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PREFACE

These notes were written for an introductory course in probability
and statistics at the post-calculus level that was presented during the
fall term of 1974 to students in the Rand Graduate Institute. Most of
the material is devoted to the basic concepts of probability theory that
are prerequisite to learning mathematical statistics: probability
models, random variables, expectation and variance, joint distributions,
conditioning, correlation, and sampling theory. Among the distribu-
tions treated are the binomial, hypergeometric, Poisson, negative bi-
nomial, normal, gamma, lognormal, chi-square, and bivariate normal.

The last section of the notes provides an introduction to some of the
basic notions of parameter estimation: bias, efficiency, sufficiency,
completeness, consistency, maximum likelihood, and least-squares estima-
tion. Proofs of the Rao-Blackwell, Lehmann-Scheffé, and Gauss-Markov
Theorems are included.

The author wishes to thank the following RGI students for their con-
structive comments on an earlier version of these notes, their assist-
ance in eliminating many (but surely not all) of the errors, and their
patience and goodwill: Joe Bolten, Tom Carhart, Chris Conover, Wendy
Cooper, Roger DeBard, Steve Glaseman, Masaaki Komai, Ragnhild Mowill,

Captain Michael A. Parmentier, and Hadi Soesastro.
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SECTION I. - INTRODUCTION

Statistics is the branch of applied mathematics that is concerned
with techniques for (1) collecting, describing, and interpreting data;
and (2) making decisions and drawing inferences based upon experimental
evidence. The term "statistics" is also used to refer to the data
themselves or numbers calculated from the data, as in the expression
"lies, damned lies, and statistics." Sometimes it is not clear which
usage is intended, as in the old saw, '"You can prove anything with
statistics." At any rate, statistical terminology, measures, and
analytical techniques have become commonplace in the scilentific com-
munity for describing and interpreting experimental results, and a
knowledge of statistics has become a prerequisite for scientific re-~
search in many fields.

As a branch of applied mathematics, statistics relies heavily on
mathematical models. The solution to a statistics problem typically
involves four steps:

(1) Statement of the real problem.

(2) Specification of a mathematical model to fit the problem.

(3) Solution of the mathematical problem.

(4) Application to the real problem.

Even if the real problem is completely specified in a particular
application, the choice of the mathematical model and therefore the
solution may still be practically unlimited. Obviously, the mathe-
matical model should contain the essential features of the physical
situation, but in most cases this will not lead to a unique specifica-
tion of the model, and it will be meaningless to refer to a "correct"
choice. The final choice of the model will be affected by the intui-
tion and subject matter knowledge of the model builder and perhaps
by his ability to carry out the mathematical solution. For now, let

us assume the choice has been made.




The next step, solving the mathematical problem, will often be
straightforward, since the model will probably be chosen using ease
of solution as a criterion. The final step, identifying the solu-
tion of the mathematical model with the answer to the real world
problem, would appear immediate, but this is often the step where
the experimenter discovers that his presumably well-conceived mathe-
matical model yields a solution that cannot possibly satisfy the
real problem.

Since the mathematical models for statistical applications are
primarily probability models and since statistical theory depends
heavily on probability theory, we shall begin our study of statistics
with a consideration of those probability concepts that will be
needed in the sequel. But, before we proceed along that path, it
may be helpful to provide a single example of a statistical problem
to introduce some terminology and to indicate the applicability of the
models that will be treated.

Consider the problem of estimating the proportion of some popula-
tion who share a common attribute based upon a sample of a certain
size from that population. For example, the population might consist
of the voters in a certain state, and the problem might be to esti-
mate the proportion of the voters who favor a given candidate based
upon the stated preferences of a relatively small number of voters.
As a second example, consider estimating the proportion of defective
transistors produced by a given machine based upon a sample of trans-
istors chosen from that machine's output. Here, the population of
interest is not a group of people, but the set of transistors pro-
duced by the machine.

As these examples illustrate, the problem under consideration
is a common one. So as not to confuse the issues involved, let us
pretend that the population of interest is a big can of marbles that

contains an unknown proportion p of red ones and that the sample




will consist of drawing 10 marbles one by one "with replacement" from

the can. A sample is said to be drawn with (or without) replacement

1f, after each draw, the marble is (or is not) returned to the can.

In either case, the sample is said to be a random sample 1f on each

draw every marble in the can has the same chance of being selected.
Your problem: estimate (guess) the value of p based upon a random
sample of size 10 taken with replacement.

As a first step toward specifying a mathematical model to fit
this situation, note that the data of the experiment is conveniently
where x, 18 1] or O

©» X10) 1

represented by a vector x = (xl, Xg)
according as the ith marble drawn is red or not. Thus, if the first

two marbles drawn are red and the others are all white, then

x = (1,1,0,0,0,0,0,0,0,0). This is an example of a sample point,

i.e., a point that summarizes the data for a particular realization
of an experiment, The set of all possible sample points x 1is called

the sample space for the experiment. Your estimate ﬁ can be taken

as any value computed from the vector x. Three possibilities that

xi/10 or perhaps 52 = (1 + 8x)/10

you might consider are 51 =X = Zigl

or even ﬁ3 = 1/2, which ignores the data and guesses that p is 1/2

no matter what the data indicates.

Note that the values of ﬁl’ ﬁz, and ﬁ3 are prescribed by the
formulas above for all sample points x. These are examples of
statistics, i.e., numbers calculated from the data points. These
particular statistics are also called estimators of the parameter p
to differentiate them from other statistics in this example, such as
EK Ty

estimators at a particular sample point are called estimates. Thus,

- X, max (xl,xz), and 7x10 + 52. The values of the

for the sample point (1,1,0,0,0,0,0,0,0,0), the three estimates of p
are ﬁl = 1/5, 62 = (0.26, and 53 = 1/2. Of course, if the actual pro-
portion of red marbles in the can is p = 1/2, then 53 provides the
best estimate of p. However our intuition tells us that for values
of p near 0 or 1 the estimators 61 and 52 will usually pro-

vide more reliable estimates.




