nl - T -
Ty = Tp(Fy +F, ~ F = AFY) g
= 1 lK (xp0y = wp0p) + Ky(rp0p - 1001 gy (115)
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Coulomb friction torque on the mirror is written as

Ty = ~Cysen O gy - (116)
For the platform we have

Tpo = ~Cp 52 (6 & (117)
and for the balancer

Tpo = Cp S0 O) & (118)

Similarly, we denote viscous friction torques on M, P, and B by

Ly = Ny O By (119)

EPV = -NP BP 8 (120)

I'BV = NB BB g . (121)

For the gimbal, G, the Coulomb effects are expressed as

Zo = G 528 Og) &g

+ [CM sgn (OM) + CP sgn (GP) - CB sgn (BB)] B (1229
and those due to viscous effects are
Loy = g s () g

+ (NM GM + NP GP - NB GB) 81 . (123)

Gravity force torques are not zero since there are mass unbalances.,
The mirror's gravity torque in the o, My, Mg basis is

Iyg = My ™ & {[sa(SRSACE+CRSE)CG * s (spCp)%g

Co (CRlg) = Cy (sgsysp)l my

+

+

[(sRCA)CG - (SRSACE + CRsE)sG]} my . (124)
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Likewise, the platform's gravity torque in terms of‘gl, Bys By is
Ipg =™ P8 {[CP(SRSASE) - Cp(Cgly)
+ sP(sRsApE + CRSE)CG + SPCSRCA)SG] 2
+ [(sRsACE + CRsE)sG - (sRCA)CG]} By (125)
and for the gimbal, G, we have
Tec = g g{[gZ(CRCE = 5goa%e) ~ 83(Ca(sps,C + Cyep)
 (sgCp)sg))Ey * 83 [sg(sps,Cp + Cpsp) = (5pC,)CC] gy
+ g, [(sRCA)CG - (sRsACE + CRsE)sG] 33} . (126)

The electrical conductors which connect between the gimbal, G, and
the platform, P, exent a spring torque on the platform and gimbal, These
torques are expressed as

Ips = K5 Op & (127)

for P and

=
I
=
(s>
Ry

(128)

(1) Generalized Active Forces for the Gimballed Mirror
System. The generalized active forces for each element of the system
is determined by

= B,
Fo) = Wy o I (129)

where B denotes one of the rigid body elements and IB is the torque

of the moment about the axis of rotation of all forces acting on B.
From Equation (14) we find

Qc,;g, = 92(,;(; = _uzfé =0 (130)
M B P

G

Wy =& - (131)
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Equation (20) is observed to give

gy =y =0 (132)
P B

d - a
M

E’.I;ie = ..SGEZ + Ca9.3 = g.':, . (134)
G 2

Similarly, we obtain from Equation (21)

whs =y =0 (135)
M B
P
Yy =Py (136)
P
P
g, = SpRp T Cp3 = B3 (137

and from Equation (22)

B B

Yyg =Wes =0 (138)
8M eP

By =2 (139)
B

B}’zéc =g, - (140)

Now, from Equations (122), (123), (126), and (130) through (140), we

obtain
.Fev) = FGP) = FGB) = 0 (141)
e G G

= -CG sgn <6G> --NG sgn <9G>

meg 8y [(spC,)Cq = (sps,Cp + Cpsp)s]

=
D
«
o
1

+

(142)
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The contributions to the generalized forces by the forces acting on M

are
F,,) =F6) =0 (143)
“B P
M M

M

FGM) = ry[K (g0, = 1fy) + Ky(rgbp = 18]
M

Cy sen (%) - NPy
+ m g [%J(SRSACE + CRsE)CG

+ Sa(sRCA)SG + qu(CRCE) - qﬂ(sRSASE)] (145)

as seen from Equations (113), (116), (119), (124), (132), (133), and
(134). Similarly, from Equations (114), (117), (120), (125), (135),
(136), and (137), we find

FQB) = FGM) =0 (146)
P P

= rP[KP(rBeB - rPGP) + Kl(rMGM - rPGP)]

i
"U(D
N
-]
|

/
CP sgn (GP> - NPOP

+ m,Pg [CP(sRsAsE) - CP(CRCE)
+ 85 (sRsACE + CRsE)CG + sP(sRCA)sG] 47
= - /]
Foq) mPPgCP[(SRSACE + CRSE)SG (SRCA)CG] . (148)
P
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The contributions to the generalized forces by the forces acting on 3

are
/B B E

FeB) = ~rplRp(xpby = 156p) + Ky(xpby - 18]
B

CB sgn <GB> - NBGB . (150)

