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PREFACE

This report describes work performed at the Electrical Engi-

neering Department cf the University of Tennessee, Knoxville, Ten-

nessee 37916, over the period 16 October 1973 to 31 December 1974.

The work was performed for the Air Force Systems Command, Rome Air

Development Center, Griffiss Air Force Base, New York 13441 under

contract F30602-74-C-0037.

The overa2.l effort related to the definition of a rain back-

scatter model and cancellation of radar rain clutter using a new

* polarization method. The work was conceived and guided by Dr. Peyton

Z. Peebles, Jr., Associate Professor of Electrical Engineering. Most

of the work on the rain cancellor was performed by Mr. R.W. Rice, e

Graduate Research Assistant. Dr. Peebles did most of the work re-

garding the rain model, while Mr. H. Sakamoto, a Graduate Teaching

Assistant, performed several literature searches. The final report

was prepared by Dr. Peebles and Mr. Rice.

The technical contract officer for the Air Force was Mr. Vincent

C. Vannicola. The authors express their appreciation to Mr. Vannicola

for his support of the research.
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1. 0 INTRODUCTION

1.1 Historical Develoment

In spite of improved performance due to advances in detection

methods, loy-noise receivers, waveform optimization, etc., the modern

radar system often gives a much lower level of performance because

of rain clutter.

Early radar systems vere generally designed to emIt and receive

linearly polarized rediation. There is nothing inherent in the struc-

ture of the linearly polarizi-d system to suppress the clutter caused

by precipitation. Recognition of this problem prompted investigation

into different types of systems. In 1947 Ridenour 11] proposed a

significant new concept for the basic radar system. Ridenour noted

that if rain particles could be correctly modeled as spheres then the

use of circular polarization on both the tralsMitting and receiving

antennas offered the possibility of significant clutter reduction.

In the same discussion Ridenour was also able to offer experimental

data that indicated that clutter reduction on the order of 26d.B. was

possible using circular polarization. Additionally Ridenour was able

to point out that two limitations of this approach to clutter cancel-

lation are rain particles which are not true spheres and radiation

which is not exactly circular. In spite of the advantages offered

by the use of circular polarization it was not immediately adcpted.

In fact, eircu1mr polarization was rediscovered in 1954 by White [2]

while at the same time Hunter [3] reemphasized the limitations of the

technique due to radiation which was not perfectly circular.
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A necessary step in the process of correcting the errors intro-

duced by non-circular polarization and non-spherical scatterers was

that of obtaining an accurate model of the scattering particles and then

obtaining a solution to the scattering of electromagnetic waves by

an object whose shape is that of the model. From the literature one

recognizes that interest in modeling rain particles preceeded the

development of radar technology by many years. A recent paper by

Pruppacher and Beard [(4 cffers a review of the efforts along this line

while another paper by Pruppacher and Pitter [5] claims to offer the

most accurate model yet available for rain. In simp-_, terms, Pruppacher

and Pitter claim that the oblate sphbc'oid is a good approximation to

the true shape of rain particles in many cases. Additional detail

concerning psaiticle shape will be discussed in Chapter 3.

-he scattering of electromagnetic waves by bodies of various shapes

is a problem that has also received considerable attention for many

years. Logan (61 notes that some of the earliest work done in this

area involved scattering by a sphere and was done by Clebsch in 186].

In the same article, Logan offers an excellent outline of the histor-

ical development of the theory of scattering by spheres. Another

paper deserving mention at this point is a survey of scattering liter-

ature by Corriher and Pyron (71. It should be noted however that

none of the sources referenced by the two previously mentioned works

considers the problem of scattering by an oblate spheroid. This

problem was apparently first solved by Labrum (8] in 1952, and later

Atlar, Kerker, and nitschfield [91 offered concurring results.



1.2 Descrip1on of the Proposed Method

This report is an analysis of the system depicted in figure 1.2-1.

In the block diagram, the transmitter is represented in the left hand

portion of the figure, the propagating medium and scattering elements

are shown in the center of the figure, and the receiver is depicted

in the right hand portion of the diagram.

The features which distinguish this system from the ordinary

circular system are indicated in the block diagram as elements T, R,

and G. Elements T and R account for the magnitude and phase imper-

W fections which prevent the ordinary system from being truly circularlyI polarized. G is a dynamic gain element which has been added in the

effor+- to reduce the performance limitations of the ordinary system

caused by non-spherical rain and non-circular polarization. A detailed

description of G will be given in secAion 5.
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2.0 BACKGROUND THEORY AND ASSUMPTIONS

2.1 Basic Assumptions

Prior to detailed development of the concept which gives rain

clutter cancellation it is helpful, indeed nece3sary, to first set

down certain definitions, assumptions and preliminary theory appli-

cable to the whole work. For example, to avoid confusion we shall

use the word "signal" to imply elther a waveform resulting from back-

scatter from a target or waveforms preceeding target or rain illumi-

nefion while the word "clutter" will apply to waveforms resulting

from rain backscatter. Other definitions are made clear in the course

of developmenti.

We make the following basic assumptions throughout the effort.

1. Only rain clutter is present. Thus, noise, ground clutter,

multipath and other interference sources are neglected,

This assumption is approximately sat...sfied for a low-noise,

narrow-beam system directed several beamwidths above the

S~horizon.

2. Only a single target exists within the radar beam.

3. The target behaves as a point reflector, that is, the target

size is small relative to the pulse length in space.

4. There are no multiple reflections between rain particles

or between the rain and target.

5. The radar is a monostatic system. Generalization to the

bistatic system is relatively straightforward and some of

the developments are formulated in such a manner prior to

specialization to the munostatic case.
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6. The system is capable of transmitting and receiving two

linearly polarized waves that are approximately space-

orthogonal.

7. The antenna patterns have narrow main lobes, that is, beam-

widths are on the order of a few degrees or less in any plane

containing the boresight axis.

8. Antenna pattern sidelobes fall off with angle such that the

dominant contribution to the rain clutter power comes from

angles sufficiently near the direction of the mainlobe maxi-

mum that small-angle approx.mations may be made.

2.2 Coordinate Definitions

Figure 2.2-1 defines the coordinate system which irterfaces the

radar with its environment. The radar is at the origin of the X, Y, Z

system and radiates in the Z (boreright) direction. Rair particles

are assumed to fall, on the average, along a line parallel to O-x.

This line is definca by angles C, called the rain heading, and p,

called the rain fall angle. With these definitions the average wind

vector lies in the O-x-y plane; it also lies in the X-Z plane (as

shown) If the boresight axia is horizontal and the wind is entirely

horizontal. In general, even for horizontal wind, the wind vector

is tilted in the O-x-y plane when the boresight axis is elevated.

The above definitions apply to the fall geometry for raindrops

which is determined by the wind. Locations of the drops are defined

by spherical coordinates, radar centered. The coordinates for the

ith drop are ci, 8i analogous to ?, •.
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2.3 Scattering Theory

It is desirable to be able to write an equation relating the

electric field incident upon end reflected by a scattering body such as

a rain particle. The first step in the process of obtaining the de-

sired equation is the specification of the nature of the scattering

particle. For the purposes of the following calculations It shall be

assumed that the scattering particle is a homogeneous oblate spheroid.

Justification for the assumed shape is provided in section 3.

N.R. Labrum [8] has provided a f'undamiental solution 'to the problem

of electromagnetic scattering by an oblate spheroid. His approach

to the problem is based upon work done by Stratton (10], which has

shown that where the ratio

particle radius
radiation wavelength

is small, the dipole moment induced in a sphere is the samne for both

static and time varying incident fields. Labrum's work relates the

dipole moment induced in the scattering particle to the incident elec-

tric field. In turnthe reflected electric field may be related to

the induced dipole moment, but this is unnecessary for the current

work since the final equation will involve only ratios of this param-

eter whicb associates a reflected field with an incident field. Thus,

the equations relating the reflected electric field to the Incident

electric field will be of the fom
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E"-s3÷ (2.3-1)

E7 reflected electric field

E incident electric field

but S will not be unitless. As in Labrum's work, S will have the

units

dipole moment * Farad - meter 2  (2.3-2)
electric field intensity

Rice and Peebles (ii] have extended Labrum's work to the case

of circular polarization and homogeneous oblate spheroids. From the

standpoint of notation, this extension is simplified if the field

intensities are resolved into orthogonal components which may be entered

as elements in a column matrix. Thus the following shall be used.

1 12: [:j (2.3-3)
Ir,; S, 22 8 r,22 1e

For the particles assumed, Rice and Peebles define the Sij terms in

the following manner.

n -*X cos 2() + g. sin2 (0)

812 - ) cos(O) co,(1)

S 21 (gU - gy) Cos(8) cos(W)

822 g gý cos 2 () + gy sin2(4) (2.3-li)



Cl I

Fig. 2.3-1. Par~ticle and relateci die~ectric quantities.
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ewe p(1-2)3/2 (C7.pb3  1]
L 3 [ -ow + 2.pwtan (p/,1-P )] (P-2 -6 1) + 2e 1(1-P 2 ) 3

gy -3 P4 -P,/1--7 - aretan (p/,-pi7)1 (ere,1) +*e(lP)/

p aa/b

In equation (2.3-4), 0 is a particle orientation parameter which

is used by Labrum and is related to the coordinate parameters used

in this work as indicated in equation (2.3-5).

cos(e) a sin(O) sin(M) (2.3-5)

The remults of applying equation (2.3-5) to the definition of the

Biý terms given in equation (2.3-4) are provided in equation (2.3-6)

8 11 "-g + (ax - gy)sin (2)sin (2 )

812 a (gx - g.Y)sin(0)sin(+)cosM() (2.3-6)

8 2 - gx coo• 2, M + ysin 2 (40)

With the S matrix elements defined as in equation (2.3-6), it

is now possible to express the components of the scattered electric

field in terms of the components of the incident electric field as

indicated In equation (2.3-3). Note that the equation in this form
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represents scattering from a single scattering particle. The effects

oe multiparticle scattering will be represented by a summation of

the following form.

"E-X E (S Ili Ei ) + Z (S E12 1 E )
E il i'l

N (2.3-7)

E -E (S211 E )+ E (S 221E )

In equation (2.3-7), the total nunber of scattering particles within

the scattering volume of interest is N
k

2.4 The Reference System

What will be called the reference system in this work is presented

in block diagram form in Figure 2.4-1. The system is a linearly polar-

ized monostatic radar, and the performance of the ordinary circularly

polarized system and the cancellation system will be compared to the

performance of this reference system.

From the theory of linear antennas [12], it can be shown that the

electric field intensity in the far zone of a dipole radiator, e ,

is related to the driving point potential, eT, as shown in equation

(2.4-",).

+ rj eT GT -joZ
e e (2.4-1)

In the preceeding equation, K1 is a complex constant, 00 is the tra-

ditional phase constant, Z is the radial distance between the phase



,. -.--. -

'4

C-,

C)

4, I

4.)

U)

C)

0 4)
CI)

I C)

+4' 7
C)

'-I

I (\J

6)

fJ1�



15 j.

center of the antenna and the point where the field intensity is to

be measured, and GT is the radiation characteristic (voltage) of the

transmitter antenna.

By the scattering theory of the preceeding, section, the scattered

field at a distance Z' from the scattering body has an intensity,

e', which is given by

S •e -JoZ (2.14-2)

z

where S.1 is an element of the previously defined scattering matrix.

Fron the theory of reciprocity as it applies to linear antennas,

the received signal, e , is

e aK G K2G rS le Sz
r 2 r 11

2rr

K2 K1 r GT Sl1ieT e -isO(z+z2) (2.14-3)
Z"Z

For a monostatic radar, G r GT a G and Z Z ', and to simplify notation

let

K w K2 & K .(.44

Thus the signal received as a result of scattering from one scat-

tering body is given by equation (2.4-5).

er • G2e- (2.4-5)r Z2
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Extending the analysis to cover multiparticle scattering involves only

implementing a summation of returns from the individual scattering

bodies. Such a sumnation is

SkKeTl(k)G2 
-J2 0oZ.

zi
e r i2, e (2.4-6)

The receiver signal, er, indicated in equation (2.4-6) is a re-

sult of returns from all the scattering bodies lying within the range

cell corresponding to the time at which er is evaluated. A convenient

way of noting this fact is to specify the location of each particle

with respect to the center of the range cell in which it lies. For

th ththe i- particle in the k4 range cell this would be

Zi(k) - Z(k) + AZ1  (2.4-7)

An approximation which will be used in the denominator of equation

(2.14-6) is

zi(k) z(k). (2.4-8)

This approximation is in error by no more than 0.5 percent for a trans-

mitter pulsewidth of one microsecond and a range of 16 km. Application

of the approximation to equation (2.4-6) results in t'he following.

thNote that Nk is the total number of scattering particles in the k-

range cell.

KeT -J28oZ(k) Nk
ee(k) _ e2 z S Ge- z (2.4-9)r z2S ()G

Z(k)il i
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In summery, equation (2.)4-9) is an expression for the output voltage

resulting from clutter occuring in the k- range cell for what will be

called the reference system.

2.d5 The trdinary

An ordinary system will be defined as a radar which radiates and

receives the same-sense circular polarization to reduce rain clutter.

Such a system is ideal if it radiates perfectly circular polarization

of one sense and has zero response to a perfently circular wave of the

opposite sense. An imperfect ordinary system does not produce perfectly

circular operation due to manufacturing and/or alignment errors.

By recognizing that a circularly polarized wave, indeed, even an

elliptically polarized wave, may be considered to be comprised of two

linearly polarized waves we may model the transmission and reception

operations of the system as shown in Figure 2.5-1. A signal eT is power-

split with one signal driving an "antenna!' representing the x-polarized

pattern. The second signal passes through a complex gain constant T,

representing the error that the transmitting function Introduces relative

to true circular polarization (T-l, ideally). This signal then passes

through a + 7r/2 or - ir/2 phase shifts to produce either left or right

hand polarizations respectively when transmitted through an "antenna"

representing the Y-polarized pattern. Similar, but reverse, operations

exist in the receiver. The parameter R of the receiver equals T in

a monostatic system.

If the true radiations eX, and ey, are non-orthogonal, the compo-

nents each couple to the desired space axes X and Y (see Figure 2.?-2).

The coupling may be accounted for by use of a coupling matrix with elements

tii. i and Jil and 2. Thus,
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sin Fi1r 2.2-2 we maX idta

[!] r (2-5-1)
ii tt I

: Ley tz t22] tYj

SUsing Figue 2.2-2 we may find that

-=ft tj 4 sin(ex) cos(e) (2.5-2)

Another matrix accounts for either rain or target scattering.

