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1. IMNTK1UCTION

Fitting an equation to 'a Mass nf data points (x, y) is an ancient
and honorable pastime. Circa 1800, Guss and Legendre discovered inde-
pendently what proved to be a giait a•v'acoment in technique: the
Method of Least Squares. Refinements of this basic method are still
showing up in the literature. This -report concerns one such refinement,
proposed by D. V. 'XrquardtI.

Suppose re are given an equation of the form

y - f (., P) (1)

where P is a set of n unknown constant parameters:

P- {aI, a2, . . . an) (2)

We are also given a set of a measurements

Y - (Y 1 " y2 Ym (3)

at the corresponding (presumably error-free) x values x , x, . .2 x

whlre m exceeds n: there are more measurements than unknown parameters.
I-or convenience, we assume each measurement yi is equally reliable; this

eliminates the need for weighting factors, which add nothing to the
concepts involved.

We are asked to determine the least squares fit of Equation (1)
to the set of measurements. That is, we seek those values of the a.

that minimize c, the sum of the squares of the residuals of the fit:

m
= F (P) - ly[i - f (x,, p)] 2  (4)

ini

The criterion function F in (4) is assumed to be an analZytic func-
tion uf the n parameters. We can describe the situation geometrically
as follows. Consider an n-dimensional Euclidean space S in which any
sct of parameter values constituten the coordinates of a point P. Then

1. DonaLd W. Marquardt, "An Algorithm for Least-Squares Eatimation of
Nonlineca Parametepe, " J. Soo. Indust. Appt. Math., VoZ. 11, No. 2,
pp 431-441, Jthne 1963.
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- is the value of the continuous scalar point function F at point P. For
each point P in the parameter space S theoe corresponds a single value of
c and our task is to search S in some well-defined, automated manner for
the point (and hopefully there is onky one such point) that yields the
cibsolute minimum value.

In practice, the criterion function often possesses one or more
local minimum values in adition to the desired absolu.• minimum. 1•W
paRtfular minimum we reach than depends on where in spas, .3 we start
our search. If we start too close to the point L associated with one
of these local minLma, and i our mathematical searching procedure -- in
the interest .4 computer econay - is not prohibitively sophisticat6d,
then we are going to be drawn irresistibly to L. Even if we start far
from L, a funny thing can happen on the way to the right answer: our
path may pass through L's sphere of influence and we are trapped. We
will give an example of this misfuotune in the final section of this
report.

A necessary (but insufficient) condition for s to be at a local or
absolute minimm is that tho gradient of c be the zerc vector:

1c7 4 (5)

Thus we seek the set of parameter values that satisfy all n -omponent

equations of (S) siwmltaneously,

Wlien Equation (1) is linear in the parameters:

y a ( a 2 (x)+ . . + an n x) (6)

Equation (5) represents a system also linear in the parameters. In
principle, such a system (provided it is nonsingular and strble) can bV
solved by any one of a variety of well-known techniques. This is too
easy; thus we specify here that Equation (1) is nonlinear in at least
one of the parameters.

For this nonlinear situation, two of the estal ished methods for
minimizing e are:

(a) steepest descent (alias gradient search);

(b) differential corrections (alias Taylor series expansion,
alias Gauss-Newton method).

Marquardt has proposed a third technique. As we will see, his
algorithm1 represents a blend of the first two methods, retaining the
best features of enah.
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In Sections II to IV, we will discuss enough of the differential
corrections and steepest descent techniques to see what is involved in
an interpolation of the two. In Sections V to VII, we will discuss the
Marquardt algorithm and its implementation as a FORTRAN subroutine MARQ.
In Sections VIII to XI, we will show how subroutine MW is used to fit
a complex yaw equation to a set of measurements obtained from an enclosed
""'rse-flight spark-photography range. In the final section we will con-
puire a case run with and without the aid of Marquardt's algorithm.

II. DIFFERENTIAL CORRECTIONS

We can obtain the basic equations of the differential corrections
technique by approximating y or c or grad c by a first-order Taylor
expansion about a given point P0 . For our purposes, the simplest choice

is grad e:

[6 al ] 4  r a2c 1Aaj (7)
~ aa. aaj

where

Aaj -the change in aj in movig from P to P

and where the zero subscript denotes evaluation at point Po0  Under
approximation (7), the nonlinear system (S) is replaced by a sys'ýem that
is linear in the parameter increments Aaj:

- aaaa j k- l 2, . . . n (8)

or, simplifying the notation,

01 jk taa = ak, k - 1, 2, . . . n (9)
J-l

where

0(10)

7
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Qjk *~Iaa aak] 0 1

and where the factor 1/2 has been introduced to simplify later expres-
sions for 3k and mj k"

The system (9) car be written in matrix form as

Ap , C1 (12)

where

a - the n x n symmetric matrix (CLjk

AP - the row* vector (A , I . . A

w the row* vector (810 82n • • •

The symmetric matrix a is sometimes called the curvature matrix because
it is a measure of the curvatur. of the c hypersurface in the parameter
space. From (10), we see that 0 is a vector in the direction of the
negative gradient of E at Po:

(rad (13)

Equation (9), or the equivalent Equation (12), represents a system
of n linear equations in the n increments Aaj. Hence we can solve the

system for these increments:

Aaj ,.k a jk, i lp1 2g . . . n (14a)

k-1

or • =• • •(14b)

*If we had Written the produ.t in Eq. (12) as at • AP, then AP and "
would be column vectors.

8



where

- the inverse of matrix a

cofactor of element a

jk determinant of a

Of course, to solve the system (9), we must be able to express ak

and ajk in terms of the given fitting function of Sq. (1). Substituting

E'q. (4) in (10), we have:

2. [Yi f (xi Po)Dik (1))

Dik •- [ ak (16)

0

Similarly, substituting (4) in (11), we have

jkw " j i D Dik " [i " f (xi,,' (17)

i=l

The second-order term in (17) could be a big nuisance if we let it, but
traditionally -- and with ample justification -- this term is dropped.

;' Hence our working definition of 1Jk is the approximation

Sjk Dis D (18)

Si-i

9
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When the system (12) has been solved for the increment vector, we
can then make the differential corrections on Po, that is, we can then

obtain a new point P whose vector is
1

P * p ÷ AP (19)

and whose associated error value is c * F (P ).

If Eq. (7) were exact (which would happen only if the original
fitting function in Eq. (1) were linear in the parameters aj), then P,

would be the desired point at which e is a minimum. Since Eq. (7) is
only an approximation, P is not the solution to the nonlinear problem.1
Indeed, if the starting point P0 is not close enough to the solution

point (and it is usually difficult to say beforehand how close is "close
enough"), then e will be larger than eo; the process may or may not1
recover from this inauspicious start. By the rules of the game, P is1
made the new starting point, whether or not it is an improvement.
System (12) is then re-solved for a new set of parameter increments,
which in turn yield - for better or for worse - a new point P and

2
so on, each iteration of the scheme taking us to the next point. This
process may_ converge to a unique point PM and if so, --F (PM) Mbe

the absolute minimum value of the criterion function. But don't count
on it.

An estimate of the error of the fit at any point P is usually
obtained by the relation

EI b VM-"•n (20)

where

b - 1.0 to obtain an estimate of the root-mean-square error
(more precisely, the RMS deviation between the measure-
ments and a hypothetical set of "true" measurements
free from observational errors)

a 0.67449 to obtain an estimate of the probable error

and an estimate of the error in any parameter a. at point P is given by

E E (21)

10
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Because of its application in Equation (21), the inverse matrix ' is
sometimes called the error matrix.

Before we consider the steepest descent approach, it will be con-
venient to simplify whatever physical dimensions are involved in our
equations.

III. SCALING

If the parameters aj are dimensional and - worse yet - not all

of the same dimensions, then our parameter space S can be a hodge-podge
of femto-drams, fermis and fortnights. Letting [ Id denote "dimensions

of", we have

"[diki [y/Id

11kd-[y2/a, a kJd (22)

d -J ['k]d _ [y2/ ak]

AA

::: Suppose now that we introduce a scaled parameter space S in which

ak ak/ (23)

so that

[rak]d d ]d, k- 1, 2, n (24)

Then the correspondingly scaled partial derivatives and a, ' and grad e

elements ar., by Equations (16), (18) and (15):

114

K ~ik ~(2S)
Sjk 0j k/d-TCkk

11/1I1I S. . . mi I i i I I I I I Iie



with dimensions

(26)

Ta [Y]'.
Moreover, Cauchy's inequality applied to definition (18) asserts that

'j k' 'j j 'kk

so that
A

-1 I •ajk •l (27)

Thus we have transformed into a space in which:

(a) each parameter and each component of the vectors grad e and
has the same dimension, namely bYid;

(b) a is a ,.imensionlens matrix whose diagonal elements are all
unity and whose off-diagonal elements satisfy Inequality (27).

