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ABSTRACT 

Most vulnerable area (A ) analyses consider component proba- 

bility of kill given a hit, P(K/H), to be a point estimate with no 

variance. This report presents statistical methods for calculating 

assurance limits for A assuming P(K/H)'s are not known with certainty. 

Normal approximation and Monte Carlo techniques are presented. 

The accuracy of these techniques is determined analytically for a 

target with a small number of critical components and extended to 

a larger number of components by heuristic arguments. 

The central limit theorem indicates that A will be approximately 

normally distributed. 

Formulas for necessary calculations are shown. 
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ASSURANCE LIMITS 
FOR VULNERABLE AREA 

I.  INTRODUCTION 

In the draft AFFDL Technical Report, "An Objective Confidence 

Level Methodology for Probability Estimate Values in Survability/ 

Vulnerability Assessments" (reference (1)), Captain Eugene Steadman 

cites the need for establishing the cumulative distribution function 

for vulnerable area (A ). The standard definition of A is 

n 

Av - ,*, A.P(K/H). 

where n is the number of components, A. is the presented area of the 

i  component, and P(K/H).. is the probability of kill given a hit of 

the i  component by the particular threat, subject to the shotline 

survivor rule when applicable. In this study, P(K/H). is a random 

variable which has some probability density function. 

Statistical methods are explored which could be used to calculate 

assurance limits for vulnerable area, assuming P(K/H) is not known 

with certainty. P(K/H) values currently used in vulnerable area 

analyses are point estimates assumed to have no variance. Through the 

use of Monte Carlo simulations and statistical analysis techniques, 

suitable methods for using distributed P(K/H) values in vulnerability 

analyses are investigated considering feasibility, accuracy and cost 

effectiveness. The effects that different types of P(K/H) distributions 

have on the resulting vulnerable area distribution are examined. 

A Monte Carlo technique was developed to simulate the cumulative 

distribution function of A , as suggested in reference (1). This 

simulation is based on the assumption that all P(K/H).'s are independent; 



i.e., all covariances equal zero. This assumption is made not only in 

the Monte Carlo simulation but also in the analytic techniques. If 

the covariances are not zero, the probability density function P(K/H)2 

must be conditioned (changed) for each selected value of P(K/H).j, the 

probability density function of P(K/H)3 must then be conditioned for 

each P(K/H)1 and P(K/H)2, and so forth until P(K/H)n is a function of 

the selected values of P(K/H)r P(K/H)2> ... P(K/H)n_r Methodology for 

dependent P(K/H)'s exists and is workable for both the normal approximation 

and Monte Carlo techniques. 

The possibility that Av is distributed normally is explored, since 

the cumulative normal is tabled to various degrees of accuracy in many 

reference books. If A is normally distributed (or approximately so), 

these results could be used for analyses in lieu of conducting a Monte 

Carlo simulation for each individual analysis performed. 

The central limit theorem gives an indication that it is very likely 

that A will be approximately normally distributed. 

The following sections of this report will deal with a statistical 

analysis and discussion which examines various possible P(K/H) distri- 

butions, a discussion of the Monte Carlo simulation used to test these 

distributions, and the recommendations and conclusions arrived at as a 

result of this study. 

II. STATISTICAL ANALYSIS AND DISCUSSION 

In this section the appropriateness of using a normal approximation 

for the distribution of Ay will be pursued. The distribution of Ay is 

formed from the sum of random variables, each associated with its own 

distribution. Determination of the error made by approximating the 



*- • 

distribution of the sum of n random variables by a normal distribution 

requires determining the actual distribution of the sum. For small n, 

this can be done analytically; for large n, one must resort to one of 

several approximate techniques, such as numerical evaluation of con- 

volution integrals or Monte Carlo simulations. In this study distribu- 

tions were combined analytically for small n and extended to large n by 

heuristic arguments. Monte Carlo simulations were run for small n to 

test the model and to measure the accuracy of the simulation for cases 

where it was possible to analytically calculate the distribution of the 

sum. The case for large n will be investigated using actual aircraft 

data and be presented in a later report. 

If A is normally distributed, the cumulative normal that is tabled 
v 

to various degrees of accuracy in many reference books could be used for 

all analyses in lieu of conducting a Monte Carlo simulation for each 

analysis performed. 

A. Likely P(K/H) Distributions 

Some P(K/H) values used in vulnerability analysis are arrived at by 

a rather complicated, though not codified, series of steps involving 

engineering experience and judgment. In these cases, it is not obvious 

exactly what distribution would be associated with the P(K/H) value; 

however, a reasonable approach to this situation would be the assignment 

of upper and lower bounds (with probability zero) and a most likely 

(modal) value. This forms a triangular distribution. Other distributions 

considered are uniform and normal. 

Use of a uniform distribution is present in the computation of the 

probability of rendering a rod non-functional given that the rod is hit 



(references 4 and 5). An implicit assumption in these references is that 

all shotlines that hit the rod are equally likely. 

B. Relevance of Cumulative Distributions 

The long range objective of this effort is to provide a means of 

determining the most narrow limits (error limits) around the calculated 

A that will provide 95 percent assurance that the actual A is within 

these limits. Translating this objective into statistical terms implies 

calculating A many times (for the same target) considering the distri- 

butions associated with the P(K/H) /alues. (NOTE: This repetitive calcu- 

lation will not be required in practice; it is merely an artifice used in 

explaining the following work.) These vulnerable area estimates are then 

ranked and the limits, those values between which 95 percent of the 

estimates appear, can be found, and thus the error limits determined. 