Still a third matrix accounts for the receiver non-orthogonal polariza-

tions. For a monostatic radar the matrix, defined to have elements

rij, i and J=l and 2, relates received fields at the antenna to reflec-

tions from range cell k as follows:

r y(k)] 21 22 e(k)l (2. 5-3)
y, 1  r ll22 eYk

where,

[l r r121 cos("X) sin(Ox)

•~r J r]==[t (2.5-4)
S21 r 221 sin(ey) Y coF;(e y) cos(e x-0Y)

= -sin( )

X Y
Here [.]t represents matrix transpose.

We now calculate the received vaveforms for the system of Figure

2.5-1. We shall use the exponential (phasor) representation of wave-

forms. The transmitter excitation is then

eT ETe (0.5
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where AT is the magnitude of eT and w0 is radian frequency. Let

Gj(a. 8) and GY(cs 8) be the transmit patterns for X' and Y' polari-

zation components evaluated in directions ct and B. The electric fields
÷ +

e and e - near the antenna become

+ eT/2) (2.5-6a)

*~ +JKG(,8 T/-~ (2.5-6b)

where K. is a proportionality constant.

To continue further we first assume ocattering is from a single

rain particle. Results are then extended to multiple-particle rain

and target scLttering.

Let rain particle i be located in range cell k at a distance

zi(k) - Z(k) + AZi (2.5-7)

where Z(k) is the distance to the center of the cell and AZ is particle

position relative to cell center. By combining (2.5-5) with (2.5-1)
+ +

the field components ex and ey may be determined. If we then use the

scattering matrix of the rain particle and include the attenuation fac-

tor due to disti-:e we may write the received fields ex(k) and e_(k)
X

due to range cell k as

-J2 z i(1)
e(k) Fi(k) S (k) t t l TGX(acz 1) K ze e 0

; 181 22i12 11 12 t * i 5i.T

(2.5-8)



21

Here the rain scattering matrix [a] has elements sni(k) for cell k.

We may next use (2.5-3) with 2.5-8) to obtain the fields in the

polsrization planes of ',he receiving antenna. The received waveforms

el(k) and e 2 (k) are related to these fields, ex,(k) and e;-(k), by

el(k) - K G , X( ) ex-(k) (2. 5-9a)

e (k) = +jK2RGy(ai, 0i) e,-(k) (2.5-9b)
2 2 r .'i Y

where K2 is a proportionality constant. Combining and recognizing

that XT, Gt = G r G and = Gr = G for a monosta-.ic system gives

ri 0 G) i 0

[e2 (k)][ 0 +JTGY (ai B Gi, 8T)(

KeTe 
(2.5-J0)

where K = KI K2 .

To be more explicit, (2.5-10) may be expanded to obtain el(k) and

e2 (k) as

e(Ic) -t (ai, 8) (t 0t l (k) + t 2 1  (k)]

+ t21(t11 2 1 i(k) + t 21 22 i(k)]) GX(Gi, 8)

_aT(-tu[t 12 a1 1 (k) + t22 812 1(k)] 20Z(k)

+ t 2 1 [(t 2 s 2 1a(k) + t 2 2 s 2 2 1 (k)]k GY(at, a )> K (2.5-lia)4,/ Z (k)
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e2 (k) = +JTGY((i, V i) ({t 2 [t±ls1 1 i(k) + t 8 (k)

+ t 22 [tlas 2 1 1 (k) + t 21 s 2 2 i(k)]} GX(aj, 8i)

!JT(t12(t1 2a11 i(k) + t 2 2 s 1 2 i(k))
S-J26 

0Z i(k)
Y ~ Ke Te

+ t 2 2 (t•1 2 s 2 11(k) + t 2 2 s 2 2 1(k)]1 Y(Q' )) 2T (2e5-1b)
V'12- (k)

%i

Certain special cases of these results are of interest. For example,

most of our work will involve assuming the system polarizations are

orthogonal (eX = 0 and 6 = 0 in Figure 2.2-2); with this assumption

t 1 t22 1 and t12 a t21 = 0. Hence,

e1 (k) - G(c, 8i) X {8 (k) GX(a 1 , 0 ) +jTs121 (k) GY(ai, B1)}

-J28 0Z(k)
KeT e*z T )(2. 5-12a)I

12 Z,(k)

KeTe
2 (2.5-l2b)

"Y2 Z(k)

Another special case derives from an assumption that the patterns

GX and G are identical. We have

GX(i, 0i) Gy(ai, 01) = G(a, Bi) (2.5-13)

giving

S. .. . . '' ' ' ' i i l l I ~ l li'
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-J 2%oZi (k) 2

e (k) G 22 (ai( s (k) JTSl (k)) KeTe ( -
el .. ..e . (k)

-J20 0 Zi(k)
Ke e .. ..

e2 (k) +JTG(a8v 01) {sa21(k) +jTs2 2 1(k)) 42, Z2(k) (2.5-14b)

Any of the single particle rain clutter results may be used for

the multiple particle case by simply summing over all particles in

cell k. The result of such a simmation coupled with the simplification

indicated in equation (2.4-8) is given below for equation (2.5-12).

KeTe-J26 0Z(k) Nkx)2 -20AKe e 0_ _ -aoZ
e 1 (k) 2( E s 111 (k)[GX(a Vl 8)12 e

+JT Zk 121(k)GX(a V 01i)GY(ai, Oi) aJ260 (2.5-15a)

Ke~-i2%•Z(k) 'N•

KeTe j k xy-J20 0AZ
_ +JT 2  E s 211 (k)11(ai, )GY(aif B1)e- 0Ie2(k) ~ r - +T z(k) =,1

9k 2 -J280A
+JT Z s 2 2 1(k)[G (oIt, 8.)] e j . (2.5-15b)

Similarly, (2.5-14) be:coes

-J2 0 Z(k)NKe Te 0 N k 2-J20 0AZ Iel(k) E G ( 00 Es (k) +OTul.(k)] Ai (2.5-16a)

2- Z (k) i-l 12i

-J28 0 Z(k)
KeTe 0 k -J28oAZi (2.5-16b)

e2 (k) +JT I G2 (Ca, BI) Is 2 1 1 (k) tjTS2 2 1 (k)]e
r2 ., (k) l-.
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If a target exists in cell k the received signals are given by

(2.5-11) in general if the smni(k) are replaced by the corresponding
T Sn(k). For the special case of m

target scattering matrix elements soe

monostatic system with orthogonal radiations we use (2.5-12) to obtain

T-J20 0 Z(k) X2T

e T (k) --KOT 2 2 - X('a 0)]2 S T(k) +JTG X((as )G z )sT2(01

1k /- ? 2 (k) 11 - 1

(2.5-17a)

-J20 Z (k)

eT(k)- +JT () {GX(ax O)J(e8 S)S T(k)

_+T[oG(G , 0)]2 8T (k)j . (2.5-17b)

If, in addition, all beam patterns are ',dentical ve use (2.5-74)

aLd Let

-J28oZ(k)

12~- Z 2Bo (k)

T T T (2-.5-18b)

In all these target signals ye shUll most often assume the target is

located on the beam axis so X a 0 and Y - 0.
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30 THE3ORETICAL RAIN MODEL

In this section a rain model is developed which is used in sec-

tions 4, 5 and 6 for calculating performance of ordinary and cancellation

systams. The model is built around the specification of raindrop shape,

s.ize distribution and orientation with respect to wind velocity com-

ponents.

3.1 'Drop Shape

It is well known that falling raindrops are not spherical [4, 14,

16, 20]. The drops brcome flattened on the bottom as they fall and may

oeven develop a small "dimple" at the center of the flattened surface [13]

as shown in Figure 3.1-1(a). Very small droplets fall with the least

distortion. Distortion becomes more severe the larger the raindrop

and is significant for drops of 2=n equivalent spherical diameter 1

or larger. Above about 2 mm the dimple occurs and beccmes more severe

as equivalent spherical diameter increases up to about 4.5mm where

drops tend to break up, even in quiet air, [15).

Being more specific, it is found (5] that for equivalent spherical

diameters less than about 0.lT7- the drop is spherical with negligible

error. Between 0.17nm and 0.5-m the drops are oblate spheroids. Above

*i " O.5 to about 4.5 nu the drops are asymetrical spheroids.

The equivalent sphere is that having the same volume as the distorted

drop.
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-2b

R

(a)

(b)

Fit. 3.1-1. Raindrop crossections. (a) Large heavily dis-
Storted drop, and (b) oblate spheroid model for drops with
medium distortion.
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Pruppacher and Pitter (5] have given an excellent model for rain-

drop shape. It appears to fit measured results quite well except for

the largest raindrops where the actual deformations are slightly unler-

estimted by the model. We shall next describe the shape model of

Pruppacher and Pitter (P&P model) and justify that our use of the ob-

late spheroid is a reasonable second-order approximation to the P&P

model.

The P&P model is a refinement of work due to Savic [171. Actual

drops will have a cross-section such as shown in Figure 3.1-1(a).

The drop, of course, has rotational symmetry about the vertical axis.

The radial distance to the surface from some interior point is r(e).

The P&P model consists of expanding r(e) as an arbitrary (but neces-

sarily single-valued) function into a Fourier series1

r(e) - b0 f + o c cos(n(3.-1)

and finding the "distortion coefficients" cn which correspond to a

balance of forces (aerodynamic pressure, hydrostatic pressure gradients

in the drop, pressure across the surface and surface tension) on the

falling drop. Here b is the radius of the equivalent sphere having

the same volume as the deformed drop and the cn were found under a

constant-volume constraint. It results that cI - 0 may be assumed

without loss in generality.

Notation of [5] has been altered to agree with that used here.
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The solutions of (5] for the c values are plotted in Figure 3.1-2j n

as a function of b,* The actual deformation ratio b/a, with b and a

defined in Figure 3.1-1(a), is a function of b0 as shown in Figure 3.1-3.

Notice how excellent the fit is to experimental data.

We now show that an oblate spheroid is a reasonable approximation

to the more exact P&P model. The reason for using the oblate spheroid

in analysis is that analytical solutions for the backacattered fields

exist E8] in relatively simple forms.

Consider expanding r(e) for an oblate spheroid having the cross-

section of Figure 3.1-1(b). Since the cross-section is an ellipse

Sr 2(O) b-° 2  (3.1-2)
2 2

1- t sin2(e)

where

e2 = . - (b/a ) 2 < 1 (3.1-3)

in the eccentricity ofthe ellipse. We select the two free parameters,

a and b, for the oblate spheroid first to make its volume equal to that

in the P&P model and second to make the ratio b/a nearly equal to that

of the P&P model. In the latter case, the actual relationship between

b/a and b0 is the solid line cf Figure 3.1-3. We shell choose b/a

according to

b + 2 -1/2 b0 in Mm, (3.1-4)

which is shown dashed. Thin function is a good approximation to the
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U
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Fig. 3.1-2. Coefficients in the expansion ofe the shape ofe

raindrops (solid curves) and the coeffticients of the expan-
slon of' the oblate spheroid (dotted).
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Fig. 3.1-3. Variation of drop deformation with drop size:
Comparison of theory and experiment. Figure from Pruppacher
and Pitter [5).



APP model except for large b0 where it actually approximates the measured

data better than the P&P model.

By equating the volume 47ra 2b/3 [181 of an oblate spheroid to the

volume 4rb 0 3/3 of an equivalent sphere we find that

b3 ( b i3(l - C2) (3.1-5)
0

for a constant volume constraint and any e < 1. The constraint that

£ must be chosen to approximate that of the P&P model requires that

e be given by (3.1-3) using (3.1-4). From (3.1-2) using (3.1-5) we get

2 (i- 2)2/3
r(2 ) b 0  - (3.1-6)

1 - .s2n 2(e)

This function has even symmetry and has two cycles of behavior in the

interval (-w, w). Thus, the Fourier series representing (3.1-6) has

only terms for n = 0, 2, 4, . . . when the expansion is over (-W, W).

The series may be written in the fo-m

r(O) = b {l + 0 + G n cos(nO)} . (3.1-7)
0,n=2

(n even)

Solutions for the coefficients c involve elliptic integrals and
n

are slightly involved to determine. The first two are

2 1/3
co = .. ÷ + K(c) (3.1-8a)

2 a 2,(l+0)- -I- 13 D() 3.1-%)
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Swhere K(e) and D(e) are complete elliptic integrals defined by [19]

w/2

K(e) -f de (3.1-9)
0 -V1CZSinze(O)

w/2 si 2

D(c) -f (e)e .(3.1-J0)0 6 1-;2"f (T)

We may now demonstrate that the oblate spheroid is a reasonable

apprcximetion to the P&P drop shape model. By comparing (3.1-7) for

the oblate spheroid with (3.1-1) for theP&P model we see that the En

should be nearly equal to the cn for all n. Two values of cn, as given

in (3.1-8), are plotted in Figure 3.1-2 as dashed curves. Excellent

agreement is seen for all even values of n. The main loss in using the

* oblate spheroid is the loss of odd numbered terms for n > 3. There

is only one odd term in the P&P Liodel of atny significance (n = 3) how-

ever, so the loss is small. (The term for N = 5 is well over two orders

of magnitude smaller than unity for all values of b 0 ).

3.2 Drolk-Size Distributions

The various mechanisms that cause rain to have a given drop-size

distribution are so complicated as to prohibit analysis. Indeed, there

is such variation in measured distributions in the literature that

one may conclude that Lo one distribution can describe all rain cases.

The beat that one can hope for is to find a raindrop distribution model

which is simple, easy to work with, and represents a more or lenn averapp

of many rain situations. With these facts in mind we shall discurs
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various measured data from the literature, consider available proposed

models, and finally select the model which seems to present the best

compromise in the desired behavior.

Before proceeding it is helpful to classify the forms of distri-

butions according the Figure 3.2-1. We define these forms as types A,

B, C, and D. The general behavior i3 all that is important in these

definitions and some variations rnay be expected.

Measured Data

Measurements of raindrop sizes were first made as early as 1895

in Germany by J. Wiesner using an absorbent paper method. For our

purposes, however, the most significant early paper was due to Laws

and Parsons (211 who used a flour peilet method developed by W.A. Bentley

in 1904, an American. Their data, taken in 1938 and 1939 in Washington,

D.C. on surface rain, were approximately type C below drop diameters

of about 1 (at 2.5mm/hr rain rete) and 2 (25mm/hr) mm, and type B above

these diameters.

Marshall and Palmer (221 analyzed surface data taken in Ottawa,

Canada (23] in 1946 using the filter paner method. They obtained a good

fit to their data and data of (21], for 1 < I < 25 mm/hr using their

famous distributici

n(d 0 ) = Ae mA m M- (3.2-1)

where

A 8000msoo -1 (3.2-2)
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A %

log.. (n) (n)X,4

%

B '

% %

10 %) log (n) %

%%

d0 
d0(C) 
(d)

Fig. 3.2-1. Pepresentative raindrop distributions.
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I
S.. I-°m . -1. (3.2-3)

Here n(dO) is the number of drops per unit volume (in m) having diameters

fromd 0 to do 0  dd0, I is rain intensity in mm/hr of water rate and

d is in mm.

