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PREFACE

This report describes work performed at the Electrical Engi-
neering Department ci' the University of Tennessee, Knoxvillie, Ten-
nessee 37916, over the period 16 Octcber 1973 to 31 December 197L.
The werk was performed for the Air Force Systems Command, Rome Air
Develorment Center, Griftiss Air Force Base, New York 134kl under
contract F30602-T4-C-0037.

The overall effort related to the definition of a rain back-

scatter model and cancellation of radar rain clutter using e new
polarization method. The work was conceived and guided by Dr. Peyton
Z. Peebles, Jr., hssociate Professor of Flectrical Engineering. Most
of the work on the rain cancellor was performed by Mr. R.W. Rice, &
Graduate Research Assistant. Dr. Peebles did most of the work re-
garding the rain mondel, while Mr. H. Sakamoto, a Graduate Teaching
Assistant, performed several literature searches. The final report
was prepared by Dr. Peebles and Mr. Rice,

The technical contract officer for the Air Force was Mr. Vincent
C. Vannicola. The authors express their appreciation to Mr. Vannicols

for his support of the research.
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Radar backscatter from rain rapidly degrades the capability to detect
alrcraft targets. A most crucial situation exists with GCA {Ground

Control Approach) and PAR (Precision Approach Radar) equipment during

rain storms. This effort involved a method for cancelling the backscatter
polarization from raindrops. In contrast to the ordinary circular polariza-
tion cancellation method this technique estimates the mean ellipticity and
orientation of the backscattered polarization anc in turn adjusts the
receiver to null out this polarization. The target return will, on the
average, lose about 3 dB while the loss in rain return will exceed that .
from ordinary CP by about 10 dB.

The results are in the form of simulations modeled from meteorclogical
data. With a relatively simple scheme, equipments now employing CP
can be converted to cancel the estimated mean polarization of the rain.

This work is in_support of TPO-5, ''EM Generation and Control."
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1.0 INTRODUCTIOR

1.1 Historical Development

In spite of improved performance due to advances in detection
methods, low-noise receivers, waveform optimization, etec., the modern
radar system often gives a much lower level of performance because
of rain clutter.

Early radar systems were generally designed to emit and receive
linearly polarized rediation. There is nothing inherent in the struc-
ture of the linearly polariz~d system to suppress the clutter caused
by precipitation. Recognition of this problem prompted investigation
into different types of systems. In 1947 Ridenour [1] prop.sed a
significant new concept for the basic radar system. Fidenour noted
that 1f rain particles could be correctly modeled as spheres then the
use of circular polarizatiorn on both the trensimitting and receiving
antennas offered the possibility of significant clutter reduction.

In the same discussion Ridenour was also able to offer experimental
data that indicated that clutter reduction on the order of 26dB. was
possible using circular polarization. Additionally Ridenour was ablie
to point out that two limitations of this approach to clutter cancel-
lation ave rain particles which are not true spheres and radiation
wnich 18 not exactly circular. In spite of the advantages offered

by the use of circular polarication it was not immediately adcpted.

In fact, circuler polurization was rediscovered in 1954 by White [2]
while at the same time Hunter [3] reemphasized the limitations of the

technique due to radiation which was not perfectly circular.




A necessary step in the process of correcting the errors intro-
duced by non-circular polarizatlion and non-spherical scatterers was
that of cbtaining an accurate model of the scattering particles and then
obtaining & solution to the scattering of electromegnetic waves by
an object whose shape is that of the model. From the literature one
recognizeg that interest in modeling rain particles preceeded the
development of radar technology by many years. A recent paper by
Pruppacher end Beard [L] cffers a review of the efforts along this line
while another paper by Pruppacher and Pitter [5] claims to offer the
nost accurate model yet available for rain. In simp.. terms, Pruppacher
and Pltter claim that the oblate spheroid is a good approximation to
the true shape of rain particles in many cases. Additional detail
concerning peavrticle shape will be discussed in Chapter 3.

The scattering of electromagnetic waves by bodies of various shapes
is & problem that has also received considerable attention for many
years., Logan [6] notes that some of the earliest work done in this
area involved scattering by a sphere and was done by Clebsch in 1861.

In the same article, Logan offers an excellent outline of the histor-
ical development of the theory of scattering by spheres. Another
paper deserving mention at this point is a survey of scatiering liter-
ature by Corriher and Pyron [7]. Tt should be noted however that
none of the sources referenced by the two previously mentioned works
considers the problem of scattering by an oblate spheroid. This
problem vas apparently tirst solved by Labrum {8] in 1952, and later

Atlac, Kerker, and nitschfield [9] offered concurring results.
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1.2 Descrip.ion of the Proposed Method

This report is an analysis of the system depicted in figure 1.2-1.
In the block diagram, the transmitter is represented in the left hand
portion of the figure, the propagating medium and scattering elements
are ghown in the center of the figure, and the receiver is depicted
in the right hand portion of the diegram.

The fesatures which distinguish this system from the ordinary
circular system are indicated in the block diagcam as elements T, R,
and G. Elements T and R account for the magnitude and phase imper-
fections which prevent the ordinary system from being truly circularly
polarized. G is a dynamic gain element which has been added in the
effor+ to reduce the performance limitations of the ordinary system

caused by non-spherical rain and non-circular polarization. A detailed

descripticn of G will be given in section 5.
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2.0 BACKGROUND THEORY AND ASSUMPTIONS

2,1 Basic Assumptions

Prior to detailed development of the concept which gives rain
clutter cancellation it is helpful, indeed necessary, to first set
down certain definitions, assumptions aand preliminary theory appli-
cable to the whole work. For example, to avoid confusion we shall
use the word "signal" to implyefther a waveform resulting from back-
4 :; scatter from a target or waveforms preceeding target or rain illumi-

netion while the word "clutter" will apply to waveforms resulting

. from rain backscatter. Other definitions are made clear in the course
; of development-s.
We make the following basic assumptions throughout the effort.
‘ 1. Only rain clutter is present. Thus, noise, ground clutter,
. multipath and other interference sources are neglected.
This assumption is approximutely satisfied for a low-noise,
narrow-beam system directed several beamwidths above the
{ horizon.
‘ 2. Only & single target exists within the radar beam.
; 3. The terget behaves as a point reflector, that is, the target
e: ‘ size is small relative to the pulse length in space.

4. There are no multiple reflections between rain particles
or between the rain and target.

S. The radar is a monostatic system. Ceneralization to the
bistatic system is relatively straightforward and some of
the developments are formulated in such a manner prior to

specialization to the mcnostatic case.
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6. The system is capable of transmitting and receiving two
linesrly polarized waves that are approximately space-
orthogonal.

T. The antenna patterns have narrnw main lobes, that is, beam-
widths are on the order of a few degrees or less in any plane
containing the boresight axis.

8. Antenna pattern sidelobes fall off with angle such that the
dominant contribution to the rain clutter power comes from
angles sufficiently near the direction of the mainlobe maxi-

mum that small-angle approx.mations may te made,

2.2 Coordinate Definitions

Figure 2.2-1 defines the coordinate system which irterfaces the
radar with its enviromnment. The radar is at the origin of the X, Y, Z
systen and radiates in the 2 (boreright) direction. Rair particles
are assumed to fall, on the average, along a line parallel to 0O-x.
This line is defincd by angles [, called the rain heading, and vy,
called the rain fall angle. Wlth these definitions the average wind
vector lies in the O-x~y plane; it also lies in the X-Z plane (as

shown) if the boresight axis is horizontal and the wind is entirely

horizontal. In general, even for horizontal wind, the wind vector
is tilted in the O-x-y plane when the boresight axis is elevated.
The above definitions apply to the fall geometry for raindrops
which is determined by the wind. Locations of the drops are defined
by spherical coordinates, radar centered. The coordinates for the

ith drop are ao Bi analogous to t, V.

i‘




Fig. 2.2-1.




Fig. 2.2-2.




2.3 Scattering Theory

It is desirable to be able to write an equation relating the
electric field incident upnn and reflected by a scettering body such as
e rain particle. The first step in the process of obtaining the de-
sired equation is the specification of the nature of the scattering
particle. For the purposes of the following calculations it shall be
assumed that the scattering particle is a homogeneous oblate spheroid.

Justification for the assumed shape is provided in section 3.

