S S —
- TG T R T PR e n N R

AD-AO16 906

APPLICATION OF MARQUARDT'S NONLINEAR LEAST SQUARES
ALGORITHM TO FREE-FLIGHT YAW DATA ANALYSIS

James W. Bradiey

Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

September 1975

DISTRIBUTED BY:

National Technical Informatien Service
U. S. DEPARTMENT OF COMMERCE

P

b
Bk S

e
s

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

MAOI69ea

\

317097

BRL MR 2526

lAD

BR

, MEMORANDUM REPORT NO. 2526

APPLICATION OF MARQUARDT'S NONLINEAR
LZAST SQUARES ALGORITHM TO FREE-FLIGHT
YAW DATA ANALYSIS

Approved for public release; distribution unlimited.

i Reproduced by
| NATIONAL TECHNICAL
i INFORMATION SERVICE .

| U 8§ Department of Commarce
Springfield VA 22151

USA BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

James W. Bradley ' WIRG
< AN \
?C.:f\.,f % &® /\\.\} '
P W AN
September 1975 Qo _.ﬁf-;,\‘\/l\x

. B AEa R S RN L2 ¥ SSDRT A2 3 s » SR e O M SHRBRENL o drnihins - o W
TSRS SN PRSES SE~ § N N S

Destroy this report when it is no longer needed.

Do not return it to the originator. ¢l
{
Secondary distribution of this report by originating :
or sponsoring activity is prohibited. . ’ *
Additional copies of this report may be obtained ; '
from the National Technical Information Service, e
U.S. Department of Commerce, Springfield, Virginia j
221851, b
N
!
1
]
1

KPR W
p wotty St
."J: PR B T }-“)
Ull'-'.WJRt!.!l N
‘!lﬂtmﬂl

T g
L et e

N aoRioR ATy €O

s o g Srouib

Wl A S
pa MRl

|

4 =ik ‘-d- -

t : The findings in this report are not to be construed as
" an official Department of the Army position, unless

E\ so designated by other suthorized documents.

i

SECUNTY CLAMBIFICATION OF Tt PAGE (Whew Bate Bxtered

“"RBAD BTROCTIONE]
REPORT DOCUMENTATION PAGE m
B No, 2526
& TITLE tene Subitile)] 8. TYPE OF AEPORT & PEAIOD COVERELD
APPLICATION OF MARQUARDT'S NONLINEAR LEAST
SQUARES ALGORITHM TO FREE-FLIGHT YAW DATA Final
ANALYS1S
R 0) (g
James W, Bradley
) [" :) s
USA Ballistic Research Laboratories
‘Aberdeen Proving Ground, lu'yla_nd 21008 RDT&E 1T061102A33D
1. CONTADLLING OFPICE NANE ANG ADDREWS 13, AEPORT BATR
U.S. Amy Materiel Cowmand SEPTEMBER 1975
5001 Eisenhower Avenue L 3’ paetl
. LA ‘ eyl o v M
Unclassified
IR BITREUTion STATERER Y (ol &io Fesecy)
Approved fur public relemse; distribution unliwited. ..
L \- ~:." ‘.,\r"_\
17. DISTRIGUTION STATEMENT (of the abotvse! sntered in Bioch 50, if Gilerant hom Report) i . ” S \.‘.“\

¢ D L.
6. SUPFLEMNENTARY NOTES Ne— —

. KEY WORDS (Coniinus on roveras s I noscssury Gnd (deniily by Sleoah mumber)

Curve Fitting Yaw Reduction
Marquardt Algorithm

Nonlinear Least Squares

Parameter Optimization

P ARaTRACYT (Continus oo rovires oids 1 nossatiry tnd Ienitly by DISUk MEBbe0) ds

Marquardt's algorithm is an improved technique for the least squares estima-
tion of nonlinear parameters. The present report describes the algorithm and
documents a FORTRAN subroutine for carrying it out. A specific application
of the subroutine is discussed in detail: £itting a complex yaw equation to
data obtained from a Free Flight Range. An eoxample is given in which the
fitting process converged to the wrong answer without the algorithm and to
the right answer with it.

DD , 2%, 1473 =ormion OF 1 OV 63 15 OBsOLETR UNCLASSIFIED

/ ARCUMTY CLAIFICATION OF THIS PAGE (Wwen Dora Bntered)

TABLE OF CONTENTS

- INTRODUCTION

Page

II. DIFFERENTIAL CORRECTIONS 7 ;
ITE. SCALING . v v v v v v v v v e e v v o e 1 | Y
‘ IV. STHEPEST DESCENT . « . . « o o o v e v v s v e e v u e 13 4
Vo INTERPOLATION . v 4 o v v v v o v v o oo v v o o v o oo 14 !
VL. MARQUARDT'S ALGORITHM . . . v oo v v oo v v v v v oo . 15 B
VII. COMMENTS ON SUBROUTINE MARQ . o « v « v v v o v v v v v . 21 ¥
VITE. THE YAW EQUATION o + & v v s v v a o e e o e o v m e oo s 20 f
IX. COMMENTS ON HANDLING TWO FITTING EQUATIONS 31 l
X. COMMENTS ON SUBROUTTINE EQS/EYAN . & « « o v . v v o v oo . 32 |
XI. COMMENTS ON TIE PROGRAM THAT CALLS MARQ . . + « o o . .+ . . 35 - o
X1l. A SAMPLE CASE, WITH AND WITHOUT A .+ « « v v v o 4 v v o o v 36 1
REFERENCES + v v v v v v o o o o o o o s b v v v v a o o a s 43 "
APPENDIX A o 4 v v v v v v e v e o b e b e e e .. 4B
APPENDIX B o v v v v v v v e vt e v a it e e e W
APPENDIX € o v v v v v o o e o v e e b e e e e 5L ;
APPENDIX D« + v o v v v o v o v v b o v o b et e e .y 53 f
LISTOF SYMBOLS . & & v v v v v v v v v v e et v o w oo 55 3
' DISTRIBUTION LIST + & & v v v v v v v v v a v v v s a v o v 6l ' '
j
. !

Praceding page blank

-3

R

I. INTRODUCTION

Fitting an equuation to ‘& mass nf data points (x, y) is an ancient
and honorable pastime. Circa 1300, Geuss and Legendre discovered inde-
pendently what proved to be a gisnt advancement in technique: the
Method of Leoast Squares. Refinements of this basic method are still
showing up in the literature. This report concerns one such refinement,
proposed by D. W, Marquardt!.

Suppose ve are given an equation of the form
y=£ (« P) (1)
where PP is a set of n unknown constant parameters:

P {al".z' .. .n} (2)

We are alsu given a set of m measurements

Y = {yl, y2, .. yn} (3)

at the corresponding (presumably error-free) x values x , x , . . . X

where m exceeds n: there are more measurements than unknown parameters.
lor convenience, we assume cach measurement Yy is equally reliable; this

climinates the need for weighting factors, which add nothing to the
concepts involved.

We are asked to determine the least squares fit of Equation (1)
to the set of measurements. That is, we seek those values of the aj's

that minimize ¢, the sum of the squares of the residuals of the fit:
m

e=F (P) = iZ [y; - £ (x;, P))? (4
=]

The criterion function F in (4) is assumed to be an analytic func-
tion of the n parameters. We can describe the situation geometricully
as follows. Consider an n-dimensional Buclidean space S in which any
sct of parameter values constitutes the coordinates of a point P, Then

1. Donald W. Marquardi, "An Algorithm for Least-Squares Estimation of
Nonlinear Parameters," J. Soo. Indust. Appl. Math., Vol. 11, No. 2,
pp 431-441, June 1968,

Preceding page blank

¢ is the value of the continuous scalar point function P at poirt P. For
each point P in the parsweter space S these corresponds & single value of
¢ and our task is to search £ in some well-defined, automate:i manner for
the point (and hopefully there is orly one such point) that yields the
gbsolute minimum value.

In practice, the criterion function often pcssesses one cr more
iocal minimum values in addition to the desired absolut” wminimuw. Tae
particular minisum we reach thon depends on where in spac: J we staxt
our search. If we start too close to the point L associuted with oue
of these local minima, and if our mathematical searching procedure -- in
the interest f computer economy — is not prohibitively sophisticated,
then we are going to be drawn irresistibly to L. Even if we start far
from L, a funny thing can happen on the way to the right answer: our
path may pass through L's sphore cf influence and we are trapped. We
will give an example of this misfurtune in the final section of this
report.

A necessafy (but insufficient) condition for ¢ to be at a local or
absolute minimum is that the gradient of ¢ be the zerc vector:

[3¢ oc s -4
1 2 n [

Thus we seek the set of parameter values that satisfy all n ~omponent
equations of (5) simultaneously.

When Equation (1) is linear in the parameters:
y=a 4) +a ¢ (x)+. . .4a e, () (6)

Equation (5) represents a system also linear in the parameters. In
principle, such a system (provided it is nonsingular and steble) can be
solved by any one of a variety of well-known techniques. This is too
easy; thus we specify here that Equation (1) is nonlinear in at least
one of the parameters.

For this nonlinear situation, two of the estal ished methods for
minimizing e are:

(a) steepest descent (alias gradient sourch);

(b) differential corrections (alias Taylor series expansion,
alias Gauss-Newton method).

Marquardt has proposed a third technique. As we will see, his
algorithm! represents a blend of the first two methods, retaining the
best features of each.

In Sections II to IV, we will discuss encugh of the differential
corrections and steepest descent techniques to see what is involved in
an interpolation of the two. In Sections V to VII, we will discuss the
Marquardt algorithm and its implementation as a FORTRAN subroutine MARQ.
In Sections VIII to XI, we will show how subroutine MARQ is used to fit
a complex yaw equation to a set of measurements obtained from an enclosed
“vre-flight spark-photography range. In the final section we will com-
piure a case run with and without the aid of Marquardt's algorithm.

II. DIFFERENTIAL CORRECTIONS

We can obtain the basic equations of the differential corrections
technique by approximating y or ¢ or grad ¢ by a first-order Taylor
expansion about a given point Po. For our purposes, the simplest choice

is grad e:
3c dc i 2%e A
o€ € (7
e [5], & [

where
Aaj = the change in 8 in moving €rom P, to P
and where the zero subscript denotes evaluation at point P,. Under

approximation (7), the nonlinear system (5) is replaced by a sysiem that
is linear in the parameter increments Aaj:

n [
A . Aa- o - - » k = 1. 2' + « » N (8)
da, 3a, 3)
] o Ak +]

j=1

or, simplifying the notation,

2 ujkAaj=Bk,k-1,2,...n (9)

j=1
1 J€
B o . = ——— (10)
k 2 9
[a1‘]0

where

e R

R PRy S

S VP REY S

B SIS I S S-S SO S R .+ % L)

1 3%e
ij = 7 [——-—--—-—aaj a.k] . (11)

and where the factor 1/2 has been introduced to simplify later expres-
sions for By and “jk' :

The system (9) can be written in matrix form as

-——
A cang (12)

where

o« = the n x n symmetric matrix (ajk)s

‘ .

AP = the row* vector (Aa , ha , . . . An L
1 2 n

'5 = the row* vector (81’ 82. . . B")s

The symmetric matrix a is sometimes called the curvature matrix because
it is a measure of the curvature of the ¢ hypersurface in the parameter
space. From (10), we see that § is a vector in the direction. of the
negative gradient of ¢ at P o

Ta- %— (grad €) (13)

Equation (9), or the equivalent Equation (12), represents a system
of n linear equations in the n increments Aaj . Hence we can solve the

system for these increments:

n
day = z Bk?s'jk,jnl, 2, «..n (14a)
k=1

er

B#.3.% (14b)

- -te
*Tf we had written the product in Eq. (12) as o + AP, then AP and [3
would be colum vectors.

Ot

el ATt

——

—
T

TS T e

LRy

AT 21t arey

where

(%)

= the inverse of matrix a

ﬁ‘ i cofactor of elementgjk
jk determinant of a

Of course, to solve the'system (9), we must be able to express Bk
and %k in terms of the given fitting function of Eq. (1). Substituting
Eq. (4) in (10), we have:

i 3¢ (x,, P)
1 i’
SRR L ELIPIN R Pon[——-——aak
o]

i=1

m
- Z [yi - f (xin po)] Dik (15)

i=]

where
of (xi, P)
Dk = Bay (16)
o

Similarly, substituting (4) in (11), we have

U 32f (x;» P)
4y = :E: Dy Dyx = [ry - £ (x4s Py)] BORS (17)
0

i=l

The second-order term in (17) could be a big nuisance if we let it, but
traditionally — and with ample justification - this term is dropped.
Hence our working definition of “jk is the approximation

n

ajki z Dij Dik (18)
i=l

R e

EE SR A e A S A et g

KWhen the system (12) has been solved for the increment vector, we
can then make the differential corractions on Po’ that is, we can then

obtain a new point P1 whose vector is
= P + AP (19)

and whose associated error value is e1 = F (PI).