All equations of the previous section hold for the transformed
elements; in particular, Equation (9) becomes

A
01 "a , k 1, 2,... n (28)

j=l

with solution

n
j= k 1,2, . . n (29)

k=l

Transformation (23) is often used in linear least-squares to im-
prove the numerical behavior of the computations: in particular, in-
version of the curvature matrix. For our nonlinear, iterative problem,
the transformation could have the same salutary effect but at the cost
of a little more work. This is because the values of the scale factors

12



Nk depend on the current set of parmeter values. Hence each time

the parameters are up-dated, a new transformation must be made: a new

S space created. This is not a big problem.

The transformation to I is not essential in the differential cor-
rections method; it is needed more in the steepest descent approach.
Some of the properties of the latter technique are not scale-invariant,
so that choosing the right space can be important. At the very least,
it is convenient to proceed by steepest descent in a space in which the
components of grad e are dimensionally equal.

IV. STEEPEST DESCENT

Provided that Igrad cl is not zero at the current point P0 (if it

were, P0 would be the desired solution), then -grad c at that point

is a vector in whose direction c will decrease most rapidly (at least
at first) as we move away from Po. If P is any other point along this

negative gradient, we have from Eq. (13):
h) . h( 30)

g (h) h

where h is a dimensionless positive constant and where ]he three vectors
are to be resolved into components in the scaled space Thus in
component form, (30) becomes:

Ak -h 'k (31)

In the steepest descent technique, we choose that h for which c is
a local minimum along the gradient. Perhaps the simplest way to do this
is to sample e at appropriately small intervals as we move away from P

along the negative gradient. As soon as we reach a point where c has
increased, we interpolate between that point and the previous sampling
point to determine where c has a local minimum. Then we evaluate the
negative gradient at this new point and start off again in the new
direction.

The difficulty with this approach is that in the neighborhood of
the solution point, where Igrad el is nearly zero, further progress is
painfully slow. Often, the sampling size must be shortened beyond all
endurance. Ingenious variations on the basic steepest descent theme
have lessened this difficulty but not removed it.

13



V. INTE1lPOLATION

Comparing the two methods just discussed, we note that:

(a) Far from the solution point, the steepest descent technique
is superior. It must proceed so as to decrease v, whereas the differ-
ential corrections method has no such obligation and is likely to
diverge.

(b) Close to the solution point, the differential corrections
method is superior. It converges in the very region where the steepest
descent technique languishes.

Marquardt 1 has proposed an interpolation between the two methods:
a technique that behaves like the steepest descent when we are far from
the solution and like the differential corrections method when we enter
the neighborhood in which the linear truncation, Equation (7), is ade-
quate.

To achieve this interpolation, a positive, non-dimensional constant
X is added to each diagonal element of the transformed curvature matrix.
That is, Equation (28) is replaced by

n

=1 jk ^j 1 k I 2,..d. (32)
jfl

where { + A when j = k

1+ (33)
Tjk a A when j 0 k

We see that:

(a) As X -* ®, the diagonal terms of the system dominate and
Equation (32) degenerates into n uncoupled equations of the form

(1 + )

or, since A >> 1 by assumption,

Ak - (34)

Comparing this result with Equation (31), we see that for very large
A, Equation (32) simulates the steepest descent approach with h - I/A.
(As we will see, however, A is not determined by the same criterion -

a locally minimum c - used to _ot-'ain h.)

14



(b) As X -o 0, Equation (32) approaches Equation (28), that is,
Equation (32) reduces to the differential corrections method.

The interpolation sends us from a given point P0 in the direction

of the vector

AP Aa t "2,

satisfying (32), whereas the gradient method sends us in the direction

of the vector 1. The angle between these two directions:

e8 cs 1 (35)

always lies between 0 and 90'. (This angle is the some, of course, in
S and f.) Marquardt proves that for the given point P0 (and hence for

a given 1), 8 is a continuous, monotonically decreasing function of X,
such that:

(a) As X- , 8-o0.

(b) As X -. 0 8 approaches some value MAX less than 90*.

(Marquardt states that 8 MA usually lies between 80" and 90", indicating
that the differential corrections method usually procceds almost at
right angles to the gradient approach. However, in the yaw fit appli-
cation to be discussed later, I have found that e 4AX is usually less
than 800 and sometimes less than 30".)

The insertion of A into (28) makes interpolation possible; an
effective interpolation is achieved only when we have a soun dstrategy
for changing the value of X according to whether c has increased or
decreased since its previous evaluation. In the next section, we
present the strategy proposed by Marquardt.

VI. MWUARDT'S ALGORITHM

Let co W F (P ) be the value of the criterion function at some

current point P . For any A, we can solve (32) for the increments AP,-. a W 0 -0

obtain P = P0 + AP and evaluate

* F (PQ) - G (Po, A)

15



where the second functional form emphasizes the dependence of c on

both the previous point P0 and the current value of A.0J
In the Marquardt approach, the point P is only a candidate for

the point that will replace Po as our current set of parameter values.

A new rule is this: we won't move from P to any new point P unless c0 1
is smaller at the new point than at Po:

C C0 (36)

For any point P0 that is not already a local minimum, there always

exists (at least in theory) a A such that for A > AN, (36) holds. The

question is: how much larger than A should we choose our A? Marquardt's

answer: no larger than necessary within a factor of A > 1. That is, if
our initial X doesn't work, try AX, A2 X, A3h, etc., quitting as soon as
(36) holds. Ten is the suggested value for A.

Of course, we could determine X so as to minimize c locally, just
as with h in the steepest descent approach. Marquardt points out, how-
ever, that this would usually result in a much larger A than needed to
satisfy (36); we would be faced with all the disadvantages of the steep-
est descent.

On the other hand, we would like to simulate the differential
corrections method as soon as we get within the radius of convergence
of that technique. Hence, when things are going well, we want to reduce
A, say by factors of A again. Marquardt suggests, however, that if A isalready negligible compared with 1 to the number of significant digits

carried, then there is no need to reduce A further.

Marquardt's strategy can then be summarized by the flow-chart of
Figure 1. (This is, at any rate, my understanding of Marquardt's
strategy; his presentation" differs considerably in manner and form.)

Note from the figure that in practice Marquardt replaces (36) by
the condition

C (36a)

The distinction may seem academic but it's not. In an early version of
our program for implementing the algorithm, I unwisely used (36) instead
of (36a). Why, after all, should we move to P if the error there is1
the same as at Po? I very soon found ouk why and the answer (upon after-

16
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thought) is obvious. It is possible for the current point P0 at the

end of some iteration to "be" the solution point in the sense that the
machine will be unable to find a point with a smaller as ;ociated error
(to the number of digits carried). In this situation, of course, we
should exit the loop triumphantly and proceed tc analyze results. The
trouble is: any convergence test for determining whether or not to
start another iteration is necessarily imperfect. The test is usually
based solely on how much the current point Po and/or error c differs

from the values of the previous iteration. Thus we could close in on
the answer so quickly that the solution point differs from the previous
point by more than our criterion allows. In this event, another
iteration will begin: a hopeless search for a candidate P satisfying

(36).

As an example of what can happen, consider the test case whose
results are summarized in Table 1. The fitting equation here was the
complex yaw equation, to be discussed later; the convergence criterion
was that (I - el/e ) be less than 0.00001. In the first iteration, the

process obtained an c (.005307) less than eo (.007418), so that it10
would make no difference whether condition (36) or (36a) was used in
the scheme of Figure 1. The convergence condition was not satisfied
(since 1 - eI/C 0a 0.285) so the second iteration was began. Similarly,

the third and fourth iterations were begun. It was only in attempting
to complete the fourth iteration that the superiority of (36a) to (36)
became evident.

The condition (36a), c1 < co, was finally met (in this case, when
£ achieved equality with co to the sixteen decimal digits carried*) at
X= 1013. When condition (36), E < C , was substituted for (36a), the1 0O '•

fourth iteration was never completed; program execution was interrupted
at A = 1016 by a floating point overflow. The hang-up probably occurred
in evaluating the determinant of matrix y, Eq. (33). When X is large,

k
say X = 10 where k > 2, then the determinant is approximately the prod-
uct of the diagonal elements of y:

DET 9 (1 + A)n I 10kn

If a computer can't handle real numbers larger than 101, then we are in
trouble when k exceeds j/n. For our computer, j - 154 and for the test
case, n - 10; hence the hang-up at k - 16.

*Of cour•o, it is unZikety that either e'0 or s io correct to the eix-
1

teenth digit; the vagaries of round-off error atone may make the last
few digits meaningtee.

18m



NN4

CIAK~4P tq4 ('4 N4 N

""q N q qt M . 0N

w

o~~~~ . .l . . .f .~ .% . . .- .- O.4

N uLn isinunqt00usN o

,p4
6a'66666666666

0~~~" U- pq *- V- r4 *q r4 *- *q V-4 * S S * *

L244 XXXMX

0 r0 A aV

0 t
0 okp 4n

19 - - W1V1P F4- -



In our limited experience, the test case of Table 1 is not typical;
we actually contrived this unimpressive example. Still, it could have
happened in "real life', so let us try to profit by it.