If the A estimates are plotted, they form some probability density 

function for Ay, illustrated in Figure 1. 

f(Av) 



The area under the entire probability density function curve is one. 

That is, 

/ f(VdAv = ] 

The area under this curve between two limits, such as B and C, represent 

the fraction of the A estimates between the limits. That is, 

■/ 

Fraction of 
A estimates f(AJd(A ) 
between B and C   4 v 

Since this is of major interest, the analysis will be performed using 

the cumulative distribution functions, F(A ). 

Av 

F(\> -/ f(\)d(A;), 

where A' is a dummy variable used for integration purposes. Thus the 

fraction of A estimates less than B is F(B) and 

B 

F(B) - f  f(Av)d(Av) 

0 

Similarly, the fraction of estimates below C is F(C) and 

F(C) -J  f(Av)d(Av) 

Therefore, the fraction of A estimates between B and C is F(C) - F(B). 

This is illustrated in Figure 2. 



1.0 

Fraction  __L 
Below C 

F(AV) 

Fraction 
Below B 

FIGURE 2 

C. Argument for Normal Approximation 

1. Central Limit Theorem 

The Central Limit Theorem (reference 2), loosely stated, says 

that the distribution of a random variable formed as the sum of n 

identically distributed random variables approaches a normal distribution, 

The importance of the Central Limit Theorem to the vulnerable area 

problem is clearer when the definition of vulnerable area is repeated. 

Av =  E A. PfK/H). 
v   i=l 1     1 

= A1P(K/H)1 + A2P(K/H)2 + ... + AnP(K/H)n 

The A.jP(K/H).j 's are the random variables considered in the Central Limit 

Theorem, each variable having some associated distribution; although in 

most analyses, the distribution has been neglected, and, in fact, may 

not be known. 



The accuracy of the Central Limit Theorem will be investigated 

in the following paragraphs by considering the departure from 

normality of distributions formed using sums of random variables 

with identical symmetrical distributions. Although these initial 

comparisons are not realistic for an aircraft vulnerability analysis, 

they serve as the starting point for the investigation. Extensions 

of these concepts to examples pertinent to vulnerability analysis 

are discussed in later paragraphs. 

2. Coding of the Random Variable, A.P(K/H)i 

For ease of calculation, certain transformations will be 

performed. The distribution to be considered for comparison of 

analytically derived results with those obtained using the Central 

Limit Theorem is shown below in Figure 3. The choice was dictated 

by convenience in performing the analytic calculations as well as 

the fact that this is a logical approximation to use when only very 

limited data is available. 

AiLi  AiP(K/H)i   
AiUi         Li    P(K/H).   Ui 

FIGURE 3                     FIGURE 4 

In Figure 3, A. is a constant and P(K/H). is a random variable with 

• 

a lower limit of L^ and an upper limit of U.. 

Dividing by the constant A^ yields the distribution shown in Figure 4. 

7 



Further coding to the random variable P'(K/H). with values over the 

the interval 0 to 1 is shown by the following formula and Figure 5. 

P(K/H). - L 
P'(K/H>i =  (U, - Li) 

or P(K/H)i = (U. - Lj) P'(K/H)i + L1 (1) 

0 1 
P'(K/H)i 

FIGURE 5 

Applying Equation (1) to the definition of vulnerable area,  A 

can be written as a function of the random variable P'(K/H)i and 

associated constants, A. and (U. - L.). 

\ = Al [(U1 " Ll} P'(K/H)l + Li] + A2C(U2 " L2) P'(K/H>2 + L2] + ••• 

... +An[(Un-Ln) P'(K/H)n+Ln] (2) 

Tentatively assume all A^(Ui - L^ )'s are equal. This assumption 

will be re-examined later. Now A becomes 

A = A^U, -U I P'(K/H). + l    A.L. (3) 
V   '  '   ' 1=1      ^      i=l 1 1 

8 
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Then, set C] * A] (U] - L) ■ A2(U2 - 4) ■ ... = An(Un - Lp) and 

C0 = /;A.L. in Equation (3). It follows that 
C II 

Av = C1lP'(K/H)i + C2 (4) 

Using Equation (4), it can be shown statistically that zP'(K/H)i and Av 

will have the same distribution shape (form). Multiplication by a 

constant changes the spread of values and addition of a constant changes 

the location of the values but neither changes the shape nor the form of 

the distribution. 

3. Mathematically Derived Cumulative for Non-Normal 

The exact analytic cumulative distribution functions for three non- 

normal variables are presented in this section. In the next section, an 

evaluation of using the normal to approximate these exact analytic functions 

will be made. The three non-normals selected are: (1) a one-variable, 

symmetric triangular distribution; (2) the sum of two variables, each 

from identical symmetric triangular distributions; and (3) the sum 

of twelve variables, each from identical uniform distributions. The 

variable S (for sum) and the variable A (Vulnerable Area) are identical. 

The analyses for all three non-normal distributions will be performed 

using the coded variables, P'(K/H)., which are distributed over the 

interval 0 to 1. 

a. One Variable - S, A  LA 
This random variable (S, ) represents the vulnerable area 

for the trivial case of an aircraft with only one critical component. 



S,  is a single sample from a symmetric triangular distribution and is 

defined over the interval (0 to 1). Coding to realistic limits involves 

the area of the component, and optimistic and pessimistic limits for 

P(K/H) which were discussed earlier. 

The probability density function, f(Av), for S-j fl is shown in 

Figure 6 below. 