If Eq. (7) were exact (which would happen only if the original
fitting function in Eq. (1) were linear in the parameters aj), then P1

would be the desired point at which ¢ is a minimum. Since Eq. (7) is
only an approximation, P1 is not the solution to the nonlinear problem.

Indeed, if the starting puint Po is not close enough to the solution

point (and it is usually difficult to say beforehand how close is ''close
enough'), then ¢ will be larger than €o the process may or may not

recover from this inauspicious start. By the rules of the game, P1 is

made the new starting point, whether or not it is an improvement.
System (12) is then re-solved for a new set of parameter increments,
which in turn yield — for better or for worse —~ a new point P2 and

so on, each iteration of the scheme taking us to the next point. This
process may converge to a unique point PM and if so, ey = F (PM) may be

" the absolute minimum value of the criterion function., But don't count

on it,

An estimate of the error of the fit at any point P is usually
obtained by the relation

(20)

where
b = 1.0 to obtain an estimate of the root-mean-square error
(more precisely, the RMS deviation between the measure-

ments and a hypothetical set of "true" measurements
free from observational errors)

2 (0,67449 to obtain an estimate of the probable error

and an estimate of the error in any parameter aj at point P is given by

e oSS -

10

Because of its application in Equation (21), the inverse matrix % is
sometimes called the error matrix.

Before we consider the steepest descent approach, it will be con-

venient to simplify whatever physical dimensions are involved in our
equations,

III. SCALING

If the parameters aj are dimensional and = worse yet — not all

of the same dimensions, then our parameter space S can be a hodge-podge
of femto-drams, fermis and fortnights. Letting []d denote "dimensions

of", we have
[Dik]d - [rra],

[epd, = ¥/ =,
i, [l [

A
Suppose now that we introduce a scaled parameter space S in which

v

(22)

J

3 = o o (23)
so that
[, - M k-nz. o (24)

Then the correspondingly scaled partial derivatives and 9.'§ and grad e
elements aroe, by Equations (16), (18) and (15):

N

Bix - Dik/\/ Sk
%k = v/ i

(28)
B " B/

v

€ 9
gg'[ﬁﬂ/umf)

11

e et

with dimensions

[Pud, - %], -
ERORD

Moreover, Cauchy's inequality appliéd to definition (18) asserts that

(26)

2
< qjj qkk

“jk
so that

-1<€jk<1 (27)

Thus we have transformed into a space § in which:

(a) each parameter and each component of the vectors grad ¢ and [
has the same diwension, namely [y]d;

(b)‘ﬁ is a dimensionlers matrix whose diagonal elements are all
unity and whose off-diagonal elements satisfy Inequality (27).

All equations of the previous section hold for the transformed
elements; in particular, Equation (9) becomes

n
Zajk-Aaj='B,k=1,2,...n (28)
j=1
with solution
- f o d
A A
da; = By ajk, j=1,2,...n (29)
k=1

Transformation (23) is often used in linear least-squares to im-
prove the numerical behavior of the computations: in particular, in-
version of the curvature matrix. For our nonlinear, iterative problem,
the transformation could have the same salutary effect but at the cost
of a little more work. This is because the values of the scale factors

12

C B e N e i el L e e

st e a e e a

i i e o P ' i e TR VA1 b SIS LI, fadn) L N e S

v,

-

AN A I A

T

[ZSiC ot

W T T e NI e Y T

"“kk depend on the current set of parameter values, Hence each time
:ﬁe parameters are up-dated, a new transformation must be made: a new
S space created. This is not a big problem.

The transformation to S is not essential in the differential cor-
rections method; it is needed more in the steepest descent approach.
Some of the properties of the latter technique are not scale-invariant,
so that choosing the right space can be important. At the very least,
it is convenient to proceed by steepest descent in a space in which the
components of grad ¢ are dimensionally equal.

IV. STEEPEST DESCENT

Provided that |grad ¢| is not zero at the current point P_ (if it
were, P_ would be the desired solution), then -grad ¢ at that point

is a vector in whose direction ¢ will decrease most rapidly (at least
at first) as we move away from Py If Pg is any other point along this

negative gradient, we have from Eq. (13):

P, () -?o +hB (30)

where h is a dimensionless positive constant and where the three vectors
are to be resolved into components in the scaled space S. Thus in
component form, (30) becomes:

Aﬁ‘k = h ‘Bk (31)

In the steepest descent technique, we choose that h for which € is
a local minimum along the gradient. Perhaps the simplest way to do this
is to sample € at appropriately small intervals as we move away from Po

along the negative gradient. As soon as we reach a point where ¢ has
incrcased, we interpolate between that point and the previous sampling
point to determine where ¢ has a local minimum. Then we evaluate the
negative gradient at this new point and start off again in the new
direction.

The difficulty with this approach is that in the neighborhood of
the solution point, where |grad €| is nearly zero, further progress is
painfully slow. Often, the sampling size must be shortened beyond all
endurance. Ingenious variations on the basic steepest descent theme
have lessened this difficulty but not removed it.

13

M i e mm e o e =~ e m i i o P G £ T o e —u-.‘“
C .
ot " - iyt

V. INTERPOLATION
Comparing the two methods just discussed, we note that:

(a) Far from the solution point, the steepest descent technique
is superior. It must proceed So as to decrease e, whereas the differ-
ential corrections method has no such obligation and is likely to
diverge.

(b) Close to the solution point, the differential corrections
method is superior. 1t converges in the very region where the steepest
descent technique languishes.

Marquardt! has proposed an interpolation between the two methods:
a technique that behaves like the steepest descent when we are far from
the solution and like the differential corrections method when we enter
the neighborhood in which the linear truncation, Equation (7), is ade-
quate.

To achieve this interpolation, a positive, non-dimensional constant

A is added to each diagonal element of the transformed curvature matrix.
That is, Equation (28) 1s replaced by

n
Zyjk-A3j=k.k-1,2,...n (32)
j=1
where
1 +Awhen j =k
Yik { 8y vhen j % k o)

We see that:

(a) As A » =, the diagonal terms of the system dominate and
Equation (32) degenerates into n uncoupled equations of the form

(1 + A) Aﬁk.ﬁk

or, since A >> 1 by assumption,
A
a8, ‘Rk/a (34)

Comparing this result with Equation (31), we see that for very large
A, Equation (32) simulates the steepest descent approach with h = 1/a.
(As we will see, however, A is not determined by the same criterion -
a locally minimum ¢ = used to obtain h.)

14

P

s ol ogild oot

eI o rdis vt @

.

LR X

(b) As A\ + 0, Equation (32) approaches Equation (28), that is,
Equation (32) reduces to the differential corrections method.

The interpolation sends us from a given point Po in the direction

of the vector
-
ap = [a% ,43,...48
1’ 2 ¢

Ii5 . satisfying (32), whereas the gradient method sends us in the direction
' of the vector 8. The angle between these two directions:

-l -h
g = cos-? > fz (35)
| 8] |ap|

always,lies between 0 and 90°. (This angle is the same, of course, in
S and S.) Marquardt proves that for the given point Py {and hence for

a given ﬁ), 0 is a continuous, monotonically decreasing function of A,
such that:

(a) As A »+»=, 8 -+0,

© ————— ek S WA Sl e ik S

(b) As A - 0, 0 approaches some value OAX less than 90°.
< (Marquardt states that °qu usually lies between 80° and 90°, indicating

that the differential corrections method usually procceds almost at
right angles to the gradient approach. However, in the yaw fit appli-
cation to be discussed later, I have found that °qu is usually less

than 80° and sometimes less than 30°.)

e i S A H——— %

The insertion of A into (28) makes interpolation possible; an
effective interpolation is achieved only when we have a sound strategy
for changing the value of A according to whether ¢ has increased or
decreased since its previous evaluation. In the next section, we
present the strategy proposed by Marquardt.

VI. MARQUARDT'S ALGORITHM

Let €y ™ F (Po) be the value of the criterion function at some 1
current point Po. For any A, we can solve (32) for the increments AP,
-l

-l =i
obtain P1 = Po + AP and evaluate

el = F (Pl) =G (Po, A)

15

where the second functional form emphasizes the dependence of € on
both the previous point Py and the current value of A.

In the Marquardt approach, the point P1 is only a candidate for
the point that will replace Po as our current set of parameter values.
A new rule is this: we won't move from P, to any new point P1 unless ¢
is smaller at the new point than at P,:

€ <e¢ (36)

For any point P° that is not alraady a local minimum, there always
exists (at least in theory) a AM such that for A > Ag? (36) holds. The
question is: how much larger than AM should we choose our A7 Marquardt's

answer: no larger than necessary within a factor of A > 1. That is, if
our initial A doesn't work, try A\, A2x, A3\, etc., quitting as soon as
(36) holds. Ten is the suggested value for A.

Of course, we could determine X so as to minimize ¢ locally, just
as with h in the steepest descent approach. Marquardt points out, how-
ever, that this would usually result in a much larger \ than needed to
satisfy (36); we would be faced with all the disadvantages of the steep-
est descent.

On the other hand, we would like to simulate the differential
corrections method as soon as we get within the radius of convergence
of that technique. Hence, when things are going well, we want to reduce
A, say by factors of A again. Marquardt suggests, however, that if A is
already negligible compared with 1 to the number of significant digits
carried, then there is no need to reduce A further.

Marquardt's strategy can then be summarized by the flow-chart of
Figure 1. (This is, at anx rate, my understanding of Marquardt's
strategy; his presentation® differs considerably in manner and form.)

Note from the figure that in practice Marquardt replaces (36) by
the condition

el < € (36a)

The distinction may seem academic but 1t's not. In an early version of
our program for implementing the algorithm, I unwisely usad (36) instead
of (36a). Why, after all, should we move to P1 if the error there is

the same as at Po? I very soon found ouc why and the answer (upon after-

16

L T I p

- ARG ¢ ARt e e W T - M R A 4}

+ quiain e

e sk albi? &,

NEXT ITERATION

* SET A>|

« ESTMATE P

o COMPUTE OF(Pp)
s OQ

b

o -

2 USING R, ANDA, SOLVE EQ(32) FOR AP
© COMPUTE A= &+ AP
o COMPUTE €, F (P,)

* SET

'YEsGS.No

UPDATE:
Po' P.
€o* €

YES /CONVERGENCE\ NO
CRITERION
SATISFIED?

FIG. | MARQUARDT ALGORITHM

17

HgR Y oD ae:

—TEE———— T
PR o |

Lo TR TTRTTYS MY

T TR oY)

thought) is obvious. It is possible for the current point Po at the

end of some iteration to 'be!" the solution point in the sense that the
machine will be unable to find a point with a smaller as.ociated erior
(to the number of digits carried). In this situation, of course, we
should exit the loop triumphantly and proceed tc analyze results., The
trouble is: any convergence test for determining whether or not to
start another iteration is necessarily imperfect. The test is usually
based solely on how much the current point Po and/or error € differs

from the values of the previous iteration. Thus we could close in on
the answer so quickly tEat the solution point differs from the previous
point by more than our criterion allows. In this event, another
iteration will begin: a hopeless search for a candidate P1 satisfying

(36).

As an example of what can happen, consider the test case whose
results are summarized in Table 1. The fitting equation here was the
complex yaw equation, to be discussed later; the convergence criterion
was that (1 - elleo) be less than 0.00001. In the first iteration, the

process obtained an el (.005307) less than €o (.007418), so that it

would make no difference whether condition (36) or (36a) was used in
the scheme of Figure 1. The convergence condition was not satisfied
(since 1 - elleo = 0,285) so the second iteration was began. Similarly,

the third and fourth iterations wexe begun. It was only in attempting
to complete the fourth iteration that the superiority of (36a) to (36)
became evident.

The condition (36a), ¢ < €,0 WUS finally met (in this case, when
€. achieved equality with €, to the sixteen decimal digits carried®) at

A = 1013, When condition (36), €, < €g Was substituted for (36a), the

fourth iteration was never completed; program execution was interrupted
at A = 1016 by a floating point overflow. The hang-up probably occurred
in evaluating the determinant of matrix vy, Eq. (33). When A is large,

say A = 10k where Kk = 2, then the determinant is approximately the prod-
uct of the diagonal elements of y:

DET & (1 + \)™ & 1057

If a computer can't handle real numbers larger than 10’. then we are in
trouble when k exceeds j/n. For our computer, j = 154 and for the test
case, n = 10; hence the hang-up at k = 16.

*0f couree, it is unlikely that either e, or e i8 correct to the six-

teenth digit; the vagaries of rounl-off error alone may make the last
few digits meaningless.