As this example indicates, estimates themselves have little in-
trinsic interest, because one can always specify an estimator that
will yield any value whatsoever. In some applications of this model,
measures of goodness can be prescribed for comparing estimators, in
which case the problem of choosing an estimator reduces to solving
the mathematical problem of determining the one that is best in the
sense of these criteria. However, such instances are rare. In most
applications, clear-cut goodness criteria for estimators do not exist,
and one is content to report the value of the 'usual" estimator of p,
namely, ﬁl = x. As will be seen later, this estimator has many
desirable properties and contains all the information about p that
is provided by the sample.

A further discussion of this problem 1s deferred until the
elementary probability concepts required for this and other sta-
tistical problems are treated. For a nontechnical discussion of
the nature of statistics, its uses and misuses, see W. Allen Wallis

and Harry V. Roberts, Statistics, A New Approach, Free Press, Glencoe,

Illinois, 1956, Chapters 1-3. For a pleasant diversion that is some-
what related to the subject, see Darrell Huff, How to Lie with

Statistics, W. W. Norton and Co., New York, 1954.




SECTION II. - PROBABILITY MODELS

References:

Paul L. Meyer, Introductory Probability and Statistical
Applications, 2nd Edition, Addison-Wesley, 1970, Chapters
1 and 2.

Seymour Lipschutz, Theory and Problems of Probability,
Schaum's Outline Series, McGraw Hill, New York, 1968,
Chapters 1 and 3.

Emanuel Parzen, Modern Probability Theory and Its Applica-
tions, Wiley, 1960, Chapter 1.

William Feller, An Introduction to Probability Theory and

its Applications, Vol. I, 3rd Edition, Wiley, 1968,
Chapter 1.

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw-Hill,
New York, 1965, pp. 1-40.

Certain physical experiments have the property that their outcomes

are somewhat unpredictable and appear to 'depend on chance."

As examples,
consider flipping a coin, throwing dice, picking three students by lot
from a class, spinning a roulette wheel, finding the lifetime of a light
bulb, and determining the time between successive telephone calls coming
into an exchange. If we rule out the uninteresting cases for the moment
(e.g., two-headed coins or dice controlled electronically so that "7" must
appear), each of these experiments has the property that the outcome of
the experiment cannot be predicted with certainty. Yet, when the experi-
ment 18 repeated many times, a certain regularity may appear. For example,
if a slightly bent coin is tossed many times, the relative frequency of
heads, computed after each toss and based upon all the outcomes up to

that toss, may seem to fluctuate less and less around a particular number,

say 2/3. Similarly, the successive averages of the times between in-

coming telephone calls during a certain part of the day may appear to

"tend" to a certain number.
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These experiments also suggest questions about the 'chance" or

"likelihood" or "probability" of certain outcomes or collections of

outcomes occurring: "If two dice are tossed, what is the probability
of getting a total of seven or more?'" "If telephone calls come into an
exchange at an average rate of 4 per minute, what is the probability of °

getting more than 10 in any one minute during the next hour?" "What is

the probability of drawing a straight flush in poker?" Y
Before tackling a formal definition of probability, we shall first

put the idea of a random experiment into a mathematical framework. To

the outcomes of interest of the experiment, we make correspond the elements

of a set S called a sample space. That is, a sample space of an ex-

periment is a set S such that each element of S corresponds to one of
the outcomes of the experiment. For example, if the experiment consists
of tossing a coin, we might take as our sample space the set
S=(H, T, E}, 1i.e., S 1is the set consisting of the three letters H, T,
and E, where "H" stands for "heads," "T" for "tails,'" and "E" for "edge."
As this example shows, the choice of S 1s somewhat arbitrary.

As a second example consider the experiment of throwing two dice. ‘
For convenience let us assume that the dice are painted red and green
to distinguish them. Then we can designate the outcome that 3 turns
up on the red die and 4 turns up on the green die by the pair (3,4).
Using similar designations for the other possible outcomes, we see that an
appropriate sample space S for this experiment is the set of pairs (x,y)
where x and y are integers from 1 to 6. This sample space can be
visualized by plotting the pairs as indicated in the figure below. We can
write S 1in set notation by listing all the elements of S as follows:

s={(1,1), (1,2), (1,3), ..., (6,6)}.
Alternatively, we can write
S = {(x,y) : x and y are integers from 1 to 6},

which can be read as 'S 1is the set of pairs (x,y) such that x and y
are integers from 1 to 6."

The elements of a sample space S are sometimes called sample points

(or just points), and an event is a collection of sample points, i.e.,
a subset of S. (For the moment, any subset of S will be referred to

as an event; later, for technical reasons, the term "event'" will be reserved .




for subsets of S 1in a certain 6
class,) For example, the pair

(5,2) is a sample point in the 5
sample space S above; this can

be written as (5,2) € S, where 4
the symbol "€" stands for "is an

element of" or "belongs to." 1In 3
the game of craps it is of interest

to consider the event A corre- 2
sponding to a total of seven on

both dice. (See the figure.) In 1

set notation this event could be
written as:

A={Q,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
or A= {(x,y) : x+y=17}
The event B designated in the figure corresponds to the result that
the red die turns up 1:

B= {(x,y) : x=1}.

In general, an event A 1s said to occur if the outcome of the
experiment corresponds to a sample point 8 in S such that 8 € A.
Thus, if A and B are the events defined above and if the result of
tossing the dice is 5 on the red die and 2 on the green, then A
occurs but B does not occur; If A and B are events such that A
is a subset of B, written Ac B or B D A, then clearly whenever A
occurs, B must also occur.

It will be convenient to have notation for the union and intersection

of any two events A and B. As the words suggest, the union of A and
B, denoted by A U B, is the set of all those points that belong to at
least one of the sets A and B, whereas the intersection of A and B,
denoted by A N B, consists of those points which belong to both A and
B. Thus, in the example above,

AUB= {(x,y) : x=1 or x+y=7}

ANB={(x,y) : x=1 and x+y =7} = {(1,6)}.
Note that the event A U B occurs if either A or B occurs (or both),
whereas A N B occurs if and only if both A and B occur. Also note
that the notions of union and intersection can be extended to more than
two events. For example, if A, B, and C are events, then ANBNC
is the set of points common to all three sets. Also, if Al' A2' see




is a sequence of events, then G Ai (or Al U Az U...) 1s the set
i=]1

of all points that belong to at least one of the sets Ai’ and n‘ Ai

i=1

is the set of points that belong to all the sets Ai'
If two events A and B have no points in common, we say that the

events are disjoint (or mutually exclusive). Introducing the symbol §

to denote the "empty set' (i.e., the set having no elements), we can write
this as AN B = ¢. For example, in the dice throwing sample space above,
if
A={(x,y) : x+y=17} and
B = {(1,1), (1,2), (2,1), (6,6)}, then AN B = @.
The complement of an event A, denoted by Ac, is the event consist-
ing of those points in S that do not belong to A. Symbolically,
A= (s :s ¢ A}; here, "¢" stands for "does not belong to." Note that
ANAS=9p and A UAS =5,
Example. Let S be the Cartesian plane, i.e., S = {(x,y) : x and ¥y
are real numbers}. Then the "curve" y = x? 1s the set A = {(x,y) : y= xz}.