FIGURE 6 

The cumulative distribution [area under f(A )] is defined in the 

following manner: 

1 ,A v 

V-2(Av)^ + 4(AV) - 1 

, 0 < Av ^0.5 

, 0.5 lA < 1.0 (5) 

The mean of S, , is 0.5 and the standard deviation is .2041. 1,A 

b. Sum of Two Variables (S0 A) 
  c9L 

This random variable (S2 ) represents the vulnerable area 

for the fairly trivial case of an aircraft with only two critical 

10 



components. Coding of realistic values as mentioned before has been 

used. S7      is the sum of two random variables, each drawn from identical 
c, A 

symmetric, triangular distributions  (0 to 1).    The sum (S^ A) is defined 

over the interval  0 to 2.    The cumulative is shown below. 

F2,A(V = 2/3(Av)4 .■■.•*\*.V8 

F2,A(AV) " -1/6 + 4/3 k    - 4(A)2 + 16/3(AJ 

- 2(Av)
4 ,  1/2 iAv !l.O 

F2,A(AV) = 1   -  (-V6 + 4/3(2-Av)  - 4(2-Av)
2 

+ 16/3(2-Av)
3 - 2(2-Av)

4) , 1 < A^ < 3/2 

F2fA(Av) = 1-2/3 (2-Av)
4 i3/2lAyl2 

The mean of S0 A is 1 and the standard deviation is .2887. 2,A 

c. Sum of Twelve Variables (S12 u) 

This random variable (S,2 ) represents the vulnerable area 

(in coded form) of an aircraft with twelve critical components. S^ u is 

the sum of twelve random variables each drawn from identical uniform 

distributions (0 to 1). The sum is defined over the interval 0 to 12. 

Reference 3 shows some actual cumulative values for S19  which will 
\£m  , U 

be presented in the next section. 

Due to their complexity, the equations for this cumulative were not 

derived. 

The mean of S,«  is 6 and the standard deviation is 1. 

4. Comparison of Non-Normal Mathematically Derived Cumulatives 
and Their Normal Approximations- 

a. Definition of Terms 

To aid the reader, the following definitions of terms are 

presented. 
11 



Since tables of the normal cumulative are given for mean 0 and standard 

deviation 1, a transformation is used for all variables to facilitate com- 

parisons (random variables in caps, specific values in small case). 

1. X is a random variable from a distribution with a mean 

of u and standard deviation of o. X can be standardized (transformed to 

Z) by the following formula: 

I  = x ~ u 

c 

Z has mean of 0 and a standard deviation of 1. Specific values 

of the random variable X are transformed to specific values of Z via 

the same concept. 

c 

$(z) will be used to denote the cumulative distribution function 

for a normally distributed variable which has been standardized. 

F-J2 UU) will be used similarly to <t(z) except that it will be 

used for non-normal distributions and the subscripts shown refer to 

the sum of twelve random variables each from identical, uniform distri- 

butions between 0 and 1. 

b. S, A vs Normal I »A  

The probability density functions for the standardized S1 

(from the exact analytic function) and standardized normal random variables 

(from a table) are shown in Figure 7 and their cumulatives are shown 

in Figure 8. For various z values, cumulative distribution values for 

the standardized S-,  and standardized normal, and their differences 

are shown in Table 1. The maximum tabled difference of .0164 occurs at 

|z| = 1.0. Because of symmetry, positive z values need not be examined. 

12 



I 

PROBABILITY DENSITY FUNCTIONS 
FOR STANDARDIZED S^ , S2^ AND NORMAL 

.50 r 

.40 U 

.30 h 

N 

.20 h 

.10 h 

S12,u 

SYMMETRIC TRIANGULAR DISTRIBUTION 

SUMMATION OF TWO IDENTICAL SYMMETRIC 
TRIANGULAR DISTRIBUTIONS 

SUMMATION OF 12 IDENTICAL UNIFORM DISTRIBUTIONS 

FIGURE 7 
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CUMULATIVE DENSITY FUNCTIONS FOR 
STANDARDIZED S,tt,S^, NORMAL 

S2»A 

SYMMETRIC TRIANGULAR DISTRIBUTION 

SUMMATION OF TWO IDENTICAL SYMMETRIC 
TRIANGULAR DISTRIBUTIONS 

FIGURE 8 



COMPARISON OF S, . AND NORMAL 
1 ,A 

Standardized Cumulative 

z_ si,A 
F1,A<2> 

Normal Difference 
F1>A(z)-;(z) 

2.3 .0305 .0019 .0107 -.0088 

2.0 .0918 .0169 .0228 -.0059 

1.8 .1326 .0352 .0359 -.0007 

1.5 .1938 .0751 .0668 +.0083 

1.3 .2346 .1101 .0968 +.0133 

1.0 .2959 .1751 .1587 +.0164 

-.8 .3367 .2267 .2119 + .0148 

-.5 .3979 .3167 .3085 +.0082 

-.3 .4388 .3851 .3821 +.0030 

0 .5000 .5000 .5000 .0000 

For S,  : u = .5, a = .2041 

Sl  A  "  «5 
1 fA 

1,A '2041 z-  -IM 

TABLE 1 

The next concept involves transformation of the approximation errors 

into the A dimension. 