18

QEOTE e T T T T

10£2Z€ ‘LIL608 °69ZS00° 6000° £1-0T X $9S€T" $9S€T1° 4 4 (02)v
20L2Z€ “L1.608 “692500° 0000° z1-0T X $9S€T* ¥9S€T" Z1 (61)
€0L22E ‘L1L608 ‘69ZS00° 0000° 11-0T X $9S€T" #9SET"° 11 (81)
T1L228 LIL608 °69ZS00° 0000° 01-0T X p9SET" y9sSET” 01 (1)
Y6222 “LIL608 °§92S00° 0000° 6-0T X ¥9SET° $9S€T1° 6 (51)
£095258 “LIL608 “692509° 0000° g-0T X $9SET” $9s¢1° 8 (s1)
T0LIES ‘L1.608 ©69Z500° 0000° £-0T X ¥9SET" ¥9S€T1" L (¥1)
169ZT¥ ‘L1.608 °692500° 0000° 9-0T X $9SET" 1414 9 (1)
81,608 “69Z500° 5000° ¢-0T X ¥9SET" ¥9S€1° S (z1)
9ZL608 692S00° S#00° #-0T X £9SET" PISET” 4 (1n)
L08608 °652500° LS%0° ¢-0T X ZSSET* ¥9SET° € {o1)
¥£9018 “692500° 95¥¥* z-01 ¥ £5¢5T1° ¥95€T1° r4 (6)
£10028 °692S00° 8688°€ 1-01 X T1921° »95€T° 1 (8)
121226 °692500° 9Z0Z°LT 50680° $9SET” 0 (L)
65¥S9Z ‘0L2500° L60¥°6Z 0¥S8Z* $9sE1” I- (9)
IVTIISY “0LZ500° 6208°£E 6.98%° y9se1” z - (s)
SS06LY “0LZS00" ZISP vE 12X40 o $9SET” € - (v)
S6618% °0LZS00° 90£S°¥€ 8650V° $9S€T° v - ()
162Z8¥ “0LZS00° 9LES V€ opIvor" $9SE1" S - (2)
_ 0Z£Z8Y °0LZS00° £8ES°¥E Z91¥0P° P9SET1” 9 - 14914
T0LZZS 'L1L608 ' 69Z500° L5°6C 1 Sv° S - }y
¥12500" £C ¢V 9°§ $°C ¥ - z
L0£S00° 08°0S |1:|. 9° 6% 8 61 g - T
“§Iri00° 0
0t
3 (3ep) o ldv| cot |91 g0t Y 3o1 UOTIBIAI]
0T = ¥V ©31M [314 Jo wy3iTIo3[y Iprenbrey ay3l 3ursn ase) 3saL °T dIqel

19

In ocur limited experience, the test case of Table 1 is not typical;
we actually contrived this unimpressive example. Still, it could have
happened in "real life", so let us try to profit by it.

We see from Table 1 that a lot of needless work was done in the
fourth iteration — the matrix equation (32) was solved twenty times —
only to finish at the point already obtained in the third iteration.
Clearly, there is room here for improvement in technique.

Of the various ways of reducing the number of calculations, the
simplest might to be to introduce two acceptable conditions:

E <€ (36)

and
e < cl < € (1 +4) (36b)

3]

where A is assigned some small positive value. If condition (36) is
satisfied, we up-date the current point and its associated error and
proceed s in Figure 1. If, instead, condition (36b) is satisfied, we
assume that the point reached at the conclusion of the previous iteration
Is as good as we are going to get. k this event, the entire process
ends: that previous point and its associated error are taken to be the
final point and error. For example, if we take A = 0.00001, condition
(36b) would be satisfied at the end of the eighth loop — iteration

4(8) -~ of Table 1. At this stage, the program would assume that the
solution point is the point obtained by the third iteration.

The above technique may be an excellent practical way out of our
difficulties; yet there is something vaguely unpleasant about condition
(35b). In effect, we are giving up. The suspicion would always linger
that in another loop or two within the iteration, the situation might
suddenly improve and condition (36) would be satisfied.

We ask then: how can we cut down on the computations without relax-
ing our standards; that is, how can we satisfy (36a) with less effort?
One obvious answer is suggested by Eq. (34):

&P = B/A, A >> 1 (34a)

a relationship confirmed by Table 1. For large values of A, it is no
longer necessary to obtain new AP candidates by the time-consuming
process of 1ncrg§§ing A and re-solving Eq. (32) by matrix inversion.
All succeeding AP candidates within that iteration will be very nearly
parallel and hence can be obtained directly by a scale change:

(Ap)next = (Ap)rejected ///B’ B>1 (37)

candidate candidate

20

|
!
|

where B need not have the same value assigned to A.

Ne now ask: is it necessary to wait until 1 is large to replace
(32) by (37)7? Marquardt mentions that in some circumstances (charac-

terized by matrix elements ajk exceeding 0.99) he found it helpful to

revert to Eq. (37) as soon as the angle 0 fell below, say 45° (that is,

when he was within 45° of the steepest descent direction). Usually open
to a good suggestion, I incorporated this little sub-scheme in the grand
plan ag & feature operative under sll circumstances. That is, whenever

6 is less than some specified value G and conditd (%P isn't satisfied
for vector P + AP, the next vector considered is ’I+ AP/B.

The final form of our modified Marquardt algorithm is shown in
Figure 2. If the user feels that the 0 < G feature is too great a
violation of the spirit of Marquardt's algorithm, he need only set G
at zero to avoid that feature.

Table 2 shows the results of applying the modified algorithm, with
A =B« 10, G= 45°, to the test case of Table 1. The first three
iterations are identical, but the fourth has been improved considerably.
The reduction in the number of loops in the fourth iteration is not as
important as the fact that each loop required significantly fewer
machine calculations. Of course, we could introduce condition (36b) into
this new scheme as well. With A = 0.00001, the process would then end
at iteration 4(2).

After we have discussed our yaw equation, we will present another
test case in more detail. First, however, we introduce the FORTRAN sub-
routine MARQ for carrying out the algorithm of Figure 2,

VII. COMMENTS ON SUBROUTINE MARQ

At least five programs to implement Marquardt's algorithm pre-date
the FORTRAN subroutine MARQ listed in Appendix A:

(a) A FORTRAN program 'Least-Squares Estimation of Nonlinear
Parameters" cited in Reference 1 and available as IBM Share Program
No. 1428,

(b) A program "Non-Linear Least Squares (GAUSHAUS)," University
of Wisconsin Computing Center, written by D. A. Meeter in 1964.

(c) A "Nonlinear Least-Squares Curve Fitting Program,'" a 1966
modification of (b) above by F. S. Wood. A User's Manual but no list-
ing of this program is given in Reference 2; the program, a FORTRAN

2. Cuthbert Daniel and Fred S. Wood, Fitting Equations to Data: Computer
Analysie of Multifactor Data for Soventiets and Engineers, Wiley-
Intersorence, New York, 1971.

21

Y TR O T S o P S DL Y N - PR ¥)

START NEXT ITERATION

¢ SET A>|,B>1,0<6548
. i
« COMPUTE € «F

« SET \= 000 ¢ A=A-Ao

1

USING P, ANDA, SOLVE EQ(32) FOR AP

R compuTE P = K+ &P |
. COMPUTE 0. £Q. (38) g

Ka

COMPUTE €,= #(P))

_YES € <€) NO

S A s 3t S W, ol S o s
i Rl o xa e

=<

« AQ= AP
s AP= AQ/B
) ST: E;-Q-A-.P'

| I

YES CONVERGENCE\ NO
CRITERION
SATISFIED?

STOP

FIG.2 MODIFIED MARQUARDT ALGORITHM

20y 3o
p

-
SEET VRS

U

Sipleh

4 10L2ZS “LTIL608 °69Z500° ¥5°vE ¢1-01 X ZOTHOP" $95€T" 9 - 1914
2 20LZZ8 L1L608 692500 ¥S°¥E #1-01 X Z9Tp0¥° ¥9S§T° 9 - (s1) ﬁ
-+ Z0L2Z8 ‘L1L608 ©69ZS00° ¥S° ¥ £1-01 X Z9Ivoy" ¥oSET” 9 - (v1)
o3 TOLZZE “L1L608 ‘69ZS00° ¥5°vE z1-0T X Z9T#0F° ¥95€1" 9 - (€£1)
4 90LZZS ‘L1608 *697S00° S 11-0T X Z9Tvoy* ¥9sET” 9 - (z1)
o £PLZZE ‘LIL608 ‘69ZS00° S° o€ o1-0T X Z9TPOP* yOSET" 9 - (1)
660EZS ‘LEL608 ‘69ZS00° s°e -0 X Z91909" y9SET" 9 - (o1) 7
= 799978 ‘LTL608 ‘69ZS00° Sy g-0T X Z91v0P° yoSET” 9 - (s) " v
. SOSZ95 ‘LIL608 °69ZS00° o3 £-0T X Z91909° 125118 9 - (s) ~
LELOTL “LTL608 ‘69Z500° yS e 9-0T X Z9I%0F" ¥9SET" 9 -) V
12L608 ‘69Z500° ¥S ¥ g-0T X Z9TVOY" ¥9SET° 9 - 9) _
LSL608 ‘69Z500° 123) 4-01 X ZOTYO¥" ¥9sSET” 9 - (s) -
yITOI8 *692500° 2 £-0T X Z9Tvor" ¥9s£T” 9 - (r)
SOLETS “69ZS00° ¥S"¥E z-0T X Z9T+0P" ¥9SET° g - (€) -
£80258 °692500° ¥S°vE 1-0T X Z9T#0%° y9sS€1” 9 - (2) _ ﬁ
0Z£Z8¥ “0LZS00° ¥S° ¥ Z91y0b° ¥9SET" 9 - My .
T0LZZs "L1.508 '692S00° 75 6¢ 1 i T - T
¥LZS00° LT Sy 9'S 8 ¥ - 4 .
Z0TS00~_ 0809 _ 9" 5F 5ol — T - T
S1vZ00° LY _
— 3
3 (32p) o 14| 01 I9] cot Y 801 UOTIBISI]

oSV =9 ‘0T = 4 =V Y3t Z 3an314 jJo
wy31I031Y 3pIenbrey pa1FTpoW 2y3 Bursn Inq ‘T 2Iqel UT Se Ise) ISAL wes ¢ AIqel

e e e
.
P

listing, the User's Manual and test problems are available from

(1) SHARE Library .
COSMIC
University of Georgia
! Athens, Georgia 30601
(Ask for Program No. 360D-13.6.007)

and from

s mch e e = m——— =

(2) VIM Library
Software Distribution Department
' Control Data Corporation
3145 Porter Drive
Palo Alto, California 94304
(Ask for Program No. G2-CAL-NLWOOD)

(d) A FORTRAN subroutine CURFIT by P. R. Bevington, listed and
discussed in Reference 3.

(e) A FORTRAN program of the same title as (a) above, cited in {
Reference 3 and available as IBM Share Program EID-NLIN No, 3094.01. i
|

An early version of our MARQ subroutine was based on Bevington's
CURFIT? -- to which I am indebted -- but even our first, tentative
efforts differed from CURFIT in various minor ways. (Among certain
i programmers - myself included - the temptation to tinker with a
\ presented program is well-nigh irresistible. The Law of Mutual
Superiority" applies: '"Anything you have programmed, I can program
better; anything I have programmed, you can program better.") Our :
current MARQ is barely recognizable as a descendant of CURFIT. |

Subroutine MARQ has 12 arguments:

(EQS, X, Y, M, N, P, C, B, D, R, TH, EK)

i e s (st BN ot ma i - o SR 1 S e it A il St M e, o b G Bl M Ak i :oex

Here and throughout this paper the usual convention applies to FORTRAN :
real and integer variable names: integer names and only integer names

start with I, J, K, L, M or N. The first five arguments of MARQ are]
inputs:

3. Philip R. Bevington, Data Reduction and Error Analysis for the
Phystical Sciences, MoGraw-Hill, Inc., New York, 1969.

4. Richard V. Andree, Josephine P. Andree and David D. Andree, Cbgguter

5 Pro%rumming: Techniques, Analyeis and Mathematics, Prentice-ia
M Series in Automatic Computation, New Jersey, 1973.

b e wtamaler s LB e aearcae et

24

S e e

EQGS = the dummy name of the subroutine that computes, for a given l
parameter point P, the arguments E, D and R defined below. !
The actual nume used when calling MARQ must be declared in ;
un EXTERNAL statement in the program that calls MARQ. (In
our yaw analysis example, the actual name used is EYANW.
Details of subroutine EQS/EYAW will be discussed in Section
X.)

X, Y = data vectors (xi), (yi) where Yy is the observed value of
the dependent variable y at x = X

M = the number of data points (xi, yi)
= the dimension of vectors X and Y

N w the number of parameters. Note: if N exceeds 10, the
dimensions of arrays ALPHA, BETA, GAMMA, PB and S on line
MARQ 3 (see Appendix A) must be incremsed to equal or
exceed N and the argument 10 on line MARQ 48 must be
increased to equal the number of rows declared for GAMMA.