The set B = {(x,y) : x2 + y2 < 1} 1s the set of points inside the circle

of radius 1 centered at the origin. If C = {(x,y) : x2 o y2 = -1}, then
C=0@. To "solve" the set of equations x+y =5 and 3x -y = 3 means
to find the intersection of the sets D = {(x,y) : x+y =5} and E =
{(x,y) ¢ 3x - y = 3}, namely, DNE = {(2,3)}. The set F = {(x,y)
3x -~ y < 3} is the set of points above the line y = 3x - 3; F¢ 1s the
set of points on or below this line. Note that F°N B = @.

We shall want to talk about the probability of any event A, denoted
by P(A). As this notation suggests, P will be defined as a function of
events. To begin with, let us assume that the sample space is finite,

say S = {si, Bys e sn]. Then a finite probability model is prescribed

by assigning numbers Py to the sample points 8y such that
(a) each Py is nonnegative, and
®) £, py =L
In this case, the probability P(A) of any event A is the sum of the pi's
assigned to the points that belong to A.
For example, consider the coin-tossing example where the sample space
chosen was S = {H,T,E}. In this case, there are only 8 events,

namely,




@, {1}, (T}, {E}, {M,T}, {H,E}, {T,E}, S.
If the coin is fairly fat and bent a little, an appropriate assignment
of probabilities Py to the points H, T, and E might be 1/2, 1/3, and
1/6, in which case the probabilities of the events are

P(P) = 0 P({H,T}) = 5/6
P({H}) = 1/2 P({H,E}) = 2/3
P({T}) = 1/3 P({T,E}) = 1/2
P({E}) = 1/6 P(S) = 1

Although we might want to choose another P to fit a particular coin,
this choice of P 18 at least consistent with some of our intuitive
notions about probability, namely:
I. 0<P(A) <1 for all events A.
II. P(@§) = 0, P(s) = 1.
IIIa. If A and B are events such that AN B = @, then
P(A U B) = P(A) + P(B).

Similarly, if S 18 countably infinite, say S = {sl,sz,...}, one
can assign probabilities to all subsets of S 1in a consistent way by
first assigning probabilities Py to the points 8, where Py 2 0 and
z Py = 1. Then, for any event A, P(A) is defined by

P(A) = ¢ Py
SieA
It is easily checked that P satisfies conditions I, II, and IIIa above

as well as:

LTI L Al, A2’ ... are events such that Al n AJ -
whenever 1 ¥ j, then
P(U A) = T PG4,
i=1 i=1
In general, a set function P on the class of events of a sample

space S, countable or not, is sald to be a probability measure if P

satisfies conditions I-III above. (Condition I1Ia follows from III by
setting A3 = Aé = ... =§¢ in III.) Its value P(A) for any event A 1{s
then called the probability of A. To sum up the discussion above,

if the sample space S 1is countable (in which case it is said to be

discrete), P can be prescribed by assigning nonnegative values Py
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that sum to unity to the individual sample points 85 in which case
the probability of any event is the sum of the probabilities assigned
to the points that belong to that event.
Using the properties I-III above, one can easily show that for any
probability measure P and any events A and B,
(1) P@AS) =1 - P(A)
(2) P(AuB) = P(A) + P(B) - P(ANB)
(3) P(AUB) < P(A) + P(B)
(4) 1f B C A, P(B) < P(A).
For the present we shall assume that P 1s given or that there is
a "natural" choice of P suggested by the problem. Whether the proba-
bilities P(A) actually fit the physical situation in some sense or how
they are measured in practice does not enter the picture at this stage.
This is analogous to the situation in trigonometry when one is given the
lengths of the sides of a triangle and is asked to determine the area.
The case where the physical experiment, when properly viewed, has
N outcomes which appear to be "equally likely" can be handled immediately
in this framework, at least theoretically. The key words in such problems
are "chosen at random," "fair coin," "honest dice," "selected by lot,"
etc. For such situations, one can choose an appropriate sample space S
with N points and assign probability 1/N to each point. Then, for
any event A, P(A) = (number of elements in A)/N.

Example. (Dice throwing) If two dice are thrown, find the probability

of getting a total of (a) seven, (b) four or ten.

Solution. The problem remains 6
unchanged if we consider the dice dis-
tinguishable, say red and green. Let 5
S = {(x,y) : x, y are integers from 1

to 6}. 4
For example, the sample point (3,4)
corresponds to 3 on the red die and 4 3
on the green. Assuming equally likely
outcomes (honest dice), we assign 2

probability 1/36 to each point.

1 2 3 4 5 6
(a) The event A, '"seven occurs,'" contains 6 points, so

P(A) = 6/36 = 1/6.
(b) The event B, "four or ten occurs,”" also contains 6 points, so

P(B) = 1/6.
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Example. (Coin-tossing) If a fair coin is tossed four times (or
if four fair coins are tossed), what is the probability of getting at
least two heads?

Solution. An appropriate sample space for a single toss is S = {H,T}.
For four repetitions of the experiment, we can let 84 =S XSXSX S =
{(xl,xz,x3,x4) P Xy € S}.1
The sample point (T,T,T,H), for example, corresponds to obtaining tails
on the first three tosses and heads on the fourth. There are 2& = 16
points in Sa, and we assign probability 1/16 to each point. The comple-
ment A of the event A, "at least two heads,' contains five points:
(r,7,17,7), (W4,T7,T7,T), (T,H,T,T), (T,T,H,T), (T,T,T,H). Therefore,

P(A) = 1 - P(A®) = 1 - (5/16) = 11/16.