Blanchard [24], using the filter paper method, has given average

distributions for a large number (113) of measurements taken in Hawaii

in 1952. Some of the data were taken et or near the dissipating edge

of non-freezing orographic clouds. Other data corresponds to rain at

the base of a non-freezing orographic cloud while some applied to non-

orographic rain (probably due to snow falling through the melting level).

Orographic data were mainly type B for low rain rates (<2mm/hr) and

type D for higher rates. The non-orographic data were type C.

Mason and Ramanadham [25] have given surface data on rain taken

apparently in England with a photolelectric spectrometer which is quite

similar to that in [4].

Monsoon rain data in India (1956) have been reported by Murty and

Gupta [26] which resulted from the filter paper method. Average drop-

size distribution curves based upon 229 sets of measurements were given

for rain intensities I from 2 to 140 mm/hr. The data were type C and

quite similar to the non-orographic data of [24].

One of the most comprehensive studies of raindrop distributions

is discussed by Fujivara [27, 28]. Data taken with a raindrop camera

related to data taken at Miami, Florida and Champaigne, Illinois on

a large number of storms. The data are too numerous to discuss in de-

tail. However, one of the most important observations to be made is

on how variable drop-size distribution can be. It can vary from a
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unimodal structure ( with maximum at about I to 2 mm diameter) to multi-

modal with many peaks; of course, the exponential decreasing structure

(type B) is also found. The variation (fltu.tuations) may even be pro-

nounced for a bingle distribution measurement so results do not usually

fm•msmooth functions. Another important observation is that distributions

always decreased for small drop sizes (type A). Fu.iwara also shows

time evolution of distributions which indicate great variability in

only short time periods (as small az 1 min.). Most of the data of

[27] were for thunderstorms., rainshowers and continuous rains.

More data on tropical rains are given by Sivaramakrishnan [29].

The filter paper mtehod was used to measure surface drop distributions

at Poona, India. The data, for non-freezing rain and rain from melting

snow were generally of type B but considerable fluctuation existed along

the curves.

Additional data on rain from a melting bard is given by Hardy [30].

Relatively steady rain at Flegstaff, Arizona on 31 July 1961 produced

distributions of type A for I from 0.11 to 3.4 mm/hr. These results

were mostly smooth curves with the peak occuring near 1 mm drop diameter.

Measurements were made with a photoelectric raindrop-size spectrometer.

The photoelectric spectrometer was also used by Dingle [31] to

measure thunderstorm rain of 8 October 1959 at Ann Arbor. Michigan.

Results were type B where the slope decreases as I increases for I from

0.18 to 51.6 mm/hr. A Marshall-Palmer (M-P) model is a farily good

fit to these data. Other data for a heavy shower on 23 October 1959

and for showers of 16 June 1960 also indicated reasonable agreement with

the M-P distribution, especially when the data were averaged (16 June

results).
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Using at 3.2 cn doppler radar during 1960 and 1961 at Pershore,

England, Caton [32] analyzed 83 of 1.07 observations of continuous rain

from melting levels in an excellent paper. The rains were related to

three warm fronts, four cold fronts and three low pressure centers.

Melting level varied froM 1.0 to 3.3 km above ground. Humidity was

nearly always high and evaporation below 750 m was negligible. Median

distributions at altitude are qulte smooth in their behavior, which is

type A. The M-P distribution fits the data only over the mid-range of

drop diameter and overestimates both small and large diameter drop num-

bers. Caton also gives bounding curves, within which, 90% of all drop

concentrations fall. These bounds are also smooth curves. Data were

for I from 0.1 to 5.6 mm/hr.

Distributions for high-intensity rains have been assembled by

Blanchard and Spencer (331. Their data are taken from Mueller and Sims

[34] and Hudson [35]. Data of [34] were taken from several types of

rain using a raindrop camera at several locations around the world

(Miami, Florida; Franklin, North Carolina; and the Marshall Islands).

One set of three curves representing about 10 sample distributions

(type A), and corresponding to T of 170, 205 and 216 mm/hr, show close

agreement to the M-P function for dorp diameters from 1 to about 3.5 rr..

For diameters outside this range the M-P function overestimates the drop

density. A curve, for T = 300 mm/hr, of data from [35] were quite

similar to the data near 200 mm/hr from [341 (again type A, the curve

averaged 9 samples). For I = 500 mm/hr, datp. based on averaging 3

samples [351 again gave similar nerfnrmance e.xcept the peak movcd from

near 1 mm diameter out to near 2 rin. All data from [351 were taken

at Miami, Florida.
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Digcussion of Measuremen~t Data

Including Russian data, to be comented upon subsequently, we have

discussed measurements from all ,;ver the world (U.S., England, Canada,

Brai1 India, Russia, Afrk• wxd the Marshall s.iands) covering inten-

sities from a few tenths of a mm/hr to," X' mm/hr. The data apply to rtin

at various spatial positions (within ruin cloud, at rain cloud base,

at edge of cloud, between cloud base and earth's surface and at the

surface) and correspond to nearly every type of rain generation mech-

anism (from melting band for snow, hail, sleet, froxu ncn-freezing clouds,

frontal storms, showers, convective storms and both freezing and non-

freezing orographic rain). Thus, it can be concluded that sufficient

results are given to represent nearly all typical rain situations which

can occur.

The factors which cause a particular rain situation are extremely

complex. Some of these are: temperature and humidity profiles, time

and spatial location of points of interest, spatial extent of rain cloud,

intensity, accretion (important in non-freezing clouds), coalescence and

drop breakup (related to intensity), evaporation (related to humidity),

orography, and the generation mechanism. Because of the complex nature

of the problem we make no effort to determine why, where or how a par-

ticular situation arises. We only here attempt to correlate the best

rain model to fit an averg rain situation. Thus, we place the averaged

data of (20], (241], [26], •0], (31], [321] and [33].

It is helpful to first divide all cases into two categories:

orographic and non-orographic. Typical distributions in the former case

are markedly different from those of the latter. They typically behave



39

as type B (with steep slope) for low intensity rain and as type D for

heavier rains.

For non-orographic rain it is again convenient to place data in

two categories. The first contains results obtained by the flour pellet

end filter paper methods. The second has data from photoelectric spec-

trometer, radar and raindrop camera methods. An immediately obvious

difference in distribution form between the two categories is seen.

For small drop diameters the former shows increasing concentrations

(type C) while the latter shows decreasing concentrations (type A).

One is tempted to suspect that splashing of large drops causes the

increase in the filter paper method (perhaps even the flour method).

However, as pointed out by Caton [321 the splashing problem has been

considered by at least one researcher and was ruled out. It is, of

course, possible that both categories of measurement method are correct.

On the other hand, a radar man tends to place more confidence in radar

data. Caton has carefully considered his radar system and concludes

the weight of evidence supports distribt'tions of the second category

for moderate and heavy rains. Regardless of how the above suspicion

is resolved, at least one thing is clear from nearly all of the data

of both categories: below some drop size, typically in the I to 3 mM

diameter range, actual rain drop densities tend to be overestimated

by the M-P distribution (An exception would be very light rain during

i.very high humidity).t In the mid-range of raindrop size the M-P distribution is a fair

to good approximation to all measurenent data. The region of close

agreement varies with intensity and Dyer [36] suggests it is from 0.75

to 2.25 mm for near 1 mm/hr, 1.25 to 3 mm for near 5 mm/hr and 1.5 to



_--

40

4.5 m for near 25 mm/hr. In the light of data shown here, those uppe'.ý

limits are perhaps optimistic.

For larger drops, measured distributions almost alvays are over-

estimated by the M-P curve. This fact is not surprising since there

is a practical size limit to drops caused by break-up.

The above results may broadly be summarized as follows. A reasonable

model for the drop-size distribution of average rainfa.l1 has these car-

acteristics: (1) a peaked behavior occurs with the peak typically oc-

curing to 0.5 to 1.0 mm diameter for intensities up to about 300 mm/hr,

the peak moves nearer to 2.0 for higher intensities; (2) for drop di-

ameters below the peak region, the M-P curve overestimates the ww•ber

of drops; (3) for drop diameters above the peak region and up to a

value from about 2 to 4 um depending on intensity (up co 300 rin/hr)

the M-P distribution gives results nearly equal to measured valuea

(typically within a factor of 2); (4) for diameters above the 2 to 4mnn

region the actual results are overestimated by the M-P carve.

Drop-Size Distribution Models

Having determined the desirable characteristics of a model we look

at the various models suggested in the literature.

The Marshall-Palmer [22] model already introdu.0& !s the oldest

and still remains widely used because of its simplicity in calculations.

Another reason is that it is a good approximation in the mid-range of

drop sizes, which contribute greatly to radar cross-section because of

the do6 power relationship. An often played game Is to find the best

A and A to fit given data. Some examples are given in [361 from various

researchers. Perhaps one of these examples should be mentioned. Using
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data of [26] for orographic rain

A = 7500 1-°25 (3.2-4)

A = 4.5 1 0 " (3.2-5)

are derived. Since our desired model characteristics are referred to

the M-P curve we use it tc, ccmpare other models.

Best [17] gave a rain model in 1950. It may be written in the form

dn-40 -(d0/a) n

n(d 0 ) =f - (3.2-6)
a

where

p}

a = AI (3.2-7)

W = Cr (3.2-8)

with A, C, p, r and n constants. Here W is the amount of liquid water

per unit volume of air and I is rain intensity. If d is in mm, I in

mm/hr and W in mm 3 /m3 the mean constant values are A = 1.3, C = 67,

p a 0.232, r - 0.846 and n - 2.25, and n(d ) is in m m M-1. The con-
0

stants may vary appreciably from their means, especially n if rain is

"showtiry or orographic [371.

Taking the average constant values (3.2-6) becomes

Vdo 
-. - (do/n n(d 0) - e (3.2-91
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Plots of (3.2-9) show clearly that the Best model does not fit our model

requirements (it is more like type C behavior). It may be better in

its more general form, however, we seek not only a good but also a

simple model if possible.

In 1956 Litvinov [38] proposed the following model as discussed

in [391

-Ad
3 f2

n(d 0) Ne 0(3.210)

where N and A are constants as far as intensity is concerned, but vary

with rain type. Thus, for a given rain type, this model is not flexible

since it does not depend upon I. It is not considered further.

Litwinov (39] also describes a model due to E.A. Polyakova and

K.S. Shifrin. The model (P-S) is also described by Krasyuk, et. al.

[4I1. It is

n(d A d0  (3.2-11)
0d 0

where A and y are given in Table 3.2-1. Litvinov

Table 3.2-1
j~eRi A Cm- 3=a- 3) .,

Thawing of Pellets (Hail) 64500i-0.5 6.951-0.27

Thawing of Granular Snow (Sleet) 11750T-0"29 4.871-0.2

Thawing of lonGranular Snow (Snow) 28201-0.18 4.01I-0.19

Tm.s article was translated by Mr. Jim Elliott of the University
of Tennessee.

W la a later paper by Litrinov [0], ax translated by Irving Emin,
h and A are said to be functions of intensity but not of the usual
form mI"0. This case tould appear to be true with [38] having either
a typographical or translation error. At any rate (3.2-10) 4oes not
account for the decrease of distribution for very small drop size
and is not considered further.
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10000

94 Hail, 25M/

Sleet, 2.5 mm/h

100

P4
0

0

10
Hardy, 2.5 mm/h

(snow')

(ice, type not known)

0 12 3 14 5

Fig. 3.2-2. P-S model compared to measured datn near 2.5 nun/h rain

intensity.
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!: Sleet, 25 mm/h

4-i 100

Snow-
,..25 mm lh

10

Dingle,,
24.2 mm/h

(Probably snow)

0.1

0 2 3 4 5

ao (mm)

Fig. 3.2-3. P-S model compared to measured data near 25 mm/h rain
intensity.
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10000
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100 Hail, 50 mm/h

IN...•.^ 50 ,M/h ,

Sleet,

1 0D 
i g e

5C. 2 nm/h
(Probably Snow)

1

0.1

0 o 2 3 4

do (MM)

Fig. 3.2-4. P-S model compared to measured data near 50 mm/hr rain
intensity.
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10000

[ • -P, 200 mm/h

1000

•"" •,,Hail , 200 mm/h

I 100

'0 Sleet, 200 mm/h

C,

10 Snow, 200 mm/h
Composite of----

Blanchard and
_• Spencer' s camerad.ata,--200 ram/h,

•i,: (rain origin not known)

1

0.1 I I I I V
0 2 3 4

do (mm)

Fig. 3.2-5. P-S model compared to mcasured data near 200 mm/h rain
intensity.
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has shown Russian data for all three types of rain which are fit excel-

len'ly using (3.2-11). Figures 3.2-2, 3, 4 and 5 illustrate the P-S

model for I = 2.5, 25, tO and 200 mm/hr respectively. Spotted on these

figures are various average data described earlier; also shown where

possible are the estimated origins of the rain, that is, whether orig-

inating from melted snow, sleet or hail, etc. For moderate rain*,

using Figure 3.2-2, there is excellent agreement with averaged data,

especially if we assume the Caton data (taken from August to December

1961 in England) originated as hail. For heavy rain the model does

not fit average data too well as seen from Figure 3.2-3, if Dingle's

data are from melting snof. On the other hand, if the data are from

melting hail, the agreement is quite good. Similar comments may be

made about excessive rain I•rom Fire, 3,2-4. FoT deluge rain Figure

3.2-5 shows the model is a poor fit regardless of the rain's origin.

To better place bounds upon the usefultess of (3.2-11) we have re-

plotted scme of Litvinov s measured data [391 in Figures 3.2-6, 7, The

first figure is for rain originating from hail. Fxcellent agreement

is seen for intensities from 1.5 to 15.2 rmt/hr. (Litvinov also shows

curves for x-.4 and 7.25 mm/icr which also show close agreement). The

curve for I = i.5 represrents in average of 77 measureaents while only

a single sample applies to the I : 15.2 curve. The second figure shows

excellent agreement of data and theory for rain from melting snme, for

We define intensitie3 as: dirizzle, 0-0.5 mm/hr; light rain, 0.5-2.0 mm/|'ir;
moderate rain, 2.,0-8.0 imn!hr; heavy rp•n, 8-32 mm/hr; excessive rain,
32-128 mm/hr; deluge rain, 128 mm/h higher.
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10000
~i i

,-Pq 15.2 mm/h

1000
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Measurements, 15.2 mm/h
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.-----. 1..-, 1.5 mm/h
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Fig. 3.2-6. P-S model compared to measured data at rain intensities
of 1.5 and 15.2 mm/h.
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Fig. 3.22-7. F-S model compared to measured data at rain intensities
of 1.5 and 15.2 mm/h.
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intensities from 1.5 to 11.1 mm/hr (curves are average of 4 and 14

samples respectively). Excellent agreement is obtained for intermediate

intersities of 3.52 and 7.47 mm/hr as well [39]. Finally, Litvinov also

gives results for rain from granular snow (sleet) which verify agreement

of the model with measurements for intensities from 1.56 to 10.88 mm/hr.