N.R. Lebrum (8] has provided a fundamental solution to the problem

of electromagnetic scattering by an oblate spheroid. His approach
to the problem is based upon work done by Stratton [10], which has

shown that where the ratio

particle radius
radiation wavelength

is small, the dipole moment induced in a sphere is the same for both
static and time varying incident fields. Labrum's work relates the
dipole moment induced in the scattering particle to the incident elec-
tric field. In turn,the reflected electric field may be related to
the induced dipole moment, but this is unnecessary for the current
work since the final equation will involve only ratios of this param-
eter which associates a reflected field with an incident field. Thus,

the equations relating the reflected electric field to the incident

electric field will be of the form

TN e ST RS T TR AT e AT AT S TR R e v e
VAL L i . b i
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E = SE

(2.3-1) ]

E = reflected electric field

E+ = incident electric field

but S will not be unitless. As in Labrum's work, S will have the

units

dipole moment

= Farad - meter> (2.3-2)

electric field intensity

Rice and Peebles [11] have extended Labrum's work to the case

of circular polarization and homogeneous otlate spheroids. From the

standpoint of notation, this extension is simplified if the field

intensities are resolved into orthogonal components which may be entered

as elements in a column matrix. Thus the following shall be used.

g] [ew
Ey] B2z

+
s ] E
s E

22 Yy

For the particles assumed, Rice and Peebles define the S1J terms in

the following manner.

S11 -8 cosa(e) + Gy ainz(e)

81, (gx - gy) cos(8) cos(y)

8,, = (g, - gy) cos(8) cos(v)

8,0 = B, cosa(v) + gy lin2(#) (2.3-b)

e a7 SRR S P
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Fig. 2.3-1. Particle and relatea dielectric quantities.
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Bue, [o(1-02)3/2 (egme, b7
& 3 _[245;02 - on + 2parctan (p/V1-p%)] (ez-el) + ael(l-p

2 )372

0010732 (¢ e 3
%73 .P[%' - p/1<0Z - arctan (p/vV1-p2)] (ey-g) + 2e1(1-92)3/2

g =al/d

In equation (2.3~4), 6 is a particle orientation parameter which
is used by Labrum and is related to the coordinate parameters used

in this work as indicated in equation (2.3-5).
cos(0) = sin(z) sin(yp) (2.3-5)

The results of applying equation (2.3-5) to the definition of the

813 terms given irn equation (2.3-4) are provided in equation (2.3-6)

S,, = + (g - g )sin® (c)sin2 (v)

11 "8 T g - &
8,0 " (8x - ay)81n(t)sin(0)cos(¢) (2.3-6)
8., ™ cos” (¥) + g_stn® (v)

22 " 8y &

With the 8 matrix elements defined as in equation (2.3-6), it
is now poasible to express the components of the scattered electric

fi2ld in terms of the components of the incident electric field as

indicated in equation (2.3-3). Note that the equation in this form
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represents scattering from a single scattering particle. The effects
of multiparticle scattering will be represented by a summation of

the following form.

Y %

+

E =1 (s E, )+ £t (s E., )

2 § £ R o qmy 121 yi

) N, . N . (2.3-7)
15:y = z:_ (s211 Exi )+ I (3221 Eyi )

=3 i=1

In equation (2.3-T), the total number of scattering particles within

the scattering volume of interest is Nk.

2.4 The Reference System

What will be called the reference system in this work is presented ;
in block diagram form in Figure 2.4-1. The system ie a linearly polar-
ized monostatic radar, and the performance of the ordinary circularly
polarized system and the cancellation system will be compared to the
performance of this reference system.
From the theory of linear antennas [12), it can be shown that the
electric field intensity in the far zone of a dipole radiator, e+,
is related to the driving point potential, €p» 88 shown in equation

(2.4-1).

e G -JB.2Z
e+'-K—1-iu e 0 (2.4=1)

In the preceeding equation, K1 is a complex constant, 80 is the tra-

ditiocnsl phase constant, Z is the radial distance between the phase
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center of the antenna and the point where the field intensity is to

T ke S e e s

be measured, and GT is the radiation characteristic (voltage) of the
transmitter antenna.

By the scattering theory of the preceeding, section, the scattered
field at a distance Z° from the scattering body has an intemsity,

e , which is given by
s.. e 8.2
~ Spne -k (2.4-2)

where S11 is an element of the previously defined scattering matrix.
From the theory of reciprocity as it applies to linear antennas,

the received signal, e.» is

+ -
K.G Slle e—JBOZ

er = I(2Gre‘ = 2 r‘
A
K K.C G S, e, =~3B.(Z+27)
= eerllTe 0 (2.h—3)
Z°2°

For a monostatic radar, Gr = GT = Gand 2 = 7, and to simplify notation

let
KeK,:* x1 . (2.L4=4)

Thus the signal received as a result of scattering from one scat-

tering body is given by equation (2.k-5).

e

Ke ~J28,.2
. —~2;£l 02e 0 (2.4-5)
Z




e s

Extending the analysis to cover muitiparticle scattering involves only
implementing a summation of returns from the individual scattering

bodies. Such & summation is

N 2
3 xe,rs (x)G -328,.2
e =T i1 "0 (2.4-6)
T 2
i=] z

i

The receiver signal, e, indicated in equation (2.4-6) is a re-
sult of returns from all the scattering bodies lying within the range
cell corresponding to the time at which e, is evaluated. A convenient

way of noting this fact is to specify the location of each particle

with respect to the center of the range cell in which it lies. For
th th
the 1= particle in the k== range cell this would be

zi(x) = 2(x) + AZ, (2.4~7)

An approximation which will be used in the denominator of equation

(2.4-6) 18
z, (%) * z(K). (2.1-8)

This approximation is in error by no more than 0.5 percent for a trans-
mitter pulsewidth of one microsecond and a range of 16 km. Application
of the approximation to equation (2.L4-6) results in tae following.

Note that Nk is the total number of scattering particles in the )t-t'-'l’-1

range cell.
Kep -128,2(k) "k p -128,2, u
er(k) = e 21 Sln(k)Gie (2.4-9)

Z(k) i=1
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In summary, equation (2.4-9) is an expression for the output voltage
resulting from clutter occuring in the k2 range cell for what will be

called the reference system.

2,5 The Ordinery System

An ordinary system will be defined as a radar which radiates and
receives the same-sense circular polarization to reduce rain clutter.
Such & system is ideal if it radiates perfectly circular polarization
of one sense and has zero response to a perfenrtly circular wave of the
opposite sense. An imperfect ordinary system does not produce perfectly
circular operation due to menufacturing and/or alignment errors.

By recognizing that a circularly polarized wave, indeed, even an
elliptically polarized wave, may be considered to be comprised of two
linearly polarized waves we may model the transmission and reception
operations of the system as shown in Figure 2.5-1. A signel en is power-
split with one signal driving an "antenna" representing the x-polarized

pattern. The second signal passes through a complex gain constant T,

representing the error that the transmitting function introduces relative
to true circular polarization (T=1, ideally). This signal then passes
through & * 7/2 or - /2 phase shifts to produce either left or right

hand polarizations respectively when transmitted through an “antenna"

representing the Y~polarized pattern. Similar, but reverse, operations

exist in the receiver. The paraneter R of the receiver eguals T in
a monostatic system.
If the true radiations e;, and e;, are non-orthogonal, the compo-

nents each couple to the desired space axes X and Y (see Figure 2.2-2).

The coupling mey be accounted for by use of & coupling matrix with elements

t i and }=1 and 2. Thus,

14t
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% P2 tie| |%
+ + . (2.5-1)
ey| |[*2x  to2) |y
Using Figure 2.2-2 we may find that
cos( -
" t, 5 cos‘ex) sin(eY)
t] = = . (2-5"2)
to) t22’ sin(ex) cos(ey)

Another matrix accounts for either rain or target scattering.
Sti11 a third matrix accounts for the receiver non-orthogonal polariza-
tions. For a monostatic radar the matrix, defined tn have elements
riJ’ i and J=1 and 2, relastes received fields at the antenna to reflec-

tions from range cell k as follows:

- (1) -
e kM ey rpp|[ey(x)
- = - (2.5-3)
ff‘m bm_ r%-kﬁk[
where,
1 r12] cos(Ay) sin(ex) ot
[r] = Ty Yoo = ~-sin(6, ) cos(GY)'= cos(8,-8, (2.5-4)
cos(ex—eY)

Here [-]t represents matrix transpose.