(2) Generalized Active Forces for the Gyroscopes. The
only forces acting on the gyroscope elements are those due to friction,
gravity, and the servo drive, gimbal precession, torque motor. The
friction forces are described as viscous friction. The torques of their
moments for the azimuth and elevation gyros are

L= NPy (151)
Tey = Mg By S5 - (152)

The gravity forces do not affect the system's motions since the torques
about the mass centers are zero. The gimbal precession torque motors

of the gyroscopes are active only when the platform is servo driven in
a slewing or tracking mode, When the precession torque motors are
active, they provide torques proportional to an external rate sjignal
generated by, for example, a manual tracking stick or contrast TV
tracker, These torques are not functions of the generalized cocrdinates
and can be added in later.

To determine the generalized active forces for the gyroscope
systems, we refer to Equation (129):

c
_ A e h e s .
Fﬁl) R e R Tt Bl (133)
c
1
) T Te) TF,) TTe) T
2Jc Ye 2/R Y 2/R
1 2 1 2 2
= F =0
’ 1) (154)
R
A
=1 2 '] - 3 - 3 —_ - 3
F‘jz) T8g  Ipy T Gp3 v Meoles T (153)
)
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wherein‘g,% etc, are determined from Equations (235), (236), and (237)
1

and zAV’ iév are given in Equations (151) and (152).

e. Complete Nonlinear Equaticns of Motion

‘The equations of motion of the gimballed mirror system
and the gyroscope systems are now obtained by simply setting to zero the
sum of the generalized active forces for each generalized coordinate
and the corresponding generalized inervia forces; i.e., we form

* K d oK _
FgtFa=Fo* S5 -arop =0 | (156)

for 6 replaced with each of GM’ BP, GB’ GG’ 61, and BZ. From Equations
(88), (141), (145), (146), and (149) and the fact that

FQM ) 1roM ¥ FB}Q ¥ FGM i FQM)
M P B G

we obtain for GM

TylKy (Tpfp = 1Py + Kylrghy - By

-CM sgn (GM) - NMGM + x.leg[ SOL(SRSACE + CRSE)CG
o 2 - .
+ ua(SRCA)SG - COL(CRCE) Ca(sRsAsE)]

M

2\ *u 2\ M
"<M1+"‘»r')“’1 +(M2‘M3““‘rf“)‘*’z“’3

G G\ M G M
+ mMm [(VG]_ + m3u)2 - m2w3)m2 - (VG2 - m3w1)Caw1

G M ° .
* <V3 * mzwl)sawl] - "’If“[cav3 + SOtVG2

oG
@Gy - “‘3Sot)"°1} - "‘Mm[sav3 - CaV62

G .
+ (mys, + m3ca)le =0 . (157)
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Similarly, from Equations (89), (141), (143), (147), and (149) we have
for 6
P

( - - 1] -
rplKp(rydy = Tpfp) + Ky (ryfy = Tpfp)l = Cp sem (GP)

- N, + m, P g[CP(sRsA§E) - CP(CRCE)

+ sP(sRsACE + CRSE)CG + sP(sRCA)sG]

2\-P 2\ P P
- (Pl + mP P‘>w1 + (fz - P3 - mP P )w2w3

G G\ P G P
- mP P[(Ycl + P3w2 - Pzw )wz - (VGZ - P3w%)CPw1

G\ P .
- <V3 + Pzwl)stlJ + mP P[CPV3 - SPVG2

«G
+ (P2 CP + P3 sP)wl] -m, P[%PV3 + CPVG2

G| & _
+ (1”2 Sp - P3 CP)u)l] 91’ =0 , (158)

Likewise, from Equations (90), (141), (143), (146), (150), and (156),
we f£ind for GB

K (rgfy - rp9p) + Ky (rgfy - ]

3 * .B - 0\
- CB sgn <6B> NBQB + B1 Wy 0 . (1592)

For OG we determine from Equations (91), (142), (1l44), (148), (149),
and (156) that