We see from Table 1 that a lot of needless work was done in the
fourth iteration - the matrix equation (32) was solved twenty times -

only to finish at the point already obtained in the third iteration.
Clearly, there is room here for improvement in technique.

Of the various ways of reducing the number of calculations, the
simplest might to be to introduce two acceptable conditions:

E < C (36)

and
< €(I + 4) (36b)1 0

where a is assigned some small positive value. If condition (36) is
satisfied, we up-date the current point and its associated error and
proceed as in Figure 1. If, instead, condition (36b) is satisfied, we
assume that the point reached at the conclusion of the previous iteration
Is-as good as we are going to get. )n this event, the entire process
ends: that previous point and its associated error are taken to be the
final point and error. For example, if we take A = 0.00001, condition
(36b) would be satisfied at the end of the eighth loop - iteration
4(8) - of Table 1. At this stage, the program would assume that the
solution point is the point obtained by the third iteration.

The above technique may be an excellent practical way out of our
difficulties; yet there is something vaguely unpleasant about condition
(3-6b). In effect, we are giving up. The suspicion would always linger
that in another loop or two within the iteration, the situation might
suddenly improve and condition (36) would be satisfied.

We ask then: how can we cut down on the computations without relax-
ing our standards; that is, how can we satisfy (36a) with less effort?
One obvious answer is suggested by Eq. (34):

-'• A /, >> 1 (34a)

a relationship confirmed by Tabl& 1. For large values of A, it is no
longer necessary to obtain new AP candidates by the time-consuming
process of increasing A and re-solving Eq. (32) by matrix inversion.
All tucceeding AF candidates within that iteration will be very nearly
parallel and hence can be obtained directly by a scale change:

next CA()rejected /B, B > 1 (37)
candidate candidate/

20



where B need not have the same value assigned to A.

We now ask: is it necessary to wait until X is large to replace
(32) by (37)? Marquardt mentions that in some circumstances (charac-

terized by matrix elements ^jk exceeding 0.99) he found it helpful to

revert to Eq. (37) as soon as the angle 0 fell below, say 45" (that is,
"when he was within 45" of the steepest descent direction). Usually open
to a good suggestion, I incorporated this little sub-scheme in the grand
plan as a feature operative under all circunstances. That is, whenever
0 is less t.Ian sive specified value G and conditit (3OW isn't satisfied
for vector P + A&P, the next vector considered is P. AP/B.

The final form of our modified Marquardt algorithm is shown in
Figure 2. If the user feels that the 0 < G feature is too great a
violation of the spirit of Marquardt's algorithm, he need only set G
at zero to avoid that feature.

Table 2 shows the results of applying the modified algorithm, with
A a B a 10, G w 45', to the test case of Table 1. The first three
iterations are identical, but the fourth has been improved considerably.
The reduction in the number of loops in the fourth iteration is not as
important as the fact that each loop required significantly fewer
machine calculations. Of course, we could introduce condition (36b) into
this new scheme as well. With A - 0.00001, the process would then endat iteration 4(2).

After we have discussed our yaw equation, we will present another
test case in more detail. First, however, we introduce the FORTRAN sub-
routine MARQ for carrying out the algorithm of Figure 2.

VII. COMMENTS ON SUBROUTINE MWQ

At least five programs to implement Marquardt's algorithm pre-date
the FORTRAN subroutine IARQ listed in Appendix A:

(a) A FORTRAN program "Least-Squares Estimation of Nonlinear
Parameters" cited in Reference 1 and available as IBM Share Program
No. 1428.

(b) A program "Non-Linear Least Squares (GAUJSHAUS) ," University
of Wisconsin Computing Center, writ*.en by D. A. Meeter in 1964.

(c) A "Nonlinear Least-Squares Curve Fitting Program," a 1966
modification of (b) above by F. S. Wood. A User's Manual but no list-
ing of this program is given in Reference 2; the program, a FORTRAN

2. Cuthbert Daniel and Fred S. Wood, Pitti!. Equatione to Dta: Computer
Ane•.lyie of Mutifactor Data for Safentiste and Eineere- WiZey-
Interecienoe, Noe York, 1971.
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(i, '5 R ýTNEXT ITERATION

*SET A>198>160O'eS48
*ESTIMATE R,

* USING Po AND OLEQ(32) FOR A
* COMPUTE cry*+6

*COMPUTE 9,EQ (35)
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listing, the User's Manual and test problems are available from

(1) SHARE Library
COSMIC
University of Georgia
Athens, Georgia 30601
(Ask for Program No. 360D-13.6.007)

and from

(2) VIM Library
Software Distribution Department
Control Data Corporation
3145 Porter Drive
Palo Alto, California 94304
(Ask for Program No. G2-CAL-NLWOOD)

(d) A FORTRAN subroutine CURPIT by P. R. Bevington, listed and
discussed in Reference 3.

(e) A FORTRAN program of the same title as (a) above, cited in

Reference 3 and available as IBM Share Program EID-NLIN No. 3094.01.

An early version of our MARQ subroutine was based on Bevington's
CURFIT 3 -- to which I am indebted -- but even our first, tentative
efforts differed from CURFIT in various minor ways. (Among certain
programmers - myself included - the temptation to tinker with a
presented program is well-nigh irresistible. The Law of Mutual
Superiority4 applies: "Anything you have programmed, I can program
better; anything I have programmed, you can program better.") Our
current MARQ is barely recognizable as a descendant of CURFIT.

Subroutine MARQ has 12 arguments:

(EQS, X, Y, M, N, P, C, E, D, R, TH, EK)

Here and throughout this paper the usual convention applies to FORTRAN
real and integer variable names: integer names and only integer names
start with I, J, K, L, M or N. The first five arguments of MARQ are
inputs:

3. Philip R. Bevington, Data Reduction and Error Analyiea for the
PhyeicaZ Sciences k oG;aZ-HiZ , Inc., New York, 1969.

4. Richard V. Andree, Josephine P. Andree and David D. Andrea, Computer
Prgoo ing: .Tjeohnigues. Analusie and Mathematicso Prentice-Haff
"Sertee in Automatic Computation, Neo Jersey, 1973.
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EQS = the dummy name of the subroutine that computes, for a given
parameter point P, the arguments E, D and R defined below.
The actual name used when calling MARQ must be declared in
sm EXTERNAL statement in the program that calls MW. (In
our yaw analysis example, the actual nine used is EYAN.
Details of subroutine EQS/EYAM will be discussed in Section
X.)

X, Y a data vectors (x,)., (yt) where yi is the observed value of

the dependent variable y at x - xi.

M a the number of data pointo (xi, yi)

a the dimension of vectors X and Y

N - the number of parameters. Note: if N exceeds 10, the
dimensions of arrays ALPHA, BETA, GAMMA, PB and S on line
HARQ 3 (see Appendix A) must be increased to equal or
exceed N and the argument 10 on line MARQ 48 must be
increased to equal the number of rows declared for GAMMA.

The next five arguments (P, C, E, D and R) serve as both input and out-
put; the last two arguments (TH and EK) are solely outputs. Before we
discuss these arguments individually, it will be helpful to see the
over-all pattern as indicated in Table 3:

Table 3. Contents of MARQ Arguments P, C, E, D, R, TH and EK
when Marquardt's lambea is Used

MARQ
CALL NO - P C E D R TH EK

IN P - 1. - -----

RETURN
I PO .001A E(P0) D(Po) R(P0) 0.

,IN 0000

2--
RETURN

N P (P E (PI) D(PI) R(P) TH(P) BK(P)
IN 11 1. 1.. .

RETURN
P )CP ) E(P ) D(P ) R(P ) TH(P ) EK(P,)

IN 2 2 2 2 2 2
4
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From this table we note that of the last seven arguments, only P and
C must contain inputs the first time IARQ is called. This first call
merely obtains the error Ei--•arrays D and R associated with the initial
point P0 . Thereafter, each call returns a new, improved point; the values

returned in P, C, E, D and R after the K-th call serve as input for the
(K + 1)-th call. We now discuss the arguments in detail:

P = the current point Po; that is, the current set of parameter

values (ail in whatever units are convenient. In each appli-

cation, before MARQ is called the first time, array P must
contain the initial estimated values of the N parameters in
the chosen units. This same set is returned from the first
call; on subsequent calls, the input P is replaced by an
improved P upon return.

C = a flag (initially) and Marquardt's X thereafter. In each
application, before MARb is called the first time, C must
be set to - 2.0 or - 1.0. (The fact that C is negative
alerts MARQ that it is being called for the first timc.)
Caution: use a FORTRAN name, not the number - 2.0 or - 1.0,
in the argument list, since MA.RQ changes the value of this
argument.