We now calculate the received waveforms for the system of Figure
2.5-1. We shall use the exponential (phasor) representation of wave-
forms. The transmitter excitation is then

Jw t-
e =Ee ° (2.5-5)

e

tiame

S

PP

e 2 7 e ol e e AN i
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where ET is the magnitude of en and Yo is radian frequency. Let
Gf(a, 8) and GI(G, B) be the transmit petterns for X” and Y~ polari-
zation components evaluated in directions a and B. The electric fields

+ +

ey” and ey near the antenna become

+ X /5

eys = K,G(a, 8) e/v2 (2.5-6a)
+ Y .
ey- = HTK G (a, B) e, /2 (2.5-6b)

where Kl is a proportionality constant.

To continue further we first assume gcattering is from a single
rain particle. Results are then extended to multiple-particle rain
and target scettering.

Let rain particlie i1 be located in range cell k at a distance .
Z,(k) = 2(x) + 4z, (2.5-7)

where Z(k) is the distance to the center of the cell and AZ, is particle

i
position relative to cell center. By combining (2.5-5) with (2.5-1)

+ +
the field components ey and ey may be determined. If we then use the

scattering matrix of the rain particle and include the sttenuation fac-
tor due to dist: -2e we may write the received fields e;(k) and e;(k)

due to range cell k as

é ) i ox -328,2, (k)
ey (k) ] 8131 (k) 8oy (k) tgy  top ]G (ays B) Xyepe
: - i Y 5
E ey (k) 9211(5) 80 (K)|[ty  toof|+3TC, (o, 8,) z,(k)/2
(2.5-8)




R A

21

Here the rain scatteriug matrix [s] has elements smni(k) for cell k.
We may next use (2.5~3) with 2.5-8) to obtain the fields in the
polerization pleanes of “he receiving antenna. The received waveforms

el(k) and e2(k) are related to these fields, e;'(k) and e;‘(k), by

ey (k) = K@ (ay, 8,) ex-(k) (2.5-92)
ep(k) = +IKRGL(a,, 8,) e7-(x) (2.5-9b)

where K2 is & proportionality constant. Combining end recognizing

that R=T, Gf = Gi = Gx and G: = Gz = GY for a monostatic system gives
X X,

e, (k) ¢ (a,, B,) ¥ ¢ (o, B,)

Ul=| v ][t]t[s][t] .

e,(k) 0 376" (o, By 16 (ay Bi{

-J2ﬁozi(k)
KeTe
5 - (2.5-10)
Zi(k)@

where K = K1 . K2.

To be more explicit, (2.5-10) may be expanded to obtain e;(k) and

e2(k) as

pNE Sl G

e (k) = (o, 8,) {lt, [t 8. () + £y, (k)]

+ tal[tllszli(k) + t,.8..,.(k)]} Gx(ai, si)

21%221
2T [ty 80, (X) + t508, 5, (K)] ~328,2, (k)
. oY i il |
* g [t1000, (k) * g0, (1)1 GTlay, 8,)) - /2 22(x) e |
i !
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Y
ey(k) = +376(a,, Bi)<{t12[tnsni(k) + t,85 (k)]

(K) + ty8,,, (k)1 GX(ay, 8,)

* toltyi85 21%224

2T plt158074 (K) + £y 555, (k)] ~328,2, (k)
KeTe ol

Jﬁ'zf(k)

~Y .

+ toplty 8,0 (K) + tyo8,0, ()1} 3¥(ay, 8,)) (2.5-11p)
Certain special cases of these results are of interest. For example,

most of our work will involve assuming the system polarizations are

orthogonal (ex = 0 and 6, = 0 in Figure 2,2-2); with this assumption

t..=t,,v1lendt, ,=t,, = 0. Hence,

11 T “22 12 ‘21
e, (x) = 6¥(a,, 8,) {s,,(k) 6" (a,, 8,) +IT8. . (k) G¥(a, B}
-328.2,(x)
KET e 01
. 3 (2.5~12a)
2 z; (x)
ep(k) = +3767(a,, 8,) oy, (k)G (ay, 8,) +3Tsy,, (k) 6'(ay, 8,))
-Jesozi(w
KeTe
. 2 (2-5"1%)
2 Z, (k)

Another special case derives from an assumption that the patterns

Gx and GY are identical. We have

X Y | , ;
G (ui’ ai) = G (01' ui) = G(ai. 81) ((.-5"'13) %

glving
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~326,2, (k)
> Ke.e
e, (k) = 6%(a,, 8,) {s),, (k) tJTslai(k)}-—-—TZ?2F7;;- (2.5-1ka)
-128,2, (k)
2 Kepe ,
ey(k) = +376%(a,, B,) {8y, (k) +3Ts,,, (k)} -—-—7;725213-- : (2.5-14b)
i

Any of the single particle rain clutter resulis may be used for
the muitiple particle case by simply summing over all particles in
cell . The result of suck a summation coupled with the simplification
indicated in eguation (2.4-8) is given telow for equation (2.5-12).
~32B,Z(k)
Kepe O M

(k) = —= i s, (6670, 8,)1% e
‘1 V3 2%(x)  |i=1 f111 *

~ 328,02

N “J 28 ALa

+JTiEk 121(1&)(; (a5 B, yor (a;, 8,) e (2.5-15a)

. -328,, z(k)J,N 12842
ep® Y ~JePy
(k)P (a,, B, )G (cx, B, e
/3 72(x) ]}ﬂl 211 171 1 1

e (k) = +JT

¢

k -)28 A7
HT T 8y, (K)[6 ey, 8017 e " 0 TY L (2.5-15v)
i=1
Similarly, (2.5-14) becoues
R R * Pla,, 8,) ls...(K) le 0t (2. 5-16a)
e (k) = I G"(a,, B, 8 k) +3Ts k)le . e
-J2B°Z(k) N
Kege k ~3284382, (5 5_16b)

I G%(ays 8,) sy, (k) 4TS, (x)]e

e (k) = +3T
e - /3 28(x)  im1
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If a target exists in cell k the received signals are given by
(2.5~11) in general if the s mni(k) are replaced by the corresponding
target scattering matrix elements S:‘:n(k). For the special case of m

monostatic system with orthogonal radiations we use (2.5-12) to obtsin

ke -J2BOZ(k)
T p® X 2T X Y. T
e (k) = (6"(a, 8)]1° 87, (k) +JT6 (a, B)G {a, B)S],(k)
1 /2 2°(x) * 1pted 29 e R }
{2,5-1Ta)
. -stoz(k)
T e X Y T
e,(k) = 1T 7 22m) G (a, B)G" (a, B)S,, (k)
+376¥ (s, 8)1% 83, (x) } . (2.5-170)

If, in addition, &ll beam patterns are Ildenticel we use (2.5-14)

ard get
Ko, -JZBOZ(k)
T e 2 T T
e (k) = 7 220 6(a, 8)[8,; (k) +375, ,(x)] (2.5-18e)
~328.2(k)
Ke e 0
e3(k) = 37— e c2(a, 8)[sy, (k) +3T53,(K)). (2.5-18b)
2 2°(k <

In all these target signals we shell most often assume the target is

located on the beam axis so X = 0O and Y = 0.

T e
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3.0 THEORETICAL RAIN MODEL

In this section a rain model is developed which is used in sec-

tions 4, 5 and 6 for calculating performance of ordinary and cancellation

gystemg., The model is bullt around the specification of raindrop shape,
gize distribution ani orientation with respect to wind velocity com-

ponents.

3.1 Drop Shape

It is well known that falling raindrops are not spherical [k, 1b,

16, 20]. The drops Leccome flattened on the bottom as they fall and may

¢ven develop a small "dimple" at the center of the flattened surface [13]

&
'
..‘Ad
R

as shown in Figure 3.1-1(a). Very small droplets fall with the least

uﬂi ié distortion. Distortion becomes more severe thre larger the raindrop
f and ig significant for drops of 2mm equivalent spherical diameterl
.‘; or larger. Above about 2 mm the dimple occurs and becames more severe
as equivalent spherical diameter increases up to about 4, 5mm where
drops tend to break up, even in quiet air, [15].

Being more specific, it is found [5] that for equivalent spherical
diameters less than about 0.17mm the drop is spherical with negligible
error. Betweep 0.17mm and 0.S5mm the drops are oblate spheroids. Above

0.5mm to about 4.5 mn the drops are asymetrical spheroids.

»
et iad e et Lt
Gac g s
.