The next five arguments (P, C, E, D and R) serve as both input and out-
put; the last two arguments (TH and EK) are solely outputs. Before we
discuss these arguments individually, it will be helpful to see the
over-all pattern as indicated in Table 3:

Table 3. Contents of MARQ Arguments P, C, E, D, R, TH and EK
when Marquardt's lambca is Used

MARQ
ICALL _NO P C B D R TH EK

o ik 3

From this table we note that of the last seven arguments, only P and
C must contain inputs the first time MARQ is called. This first call
merely obtains the error E and arrays D and R associated with the initial
point Po. Thereafter, each call returns a new, improved point; the values

returned in P, C, E, D and R after the K-th call serve as input for the
(K + 1)~-th call. We now discuss the arguments in detail:
P = the current point Po; that is, the current set of parameter
values {aj} in whatever units are convenient. In each appli-

m e v s ——— . e ———— ———

cation, before MARQ is called the first time, array P must
contain the initial estimated values of the N parameters in
the chosen units. This same set is returned from the first
. call; on subsequent calls, the input P is replaced by an
i improved P upon return.

! C = a flag (initially) and Marquardt's A thereafter. In each g
: application, before MARQ is callied the first time, C must X
be set to - 2.0 or - 1.0. (The fact that C is negative
alerts MARQ that it is being called for the first timec.)
Caution: wuse a FORTRAN name, not the number - 2.0 or - 1.0,
in the argument list, since MARQ changes the value of this
argument.

Set C = - 2.0 if the intent is to ignore the A factor
and use a straight-forward differential corrections technique.
(This option is helpful, for example, if the user wants to 4
compare the process with and without Marquardi's A for a given
set of data.) Upon return from the first call of MARQ, C will
have the value zero (representing a zero A) and will remain at
zero through subsequent iterations.

Set C = - 1.0 if the intent is to use the Marquardt :
algorithm, Upon return from the first call of MARQ, C will oo
have the value 0.001A (representing A times the initial -
value of A). For the second and subsequent MARQ calls, the
output C will be the value of Marquardt's A that was required

to obtain the improved point concurrently stored in array P.
We have

Output C = Ar-(Input C)

where Tt is some integer equal to or greater than - 1 (so that
the smallest possible -- and usually the most felicitous --
output C is (1/A)-th the input C).

E = a measure of the error of the fit at the point concurrently
stored in array P. This measure is computed in the subroutine
EQS called by MARQ and hence the coder of EQS defines this
argument, preferably as the RMS or probable error given by

26

Eq. (20). MNARQ will always return an E value less than or
oqual to the input E.

D = the matrix of partial derivatives, Eq. (16), evaluated at
the point concurrently stored in array P:

= 3f (x, P)
8ak x =X (I)

P = current point

R = the vector of residuals of the fit at the point concurrently
stored in array P:

R(I)=Y (X)) - f (x, P)
x =X (I)

P = current point

TH = the angle 6, Eq. (35), in degrees. Upon return from the first
call, 6 is zero. Thereafter, & is the angle betweer. the nega-
tive gradient at the input point (not necessarily the best way
to go) and the straight line from input point to output point.
This angle was available within MARQ and simple curiosity
prompted me to make it an output argument.

EK = the vector of estimated exrors in each of the N parameters
stored in array P, in the same units as the parameters. These
estimates are related to output argument E by a modified form
of Eq. (21) and hence if E is the RMS or probable error of the
fit, then array EK contains the RMS or probable error estimates
for the parameters.

In the MARQ listing, Appendix A, note that the three parameters A,
B and G of Figure 2 are defined in s DATA statement, line MARQ 4 (where
they are named AN, BN and GN, respectively). Thus the user can easily
change the arbitrary values shown, subject to the conditions
A>1, B>1
and the suggested limitation
0 €< G < 45 degrees

The feature of using Eq. (37) when @ - G can be eliminated by defining
GN to be zero in the DATA statement.

27

The data in Tables 1 and 2 were obtainad with the aid of some ad
hoc WRITE statements within MARQ; these statements do not appear in the
list’ng, Appendix A.

In addition to subroutines MARQ and BQS, a matrix inversion sub-
routine (called on line MARQ 48) must be included in the over-all pro-
gram. We have used an available subroutine MATINV listed in Appendix B.
(The user may, of course, substitute the inversion scheme of his choice,
modifying the CALL MATINV statement as necessary.) Upon return from
MATINV, the matrix GAMMA is replaced by its inverse. MATINV contains
one output statement: a SINGULAR MATRIX reprimand, which is printed
only when something is very, very wrong. The integer 6 in the state-
ment WRITE (6, 17) may have to be changed to specify the proper output
unit at the user's installation.

Subroutines MARQ, MATINV, EYAW (our actual name for the dummy EQS)
and EY (our program that calls MARQ) were written for use on ARDC's
BRLESC I and BRLESC II computersS. Although the compilers in these two
computers implement a FORTRAN that is not quite '"standard" and not quite
FORTRAN IV (and indeed not quite the same on the two computers), it is
believed that the above-mentioned subroutines have been restricted for
the most part to standard statements and features. One exception is
the nonstandard function ARCCOS used in MARQ, line 62, to determine 8.
The user can replace ARCCOS (TR) with

ATAN (SQRT (TR #x (- 2) - 1.0))
if necessary.

An important omission in the programs should be noted: no provision
was made for double-precision arithmetic. In BRLESC I/II, all real
numbers are carried with a precision of sixteen decimal digits (which is
double precision on many computers) and the DOUBELE PRECISION type decla-
ration, though pemtted acts only as a REAL declaration. For computers
where double precision isn't the norm, the following DOUBLE PRECISION
type declarations are recommended:

in MARQ : GAMMA
in MATINV : A, Tl

in EYAW H

5. Lloyd W. Campbell and Glenn A. Beok, BRLESC I/II FORTRAN, Aberdeen
Research and Development Center Techniecal Report No. 5 AD 704343,

Marah, 1970,

28

R MMMHMVM_..,&‘&_A-

VIII. THE YAN BQUATION
For lissiles fired in either of the two Pree Flight Spark Photography
Ranges®:7 operated by the Exterior Ballistics Laboratory, we can obtain
at each spark station u measurement of
(a) the down-range distance z, metres

and (b) the dimensionless complex yaw E = EH + i EV

(For our purposes =-- to illustrate the use of Marquardt's algorithm —
definitions of the coordinate systems involved are of no interest.)

Basically, the problem is to fit a given complex yaw equation
E=f (z, P) (38)
to a set of measurements

where the z measurements are considered error-free (though of course
they aren't). For most (say 99.44%) of the rounds fired in the two
ranges, Equation (38) is assumed to have the form

i¢ id
= K 1 K 2 39
(3 &t rke e gy (39)
where
- A (z - zg)
Kj Kjo e”) (40)
j=1,2
- - - 2
¢j Aj + Bj (z zo) + Cj (z zo) {41)
Eg = yaw of repose
g (B +B)
2 o 2 (42)
B B Vv?2
1 2 ©
- r 6. Walter K. Rogers, Jr., "The Transonioc Pree Flight Range," Ballistic

r Research Laboratories Report No, 1044, June 1958, AD 200177.

{ 7. Welter F. Braun, "The Free Flight ierodynamice Range,' Balligtic
: Research Laboratories Report No. 1048, July 1958, AD 202249,

29

T ,":;'I
B
4

The known constants are
z, = reference z (usually mid-range), m
Vb = velocity at LI n/sec

g = acceleration of gravity
= 9.80 m/sec? for the two ranges

and the ten unknown parameters are

e ki O e s e i, T i N YA e o it e rm. . 1 TR . e ity ‘!m

P(1) = n ®en K P(6) =n = tn K., 1

P(2) = A, U/m P(7) = A 1/m

P(3) = A, Tad P(8) = A, 7ad J, (43)
P(4) = Bl, rad/m P(9) = Bz’ rad/m

P(S) = C1’ rad/m? P(10) = cz, rad/m? J

PR

It might seem more straightforward to define P(1) and P(6) to be the
arm lengths K and Kzo’ respectively. However, pre-Marquardt experi-

L

ence has indicated that for our yaw problem, the differential corrections
process is a little more likely to diverge when the Kjo's are handled

directly as parameters. For one thing, AI(jo may be so poor that (unless
constraints are added), Kjo
arise with nj: any value of "j yields a positive Kjo’ Of course, in
practice our starting point Po is usually so well-determined that it

would make no difference whether we worked with the nj's or the Kjo's.

can go negative. This difficulty doesn't

Complex expressions and complex arithmetic are not allowed in the
BRLESC I/II FORTRAN; hence we must soparate Eq. (39) into its real and
imaginary parts:

Eg= £y (2, P) = Kl cos ¢1 + K2 cus ¢2 + & o

i
} (44) |
EV = fv (z, P) = K1 sin ¢1 + K2 sin ¢2 .

b obtaining two fitting equations.

30

IX. COMMENTS ON HANDLING TWO FITTING EQUATIONS

Previously in this report we have been considering a single fitting
equation, Eq. (1). To handle two fitting equations, as in (44), we
proceed as follows. Suppose that NL is the number of spark stations at
which measurements were taken. Then thé value of the error function, Eq.
(4), is obtained by the relation

NL

€= 2 {[EH:I. - fH (zi' P)]z + [€Vi - fv (zio P)]} (45)
im])

Since MARQ has no provision for inputting more than one dependent
variable, we obtain the oquivalent of Eq. (45) by

(a) setting M, the number of measurements, at twice NL,

and (b) defining X (D=2 -2z 9

Y (D) = &y > i=1,2,..N

Y (14N = gy

J

There is no need to define the second half of vector X's M components,
since it would only duplicate the first half. (Note that we need a
minimum of six spark stations in order for M, che number of measurements,
to exceed ten, the number of parameters.) Equation (45) then becomes

NL

e= J [R(I)2+R (I+NL)?) (46)
I=1

where the M residuals are obtained by the relations

R(D =Y (D) - £ & (D,P) }
I=1,2, . .NL (47)
R (I +NL) =Y (I +#NL) - fv (X (1), P)

The only remaining change required to handle two fitting equations
instead of one, occurs in the formation of the partial derivative
matrix D. Since there are two equations and ten parameters, twenty
partial derivatives must be defined, ten of the form

2 fH (x (1), P)

D (I, K) = 5P (K) (48)
31

T efa
Lo

N

g

e T2 vt

DG S,

MM‘ZTL A1

and ten cf the form

3 £, (x (1), P)
D(I + NL, K) = R (49)

To summarize, the changes needed to handle two fitting equations occur
in:

(a) the manner of defining M, X and Y in the program that calls
MARQ

and (b) the manner of defining E, R and D in the subroutine EQS dis-
cussed in the next section.

The technique for dealing with two fitting equations can easily be
extended to any number of simultaneous fitting equations. Note that in
our example, &, and §y are dimensionally equal. When the dependent

variables are not all of the same dimensions, a little additional work
is needed to insure dimensional consistency in Eq. (46) and elsewhere.

X. COMMENTS ON SUBROUTINE EQS/EYAW

The user must code the subroutine whose dummy name is EQS. The
arguments of EQS must have the form prescribed by MARQ on lines 8 and
63:

(X, Y, M\, N, P, E, D, R}

These eight arguments have the same meaning for EQS as they do for sub-
routine MARQ except that for EQS, P is an input only and E, D and R

are outputs only. The user programs EQS to obtain - for given X, Y, M,
N and P inputs « the error measure E, the partial derivative matrix D
and the residual vector R.

For example, the pair of yaw equations (44) led to the subroutine
EYAW listed in Appendix C. The velocity V is passed into EYAW and the
yaw of repose ER is extracted from EYAW by a labelled COMMON statement
linked to the subroutine calling MARQ.

The definitions of the D elements within EYAW follow immediately
from Equations (44), (48) and (49) - - - with one exception: I have

ignored the partial derivatives of the yaw of repose with respect to
the only two parameters involved therein, B. and B . Such liberties

may often be taken when forming matrix D because it is not necessary
that D be the nathematically correct set of partial derivatives. It
is possible to get the right answer using a "wrong" D array, just as

32

P

we can get the right answer using a "wrong" expression for grad ¢, Eq.
(7). Of course, this doesn't mean that we can make a blunder in coding
D in subroutine EQS or that we can write down any old approximation that
comes to mind. A certain amount of discretion is called for; if the
user has any doubts as to the merits of an approximation in D (and even

if he hasn't any doubts), his safest course is to avoid such an approx-
imation.

Subroutine MARQ receives matrix D from EQS and forms the needed
elements of array a by summation, in accordance with Eq. (18). Because
of the symmetry of o, only the N¢(N + 1)}/2 elements on and below the
principal diagonal are computed in MARQ. For our yaw equations, N is
ten and thus fifty-five o elements are formed in MARQ. Note from the
D equations in the EYAW listing, Appendix C, that twelve of these fifty-
five elements should be identically zero. For example,

NL
a, =) [DE,1)D(,3+D(,1) D, 3]
13 I=1

where J = I + NL. Hence, in the EYAN notation,

@, " 3 [RL+ (-R3) +#R3 <R1} =0

Similarly, the reader may verify that except for sign, only nineteen
of the forty-three nonzero o elements are distinct. For exaumple,

6@ =9 =g =g
62 71 ok 93

Subroutine MARQ, of course, forms all fifty-five elements by summation;
short cuts that depend on the particular fitting equation(s) used are
sacrificed on the altar of generality.