Set C = - 2.0 if the intent is to ignore the X factor
and use a straight-forward differential corrections technique.
(This option is helpful, for example, if the user wants to
compare the process with and without Marquardt's X for a given
set of data.) Upon return from the first call of MARQ, C will
have the value zero (representing a zero X) and will remain at
zero through subsequent iterations.

Set C = - 1.0 if the intent is to use the Marquardt
algorithm. Upon return from the first call of MARQ, C will
have the value 0.O01A (representing A times the initial
value of X). For the second and subsequent NARQ calls, the
output C will be the value of Marquardt's X that was required
to obtain the improved point concurrently stored in array P.
We have

Output C = Are (Input C)

where r is some integer equal to or greater than - 1 (so that
the smallest possible -- and usually the most felicitous --

output C is (I/A)-th the input C).

E a measure of the error of the fit at the point concurrently
stored in array P. This measure is computed in the subroutine
EQS called by MARQ and hence the coder of EQS defines this
argument, preferably as the RMS or probable error given by
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Eq. (20). MA1Q will always return an E value less than or
equal to the input E.

D * the matrix of partial derivatives, Eq. (16), evaluated at
the point concurrently stored in array P:

D(I, K) - Dik

a f Lx, P)_
ak x - x (I)

P t current point

R =the vector of residuals of the fit at the point concurrently
stored in array P:

R (I) - Y (1) - f (x, P)

IP =current point

TIH - the angle 0, Eq. (35), in degrees. Upon return from the first
call, e is zero. Thereafter, 0 is the angle betweer. the nega-
tive gradient at the input point (not necessarily the best way
to go) and the straight line from input point to output point.
This angle was available within KMQ and simple curiosity
prompted me to make it an output argument.

EK - the vector of estimated errors in each of the N parameters
stored in array P, in the same units as the parameters. These
estimates are related to output argument E by a modified form
of Eq. (21) and hence if E is the RNS or probable error of the
fit, then array EK contains the RNS or probable error estimates
for the parameters.

In the MARQ listing, Appendix A, note that the three parameters A,
B and G of Figure 2 are defined in a DATA statement, line MARQ 4 (where
they are named AN, BN and GN, respectively). Thus the user can easily
change the arbitrary values shown, subject to the conditions

A >1, B>l

and the suggested limitation

0 4 G < 45 degrees

The feature of using Eq. (37) when 0 -G can be eliminated by defining
GN to be zero in the DATA statement.
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The data in Tables 1 and 2 were obtained with the aid of some ad
hoc WRITE statements within 14ARQ; these statements do not appear in the
list-:ng, Appendix A.

In addition to subroutines MAIN aid EQS, a matrix inversion sub-
routine (called on line MARQ 48) must be included in the over-all pro-
gram. We have used an available subroutine MATINV listed in Appendix B.
(The user may, of course, substitute the inversion scheme of his choice,
modifying the CALL MATINV statement as necessary.) Upon return from
MATINV, the matrix GAN44 is replaced by its inverse. MATINV contains
one output statement: a SINGULAR MATRIX reprimand, which is printed
only when something is very, very wrong. The integer 6 in the state-
ment WRITE (6, 17) may have to be changed to specify the proper output
unit at the user's installation.

Subroutines ?4ARQ, MATINV, EYAW (our actual name for the dummy EQS)
and EY (our program that calls MARQ) were written for use on ARDC's
BRLESC I and BRLESC II computers 5 . Although the compilers in these two
computers implement a FORTRAN that is not quite "standard" and not quite
FORTRAN IV (and indeed not quite the same on the two computers), it is
believed that the above-mentioned subroutines have been restricted for
the most part to standard statements and features. One exception is
the nonstandard function ARCCOS used in MARQ, line 62, to determine e.
The user can replace ARCCOS (TR) with

ATAN (SQRT (TR ** (- 2) - 1.0))

if necessary.

An important omission in the programs should be noted: no provision
was made for double-precision arithmetic. In BRLESC I/II, all real
numbers are carried with a precision of sixteen decimal digits (which is
double precision on many computers) and the DOUBLE PRECISION type decla-

* I ration, though permitted, acts only as a REAL declaration. For computers
where double precision isn't the norm, the following DOUBLE PRECISION
type declarations are recommended:

in MARQ : GAMMA

in MATINV : A, TI

in EYAW : S

5. Lloyd W. Ccmpbell and Glenn A. Beck, BRL•SC ;/.II B.ORRA, Aberdeen
Reaearch and Development Center Teohnical Report No. 5, AD 704343,
Maroh, 1970.
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VIII. THE YAM EQUATION

For missiles fired in either of the two Free Flight Spark Photography
Ranges 6 , 7 operated by the Exterior Ballistics Laboratory, we can obtain
at each spark station a measurement of

(a) the down-range distance z, metres

and (b) the dimensionless complex yaw H + i CV

(For our purposes - to illustrate the use of Marquardt's algorithm -

definitions of the coordinate systems involved are of no interest.)

Basically, the problem is to fit a given complex yaw equation

. f (z, P) (38)

to a set of measurements

-- •'-• {((zis CHI. CVI1 . (z 20 9Ha •20 ' ' ( zm 1 I• 9 V

where the z measurements are considered error-free (though of course
they aren't). For most (say 99.44%) of the rounds fired in the two
ranges, Equation (38) is assumed to have the form

1 01 + K 2 '2 + CR (39)

where

K K j° z - Zo) (40)

- 1, 2

S= Aj + Bj (z - zo) + C (z - )21 (41)

ER yaw of repose

g (B + B)
= - L.L.(42)

B B V 21 2 0o

6. WaZter K. Rogers, Jr., "ThAe Transonic Pree FZight Range," Balzietic
Research Laboratories Repo:,t No. 1044, June 1958, AD 200177.

7. Walter F. Braun, "The Free FZight Aero4ncpni•o Range," Bal~istic
Research Laboratories Report No. 1048, JuZy 1958, AD 202249.

29



The known constants are

z - reference z (usually mid-range), m

Vo 0 velocity at z0 , m/sec

g - acceleration of gravity

- 9.80 m/sec 2 for tihe two ranges

and the ten unknown parameters are

P(l) a n in K P(6) n ma Ln K
1 10 2 20

P(2) - X , 1/m P(7) - X , I/m
1 2

P(3)-=AZ, ad P(8) A2,ra.d , (43)I
PM4 a B I rad/m P(9) - B , rad/m

1 2

P(5) - C , rad/m2  P(l0) - C , rad/m2

1 2

It might seem more straightforward to define PC1) and P(6) to be the
arm lengths K and K20, respectively. However, pre-Marquardt experi-

ence has indicated that for our yaw problem, the differential corrections
process is a little more likely to diverge when the KJO's are handled

directly as parameters. For one thing, AKjo may be so poor that (unless

constraints are added), Kjo can go negative. This difficulty doesn't

arise with n any value of n, yields a positive K jo. Of course, in

practice our starting point P0 is usually so well-determined that it

would make no difference whether we worked with the nj's or the K jIs.

Complex expressions and complex arithmetic are not allowed in the
BRLESC I/11 FORTRAN; hence we must separate Eq. (39) into its real and
imaginary parts:

H a fH (Z, F) K) cos + K 2 R

(44)
CVa fV (z, P) rKI sin* +K siný 2 2

obtaining two fitting equations.
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IX. CONM4•TS ON HANDLING TWO FITTING EQUATIONS

Previously in this report we have been considering a single fitting
equation, Eq. (1). To handle two fitting equations, as in (44), we
proceed as follows. Suppose that NL is the number of spark stations at
which measurements were taken. Then the value of the error function, Eq.
(4), is obtained by the relation

NL

1 [ -H" fH (Z,, p)] 2 + [tVi " fV (Zi, P)] (45)
i-1

Since MARQ has no provision for inputting more than one dependent

variable, we obtain the )quivalent of Eq. (45) by

(a) setting M, the number of measurements, at twice NL,

and (b) defining X (I) = Z- zo 0!
Y (I) - i - 1, 2, . . NL

Y (I + NL) CVi

There is no need to define the second half of vector X's 14 components,
since it would only duplicate the first half. (Note that we need a
minimum of six spark stations in order for M, che number of measurements,
to exceed ten, the number of parameters.) Equation (45) then becomes

NL
C [R (1)2 + R (I + NL) 2 ] (46)

where the M residuals are obtained by the relations

R (I) a Y (I) - fH (X (I), P)
SI - 1 2,, NL (47)

R ( + NL) = Y (I + NL) - fV (X (I), P)

The only remaining change required to handle two fitting equations
instead of one, occurs in the formation of the partial derivative
matrix D. Since there are two equations and ten parameters, twenty
partial derivatives must be defined, ten of the form

) a fH (X (1), P)

D (I, K) - • P (X ) (48)
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and ten of the form

a f, (x (I), e)
D(I + NL, K3 a V (P (1) P) (49)

To summarize, the changes needed to handle two fitting equations occur
in:

(a) the manner of defining M, X and Y in the program that calls
NARQ

and (b) the manner of defining B, R and D in the subroutine EQS dis-
cussed in the next section.