Exercise. An absent-minded hatcheck girl has 4 hats belonging to
4 men. Since she cannot remember which hat belongs to each man, she re-
turns them at random. Find the probability that

(a) exactly two men get their own hats back. Ans. 1/4.

(b) at least two men get their own hats back. Ans. 7/24.

(Set up an appropriate sample space and show the correspondence between
the sample points and the outcomes of the experiment.)

As another example of an experiment that fits the equally likely out-
comes case, consider the experiment of choosing a sample of size r at
random without replacement from some population of n objects, say
o= [al,az,..
and suppose that the experiment is conducted by first choosing one of the

.,3_} where n 2 r. For purposes of illustration, let r = 3,
n

elements ai in I in such a way that each element has the same chance of

being chosen. Then a second element is chosen at random from those remain-
ing. Finally, a third element is chosen at random from those remaining
after the first and second have been chosen. If the elements a5, aj, a;
are chosen in that order, this outcome can be represented by the 3-tuple
(85,87,81). Similarly, the result of choosing a sample of size r can be

represented by an r-tuple (xl,xz,...,xr) where the components x, are

i

lThis notation uses an obvious generalization of the notation for the
Cartesian product C X D of two sets C and D as defined by:

CXD={(c,d) : c €C, d €D}.

Thus, C X D 1is the set of all ordered pairs having the property that

the first component belongs to C and the second component belongs to
D.
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different elements of the population. This r-tuple is an example of a
permutation, i.e., an arrangement of r symbols from a set of size n
in which repetitions are not allowed.

The number of permutations of n symbols taken r at a time, de-
noted by P(n,r), can be determined as follows. The first component of
the r-tuple can be filled by any of the n symbols, the second by any
of the n-1 symbols not already used in filling the first component,...,
the rth by any of the n-(r-1) symbols not already used in filling the
first r-1 components. The total number of different ways of filling
the r components is

P(n,r) = n(n-1)(n-2)+*+(n-r+l1) = n!/(n-r)! for r =1,2,...,n
where n! = n(n-1)(n-2)-:+(3)(2)(1) and O! = 1. The reason for setting
0!l = 1 is to have the formula P(n,r) = n!/(n-r)! hold for r = n, in
which case P(n,r) = nl.

If the elements in the sample are drawn simultaneously so that the order
in which the elements are drawn is unknown, the outcomes of the experiment
can be represented using combinations (subsets) of size r instead of
r-tuples. For example, if r = 3, the subset {al,as,a7} corresponds to
drawing the elements a5, ag, and a, in some order. Note that for each
subget of size three, say {81’85’87}’ there are 3! = 6 permutations,
namely,

(al,as,a7), (al,a7,as), (as,al,a7), (35,37,a1), (87’31’35)’ (a7,as,al).
Hence, the number of subsets of size three is the number of permutations
of size three divided by 3!. In general, if (:) denotes the number of

different subsets of size r from a set of size n, then it follows by

an argument similar to that above for the case r = 3 that

(n) _ P(n,r) _ _nl
r r!l r! (n-r)!

for r =0,1,...,n.

Theorem 2-1. Given any set of size n, say o= {al,...,an}, the
number of ordered r-tuples (permutations) (xl,...,xr) such that the
's are different elements of ] is

P(n,r) = n(n-1)...(n-r+1)= n!l/(n-r)! for: = Ei2 N,
The number of subsets (combinations) of size r from [1 1is

(:) = n!/rl(n-r)! for r =0, 1,..., n.

x4
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The following example illustrates how the above results are used
in sampling inspection.

Example. A box contains 12 items of which 9 are defective. What
is the probability that a random sample of size 4 taken without replace-
ment will contain exactly 3 defectives?

Let the set of 12 items be denoted by [I = {Dl""’D9'G1’G2'G3}'
Two solutions will be given below, the first using subsets of [I of size
4 as sample points and the second using permutations of size 4 ag
sample points. Although the sample spaces are quite different, the solu-
tions to the problem yield the same answer.
Solution A. Set S = {x : x is a subset of size 4 from [}.
The number of points in S 1is

12! 12-11-10-9

4181 = 4.3.2.1 " 495

1s = (5 =

Assign probability 1/495 to each point. Let A = {x€S: x contains 3 D's
and 1 G}. Since #A = (no. of ways of choosing 3 of 9 D's) x (no. of ways
of choosing 1 of 3 G's) = (g)(i) = 252, '

P(A) = (g)(i)/(zz) - 252/495 = 28/55.

Solution B. Set S = {(xl,xz,x3,x4):xien, xi#xj for 1#¥j}. Then
#s = P(12,4) = 12+11:10-9. Let A = {x€S: exactly three x,6's are D's}.

i
Then

#A = (no. of ways of choosing 3 of 9 D's) X (no. of ways of choosing 1

of 3 G's) X (no. of ways of ordering the four chosen symbols)
9, .3
= (4L,

so that p(a) = D) )at/pa2,4) = PD/GD = 28/55.

The above argument is easily generalized to prove the following
theorem:

Theorem 2-2. A random sample of size n 1s taken without replace-
ment from a lot of N items of which the proportion p are defective.
The probability p(x) that the sample will contain exactly x defectives
is

pe) = CPHCLH/C)  for x=0,1,2,...,n
where q = 1l-p.
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Now suppose that the sample is taken with replacement. Then an
appropriate sample space for the experiment is

S = {(81,52,...,sn): sien}.

Since each component of the sample points can be filled in N ways and
repetitions are permitted, the number of points in S 1is N". Let A
be the event that exactly x of the items drawn are defective. The
number of points in A 1s the number of ways of choosing x of the n
components to be filled by D's [namely, (:)] multiplied by the number of
ways of filling the x chosen components with D's [namely, (Np)x]
multiplied by the number of ways of filling the remaining n-x components
with G's [namely, (Nq)“-x where q = 1-p]. Therefore, the number of
points in A is

A = ) (Np)*(Mg)" 7,
and

P(a) = #a/N" = (Dp""™™  for x =0,1,2,...,n.

This proves the following result:

Theorem 2-3. If a random sample of size n 1s taken with replace-
ment from a lot of N d1items of which the proportion p are defective,
then the probability p(x) that the sample will contain exactly x de-
fectives 1is

px) = Qp'g" for x = 0,1,2,...,n
where q = 1-p.