CG sgn <9G> - NGGG + M, 8 8 [(sRCA)CG - (sRsACE + CRSE) sG]

-+

my ™ g Ca[(sRCA)CG - (SRSACE + CRSE) SG]
+ mp, Pg CF[(SRSACE 4 CRsE) S; = (sRQA) CG]
2 2 2 2

- {33 + B3 + P3 CP + P2 sP + M3 QJ + Mz sa
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2
+ m, 8, + m,M(m2 + mCa) m, + mP(P2 - P CP) P2

2] «G 2 2
T bz] “3 [Gl " Gy Mg By * my(my + mGy)

N

2 2 2
+-M1 - MZ C,6 = MB Sy + me3 + B1 - B2 + my, (P2 -P CP)

Q

+ P, - P - P3 S;] ug wg + [other terms in Equation (91)]. (160)

1 2

N

The equation for ﬁl is obtained from Equations (106), (153), and (154)
and is

. .C1 ( Ry ¢ ( P P
= NBy Ry + G0 - (R0, + C % >\w2861 + ‘“3061>
R C
1 1\( P P _
+ <R13w3 + Cl3w3 )(wzcsl - w3sﬁ1) =0, (161)

From Equations (107), (154), and (155) we obtain for 62 that
C R C
. 22 T2 2\ /(P P
" NgPy = (Ryg ¥ Cpp) 03" + {R570) " + Cppy )("zcsz - ‘*’1862>
R Cc
2 2\( P P _ :
- (R?_zm2 + C22w2 )("ICBZ + wzsﬁz) =0 , (162)

3. Analysis of Equations of Moticn for Special Cases

The equations of motion given in Equations (157) through (162)
are nonlinear and quite complicated with various orders of cross=-coupling
terms. Besides the usual single rigid body cross-coupling terms, the
equations contain significant cross-coupling terms due to mass unbalance,
base motion, and band drive deformation. We shall now put the equations
of motion into a standard form of a system of first-order differential
equations suitable for numerical solution by a forward integration
scheme such as a fourth-order Runge~Kutta.

‘In the equations of motion, the variables Vl’ V2, V3, QA’ QE’ ¢R’

$A’ ®E’ and &R and their derivatives are known functions of time from
the dynamics of the base or from measurement data. We must specify
initial conditions in solving the system of differential equations; i.e.,
we m?st spec%fy that at ?ime t = 0, the values GG’ GG’ BM, GM, GP, GP,
OB’ GB’ {31, Bl, {32, and t’>2. Then from Equation (14) we can calculate

the values of uﬁ(O), wg(O), ug(O), and from Equations (20), (21), and
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(22) ve can calculate u;(0), wp(0), wl;(O), W[ (0), wh(0), @2 (0), (0.

: Following these calculations, we determine from Equations (36), (37),
: C1 C1 C1 C2 02
(38), and (39) the initial values wy o, w, ), W, 0), wy ), w, ),
c, Ry Ry R,
; m3 (0) and from Equation (35) the initial values w2 ), w3 o, wl 0),
¥
R
E and w22(0). With these initial conditions we solve the gyro Equations
g (161) and (162) and the following set of 33 first-order differential
E and algebraic equations:
L VG1 = CG v1 + Sg v2 (163)
E
3
% Vo =CVy - s vy (164)
i 2
E
Wy = ¢E + ¢RSA (165)
1 1
;
=0 + 0
“’s? RCACE * %A% (166)
E L]
g Wy = ¢ACE - c‘RSECA (167)
u)G=wC+ws (168)
1 S, G S, G
1 2
&»cl; = éc("’s Cg = g g} + ées Cy + ‘:’s s (169)
2 1 1 2
wG=u)C-ws (170)
2 S, G S. G
2 1
.G . . 3 .
b = ‘%(‘*’slcc + ‘*’szsc> + b g b o (171)

=cul + g ol (172)

P _ G G

w3 = CPw3 - stZ (173)
C.