Thus, in summary, the P-S model appears to represent average rain-

drop size distributions quite well up to intensities of at least 15 mm/hr.

There is some doubt as to its validity for intensities near 25 to 50 mm/hr

and it is not a good model for intensities near 200 amm/hr. It can prob-

ably serve useful analytical purpose for rains through the heavy region.

Fujivara (27] has given a model involving four variable parameters

and is applicable to fitting individual storms. It is

n(d 0 ) = • (do D e-(d-D0) /a D < do ' (3.2-12)
a

where N is the total number of drops per unit volume; D is a "mode

shift" parameter, typically around 0.8 mm on the average; S is a "skew-

ness" parameter usually varying from I to 3; a is a "broadness" param-

eter which is related to rainfall rate, and, from fitting of measure-

ment data, ranges from 1 to 3.5 mm. Because of the number of parameters

having unclear relationships with intensity and rain type (3.2-12) is

difficult to work with. Fujiw•ara shows a good fit to many data and

(3.2-12) may be very useful model when these relationships are developed.

However, until the developments are available we shall not consider

(3.2-12) a useful simple model.

Finally, we briefly discuss the log-normal model. According to

Dyer [363 it is the most universally applicable distribution. However,
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Litvinov (39] finds it to be non-applicable to rain from melting snow,

sleet and hail. He later [40] shows explicitly that it does not fit

data from meIting hail. Incidently, according to [40], the log-normal

distribution was suggested by Levine [42]. Because of Litvinov's con-

clusions we do not consider the lng-normal distribution further.

S of Drop-Size Distribution Models

The Marshall-Palmer model of (3.2-1) remains a reasonable model

for most average rains over the important mid-range of drop sizes.

It can give useful analytical results because it is easy to work with.

For orographic rains the M-P distribution with A and X given by

(3.2-4) and (3.2-5) has teen developed [36] from measurement data.

* For non--orographic rains, such as rain from the melting layer, the

Polyakova-Shifrin model of (3.2-11) gives excellent agreement with many

measurements and does not appear to be difficult to work with.

During this otudy a&l analytical work will assume either the M-P

or P-S distribution for no'-orographic rain.

3.3 Probability Densitj Function for Drop-Size

Let n(d 0) be a drop size distribution. The total number of drops

N is

N f n(d)ado .(3.3-1)

0

For the M-P distribution

f- -Ad 0

N O Ae dd 0  / .d / (3.3-2)
0,
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For the P-S distribution

N f M2 -yd
AdO dd 2A/ . (33-3)0 0

We shall define the probability density function for a drop diameter

by

p(dO (3.3--4)

For the M-P and P-S models

-Ad0

p(do) - ke 0 - P (3.3-5)

3 -yd 0P(d 0 ) - -: d2; , P-S . (3.3-6)

Since p(d 0 ) is a function of rain intensity I through X and y,

it must be considered as a conditional density if I is random.
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~4.o 0ORDINARY sysTD4 PEFrmAIIcE

When a linearly polarized radar operates in rain, using a frequency

above a few gigahertz, there may be undesirable clutter from backscatter

due to raindrops. The usual way of reducing this clutter is to resort

to circular polarization. If the system transmits and receives perfectly

circular polarization in all directions, and if raindrops are all spherical,

the clutter may be totally cancelled in theory. Neither of these conditions

is satisfied in reality and the purpose of this section is to determine

approximate bounds on the practical clutter cancellation achievable by

a system designed to radiate and receive approximately circular polar-

ization. Practical effects of raindrop shape, size distribution, and

drop orientation are determined for various rain intensities from 0.5

to 128 mm/hr.

Two situations are developed. First, the raindrops are assumed

to be perfectly spherical and the effect of system polarization tolerance

is found. Second, the system polarization is assumed perfectly circular

and the limits due to practical rain are found. In the latter case,

both the Marshall-PalImer (M-P) and Polyakova-Shifrin )P-S) raindrop

models are used to achieve numerical data.

S4.1 System Model

The system model is that shown in Figure 2.5-1, and described

"in Section 2.5. The- matrices [t] and Er] are chosen to give orthogonal

space polarizations
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4.2 System Clutter Powers

Ordinary Stem

Cancellation ratio CE will be defined as the ratio of clutter

powers P ref/Pord where P ordis the output clutter power of an ordinary

or circularly polarized system. Pref is the clutter power of a "refer-

ence" system defined as having a single polarization (say X), the same

pattern and transmitter power as the ordinary system and operating in

the same rain environment.

Using complex notation, Pord is the expected value of lerI 2 in

Figure 2.5-1, where we henceforth drop the functional dependence of

all quantities on k since we deal only with a typical cell. Now e =

e1 + e2, where el and e2 are produced by the sums of the backscattered

fields from the N particles in cell k. Carrying out the necessary

algebra leads to the ordinary system power

Pord - JAI 2  Z IG(ai. 61. I'lli "+12Ts121 T s 2 2 12 (.2-1)

Here

KeT eJ
2 Z

A (4.2-2)

Z is the radial distance to the center of cell k, K is a constant re-

lated to the range equati3n, B - 2w/A, A is wavelength, and j - •-I.

In arriving at (4.2-1), use has been made of the fact that s

= s21i. Also, it has been recognized that radial position of raindrops

is unifromly distributed over a range cell, which is large relative

"L• - ' . . . : I- • . . . .. . . .. . | . . . . . . • . . . .
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to A, and position is independent of all other randon quantities. Hence

the expected value with re3pect to radial drop position has already

been taken.

Reference System

The reference system clutter power is most easily obtained by

setting s12i = 0 and s221 = 0 in (4.2-1) and adding a factor 2 to ac-

count for the fact that the two systems must radiate the same total

power

f IA 2E lG(a ) (4.2-3

ref 1i i'

14.3 Clutter Cancellation Ratio

Clutter canc llation ratio CR becomes the ratio of (4.2-3) to

(4.2-1). The expression simplifies by observing that the raindrop

location angles ai and S may be considered statistically independent

of all other random quantities which are related to drop scattering

properties. It is furthermore reasonable to presume the same statis-

tical distribution function for these angles applies to all drops.

With these considerations we have

N
2E{( Is 12)

C•= i=l 11 (I•.3-1)
N

E( Isn11 2JTS1 2 - T s2 2 I1)
jul

Further simplification follows the assumption that N is nonrandom.

Such a situa.tion Is true if the rain intensity I is taken as constant. j
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IMakinag this assuaption, and noting that the same statistical distri-

bution applIes to all raindrops, we get

I(Iu 2T 9 12 - T2 a522 12

Here we have dropped the subscript denoting particle i since it is no

longer required. We consider two s~ecial cases of (4.3-2).

Ideal Rain Case

For spherics:~. raindrops 9 12 0 and s 11 s 22 Cancellation

ratio becomes

2RY (4.3-3)

11 - T21

This result describer the performance of a nonidee.J systemi oper-

ating in light, drizzle-type, rain since drops become more nlearly

spherical as rain intensity decreases. Figure 4.3-1 is a plot of CR

from (14.3-3) as a function of ITt with thephase of T as a parameter.

To obtain 30 dB of cancellation, a system must not have more than 0.2

dB of amplitude unbalance in the two linear polarization components

for zero phase unbalance. Phase unbalance rapidly decreases the al-

lowable amplitude tolerance.

Ideal Syste Cas*

It can be shown that the functions s are all real. Wit'l T
mn

(4.3-2) vimplifies to
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22E{s I

"CR .2 2 ( .3-4)

11 221+4s 12

The calculation of CR can not be carried further until the scat-

tering parameters s are determined for a typical raindrop. These

relationships were given in (2.3-6). We use these expressions and

assume in all following work that the radar beam is pointed horizontally

and radiating in the Z direction with polarizations in the X and Y

directions. Equation (4.3-4) will reduce to

CR 22 y + (gx - gy)sin2 (C)sin 2 (*)] 2 1

E{(•x - g) 2[sin2 ()sin 2(*) + cos 2(002}

where gx and g are functions of drop equivalent diameter d0 . They are

given approximately by

B d3

0

1 ( (I- tan- (x)
r

2Bd3
20 ij.4li3 -V-3

2i ..- + -Z2 tan- (x)

Here

x - do/5 (4.3-8)

B - -rc 1(16o 9 )/6, (4. -1-9)
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E is the dielectric constant of air, Er is the dielectric constant

of rainwater (relative to air), and d is in millimeters. The angles

C and * define the fall-path of the raindrop with C being the azimuthal

angle of the vertical plane containing the trajectory of the drop while

*is the fall angle measured from vertical.

It is quite diffiLult to solve (4.3-5) exactly. Part of the dif-

ficulty arises because 4 and 4 are complicated nonlinear functions

of wind components and * is additionally a function of d0 through the

drop terminal velocity. In general, the winds should be treated as

random quantities. Other difficulties derive from the complicated

behavior of g and g y. Most of these problems can be avoided if we

seek to calculate bounds on performance, rather than calculate CR ex-

actly.

For the lower bound on CR we may show by direct calculation that

(gx - gy) is positive while gy is negative and 1g, - gyl < Ig J for

all do. Thus, as a function of C, (4.3-5) is minimum when sin() 2 1.

Presuming this to be true for the moment, the resulting expression

is minimum as a function of 4 when sin (2) = 1. We define the final

function as CR min It is given by

2
CR MZ X 2 3-10)

E((gx-g)

More careful study of the behavior of 4 and 4 shows that (4.3-i0) re-

sults if we make the simple assumptions that all winds are constant

(nonrandom) and that a strong horizontal wind blows.
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For the upper bound, (4.3-5) is maximum, as a function of t, for

2sin2(•) = 0. The resulting expression becomes maximum as cos(ý) approaches

zero. Again assuming nonrandom winds with a strong ho'rizontal compo-

nent Vr, the upper bound, defined as CRMax, becomes

2 Vr•
4 { 2}

CR_ r 4 (4.3-11)
E( ai-gy) (v-vO) I

Here V is the vertical wind speed and V is the drop terminal velocity,

which is approximately given by

v : 10.105%, _ e -d12] (4.3-12)

if d0 is in millimeters.

A final situation supposes all winds are zero. The (22) reduces tc

2E(g 21
CR = (no winds) . (4.3-131

nIo E{(gx-gy) 2}

4.4 Ideal System Numerical Results

Calculation of (4.3-10), (4.3-11) and (4.3-13) is still not a

simple task due to the form of the expressions for g x and gy. Powever,

2~ 2 2direct calculation of the functions g' gy and (gx-gy) has shown:

1) that sensitivity to the parameter E is small and, 2) they may ber

approximated closely with simple functions which lead to closed-forrn

solutions for the various expectations. Thus, approximations were

developed and expectations were taken assuming ra ndrops distributed
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accordinG to both the M-P dirtribution and the P-S distribution.

Marshall-Pealmer Distribution

The applicable distribution probability density is (3.3-5) where

A is given by

A = 4.l1-0021 (4.4-l)

where I is rain intensity (mm/hr). With this density function (4.3-10),

(4.3-11) and (4.3-13) evaluate to

l= 122.T" x,[l.405 - 1.6562 + 0J] (4.4-2)
m 155.63 + A2

r 123.96 [0.T53+ (+4.4-3)Sx 0105  + (155.63XX 2)

~no 123.6 1[05T3 + 2 Aa(4.4-4)no i-55.63 + x2

Assuming V = 0. Here

4 6 1_464

[I + (O.5/)] [1. + (1/x)]9  [1 + (1.5/07)

+ -(4-45)

El+

12 =4I + 6111

[1 + (0-577 [+ + (i/A)) [1 + (1.5/1)] 1 i

1 1 (4.4-6)

[1 + (2/A)]1

_
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FIG.4.4-i. Bounds on rain cancellation ratio for a system having
perfectly circular polarization when operating in rain described
by the Marshall-Palmer drop-iize distribution.
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Figure 4.4-1 illustrates plots of (4.4-2), (4.4-3) and (4.4-4).

Polyakova-Shifrin Distribution

Here the probability density function of drop diameters is given

by (3.3-6) and y is given in Table 3.2-1. Calculation now produces

/ 2CR 77.21 (1.21 + y ) ( -4.-7)
CRmax 10.105)4 xi (2'28.467X 2 'y 

2  (.

CR =76.469 _y (2.76 - 2.662 +y 3 ) (+.-8)
Smin 228.467 + y2

2 2
,(no ind) = 71.21 y (1.21 + y

2
228.467+

where

X 4 6 4
=1- [1 + (o.5/Y)]l 11 + (/)l (1 + (l.5/y)]

+ 1(4.4-o)
[X + (2/y)]+ /

2 [1 + (l,,y)]• 3 [i + (1.5/y)j1•

1
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The expressions (4.4-7) through (4.4-9) are plotted in Figures 4.4-2

through 4.4-4 for rain from melting snow, sleet and hail.
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5.0 PIMOMUANCE OF CAIICEI/ATION SYSTEM WITH UNIFORM4 AIN CHARACTERISTICS

5.1 Rain Characteristics

As in section 3 we consider rain particles to be nonspherical in

this section. However, unlike chapter 3, we shall here assume particles

"all have uniform shape, size, and orientation.

5.2 System guations

The cancellation system is shown in block liagi am -eorm in Figure

5.2-1. At the left of the diagram, the transmitter signal is split

in a power sense. Half of the signal power is directed to the antenna

which generates the X component of the radiation field. The other half

of the signal power is directed through the lower channel and eventu-

ally is used to generate the Y component of the radiation field. How-

ever, this second portion oa the signal is modified in magrnitut3e and

phase by the element T. It is this elemeA, T which represents the basic

system imperfections which prevent the transmission of a truly circu-

larly polarized field. Finally the signal in the Y cnannel is shifted

in phase by ! 7r/2 with the +w/2 corresponding to polarization of a lef*

hand sense and the- -n/2 producing polarization of a right hand sense.

The quantities e , and e , represent the electric fielCi produced

by the X and Y antennas respectively. By using equation (2.4-1), one

may express these fields as indicated in equation (5.2-1).