As an example of an experiment that requires an infinite sample space,
imagine a person tossing a fair coin until a head occurs. The previous

example suggests using the sample space
S1 = {(W), (T,H), (T,T,H), ..., (T,T,...)}

where (T,T,...) corresponds to never obtaining heads. A slightly simpler
sample space S = {1,2,3,...,%} 1s obtained by considering the so-called
"waiting time' for heads, i.e., the number of the trial on which heads

first occurs. Since the coin 1s assumed fair, we let P{1l} = 1/2. Analogy
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with the previous example, where we set P{(T,T,T,H)} = 1/16 = 1/24,
prompts us to set P{4} = 1/24. Similar considerations for any n

leads us to set P{n} = 1/2" for every n. Then, since

y P{n}= ¢ 1/2" =1,
n=1 n=1

we must have P{=} = 0, which is consistent with our intuitive notion
that, if the coin is really fair, it cannot come up tails infinitely
many times.

Having assigned probabilities to the elementary events, we can
compute the probability of any event. For example, the probability that
at least 4 tosses are needed is

1 -P{1,2,3} =1-(1/2+ 1/4+1/8) = 1/8.
Also, the probability that the waiting time is odd is

o ,=2k+l 1/2
Pls : s is odd} = L 2 ) = 2/3
k=1 1 - (174)
Example. According to the U.S. Bureau of the Census (Curreant Popula-
tion Reports, Series P-60, No. 78, May 20, 1971), the 'distribution" of

family income in 1970 in the United States was as follows:

Family Percent of Family Percent of
Income Families Income Families
Under $1000 1.6 $7000-7999 6.3
$1000-1999 3.0 $8000-9999 13.6
$2000-2999 4.3 $10000-11999 12,7
$3000-3999 5.0 $12000-14999 14.1
$4000-4999 5.3 $15000-24999 17.7
$5000-5999 5.8 $25000-49999 4.1
$6000-6999 6.0 $50000 up 0.5

This distribution can be represented graphically using a histogram as
indicated in the figure below. Note that the heights of the rectangles
above the income intervals have been chosen in such a way that the areas

of the rectangles are proportional to the percentages given in the table.
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Although the reason for doing so will not be apparent at this time,
one can build a probability model around the distribution above by con-
sidering the experiment of choosing a family "at random" from the popula-
tion of all families and recording, as the outcome of the experiment,
the family income of the family selected. As a sample space for this
experiment, we can take the set of nonnegative real numbers: S = [0,=).
Guided by the table above, we can choose our class of events to be the sets
¢, [0, 1000), [1000, 2000), ..., and unions of these intervals. To be
consistent with the table above, we let our probability measure P have
values:

pP([0,1000)) = .016, P([1000,2000)) = .030, etc.
If a family is chosen at random from the population, the event A corre-
sponding to selecting one having income less than $3000 is the event
A = [0,1000) y [1000,2000) u [2000,3000),
and the probability of this event is
P(A) = .016 + .030 + .043 = ,089,
which is the proportion of families in the population having income less

than $3000 according to the Bureau of Census estimates.
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Note that our class of events did not include every subset of S
in this case. Our class of events was restricted to those subsets of S
whose probabilities were determined either directly from the table or by
application of the axioms for a probability measure. The next example
indicates another reason for considering classes of events that do not
include all subsets of the sample space.

Example. (Spinning a spinner) Imagine trying to choose a real
number between 0 and 1 "at random." A hypothetical physical model
for this would be to spin a perfectly balanced spinner on a circle with
uniform markings from O to 1. Here, an obvious choice for the sample
space 18 S = [0,1], which is uncountable. In order for the numbers to
be "equally likely," each singleton set must have probability zero in
this case, so that the scheme used to assign probabilities in the discrete
case breaks down. However, we clearly want to have, for example, P[.3,.4] = .1
and P(.25,.39]) = .14, which leads us to assign probability to any interval
(a,b) [or (a,b] or [a,b) or [a,b]] 4its "length" b - a. Follow-
ing condition III for a probability measure, probability can also be
assigned to any set which is a countable union of disjoint intervals, and
this value again coincides with out notion of the "length" of the set.

Is there a consistent way of defining '"'length" for every subset of
[0,1]? Unfortunately, the answer is no. (Reference: H. L. Royden, Real
Analysis, Macmillan, New York, 1963, p. 43.) One way out of this difficulty
is to restrict the class of events, i.e., the class of subsets of [0,1]
for which probability is assigned.

One such restriction is to the smallest class of subsets which con-
tains the intervals and is closed under countable unions, countable inter-
sections, and complementation. For our purposes it suffices to know that
such a class exists and that there is a way of defining a probability
measure on this class which corresponds to our intuitive notion of length.

Note that in this example the probability of any interval [a,b] with
0O<a<bs<1l can be visualized as the area under the "curve" f(x) =1
for 0 < x <1 and between the ordinates x = a and x = b, as illustrated

in the figure below.
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The next example shows how other curves can be used to prescribe probabil-

ity measures on the line.

Example. Consider the waiting time in minutes between telephone calls

coming into an exchange. A histogram based upon the observed waiting times

for 100 calls coming into the exchange during a certain period of the day
may look like the figure on the left below.

The figure is intended to de-

pict a case where 42 out of 100 waiting times were less than one minute.

5 7

N\

f(x) = %-e

-x/2
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Let S = (0,»). Theory to be developed later in this course sug-
gests that, 1f the average waiting time between calls is 2 minutes, then
a reasonably well-fitting model might be obtained by assigning probabil-

-x/2

ities to intervals [a,b] using areas under the curve f(x) = (1/2)e as is

illustrated in the figure on the right above. That is,

P([a,b]) = jZ(l/z)e"‘/2 i = e W2 _ P2

The theory will also suggest that, under certain assumptions about the wait-
ing times btetween calls, a histogram based upon thousands of waiting times
(using a finer partition of the x-axis than is indicated in the figure above)
should fit the curve on the right quite well. Also, the relative frequency
of the observed waiting times falling in a particular interval [a,b] should
be close to the preassigned probability P([a,b]).