The technique for dealing with two fitting equations can easily be
extended to any number of simultaneous fitting equations. Note that in
our example, 9H and gV are dimensionally equal. When the dependent
variables are not all of the same dimensions, a little additional work
is needed to insure dimensional consistency in Eq. (46) and elsewhere.

X. COMICNTS ON SUBROUTINE EQS/EYAW

The user must code the subroutine whose dummy name is EQS. The
arguments of EQS must have the form prescribed by HARQ on lines 8 and
63:

(X, Y, M, N, P, E, D, R)

These eight arguments have the same meaning for EQS as they do for sub-
routine MW except that for EQS, P is an input only and E, D and R
are outputs only. The user programs EQS to obtain - for given X, Y, M,
N and P inputs - the error measure E, the partial derivative matrix D
and the residual vector R.

For example, the pair of yaw equations (44) led to the subroutine

EYAW listed in Appendix C. The velocity V is passed into EYAW and the

yaw of repose CR is extracted from EYAW by a labelled COMMON statement

linked to the subroutine calling MARQ.

The definitions of the D elements within LYAW follow immediately
from Equations (44), (48) and (49) - - - with one exception: I have
ignored the partial derivatives of the yaw of repose with respect to
the only two parameters involved therein, B and B . Such liberties

1 2
may often be taken when forming matrix D because it is not necessary
that D be the nathematically correct set of partial derrvitives. It
is possible to get the right answer using a "wrong" D array, just as
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we can get the right answer using a "wrong" expression for grad c, Eq.
(7). Of course, this doesn't mean that we can make a blunder in coding
D in subroutine EQS or that we can write down any old approximation that
comes to mind. A certain amount of discretion is called for; if the
user has any doubts as to the merits of an approximation in D (and even
if he hasn't any doubts), his safest course is to avoid such an approx-
imation.

Subroutine MARQ receives matrix D from EQS and forms the needed
elements of array a by summation, in accordance with Eq. (18). Because
of the symmetry of a, only the N.(N + 1)/2 elements on and below the
principal diagonal are computed in W4AQ. For our yaw equations, N is
ten and thus fifty-five a elements are formed in MW. Note from the
D equations in the EYAW listing, Appendix C, that twelve of these fifty-
five elements should be identically zero. For example,

NL
, - Y [D C(, 1) • D (1, 3) + D (J, 1) • D (J, 3)]
S13 1

where J * I + NL. Hence, in the BYAM notation,

13 E [Rl • C- R3) + R3 1 U] - 013

Similarly, the reader may verify that except for sign, only nineteen
of the forty-three nonzero a elements are distinct. For example,

62 71 84 93

Subroutine MARQ, of course, forms all fifty-five elements by summation;
short cuts that depend on the particular fitting equation(s) used are
sacrificed on the altar of generality.

XI. COMMENTS ON THE PROGRAM THAT CALLS MARQ

In the program that calls MARQ:

(a) the actual subroutine name (EYAW in our example) that will be
passed as an argument to MARQ must be declared in an EXTERNAL
stateyent.

(b) the six array arguments of MARQ must be declared in a DIMENSION
statement:

X (M), Y (). P (N), D (N, N), R (M), 3K (N)
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Usually, for a given problem, the value of N (the number of
parameters) is known and fixed, whereas the value of M (the
number of data points) varies from case to case. In that
event, some number equal to or larger than the largest antici-
pated value of N should be used in the DIMENSION statement.
(In our EBL range set-up, data can be obtained at no more than
S4 spark stations; hence, we have 1 - 108.)

(c) each known constant in the fitting equation whose value may
change from case to case (such as the reference velocity in
our yaw problem) is assigned a FORTRAN name and passed to the
EQS subroutine by a labelled CONI(1 statement. Similarly, but
more rarely, any constant of interest evaluated within the EQS
subroutine (such as the yaw of repose) may be rescued from
oblivion by linking it through the same labelled COMMON with
the program that calls MARQ.

(d) MARQ will be called repeatedly (say, in a DO-loop) until some
specified convergence criterion is satisfied or until a spec-
ified number of calls have been made. For example, we might
have

DO 4 K a 1,KMAX
CALL MARQ(EQSXYM,N,P,C,ENEW,D,R,TH,EK)
IF(K.EQ.1) GOTO 3

CR - 1.0 - ENEW/EOLD
IF(CR.GE.O..AND.CR.LT.EPS) GOTO S

3 EOLD - ENEW
4 CONTINUE

where the value of KNAX (the terminal parameter of the DO-loop)
and the value of EPS (where 0 < EPS < < 1) have been specified
before entering the DO-loop.

The process is assumed to have converged when the IF-conditions on CR
above are satisfied, that is, when the ratio of the present error of
the fit (ENEW) to the previous error of the fit (EOLD) falls between
1-EPS and 1. Note that the first call of MARQ, K a 1, must be handled
a little differently from subsequent calls in the DO-loop because there
is no zero-th error value to compare with the error returned from that
first call.

Since the use of Marquardt's X insures that ENEW4 EOLD, it may
seem that CR will always be non-negative and hence that the first of
the two IF-conditions is unnecessary. The catch is: whenever we avoid
X (by setting C - - 2.0), we lose our guarantee that things will improve
and CR can very well go negative.

If the convergence criterion in the above DO-loop is satisfied,
control is transferred to statement 5. If (KNAX - 1) iterations have
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been performed without satisfying the convergence criterion, then the
statement following statement 4 is executed next. What happens at
these two locations is, of course, the user's affair.

For our yaw problem, the program that calls HARQ was itself written
as a subroutine: the subroutine EY listed in Appendix D. The input
arguments are

RD a number identifying both the range (Aerodynamics or

Transonic) and the round

N * NL, the number of spark stations

NS • an array of identifying station numbers

b - the array: measured CH at each station

A the array: measured C at each station

Z - the array: measured z at each station, m

ZR - zo, the reference z, m

VR - velocity at z0 , m/sec

The only input/output argument is

P the array of ten parameters defined in Eq. (43), with this
exception: here P(l) and P(6) are K and K 20 respectively,

not ni a In KJO (required conversions to and from I and n2

are done within EY, so that the EY user need not be aware
of the n's). Upon input to EY, P must contain the initial
estimates of the parameters; upon output, P contains the
final parameter values.

The output arguments of EY are:

Q the array of estimated errors in the ten parameters. Sub-
routine MARQ returns to EY the estimated errors in n and1

n2 ; the errors in K and K are then obtained in EY by2 10 20
the approximation

E (Ko) KJO E (n.)

BB = the array: computed FH at each station
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AA a the array: computed CV at each station

R14S - the root-mean-square error of the fit (Eq. (20) with b =

1.0)

YREP w the yaw of repose, Eq. (42)

IC a a convergence flag:

IC = 0 if the process has converged

1 if the process has failed to converge in the
specified number of iterations

- 2 if the process has not been used, because there
were too few (less than six) spark stations

The skeletal FORTRAN DO-loop given earlier in this section is
fleshed out in EY (lines EY 41 through EY 57) by a number of relatively
unimportant statements concerned with monitoring the progress uf the
convergence. One point concerning these statements is of minor interest.
Although all angles in array P (that is, in the parameters A1, BI, CID

A , B and C ) are in radians, the WRITE statement (line EY 52) prints
2 2 2

the results in degrees; this is a concession to the majority of people
who "can't picture radians." Someone might ask: then why not simply
carry all angles within P in degrees, thereby avoiding the need to
con% .t before printing. The answer is: conversion can't be avoided
(unless we are willing to print results in radians). If the angles were
carried in degrees, the conversion that we eliminated from EY would crop
up in EYAW, in taking the derivatives of sines and cosines. This would
be less efficient, since EYAW statements are encountered more often in

the program than EY statements.

Two examples of the print-out furnished by EY (see Figures 3 and 4)
are discussed in the next section.

XII. A SAMPLE CASE, WITH AND WITHOUT X

We define X to mean "A plus the other features in Figure 2 that
distinguish Marquardt's algorithm from the usual differential corrections
process." If we apply the differential corrections process with and
without A to the same fitting equation(s), the same set of measurements
and the same starting point Po, we can distinguish three outcomes. We

will have:

(a) convergence to the same point, with or without A,
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or (b) divergence without A, convergence with X,

or (c) convergence to a wrong point without A and to a better (not
necessarily the best) point with X.

(A fourth possibility - convergence to a better point without A than
with it - is too unpleasant and, I would hope, too rare to cons-ider
here.)

Note that when X is used, divergence is impossible: the process
can never blow up. Tf the terminal parameter of the DO-loop is large
enough, that is, if MARQ is called enough times, the process should
converge to a point. (We need a limit on the number of iterations to
get past the occasional pathological case.) Of course, with or with-
out A_, "convergence" in the above triad means only that the process
has !topped at some answer; we may still be miles from the right
answer.