K. 5eG x-JO z
ex" T e' Z 0 (5.2-la)

+ -+JTK eTGT e -is.0Z
e ( ?-Tb)Y 2
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4))

4)j '-1 0

U) d j ~

+ +
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If the transmitter antennas are not perfectly orthogonal then a

cross coupling of the electric field components occurs as indicated

by the t factors in Figure 5.2-1. This cross coupling is expressed

mathematically in equation (2.5-1), and the tij terms are defined in
+ +n

equation (2.5-2). Thus, the true orthogonal components, ex ean

may be expressed as

+ +.
e =t+lex- + t e- and (5.2-2a)

li11x 12y3

"e t+1e+A + t e y- (5.2-2b)
y 21x

+

The relationship between the incident field components, ex arid
+x

e +, and the reflected or scattered field components is given by equaticn
y

(2.3-3) with the Sij terms defined in equation (2.3-6). These equations

together with equation (2.4-2) which indicates the propagational mag-

nitude and phase effects may be used to express the scattered field

components at a distance Z' from the particle as

++
1S1ex + S22e -JoZ

e- =e (5.2-3a)

Y z"

As in the case of the traunsmitter &.,tennas, the axes of the re-

ceiver antennas may not be perpendicular to one another so that cross

coupline of the field compon.ents occurs. The mathematical baisi for

this effect is given in equation (2.5-1), and the rcpresentation used
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in this work is shown in equation (5.2-4).

ex =rl1ex + r12(2 e (5.2-4 a'

ey- = r 21e + r 2 2e (5.2-14b)

Receiver signals e1 and e2 may be determined by application of

equation (2.4-3).

e= e2 G-e, a K2G x[r e- + r12e]

K2 X I+ 1 2 + ej ol e 8 Z I

K 2 GX Lrll(Sllex + S2 e+) + r 1 2 (S 2 1 ex + $22e e11-oe

z-.ZA

K2 GrX {rl(Sl tile:'+ tl 2eye)+ SI2Kt 2 1e" + +

++ + + *

r1 2 (S 21 tllex + tl 2 ey.> + S2 2 t2 1 e. +t, e 0

12 T C1 T2 Y 2t2  + 21 l2 <2r

K12eTG r r Os+ll JTtl2GYT, +x • GY'

'2"-Z'Z"- l(l "11G 1- 12T + S12 ",t21O"T '-t" 22GT,'

*r 1 2 (S21'tl(GX +1JTt- 2 GT1 + S 2 2 t2 1GX _+JTt 2 2GYT> ] eT0(ZZ)

(5.2-5a)
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F2= Z.Z" I 21

+JRKeG rt 1  ~ N S )t TJ +JGt2e
22 ( 1ýlGX-Jt2T + St 22 T / 11 2

(5.2-5b)

For the case of a monostatic radar the following relationships

are valid.

z=z"

R=T

ex Gx GxeT = R

.:Y Y _ Y
Gý G GT GR

The assumption that the antenna axes are orthogonal results in a sig-

nificant simplification in equations (5.2-5a) and (5.2-5b). This sim-

plified form is given in equations (5.2-6a) and (5.2-6b).

KlIK2 eTG -2%

S= 2 _G S +JTG S I e (5.2- 6 a)

-r,2 72 1G - 2 -jt0

+JRKI1K 2 eT GY XS2 _ J0

e2 air2l 2 TG= S 2 1 . +JTGS 2 2  e (5.2-6b)

Use of the definition in equation (p. 4 _4) along with the assumption

x Ythat the X aEnd Y radiation characteristics, G and G , are Identical

results in a further simplification fur the terms representing the

signals received an a result of nattering by one partle~e.
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KeTrG2 (01, 8) -J28 0 z
= - s] e and (5.2-7a)1 /2- z2 11 ,T1

+JTYTG2 (,M, 8)
e/ Z2 [S21 _TTS22] e- 2 Oz (5.2-Tb)

where

x = GY - (cG,,) . (5.2-8)

In the process of evaluating actual radar system performance in

the presence of rain, it will be necessary to consider multiparticle

scattering. As pointed out in section 2.4, the multiparticle effect

is evidenced by a summation of individual particle returns such as those

of equation (5.2-7). Expressions for e1 and e2 for multiparticle scat-

tering with the same assumptionts as used in equations (5.2-7a) and

(5.2-7b) are given in equations (5.2-9a) and (5.2-9b).

KeTe kJ280AZi
(k T G2 (a2(k)] (5-2-9a)

! T eTe-J2 0Z k N 2 280A I
e2 (k) = 2Tel G2 (aI, 8) s 2 1 1(k) +JTS2 21 (k)] e (5.2-9b)

Before it will be possible to continue the analysis of the can-

cellation system, one must define the G element in the system block

diagram. The original definition of G was provided by Rice and Peebles,

and it Is provided below.



74

S~k+M e (t)

G(k) k-l 1 (5.2-10)

I zk-M

The value of G at the time the system is processing the returns from

ththe kv- range cell is determined by the negative of the average value

of the ratio e1 /e 2. This ratio is evaluated in the M cells before cell

k, cell k itself, and the M cells after cell k.

Using the definitions of e1 and e2 provided by equations (5.2-9a)

and (5.2-9b), one obtains the following expression for G.

k 2 -J2 0,AZ.I~+ Gr i=) (5.2-]- lJ.0}

G(k) = 1 +•TJ+) . . k-J2ol

- =k -M G2(rA a 8)[S2 (k) _+JTS22W1l e

1l 1 21i - 2
i1l

If all the particles within a given range cell have the same size,

shape, and orientation then

G~k)k+M [S811 (k) +JTSI12(9,)]-l
G(k) [- W •+jT( . [.+-2 T

Z=k-M 2

G may be expressed by a yet simpler form by requiring cell-to-cell

uniformity in all particle parameters. This assumption gives

[S -I [SI +JTS72
-) (2M+l)i+JT(2M+l) I~ JTSý2J 77 S, jT,,

(5.-1)
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tAll of the equations developed thus far in this section pertain

to the situation in which only cluttLr is present in the cells being

observed. In the event that a target appears within one of the cells

of interest, one obtains the following expressions for el, e2 , and G.

(k) = ec(%) + eT(k) (5.2-14)
1 1 1

e 2 (k) 2 ec(k) + e (k)(5.2-15)

The quantities el(k) and e2(k) are the clutter contributions to the

total backscattered signal and will in generel be expresso~d in the form

indicated in equations (5.2-9a) and (5.2-9b). Target contributions

to the backscattered signal are indicated by eT(k) and eT(k) and these

terms find expression in equations (2,5-17a) and (2.5-17b). Application

of equations (5.2-14) and (5.2-15) to general definition of G in ecuation

(5.2-10' gives

:k' el )
-1 k+M.e,( 1  e (k)

Gk) 5T--r, E .-(77 + e•-(-](5".2-16)

E e2M7i (2-R-7l7 IZk-M 2e 2(k) (.-6
I=k-M Lk2

Finally, uoing the appropriate combination of expressions for

el,, e2 , and G, one may express 'he receiver output, e , in general.

e r(k) = el(k) + G(k)e 2 (k) (5.2-17)
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5.3 Eval1ition of Ptrformence

In this section, the output of the cancellation system as indicated

generally in equation (5.2-17) will be evaluated for several different

situations. These situations are itemized below.

1. Only clutter is present in the radar system's field of view.

2. Both a target and clutter are in the system's field of view,

and target occurs in the range cell presently bei,.,g examined.

3. Both a target and clutter a-e in the system's field of view.

The target occurs in a rarg• cell whose returns are used in

the evaluation of he present G function, but that cell is

not the cell presently being examined.

For the first case, the needed expressions for el, e2P and G are

provided by equations (5.2-9a), (5.2-9b), and (5.2-13). The receiver

output signal is

er(k) = e 1 (k) + G(k) e;(k). (5.3-)

Equation (5.2-13) reflects the assumption of cell-to-cell uniformity,

and when this concept is applied to the definitioncs of e1 and e2 a sim-

plificatior in form results.

Ke Te 2 0zk k 2 -J260A7i
e,(k) = # [S 1 1 -JTSI 2 = • (; (•it •i)e (5.G-2a)

k- 01

+JTKe k k -Jo AZ.
(k) rT + jT3 j ] _ * (a (• 0) (5 , e-?0)

l . I -2 ' .
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G(k) = -1 +jTs 2 T (5.33)
+TF21 -j'r 22i

One may now evaluate the system output inder the assumption of cell-

to-cell uniformity by substituting the above expressions for el, e 2 ,

and G into the system output equation, (5.3-1).

KT -J 2B00Zk Nk2 200A

e (k) 2 [SII =JTSI)]FIG2(ai, ai)e

-J2 B~oZk

[Sll +JTSI 2 I (+IT)KeTe

_ 21T)[$ +JTS2 2  -Z2 [$ 2 1 -S 2 2 1
k

"N1, -J20 AZ7
G 2 G(ai, 0 )e 0 0 (5.3-4)

In the second case, the appropriate expressions for e1 , e,, and

G come from (5.2-14), (5.2-15) and (5.2-16).

e r (k) (k) + G(Y,(k)

e (k) + 1+M e 1.., ') + e 2 1(k)e(k) (5'3-5)

L-kM k2M

1+ M -

t¢k



78

2M ~ (S 11 JTS )12 (

ek)+ G1(k )e 2(k)) + (e~(k) + G, (k)e 2(kJ (5.3-8)

What seems to be a new parameter, G1 (k), appears in the last step of

equation (5.3-8). Actually, comparison of C1 (k) with the G(k) of equation

(5.2-13) leads one to conclude that the two parameters are the same.

This latter observation simplifies evaluating equation (5.3-8) since

the first part of the equation,

el(k) + G (k)eC(k)

should now be recognized as being the same as equation (5.3-4). Thus,

er (k) -•-• [e(k) + G (k)eT(k)] (5.3-9)

The statement defining the third case specifies that while the

target is not in the cell p.'esently being examined it is located in

one of the cells being used to evaluate 0. It is assumed for this

analysis that the tar.get is in cell m, and thus e1 (10 and e 2(k) are

given by equations (5.3-2a) and (5.3-2b) respectively while

k+M e e I (M)

G ( 2M 1-~--1) e- (5(-7m
--k-M

L- o
This expression for G along with the specified expressions for e and

C2 may be used to obtain the following expression for er.
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er(k) e (k)+G(k)e (k)= e [(k)z (eI(m) e (k)J (5.3-11)

(97e(m) +e(m)

1 1T (5.3-12)
eCT2 e (m) + e2 (m)

Equation (5.3-11) will be further analyzed for two special situations.

The first situation, which might be referred to as the high-noise en-

vironment, corresponds to the mathematical statements

C T
e (m) >> el(m) and (5.3-13a)

eC ()>> e'(m) (5.3-13b)
e2( 2

When equations (5.3-13a) and (5.3-13b) are applied to equation (5.3-12),

the following approximations are valid.

(m) eC(m)1 1 ( (5.3-14)
e 2(m)

1 1 1
+1 ~ \e2(m)/

The following results are useful in working with equation (5.3-15).

eC m) [Sll TS1 2 ](n-) = 1"2-__ (5.3-16)

e C (m) iT) [$21 +JTS2 2 ]
C2 -
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- ejk) TKeTeJ2 Zk NkJ28AZ

The result of applying equation (5.3-17) to equation (5.3-15) is given

I in equation (5.3-18).

er(k) =i' r) [el(k)- eT(k)] = 0 (5.3-18)

J A second interesting situation arises for equation (5.3-11) when

eCm) m

el(m) > 1 and (5.3-19a)

c1

These assulptons lead to what might be called the large signal environ-

ment, and the output signal, er, is determined to be

5.4 Comparison of Performance

In section 5.n3, expressions were developed for the output ofn the

cancellation system under various cond(tions, and In this section, the

results obtained for the cancellation system shall be compared with

the appropriate results for the reference system. The basis of com-

pamison, in most cases, dhall be the ratio Cs which is defined below.

L | j



- E Z

I

Fig. v.1-i.. Output voltage and IcaA impedance.
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CR ouput gower of the reference system
output power of the cancellation system (5.4-1)

The method of power calculation requires some discussion. Figure

(5.4-1) shows a potential, E, applied across the terminals of a general

impedance, Z. From the theory of netovrk analysis [431, one recalls

that when E and Z are represented in phasor notation the complex power

delivered to or absorbed by Z i

z • (5.4-2)
z

In the present analysis, E represents the output signal of the radar

receiver, and Z corresponds to load impedance of the network driven

by the receiver output. Now apply the following definitions.

er (k output signal from reference receiver.

ZRE the load impedance of the reference receiver.

P REF the output power of the reference receiver.

er (k) output signal from cancellation receiver.r CAN

Z the load impedance of the cancellation receiver.
CAN

PCAN the output power of the cancellation receiver.

cR , E (5. 4--3)
PCAN

ler(k ) XI 2  ZCA N
= r ,-fIr 'k)cANI 2 "zR•.
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if ZCAN ZR= F then

CR = jer(k)RF 12
ler(k) CA.W12

It is the form of CR indicated in equation (5.4-5) that will be evalu-

ated in the following material.

Equation (5.3-4) shows that the output of the cancellation system

is zero when only clutter appears in the field of view of the radar,

and thus

le r(k)CA12 = o0 (5.46)

The output of the reference system given the same constraints imposed

on equation (5.3-4) is

KeTSll -J22 8 0Zk -J220 Zi
e r(k) REF " 2 A GG(Mit Bi)e (5,4-T)

rZ2 i=l
Z k

. aeje (5.4-8)

Thus,

l er(k) 3l 2 = 12 # 0 , and (5.4-9)

the cancellation ratio may be shown to be

C a2 (5.4-n)0

The significance of equation (5.4-10) is that it states that the

cancellatin system offers infinite improvement in clutter cancellation

when compared to the reference system.
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The radar system output under the conditions outlined in case

two of section 5.3 contains both a desired canponent, referred to as

the signal, and an undesired component, called noise. When the system

output contains both desired and undesired components, one finds that

an excellent criterion for Judging system performance is a ratio which

indicate3 the relative strength of the signal to the noise. This cri-

terion is referred to as a signal-to-noise ratio [44], and the ratio

is defined in equation (5.4-11).

SNR = output signal power (5.4-11)
output noise power

The reference system has an output

er(k) - eC(k) + eT(k) (5.4-12)

where eC (k) is the noise or clutter component, and eT(k) is the signal

or target component. This leads to the signal-to-noise ratio for the

reference system given in equation (5.4-13).

SNR - le ITk)1 2  T
JeCk) + 2Be KeC~k) eT(k)

It is evident from equation (5.3-9) that the cancellation system

output contains no noise or clutter component so that the signal-to-

noise ratio for the cancellation system is infinite.

When the operating conditions satisfy the specifications of the

third situation in section 5.3, one wishes to minimize the system out-

put since any output under these conditions amounts to noise. The

cancellation rutio will again, be used a the criterion of performance,

and the following exiression. &-e used in evaluating the cancellation

rat!
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Nr•yll -ý21oZk •k 2-J28 0AZ i
e REF = _1 eG 2 (ci 1 , Bi)e = AS11B (5.4-14)

A = oZk (5-i-1)

Nk 2 -J20 0AZ i

B= • G2 (a 1 , 8i)e (5.4-16)
1=1

ler (k) 1 2 i 2 s I 2  (5.4-17)

The output of the cancellation system in a high noise environment

as given by equation (5.3-18) is zero, and thus, the output noise power

is zero. Thus,

IAB12 s 2
cR = -- --- 1 (5.-4-18)

0

If the large signal environemnt assumptions are used, one finds

that the output of the cancellation system is given by equation (5.3-20).