As in the spinner example, the probability of any countable union of
disjoint subintervals of S can be computed by adding the probabilities
of the individual intervals. As before, technical difficulties preclude
assigning probabilities to all subsets of S, but we can again restrict our-
selves to the smallest class of events that contains the intervals and is
clogsed under countable set operations (unions, intersections, and comple-
ments)}' It can be shown that any probability measure on this class of
sets is completely determined by its values on the intervals. Thus the
function f above completely specifies the assignment of probabilities to
this class of sets through the relationship

P([a,b]) = f: f(x) dx.

The function f 1is an example of a density function, i.e., a nonnegative

function whose integral over the real line is equal to one. Clearly, any
density function can be wsed to specify a probability measure on the line,
and it is often convenient in applications of probability to use density

functions in specifying probability measures (or 'distributions") on the

line.

1The smallest class of subsets of the line that contains the intervals
and 1s closed under countable set operations is often referred to as the
class of Borel sets of the line.
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SECTION III. - CONDITIONAL PROBABILITY AND INDEPENDENCE
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Paul L. Meyer, Introductory Probability and Statistical
Applications, 2nd Edition, Addison-Wesley, 1970, Chapter 3.

Seymour Lipschutz, Theory and Problems of Probability,
Schaum's Outline Series, McGraw-Hill, New York, 1968,
Chapter 4.

Emanuel Parzen, Modern Probability Theory and Its Applica-
tions, Wiley, 1960, Chapters 2 and 3.

William Feller, An Introduction to Probability Theory and
its Applications, Vol. I, 3rd Edition, Wiley, 1968,
Chapter 5.

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw-
H111l, New York, 1965, pp. 41-105.

Consider choosing a person at random from a population of N voters
of whom NF are female and NC are planning to vote for Charles Charmer.
Let C be the event that the person plans to vote for Charmer and F
the event that the person is female. Then '

N N
C F
P(C) N and P(F) = N -

Now suppose that we are informed that the person chosen was a woman. This
eliminates many sample points as possible outcomes of the experiment, and
it may not be the case that the proportion of women favoring Charmer is the
same as the corresponding proportion P(C) for the entire population. If
in fact N women plan to vote for Charmer, then our revised assessment

CF

of the probability that the person chosen will vote for Charmer is NCF/NF.

This ratio is called the conditional probability of C given F and is
denoted by P(C|F). If it happens that P(C) = P(C|F), so that knowing

e e = 7
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that the event F occurred does not change our assessment of the proba-
bility of C, then the events C and F are said to be independent.

These concepts are defined for arbitrary sample spaces below.

Conditional Probability

For any two events A and B such that P(B) > 0, the conditional
probability of A given B 1is defined by
P(A|B) = P(AN B)/P(B).
Note that, for fixed B, the conditional probability P(AIB) is pro-
portional to P(AN B) with the constant of proportionality chosen to
make P(B|B) = 1.

In a finite probability model S = {Sl’ 8 ac sn} with equally

2’
likely points, the probability of any event C is #(C)/n where #(C)
denotes the number of points in C. Therefore

P(AN B) _#(AN B)/n _ #(AN B)
P(B) #(B) /n #(8) °

so that in this case P(AIB) is the proportion of the points in B that

P(A|B) =

also belong to A. In general, P(A|B) is the proportion of the proba-
bility assigned to B that also belongs to A.
It follows immediately from the definition of P(B|A) that

P(A N B) = P(A) P(B|A).

More generally, if Al’ A .,Ak are any events for which

gree
P(ANAN...0A, 1) >0, then

P(ANAN...NA ) = P(A))P(A, IAl)P(A3 |AlnA2) . -p(Ak|A1n, . ,nAk_l) .

These results are sometimes useful in computing probabilities of joint
occurrences of events when it is obvious what the conditional probabilities

must be by reference to the reduced sample spaces.

Exercises. 1. Two fair dice are thrown, one red and one green. What is
the conditional probability that the sum is ten or more given that (a) an
observer reported that the red die turned up as a five? (b) a colorblind
observer has reported that one of the dice turned up a five (not intend-

ing to exclude the possibility that both turned up fives)? Ans. (a) 1/3,
(b) 3/11.
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2. Consider drawing two balls at random without replacement from
an urn containing six numbered balls where balls 1 to 4 are white and
5 and 6 are red. Let A be the event that the first ball drawn is white
and B the event that the second ball drawn is white. Is it not obvious
from the physical situation that P(B|A) = 3/5? Is it equally obvious
that P(A|B) = 3/57 Do you believe that P(A) = P(B)? Set up a sample
space for this experiment with equally likely outcomes and verify your
answers.

3. A batch of 10 light bulbs contains three defectives. Bulbs are
selected at random without replacement and tested one by one. Find the
probability that the second defective occurs on the sixth draw. Ans. 1/6.
Hint: Let A be the event that there is exactly one defective in the
first five draws and B the event that there is a defective on the sixth
draw. Evaluate P(ANB) using conditional probabilities.

4., Let Q be the set function defined on a class of events by

Q(A) = P(A|B) where
for which P(B) > 0.

P is a probability measure and ‘B 1is an event

Show that

Q 1is a probability measure, thus verifying

that conditional probabilities "act 1like'" probabilities.

Bayes' Theorem

A partition of a sample space is a set of disjoint events
Bl’ BZ’ 0 O Bk such that their union is the entire sample space S. For
example, any event B and its complement B¢ constitute a partition.
If the sample space corresponds to some population, then any stratification
of that population, say by race, income level, or sex, constitutes a
partition of S.

The following result, the second part of which is called Bayes'

Theorem, is easily proved.

Theorem 3-1. Let Bl’ B2, el d s Bk be a partition of S such that
P(Bi) > 0 for each i. Then for any event A

(1) P(A) = £ P(A'B,) = T P(A|B,)P(B,)
3 ] 3 b

(11) 1f P(A) > 0,

3

P(AIBi)P(Bi)

b5 P(AlBJ)P(B,)'
j -J

P(BiIA) =
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Example. Suppose 20%Z of the people in a certain group are bad
drivers. Of these, 40% drive sports cars. Of the good drivers, 5%
drive sports cars. If you pick a person at random and he drives a sports
car, what is the probability that he is a bad driver?