Table 2 shows the number of standard deviations required to include 

a certain percent of the S,  and normal distributions. Thus, for the 

15 



95 percent interval, use of the normal approximation would only be in 

error by (1.960 - 1.902) or .058 times the standard deviation. As the 

amount included approaches 100 percent, the normal approximation error 

increases. In statistical terminology, use of the normal approximation 

to estimate the limits which contain a specified percent of the non-normal 

distribution is said to be "robust" in that the approximation errors are 

small for many distributions which are non-normal (skewed, bi-modal, etc.) 

Example: 

u(Av) = 100, o(Av) = 10 

Distribution 95% Interval 
S,   I 80.98 - 119.02* 

1,A 

Normal 80.40 - 119.60** 

*      100 + 1.902(10) 

**    100 + 1.960(10) 

Percent of 

Sn   AVS NORMAL 

Number of Standard Deviations 
To Include Percent in First Column 

uic   u I i tr IUUIIUII 

to be Included si,. Normal 

80 +1.354 +1.282 

90 +1.675 + 1.645 

95 + 1.902 + 1.960 

98 +2.103 +2.326 

99 +2.205 +2.576 

99,9 + 2.372 + 3.291 

TABLE 2 

16 



c. S0 A VS Normal 

S9      is the sum of two random variables, each from identical 

symmetric triangular distributions. The probability density for the 

standardized S9 , can be compared to the standardized normal by 

inspection of Figure 7. The cumulative of the standardized S^ A is so 

close to the standardized normal that it cannot be distinguished from 

the plotted normal in Figure 8. The values for S2 . are from exact 

analytic expressions and the normal values are from tables. 

Comparisons for various values of z are presented in Table 3. The 

maximum difference in the table (at |z| = 0.8) is .0073. Because of 

symmetry, positive z values need not be examined. 

17 



COMPARISON OF S9 , AND NORMAL 
2,A 

Standardized Cumulative 

z_ S2,A 
F2,A^ 

Normal 
tCz) 

Difference 
F2jA(z) - *(z) 

2.5 .2782 .0040 .0062 -.0022 

2.3 .3360 .0085 .0107 -.0022 

2.0 .4226 .0213 .0228 -.0015 

1.8 .4803 .0355 .0359 -.0004 

1.5 .5670 .0688 .0688 +.0020 

1.3 .6247 .1009 .0968 +.0041 

1.0 .7113 .1653 .1587 +.0066 

-.8 .7690 .2192 .2119 +.0073 

-.5 .8556 .3147 .3085 +.0062 

-.3 .9134 .3861 .3821 +.0040 

0 1.0000 .5000 .5000 .0000 

For S2 : u  = 1.0, o = .2887 

S?  - 1.0 
Z
2,A —Tim— 

TABLE 3 

18 



Table 4 shows the number of standard deviations required to include 

a certain percent of the S2  and normal distributions. For the 95 

percent interval, use of the normal approximation would be in error by 

.020 times the standard deviation, which is roughly 1/3 of the error associated 

with the normal approximation for S LA' 
Example: 

u(Av) = 100, o(Av) = 1C 

Distribution 
 ^  2,A 

Normal 

95% Interval 
80.60 - 119.40* 

80.40 - 119.60** 

*  100 + 1.940(10) 

** 100 + 1.960(10) 

S0  A VS NORMAL 2,A 

Percent of the 
Distribution to 
be Included 

80 

90 

95 

98 

99 

99.9 

Number of Standard 
Deviations to Include the 
Percent in First Column 

+ 1.305 

+ 1.651 

+ 1.940 

+2.252 

+2.444 

+ 2.891 

Normal 

+ 1.282 

+ 1.645 

+ 1.960 

+ 2.326 

+ 2.576 

+ 3.291 

TABLE 4 

19 



d. S12  vs Normal 

The cumulative distribution values for the standardized 

S19  (obtained from reference 3), the standardized normal and their 
I C y U 

differences for various z values are shown in Table 5. The standardized 

S-J2 u is so close to the standardized normal that the difference is 

not distinguishable in either Figure 7 or Figure 8. The values for 

S-|2 u are from exact analytic expressions and the normal values are from 

tables. 

The maximum tabled error is .0023 (at |z| = 0.8). Because of 

symmetry, positive z values need not be examined. 

20 



COMPARISON OF S12 u AND NORMAL 

Standardized Cumulative 

z S12?u 
F12,u(z>* 

Normal 
*(z) 

-3.0 3.0 .0010 .0013 

-2.8 3.2 .0021 .0020 

-2.6 3.4 .0041 .0047 

-2.4 3.6 .0075 .0082 

-2.2 3.8 .0133 .0139 

-2.0 4.0 .0223 .0227 

-1.8 4.2 .0358 .0359 

-1.6 4.4 .0551 .0548 

-1.4 4.6 .0817 .0808 

-1.2 4.8 .1166 .1151 

-1.0 5.0 .1607 .1587 

-.8 5.2 .2142 .2119 

-.6 5.4 .2765 .2743 

-.4 5.6 .3463 .3446 

-.2 5.8 .4217 .4207 

0 6.0 .5000 .5000 

For S12  : u = 6.0, a = 1 .0 

_ S12>u - 6.0 
z12,u     O 

♦Obtained from reference 3. 

Difference 

-.0003 

-.0005 

-.0006 

-.0007 

-.0006 

-.0004 

-.0001 

+.0003 

+.0009 

+.0015 

+.0020 

+.0023 

+.0022 

+.0017 

+.0010 

.0000 

TABLE 5 
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Table 6 shows the number of standard deviations required to include 

a given percentage of the S,«  and normal distributions. For the 

95 percent interval, use of the normal approximation would be in error 

by .0089 times the standard deviation, which is less than 1/2 of the error 

associated with the normal approximation for S« .. 