L o_ P - P /,
w, " = Cﬁlw2 salw3 (174)
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(175)

(176)

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)



Ee

=g

]

- CM sgn (éM) - NMGM
+ 1l Kl(rl;e'P = nfy) + K8y - 5,001
+ mymg [Sa(SRSACE + CRSE)CG + sa(SPCA)SG
+ Ca(CRCE) - COt(SRSASE)]
+ My m[(VGl + m3wg - mzw(;) wg
M M

G G
- (VG2 - m3“’1) Co Wy <V3 + m2(”1>soc “’1]

s + (m

L] .G
- m, m[c:av3 + 2Cy = ™355) “’1]
My ™ [S'av3 -
2\-1 2 P P
(Pl ) {(P,_/ - P3 - mPP ) u)z w3

+ 1.‘,P
CP sgn < P) - ”PeP + rP[KP(rBQB - rPQP)

+ Kl(rMGM - rPQP)] + my, P g[CP(SRSASE

- CP(CRCE) + SP(SRSACE + CRSE)CG

G G
+ sP(sRCA)sG] - m, P[(VG + P3w2 - P2w3>w_.

1

G P G\ s P]
- <VG2 - P3w1> CPwl - (V3 + P2w1> stl

. . oG
+omp P[CP 3" SPVGZ T (RyCp T Pasp) w |

.
- my, P[SPV3 +CV, + (P,s_ - PBCP) wld GP}

PG2 2°P
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B _ -1 H .
wl = B1 {CB sgn <9B> + NBGB

+ el (xpby - rpdp) + Ky(rgfy - rMeM)]} (192)
G _ 2 2 2 2 2
& = [(;3 + By + PCo + Pyst + MCE + Mysh + meg)

E + mM(m2 + mCO‘,)m2 + ml.‘,(P2 ~ P CP)PZ
i 21)-1 2 2
: * “‘Bbz] {[Gl = Gy * mg8, *+ my(m, + mCy)

+ B, - B

. 2 2 2
+ M, - M - M,s +me3 1 9

1 zca 3%

2 2 2] G G
+ mP(PZ - P CP) + Pl - PZCP - P3SP] wl w,

3 = G sen (%) = N8
+ m; 8 gz[s cc, - sG(s s .C. + CRsE)]

RAG RAE

+ m, g m CG{SRCACG - SG(SRSACE + CRsE)]

-m, g P CP[s ccC., - sG(sRsACE + CRsE)]

RAG

;
: + [other similar terms from Equation (91)]} (193)
5 C R C

=1 -1 1 1)/ P P
] »1 (R11 + Cll) {(Rlzwz + C12w2 )<w2,al + w3061>
: R C
:gf P P 1 1 2 ’
i * (“’35.“1 - *’zcel> <R13“’3 T Cpa0y | NGBy (194)

e Lo L

C R C
72, -1 2 . 2\ (P P
W, Ry + C23) [(R21w1 F Cyywy > (wzcaz - wlssz)

Ry €\ [ » p .
- <R22w2 + 022w2 ) (wlcﬁz + w2562> - NEﬁz] (195)
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These equations become quite simple for the three special cases of:

a) Small vehicle motion: ¢, = ¢ =¢ =V =V =V =0

A E R 1 2 3

with their derivatives
b) Small mass unbalance: m= P = 8y ~ 0
c) Small deviations from system looking forward:

zeMze ~ 0 =

% A T Rl Tl Rl S P

2 ® 0

d) Small motions and mass unbalances,

e

zﬁlzgleﬁzz

In Case a) the equations become:

v, =V, =V,=20

G, G, 3
wsl = wsz = wss =0
w(];_ = wcz; =0

(i = &)g =0

wb; = Cawg

oy = o5

“’g = Cp¥s

c

w21 = Cﬁlwg - salwg
C

w31 = sslwlz) + Cslwg
wzl = wzl- w
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=
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£

+ rM[Kl(rPOP -

tmmog Gy - omy

o)+ Ky (rpfy -

G M
amy o 1)
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T

2\-1 2\ P P
<P1+mPP) {(PZ - P3 -mPP )u)2 w3
Cp sgn (ep) - N9

+ rP[KP(rBGB - rPGP) + Kl(rMGM - rPGP)]

G P
-
mPPgCP'm“PPPZ%wZ}
=3l fc sen (6. )+ N6
1 1B 58 |% B B

+ rB[KP(rBGB - r0.) + KM(rBGB - rMGM)]}

.
[l v~}

Y
wo

- 2 2 2 2. 2
= {G3 + By + POy + BySp + M0 + Myst + mg)