The notation may be simplified if the following definitions are applied.

eC(k) ABC//2- (5.4-19)

eC(k) -,TADB/2- (5.14-20)

C - S11 +JTS1 2  (5.4-21)

D - S2 1 _+TS 2 2  (5.4-22)

F = PT (PO/ (5.(M).3)
T 2
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The cancellation system output in the above notation iq

er(k)~ CA AB (C ;JF'TD] (5.4-24)
V2A _ (2M+l)

le r (k)CAN IA2(2+1) 2 CICl +21m(C *D) + fprnI2l (5.4-25)

The large number of parameters in this equation makes it difficult to

see the nature of overall variations. The following assumptions are

restrictive in natitre but do aid in clarifying the system effects.

T - 1.0 (5.4-26)

F a eje . cou(6) + j sin(e) (5.4-27)

One further point bears mentioning before the analysis is continued.

Since the output of both the reference system and the cancellation system

is random in nature, theoretical correctness demands that the expres-

sion used for output power be a statistical expectation. Thus equation

(5.4-5) becomes

E( e r e(k)R F1 2)

CR - (5.4-28)E( Ier (k) CAN 12}

where E{ • ) denotes a statistical expectation [15).

E( (k)r()Ei12i - E IAB12I . S2  (5.4-29)

E Cle A•Nk 2} = EfIAI•-1. [fc1 2 +2Im(C*Deje) + IDf12  (5.4-30)r AN 2(2M+1) 2
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2,, (2M+1)2

CR - 11 (5.4-31)
[Io 2 +21m(C"e, 0 ) + IDI2]

2(2M+1)2 Sl2

[8 + 2S12 + +2 2 S S + S2 2 )sin(e) 2(S S S 2 )cos(O

(5.4-32)

An interesting result is obtained if the cancellation ratio is

evaluated with the output of the ordinary system replacing the output

of the reference system and if e equals 180 degrees. Under the stated

conditions

2

CR = (2M÷I) 2 (.-3
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6.0 PzRFOn(ANCE OF THE CANCELLATION SYSTE4 WITH A REALISTIC RAIN .M.DEL

6.1 The Rain Model

There are basically two major areas involved in specifying a rain

model. The first area is concerned with describing the individual rain

particle, and this aspect of rain modeling has been delt with in chapter

3 where a major emphasis was on defining particle size and shape.

Particle size and shape affect the radar system equations through the

S matrix elements defined in equation (2.3-6), and nothing in this

chapter will be done to alter the nature of the influence that particle

size and shape have on the system equations.

The second aspect of rain modeling is concerned with the nature

of large scale rain systems. Here individual particle characteristics

are lost and only overall effects are noted. In chapter 5 it was as-

sumed that the rain system was characterized by overall uniformity,

but the present goal is to establish a less restrictive and more re-

alistic model for the rain system. In pursuit of the stated goal,

the following assumptions will be applied.

1. The rain particles exhibit a uniform spatial distribution

over the range cells.

e. Particle size and orientation will be treated as random vari-

ables, and it is assumed that they are statistically indepen-

dent of the particle position parameters. The distribution

of particle size presented in chapter 3 will be used here.

3. The number of narticles occuring in a range cell Is strictly

random, and the distribution function for the number of par-

ticles will be determined in later work. It Is assumed that
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the number of particles is statistically Independent of par-

ticle size, shape, orientation and location.

4. Although several parameters relating to the rain are random

in nature, it is assumed that the statistical distributions

describing the various parameters are invariant in time and

space.

5. It is assumed that the clutter returns from one range cell

are statistically independent of the clutter returns from any

other range cell.

6.2 System Fuations

The physical system bieng analyzed here is the same as the one

presented in Figure 5.2-1, and so the definitions for e 1 (k), e 2 (k),

and G(k) given in equations (5.2-9a), (5.2-9b), and (5.2-10) respectively

are valid here. However, for several reasons including both ease of

notation and statistical considerations the following forms will be

used.

el(k) A (k) + JY (k (6.2-1)

e2 (k) - =_ K(k) + J (k) (6.2-2)
Y 2

0 (k) =k+M e(i) (1 +M el(£) el(k)1

( =k-M ML,"M 2 J

.= L(k) + 1 (,,].(6.. -3)
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The quantities Xl, Y1 9 X2. and Y2 are determined by the following.

S i(k) +JTS 2i(k) = ii (k) e J2(k)-4)

s211(k) +JTS22 1(k) = a21(k) e - (6.2-5)

200AZ i = e (6.2-6)

Nk

XI(k) = • G2 (ci, 8i)i(k) cos(Yli(k) - ei) (6.2-7)
i--I

Nk

Yl(k) = i G2(eiv 80)002(k) sin(Y~i(k) -W i) (6.2-8)

•k
2  T- y (i± i)c 2 i(k) cos(Y2 i(k) - ei)

X2(+ el=k ] e(6.-)

Y2(k)- = G2(cy •t)ci2 (k) sin (, 1(k) - o%) (6.2-10)

Equations (6.2-1) through (6.2-10) may be used to exrpress the

system output as well as the magnitude squared of the system output.

er(k) e 1l(k) + G(k) e 2-(k) , el(k) + -i & (k) + G e2(k)

e1-k - G(k) " e2 (k)
e ((+l) (6.2-)

ler (k) 2e er(k) e(k) / el(k) 12 4mi 2  e *e e2 J) //(ArMl (2M4+1)2

+G'(k) 12 le2(k) 
-2

(2M÷1) 2
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12••t LA C X2 + Y2 6.-29

l(k)12 I•i k I (k) 1 (6.2-13)

le.(W)12 * 2 (k) + Y2(k)] (6.2(-1h)22 2 2

e I (k) e 2  =(k) 2  1(0-) x2 (k) + Y1(k) Y2 (k)

+ 1(xk) Y2 (k) - x2 (k) Y (k))] (6.2-15)

k+M [x(t) + jy (t)]

G'(k) = E 1+J TI --F +
I k-M -+JT[X2  +3Y2 (L)]

k+M Re(T)(X 2 (.)y(), - Xl( )Y2 (P)). Im(T)(XI(£)X?(£) + yl(,)y2(')

(X2 1. 1T12 2xL 2 + X1]=k-MIT (2(t+Y 1

k+M Re(T)(X (M)X2() + y 1( )Y2(I)) + Im(T)(X 2 (9,)y 1 )(- x-(.0y (.t

Itk-M ITI(X 2(1) + 2(.

(6.2-16)

IG'(k) [2Re(T) (x2(z)y 1(k) -x 1(2Y 2 (k)) + Im(T) (X2 Y 1y(g) - 1 (t)2

=k-M ITi 2(t) + Y2 U

The relationship given in equation (6.2-18) will be useful in later

work with equation (6.2-17).
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N N
a 2+1 (6.2-18)

i~j

As a result of the random nature of the rain as outlined in the

preceeding section, much of the evaluation done in this chapter will

be done in a statistical sense. This means that power will be defined

as E{jx12} where the operator E( • is the expectation operator presented

by Thomas [45]. Thus the output noise power of the cancellation system is

V{ie(k) 12 , pr,) E(1el(k) 2) 4m E(Re (e*(k)e (k)G'(k)) I

(r 2e21k)2

S-)2 E{IG'(k)12 e2(k) 2, (6.2-19)

Now consider, in order, the three expectation terms appearing on

the right hand side of the equality in equation (6.2-19).

_

E{1el(k)lp E IAL [X2 (k) + y2 (k)J} (6.2-20)

Examination of equation (5.4-15) reveals that A is not random in nature

so that

E{1e (k) 12 ,.111 [E= 1k + E({y2 (W] (6.2-21)

From appendix A,

E{X (k)) = E(NI Et E 2 and (6.2-22)
1 k !2 1

E{Y 2(k)) = E{NkEG Efa 2} (6.2-23)
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Appendix B shove that

K2

E(Nk) vkz0 2  (6.2-24)

and appendix C indicates that

14E(G (Q,O)} - 0.70808 . (6.2-25)

Consider the remaining unknown factor E(a2 1. From equation (6.2-4),

QI1-aISl1 ±JTS1 21 . (6.2-26)

Thus

C92 aS2 + IT 12 S 2 T213(Tsl1 1Z , and (6.2-27)
1 11 12 IISI

Ea2 - ( T121 E( 2 ) 1m /I{TS S * (6.2-28)
1 Ef 111 1 12  11S12

Consideration is nov given to the second term,

Re (d{i(k) e2 (k) G(k)}) . (6.2-29)

in equation (6.2-19). Application of ccndition five in section 6.1

in conjunction with the development in appendix D permits the preceeding

* term to be expressed as

Re (Elel(k) e2 (k)} E{G'(k))) (6.2--30)

Equations (6.2-1) and (6.2-2) may be used to obtain an expression

for e *(k) .
1 e2()
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e*(k) e (k) * 1A2  m(T) (Xl(k)x 2 (k) + (k)Y 2 (k)

+ ReM(T) (xk)Y2(k -X2WYI(A2

±414f- ~Re(T) WX1( x(k) + YW

÷ Im(T) (X!(k)Y2 (k) - X2 (k)Y 1 (k))] (6.2-31)

E{el(k)e 2 (k)W J m(T) (Xl(k)X 2 (k)} + E{Y (k)Y 2 (k)}

+ Re(T) (Ex 1 (k)Y2(k)) - E{X 2(k)Y I(k)))]

JIAI 2 eT) (E{x k)X (01 + E{Y (k)Y(k)

- Im(T) (E{lk~y2 (k)I - E{X2 (k)Y 1(W))] (6.2-32)

The cross correlation terms in the preceeding equation are evaluated

in appendix E.

Nov attention must be given to the evaluation of E{G'(k)}. From

equation (6.2-3),

G'(k) - • (6.2-33)

( -k-M

[M X -(1) + jy (it)
[-E T (X,1() + JY2(g))] (6.2-34)
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k(M I [X()Y2 (M)- X2 (M)YI( )IRe(T) + [XI(t)X2 (t) + Y(')Y2(*9 1m()

1: I.k.M T12 [x2(j) + y2(tM1 Y()I(

[YI(t)Y 2 (1)JRe(T) - [X (JO)Y 2 (1) - X2 (1)Y1 ()]Im(T)]
A-k-M IT 1T2 [X2(LW + J W

(6.2-35)

The assumed uniformity in space and time of the statistical distributions

allows the the expectation of G"(k) to be expressed in the following

form.

E{G.(k) -x; E [X•L)Y2 ) - X2(L)Yl ()]Re(T) + [X(l)MX2 ( 1+ t)Y2(i I ln~y)
IT12  [x2(l) + Y 0

2 2)

;ij2M E [ X1(tX 2(t+Y 1 (tY 2(1)]Re(T) - [Xljt)Y2 (t)- 2() 1* I()

IT 12  (X 2(1) + Y2 00]

(6.2-36)

Evaluation of E{G(k)} requires that the expectation of the quantities

*9W + y~(t X2- + y~(,. X2(P) + Y2(~ ,2 2

be determined. The required expectations are in the form of three dimen-

sional integrals, and appendix G shows how the integrals may be reduced

to two dimensional forms.



The third term of equation (6.2-19) may now be expressed no

S1 2 •.(I G *( k)l 2) .- le 2(k )l12 )

as a result of the work culminating in equation (6.2-30). E{1 e2 (k)1 2 )

is evaluated in the same manner as was E{Ve (k)1 2 }.

E(le2(k)i12) a hII2AI2 [E{2(k)) + E{y2(k))] (6.2-37)

From appendix A,

2 G Va 2 E~1 ,and (6.2-38)

E(Y2 (k)) -(M LOY El 2

E 2 (k)- Z(k) E~ E{ 2 t 2 (6.2-39)

Equation (6.2-5) may be used to show that

I=212 - 21 + IT12 S2 2 T2Im(TS2 LS22 ) . (6.2-o0)

Thus,

E1 2 )mE(S 2 }) IT12 Ef S2 1 7 21m(T) E{S S (62-1
a(a~ 21 +22 21 22 *(621)

IG'(k)1 2 is indicated in equation (6.2-17) as being the sum of two

squared quantities. Each of the two squared quantities may, through

application of equation (6.2-18), be shown to be sa indicated in the

following.



1+14 n.(T x~ux ~ IT 12 2(t) + IR(T(2 (1)YiA~itY(~

R#k

tkI jok-M IT12 (X2(t 2
Z~k j~Sk

10j

ITI 2 (j + Y2(i))

(6. 2-~42)

The above represents the first term of equation (6.2-17), and the fol-

loving is another form for the second term in the same equation.

k+M ]R eT 1X J X2W yIW 2 (t)) + In (T (X2(LMY 1 ( )-X l,~t ]2 +

2: T(X )X()ITY 2 X2, + Y~)
tak-M [ T 2 (t 2)

k+M k+M r

1G~21 -2 x2 --1 t - 2

tk-M [ T~(t + _Y(t ) J +2j)

1ýk
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,T .,2(I[ •+() Y2(00) L (X2 ) +y() 2(j ) +

k-M r 2

O#k j~k

k[M2X(()t)X2((t) +) (( + MY 2

E T(X22(,) + ,,. -T2 )+L-- 2
tyik

k+M k+M (j)x (j ) ]2 (-)- ( 2)2[XI )X(£)yI ( t)Y2(£ )]

t uX2-2 ----l 2 1 2 1 2 - (6.2-44)
~zk T 0(~()+Y 0i) TL (X Mi + Y (9.)

'Isk) L-M 2 2 2  +.22 2

12) x 2M l('1 _2[X 1 Mx 2My1 ( k~()] + [y (X Y2V1 2

in 2M E ( 2 nX
T 2X(.t) + 2j)

2 [ 4l,)2(j ] TrLX I tX((t))2() Y M 0
+ (M-2M ) 1 - 2 2(t)) + I2J

(Tt (z2 2

E_ X20 1 21 2- x 1EYP

e1 O2atio . rY 2e u 1)nowl2-45

;•4i Om _2M EI• 2 2 1;• (• •:••
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ES 1 X .(: k)X() 2 an) (Y 1 (k)Y2(9,)) 2~

Th2 x(1) + 2 ( 2 n Ej~2 x(1) + Y 2(1 ]2

A technique is presented in appendix F whereby the above expectations

may be reduced to two dimensional. integrals.