Example: 

u(Av) ■ 100, o(Av) - 10 

Distribution 95.54% Interval 
S12 80.000 - 120.000* 

Normal 79.911   - 120.089** 

*      100+2.0000(10) 

**    100 + 2.0089(10) 

An inference from these three comparisons is that, as the number of 

random variables, P(K/H)'s, increases from 1 to 12, the error caused by 

using the normal approximation decreases and the approximation can be 

used to include a greater percent of the distribution with a specified 

error. 
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S12  VS NORMAL 

Number of Standard 
Deviations to Include the 
Percent in First Column 

b12,u Normal 

+1.2000 + 1.1912 

+ 1.4000 + 1.3937 

+ 1.6000 + 1.5969 

+1.8000 + 1.8018 

+_ 2.0000 +2.0089 

+2.2000 +2.2183 

+2.4000 + 2.4304 

+ 3.0000 + 3.0882 

+ 4.0000 + 4.3004 

Percent of the 
Distribution to 
be Included 

76.68 

83.66 

88.97 

92.84 

95.54 

97.35 

98.50 

99.80 

99.998 

*From reference 3. 

TABLE 6 

5. Extensions of Normal Approximation to Other Non-Normal Distributions 

Further study of the Central Limit Theorem and its strengths 

(reference 2) reveals that: 

(1) The distributions of the variables to be summed need not 

be symmetric. 

(2) The more closely each summand approximates a normal, the 

fewer summands needed for the sum to approximate normal. 

(3) The distribution of the sum is exactly normal if the 

summand distributions are normal. 
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The Central Limit Theorem in its most general form also shows that: 

(1) Summands need not be identically distributed. 

(2) Some relaxation of the independence of the summand distri- 

butions is possible. 

a' S
12,A 

S10 . is the sum of twelve random variables each drawn 
lcfA 

from identical symmetric triangular distributions. The triangular 

distribution is closer to the normal than the uniform. Therefore, it 

can be concluded that the use of the normal approximation for S-.^ 

has less error than the normal approximation for S,« . 

b' S
(1,A + 1,N) 

5>(1  + , Nx is the sum of two random variables, one from 

a symmetric triangular and one from a normal distribution. An assumption 

must be made for extension of the Central Limit Theorem to this case -- 

the means of the two distributions are approximately equal and the 

standard deviations are approximately equal.  If the mean of the 

triangular distribution were considerably larger than the normal, the 

sum would be very close to that of a triangular distribution (the effect 

of the normal portion of the sum would be insignificant). 

Thus, it can be concluded for the above assumption that the sum of a 

triangular and normal is closer to normal than the sum of two identical 

triangular distributions. 

c  S 
'  12, mixed A,U 

S12 mixed A u 1S tne sum of twelvG random variables each 

from either a symmetric triangular or a uniform. Again, each of the 

24 



twelve distributions is assumed to have the same mean and variance. 

Since the triangular is closer to normal than uniform, it can be 

concluded that S^ m-jxeci  „ is closer to normal than S^ u- If 

the mix contains one or more normals, then that sum is closer to normal 

than the sum which contains only triangular and uniform. 

Furthermore, the sum containing only triangular (S^ A) 
w^l De 

closer to normal than the sum containing a mix of triangular and uniform, 

d. Non-Symmetric Distributions 

Since symmetric distributions are closer to normal than 

non-symmetric, sums containing only symmetric distributions approximate 

normality with fewer summands than sums containing both symmetric and 

non-symmetric (from reference 2). 

6. Departure of Ay From Assumptions of the Central Limit Theorem 

In the foregoing discussions, all of the variables, P'(K/H)., 

were distributed between 0 and 1. For components having uniform and 

triangular distributions, equation (7) is a more realistic expression for 

\ V [Ai(ui " Li)p'(K/H)i * M (7> 

For distributions other than uniform and triangular, similar 

transformations are available but are not presented in this report. 

The variable P*(K/H). has a coefficient of A.(U. - Lj). If these 

coefficients are not equal for all components, the Central Limit Theorem 

assumption of identically distributed variables is not met; hence, the 

normality approximation may not be as good. 
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An extreme example of unequal coefficients (presented areas) is 

shown in the following equation which represents a target with 12 

critical components. 

Ay = 10,000 X1 + X2 + X3 + ... + X12 , (7a) 

where the X.'s are uniformly distributed between zero and one. 

A Monte Carlo simulation (techniques described in Section III) 

was performed and data points from a sample of 1,000 values of A from 

equation (7a) are shown in Figures 9 and 10. Figure 9 shows the negative 

z values and Figure 10 shows the positive z values. Figures 9 and 10 

also show data points from the simulation of S,p  (sample of 1,000), 

the exact analytically derived values for the uniform (S, ) and the 
i ,u 

normal (table values). S^  is the same variable as shown in equation 

(7a) except that all coefficients of S,« u equal one. All four variables 

shown in the graphs are in standardized form (z). Not all of the 2,000 

simulated data points are plotted; those points omitted follow the 

trends that are shown. 

Examination of Figures 9 and 10 shows that A from equation (7a) 

is close to the uniform while the simulation of S,« u is close to 

the normal. This shows that the shape of Av from equation (7a) is 

dominated by the term, 10,000 X,; however, both equations (7a) and S,p 

are quite close to normal. 