XI. COMMENTS ON THE PROGRAM THAT CALLS MARQ

In the program that calls MARQ:
(a) the actual subroutine name (EYAW in our example) that will be

passed as an argument to MARQ must be declared in an EXTERNAL
statenent.

(b) the six array arguments of MARQ must be declared in a DIMENSION
statement:

XM,Y M, PN, D(MN, RM,EK(N

33

Usually, for a given problem, the value of N (the number of
parameters) is known and fixed, whereas the value of M (the
number of data points) varies from case to case. In that
event, some number equal to or larger than the largest antici-
pated value of M should be used in the DIMENSION statement.
(In our EBL range set-up, data can be obtained at no more than
54 spark stations; hence, we have M = 108.)

(c) each known constant in the fitting equation whose value may
change from case to case (such as the reference velocity in
our yaw problem) is assigned a FORTRAN name and passed to the
EQS subroutine by a labelled CONMON statement. Similarly, but
wmore rarely, any constant of interest evaluated within the EQS
subroutine (such as the yaw of repose) may be rescued from
oblivion by linking it through the same labelled COMMON with
the program that calls MARQ.

(d) MARQ will be called repeatedly (say, in a DO-loop) until some
specified convergence criterion is satisfied or until a spec-
ified number of calls have been made. For example, we might
have

DO 4 K = 1,KMAX
CALL MARQ(EQS,X,Y,M,N,P,C,ENEW,D,R,TH,EK)
IF(K.EQ.1) GOTO 3
CR = 1.0 - ENEW/EOLD
IF(CR.GE.O. .AND.CR.LT.EPS) GOTO 5
3 EOLD = ENEW
4 CONTINUE

where the value of KMAX (the terminal parameter of the DO-loop)
and the value of EPS (where 0 < EPS < < 1) have been specified
before entering the DO-1loop.

The process is assumed to have converged when the IF-conditions on CR
above are satisfied, that is, when the ratio of the present error of
the fit (ENEW) to the previous error of the fit (EOLD) falls between
1-EPS and 1. Note that the first call of MARQ, K = 1, must be handled
a little differently from subsequent calls in the DO-loop because there
is no zero-th error value to compare with the error returned from that
first call.

Since the use of Marquardt's A insures that ENEW < EOLD, it may
seem that CR will always be non-negative and hence that the first of
the two IF-conditions is unnecessary. The catch is: whenever we avoid
A (by setting C » - 2.0), we lose our guarantee that things will improve
and CR can very well ge negative.

If the convergence criterion in the above DO-loop is satisfied,
control is transferred to statement 5. If (KMAX - 1) iterations have

34

RD

NS

ZR

VR

P

Q

BB

been performed without satisfying the convergence criterion, then the
statement following statement 4 is executed next. What happens at
these two locations is, of course, the user's affair,

For our yaw problem, the program that calls MARQ was itself written
as a subroutine: the subroutine EY listed in Appendix D. The input
arguments are

= a number identifying both the rhnge (Aerodynamics or
Transonic) and the round

= NL, the number of spark stations
= an array of identifying station numbers

= the array: measured EH at each station
= the array: measured §y at each station

= theo array: measured z at each station, m

= 2, the reference z, m

= velocity at 2y m/sec

The only input/output argument is

= the array of ten parameters defined in Eq. (43), with this
exception: here P(1) and P(6) are Klo and Kzo' respectively,

not ny = &n Kjo (required conversions to and from n1 and n2

are done within EY, so that the EY user need not be aware
of the n's). Upon input to EY, P must contain the initial
estimates of the parameters; upon output, P contains the
final parameter values,

The output arguments of EY are:

= the array of estimated errors in the ten parameters. Sub-
routine MARQ returns to EY the estimated errors in n1 and

nz; the errors in Klo and K2° are then obtained in EY by
the approximation

E (Kjo) =Ko " B (nj)

= the array: computed &y at each station

35

AA = the array: computed Ev at each station

RMS = the root-mean-square error of the fit (Eq. (20) with b =
1.0)

YREP = the yaw of repose, Eq. (42)
IC = a convergence flag:
IC = 0 if the process has converged

= 1 if the process has failed to converge in the
specified number of iterations

= 2 if the process has not been used, because there
were too few (less than six) spark stations

The skeletal FORTRAN DO-loop given earlier in this section is
fleshed out in EY (lines EY 41 through EY 57) by a number of relatively
unimportant statements concerned with monitoring the progress uf the
convergence. One point concerning these statements is of minor interest.
Although all angles in array P (that is, in the parameters AI' B, Cl'

AZ, 82 and Cz) are in radians, the WRITE statoment (line EY 52) prints

the results in degrees; this is a concession to the majority of people
who "can't picture radians.' Someone might ask: then why not simply
carry all angles within P in degrees, thereby avoiding the need to

conv 't before printing. The answer is: conversion can't be avoided
(unless we are willing to print results in radians). If the angles were
carried in degrees, the conversion that we eliminated from EY would crop
up in EYAN, in taking the derivatives of sines and cosines. This would
he less efficient, since EYAW statements are encountered more often in
the program than EY statements.

Two examples of the print-out furnished by EY (see Figures 3 and 4)
are discussed in the next section.

XIT. A SAMPLE CASE, WITH AND WITHOUT A

We define A to mean "A plus the other features in Figure 2 that
distinguish Marquardt's algorithm from the usual differential corrections
process." If we apply the differential corrections process with and
without A to the same fitting equation(s), the same set of measurements
and the same starting point Po, we can distinguish three outcomes. We

will have:

(a) convergence to the same point, with or without },

36

" i

.
A e e kT A Sl iy A S, M B =

or (b) divergence without), convergence with 1},

or (c) convergence to a wrong point without A and to a better (not
necessarily the best) point with).

(A fourth possibility — convergence to a better point without A than
with it « is too unpleasant and, I would hope, too rare to consider
here.)

Note that when A is used, divergence is impossible: the process
can never blow up. Tf the terminal parameter of the DO-loop is large
enough, that is, if MARQ is called enough times, the process should
converge to a point. (We need a limit on the number of iterations to
get past the occasional pathological case.) Of course, with or with-
out), '"convergence'' in the above triad means only that the process
has stopped at some answer; we may still be miles from the right
answer,

For our yaw problem, result (a) above - the least interesting
result — has occurred by far the most often. Por most of the rounds
fired in the two EBL ranges, the motion can be so well represented by
Eq. (44) and initial estimates of the ten parameters are so well deter-
mined (by a preliminary subroutine which we won't discuss here) that
quick convergence is assured and Marquardt's algorithm is unnecessary.

However, I wanted to compleie this report with an example of out-
come (b) or (c), preferably (c¢) because I think it is more instructive.
I could, of course, have worked with one of those relatively rare
rounds for which Eq. (44) seems to be inadequate, but in that event,
convergence is not necessarily an advantage. The final point reached
may be the best possible based on Eq. (44) and yet be so worthless that
an unwary use of the results could do more harm than no results at all.

To obtain outcome (b) or (c) from any 'normal' round, I had to
resort to an artifice: I by-passed the subroutine that would have
given us good first estimates of the ten parameters and fed mediocre
(not really bad) estimates into subroutine EY through array P. In
effect, I said: let's see what happens if we get a little sloppy in
choosing our starting point. For round 1-11461, the answer — outcome
(¢) — 1is illustrated in Pigures 3 and 4.

Figure 3 is a print-out of the fit obtained without Marquardt's
algorithm., The line TRY = 0 gives the initial estimates of the ten
parameters; these produce an RMS error of 0.041732. The first iteration
(TRY = 1) improves the situation but the second iteration grossly over-
shoots the target. It is surprising (to me, at least) that the differ-
entisl corrections process could recover from such a flagrant mis-fit,
but it does, converging after twenty iterations to a point on whose

RMS error is 18% of the original error.

37

— - PR - . . [——

Iy R P e B CH s T S o ™t et o e MR TR TN T T T T W e T T e T

"Y 3noylim ‘julod BuLaelS PIALJUOD © wouy T94T1-T punoy 404 313 Mep -¢ 3unbig

»61000°- 0Ce£00° >5L€00° 2009°~ 1Y€9°- gy5e-- °%€00° €0~ 1 - -
099%000° 208£00° 999%00" ol00°- SECP°- EyEe°- %0~ LESe”- n""c' “.*0“0"" H
S6C000° SIOWE® svS08° 1000° W08~ 1580° 00"~ - £999°- %ives a2
119900°~ 410500 209600° 208 °~ S50 9s20° 508" LS8°~ e~ hoiidb i BN 1 14
Y00000°- S6E00° *15€00° SLO0"~ £6%8° 21ve” £~ S6E0°- OO - *MeE°ST 2
. LTLI00° GGEEE8° YT1500" LETO- 1666°- Weve - 1908°- SIV8°- $E50°- Zeso 8z oe2z
YOUIRE -~ SLYVOS" I8L700" ZS08 - 998" LI I8 LY~ £2E0°- aBLS 5% §12
L29900°~ 216" 16S500° S€T0™- 099" £¥5e° S130°- 96L8°- 1t20°- %y 012
I0008° VIZEON" $20%00° ree” @~ e - OL9°~ E6E8°- Z950°- 1EL0°1S MLT
TIS008°~ 4%E08° L8L299° e e~ e~ £y S8~ €90 - TeE°0s s
TOTONE° - SL8C00° S19500° 900"~ Wi~ T118°- 280" 598 - %Ee°- WLy TN
09%9C° 892908° B0L%00° SL80°- 0169°~ 9880°- 298"~ 2590°- 0998 S66L°9y 091
SORINE° SFTSOR° 284900° 200 - VTS tel9° E10°- Teve"- oree°- I Tt
VING® YISO 9W8L00° "o 29te° vew" SLO0° - BSPE°- MELe - ST LY sSi
CSO008° S%N90° ITOL0U° o508 © *£19° (171 s az1e° £6EQ°- 1120~ SISL°SY 08l
TRIZNE° 95R%0E" 00" SLOS" WSE° YI9P° 2610°~ 0¥~ 2¢50°- i59%6°02 s8
LI500d° 00L208" 432€90° 908~ 18958 09S9” 2508° KT8~ L908°- Y LI? oe
2080°~ EH4900° L19%900" 1000 Wi e 4989°- ETD- MO WEY'ST &3
S91000° ssiote” *040108° €200° K 2559 €S- NS 909" st W
009"~ NI218" e8L0t0° 208" L S SO 1 wie 068"~ Ot9e - [fo SN
S1%100°~ 901500° aLLe20" 6000°- W98 S6S° 11089° e~ sete°- 120L°01 &€
9S1000° SMVIN” EEN0° o108° WEe* ¥E0~ Wwee"- sle*- wuis-- 1561°6 [3
200000 ZITYO8" SIY%00° €108° bt JU 1 0T~ LICe°- LI~ 19818 e
1E€000°- 299900° %SP0° ETN0"~ o810 ML9° e S5Z8°- 12T5°- 1€99° L 134
TY5000°~ SWITS™ NITI0° NEI°- WOLI° sL0t” W~ 198" 1528 [348 te
991008°~ 1VEI0° SLevI0” wWeN - HMIT° Wee* 108"~ 2EL0° neLe” 19%°9 oz
SLO700° EHESIPC WIWIN” 600" e~ TL09° L2 ™ orer” Hevry £14 ©
aisis 4903 L JNE] eusiv &l IR X sis3y el imyix mz ”s =
ST000°~ = 35043 30 AVA Ls1200° £0° £z 1009 ° £5100° K%ty [3 d *s 19908° SOLCE ¥W
8vS.00° aL°cs 03 W°0 toze10°~ 028t 8°691 L9E80°~ IZOLE" SS22WE°~ 0SSty WM tesze*- 62v10° 3
0554080 SE°1L 93 30°0 c02919"~ 0271 6 69t 4990~ 28’ SOITBR°~- IS°CEy S W~ ISL28°- ST &1
(1.1 0 $°2% o0 W9 102910°~ oz el 1*691 2608~ fioLe* IR~ 95°Cy €°o9l- T80 - €I%18° Bt
S14200° % oL 00 30°0 1$0610°~ €2°61 Lol ¢ 12638~ ol20° 162T~~ EL°EyY T 2U- 79829~ ¢pElY 1}
€12800° 11°02 7 39°0 59919 - 11°61 691 65700°- LO0° S60L0CE"- Y2 2y $°€0- I91c0°- SZ21IP 91
&*00° o2°Ly 00 30°8 69518~ st1°6t €Y LSEN "~ THe%° SICTEE"- 2 9 S°I0I- PENO"- O6BID” ST
(43148 o 0%°se O0C 39°0 24CL1Y"~ L2 od 14 [A Y3 4 1% - ML GLSEZE"- 6270 Y ITI- EEE06°- ISLLY” o1
Weels” $$°Z¢ 00 38°0 SONIT"~ 0281 £°W1 LENI"~ EOMD” SR - Y0 1°62- ISl - 9EC00° f£1
955550° 9%°99% 00 19°0 oELI20 - 12761 L°T Z9EWM - (1698° SEWEL~- P £°%Y 963€1°- (S000~ 21
oERYSt” ”n-is 00 WO LT - T2°68 O°LL1 11%08°~ $8690° SEPINI°~ G9°CS L°ZE1 1891~ [EGOO° 11
€20€€Y° *0°sSL n0 W°e ZEORTG° - ZT°6T J°LLT LTv0R°- G6E9e° 69CHLLI°~ S9°85 S°LEZ £1481°- §5000° o1
sL8l"1 6€°09 00 38°0 WNLE - £2°61 ILLL 2EYE0°- C4498° CTECHE*~ 99°i(9 1°CAT 19WOLl°- TEI0QG” &
ETE9EL" € €8°8v 00 38°0 orsize° - €Z°6t LT YEYER°~ e98° SESILs"- 10°29 S°0IE 291"~ SEEOS” 9
1£2908°0 S1°%» 80 W°0 SISTRO - E2°61 O°LLT SEVE0°- S6OWD° 961990~ 92°C9 S°IFE IBWI°- SERO0° L
S1€956°C€T 086°S> 00 298 LIS2E8°~ £2°61 o L1 v - $6690° L261990°« TH°E9 2°TEE GHLOI°- TNEZE 9
EINI*EY €£0°9%% 30 ‘e QEETZE - €2°61 G ILT VTG0~ SBA90” 099N~ 99°€9 Y NE LULNI°- SEVIO" ¢
SLT2L6°SLT 99°%» 00 30°0 11S228°- €2°61 Q°Lil 9EY80°-~ S$449¢° S81€99°- 05°C® S°2UC 02isl°- OZGLI® o
Y24E890° 18 LO°% 00 36°0 ETIR2N*~ €2°61 o LLE L2908°~ 296MD° S00EMN - (5°¢% D ECC 2L~ OOWY ¢
P69 LOCTON°YE @9 IC°0 [2110 B f1°et L1°¥1 £SvR - C2090° 2S0EM°~ I5°6Y [°€CE TTUNL"~ PHMOT° 1 2
[Yies] 4 €2°0 00 30°¢ COYEI0°~- SI°6? 9°ELE M- [¥I9° S28100°- YE"E9 2°09T eLEID" OIN09" 1
TELIYO® [)4 ®N N0 400008° ooz o°est 080" N 0000006 ° 90°9%9 0°00T oOCOC* 009te” 0
wy3 1930) venw" 1ZosM/7338) 1479383 (9307 os1) {Tealis338) (N/330) (930) 18270
by . [2, 4] e [£ (4] v T s D i 1y 1 ¥ 3) Aug