\ -
+ mM(m2 + mCa, m, + mP(P2 P CP) }?2

-1
2 . .
+ mez} {-CG sgn <6G) - NGeG
P

oM °
- M - -
M(m2 + mCa)m u)3 'mP(]?2 P CP)P w3

s 2 2\:
+ 2(Py - By)s CLOp + 2(M, M3)sacaéM + (g - P,) (cp - sp) o

. ° G . 2 2
- my mm, saeM - m, P 1”2 SPeP w3 + (M3 - MZ) (COC - sa> GM

- mp 2 sy oy b, = mym” 5, oy by
Equations (194) and (195) remain the same in this case,

In Case b), Equations (163) through (189), (192), (194), and (195)
remain the same, The other equations become

oM _ =l M M ;

W, = M1 {(I»‘I2 - M3) Wy Wy = CM sgn GM

- NMeM + rM[Kl(rPGP - rMQM)

* Kyfp - Tyl
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o S | PP
w = P1 {(P2 - P3) Wy Wy CP sgn 'y

- N?GP + rP[KP(rBOB - rpup)

T K By - 100 ]}

-

G 2 2 2 2
G * l 3 Byt Py Bysy 4 wyGh w msl

+ mme + m P2 + bz-l G, -G
"z T Mpta T Mpby [1 2
2

+ M, - M C} - M s2 4+ m b
o1 B

1 2 3 3

2 2 27.¢ .6
t By - By hmpBy + Py - RCh - Pysy |

- Cg sgn O - %

+ {m @2m3 + <M2 - M3) saCa + me2b3
¢ G G
N - + 6
FmpPyPy By = B))Cpspl wg wy + M) 6
- Bab + v o ( +mb, +m P+ P B
12 3% My T mpb, T omyP, 1“2 %p
~ VW (mm +mb, +mP.)
st"‘m’"z MgPy T Mmpty

+ {(P3 - PZ)SPCP + (M2 - M3)saca + mmomy

oG .
+ mPPZPB + m b.b.] u& + (mPP2 - me2 - mMﬂb) v

B2 3 cl
+ 2[(p -P)scé + (M -M)scéJwG
3 2°p PP 2 3% M
2 2\ 2 2. % . G
+[(P3~P2)(CP-SP)6P+(M3-M2) (ca-sa) 9:4‘ o,

In Case c¢), we obtain the linearized differential equations which
have only linear terms in the dependent variables except for essential
nonlinearities like Coulomb friction., Also added are torque terms which
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would result from a torque motor driving the platform (Tm ), gimbal

p
(Tm ), azimuth gyro (Tm ), and elevation gyro (Tm ). In this case we
G A E
obtain
vV, =V
Sy 1
vV, =V
G2 2
%, T *s
0, =0
S2 R
We =%
uF =
1 Sy
$ =
1 S1
up =
2 S,
oG .
W, = W
2 S,
P_ G
Y T
)P - QF
“3 7 %3

1_ P
(J.)z—(x)z
C, p
Wy = Uy
R c
1.1
wz = wz W
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TRELTALL
J\Iu

.B— _1 . ..
w = Bl {CB sgn GB + hBeB

+ rB[KP(rBeB - rPGP) + KM(rBGB - rMSM)]}

-1 ~ . .
Y3 = C33 {“‘c sgn O = N ¥ [mcgzgs
2
+ (Mz - M3)CC( + m.ﬂxn:‘}(m2 + mCa)
4+ mP_ (P, - P) + m.b,b o - m
Mpraita Mg°2°3| %2 cB2
- mP(Pz - P) + me2 + mM(mz + mCa)] vG

- mM(m2 + mCa)m (:)1; - mP(P2 - P)P (:)l:; + T }

R
€y _ 1 e L P 1 1
O = Ryp FCp) T Nt “’3<R12°’z * C12‘*’2) " T,

R c
€y A1l s P 2 C
Wy" = =(Ryy + Cyg) 7 NGB, + wl(Rzz‘*’z * Cy¥y ) " T

If we assume that the mass unbalance of M and P are negligible and
all motions are small, we have Case d). 1In this case the equations of

motion are:
.o .. [ ) . 2
Ml(GM + oE) + NS+ G sgn by + rg(K + KO
- 0 pKe8p - TyTpKfp = O

e . . . 2
Pl(?P + ¢E>-+ NPQP + CP sgn GP + rP(K1 + KP)OP

, - T O - TptpKe%p = Tmp
s . . . 2
BI(QB - ¢E>+ NBQB + CB sgn GB + rB (KP+ KM) CB