Table 7 lists specific values of the variables that are plotted 

in Figures 9 and 10. 
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CUMULATIVE DISTRIBUTION DATA POINTS FROM SIMULATIONS 

OF EQUATION (7a) AND S]2 u FOR COMPARISON TO 

ANALYTIC NORMAL AND UNIFORM*(NEGATIVE VALUES OF z) 

,500 _ 

F(z) 

FIGURE 9 
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CUMULATIVE DISTRIBUTION DATA POINTS FROM SIMULATIONS 

OF EQUATION (7a) AND S]2  FOR COMPARISON TO 

ANALYTIC NORMAL AND UNIFORM (POSITIVE VALUES OF z) 

1.000 

.900 

.800 

F(z) 

.700 - 

.600 - 

,500 

v12 

FIGURE 10 

28 



CUMULATIVE VALUES 

z 

Simulated 
Equation 

(7a)* 

.000 

Mathematical ly 
Derived 

Single Uniform 

<Sl,u> 

Simulated 
Sum of 12 
Uniform** 

<S12,u> 

.010 

Normal 
(From 

Tables) 

-2.33 .000 .010 

-2.20 .000 ,000 .015 .014 

-2.04 .000 .000 .020 .021 

-1.83 .000 .000 .035 .034 

-1.73 .000 .000 •*• .042 

-1.70 .005 .009 .045 .045 

-1.48 .065 .073 .070 .069 

-1.37 .100 .105 .085 .085 

-1.16 .155 .165 .125 .123 

-  .57 .340 .335 .300 .284 

-  .11 .480 .468 .455 .456 

+  .13 .565 .538 .530 .552 

+  .50 .650 .644 .680 .692 

+  .99 .785 .786 .840 .839 

+1.31 .875 .878 .905 .905 

+1.52 .930 .939 .940 .936 

+1.71 .975 .994 .960 .956 

+1.73 •** 1.000 *•• .958 

+1.78 1.000 1.000 ••• .963 

+1.84 1.000 1.000 .970 .967 

+2.06 1.000 1.000 .980 .980 

+2.21 1.000 1.000 .985 .986 

+2.39 1.000 1.000 .995 .992 

**    ft 

= 10,000 x1 + x2 

■ X] + x2 + x3 + 
+ x3 + ... + 

...+x12 

X12 

*** Exact z value did not occur in simulation. 

TABLE 7 
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Some working rules must be developed to assess the changes in number 

of components, the probability density form of P(K/H)i for each component, 

the upper and lower limits of P(K/H). for each component, and the 

presented area (A.) of each component. Some examples of these combinations 

are shown below. 

Case I. One component's area very  large compared to the others. 

Set n = 101; all P(K/H)'s symmetric triangularly distributed. 

(U, - L,J ■ (U2 - 4) = ... = (U101 - L101) ■ 0.1 

A] =A2= ... =A100= 1 ft2; A101 - 100ft2 

100 
Av ■ E [(1) (0.1) P,(K/H)1 + L.] + 100[(0.1) P^K/H). + L^]. or 

100 100 
Av ■ [(0.1) I P'(K/H).] + [10 P'(K/H)101] UL.+ 100 L 101 (8) 

Part (A) Part (B) 

Part (A) of Equation (8) may be considered as normally distributed 

with expectation 5.0 and a2 = 100/24. Part (B) of Equation (8) is a 

2 
triangular distribution with expectation 5.0 and o ■ 100/24. 

Therefore, Case I reverts to the sum of a normal and a triangular, which 

is nearer normal than the sum of two triangulars. 

Case II. Two components with very large relative areas. 

n = 10; all P(K/H)'s are from the same triangular distribution. 

(U1 -h) = (U2 -L2) - ... ■ (U10 - L10) = 0.1 

A1 = A2 = ... = A8 = 1 ft2; A9 = A10 = 100 ft
2 

A. = 
8 

v = .^ [(1) (0.1) P'(K/H).] + 100(.1)P'(K/H)g 

Part (A) 
10 

Part (B) 

+ 1 00(.1)P'(K/H)10 4 z A.L. 
(9) 

Part (C) 
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The sum of Parts (B) and (C) of Equation (9) reverts to the sum of two 

identically distributed triangulars, which was previously shown to be 

near normal. Part (A) will have a further normalizing effect, although 

this effect is somewhat weakened by the fact that the expected value of 

Part (A) is roughly 1/12 of the expected value of either Part (B) or 

Part (C). 

Other Cases 

If all of the (U. - L.)'s are not equal, then this will disturb the 

normality to some degree. For example, if (U^ - L-j) = 10(U2 - L2), then 

this effect will be the same as that for A1 = 10 A2. 

Further analysis will be performed using realistic values for P(K/H).. 

and A. to substantiate a set of working rules. 

D. Methodology (A Approximated by Normal) 

If A can be considered normally distributed, the procedure for deter- 

mining the limits of A that contain a specific percent of all A values 

involves the following steps: 

(1) Find z from the cumulative normal tables, z vs *(z), such that 

the specified percent is within +z. 

(2) Calculate the mean and standard deviation of A as shown in 

Equations (10) through (17). 

(3) Transform +z to A upper limit and -z to A lower limit by 

the formula 

1 -       q(A )   or Av = Za(V + ^V ■ 
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1. Calculation of Mean 

Using the algebra of expectations, the expected value of A 

is calculated as follows: 

E(\) = u(Av) = E( Z  A.P(K/H).) 