1 The equivalent sphere is that having the same volume as the distorted
drop.

ABEL o




TR

TR TR R

(1
<

(v)

Pig. 3.1-1. Raindrop crossections. (a) Large heavily dis-
‘torted drop, and (b) oblate spheroid model for drops with
medium distortion.
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Pruppacher and Pitter [5] have given an excellent model for rain-
drop shape. It appears to fit measured results quite well except for
the largest raindrops where the actual deformations are slightly unler-
estimated by the model. We shall next describe the shape model of

Pruppacher and Pitter (P&P model) and justify that our use of the ob-

model.

The P4P model is a refinement of work due to Savic (17]. Actual
drops will have a cross-section such as shown in Figure 3.1-1(a).
The drop, of course has rotational symmetry about the vertical axis.
The radial distance to the surface from some interior point is r(6).
The P&P model consists of expanding r(6) as an arbitrary (but neces-

sarily single-valued) function into & Fourier series1

r(e) = byl2 + £ c_ cos(ne)] (3.1-1)
n=0

and finding the "distortion coefficients" c, Which correspond to a
belance of forces (aerodynamic pressure, hydrostatic pressure gradients
in the drop, pressure across the surface and surface tension) on the
falling drop. Here bo is the radius of the equivalent sphere having
the same volume as the deformed drop and the c, were found under a
constant-volume constraint. It results that ¢y = 0 may be assumed

without loss in generality.

1 Notetion of [5] has been altered to agree with that used here.
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The solutiona of (5] for the c, Vvalues are plotted in Figure 3.1-2
as a function of bo. The actual deformation ratio b/a, with b and a

defined in Figure 3.1-1(a), is a function of b, as shown in Figure 3.1-3.

0
Notice how excellent the fit is to experimental data.

We now show that an oblate spheroid is a reasonable approximation
to the more exact P&4P model. The reason for using the oblate spheroid
in analysis is that analytical solutions for the backscattered fields
exist [8] in relatively simple forms.

Consider expanding r(6) for an oblate spheroid heving the cross-
section of Figure 3.1-1(b). Since the cross-section is an ellipse

2

2 b
r(e) = , (3.1-2)
1l - e2 sinz(e)

where

=1~ (b/e)?<1 (3.1-3)

is the eccentricity of the ellipse. We select the two free parameters,
a and b, for the oblate spheroid first to make its volume equal to that
in the P&P model and second to make the ratic b/a nearly equal to that
of the PAP model. In the latter case, the actual relationship between
b/a and b, is the s01id line c¢f Pigure 3.1-3. We shell choose b/a
according to

2 -1/2
» By in nm, (3.1-k)

b
b 0
:[“a'.'s

vhich is shown dashed. This function is a good approximation to the




n

C I, The sign of ¢ is shown in parentheses
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Y
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Fig. 3.1-2. Coefficients in the e&xpansion of the shape of
raindrops (solid curves) and the coefficients ol the expan-

sion of the oblate spheroid (dotted).
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Fig. 3.1-3. Variation of drop deformation with drop size:
Comparison of theory and experiment. Figure from Pruppacher
and Pitter [5].
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P&P model except for large b0 vhere it actually spproximates the measured
. data better than the P&P model.
By equating the volume hwaab/3 [18] of en oblate spheroid to the

volume hﬂbo3/3 of an equivalent sphere we find that

b = bg(l - €°) (3.1-5)

for a constant volume constraint and any € < 1, The constraint that
€ must be chosen to approximate that of the P&4P model requires that

€ be given by (3.1-3) using (3.1-k). From (3.1-2) using (3.1-5) we get

bg (1 - e2)2/3

2

5 . (3.1-6)
1 - €“8in“(0)

r(8) =

Tiis function has even symmetry and has two cycles of behavior in the
interval (-m, m). Thus, the Fourier series representing (3.1-6) has

only terme for n = 0, 2, 4, . . . when the expansion is over (~-m, ).
The series may be written in the form

r(8) = by {1+ ¢+ n:z"a ¢, cos(ne)} . (3.1-7)

(n even)

Solutions for the coefficients En involve elliptic integrals and

are slightly involved to determine. The first two are

2.1/3
Sg= -1+ 21}-'-:—1—— K(e) (3.1-8a)
L. 2,\1/3
c, = 2(14cy) - -Q(‘L"—:-L-— D(e) {3.1-8b)
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viere K(e) and D(¢) are compiete elliptic integrals defined by [19]

n/2
K(e) = f 3 (2.1-5)

0 Y1-¢Zgin?(8)

n/2

2
D(e) = sl (8)ap _ (3.1-10)
'(l)' Y1-¢ZginZ(9)

We may now demonstrate that the oblate spheroid is a reasonable
apprcximation to the P&P drop shape model. By comparing (3.1-7) for
the cblate spheroid with (3.1-1) for theP&P model we see that the En
should be nearly equal to the c, for all n. Two values of En’ as given
in (3.1~8), are plotted in Figure 3.1-2 as dashed curves. Excellent
agreement is seen for all even values of n. The main loss in using the
oblate spheroid is the loss of odd numbered terms for n > 3. There
is only one odd term in the P&P model of any significance (n = 2) how-
ever, so the loss is amall. (The term for N = 5 is well over two orders

of magnitude smaller than unity for all values cf bo).

3.2 Drop-Size Distributions

The various mechanisms that cause rein to have a given drop-size
distribution are so complicated as to prohibit analysis. Indeed, there
is such variation in measured distributions in the literature that
one may conclude that xno one distribution can describe all rain cases.
The best that cone can hope for is to find a raindrop distribution model

which is simple, easy tc work with, and represents a more or less average

of many rain situations. With these facts in mind we shall discuss
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various measured data from the literature, consider available proposed
models, and finally select the model which seems to present the best
compromise in the desired behsvior.

Before proceeding it is helpful to classify the forms of distri-
butions according the Figure 2.2-1. We define these forms as types A,
B, C, and D, The general behevior is all that is important in these

definitions and some variations ray be expected.

Measured Data

Measurements of raindrop sizes were first made as early as 1895
in Germany by J. Wiesner using an absorbent paper method. For our
purposes, however, the most significant early paper was due to Laws
and Parsors [21] who used a flour peilet method@ developed by W.A. Bentley
in 1904, an American. Their data, taken in 1938 and 1939 in Washington,
D.C. on surface rain, were approximately type C below drop diameters
of esbout 1 (at 2.5mm/hr rain rete) and 2 (25mm/hr) mm, and type B abcve
these diameters.

Marshall and Palmer [22] analyzed surface data taken in Ottawa,
Canads [23] in 1946 using the filter pamer method. They obtained a gooé
fit to their data and data of [21], for 1 < I < 25 mm/hr using their

famous distributic:
-3 -1 \
n(do) = Ae m - mm (3.2-1)

where

1

A = 6000m™ mm~ (3.2-2)
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; log. (n) log (n)
1
i

log (n) log (n)

Fig. 3.2-]. Representative raindrop distributions.
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A= 4y 17021 (3.2-3)

Here n(do) is the number of drops per unit volume (in m3) having diameters

fromd, to 4 + ddo, I is rain intensity in mm/hr of water rate and

0 0

do is in mm.

Blanchard [24], using the filter paper method, has given average
distributions for a large number (113) of measurements taken in Hawaii
in 1952. Some of the data were taken 2zt or near the dissipating edge
of non-freezing orogrephic clouds. Other data corresponds to rain at
the base of a non-freezing orographic cloud while some applied to non-
orographic rain {probably due to snow falling through the melting level).
Orographic data were mainly type B for low rain rates (<2mm/hr) and
type D for higher rates. The non-orogrephic data were type C.

Mason and Ramanadham [25] have given surface data on rain taken

epparently in England with a photolelectric spectrometer which is quite

similar to that in [L].

Monsoon rain data in India (1956) have beern reported by Murty and
Gupta [26] which resulted from the filter paper method. Average drop-
size distribution curves based upon 229 sets of messurements were given
for rain intensities I from 2 to 140 mm/hr. The data were type C and
quite similar to the non-orographic data of [2k].

One of the most comprehensive studies of raindrop distributions
is discussed by Fujiwara [27, 28]. Data taken with a raindrop camera
related to data taken at Miami, Florida and Champaigne, lllinois on
a large number of storms. The data are too numerous to discuss in de~
tail. However, one of the most importent observations to be made is

on how variable drop-size distrivution can be. It can vary from o

. taiaa
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unimodal structure ( with maxiinm at about 1 to 2 mm diameter) to multi-

modal with many peaks; of course, the exponential decreasing structure
(type B) is also found. The variation (fluctuations) may even be pro-
nounced for a single distribution measurement so results do not usually
form smooth functions. Another important observation is that distributions
always decreased for small drop sizes (type A). TFujiwara also shows

time evolution of distritutions which indiéate great varisbility in

only short time periods (as small as 1 min.). Most of the data of

{27] were for thunderstorms., rainshowers and continuous rains.