- rprpKpfp - rpTKyfy = O
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(197)

(198)




R

P

G33(GG + ¢A>+ NGBG + CG sgn OG - @R[mGg2g3

PN R YU T

2
+ (M, - MC" + mmm, + m PP, + m.B,bzb3]

+ Vl[mGg2 - mPP2 + meZ + mhmzj = TmG (199)

(Ryy * C11)("1 "% - °E) NPy - “’Rlz(ec * °A) = T, (9
(Ryq + 023)((32 + 8, + ¢A>+ N, - wR22<6P + ¢E) = TmE(XZ) )

These linearized equations for a perfectly balanced system are
normally used in the design of control compensators for system,
Equations (196) through (201) are put in state variable form in a block
diagram in Section 4,

4, State Variable Block Diagram

A block diagram of Equations (196) through (201) for Case d),
suitable for programming an analog computer, is presented in Figure 9,
The output of each integrator is a state variable, Figure 9 is shown
for a closed~loop system; i.e., it not only shows the gimbal dynamics
and the gyro sensor's dynamics but includes blocks representing torque
generators (motors) for driving the gimbals and blocks for compensators
to give the desired closed-~loop response, The details of the torque
generator blocks and compensator blocks are not shown since they have
been adequately defined in References 1 and 2, or they are to be
designed. It should be noticed in the block diagram that the gyro blocks
could be simplified by reducing their orders, i.e,, the number of
integrators., This is equivalent to pole-zero cancellation and can cause
a reduction in system analysis information,

5. Conclusions

The full nonlinear equations of motion can be used to analyze
the system for both large and small base motion inputs and for large
platform motions such as occur in tracking or acquisition., However,
only the inner loop or stabilization loup has been considered in the
derivation,
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Linearized equations are valid for large angles of pointing from
the forward-pointing orientation if angular rates are small and one
linearizes about the new, large angles,

All forces acting on the system have been expressed in terms of
the states of the system by carefully considering such affects as
prestress in the wire drive, precise geometry and stretch of the wires,
Coulomb and viscous friction, mass unbalance torques due to gravity
and accelerations, and torques produced by the electrical wiring. From
observations of the movement of the system in the laboratory it was
found that Coulomb friction and electrical wiring (flex lead) torques
were greater than those due to mass unbalance,
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S, G, M, P, B

0p(E)s Op(t), op(t)

SYMBOLS

Characterizing the Base, Gimbal, Mirror,
Platform, and Balancer

Independent azimuth, elevation, and roll
angles

Angle of rotation of the gimbal, G, with
respect to the Base, S

Angle of rotation of the platform, P, with
respect to the gimbal, G

Angle of rotation of the mivrror, M, with
respect to the gimbal, G

Angle of rotation of the balancer, B, with
respect to the gimbal, G

Inertizl angular velocities of S, G, M, P,
and B

Base vectors fixed in §

Base vectors fixed in the platform, P
Base vectors fixed in the mirror, M
Base vectors fixed in the gimbal, G
Base vectors fixed in the balancer, B

Point in S and G for which motion is
prescribed about

Cencers of rotation of P, M, and B

Distance vector from GO to PO’ MO’ and B

Centers of mass of G, P, M, and B

0

Position vector o center of mass from
center of rotation

Velocity of centers of mass of M, P, B in
the inertial frame

Partial derivatives of the total kinetic
energy with respect to the gerneralized
coordinates BM, QB, GP, 9G

Partial derivatives of the total system
kinetic energy with respect to the derivatives
of the generalized coordinates
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Generalized inertia forces for M, P, B, and G
Generalized inertia forces for the gyroscopes

Moments of the forces due to the wire band
drives acting on M, P, and B

Coulomb friction torque acting on M, P, B,
and G

Viscous friction torques acting on M, P,
B, and G

Torques acting on M, P, and G due to mass
unbalance

Spring torque forces acting on P and G
due to electrical conductors
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