Let V, B, and G denote the events corresponding to sports car
drivers, bad drivers, and good drivers in a sample space S that corre-
sponds to the population of interest. Then

P(V) = P(V|B)P(B) + P(V|G)P(G)
= (.4)(.2) + (.05)(.8) = .12,

P(V|B)P(B) _ (.4)(.2) _
.12

3
P(V) 3°

Thus, P(B|V) =

Exercises. 1. Prove the theorem above.

2. A plant produces three grades of components: 20% of all com-
ponents produced are of grade A, 30X of grade B, and 50X of grade C. The
percentage of defective components in the three grades are 5, 4, and 2
percent respectively. (a) What proportion of all components produced in
the plant are defective? (b) If a component selected at random from
the plant's output is defective, what is the probability that it is of
grade A? Ams. (a) 0.032, (b) 5/16.

3. A certain disease is present in about one out of 1000 persons
in a certain population. A test for the disease exists which gives a
"positive'" reading for 95% of the victims of the disease, but it also
glves positive readings for 1% of those who do not have the disease.
What proportion of the persons who have positive readings actually have
the disease? Ans. 0.087.

Independent Events, Independent Experiments, and Bernoulli Trials

Two events A and B are said to be independent if
P(AN B) = P(A)P(B).
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If P(B) > 0, this condition is clearly equivalent to having P(AIB) = P(A).
Thus, A and B are independent if and only if knowing that B has
occurred does not change the probability that A will occur. 1In the
equally likely outcome case, two events A and B are independent if

the proportion of the points in B that also belong to A 1is the same

as the proportion of points in the entire sample space that belong to A.

Three or more events A ,An are said to be independent if

1> Agrees

for any subsequence of k integers i1 < 12 d oo E ik from 1 to n

P(AilﬂAizﬂ...ﬂAik) = P(Ail)P(Aiz)"'P(Aik).
In particular, three events A, B, and C are independent if the follow-
ing four conditions hold:
P(AN B) = P(A)P(B)
P(ANn C) = P(A)p(C)
P(BN C) = P(B)P(C)
P(AN BN C) = P(A)P(B)P(C).

Example. Referring back to the probability model for throwing two
fair dice, one can readily check that any two of the three events
A = "3 on the green die," B = "4 on the red die," and C = "total of seven"
are (pairwise) independent. However, it is not the case that P(AN BN C) =
P(A)P(B)P(C), because P(AN BN C) = 1/36 whereas P(A)P(B)P(C) =
(1/6)3 = 1/216. Hence, these three events are not independent.

The probability model for tossing two fair dice is an instance of

a model for two "independent experiments." Let Sy = {sl, 8,5 ...} and S, =
{tl, tys ...} be discrete sample spaces for two experiments, and let
P] and P2 be the corresponding probability measures for the separate

experiments.1 Then a sample space for the combined experiment is

lln the dice-throwing example, both S1 and 82 consist of the

integers from 1 to 6, and both probability measures Pi assign proba-

bility 1/6 to each point in Sy
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S = Sle2 = {(s,t) : 8 € Sl' t € 52}.

The two experiments are said to be independent if probabilities are
assigned to the points of S wusing the formula:
P{(s,t)} = Pl{S}PZ{t}'

To see the connection between independent experiments and independent
events, let A be any event in the combined sample space S that depends
on the outcome of the first experiment only (e.g., "3 or more on the red die").
Then A 1is of the form C X S2 = {(s,t) : 8 € C} where C 1is an event
in S1 (e.g., C = {3,4,5,6}). Similarly, let B = Sl X D be any event
that depends on the outcome of the second experiment only (e.g., "2 on the
green die"). Then it is easily verified that

P(AN B) = P(C X D) = Pl(C) PZ(D) = P(A)P(B).

Thus, if probabilities are defined multiplicatively on S wusing the rule
indicated above, any event that depends on the outcome of the first experi-
ment only is independent of any event that depends on the outcome of the
second experiment only.

To extend the notion of independent experiments to more general
sample spaces, one 1s led by the discussion above for discrete sample
spaces to proceed as follows. Let S, and S, be any two sample spaces

1 2

with probability measures Pl and PZ' If C 1is any event in S1 and D

is any event in 82, define the probability of the '"rectangle" CXD in the

product space S = S1 X S2 by

P(C X D) = Pl(C)Pz(D).

It follows from this definition that any event A = C x S that depends

2
on the outcome of the first experiment is independent of any event

B = S1 X D that depends on the result of the second experiment only,
since

P(A N B) = P(CXD) = P,(C)P,(D) = [P (CIP,(S,)][P,(S)P,(D)] = P(A)P(B).

More generally, one can combine the sample spaces Sl’ SZ""’ Sn
for n separate experiments and define probabilities multiplicatively on

the product space S = S_XS x...XSn to provide a model for n independent

12
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experiments. It will then follow that, 1f A,, A A~ are events

s
such that Ai depends on the result of the ith eiperiment only,
these events are independent.

For example, consider n trials of exactly the same type (e.g., -
repeated tosses of a coin, or successive draws at random with replace- N
ment from a population) where each trial results in one of two outcomes 5
of interest, say 1 and O (for success or failure, or heads and tails,
or employed and unemployed), with probabilities p and q=1-p on

each trial. Such trials are called Bernoulli (or binomial) trials.

A probability model for n Bernoulll trials is prescribed by taking
the sample space S = {(xl, Hl SR xn) Pxg o= 1 or 0} and assigning proba-
bilities, for example, as follows:

p{(1,1,0,1,...,0)} = ppqp--‘q.
To see how to compute probabilities of certain events of interest, con-

sider the event A., that exactly three of the n trials result in

3
successes. Then A3 consists of all sample points in S that have
exactly three 1's. Since the probability assigned to any such point
is p3qn-3, it follows that P(AJ) = #(A3)p3qn-3 where #(A3) is the ‘

number of points in A But the number of points in A3 is clearly

3
le number of ways of choosing three of the n components for the 1's.
That 1s,

e (M - __nt
#HAy) = (3) = TRHT -

In particular, if n = 4, the number of points in A3 is 41/311}) = 4,
namely, (1,1,1,0), (1,1,0,1), (1,0,1,1), and (0,1,1,1).
Similarly, if Ak is the event that there are exactly k successes

4

n n Bernoulli trials, then

P(Ak) = (ﬁ) pk qn_k for k =0,1,...,n.