For our yaw problem, result (a) above - the least interesting
result - has occurred by far the most often. For most of the rounds
fired in the two EBL ranges, the motion can be so well represented by
Eq. (44) and initial estimates of the ten parameters are so well deter-
mined (by a preliminary subroutine which we won't discuss here) that
quick convergence is assured and Marquardt's algorithm is unnecessary.

However, I wanted to complete this report with an example of out-
come (b) or (c), preferably (c) because I think it is more instructive.
I could, of course, have worked with one of those relatively rare
rounds for which Eq. (44) seems to be inadequate, but in that event,
convergence is not necessarily an advantage. The final point reached
may be the best possible based on Eq. (44) and yet be so worthless that
an unwary use of the results could do more harm than no results at all.

To obtain outcome (b) or (c) from any "normal" round, I had to
resort to an artifice: I by-passed the subroutine that would have
given us good first estimates of the ten parameters and fed mediocre
(not really bad) estimates into subroutine EY through array P. In
effect, I said: let's see what happens if we get a little sloppy in
choosing our starting point. For round 1-11461, the answer - outcome
(c) - is illustrated in Figures 3 and 4.

Figure 3 is a print-out of the fit obtained without Marquardt's
algorithm. The line TRY = 0 gives the initial estimates of the ten
parameters; these produce an RIS error of 0.041732. The first iteration
(TRY = 1) improves the situation but the second iteration grossly over-
shoots the target. It is surprising (to me, at least) that the differ-
entipl corrections process could recover from such a flagrant mis-fit,
but it does, converging after twenty iterations to a point P whose20
RMS error is 18% of the original error.
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.1

The point P is not at the absolute minimum but this fact can20
hardly be deduced from a study of Figure 3. Note the insidious lure of
those columns of numbers converging to a wrong answer. If we had started
with, say, P as our initial point, even our experienced analysts - who

would suspect any final result that differs very much from the starting
point - might be lulled into acceptance. The error estimates for the
ten parameters (printed below the final iteration values) are not un-
acceptably large; they help maintain the illusion that the parameter
values themselves are acceptable. Finally, the bottom half of Figure 3,
listing the measured and computed &H and ýV, and the corresponding

residuals, seems to reinforce the impression that we have fitted the data
adequately.

And yet if we look at Figure 4 - the same round, but using Marquardt's
algorithm - we see that a much different fit is possible, with a much
smaller RNS error and a much better set of parameter error estimPtes.
(Thus the fact that the ten error estimates in Figure 3 were of satis-
factory size proved nothing. If there had been no noise, we would have
converged there to some "true local" minimum. The parameter sror
estimates in Figure 3 are measures of how close we came to that true
local minimum, not to the true absolute minimum.)I It is instructive to see just how Marquardt's algorithm got us to
the right answer in Figure 4. The first iteration is nearly the same
as in Figure 3 since A is relatively small (0.001). It is in the second
iteration that Marquardt's algorithm had its first big opportunity to
star. It recognized the fact that a giant over-step was about to be
made and so - since e is less than 45 degress - it divided each param-
eter increment by ten. For example, in Figure 3, the increment in A1
from the first to the second iteraton is

(A)y1) - 0.18722 - 0.01878 = - 0.20600 (1/m)

while in Figure 4, the increment is about one-tenth as large:

(A = - 0.00180 - 0.01876 - 0.02056 (1/m)

(For K and K 2 recall that it is the increments in n and n2 that are10 20 1 2

reduced by a factor of ten.) A single shrinking of the step-size was
sufficient in this instance to give a smaller RNS error than obtained
from the first iteration and so the second iteration was concluded.

Thereafter the Marquardt part of the process had little to do.
Usually, it is not possible to tell when the "1 < 45°" feature has
been called into play (without insertivg monitoring statements within
MARQ). That feature may or may not have been used whenever the print-
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out shows a 9 loss than 4S degrees. We can say, however, that X itself
was of negligible aid in the convergence of Figure 4. This is shown by
the steadily decreasing values of A printed out. A departure from the

norm

'TRY K - 0.1 'TRY K-1

would have indicated that A played a significant role in completing the
K-th iteration. Such a departure doesn't occur in Figure 4.

Of course, if we start out anywhere within a relatively tiny region
of the parameter space surrounding the solution P of Figure 4, we will
converge to that solution without A. (This is what actually happened
when we used our preliminary subroutine to determine the initial esti-
mates.) The point is: when A is used, the region of convergence is
expanded considerably. Marquiardt's algorithm is like radar on a ship
seeking harbor; on a foggy night, we need all the help we can get.
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APPENDIX A . . . SUBROUTINE MARC

SUBROUTINE NARQIEQSXtVNtNtPCEtDtRITHEKI *ee* 1
DIMENSION X(MIY|MNtPINitvMNhtR(N)tEK|NIt MARC 2

0 ALPHA(IOotO1,BETAItOIGNAIAI1OttO.OPB|IOiSIIO) MARC 3
C
C NOTE -- IF NO* CF PARAMETERS NeGTeIO, REPLACE 10 ABOVE
C AND IN MATINV LIST ILINE MARC 481 BY AN INTEGEReGE.N .
C THE VALUES OF AN, BN AND GN BELOW NAY BE CHANGED, PROVIDED THAT
C AN .GT, 1. ON oGTo to AND 0O oLEe ON 9LEe 45.
C

CATA DEG/57o299S7/ CM|N/ogE-161 ANIIOo/ tN/1O./ GNS4.t MARC 4
'M aM "MARC S

NN = N MARC 6
C
C * GO TO I IF MARC 1S NOT BEING CALLED FOR THE FIRST TIME*
C

IF(C.GE.O)GCTO I MARQ 7
C
C * THE FIRST TIME NARN IS CALLED, EVALUATE Es 0 AND Ro
C * SET C a INITIAL VALUE OF LAMBDA AND RETURN.
C

CALL EQSIX9YvMM#NN9P9EvO9R| MARC 8
C a O.OO1*AN*(C + 2.1 MARQ 9
TH - 0. MARC 10
RETURN MARC 11

C
C * SET CL a INPUT LAMBOA/AN AND EA I INPUT ERROR.
c

I CL - C MARQ 12
IF (CLGT.CMIN) CL - CL/AN MARC 13
EA - E MARC 14

C
C * FORM THE BETA VECTOR, EQIIS), AND ONLY THE N(N+.1/2
C * ALPHA ELEMENTS ON OR BELOW THE PRINCIPAL DIAGONAL. EQIt9).
C

DO 4 J a 19NN MARC 15
S- 0. MARC 16
DO 3 1,J MARC 17

A O. MARC 18
00 2 1 a |vMM MARC 19

IF(KeEQeI) B a R + R(I1*D419JI MARC 20
A a A 4 D([tJ)*ODIIKl MARC 21

2 CONTINLE MARC 22
ALPHA1JOK) - A MARC ?3

3 CONTINUE MARC 24
9ETA(JI a B MARC 25

4 CONTINUE MARC 26

SPreculin4 pag blank
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C 0 FORM SCALE FACTORS S(J). REPLACE BETA WITH SCALED

C * BETA, EQ(2919 FGOM SCALED ALPHA(JYK), EQ(2519 AND
C * STORE ABOVE THE PRINCIPAL DIAGONAL AS ALPHA(K*J).
C * FORM SM - THE SQUARE OF THE MAGNITUDE OF SCALED BETA.

am •*O MARQ 27
00 6 J x 1.Nk MARC 28

$IJI lel/SORTIALPHA(JtJ)I MARQ 29
8ETAiJ) a SETA(JI*S(J) MARQ 30
SM a 8P + BETA(JI**2 MARC 3I
K a J.- I MARG 32

5 IF(K.EQ*OIGOTO 6 MARC 33
ALPHA(KJ) v ALPHAlJK)*S(J)*SfKl MARC 34
K a K - I MARQ 35
GOTO S MARC 36

6 CONTINUE MARC 37
C
C * FORM MATRIX GAMMA, EQ(33), BASED ON CURRENT VALUE OF LAMBDAe
C

7 OIAG -1 . + CL MARO 38
1O 9 J a lNN MARQ 39

GAMiIA(JqJ) a DIAG MARC 40
K a J -1 MARC 41

a IFIKoEQoO)GOTO 9 MARC 42
GAMMA(JKI a ALPHAIK9J) MARC 43
GAPPA1KJ) a GAMMA(JvK| MARQ 44
K inK- a MARC 45
GOTO 8 MARQ 46

9 CONTINUE MARC 47
C

C * REPLACE GAMMA BY ITS INVERSEo
C

CALL MATINVlGAMMAsNN#PBIO.O#DOT) MARC 48
C
C *FORM THE COMPONENTS OF THE SCALED DELTA P VECTOR...