= z    E(A. P(K/H).) 
i=l   n     1 

= Z    A. E(P(K/H).) 
i=l n      1 

(10) 

For the uniform distribution, 

E(P(K/H).) = .5(Ui + L,) 

The general triangular distribution is depicted in Figure 11. 

(11) 

P(K/H). 

FIGURE 11 
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The distribution is defined by specifying M^, Li, u\ , and the 

expected value is given by 

E(P(K/H).) = 1/3 (Ui + Li * \A.)   . (12) 

For a normal distribution, 

m 
E(P(K/H).) = Mf; 

X". from a sample can be used as an estimator of u4, X\ ■ I  X../m , 
1 1  ]  j=l 1J 

where m is the sample size. 

(13) 

2. Calculation of Standard Deviation 

The standard deviation of A is calculated as follows: 

1/2 o(Av) » [ E Var (A. P(K/H).)] 
v   i=l     ^ 

= [ E A2 Var (P(K/H).)]1/2 ■ 
1-1 1 1 

The variance of individual components is calculated as follows: 

For the normal distribution, 

(14) 

(15) 

.IMJiM 
m(m-1) 

Var (P(K/H)i) = of ; 

2 2  2 
S.J from a sample can be used as an estimator of s?, s^ 

where m is the sample size. 

For the uniform distribution, 

(U. - L )2 

Var ((PdC/H)^ = ^  u  1  ■ (16) 

For the triangular distribution, 

Var(P(K/H)i) = l/18[(MrL.)2 ♦ (MrL. )(U.-M.) + (U.-M.)2]      (17) 
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III. MONTE CARLO SIMULATION DESCRIPTION 

The Monte Carlo simulation for the cumulative distribution of Ay 

was developed and test case answers were checked to verify computer code 

structure, under the following conditions: 

a. The distribution form of P(K/H). can be triangular, uniform, 

or normal. Other distribution forms can be added later. 

b. Distribution parameters must be specified as follows: 

(1) Uniform 

L1 ■ the lower limit of P(K/H). 

U\ = the upper limit of P(K/H)i 

(2) Triangular 

Li ■ the lower limit of P(K/H)i 

Ui = the upper limit of P(K/H). 

M. = modal (largest frequency) value of P(K/H)i 

(3) Normal 

Mean (p,J and standard deviation (o.) 

c. Presented area (A^) of each component must be specified. 

d. The number of sample values of A desired is specified as K. 

The following transformations of variables were performed to assist 

in the ease of programming, 

a. Uniform 

The transformation made for this distribution and the probability 

density functions of both variables are shown below. 

P(K/H). = (U. - L.) P'(K/H). + L. (18) 
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tVTT 

P(K/H)i Ui 

FIGURE 12 

The cumulative distribution for P'(K/H)..  is 

1 
F,tM(P-tH/H>t) ■ J    f(P,(K/H)1J d(P'(K/H).) (19) 

This distribution is shown in graphical form in Figure 13. 

1.0 

F^CP'tK/H)^ 

FIGURE 13 
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Thus, P*(K/H). = F, [P'(K/H)i], which means that a uniform random 
I 5 U * 

number [0,1] is drawn, equated to P'(K/H)., and then transformed 

to a value of P(K/H).. 

b. Triangular 

P(K/H)i 

FIGURE 14 

A uniform (0,1) random number is drawn and equated to F[P(K/H).]. 

If F[P(K/H).] i(MrL.)/UrLi), then 

P(K/H). = Li + \/F[P(K/H)1](MrL1)(UrL1) 

If F[P(K/H).] > (MrLi)/(U.-L.), then 

(20) 

P(K/H). = U. - )J  (UrMi)(UrL.)(l-F[P(K/H).]) 

c. Normal 

One method used on computers to approximate the normal is 

to sum twelve random numbers each drawn from a uniform [0,1] distri- 

bution [No simple explicit means exists to calculate X given #(X)]. 

S12,u = £ <RN>j 

(21) 

(22) 
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S19  has an expectation of 6 and standard deviation of one; therefore, 
I c ,u 

P(K/H). = (S1?  - 6.0) o. + M4 (23) 

which has an expectation o?  ui and standard deviation of c^. 

IV. MONTE CARLO SIMULATION RESULTS 

A comparison of the mathematically derived cumulative distribution 

function and the simulated cumulative distribution function is needed 

to obtain an estimate of the error that might be present in the simula- 

tion of an unknown cumulative distribution function. Simulation results 

are shown in Table 8 for a single triangularly distributed variable X, 

and in Table 9 for A = X, + Xp, where X, and X2 are both triangularly 

distributed. Also, the maximum errors in using normal approximations 

to the mathematically derived cumulative distributions are shown in 

these tables. 

The values of A generated in the simulation are input to a 

general statistical program from the NWSC Crane program library. The 

output from this program includes the mean, standard deviation, skewness, 

kurtosis, frequency histogram, actual values of Av, actual cumulative 

distribution values, theoretical normal cumulative distribution for 

each of the observed values of A , and the maximum deviation between 

observed cumulative and theoretical normal cumulative. 
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Simulation Results for a Single Triangularly Distributed Variable 

Number               Computer 
of                      Simulation 
Replications    Cost  

200 

1000 

$ 2.80 

$11.60 

Maximum Error in 
Cumulative Distributions 

Simulated F 1 ,A(Z)      Normal, <r(z) 
vs. Actual  F,     /   x    vs. Actual  F,   A(z) 
         '»MzJ     UA  

.034 

.019 

.016 

.016 

TABLE 8 

Simulation Results for the Sum of Two Triangularly Distributed 
Variables (Ay = X] + x2) 

Number 
of 
Replications 

200 

1,000 

10,000 

Computer 
Simulation 
Cost 

$ 2.87 

11.79 

320.75 

Simulated 
F
2,A

(Z) 

vs. Actual 
F2,A(Z> 

.030 

.021 

.002 

Normal, $(z) 
vs. Actual 
F
2,A(

Z
> 

.007 

.007 

.007 

TABLE 9 

Table 9 shows that for 200 replications of the simulated A (S0 ), r vv 2,A' 

the maximum observed error in the cumulative was over 4 times that 

of the normal approximation. For 1,000 replications, the ratio was 

3 to 1, while for 10,000 replications, the simulation error was less 

than 1/3 of the normal approximation error (see simulation results). 