6.3 Lower Bound on Performance

Conditions were specified in chapter 4 under which the lower bound

of performance resulted for the ordinary system. Those same conditions

will be applied here to the cancellation system equations for the purpose

of comparing the performance of the cancellation system with the known

lower bound of performance of the ordinary system. The conditions de-

scribed in chapter 4 require that

cos (.•, ) (6.3-1)

sin2 M 1 V (6.3-2)

sin(O) - 1 , and (6.3-3)

cos(i) 2 o . (6.3-4)

Under these conditons, the S matrix elements become

S•11  gx- (gx'&y) (V-/Vr) 2  (6.3-5)

Sl2 2  (gx_.g) (Vm/Vr) *4i-8V /Vr). (6.3-6)

S 22 z (g x-gy ) (V%/Vr) 2 + g y (6.3-7)
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Other results from chapter four which will be used here are

g2: r e 2 d 8-25- 0.244~d2 + (6.3-8)i

[67,~ 29j 0[ 0 u 02(6.--8

2g"• r 1 2

2= I d1 6 833+ 0.112d] 2 (6.3-9)
gy [6 x 109J d0 [8.30

- [ 2 d 0[0024 + o.oo4[5d 2-O (6.3-1o)

d 82 - o~62d -15 34
t.6xo6 x [8.20 0.62 + 0.15 - 0.00"075d] (6.3-11)

V = 10.105 [i-e0  J (6.3-12)

and the drop size distribution is

P(do 73: d e-Yd

" 2 .O(6.3-13)

Evaluation of the cancellation system's output equation requires

S1owledge of various moments of the S matrix elements. The required

moments are given below.

E{S2 }V/V Ff g) 2 ) +E{(gxg )2(V /11 = - 2E x-gy)(V/Vr + EV, )} (6.3-14)

E(s 2 } ) E{(g -•) 2 (V/Vr) 21 - E{(gg 'y2 (V 4V)h) (6.3-15

12Xg)Y-y V/V(--5
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E{S 2 E{(g-•) 2 (V/Vr) 4  + 2E{.(gx-g) (V./vr)} + E{g 2 (6.3-16)22 x- r ~ y r y

11 = •XCg-g) (V/Vr)} - (½) x (vlVr)3 }

_ E{(•x_•)2 (V /Vr) 31 + (i) E{(g,_yg) 2 (VjVr) 5 1 (6.3-17)

E{(gx-g2 ccr24-V)} (--7

E{SI = E{g (gx-•) (VJIVr) 2 } -22 (V/Vr) G

+ E{gxgy)} - E{g(gx-y) (V /Vr) 2 } (6.3-18)

Evaluat'on of equations (6.3-14) through (6.3-18) is accomplished

in appendix G, and the following material shows how to apply the result;

obtained to determine the output noise for the cancellation system.

The fcllowing assumes that T is real.

.,le.(k)l2) JA E{( N E • {SEl} + T2 E{S 2 (6.3-19)

Ee()11 A1  k 2 I 1112J

" W ) IA12T {X(k)Y2(k)}- E{X2 (k)YI(k)})
E{e (k)e2 (k)2}

-J(Ex1 (k•)x 2(k) + E{Y1l(k)Y 2(k)) (6.3-20)

~JLTE{N I E{G 4(a,O), UT)E{S S -2
- 2 k 1 1122-12

-j E{S 1 1 S2 1 + S1 .2 S2 2 T22] (6.3-21)

1e 2() T"' 1A12 EN +
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The terms presented in equations (6.3-19), (6.3-21), and (6.3-22)

may be reduced to simple alebraic expression by the techniques presented

in appendix G, but no means has as yet been found that accomplishes the

same reduction for the moments of G'(k). Thus,tke moments of G'(k)

have been evaluated by numerical integration techniques presented in

appendix H.

When the numerical values of equations (6.3-19), (6.3-21), and

(6.3-22) are combined with the evaluated moments of G'(k) according

to equation (6.2-19) the result is an expression for the output noise

power of the cancellation system. The value for noise power thus obtained

may be taken in ratio, according to equation (5.4-5), with the output

power of the reference system to obtain the cancellation ratio. Note

that the reference system output power is

E{ier(k)jREFJ 2 JAI2 F{N } E{G4 (a,)) E{S 2l1 (6.3-23)

Numerical data are presented in the following figures which describe

the performance of the cancellation system relative to the reference system

for various rain sources over a wide range of rain intensity.

6.14 Upper Bound on Performance

As indicated in chapter four, the conditions which lead to the upper

bound of performance for the ordinary system are

sin'(r) = 0 , (0.4-]

cos(')=1



1o9

2
co, 2(,i) *~r and (6.1,-3)

sin2 (*)- 1 4 V) " (6.4-4)

The S matrix elements are defined to be

s , (6.4-5)

s12 0 , and (6.4-6)

V 2
S22 - g7 + ( V:2 (6.4-7)

r

under these constraints. Evaluation of the cancellation system output

equation is carried out in the same manner as was used in the analysis

of the lower bound case with the exception that the above expressions

for the S matrix elements are used rather than those given in section

6.3.

Numerical data in the form of the cancellation ratio is shown in

the following figures. Again various rain sources are considered, and

the variation in performance with rain intensity is also shown.
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7.0 CONCLUSIONS

Based on the computer simulations and the rain model described

in paragraph 6.1 of this report, rain cancellation imwrovement of

1 dB to over 8 dB can be achieved over that of circular polarization

when a rain polarization estimater Is used to determine the proper

null polirizatior. These results are illustrated in Figures 6.3-4

through 6.3-6 and 6.4-2 and represent rain of certain origins.

A study of this type must be followed by an experimental program

in order to subject the technique to real. world environments.
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APPENDIX A: ANALYSIS OF MOMENTS FOR RANDOM SUM

Asssume that it is desired to find the statistical moments of the

random quantity

n

x U i (A-1)
i=l

where n and U are both random in nature. Beckmann [461 has shown that

the density function for the variable X i3

f(x) - X P(n) p(Xn) (A-2)

n-0

where P(n) is the discrete density function of n and p(X (n)) is the con-

ditional density function of X given a specific value of n.

The mean value of X is calculated as follows.

E(X) J x f(x) di (A-3)
co

f x E P(n) p(X(nj) dx (A-p)

- P(n) f x(n) P(xl(n)L x(n) (A-5)

n=O --

n-0

If X(n) is Gaussian then
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S•-(X~(n) na2

p(x = 1 exp (n 2 j
a r27rn 2n o" 2

where a = E{U i (A-7)

2 2and a = E{(U -a)2} (A-8)
i

Returning to the mean value calculation,

E(x} = P(n) • n • E{Ui} (A-9)

n=0

= E{U i E{n} (A-1)

The mean squared value of x is

E{x 2 } f x2 f(x)cax (d-.i)

-Jx
2  [ P(n) p(x() dx A-I?)

n=O

w -)

n=0 -w

Again, if xn) 4.s Gaussian then

| • 2
E{x"} " [ P(N)O n c7

n=O

'{n} • (A-0

The foregoing analysis may be appli.led to the evnluation ofi f,1,Toit,; ','

IW(k)* . (, I and y2(k). All four quaritities ar ch( rthe~1 ()I'

scumnrnat,-onor Y at:Rdorn te-¶w , and the numnb, r 1ttrr;r. ¶ 1we i

LU
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random, Beckmann [46] observes that terms having the form exhibited by

Xl(k), y!(k), x2 (k), and y2 (k) tend to be Gaussian in nature if the number

of terms in the appropriate summations is large. The number of terms in

the summations corresponds to the number of rain particles in a range cell,

and the material of Chapter 3 indicates that the number of particles in a

range cell is generally very large. Thus, the density function for x (k) is
1

(n) 2
P(xl(n) (k)) 1 exp -(x (k) - na)(A-16)p 2xn 2n(2

avr 7rn 2na2

where

a =E G2(ai, 0i)ali(k) cos(Yi(k) -, ei) (A-17)

-EjG-)(ai, 0 i)a li (k) cos(y li (k))cos(ei)

+ E{G2(ci, ai)a li(k) sin(Yli(k))sin(6 )A (A-18)

and

2 2
a = E{(0. - a) (A-19)

The condition of uniform particle distribution means that e1, as

defined in equation (6.2-6), is uniformly distributed between the symmetric

extremes + 8M and - 6M where

r aM 2 0oAZM . (A-20)

Thus, the density function for e is

DO -(A-21)
1 2 2M
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Itt
ifi

e mM ,m 1, 2, 3, ... (A-22)

then a in equation (A-17) equals zero, but another statement of th,, condition,

given in equation (A-22) is

Ct 92 AzM P (A-23)\
M 2 2 0

where tp is the transmitter pulse length and c is the speed of light. Equation

(A-23) may be rearranged to obtain

tp = -t m/f 0  (A-24)

where f is the carrier frequency of the transmitter. In the followinng
0

work it will be assumed that the condition of equation (A-124) is satisfiei.

Application of conditions one and two as stated in section 6.1 to

equation (A-18) and (A-19) gives the following.

2
a = E{G2(a, 8)a(1 cos y} E{cos e0 1i

+ E{G 2(a, )aI1 sin y} E{sin 0} (A-2?5)

=0 (A-26)

2 2
E= U (A-D'Y)

42 2

E(GG 4(a, 8)a2 cos2 (y e)} (A-28)
1

E E{G 4(a, )al 2

+ E{G (a, B)a I ecs(2-y 1 26))1]A29

4, 2

)EG } (A-a C)
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Thus, from equations (A-la) and (A-15)

E{x 1 (k)) = 0 (A-31)

E{x 2 (k)) E{N )E{G2 (0, 8)A E{al 2 (A-32)

1 k 2 1

The moments for x 2 (k), y1 (k), and y2 (k) are evaluated in a manner

similar to that used above for x (k), and the results %re presented below.

E{x 2(k)} = 0 (A-33)

E{x22(k)} E{NkE E{24(a 8)) E{a22} (A-34)
E~2  kk) E{2 Ec 2

2

E{yl(k)} f 0 (A-35)

E{y2 (k)) E(N 2 E{G4(a 8)} E{l2 (A-36)2 1

E{Y2 (k)} = 0 (A-37)

E{y2 (k)) E{N E{G- (a' 8)) E{a 2 (A-38)
E~2 (k1 k 2 2
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APPENDIX B: THE MEAN VALUE OF Nk

The material in Chapter 3 indicates that the volumetric particle

density is of the form

K2

PD =IKI (B-l1
1

where I is the rain intensity, and K and K2 are constants determined

by the type of rain. Additionally, I may be represented as

+I = 80+1 (B-2)
0

where 1I0 is the mean value of the rain intensity, and 61 is the random

component of the rain intensity.

Calculation of the total number of particles is accomplished by

forming a product of the cell volume, V h and the particle density, PD.

N - PD • V (B-3)
kk

=K1(1o + 61) Vk (B-4)

=KVk10 [2 + 61 2 (B-5)
10

It will be assumed that 61 is a zero mean Gaussian variate and that most

of the time

•01 (B-(,)

0

Thus

K2 K261
Wi K V 1 2 + -+ , and (B-7)k I k!0 I0

E f N k } = K i V , T . 2-

kk
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The values of KI and K2 are provided in Table B.I.

Table B.1. Parameters K and K for
several rain sources.

SOURCE OF K K
RAIN

MELTING 384 0.31
HAIL

MELTING 203 0.31
SLEET

MELTING 87.5 0.39
SNOW
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APPENDIX C: EVALUATION OF THE FOURTH MOMENT OF THE RADIATION

CHARACTERISTIC

The radiation characteristic assumed for this work is in

any plane passing through the axis of propagation

2Jl(Cx)

G(x,=) = -q-- ,0iXix = 3.83 (18) (c-1)

where J,.(X) is the Bessel function of the first kind and first

order, and where X and Q are defined in FIG. C-i. It is assured

that the particle position parameters, X and Q, are statistically

independent of one another and that the distributions of these

variables are uniform.

p(xl) =7r 1 (C-2)
2"'u

The fourth moment of G(X,S) which is required for the analysis

in chapter 5 is of the form
Xu 27

*E{G 4 (XjSI)} I 2 Ž1T Lt1 dQ2 dX C)o o _-71u

0 0X t 'f XU 10d

xuX1

xu

f J4(x) dX (C-5)

0
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Attempts at evaluating equation (C-5) analytically in closed

form have thus far been unprodiictive, and therefore, an evaluation

was affected by means of numerical integration. The numerical

method used was a Newton-Cotes five point formula as suggested by 4

Weeg and Reed [48] with an increment in the independent variable,
-i

X, of 0.01.

E {G4 (X,Q)} = 0.70808 (C-7)

IP
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APPENDIX D: STATISTICAL CONSIDERATIONS OF A PRODUCT

It is assumed that several random processes exist and may be divided

into two groups, x and y, such that the members of the groups exh&ibit

the characteristics that xi and x are statistically independent if i #J,
j

that Yj and yj are statistically independent if i # J, and that xi and y

are statistically independent if i # J. Under the stated conditions, one

may represent the joint density function of elements of the two sets as

follows by application of the concept of conditional probability.

P(Xl, ... , x n, Y13 ... Y n)

P(xl'Yl)P(X2' "'" Xn' Y2' ""Yn i~l' Yl) (D-1)

The assumed independence requires that the individual or joint out-

comes of x1 and y1 in no way influence the realizations observed for the

other x and y elements. Thus

P(X 2 ...* Xn' Y2 ' ..." Yn xl' Y ) =

P(x2' Xnv Y2 9 "'" Yn), and (D-2)

P(X l' " xn' Y1 0 ".' Yn) =

p(xlf Yl )p(x 2, ..." Xnt Y2  ...'' Yn). (D-3)

Let a function f exist such that

f Xl y" g where (D-4)

9 g(x 2 ' ... ' X n Y2, . 'n)" (D-5)

Then

E{f} = f ... xlYlyg(X 2, ... , yn )P(Xl x2).

22

P(X21 ""Iy n)dx 1 '" dyn (D-6)
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f f g.f(X2 , . n . p y,(x 2 1 .yn )d-) 2 .dx dy2 .. .dyn

2 (n-1)

ff~ 1 p(x1,y1 )dxldy1  (D-7)

=E{g} E{x1ylj (D-8)
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APPENDIX E: THE CROSS CORREIATION OF X (k), YlIk), AND Y2(k).

The cross correlation of the four parameters x1 (k), x 2 (k), y1 (k),

and Y2 (k) is full described by the six quantities E{X!(k) Tl(k)1,

E{x 2 (k) Y2 (k)1, E{xW(k) x•(1)}, E{YI(k) Y2 (k)), E{xl(k) Y (k)}, and

E{x2(k) Y (k)1. These quantities will be evaluated in the stated order,

and it should be noted that all conditions imposed or assumed in section

6.1 are applied to the following calculations.