DP a SCALED (DELTA A| SUB Jo SATISFYING F0432).
£ •FORM THE CANDIDATE POINT PB w P + UNSCALED DELTA P.
C * FORM DOT a DOT PRODUCT OF SCALED BETA AND SCALED DELTA P.
C FORM GPM a THE SQUARE OF THE MAGNITUDE OF THE SCALFD DELTA Pe

C
DOT OM MARC 4T
DPM a0. MARC 50
DO 11 J a 1.NN MARC 51

aP a 0. MARC 52
00 10 K a 1,NN MARC 53

CP a OP + *ETA(K)*GAMMAIJoK| MARQ 54
10 CONTINUE MARC 55

PO(J| a P(J| + DP*S(J| MARC 56
COT a DOT + CPeBETAIJ) MARC ST
CPM a CPM + OP*OP MARC 56

11 CONTINUE MARQ 59
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C
C * FORM ANG THETA, DGI2hES, E10351.
C

ANG• O. NARN 60
TR a COTISQRTIOPM*BMI MARC 61IF(ABSITR)*LE*1e. ANG a OEG*ARCCOSITR) MARC 62C

C * EVALUATE ES a ERROR AT THE CANDIDATE POINT PB.
C

12 CALL EQS(XoYMMNNPSEBDORI MARC 63C
C * COMPARE ERROR ES AT POINT P6 WITH INPUT ERROR EAe
C

IFIEB.LEEA1GOTO 15 MARC 6'IFICL.EQ.OQeGOTO 15 MARQ 65
IF(ANG*LTo GNIGOTO 13 MARC 66

C
C * INCREASE LAMBDA AND GO SACK TO COMPUTE NEW GAMMA.C CL * AN*CL MARC 67

GOfO 7 MARC 68
C
C * DECREASE LENGTH OF DELTA P AND GO BACK TO COMPUTE MEW ES.
C

13 CO 14 J * 1,NN MARC 69
PS(J) • PUJ) * (PBIJ)-PIJ)ISN MARC 70

14 CONTINUE MARC 71GOTO 12 MARC 7ZC
C * THE ITERATION HAS SEEN COMPLETED SATISFACTORILY.
C * UPCATE CURRENT POINT P AND ERROR Ee COMPUTE ERROR
c * ESTIMATES FOR tHE PARAMETERS.
C

15 E = EB MARC 73C a CL MARC 74
TH a ANG MARC 75
00 16 J - 19NN MARC 76

P(J) - PB(J) MARC 77
EK(JI a EU*S(J)*SQRT( GAPMA(JJ)*OIAG I MARC 78

16 COhTINUE MARC 79RETURN MARC 80ENC MARC 81
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'APPENDIXN 1 . . SUBROUTINE NATINV

OBTAINED FROM COMPUTER SUPPORT DIVISION
ABERDEEN RESEARCH ANO DEVELOPPENT CENTER

SUBROUTINE MATINVIAPNCiNNAXK.DETI so*** I
DIMENSION A(NMAXtIbC(|) MATINV 2NN u N MATINV 3
KK u K NATPINI 4
IF (I-KKI 3,1,1 NATINV S

I N3 a NN MATINV 6
IF IKK) 294,2 NATINV 7

2 ASSIGN 9 TO NS NATINV &
ASSIGN 13 TO N? MATINV 9
GOTO 5 MATINVIO

3 N3 a KK + NN - I MATINVt1
4 ASSIGN LC TO NS MATINVI2

ASSIGN 14 TO N? NATINV13
5 CET a 1.0 MATINVI4

00 15 1 - INN MATINVI5
IF MAII91)) o,697 MATINVI6

6 NRITE;6,IT) NATINVIT
DET v 0.0 NATINVI8
COTO L6 MATINVI9

7 TI a LOIA|II,) HATINV20
CET m DETOAIIII NATINVI
A41#11 u IeO MATINV22
CO 8 J a 1,N3 MATINV23

AIIJ) m AIvJI*TI MATINV24
8 CONTINUE MATINV25

COTO NS, (910o) MATINV26
9 C41) " CIi)*TI MATINVZ?

10 00 14 J INN NATINV28
IF (1-JI 11,14911 NATINV29

11 TI a AIJI) HATINV30
AIJqI n 0.0 HATINV31
CO 12 L w IN3 MATINV32

AfJL) a AIJYL) - T10A(I9L) 1ATINV33
12 CONTINUE MATINV34

GOTO NT 413,14) MATINV35
13 CIJ) m CIJI - TIOCIII MATINV36
14 CONTINUE MATINV37
15 CONTINUE MATINV38
16 RETURN MATINV39
I? FORMAT 11.6" SINGULAR MATRIX) MATINV4O

END MATINV41

Preceding page blank
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APPENDIX C . SUBROUTINE 9YAW

SUBROUTINE EVAIIIX9,Y.NvNPE*O9ft I**
DIMENSIONI X(M1,Y4N),PINIO(PNNvRIN) EVAW 2
COMMON/EEPIVeF EYAW 3
5 a0. EYAW 4
F a 0 EVAW 5
T P414*P19)*V*V EVAW 6
IF(ToNE*0.) F a -9.6*4 P(413 P491 )IT EVAW 7
NL a M12 EVAW 8
00 2 1 n*,NL EYAW 9

J a I NL EVAW 10
w a X1I1 EYAW 11
EL a EXPI P41) 4. P2123W I EVAW 12
E2 a EXPI PW6 + PM73W I EVAW 13
At a P(3) + W*( P44) + W*PISP I EVAW 14
A2 a P(81 +. 14* P491 + WOP1LUII EVAW 15
RI a ELOCCOS(Al EVAW 16
R2 a E2*COSIA2) EVAW 17
R3 a kl*SIN4A1) EYAW 16

R4 - 2*SIN(A21 EVAW 19
Ru) a Y(11 - RI '-RZ - F EVAW 20
R(J) a Y4JI - R3 -Rt4 EVAW 21
S a S4 R411**2 * RIJI$*2 EYAW 22
M911 a RI EYAW 23
C(JI) a R3 EVAW 24
CI 1921 w RI*W EYAW 25
C(JZ) a R3*W EYAW 26
C(191, w -R3 EYAW 27
DIJ,31 a R1 EVAW 26
041,41 - -DIJ*21 EYAW 29
DIJ,41 u 011,2) EVAW 30
041.5) a -OIJ921*W EYAW 31
C1J951 = 0119210W EYAW 32
041,61 - RZ EVAW 33
DIJ961 a R4 EYAW 34
C11971) R2*W EYAW 35
0IJ,?) m R4*W EYAW 36
011,6) a -R4 EVAW 37

D(J81 R2EYAW 36

DIM1,3 -oliJ,) EYAW 39
DIJ*91 : 0147?) EVAW 40
C4IoLIN) -04Jt73*W EYAW 41
OIJ91C)* 01197)0W EYAW 42

2 CONTINUE EYAW 43
b SQRTI S/FLOAT(#4-101 EYAW 44

RETURN EYAW 45

END EYAW 46
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APPENDIX 0 . *SUBROUTINE IV

SUBROUTINE EV(RONNSbAZZRVRPQ.BB.AARN4SIREPICI I**
EXTERNAL EYAW EY 2
DIMENSION NSiN),BINIAINIZtiN),PIIO),tILOS),l(1O8).D41OS,1O). EY 3
L R~l1O81,QIOhS5lN).AA(NJ EY 4
COPI4ON/EEP/VtIR El
DATA CEG/57*29573/ El

4.0 FOAMATIIhOsM7 TOO FEW STATIONS/) EY
'41, ORP-ATI1H1,2OX9AHROUND 9FS.592OX,9HZ* - 9FI0.4t2H M/ EY a

1 11, s54K9,!IV* a oF9.3,714 M/SEC/SH TRY, EY 9
2 5Xv2HKt,5Xv5HLAM 1,5X92HAI, 6Xv2H81v8X92HC19 EY 10
3 9XOZNK2,SX95HLAM 2v5XZHA2v 6X*ZH8?,BE,2MC2v EY It
4. aX#4HMARQvAK,4MMARQv59v3"RMS/ V 1
5 IH 97X924 9X,33HtM11 (DEG) (DECINJ lOEG/M**2)v4X), EY 13
6 614LAMBDA,2XK,5IiDEGISX,5HERROR/I EY 14

4.2 FORMATIIN ,14,2iFeS.F9.5,FSolFB.2,Flle6,2XlE9.1,F7.ZFAI.6) El 15
44 FORMATIIliO,4M ERR,2(FI.5,9F95oF8.1,FU.2,FII.6,2X1,5X, El 16
1 16HYAW GF REPOSE a 06S.51/1 EY 17

4.4 FORfMAT143H4 ****WARNING**** PROCMS FAILED TO CONVERGE/Il EY is
45 FORMAT(SI4 S7A,*X9A4HZlMl,9Xv21HXIlHI COPP RESID,7Xf EV 19
I 2IHJCIiVI COMP RES1O,7XBHDELTA SQSX9414COPPSX*5HMESID/1 El 20

4.6 FORMATILP ,t4,PIOe4,214X,3F8.*I4K,43F10.6) El 21
NL a N EV 22
M a NL* NL 51 23
EF a M -10 El 24
IF iOF*GT*0.) COTO t El 25