JI/M PIWY s ed
u o™ = ¢ 19911°1 OWNDN

Y y31m InG *c auanbp4 uj se jupod Bupjaels pue e3ep awes 9Y3} L04 L Mep P 3Inbi4

TO0088°9 CI9C00"9 SMNEOI"D 0009-G- 1950°0- 6959°0~ 1000°0 2120°0- [420°0- §9€5° I8 0OC
TYT0068°0 CISV00°0 IS0 109040~ 29€0°0- €¥€3°C- 2U00°0- #159°0- l4sS8°0- 168 <2
996006°9 £90v08°9 6$8Y¥00°0 4000°0 0E00°0 (£20°C 8Z00°0- S£90°3~ £990°C- LTI L0 1 S TS
ZISO0E™0 OMNEDN"C 24% 080 €GNe°0 E520°0 %W $200°0- S6%0°5- $2¢8°0- 09 582
151042°0 BSELO°0 YISENS°D 0100°0 08%0°0 81300 €G00°0- TIve"C~ BZyC°3- YESE SE C82
8290°8 L20500°9 9%Ils0a"e Z2100°0~ Z29%° 0~ Y19 03~ 0008°0C €€S0°0- SES6°0- 14 1 kA] L1 %4
SL2000°0~ 190600°0 281200°9 2200°0~ SE%0°D L1%D°C 9I00°0 I£€0°0- €2€9°3- SNLETSY SI?
256E038°0- 6BLEP0"C 18K£508°) 2208°0~ 14500 €£950°0 410800 06209~ 1120°0- 850" vy 812
2TCH88°N~ S¥HY00°S F20000°0 €E08°0 I2%°0- 98T0°0- $008°0 £059°C- 7G%0°0-~ [73 B S N 73 |
290083°9— €S9200°3 LeL209°D *000°0 OZZ8°0- YIW 0~ ¥000°0 i8%3°0- €990°0- SZyET ¢S §91
TLONNE°S—- L09€00°C SINEOE-C 1500°0 €210°0- ZL19°0- 96000 2850°0- 9150°G- 2025 e% 291
SITCN"E SYI"D FOLYS"D 1100°0 660070~ ¢8C8°0- 9100°0- 1193°0- 0893°0- Seh2c iy 291
SE2008°0 9S5900°0 266900°0 zooe-g- S610°9 €610°0 $200°0- 95£0°0- vI85°C- eretey st
19€008°0- S19i83°0 €%8i08°0 20060~ %0 90%10 0200°0 %iL0°0- YEL0°0- Y IST°LY 81
ZO%008°0- Y9VL03°8 270.06°8 9200°0~ 4199°0 €618°0 $0C0°0 W20°G- TL3070- $6SL° Sy 0%l
252004°0- FEMN "8 PE00°0 €I00"0~ LL90°0 Y9N *T 4800°0 OY50-D- ZES0 0~ 159%§° 82 [
000008°8- LIZE83°0 LITE04"O A0~ 2950°C 09V £000°0- 0SN0°C- L9VO"C- €06 L2 O
29Z000°0~ $16908°8 LLPYO0E8°0 €100°0~ €IRG°S QOW"0 100G° 0~ SLIG°G s9ld“0 06£%° %2 a8
S0S000°0~- L0V110°0 904010°0 £008°0~ 7950°0 85980 9200°0~ 3060°0 2980°0 521er 22 <L
I91884°8 SZ9018°0 481018°0 1000°0- €250°0 €850°0 €100°0- 0S80°C- 999G°0- 1922°21 0y
CCO0980- 200608° ¢ OLL1E50°0 0008°0 4450°0 &650°0 210G°0 {51Q°0- SE10°0- YZ04° 6T ST
SI20N0"0 SDYINE A 6E9100°0 5€00°0 O££0°0 H9€0°0 9000°0 %310°0~ ®£10°0- 1SAT" & ot
2980080 S92900°8 SIYH0°0 $000°0 WSO°) 6450°0 SI0C°0- €JEG"C- $ZE8°0- 1y91°s r
010080 MM S ¢SV 0 S000°0~ 18L0°0 9Lii0*0 €000°0 te20°0- L270°0- 1t99° £14
105000°8 SIS II2ZINFO <1000 1901°0 SL01°0 €000°0- O9Z0”8 “L$20"0 (211 4} 22
*98008°9 T&LIR°D SLO®YIE-O 0100°0~ 9%40°0 9960°0 SI0C°0 9690°0 s1go-D 1390 ¢ 22 [+,
oISANE"E #4108 tNiIle°0 §000°0 €*00°0 20100%'0 1200°0 ®&21°LC gQzK1°0 LIDS" & (11 e
8153y 4983 2% vilie [J1 1] Ju0) (AN} a1%3y <dui) W ix {1l vis
£2008°0~ = ITV4IN 30 AVL 69690870 10°90 0 91(90°G ¥000°0 YLLIO0"O L0°C $°1 QLeC0°0 €90CG°C a3

STIIEN"E %% EI-3I°¢ SL%610°0~ L1°61 L°€L1 59£3070- ®0L0°0 9SI8S0°0 O1°99 S Ll2 SZH20°0— SILIO°C 21
SN e Ly 21-31°0 €29418°0~ 11°51 L°ELT SH00°0- SOOL0°C :iSTBS0°3 OI°99 9°112 42320°0- s IO°C II
€Nee"y $v°2s U-31°0 262610°0—- L1°61 FAS 749 SOE00°0- I0GLO"C 990RS3°0 62°9 ST UI2 0%320°0- YOL1O0°C Qi

To0L00°9 I1°2L Ot-3E°0 cooete" - LI1°61 3°€L1 89E00 "0~ F0OLC°C LOE299°0 2€°%Y 9°6LT 55520°0- SMI0°C &
2CEN"0 25710 60-31°0 *oT619°6— 01°%1 L1°EL1 i9€08°0- 26490°0 Z0%S%°0 L5°SY I°4IZ SULED"O~ LHIO°C ®
$0%8I8"8 01 80-31°0 6SISTE"0— BI-6T S 6Ll 6SE00°0- NRPO-0 SZ92I0°0 9F"€? 9°C9Z ILIY°O0- LIZIO"C L
CE0E10°0 OY°5t Lo—3L°O MENE D~ 96l £°5L1 996 00°0~ 6299C"C PEIY00°0- IE°€9 2°192 SE120°0- €95C0°C 9
SLTVI 0 8Y°0E 9310 89291970~ SE“6T 2°EL1 19€00°0- I8€90°0 23SS00°0- YE"EI L7482 [1610°0— S163C°C 3
LS 39°%2 SO-3l°8 EEST0°0~ SI°61 [°CELL €9€00°0- §2£r90°0 SOWAD0"0- 2C°€9 27332 10s13°0- a¢e500°C ¥
SISLENTD 905°SL %9-3(°¢ o29SIN 0~ sSI°61 I°€21 &9€00°0- OLZ9C°C 18¥.03°0- 2:°€9 E£°992 166C0"0- 42eC0°C £
SCHIee "% £0-31°0 0ESTI 0~ SiI°sl 1I°gll $9€00°0~ 90290°0 9JT100°0- 9E€°€9 »°192 0NICS°0- JELCO°C 2
WLTX® e 0y TO-MQ €SS0~ ST&l S "ELTI 79€00°0- 1YyI90°0 LlE£6030°0- YE“E9 1°Q92 S4110°0 1tIv30°C U
TCLINS"S 08¢ 18310 000608"8 00°0Z 0°0S! 00C00°0 009903 0J0000°0 QD°S¥ 0°00Z 0OLGOD 20910°0 €
o (1) el (Tosk/3363 (W/33G} (230 [§ TA¢) (20e%/793G) M/7930Y) (923C) (s}
b1] [2] sure 23 t4] v 2 BVl Zx 13 18 1 4 4 [»¥1 ™ 231

IS/ ®98° 90O = ok
M oL 9y = ol T9»11°T ChfI

j
|
!

The point P2 is not at the absolute minimum Lut this fact can

hardly be deduced from a study of Figure 3. Note the insidious lure of
those columns of numbers convexging to a wrong answer. If we had started
with, say, Plu as our initial point, even our experienced analysts = who

would suspect any final result that diffews very much from the starting
point — might be lulled into acceptance. The error estimates for the
ten parameters (printed below the final iteration values) are not un-
acceptably large; they help maintain the illusion that the parameter
values themselves are acceptable. Finally, the bottom half of Figure 3,
listing the measured and computed &y and v and the corresponding

residuals, seems to reinforce the impression that we have fitted the data
adequately.

And yet if we look at Figure 4 — the same round, but using Marquardt's

algorithm - we see that a much different fit is possible, with a much
smaller RMS error and a much better set of parameter error estimetes.
(Thus the fact that the ten error estimates in Figure 3 were of satis-
factory size proved nothing. If there had been no noise, we would have
converged there to some "true local" minimm. The parameter civor
cstimates in Figure 3 are measures of how close we came to that true
local minimum, not to the true absolute minimum.)

It is instructive to see just how Marquardt's algorithm got us to
the right answer in Figure 4. The first iteration is nearly the same
as in Figure 3 since A is relatively small (0.001). It is in the second
iteration that Marquardt's algorithm had its first big opportunity to
star. It recognized the fact that a giant over-step was about to be
made and so — since 8 is less than 45 degress — it divided each param-
eter increment by ten. For example, in Figure 3, the increment in A

from the first to the second iterat.on is

(4%;) = - 0.18722 - 0.01878 = - 0.20600 (1/m)

while in Figure 4, the increment is about one-tenth as large:

(a3,), = - 0.00180 - 0.01876 = - 0.02056 (1/m)

(For K10 and Kzo' recall that it is the increments in n1 and n2 that are

reduced by a factor of ten.) A single shrinking of the step-size was
sufficient in this instance to give a smaller RMS error than obtained
from the first iteration and so the second iteration was concluded.