Nk

xlWy•) 1 = (k) G2 (c, 8i) a i(k) cos(Yli(k) - e)

• G2 (ai, 8i) 1 ci(k) sin(Ylik - e±) (E-I)

= 2 4 O1 (c&., a 2(k) sin ( 1 (k) - e))cos(ylpk) - 0

+ G2 (ai, 0,) G2 (cSa)•li (k)ai (k) cos Y(k)'Il it( £=ii
i=l L=l

• sin (k) - 0 (E-2)

E{Xl(k)yK) = E{Nk1 E{G4 (a,8)} [E sin2y1} E{cos 2e)

+ k cos PyI E{sin 2e)] (F-3)

=0 (F-4)
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Nk

Nk

x2 (kY2 k = )a 21k csin(y 2i(k) 0 .- E5

Nk

1~2G2 a~.~)~ 2 (k) csin(y 2.(k) 9- sin5

N N~ N

(a iliG' (aIB..)(xp 21 os21(k)1 k (k)sinsin Wk (Fe6)

N N

+ E.? cos2y2 1 E{sin2Gl(E7

=0

N

X (k)X (k) G 2j G(a 4 8)z 1 kcs ~ 1()-

i=1

G 2 G(ais81)a 21(k)co (y21(k)0 ) (Fg-)

N k

= Gb~z IOS' (k)+Y Wk-262 [C 2i
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+ cos (yli(k) -y2i(k +

Nk N ki 
2 ~csY~k~~ o( 2 ke) Q-o

2i G2 aik.,)G 2(a V a )a aW o kLO Cs W 6
1=1 21( 9) (21(- 0

E{xI(klx 2 (k)} = E{Nk) E{G 4 (Cs)) -E 2 cos(y 1+y2)2 E{cos26)

+ E 2l-' sin(y1 +y2 ) E{sin2G} + E cl, eos(l (E-II)

= E{Nk} E{G (C,8)} E- -2 cos(Y1 -Y2)ý (P,12)

The following expressions, cbtained from equations (6.2-4) and (6.2-5),

may be applied to equation (E-12).

s• _+ s Ini(T)

cosy,= 1 12 (E-13)

±S1 2 R e(T)si - e • (F,-14)

1

$21 - 22 Im(T)---s12 a •2( 
-] )

siy 2 * ± 2  (E-16)

Thus equation (E-12) may be rewritten as

E{xl(k)x 2 (k)- F.{Nk} E{G 4o(a,$)) [Ej-.? cosY cOSy2

+ - ny - s-iyny (F-17)
[:| i • •• •' = ! • ! - | .... , i= ..... .. -'i:• . .2 1 - . ............... :
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*E{Nk) Ef Im) ± S1 2Im(T)) (S2 1  -22 ,mei"))

+ S 8 a 2 (T)ý] ,(F,18)

The fourth term to be evaluated is E{Y (k)Y (k)).

~1 22

Y (k)Y (k) G G(ail, i)a l(k)sirlkyl (1W-e

~jG2(a 8)0 21 (k')sin 4(k2pi-6~ (F,19)

-~~( a2 G'(i8) ~~ - [co (ylk)-y2k)

-co (yl1k)Y 2 k-28i) +

2G(a '0)G2(cs8 20 CO (2k-e- 2 ~-

-~~~~~~ ( YY-1+ 2 ~-4](-o

M{Y (k)Y (k)) - r{NkI E{G (a~ 0))I

= E~x 1(x2) (E--21)

1~ 2)x 2(k)11



......... .. ." 'r ' tw ,r Y ,r r -. r.. -.-

133

Nk

2(c,~ I,,t )a j 2 1~ (ksin~ 2 i W- (E-22)

"k2 4 ol Ck)a 2 (k)r
G a lo- 2 irYi (k)+y 2(k)-2e'

+ sin (y21 k)-y lpk) +

0 (,Vi)G2( l 2t sin Y.(k)+ (k)-O -6

Z~~~29 21 2IS(i+Y9

E~x (k )2k) = E{N I E{G4 (a,$)) E ý-tla sin(y-y) (F-2Ih)

- E{Nkl E{G 4 (cz,O) (-):2 E 3~ ± S 12 Im (T))

-± E{Nk} - E{G4 (ai)I*Re E{S 2 2 [S 1 1 ; 1 2I()

- s12 S2  S SIm(T)JI (E-26)

X (k)Y (kc) m G 2 (czj,oj (k)cos k-

i=1
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INk

+~ k ' sin lk)y2() +

GI 2 G(c, ito )G2 (at B) 21 Lkoi 1)[ 12n()- k-ju 2. (Y1 1 1

+ sin (Y2 2(k)-y 21 (k)-6eA+0) (E,28)

E-'x (k)YI(k)) E{Nk) E{ (C1,01I E sin( y1 -y2 )ý (E-24)

-Ebc (kYW (E-26)
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APPENDIX F: THE REDUCTION IN DIMENSION OF INTEGRALS USED TO EVALUATE

THE EXPECTATION OF G-(k) AND G'(k)1 2

Evaluation of E{G'(k)} requires the determination of

x )x2 (t) IX [ly + Y2() x1 2•2
X2(2 +() 'tx(t

EMt£ + Y2 (P) M +2 + 2 (E x( y2 ( )'YI, n(12 2 2 2 J2' 2 1)2 2 J

fX1 ~0 2 )2 ) (t)x 2

2(.tJ + Y2 (t)(t IX (R

(F-1)

Wilks [201 indicates that integration of the density function, p(.),

with respect to Y (I) will result in a marginal density function of

three variables with the same means and variances. Thus,

tx.(t)x2(t) x 12) 2 (j) 2/•2 'x ,2 , 1-fffxx• , X(,,•,.,• , .o,,,
(F-2)

Appendix A points out that the X and Y parameters are zero mean

Gaussian variates, and thus the joint density function may be expressed

in the form

-[C X + C(X (L),'X2 (t),'y2('t) -- e [C~2+CX 3(F-3)
"" 2 i

The quadratic form appearing in the exponential is known to be positive

definite [14 7 ], and thus C is known to be positive [50). Therefore,
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4+w +0 C2

{2 2 2s f-lC 7t\ X2(t2 e 3 1 X2M Y2A

M2t+Y 2(t) JJ12 C aC1)V ~

(F-4)

where the inverse of the covariance matrix of the variables X

x2(L), and Y2(M) is

A7 a c] (F-5)

and

c, = a/2 (F-6)

c2 = [(b+d)X2 (t)+(c+g)Y2 (1)]/2 (F-7)

c [eX2(1)+(÷+h)x•(t )Y()+iy2(t )]/2 (F-8)

1 (F-9)

A similar approach is used in evaluating the other expectation

terms. The results are presented below.

C2

where the inverse of the covariance matrix of the variables YI(0,

Y,(t), and X (1) is
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AF a bc] (F-11)

end

C= a/2 (F-12)

C= (b+d)Y 2(1) + (C+g)X 2 (1)]/2 (F-13)

C-- [ eY2(j) + (f+h)X 2 (tY 2 (L) + ix•(L)]/2 (F-i)

3 (F-15)
E2  ( 2 •r) 3 /2 et, (2)

(F-16)

2
X(JO+Y (it) 2 C (7 (i)+ Yo 2[ T d 2(.

12  2 ( l -1 2 3 dX(912 2 JC 2/~

(F-•6)

• ~The following expr'essions are derived for use in evaluating
r{ I0(k) 22.~1 22 fuI IX()Y X2 .~Y

X .)+y 2 ()] iif 2C~ t)Y(i

(F-18)
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CjJ e 1 2 2 ~ 2 dX 2 ()dY 2(t) (F-19)
rx 2 ( .+y 2 00

r 22

[X2 2 [(2 )Y+ 2(.t)1 JfK V~ r c ' ~
jL 2 '-

T
L 2 '- j200 = 2C1/C4 [C C~ x(4Y(42  2

(F-20)
2

2C (.0 1 20. -C 2

El _____ C 1  eC~ dX29)dY2 (k)

[x2Z)+2-t ]2 f 2 L[ 2 C [X2(X).y2(t)] 2

(F-21)

ý2(L.~t) 2l 26 1 M 1 (wC

(,A!~)+y2 MJC~C 2

(F-22)
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APPENDIX G: MOMENTS OF THE S MATRIX ELEMENTS

Expectations of Sl S1 2 , $22 SilS12  SllS2 2 , and SFS,,) are

required for the evaluation of certain terms appearing in chpater

six. These terms will be evaluated in the stated order here.

2 gy) V,ý 2"II 2 gx- 2gx(gx-gy)-y)(G1

E{S 2  E~ 2 1- 2E{gx(g3..gy)= ( ) + E k9) (V (G-2)

E{g~~ 2 d~ 6 8.25 - 0.2~44d 2 + 0. 023d 3] Y Ld 2 eyd0 ddx- 0d 02 0 e d0

2
= x .81 0.244 x I0! + 0.2 3 11! (G-0)

2 y9 y11 Y12

E= E•gV- E gxcY r, (G-4)

Ei2 20.105\ 2 8.25 x 81 0.2,44 x l0! + 0.023 x 11!

2 8.25 x 81 0.244 x 10! + 0.023 x 111

+ [ .2x , 8! _ 0.244 ,x lot + 0.023 x 1,, - (G-5)
(l+y)9 (l-y) 71 (l+y) 12
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{~v2} (0.105~ 2

S{8.29x 8! _ 0.06T2 x 101 + 0.0115 x 111 0.002075 x 12!

y 9 y1 y 12 y 13

2 81 0.0672 x 10! + 0.0115-x -11 0.002075 x 12!1

2 +J)1 I

8.29 _x 8! 0.0672 x 101 + 0. 50.00205 x 120Tl

SL1(-x)9(i+Y)1  (1+y')2 (1+y)1 3

(G-6)

t~gx~gy) (10N.105)

.i0.00214 x 10! + o.Ooo~l5 x12!] 4 [0.00214 10!o + 0.001415 x 12!]

+ 60.00214 x101 + 0.00oo45 x 121 J 0. 002 14 x 10 1 + o.0 1 21

(+J) + ((i+y)11 (133Y13 Y 12) !

* -0.0024 10!.. + o22" x 1"2I } (G-7)
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The following notation is adopted in order to simplify represen-

tation of the following work.

A, = y3 /2 A1 2 = 0.33x8!. G!c = (1+y)1 1

A2 = 8.25x8! A13 = 0.l12xlO! G1 1 = (1+Y)12

A3 = O,244xiOI G =y9 = (1+Y) 1 3

A1 = O.023x11! = GI 3 2

A = (10.105/V )2 G3  y2 G1 y)4I

A6 = 8.29x81 0G = 1)12

A7 = o.o672xlo, G (.L.Y)9 G 35 2 6 26

A8 = 0.0115x111 G6 (tv) .)1 = (2+y) 9

A9 = 0. 002075x12! G7  (--.+y)1 2  0 (2+y)l 1

Alo o.0024x!o, 8 1)13 = (2+y)1 28 = Gz-y19=

1All 0.000415x12! G9 (1+y) 9  = (2+y) 1 3

A = =.01
G1x10

G (.ý .4Y)1121 2

G22 = Y)13

{2
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2 1 
r_g,)~2 V_ )2 V.-8

1fS2 IE(s~) \) f- E J(gy -gy V_ (G-9)

E{(g;.gy)2 ([ } Al5 All

2 G _ LG1-0 12(G-10)

EU (gL'y)2 4

E{8c~9 (V./Vr)} is evaluated in equation (G-7).

ES 2 }2 {(g x _y)2(a) + 2Eiy(gx-)(V )} + E42 (G-11)

2 
(gc-iV:) +)(_

22 r Y~~)V -- g ~ (
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_~g )2 (V= + (G-15) -
X y ' v G-5

V V

11 12 (.7- 2 }
E jr(g 1r 2 .) x.i (G r-16)

= y( x~ - (G-17)

-g 
(Vo-) A

I = 1,j-rA 2  A3 A4 1[A2  A! A

- G G IGGGr 12 3]L5 6 77

+o -,f A6 Ah 7~ + A 8iA (G-19)

gxg~~~~~r ~ AA5jr, G G GG C

}V 3'~ {L V 3ý JV02 coG 
3
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10A. GB 11G G l4G] (G-22)

L3A2 A1Ol.A+ _ 1- +I5G 8

rAlO A 11 rA

+ GlO 1+ - G + 6 J (G-23)

AA Al+

ý-+-G- (G.-24)L0 1 G 1 J 210 21 221J

s1 1 s 2 2 =xVry r 3(f -97 V- (G-25)

+{ E ( - E {y) E(r - g ) (y)2} ( G -2 6

11 2 x xxy

E •y is given in equations (G-4), (0-5), and (G-6),

and E is evaluated in equation (G-7).

k• • • • . . m ;• • - , . . . . . . • , • : •. .. • - :,' i ... .. . . .. . . .. .. .. . ..
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Efg1 A[~A A8(~-y

Note also that E gg.y)is expressed in equationis (G-6)

and (G-.1.4).
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APPENDIX H: NUMERICAL INTEGRATION TECHNIQUES

Numerical integration will be used to evaluate the required moments

of G'(k). The work of Appendix G has shown that the desired moments may

be expressed as two dimensional integrals extending over (-', +"), but

for the purposes of numerical integration it is desirable that the range of

integration by (0, 1). The change of integration range is accomplished in

the following manner.

+_ 0 0

I f(x) dx f f(x) dx + f f(x) dx (H-1)

-cc 

-00 
0

In the range (-w, 0), let x In y so that

0I

dy
f f(x) dx = f f (in y)d (H-2)

-0 0

and in the range (0, +-), let x = -in y' so that

00 1

*f(x) dx =- f(-n y)d= f(-.n y)-. (H-3)

* 0 1 0

Thus,

J (x) dx [f(tn ) + dy. (H-4)Y
--@* 0

This type of transformation is suggested by Davis and Rabinowitz [511.

The actual numerical integration scheme is basically a Monte Carlo

technique, but instead of using a nultidimensional random variable generator
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to provide the independent variables, a set of linearly independent

equidistributed sequences is used. A justification for and liscussion

of this technique is provided by Davis and Rabinowitz (51]. Integration

was carried out using one thousand points of evaluation in each quadrant

of the independent variable space, and checke on the accuracy of integratior.

were developed as indicated in the following figures.

I.
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PERCENTAGE ERROR IN NUMERICAL INTEGRATION

0,0

SI I + + + +o o o o 0 0 0 0+

InJ

o P-3

00

* 0

0 -

C+.

C+-

1, I , II t I
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PERCENTAGE ERROR IN NUMERICAL INTEGRATION

I I I + + + +o 0 0 0 0 0 p 0

. H 0~~ij

00

00

00

r a 00

0 --

CD

do
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MISSION
Of

Rome Air Devekop'ment Center

RAD is the principal AFSC organization charged with
planning and exemuting the USAF exploratory and advanced
devmlopzvnt progjrams for information sciences, Intellf-
gaece, comamnd, cositrol and cohwt4ications technology,
products and cervices oriented to the needs of the USAP.
Primary RADC mission areas are communications, electro-
magnetic guidance and contr•l, su.veillance of ground
and u ezvoepace objects, intelligence data collection and
handling, information system technology, and electronic
reliability, maintainability and compatibility. RADC
hams a1 son reponoibility as assigned by AFS for de-
monastration and acquisition of selected subsystmw and

syst.*w In the Intelligence, m~pping, bhartinq, command,
control and crmm.xications aro*s.
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