More date on tropical rains are given by Sivaramakrishnan [29].

The filter paper mtehod was used to measure surface drop distributions
at Pcona, India. The data, for non-freezing rein and rain from melting
snow were generally of type B buvt considersble fluctuation existed along
the curves.

Additional data on rain from a melting berd is given by Hardy [30].
Relatively steady rain at Flegstaff, Arizona on 31 July 1961 produced
distributions of type A for I from 0.11 to 3.4 mm/hr. These results
were mostly smooth curves with the peak occuring near 1 mm drop diameter.
Measurements were made with a photoelectric raindrop-size spectrometer.

The photoelectric spectrometer was also used by Dingle {31] to
measure thunderstorm rain of 8 October 1959 at Ann Arbor, Michigan.
Results were type B where the slope decreases as I increages for I from

0.18 to 51.6 mm/hr. A Marshall-Palmer (M-F) model is a farily good

it to these data., Other data for a heavy shower cn 23 October 1959
and for showers of 16 June 1960 also indicated reasonable agreement with

the M~P distribution, especially when the data were averaged (16 June

results).




Using at 3.2 cm doppler radar during 1960 and 1961 at Pershore,
England, Caton [32] analyzed 83 of 107 observaetions of continuous rain
from melting levels in an excellent paper. The rains were related tc
three warm fronts, four cold fronts and three low pressure centers.
Melting level varied from 1.0 to 3.3 km above ground. Kumidity was
neerly alweys high and evaporation below 750 m was negligible. Median
distributions at altitude are quite smooth in their behavior, which is
type A. The M-P distribution fits the data only over the mid-range of
drop diameter and overestimates beth small and large diameter drop num-
bers. Caton also gives bounding curves, within which, 90% of all dronv
concentrations fall., These bounds are also smooth curves. Data were
for I from 0.1 to 5.6 mm/hr.

Distributions for high-intensity rains have been assembled by
Blanchard and Spencer [33]. Their data are taken from Mueller and Sims
[34] and Hudson [35]. Data of [34] were taken from several types of
rain using a raindrop cemera at several locations around the world
(Miemi, Floride; Franklin, North Carolina; and the Mershall Islands).
One set of three curves representing about 10 sample distributions
(type A), and corresponding to T of 170, 205 and 216 mm/hr, show close
agreement to the M=P function for dorp diameters from 1 to about 3.% rmm.
For diameters outside this range the M-P function overestimates the dror
density. A curve, for I = 300 mm/hr, of data from [35] were quite
similar to the data near 200 mm/hr from [3L] (again type A, the curve
averaged 9 samples). For I = 500 mm/hr, date based on averaging 3
samples [35] again gave similar verformarce wvxcept the peak moved from
near 1 mm diameter out to ncar 2 mm. All data from [35] were taken

at Miami, Florida.
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Discussion of Measurement Data

Including Russian data, to be commented upon subsequently, we have
discugsed measurements from all ver the world (U.S., Fngland, Canade,
Hawaii, India, Russia, Africa snd the Mershall Izjands) covering inten-
sities from a few tenths of e mm/hr to 500 mm/hr. The data apply to rein
at various spatial positions (within rein cloud, at rain cloud base,
at edge of cloud, between cloud base and earth's surface and at the
surface) and correspond to nearly every type of rain generation mech~

anism (from melting band for snow, hail, sleet, from non-freezing clouds,

f—

frontal storms, showers, convective storms and both freezing and non-

P

freezing orographic rain). Thus, it can be concluded that sufficient
results are given to represent nearly all typical rain situations which -
can occur.

The factors which cause a particular rain situation are extremely
complex. Some of these are: temperature and humidity profiles, time
and spatial location of points of interest, spatiel extent of rain cloud,
intensity, accretion (important in non-freezing clouds), coalescence and
drop breakup (related to intensity), evaporation (related to humidity),
orography, and the generation mechanism. Because of the complex nature
of the problem we make no effort to determine why, where or how a par-
ticular situation arises. We only here attempt to correlate the best
rain model to fit an average rain situation. Thus, we place the averaged
date of [20], [24], [26], {30], (31), [32] and [33].

It is helpful to first divide all cases into two categories:

orographic and non-orographic. Typical distributions in the former case

are markedly different from those of the latter, They typically behave

A e it SINRIFRRI A4 Al it D A B Rt LA
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as type B (with steep slope) for low intensity rain and as type D for
heavier rains.
For non-orographic reain it is again convenient to place data in

two categories. The first contains results obtained by the flour pellet

gnd filter paper methods. The second has data from photoelectric spec~
trometer, radar and raindrop camera methods. An immedistely obvious

difference in distribution form between the two categories is seen.

For small drop diameters the former shows increasing concentrations

(type C) while the latter shows decreasing concentrations (type A).

e,

One is tempted to suspect that splashing of large drops causes the ;

increase in the filter paper method (perhaps even the flour method). !

However, as pointed out by Caton [32] the splashing prcblem has been

considered by at lesst one resesrcher and was ruled out. It is, of

. T T R
: : K e S e S

course, possible that both categories of measurement method are correct.
On the other hand, a radar man tends to place more confidence in rader

data. Caton has carefully considered his rader system end concludes

) A, et A SO U

the weight of evidence supports distributions of the second category 1
for moderate and heavy rains. Regerdless of how the above suspicion

is resolved, at least one thing is clear from nearly all of the data

of both categories: below some drop size, typically in the 1 to 3 mn

diameter range, actual rain drop densities tend to be overestimated

by the M-P distribution (An exception would be very light rain during

very high humidity).

In the mid-range of raindrop size the M-P distribution is a fair

to good approximation to all measurement data. The region of close
agreement varies with intensity and Dyer [36] suggests it is from 0.7%

to 2.25 mm for near 1 mm/hr, 1.25 to 3 mm for near 5 mm/hr and 1.5 to




4.5 mm for near 25 mm/hr. In the light of data shown here, those uppes
limits are perhaps optimistic.

For larger drops, measured distributions almost always are over-
estimated by the M-P curve. This fact is not surprising siuce there
is a practical size limit to drops caused by break-up.

The above results may broadly be summarized as follows. A reascnable
model for the drop-size distribution of average rainfall has these cisr-
acteristics: (1) a peaked behavior occurs with the peak typically oc-
curing to 0.5 to 1.0 mm djameter for intensities up to about 300 mm/hr,
the peak moves nearer to 2.0 for higher intensities; (2) for drop di-
ameters below the peak region, the M-P curve overestimates the number
of drops; (3) for drop diameters above the peak region and up to &
value from about 2 to 4 mm depending on intensity (up co 300 mm/hr)
the M-P distribution gives results nearly equal to meessured values
(typically within a factor of 2); (L) for diameters sbove the 2 to lmm

region the actual results are overestimated by the M-P cuarve.

Drop-Size Distribution Models

Having determined the desirable characteristics of a model we look
at the various models suggested in the literature.

The Marshall-Palmer [22] model already introduce? is the oldest
and still remains widely used because of its simplicity in caiculations.
Another reason is that it is a good approximation in the mid-range of
drop sizeas, which contribute grestly to radar cross-section because of
the dg pover relationship. An often played game 1s to find the best
A and A to fit given data. Some examples ere given in [36] from various

researchers. Perhaps one of these examples should be mentioned. Using
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data of [26] for orographic rain
A = 7500 170-25 (3.2-4)

A= L.5 17027

are derived. Since our desired model characteristics are referred to

the M~P curve we use it tc¢ conpare other models.

Best [17] gave a rain model in 1950. It may be written in the form

n-4 n
& %o -(do/a)
n(do) = —o- e (3.2-6)
a
where
a = AIP (3.2~T)
W= cCI' (2.2-8)

with A, C, p, r and n constants. Here W is the amount of liquid water

per unit volume of air and I is rain intensity. If do is in mm, T in

mm/hr and W in mm3/m3 the mean constant values are A = 1.3, C = 67,

p=0.232, r = 0.846 and n = 2.25, and n(do) is in m Y., The con-

stants may vary appreciably from their means, especially n if rain is

showery or orographic [37].
Taking the average constant values (3.2-6) becomes

T gy

n(do) =

13.59 |20
a

na




Plots of (3.2~9) show clearly that the Best model does not fit our model
requirements (it is more like type C behavior). It may te better in
its more general form, however, we seek not only a good but also a
simple model if possible.