Thereaftexr the Marquardt part of the process had little to do.
Usually, it is not possible to tell when the "8 < 45°" feature has
been called into play (without insertirg monitoring statements within
MARQ). That feature may or may not have been used whenever the print-

40

R T

!
!
i
!
1
I
[
{
1
¢

Aperin i T

RO SOt

L

™~

RNk

- e AT e T
L A e A

out shows a 0 less than 45 degrees. We can say, however, that A itself
was of negligible aid in the convergence of Figure 4. This is shown by
the steadily decreasing values of A printed out. A departure from the
norm

Ary k ® 91 Apy k-1

would have indicated that A played a significant role in completing the
K-th iteration. Such a departure doesn't occur in Figure 4.

Of course, if we start out anywhere within a relatively tiny region
of the parameter space surrounding the solution P of Figure 4, we will
converge to that solution without A. (This is what actually happened
when we used our preliminary subroutine to determine the initial esti-
mates.) The point is: when A is used, the region of convergence is
expanded considerably. Marquardt's algorithm is like radar on a ship
seeking harbor; on a foggy night, we need all the help we can get.

41

e

e e TRy o AR+ MM A T

REFERENCES

Donald W. Marquardt, "An Algorithm for Least-Squares Estimation of
Nonlinear Parameters," J. Soe. Indust. Appl. Math., Vol. 11, No. 2,
Pp 431-441, June 1963.

Cuthbert Daniel and Fred S. Wood, Ritting Equations to Data: Computer
Analysie of Multifactor Data for Soientiste and Enginesre, Wiley-
Interscience, New York, 1971.

Philip R. Bevington, Data Reduction and Error Analysie for the
Physical Sciences, McGraw-Hill, Inc., New York, 1969.

Richard V. Andree, Josephine P. Andree and David D. Andree, Computer
Frograming: Techniques, Analyeis and Mathematics, Prentice-Hall
Series in Automatic Computation, New Jersey, 1973.

Lloyd W. Campbell and Glenn A. Beck, BRLESC I/II FORTRAN, Aberdeen
Research and Development Center Technical Report No. 5, AD 704343,
March, 1970.

Walter K. Rogers, Jr., "The Transonic Free Flight Range," Ballistic
Research Laboratories Report No. 1044, June 1958, AD 200177,

Walter F. Braun, 'The Free Flight Aerodynamics Range,' Ballistic
Research Laboratories Report No. 1048, July 1958, AD 202249,

Preceding page blank

43

|
!
;
|
!{

e A s, AT D Gl Bl

OoONOn A0n aoanno

aooon

anoon

APPENDIX A o o « SUBROUTINE MARQ

SUBROUTINE MARG(EQSyXoYoM¢NgPoCoE9DoRyTHyEXK) s
DlﬂENSlON XM o V(M) oPUND oDIMeMI oRIN) JEK(ND 4 MARQ
ALFHA(lOolOi-OETA!!O’.GCH"ACIO.IO'oPlllOloSl[Ol MARQ

KOTE == IF NQe¢ CF PARAMETERS NoGTo 10, REPLACE 10 ABOVE

(%)

AND IN MATINV LIST (LINE MARQ 48! BY AN INTEGER.GE.N
THE VALUES OF ANy BN AND GN BELOW MAY BE CHANGED, PROVIDED THAT
AN «GTo las BN oGTe 1l¢ AND Os oLEs GN oLEs 45,

CATA DEG/57.29578/7 CHMIN/,SE=16/7 AN/10.7 BN/JL10./7 GN/ZAS ./ MARQ
TERE MARQ
NN = N MARQ

® GO TO 1 IF MARQ IS NOT BEING CALLED FOR THE FIRST TIME,
IF{CeGELD.)GCTO 1 MARQ

¢ THE FIRST TIME MARQ 1S CALLED, EVALUATE E, D AND Ry
¢ SET C = INITIAL VALUE OF LAMBDA AND RETURN,.

CALL EQS(X,YoMM,NNoPoEosDoR) MARGQ
C = 0,0018ANS{C ¢+ 2,) MARQ
TH = Q. MARQ
RETURN MARQ

¢ SET CL = INPUY LAMBDA/AN AND EA = INPUT ERROR.

L = C MARQ
IF (CL.GT.CHIN) CL = CL/AN MARG
EA = E MARQ

® FORM THE BETA VECTORy EQU15)e AND ONLY THE NINe1)/2
* ALPHA ELEMENTS ON OR BELOW THE PRINCIPAL OIAGONAL, EQL18).

GO 4 J = 14NN MARQ

8 = 0, : MARQ

DO 3 K = 1,4 MARQ

A= o. "‘“Q

DO 2 1 = 1,MM MARQ

[F(K.EQel) B = B ¢ RILI2D(1,4) MARQ

A= A ¢ Dilyd)sD(IeK) MARQ

CONTINUE MARQ

ALPHALJ4K) = A MARC

CONTINUE MARQ

BETALJ) = 8 MARQ

CONTINUE MARQ
Preceding page blank

45

w N e

(L]

10
11

12
12
14

¢ .
C * FORM SCALE FACTORS $(J)e REPLACE BETA WITH SCALED
c & BETA, EQ(2%)s FGRM SCALED ALPHA(JoK)y EQ(25), AND
C & STCRE ABOVE THE PRINCIPAL DIAGONAL AS ALPHA(K,J).
g ¢ FORM BM = THE SQUARE OF THE MAGNITUDE OF SCALED BETA.
8M = @, MARQ 27
00 6 J = 14NN MARQ 28
StJ) =1e/SQRTIALPHA(IGJI))) MARQ 29
BETA(J) = BETA(JIeS(I) MARQ 130
8M = BM ¢+ BETA(J)®e2 MARQ 31
K=yjg=1 ' MARQ 32
5 IF(K«EQe0)GOTO 6 MARQ 133 .
ALPHALKyJ) = ALPHALJ(K)ISS(J)8S{K) MARQ 34
KsK =1 MARQ 35
Gove S MARQ 36
c 6 CONTINUE MARQ 37
c * FORM MATRIX GAMMA, EQ(33),y BASED ON CURRENT VALUE OF LAMBDA.
C
T OIAG = 1. 4 CtL MARQ 38
£O 9 J = 1,NN . MARQ 39
GAMiIAlSyJ) = DIAG MARQ 40
K s J =) MARQ 41
8 IF{Ke EQe01GOTO 9 MARQ 4¢
GAMMA(JoK) = ALPHA(Kod) MARQ 43
GAPMA(KyJ)} = GAMMA(JyK) MARQ 44
K=aK -1 MARQ 45
GOTO 8 MARG 46
9 CONTINUE) MARQ 47
C
c ® REPLACE GAMMA BY TS INVERSE,.
C
CALL MATINVIGAMMANN,PB,10C,DOT) MARQ 48
c
C ¢ FORM THE COMPONENTS OF THE SCALED DELTA P VECTOReeo
c b DP = SCALED (DELTA A) SUB Jo SATISFYING EQ{32),
c ¢ FORM THE CANDIDAYE TOINTY PB = P + UNSCALED DELTA P,
C ® FORM DOT = DOT PROOUCT OF SCALED BETA AND SCALED DELTA P.
C ¢ FORM DPM * THE SQUARE OF THE MAGNITUDE OF THE SCALED DELTA P,
c
coTr = Q, MARQ 4¢
DPM = Q, MARQ SO
0O L1 J = 1,NN MARQ 51
oP = Q. MARQ 32
00 10 K = 1,NN MARQ 53
CP = DP ¢ BETA(K)SGAMMA{J(K) MARQ 54
10 CONTINUE MARQ 55
PBLJY = P(J) + DPeS(J) MARQ 56 :
DOT = DOT ¢ CP*BETA(J) MARQ 57 o
CPM = CPH ¢+ DPeDP . MARQ 58 ;
11 CONTINUE MARQ 59 :

] c -
: g * FORM ANG = THETA, DEGAEES, £0(335),
; ANG = 0. MARQ
g TR = DOT/SQRT(DPM*BN) MARQ
g . IF(ABS(TR)oLEs1e) ANG = DEGOARCCOS(TR) MARQ
: ¢ * EVALUATE EB = ERROR AT THE CANDIDATE POINT PB.
5 ¢ 12 CALL EQSIXY\MMINN,PBLES,O,R) MARQ
: . g ® COMPARE ERROR EB AT POINT PB WITH INPUT ERROR EA,
LS
: IF(EBLLE.EAIGOTO 18 MARQ
i IF(CL.EQ,0,)GOTO 15 MARC
IF(ANG.LT. GNIGOTO 13 MARO
c
; c ® INCREASE LAMBDA AND GO BACK TO COMPUTE NEW GAMMA,
| c
; CL = ANeCL MARQ
$ sore 7 MARQ
N c
c * DECREASE LENGTH OF DELTA P AND GO BACK TO COMPUTE NEW EB.
c
13 CO 14 J = 1,NN MARQ
PBIJ) = P(J) + (PBIJI=P(J))/BN MARQ
14 CONTINUE MARQ
GOTC 12 MARQ
c
| c * THE ITERATION HAS BEEN COMPLETED SATISFACTORILY.
: ¢ * UPCATE CURRENT POINT P AND ERROR Es COMPUTE ERROR
¢ & ESTIMATES FOR THE PARAMETERS.
: c
g 15 € = EB MARQ
. C =cCL MARQ
: TH = ANG MARQ
; 00 16 J = 1,AN MARQ
i P(J) = PBIJ) MARQ
EK(J) = EB#S(J)*SQRT(GAMMA(JyJ) *DIAG) NARQ
: 16 CONTINUE MARQ
: RETURN MARQ
: ENC MARQ

LY

60
61
62

63

64
65
66

617
68

69
70
T
L]

73
T4
75
76
77
78
79
80
81

PN

=

ALY ey

B A O R L4

&S w

N

10
il

12

13
14
15
16

‘APPENDIX B +» « « SUBROUTINE MATINV

OBTAINED FROM COMPUTER SUPPORT DIVISION
ABERDEEN RESEARCH AND DEVELOPMENT CENTER

SUBROUTINE MATINVIAyN¢CoNMAXKoDET)

CIMENSION A(NMAX,1),C(1)
NN = N
KK = K
IF (1-KK) 3411
N3 = NN
IF (KK) 2,442
ASSIGN 9 TO NS
ASSIGN 13 70 N7
GOY0 S
N3 =2 KK ¢+ NN = 1
ASSIGN LC TO NS
ASSIGN 14 TO N7
CET = 1,0
D0 15 1 = 1,NN
IF (ALTy 1)) Te6,7
WRITES6417)
CET = 0,0
GOTO 16
Tl = 1,0/A01,1)
CET = DETeA(I,])
AlL,I) = 1,0
CO 8 J =)JyN3
AlLyd) = AlLoJ)eT]
CUNTINUE
GOTO NSy (9,10)
C(1) = CLI)sT)
DO 14 J = 14NN
IF (I=J) 11l,14,11
Tl = A{Jy1)
AlJyI} = 0.0
CoO 12 L = 1,N3
AlJal) = A(JoL)
CONTINUE
GOTO N7, (13,164)

= T1#AlI,4L)

ClJ) = CLJ) - TIeC{)

CONTINUE
CONTINUE
RETURN

17 FORMAT (16H SINGULAR MATRIX)

END

Preceding page blank

49

stk
MATINV
MATINV
MATINY
MATINV
MAT INV
MATINV
MAT INV
MATINV
MATINVLO
MATINV1Y
MATINVL2
MATINVL3
MATINVLG
MATINVLS
MATINVLS
NATINVLY
MATINVIS
MATINVLY
MATINV20
MATINV21
MATINV22
MATINV23
NATINVZ4
MATINV25
MATINV26
MATINV2Y
MATINV2S
MAT INV29
MATINV3O
MATINV3L
MATINV32
MATINV33
MATINV24
MATINV3S
MAT INV36
MATINV3T
MATINV3E
MATINV3O
MATINV&O
MATINVSG]L