For example, the probability of n successes is pn, the probability

of n failures is qn, and the probability of at least one success is

1 - 4P.
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Exercises. 1. Find the probability that, if four fair coins are
tossed, (a) all will turn up heads, (b) three will turn up heads.
Ans. (a) 1/16, (b) 1/4.

2. Balls are drawn at random with replacement from an urn con-
taining 1/3 red balls and the rest white. Find the probability that
(a) five successive draws will yield two red balls, then three white
balls, (b) there are exactly two red balls in the five draws, (c) there
are at least two red balls in five draws. Ans. (a) 8/243, (b) 80/243,
(c) 131/243.

3. 1If only 25% of the voters favor a certain candidate, what is
the probability that a random sample of size 10 will show 8 or more
favoring him? Ans. 436/410 = 0.0004.
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SECTION 1V. RANDOM VARIABLES AND THEIR DISTRIBUTIONS

References:

Paul L. Meyer, Introductory Probability and Statistical
Applications, 2nd Edition, Addison-Wesley, 1970, Chapter 4.

Seymour Lipschutz, Theory and Problems of Probability,
Schaum's Outline Series, McGraw-Hill, New York, 1968,
Chapter 5.

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw-
Hill, New York, 1965, Chapter 3.

Consider the dice-throwing example again, where the sample space
chosen was S = {(x,y) : x,y € {1,2,...,6}}. In the game of "craps,"
one is not interested in the particular outcome (x,y) that occurs,
because only the sum is relevant. This leads us to consider the '"random
variable" Z on S defined for all points (x,y) by Z(x,y) = x + y.

In general, a random variable is a real-valued function defined on a

sample space.l Roughly speaking, the key idea behind the notion of a
random variable is that it is a variable that depends on the result of
a random experiment; its value for a particular outcome of an experiment

is & number computed from the data point.

lTth definition suffices for discrete sample spaces, where all
subsets of S are events, and for the applications of probability models
to be considered in this course. For arbitrary sample spaces, in which
not all subsets are events, probabilists prefer to define a random vari-
able X as a real-valued function on S such that the subset
{s : X(8) = c} is an event for every real number c. The purpose of
this additional restriction is to assure that, under certain reasonable
assumptions on the class of events, probabilities of the form P(X < c),
P(X < c), and P(a < X <b) are all defined for any random variable X,
as well as any probabilities of the form P(X ¢ B) where B 1s a count-
able union of intervals (open, half-open, or closed) on the line. For
cur purposes, we can consign this bit of pedantry to a footnote and refer
the mathematically oriented reader to books on probability theory, e.g.,
the book by Pfeiffer cited above.




-29-

Some other random variables on the same sample space are:
X(x,y) = x
Y(xoy) S0y

if x+y=7or 11

A
Via,y) = {0 otherwise.

Note that we have used capital letters X, Y, and Z to denote random
variables rather than the usual function notation of calculus (e.g.,
f, g8, h). This usage has become traditional in probability and statistics
to distinguish the random variables from their values, which in turn are
often denoted in lower-case letters.
Sometimes random variables are defined implicitly as functions of
other random variables. For example, Z could have been defined above
using usual function notation as Z = X + Y.
Ordinarily random variables are defined verbally rather than explicitly
using function notation. Thus, one might refer to the number of successes
X 4dn n Bernoulli trials. Relative to the sample space S at the end
of the previous section, this means that for any sample point
8 = (xl, Xos vovs xn) consisting of 1's and 0's, X(8) = (number of 1's
in 8). Note that if Xi denotes the result of the ith trial (i.e., xi(s) = xi),
then X = X, X,.

represented as a function of other random variables of a simpler nature.

This illustrates how a random variable can sometimes be

Here, each Xi has only two possible values O and 1. The utility of such
representations will be exhibited later.

The following examples of random variables refer to problems dis-
cussed in Section II.

1. Hatcheck girl problem.

Let S be the set of the 4! permutations of the integers 1,2,3,4,
namely, (1,2,3,4), (2,1,3,4), etc. The point (2,4,3,1), for example
corresponds to the outcome that the first man receives the second man's
hat, the second man receives the fourth man's hat, the third man receives
his own hat, and the fourth man receives the first man's hat. Let X
be the random variable corresponding to the number of hats returned
correctly, so that X(2,4,3,1) = 1, X(1,2,3,4) = 4, etc.




-30-

2. Spinner problem.

The sample space chosen to correspond to the set of possible
readings of the spinner was the unit interval [0,1].

(a) Let X be the number chosen at random:

X(s) = s for all s.

(b) Y(s) = sin 2qrs. [No one said that random variables had to
be of particular interest for the experiment under consideration. This
one happens to be of interest in another context, that of choosing a di-
rection at random, specified by a point (cos 2is, sin 211s) on the unit
circle.]

(c) Xz(s) = 32. [Note the strange, but unambiguous, notation.)

1 if 0 <s8x<1/4,

(d) Z(s) = [0 if s > 1/4.

3. Telephone problem.
(a) Let X be the waiting time in minutes until a telephone

call comes into the exchange, i.e., X(s) = s for all s > 0.

(b) Y = X/60, the corresponding waiting time in hours.

(c) Z = integral part of X. For example, if X(s) = 6.875
(minutes) then Z = 6,

Jugt as a random variable X "maps" (or '"carries") sample points
from S into the real number line, it also carries probabilities on S
into the real line R, inducing a probability measure on R that is called
the distribution of the random variable X. As we shall see, distributions
of random variables play a central role in statistical theory.

[o get a feeling for the notion of a distribution of a random variable,
let us return once again to the dice-throwing example and consider the sum
of the outcomes on the two dice, Z(x,y) = x + y. The figure on the next
page attempts to depict the way that the random variable Z maps points
in S dinto R and thereby induces a probability distribution on R.

The top part of the figure indicates the correspondence between events

Q

in and the possible values of 2Z: 2,3, ..., 12. Since Z has value

4 » the event {(3,1), (2,2), (1,3)}, and this event has probability
P(Z = 4) = 3/36 = 1/12, the number &4 receives probability 1/12 under
the distribution induced by 2. The function depicted in the bottom

half of the figure indicates the probabilities assigned to the other
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values of Z. This is a graph of the "probability function" of Z, one
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