WRtTE469401 EV 26
IC w2 El 27
GOTO 7 El 28

I IC a 0 El 29
V m VR EY 30
C a -1.0 El 31
VO 2~ 1 =,NL El 32

J A I NI. EY 33
X41) Zil)1 ZR El 34
VIII B411 SY 35
1(j) *All) 81 36

2 CONTINUE El 37
W91TE46#4I) 00#ZRoV El 38
Pil1 a ALOG( Pi1) I EY 39
P(6) a ALOGI P16) El 40

Preceding page blank
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CO 4 Ks ,2 EY 41
CALL MARQiEYAWXVM,10.PC.EDRThQI1 sy 42
RI a ExIpiPillI EY 43
At a OEG*P313 EY 44
81 0 DEG*PI,) EY 45
Cl - OEGOPISI EY 46

R2 aEP( P46) I EY '7
A2 a GEG*PIO) EY 48

eza OEG*P191 EY 49
C2 a CEG*PI 10) EY 50
J a K - t EY 51
WRITE46,421 JftltP121#AI.,SICtR2,Pt7l9A29BZtC29C9YH9E EY 5?
IF (J*EQ*Cl GOTO 3 EY 53

CA 1.0* - E/EA EY 534
IF ICR eGEe 0. eANDo CR *LT& .0000101 GOTO 5 EY 55

3 EA -E EY 5~6
4 CONTINUE EY 57

IC 2 1 EY 58
WRITE(69441 EY 59

5 Q~3 w CEG*Q(13 EY 60
04 a CEG*Q(41 EY 61
WS5 a CEG*Q(SI EY 6?2
Q8 v OEG*QIS) EY 63
09 a CEG*9491 EY 64
Ql0= OEG*Q(l0) EY 65
Pit) a RI lEY 66
P16) a R2 EY 61

aJll RI*Q11) EY 68
(lie a R2*Q(16 EY 69
WRIrE(6943) Q(t~,OI2),Q3,Q4,Q5,QI6),Q(7),Q6,PQ9,gIOpyR EY 70
AM'Sa me EY 71
VREP- YR EY 72

WIE641EY 73 1*
CO b I a lNL EY 74

J - 1 NI. EY 75
Hill) 0 YII) - R411 EY 76
AAMI a YWJ - RUJ) EY 77
CAm YII)*02 + Y(J)**2 EY 78
08. 68fluI**2 + AA(I)**2 ey 79
CCm DA - 09 EY 80
WRITEI6s461 NS(III ZiI),Y(I ~bl,(),R(Ilt)(J),AAII),R(J),OADO9,CEY aI

6 CONTINUE EY 82
7ENURN EY 04

RETUN EY 83
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"LIST OF SYMBOLS

A (1) a factor greater than unity by which A is to be
increased if necessary to insure that ec 0

(2) an BY input array argument: the measured C. values

at each station

A I A2 orientation angles of the two yaw arms at z0 , Eq. (41);

two of the ten yaw parameters

AA an BY output array argument: the computed EV values at

each station

AN the FORTRAN name for A (def. 1) in subroutine MARQ

aI a2 "" the n parameters of the fitting equation whose values
are to be determined

B (1) a factor greater than unity by which AP is to be
decreased if necessary when e < G

(2) an EY input array argument: the measured C values

at each station

B , B turning rates of the two yaw arms at zo, Eq. (41); two
of the ten yaw parameters

BB an EY output array argument: the computed &H values at

each station

BN the FORTRAN name for B (def. 1) in subroutine MARQ

b 1 or 0.67449, Eq. (20)

C a NARQ input/output argument; after the first call, C =

C , C2 two of the ten yaw parameters, Eq. (41)

D a MARQ input/output argument and an EQS/EYAW output
argument: the array of partial derivatives Dik

DET determinant of matrix y
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LIST OF SYMBOLS (continuod)

[af (Xis P)]

Dik Dik/

E estimate of the error of the fit, Eq. (20); a MW
input/output argument and an EQS/EYAW output argument

Ej estimate of the error in parameter a Eq. (21)

EK a MAW output array argument: the estimated errors E

EQS a MARQ input argument: the dummy name of a subroutine
called by MARQ

EY the subroutine that calls MARQ in the yaw problem

EYAW the actual name of EQS in the yaw problem

F the criterion function, Eq. (4)

f the fitting function, Eq. (1)

fil fY the two fitting functions for the yaw problem, Eq. (44)

G the value of 0 (degrees) below which a new AP is obtained

by shrinking the current AP.

GN the FORTRAN name for G in subroutine MARQ

g the acceleration of gravity, assumed constant, Eq. (42)

h a dimensionless positive constant, Eq. (30-31)

IC an EY output argument: a convergence flag

K K lengths of the two yaw arms, Eq. (39)
1 2

K 1K values of KK 2 at Eq. (40)10' 20 1" 2 Z0E. 40

L a local minimum point

M a MARQ and EQS/EYAW input argument: the number of data
points, m
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4

LIST OF SYMBOLS (continued)

MARQ the subroutine for carrying out the Marquardt algorithm
of Figure 2

MATINV a matrix inversion subroutine

m the number of measurements: the number of data points
(xi, Yi)

N (1) a MARQ and JIQS/EYAW input argument: the number of
parameters, n

(2) an EY input argument: the number of spark stations,
NL

NL the number of spark stations at which measurements were
taken, M/2

NS an EY input argument: an array of station numbers

n the number of parameters

P (1) the parameter set {a , a, a,}; a point in n-
1 2'

dimensional parameter space

(2) an EY and MARQ input/output array argument and an
EQS/EYAW iaput array argument: the parameter values

Pg a point along the negative gradient

Po0  p , P2'... the initial and successive parameter points in the
1. 2 iterative fitting process

the vector from the origin of the parameter space to
point P

an EY output argument: the array of estimated errors
in the ten yaw parameters

R a MARQ input/output array argument and an EQS!EYAW out-
put array argument: the residuals of the fit (observed-
computed)

RD an EY input argument: a number identifying both the
range and the round

RMS an EY output argument: the RMS error of the yvw fit
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LIST OF SYMBOLS (continued)

r an integer > -1

S n-dimensional parameter space, in which the coordinates
of a point P are the values of the n parameters

scaled parameter space, Eq. (23), in which each co-
ordinate has the dimensions of the dependent variable y

TH a MARQ output argument, the angle e (degrees)

V0  velocity at zo, m/sec

VR an BY input argument: Vo; passed to EYAW (under alias

V) by labelled COMMON

X a MARQ and EQS/EYAW input argument: the array of data
points (xi)

x the independent variable of the fitting equation

x i value of x at which a y measurement was taken,
i - 1, 2, . . . m

the set of measurements {yi}; a MARQ and EQS/EYAW input

array argument

YREP an BY output argument: t R the yaw of repose; obtained

from HYAW (under aliases YR and F) by labelled COMMON

y the dependent variable of the fitting equation

yi the measured value of y at x a xi, i 1, 2, m

Z an BY input argument: the array of z measurements

ZR an BY input argument: z0

z down-range distance, metres

zo reference z value, metres

the curvature matrix (Qj k
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LIST OF SYMBOLS (contin:•ud)

•5 athe inverse of matrix a

tthe scaled curvature matrix IA

j. jEq. (11)
j k ~[ aka1  0

cofactor of 0.k

"ajk determinant of a

jk ~~ j k/ .Iflj jc

cofactor of .,
: jk de-terminant of f

I
- (grad c)o. Eq. (13)

a,(. ' 0n)S t i' 2' *

- Eq. (10)

0 k - , Eq. (25)

y the modified a matrix (Yjk)A

I I + A, j = k

Yjk { Eq. (33)
'jk , j 0• k

A a positive constant << 1 in the relaxed standard, Eq. (36b)

Aa. the change in a. in moving from one point to the next in

the iterative fitting process

-- Aa Aa
Aa A

"59



LIST OF SYMBOLS (continued)

AP the vector (Aa,) - (All~ from the current parameter

point to a new point

C F(P). the sum of the squares of the residuals of the
fit at point P, Eq. (4)

C, £ ,... c values associated with points P p 0_1 1

1ipn ( n (K 20

- the angle between and A'P, that is, between the negative
gradient and the direction actually taken, Eq. (35)

a dimensionless positive constant added to the diagonal
elements of t in order to effect an interpolation be-
tween the methods of steepest descent and differential
equations.

- the smallest value of A needed to satisfy Eq. (36)

A notation for the phrase "1 plus the other features in
Figure 2 that distinguish Marquardt's algorithm from
the usual differential corrections process."

the complex yaw, & + i CV, Eq. (39)

- &H' &V the components of the complex yaw, Eq. (44)

"&•R the yaw of repose, Eq. (42)

*1 $2 *orientation angles of the two yaw arms, Eq. (39)
1 2

* I [ ]dimensions of the brack6ted expression

1 ]0 evaluation at the current set of parameter values
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