GNP P WN-

PR

. APPENDEIX C « o o SUBROUTINE EYAM
4 SUBROUTINE EVANIXYeMeNyPoE,DoR) YT TR |
4 OIMENSION X(MI V(M) PIN)oOCM,N) RIN) EYAW 2
COMMON/EEP/V,F EYAW 3
S = Q. EVAW &
. F =0, A EYAW 5
T = Pla)*P(9)eVIY EYAW &
IF(ToNELOo) F = =9,88¢ PL4) ¢ P(9) }/T EYAW 7
- NL = M/2 EYAW 8 ,
- . 00 2 I =1,NL EVAN 9
J sl ¢NL EVAW |0
N s XII1) EVAW 11
EL = EXP(P(L) + P(2)eW) EYAW 12
E2 = EXP(P(6) « PLTI®N) EYAW 13
AL = P(3) « We(P(4) + WOP(5)) EYAW 14
A2 = P(B) + We(P(9) + WePLLO)) EVAW 1S
3 RL = E1COS(AL) EYAW 16
= R2 = E29CCS(A2) EYAW 17
R3 = E18SIN(AL) EVAW 18
Re = E2%SINCA2) : EYAW 19 |
R(I) = Y(I) = Rl =R2 = F EVAW 20
R(J) = Y(JY) = RI «R& EVAW 21 :
S =S 4 R(II*E2 & R{J)*e2 EYAW 22 -
C(Iyl) = Rl EYAW 23 !
ClJyd) = R3 EYAW 24 ,
C(I,2) = R1®W EVAW 25
ClJs2) = RI®W EVAW 26
C(I¢3) = -R3 EVAW 27
D(Je3) = R} EVAW 28
' Bilsa) = =D{Jy2) ‘ EYAW 29
D(Jis) = Oi1,2) EVAW 30
DlLeS) = =D(Je2)0M EYAWN 31
C(JsS) = Dl1,2)9¢ EYAW 32
DEIs6) = R2 EVAW 33]
D(J:6) = R& EVAW 34 :
ClI,7) = R2%W EVAN 35
DlJs7) = Ra*W EYAW 36
D([43) = =R& EVAM 37
D(Jy8) = R2 EYAH 28 !
CU1,9) = =D{J,) EYAW 39 ;
i ClJed) = DUIT) EYAW 40
l ClIv10)m =DlJ,T)8W EYAW &1}
. D(Jo1C)= DUl T7)%W : EYAW 42
2 CONTINUE EVAW &2
€ = SQRT(S/FLOAT(M=10)) EYAW &4
RETURN EVAW 45
l ENO EYAW 46
| Praceding page hlank

} 51

" APPENDIX D o o « SUBROUTINE EY

SUBROUTINE EY(RDyNeNSeBeAeZoZReVRP,QyBB,AARNS,YREP,IC)
EXTERNAL EYAN
CIMENSION NSIN)IoBIN)oALN] oZIH)P{10)¢X{L08)4V(L08),D(108,10),
1 RE108),0010)1,88(N),AA(N)
COFHON/EEP/V,.YR
CATA CEG/87.29578/
40 FORMAT(1HOs¢17H TOC FEW STATIONS/)
41 FORPATILIHL920X ¢ 6HROUND 4FB8,5420Xs5HI® = (Fl0a%e2H N/
1 1k o 54K, 5HY® » F9,3,TH M/SEC//SH TRY,
2 S5Xo2HKLoSXySHLAM 1,5X92HALe 6Xy2HBLo8Xe2HCL
3 X g 2WK 25K o SHLAM 2,5Xy2HA2, GXe2HR2,0X,2HC2,
4 Xy 4HMARQ, 4X s S4HMARG 9 3X o IKRMS/
S 1H 9TRe2(IXVAINLL/N) (DEG) (DEG/M) (DEG/H®¢2) 44X},
6 6HLAMBDAZ2X ySHIDEG) 9 SX¢ SHERROR/)
42 FORMATILH o149 2(F0e5¢F9:5¢FB8e19FBa2:F110692X)9E9e14FTe24F11,6)
43 FORMATILHOy4H ERRo2(FO.5¢F9,5,F8.1oFRe29FLLleby2X) 5K,
1 16HYAW GF REPOSE = (FB8.57/)
44 FORMATI43H o9 yARNINGesss PROCESS FAILED TO CONVERGE/Z/)
45 FORMAT(SH STA aXoaHZIM) 99X 21HXI (H) conp RESIDsTX,
1 21RKI(V) comp RESIDyTX o BHDELTA SQoSX o 4HCOMP 45X ¢ SHRESID/)
46 FORMATULH o14yF10ah,204Xs3FBe4) 94Xy3FL0.6)
NL = N
M = NL + NL
CF = M - 10
IF (DF.GT.0.) GOTC 1
WRITE(6,40)
IC = 2
GOTQ 7
1 IC =0
VvV = VYR
C = =1,0
U0 2 I = 14NL
Jd a1 ¢ NL
X(1) = 2(1) - IR
Y(I) = B(D)
Y(J) = ALI)
2 CONTVINUE
WRITE(6s41) RDeZRGYV
PLI) = ALOG(PLL))
Pl6) = ALOG(P(6))

Praceding page blank

53

skdd
EY
EY
EY
EY
EY
EY
EY
134
EvY
EY
EY
€Y
EY
EY
EY
EY
EY
Ev
13
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY
EY

CO 4 K = 1,2¢ . EY
CALL MARGLEVAW X oYoeMeL0yPoCoEoDoRyTH(Q}? €Y

R1 = EXPL PL1)) : EY

Al = DEGeP(I) EY

81 = DEG*PL4) EY

Cl = DEG*P(S) EY

R2 = EXPL PL6)) EY

A2 = DEGSP(O) EY

22 s CEG*P(9) 13

C2 = CEG*P(10) Ey

Jd s K =] EY
WRITE(G¢42) JoRLyPI2VAL¢BL,CLoR2)FP{T) A29B2,C2¢CoTHE 33

IF (J.EQeC) GOTO 23 EY

CR = 1,0 - E/EA EY

IF (CR «GEe 0o o+AND. CR LTV, .000010) GOTO 5 EY

3 EA = E EY
4 CONTINUE EY
IC = } EY
WRITE(Go44) EY

5 Q3 = DEG*Q(3) EY
Q64 = DEG*Q(4) EY
U3 = DEG*Q(S) EY
Q8 = DEG*QI8) EY
Q9 = CEG*Q(Y) EY
Q10= DEG#Q(10) EY
Pll) = RI 134
PlLE) = R2 EY
Gtl). = R19Q(1) EY
dto) = R2#Ql6) EY
WRITE(6y43) QU1),002)Q%,04,Q05,01(6),0(7),Q08,Q09,Q10,YR 134
RMS = € EY
YREP= YR EY
WRITE{G6,45) EY
00 o6 I = 14NL EVY

Jd =1 4 NL EY
Ball) = ¥Y(I) - Rt EY
AALL) = Y{J) = R{J) EY

DA= V(11982 ¢ Y(J)®»2 ey

OB= BB(I)*52 + AA(T)®42 EY

CC= pa - (B EY
WRITE(G6e46) NSUINoZUT) oV 4BBUR)oRUYI Y (I)oAALL)4R(J)yDA,DOB,DCEY

6 CONTINUE EY
T RETURN EY
ENC EY

NSRRI S ER T TSP

DL e it atins BER 2 AR iy

b et W el 4

T S

DET

LIST OF SYMBOLS

(1) a factor greater tham unity by which A is to be
increased if necessary to insure that 51 <€

(2) an BY input array argument: the measured &y velues
at each station

orientation angles of the two yaw arms at Z5s Eq. (41);
two of the ten yaw parameters

an EY output array argument: the computed gy values at
each station

the FORTRAN name for A (def. 1) in subroutine MARQ

the n parameters of the fitting equation whose values
are to be determined

%/ %k

(1) a factor greater than unity by which'g$ is to be
decreased if necessary when 6 < G

(2) an EY input array argument: the measured EH values
at each station

turning rates of the two yaw arms at z,» Eq. (41); two
of the ten yaw parameters

an EY output array argument: the computed &y values at
each station

the FORTRAN name for B (def, 1) in subroutine MARQ
1 or 0.67449, Eq. (20)

a MARQ input/output argument; after the first call, C =)\

two of the ten yaw parameters, Eq. (41)

a MARQ input/output argument and an EQS/EYAW output
argument: the array of partial derivatives Dy

determinant of matrix vy

S5

RS S

T

ERIE I

L T

'
¢
!
1
i
¢
)
!

BK

EQS

EY
EYAW

IC
K K
1P o2

K
10 20

LIST OF SYNBOLS (continuod)
of (xi. P)
oy
D;x / 7/ %kk

estimate of the error of the fit, Eq. (20); a MARQ
input/output argument and an EQS/EYAW output argument

o

estimate of ths error in parameter a,, Eq. (21)
a MARQ output array argument: the estimated errors Ej

a MARQ input argunment: the dummy name of a subroutine
called by MARQ

the subroutine that calls MARQ in the yaw problem

the actual name of EQS in the yaw problem

the criterion function, Eq. (4)

the fitting function, Eq. (1)

the two fitting functions for the yaw problem, Eq. (44)
the value of 9 (degrees) Ezlow which a new KF is obtained
by shrinking the current AP.

the FORTRAN name for G in subroutine MARQ

the acceleration of gravity, assumed constant, Eq. (42)
a dimensionless positive constant, Eq. (30-31)
an EY output argument: a convergence flag C

lengths of the two yaw arms, Eq. (39)

values of Kl, K2 at z_, Eq. (40)

0
a local minimum point

a MARQ and EQS/EYAW input argument: the number of data
points, m

56

MARQ

MATINV

m

NL

NS

n

RD

LIST OF SYMBOLS (continued)

the subroutine for carrying out the Marquardt algorithm
of Figure 2

a matrix inversion subroutine
the number of moasurements: the number of data points

(x50 ¥;)

(1) a MARQ and EQS/EYAW input argument: the numbor of
parameters, n

(2) an EY input argument: the number of spark stations,
NL

the number of spark stations at which measurements were
taken, M/2
an EY input argument: an array of station numbers

the number of parameters

(1) the parameter set {al, 8, .. an}; a point in n-
dimensional parameter space

(2) an EY and MARQ input/output array argument and an
EQS/EYAW iaput array argument: the parametor values

a point along the negative gradient

the initial and successive parameter points in the
iterative fitting process

the vector from the origin of the parameter space to
point P

an EY output argument: the array of estimated errors
in the ten yaw parameters

a MARQ input/output array argument and an EQS/EYAW out-
put array argument: the residuals of the fit (obscrved—
comput.ed)

an EY input argument: a number identifying bLoth the
range and the round

an EY output argument: the RMS error of the yow fit

57

L e e e et ia ae . d et

LIST OF SYMBOLS (continued)
an integer » -1

n-dimensionul purameter space, in which the coordinates
of a point P are the values of the n parameters

scaled parameter space, Eq. (23), in which each co-
ordinate has the dimensions of the dependent variable y

a MARQ output argument, the angle 8 (degrees)

velocity at 2y m/sec

an EY input argument: Vo; passed to EYAW (under alias
V) by labelled COMMON

a MARQ and EQS/EYAW input argument: the array of data
points (xi)

the independent variable of the fitting equation

value of x at which a y measurement was taken,
i=1,2,...n

the set of measurements {yi}; a MARQ and EQS/EYAW input
array argument

an BY output argument: Spo the yaw of repose; obtained
from EYAW (under aliases YR and F) by labelled COMMON

the dependent variable of the fitting equation

the measured value of y at x =) iw1,2, .. .m

an BY input argument: the array of z measurements

an EY input argument: z,

down-range distance, metres

reference z value, metres

J

the curvature matrix (ujkl

58

L s <5 A A S el

ak "B o S g

Ty

R . T R

LIST OF SYMBOLS (continuzd)

; rt the inverse of matrix o
i % the scaled curvature utnx(jk)- i
(| a. 1 32 ¢ i
jk 3 138 s Eq. (11) [
j .k _
~ cofactor of a, ; 1
’ a %— . l
) jk determinant o L

e S /N

|
~ cofactor of 4, ‘ i
3, ik, -
jk determinant of .
| 8 - 1 (grad ©), K. (13) ?
B Py f 4
N = (508, - - B“)S =(31. B, ... sn)§ .
_ ;'
' 1 | de .
: ‘ B - 55— » Eqa. (10) ,
iy k 2 [aakjL |
A
Bk Bk/‘/ uk » Eq' (25) ; i
J d
; Y the modified & matrix (ij)a 11
N 3 |
{ 1+, j=k
Y, Eq. (33)
k .
J '&jk, j#+k
A a positive constant << 1 in the relaxed standard, Eq. (36b)
Aaj the change in aj in moving from one point to the next in

the iterative fitting process

N
Aa, Aa. * a..
%5 i 7 %3

LN
0
A
M
A
£
EHJ Ev
R
¢1. ¢2
[1,
[,

LIST OF SYMBOLS (continued)

the vector (Aaj) - (A‘a‘j) ¢ from the current parameter
£

point to a new point

F(P), the sum of the squares of the residuals of the
fit at point P, Eq. (4)

€ values associated with points Po. Pl. . . e
&n (K n (K
(10)’ (20)

the angle between K and ZF. that is, between the negative
gradient and the direction actually taken, Eq. (35)

a dimensionless positive constant added to the diagonal
elements of @ in order to effect an interpolation be-
tween the methods of steepest descent and differential
equations.

the smallest value of A needed to satisfy Eq. (36)

notation for the phrase "\ plus the other features in
Figure 2 that distinguish Marquardt's algorithm from
the usual differential corrections process."

the complex yaw, EH + 1 Ev, Eq. (39)

the components of the complex yaw, Eq. (44)

the yaw of repose, Eq. (42)

orientation angles of the two yaw arms, Eq. (39)
dimensions of the bracketed expression

evaluation at the current set of parameter values

60

— . - “ I Uit flew oo ge sase ey, aupy