In 1956 Litvinov [38] proposed the following model as discussed
1n [391".

-ad3/2

n(a,) = Ve ¢ (3.2-10)

vhere ¥ and A are constants as far as intensity is concerned, dut vary

with rain type. Thus, for a given rain type, this model is not flexible

since it does not depend upon I. It is not considered further...
Litvinov [39] also describes a model due tc E.A. Polyakova and

K.S. Shifrin. The model (P-S) is also described by Krasyuk, et. al.

[¥1)]. It is
'Yd
n(a,) = Adg e O (3.2-11)

vhere A and y are given in Table 3.2-1. Litvinov

Table 3,2-1
Type Rain Ajp'3mm"3) Y(Ep-%)
Thaving of Pellets (Hail) 6450010+ 5 6.951~0.27
Thaving of Grenular Snow (Sleet) 117501-0+29 4.8711°9-2
Thawing of NonGranular Snow (Bnow) o8201-0+18 4.01170-19

.
This article was translated by Mr. Jim Elliott of the University

of Tennessee.

Ia & later paper by Litvinov (40}, ar translated by Irving Emin,

N and )\ are said to be functions of intemsity but not of the usual
form oI"B. This cese would sppear to be true with [38) having either
a typographical or translation error. At any rate {3.2-10) Aces not
account for the decrease of distribution for very small drop size
and is not considered further.

[ La
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Fig., 3.2-2. DP-S model compared to measured data near 2.5 mm/h rain

intensity.
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Fig. 3.2-5. P-S model compared to measured data near 200 mm/h rain
intensity.
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has shown Russian data for all three types of rain which are fit excel-

: len’ly using (3.2-11). Figures 3.2-2, 3, 4 and 5 illustrate the P-S

model for I = 2.5, 25, t0 and 200 mm/hr respectively. Spotted on these

figures are various average data described eerlier; also shown where

possible are the estimated origins of the rain, that is, whether orig-

inating from melted snow, sleet or hail, etc. For moderate rain*,
using Figure 3.2-2, there is excellent agreement with averaged data,
especially if we assume the Caton data (taken from August to December
1961 in England) originated as hail. For heavy ruin the model does
cot £it average data too well as seen from Figure 3.2-3, if Dingle's
data are from melting snow. On the other hand, if the data are from
melting hail, the agreement is guite good. Simiiar comments may be
mede about excessive rain rrom Figure 3.2-4. For deluge rain Figure

3.2-5 shows the model is a poor it regardless of the rain's origin.

To batter place bounds upon the usefulaess of (3.2-11) we have re-

plotted some of Litvinov's measured date [39] in Figures 3.2=6, 7. The

first figure is for rain originating from hail. Fxcellent agreement
is seen for intepsities from 1.5 to 15.2 mm/hr. {(Litvinov also shows
curves for 3.47 and 7.25 rm/tr which slsc show close agreement). The

curve for I = 1,5 represents an average of 77 maasurements while only

a single sample applies to the I = i5.2 curve. The second figure shows

excellent agreement of data and theory fur rain trom melting snow for

»
Ve define intensities as: drizzle, 0~0.% mm/hr, light rain, 0.5-2.0 mm/hr;
moderate rain, 2.0-8.0 mm/hr; heavy rein, 8-32 mm/hr; excessive rain,
42-128 mm/hr; deluge vain, 128 mm/n wigher.

P
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intepsities from 1.5 to 11.1 mm/hr (curves are average of L and 1k
samples respectively). Excellent agreement is obtained for intermediate
inteusities of 3.52 and 7.47 mm/hr as well [39]. Finally, Litvinov also
gives results for rain from granular snow (sleet) which verify agreement
of the model with messurements for intensities from 1.56 to 10.88 mm/hr.
Thus, in summary, the P-S model appears to represent average rein-
drop size distributions quite well up to intensities of at leest 15 mm/hr.
There is some doubt as to its validity for intemsities near 25 to 50 mm/hr
end it is not a good model for intensities near 200 mm/hr. It can prob-
ably serve useful analytical purpose for rains through the heavy region.
Fuliwvara [27] has given a model involving four variable parameters
and is applicable to fitting individusal storms. It is
S-1 e-—(d--DO)S/aS

, D .<a.  , (3.2-12)

RS
(d5) = 2 (4 - )

where N is the total number of drops per unit volume; D, is a "mode

shift" parameter, typically around 0.8 mm on the average; S is a "skew-

ness" perameter ususlly verying from 1 to 3; a is a "broadness" param-
eter which is related to rainfall rate, and, from fitting of measure-
ment data, ranges from 1 to 3.5 mm. Because of the number of parameters
having unclear relationships with intensity and rain type (3.2-12) is
difficult to work with. Fujiwara shows a good fit to many data and
(3.2-12) may be very useful model when these relationships are developed.
However, until the developments are avallable we shall not consider
(3.2-12) & useful simple model.

Finally, we briefly discuss the log-normal mcdel. According to

Dyer [36] it is the most universally applicable distribution. However,
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Litvinov [39] finds it to be non-applicable to rain from melting snow,
sleet and hail. He later [40] shows explicitly that it does not fit

data from melting hail. Incidently, asccording to [40], the log-normal
distribution was suggested by Levine [(42]. Because of Litvinov's con-

clusions we do not consider the lng-normal distribution further.

Summary of Drop-Size Distribution Models

The Marshall-Palmer model of (3.2-1) remains a reasonesble model

N - W,

for most average rains cover the important mid-range of drop sizes.

It can give useful analytical results because it is easy to work with.

P

For orographic rains the M-P distribution with A and X given by

(3.2-4) and (3.2-5) has Leen developed [36] from measurement data.

e

For non--orographic rains, such as rain from the melting layer, the
Polyakova~Shifrin model of (3.2-11) gives excellent agreement with many

measurements and does not appear to be difficult to work with. ‘ ’

ot

During this wtudy a.il analytical work will assume either the M-P

or P-S distribution for nou-orographic rain. 1

3.3 Probability Density Function for Drop-Size

Let n(do) be a drop size distribution. The total number of drops

N is

N .f n(dyldd, - {(3.3-1)
0

For the M~P distribution

= ),
N = f Ae ddgy = a/d . (3.13-2)
0




For the P-8 distribution

e © aa, = oA/YS . (3.3-3)

We shall define the probability density function for a drop diameter

by

n(a,)
p(a,) = :0 . (3.3-4)

For the M-P and P-S models

- 4 -Ado

y p(d,) = 2e s M-P (3.3-5)
3 -vd
I pleg) =X-a2e © , p-s . (3.3-6)

¢ Since p(do) is a function of rain intensity I through X and v,

it must be considered as a conditional density if I is random.
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4.0 ORDINARY SYSTEM PERFORMANCE

When & linearly polarized redar operates in rain, using a frequency
above a few gigahertz, there may be undesirable clutter from backscatter
due to raindrops. The usual way of reducing this clutter is to resort
to circular polarization. If ‘he system transmits and receives perfectly
circular polarization in all directions, and if raindrops are all spherical,
the clutter may be totally cancelled in theory. Neither of these conditions
is satisfied in reality and the purpose of this section is to determine
approximate bounds on the practical clutter cancellation achievable by
a system designed to radiate and receive approximately circular polar-
ization. Practical effects of raindrop shape, size distribution, and
drop orientation are determined for various rain intensities from 0.5
to 128 mm/hr.

Two situations are developed. First, the raindrops are assumed
to be perfectly spherical and the effect of system polarization tolerance
is found. Second, the system polarization is assumed perfectly circular
and the limits due to practical rain ere found. 1In the latter case,
both the Marshall-Palmer (M-P) and Polyskova-Shifrin )P-S) raindrop

models are used to achieve numerical data.

4.1 System Mocdel

The system model is that shown in Figure 2.5-1, and described
in Section 2.5. The matrices [t] and [r] are chosen to give orthogonal

space polarizations.

&

el recatha il i i
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4,2 System Clutter Powers

Ordinary System

Cancellation ratio CR will be defined as the ratio of clutter
powers Pref/Pord where Pordis the output clutter power of an ordinary
or circularly polarized system. Pref is the clutter power of a "refer-
ence" gystam defined as having a single polarization (say X), the same
pattern and transmitter power as the ordinary system and operating in
the same rain environment.