The simulation error for 10,000 replicates of the vulnerable area 

of an aircraft with two critical components is very small; however, 

the computer simulation cost of $320 seems prohibitive. 
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It can also be noted from observation of Tables 8 and 9 that 

the error inherent in the Monte Carlo simulation is sensitive to the 

number of replications as well as the number of summands. The error 

in the normal approximation, on the other hand, is sensitive only to 

the number of summands. As the number of summands increases, the 

normal will more closely approximate the actual distribution. 

V. CONCLUSIONS 

1. Considering the trade-off between accuracy and cost, the normal 

approximation is the appropriate technique for calculating the 

assurance limits for A . This approximation should be used to compute 

the upper and lower limits such that there is 95% assurance that A 

will be between these limits (95% is used as an example). The steps 

that are used to calculate these limits are as follows: 

Step 1 - Compute 7"(Av).        (NOTE: Symbols 7\ s are used 
since p, o will probably 

Step 2 - Compute s(Ay).        have to be estimated.) 

Step 3 - Find z in the table to gi ve desired assurance. 

% Assurance z_ 

80 1.282 

90 1.645 

95 1.960 

98 2.326 

99 2.576 

99.8 3.090 

Step 4 - Compute Assurance Limits 

Upper Limit, X"(Ay) + zs(Ay) 

Lower Limit, J(^)  - zs(Av) 
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2. The accuracy of the normal approximation will increase as the 

number of critical components in the vulnerability analysis increases. 

An example of the normal approximation error may be seen by examining 

the following table. 

Comparison of the exact (mathematically derived) assurance limits 

versus the limits assuming normality shows closer agreement as the 

number of critical components increases from 1 to 2 to 12 (S^  to 

S2,A t0 S12,u)- 

Example 

Distribution 

S1,A 

S2,A 
Normal 

)T(Av) = 100 ft2, s(Av) ■ 10 ft2 

p 
95% Assurance for A (ft ) 

Range Limits 

+19.02 

+19.40 

+19.60 

80.98 - 119.02 

80.60 - 119.40 

80.40 - 119.60 

Distribution 

S12,u 

Normal 

95.54%* Assurance for A (ft^) 
Range 

+20.000 

+20.089 

Limits 

80.000 - 120.000 

79.911 - 120.089 

* 95% limits were not readily available for S,p u- 
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3. Logical extensions of statistical theory show that as the 

distributions of the P(K/H)'s become more nearly normal, A will become 

more normal, and that if the P(K/H)'s are exactly normal, then Av 

is exactly normal. This progression toward normality is shown by 

the following ranking (from least normal toward normal); 

a. 12 components, all distributions uniform 

b. 12 components, mixed uniform and symmetric triangular 

distributions 

c. 12 components, all distributions symmetric triangular 

d. 12 components, mixed symmetric triangular and normal 

distributions 

Thus, the assurance limits for Ay as described by (b), (c), or 

(d), above, would be closer to the normal than S12 u as shown in 

Conclusion 2. 

4. In certain vulnerability analyses where one of the critical com- 

ponents is many times larger than any of the other critical components, 

the accuracy of the normal approximation is decreased but is still 

acceptable. For example, fuel tanks are major contributors (large 

presented area) in vulnerable area assessments of fixed wing aircraft. 

5. There are an infinite number of exceptions to and deviations from 

the Central Limit Theorem and its assumptions that could be examined. 

The real strength of this normal approximation concept can be better 

examined when the presented area and P(K/H) distribution for each 

critical components of an actual aircraft are obtained. 
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6. After a successful demonstration Of the assurance limits 

methodology on actual aircraft data, these techniques should be incor- 

porated into the VAREA Program. These additions will involve minimal 

changes to the existing methodology and a negligible increase of the 

execution time. 

7. The presented areas and point estimates of P(K/H) for critical 

components have received considerable study and should be well documented; 

however, availability of these values in published summary form is some- 

what limited. The major work thrust that is needed concerns the deter- 

mination of the distributions of P(K/H) values. 

Specifically, these P(K/H) distributions can be estimated by 

analyzing sources of variability such as: 

a. Drive shafts shear at different loads and control rods fail at 

different compression loads for a fixed amount of the shaft or rod removed. 

b. Projectiles on a given shotline (same impact point) would remove 

various amounts of the shaft. 

c. P(K/H) values for each of several aspect angles are pooled into 

one value. 

d. Penetration (Thor) equations are not perfect predictors of 

residual mass and velocity. 

e. Field test data such as the fraction of shots which render a 

component non-functional are subject to variability. 

8. Continuing efforts will consist of quantifying the variability, 

determining some realistic distributions for P(K/H) values and developing 

methodology for handling the restrictions placed on distributions by the 

shotline survivor rule. 
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