Using complex notation, Pord is the expected value of !er|2 in
Figure 2.5-1, where we henceforth drop the functional dependence of
all quantities on k since we deal only with a typical cell. Now e. =
21 + €5 where e, and e, are produced by the sums of the backscattered
fields from the N particles in cell k. Carrying out the necessary

algebra leads to the ordinary system power

P .= |Al®z2 g l6(,, B )|l‘ | +)2Ts. . - T2 |2l (h.2-1)
ord N A 114 9%y T 7 B2y ;0 M
;
Here
Kep, e~ J262
Aw L (b.2-2)
2
2 2z

Z is the radial distance to the center of cell k, K is a constant re-
lated to the range equation, B = 2n/\, A is wavelength, and § = v-1.

In erriving at (4.2-1), use has been made of the fact that 8104

= g Also, it has been recognized that radial position of raindrops

211°
is unifromly distributed over a range cell, which is large relative

< :. “?

E

T T A

L ame .
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to A, and position is independent of all other random quantities. Hence
the expected value with respect Lo redial drop posiiion has alresdy

beeri taken.

Reference System

The reference system clutter power is most easily obtained by

setting s,,, = 0 and 5,,, = 0 in (4.2-1) and adding & factor 2 to ac~

count for the fact that the two systems must radiate the same total

power

N
2 b
P.o= |A]" 2E : 16(a; 81 |

2
s . (b.2~3)
i

4.3 Clutter Cancellation Ratio

Clutter canc--llation ratio CR becomes the ratio of (L4.2-3) to
(4.2-1). The expression simplifies by observing that the raindrop

location eangles a, and Bi may be considered statistically independent

i
of all other random quantities which are related to drop scattering
properties. It is furthermore reasonable to presume the same statis-

tical distribution function for these angles applies to all drops.

With these considerations we have

N

2E(L |s..|%)
jop 11
CR = W . (k,3-1)
E(z |s.. +joT s, |°}
8 8 - 5
ey 11 =VTP12 22

Further simplification follows the assumption that N is nonrandom.

Such a situetion is true if the rain intensity I is taken sas constant.

A A o s =T




Making this assumption, and noting that the same statistical distri-

bution applies to all raindrops, we get

2
2 B{lsul }

cR - . (h-3-?)

!{lsu +3T e, - 72 ’22'2 }

Here we have dropped the subscript denoting particle i since it is no

longer required. We consider two special ceses of (k.3-2).

Ideal Rain Case

For spherical raindrops s = 0 and 81 = 8p Cancellation

12
ratio becomes

2
. (4.3-3)
Taiz

-

This result describec the performance of a nonideal system oper-
ating in light, drizzle-~type, rain since drops become more neariv
spherical as rain intensity decreases. Figure 4.3-1 is a plot of CR
from (4.3-3) as a function of |T| with thephase of T as a parameter.
To obtain 30 AB of cancellation, a system must not have more than 0.2
dB of smplitude unbalance in the two linear polarization components
for zero phase unbalance. Phase unbalance rapidly decreases the al-

lowable amplitude tolerance.

Ideal System Case

It can be shown that the functions sm are all real. Withi T = 1

(4.3-2) eimplifies to




CANCELLATION RA.IO IN dB

10 Log]Of:R)

atssmaciinh diintnamititn sibon 7oreseiliitinismveiiroiiinmcsd
57
50
] | J i L] |
40 | 1
ERROR = 0.0°
30 -
20
1
10
0 i 3 1 e 1
0 0.5 1.0 1.5 2.0 .5

Fig. 4.3-1.

AMPLITUDE ERROR IN dB
20 Log;(1/[T])

Effect of Polarization Amplitud: and Phase
Unbalance on Cancellation Ratio for Operation
in Drizzle Type Rain Having Spherical
Raindrops.

AT AN AT ATRAAVR Rt mEmry ey




ot —— ——

2
2 E{sll}

CR = . (h.3‘h)

B(sy, - 322)2 + U sia}

The calculation of CR can not be carried further until the scat-
tering parameters 8n 8re determined for a typical raindrop. These
relationships were given in (2.3-6). We use these expressions and
assume in all following work that the rader beam is pointed horizontally
and radiating in the Z direction with polarizations in the X and Y
directions. Equation (U4.3-L4) will reduce to

2B(lg, + (&, - ,)sin’(c)sin®()]%) s

CR =
E{(sx - gy)z[sina(c)sina(W) + cosz(w)]Q}

where 8, and gy are functions of drop equivalent diemeter do. They are

given approximately by

B ag

.5 " 5 (4.3-6)

- 11 + 1+; ] (1-x tan'l(x)]

- x )
2B dg
= (L.3-7}

%" T2 ne ) L 1

ﬂr‘l -(x x3 an X

\ !

Here
X = do/5 {L4.3-8)

B = -nel(lo'g)/6. (4.13-9)
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€ is the dielectric constant of air, €, is the dielectric constant

of rainweter (relative to air), and do is in millimeters. The angles

{ and ¥ define the fall-path of the raindrop with ¢ being the azimuthal

angle of the vertical plane containing the trajectory of the drop while
¥ 1is the fall angle measured from vertical.

It is quite difficult to solve (L.3~5) exactly. Part of the aif-
ficulty erises because § and |y are complicated nonlinear functions
df wind casponents and ¢ is additionally a function of d0 throwth the
drop terminal velocity. 1In general, the winds should be treated as
random quantities. Other difficulties derive from the complicated
behavior of 8, and gy. Most of these problems can be avoided if we
seek 10 calculate bounds on performance, rather than calculate CR ex-
actly.

For the lower bound on CR we may show by direct calculation that
(gx - gy) is positive while &y is negative and )gx - gyl 5_]gyl for
all d4,. Thus, as a function of ¢, (L.3-5) is minimum when sing(c) =1,
Presuming this to be true for the moment, the resulting expression

is minimum as & function of { when sin2(¢) = 1. We define the final

function as CRm It is given by

in®

2 Elg?)

CR =

nin . (4.3-10)

2

E{(g -8 )"}
8x~Ey

More careful study of the behavior of { and ¥ shows that (4.3~10) re-
sults if we make the simple assumptions that all winds are constant

E (nonrandom) and that a strong horizontal wind blows.
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For the upper bound, (4.3-5) is maximum, as a function of g, for
sina(c) = 0. The resulting expression becomes maximum as cos(y) approaches
zero. Again assuming nonrandom winds vwith a strong horizontal compo-
nent Vr, the upper bound, defined as CRmax’ becomes

y 2
2V, E{gy }

CR__ = . (4.3-11)
maX g (g,-g, ) (V V)"

Here Vv is the vertical wind speed and V_ is the drop terminal velocity,

which is approximately given by

v_ = 10.105(1 - 40’2 (1.3-12)

i do is in millimeters.

A final situation supposes all winds are zero. The (22) reduces to

2
2E{g "}

5 .
E{(gx—gy) }

4.4 Ideal System Numerical Results

Calculation of (L.3-10), (4.3~11) and {4.3-13) i{s still not a
simple task due to the form of the expressions for P and gy. Howvever,
direct calculation of the functions gi, gs and (gx-gy)2 has shown:

1) that sensitivity to the parameter e, is small and, 2) they may be
approximated closely with simple functions which lead to closed-form

solutions for the varliocus expectations. Thus, approximations were

developed and expectations were taken assuming ra ndrops distributed




according to both the M-P djictribution and the P-E distribution.

Marshell-Pelmer Distribution

The applicable distribution probability deasity is (3.3-5) where

A 1s given by

A= b 02

(h.4-1)

vhere I is rain intensity (mm/hr). With this density function (k.3-1C),

(4.3-11) and (k4.3-13) evaluate to

_ 122.77 2[1.505 - 1.656A + 3]

CR
155.63 + A%

min

v 4 e
CR__ = (__;a__) 123.96 [0.753 + A°]
1

max  }19.105 X, + (155.63K,/A°)

_ 123.96 22[0.753 + 3%

CR
155.63 + A2

no

Assunming Vv = 0. dere

X =1 - 4 . 6 _ L
1 1+ (0.5/M)1° 1+ @/mP 1+ (1s5m)7P
P N
{1+ (2/1)71°
x2 “ 1 - N . 6 L

—
[
+

1

v

0.5/ (14 (/M (1 e (asaM

(1 + (2/0) 1M

(4, Le2)

(4.4-3)

(. h-k)

(b.4--5)

(4.4-6)
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perfectly circular polarization when operating in rain described
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Figure 4.lb-1 illustrates plots of (h.U-2), (k.L4-3) and (4.4-k),

PolxakovaPShitrin Distribution

Here the probability density function of drop diameters is given

by (3.3-6) and v is given in Table 3.2-1, Calculation now produces

v\ 2
CR - r 77.21 (1.21 + ¥°) (4.4-T)
mex \1195] x + (208.167x,47)
CR = '[6.h69 Y (2.76 - 2.652J + Y3) (,-l.l&—S)
min 228.46T + v
2 2
228.467 + y°
vhere
L 6 Y
X, =1- + -
! 1+ 0.5/ [1+ (/)i [1+ (1.s/y)1H
1
+ (4%.4-10)
11+ (2/y) 1%
) L . 6 ) L

2=l e ous)1P3 11w (1 1w (st

[1+ (2/v)133 (h A=)

S R SV
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The expressions (4.4-7) through (4.4-9) are plotted in Figures L L-p

through 4.b-4 for rain from melting snow, sleet and hail. .
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2.0 PERFORMANCE OF CANCELIATION SYSTEM WITH UNIFORM RAIN CHARACTERISTICS

5.1 Rain Characteristics

As in section 3 we consider rain particles to be nonspherical in
this section. However, unlike chapter 3, we shall Lere assume particles

all have uniform shape, size, and orientation.

5.2 System Equations

The cancellation system is shown in block liagram form in Figure
5.2=1. At the left of the diagram, the transmitter signel is split
in a power sense. Half of the signal power is directed to the antenna
which generates the X component of the radiation fieid. The other half
of the signal power is directed through the lower channel and eventu-
ally is used to generate the Y component of the radiastion field. How-
ever, this second portion of the signal is modified in magnitule and
phase by the element T. It is this eleme..i T which represents the basic
system imperfections which prevent the transmission of a truly circu-
lerly polarized field. Finally the signel in the Y channel is shifted
in phase by + n/2 with the +n/2 corresponding to polerization of a lef*
hend sense and the -1/2 producing polarization of a right hund sense.

The quantities e;» and e;, represent the electric fieldu produced
by the X and Y antennas respectively. By using equation (2.L-1), one

may express these fields as indicated in equation (5.2-1).

KleTG; ~3B,Z
e

e - = (5-2'1-&)
2 2
. T °T°§ -8,
et e 1TT o (5.2-1b)

y 2 7
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If the transmitter antennas are not perfectly orthogonal then s
cross coupling of the electric field components occurs as indicated

by the t factors in Figure 5.2-1. This cross coupling is expressed

iJ
mathematically in equation (2.5-1), and the t,, terms are defined in
v

+
equation (2.5-2). Thus, the true orthogonal components, e; and ey,

may be expressed as

+ + +
e, = tllex' + t12ey‘ and (5.2-2a)

+ + +
e, = ty,e, -+ t22ey‘ . (5.2-2b)

+
The relationship between the incident field components, e and

+
e, and the reflected or scattered field components is given by equaticn

(2.3-3) with the 8,, terms defined in equation (2.3-6). These equations

iJ
together with equation (2.4-2) which indicates the propagational mag-

nitude and phase effects may be used to express Lhe scaitered field

components at a distance 2" from the particle as

-

+ +
S,.e + S..e ) -JB .z
e- =(_ll X 12 l e 0 (5-2_3&)

X Z‘

(5,.e" +5,e’) -382
e; e 21 x - 2y ., 0 (5.2-3b)
2

As in the case of the transmitter a.tennas, the axes of the re-
ceiver antennas may not be perpendicular to one another so that cross
coupling of the field compoients cccurs. The mathematical basis for

this effect is given in equation (2.5-3), and the representation uced
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in this work is shown in equation (5.2-4).

ex‘ = rlle + rlaey (5.2-4a}
s = T8y + Fooly (5.2-kv)

Receiver signals e, and e, may be determined by application of

1
equation (2.4-3).

I g o -
e, = KGee .= [rllex + rlQey]

- B Z'
X + +'1 J 0
G, [rLll(Sllex * 5108y o)+ r1o(8p 8, * S0 )| e

ZA

X +
Ko G {F3(S), ﬁfnex- + tm%‘) 12<t21ex' MY >)

. ) 3827
+ + + \ 0
+ - ’ »
12 (521<t11ex * 108 > (t 21%%° 20 v/ ] e
X
K.e. G
K1 2T r Y " / Y
. e r..(s,./ +JTt G, ) + 8 +Jmt )
i 5egeg” [ 1t tn 'r 127, 12+ b21® 'r 2257,
~38,(2+27)

Y\ 3 ]
+ 1, (8 <t11 p 2T 0 * S2"<'°"1 7 HT00) )] e

(5.2~5a)




it " " R T Y 7 S A T e Y gy L T T e

Y
$JRK, KoenG,

e, = <t +IT4 >) + 8, (e, GE 4yt >)
2= TS e [21 511 (F128r 3374120y $10p 2Tt 00y

For the case of a monostatic radar the following relationships

are valid.

Z =12

R=T

eg = G§ = Gx
oL -cl = o

The assumption that the antenna axes are orthogonal results in a sig-
nificant simplificetion in equations (5.2-5a) and (5.2-5b). This sim-

plified form is given in equations (5.2-6a) and (5.2-6b).

X
K,e,G -J28 .2
r % T (¥, samels 1 e O (5.2-6a)
2 2
oY
+JRK. K ~J2B2
e, = b 2° 'r [stm :J’I‘GYSQ;] e O (5.2=6b)
/2 z° '

Use of the definition in equation (2.4-k4) along with the assumption
that the X and Y radiation characteristics, Gx and GY, are identica)

resulte in a Turther simplification for the terms representing the

signals received as a result of scattering b one particle.

'MW

el i e AR




T3
2 -
Ke,G"(a, 8) -J28,2
e, = —-75:;5———~ [311 +JT812] e , and (5.2-Te)
+37Ke, G%(a1, 8) 128 7
= “J
e, .8 [s,; +3Ts,,1 €770 (5.2-Tb)
where
& =0l = Gla, B) . (5.2-8)

In the process of evaluating actual radar system performance in
the presence of rain, it will be necessary to consider multiparticle
: scattering. As pointed out in section 2.4, the multiparticle effect
is evidenced by a summation of individual particle returns such as those
of equation (5.2-7). Expressions for e, and e, for multiparticle scat-
tering with the same assumptions as used in equations (5.2-Ta) and

(5.2-Tb) are given in equations (5.2-9a) and (5.2-9b).

~J28Zy
Keg® ~ G s, (k) +375__ (X)) %80ty (5.2-98)
(k) = G (a,, B,){S +) e .2-9a
“1 "5"1% 1; 1* P17 121
-J282, N
*JTKee 5 -§2B,4Z,
e, (k) = o i G (ay, 8,) [8211()() :J'I‘S?zi(k)] e (5.2-9b)
2 2y i=1

Before it will be pusgible to continue the analysis of the can-
cellation system, one must define the G element in the system block
diagram. The original definition of G was provided by Rice and Peebles,

and it is provided below.

e
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k+M e (2)
G(k)sm g —(—7 (5.2-10)

The value of G at the time the system is processing the returns from
the kﬁh range cell is determined by the negative of the average value
of the ratio el/ez. This ratio is evaluated in the M cells before cell
k, cell k itself, and the M cells after cell k.

Using the definitions of e, and e, provided by equations (5.2-9a)

and (5.2-9b), one obtains the following expression for G.

yk -328,07,
L=k#M )" G° (a » B )5,,,(0) #3185, (@) ] e
6(X) = TTREwTY Z £ ~ (5
+JT 2M+1 - J2B A7
=k M - z,
z: 6%(u;, 8,)[8,), () 1375,, (1)) e © O
i=1

If all the particles within a given range cell have the same size,

shape, and orientation then

Kt {° (2) +37S, NERD!

+JT +1 [§21 ) +;T>°n\yfT
2=k-M -

G(k) = (s5.0=12)

G may be expressed by a yet simpler form by requiring cell-to-cell

uniformity in all particle parameters. This assumption gives

-1 [°11 2375 ] -1 [Sll 2T
G = tany (M e S 1T LT TS, fJTF5:T

Lo-11)
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A1l of the equations developed thus far in this section pertain
to the situation in which only clutticr is present in the cells being
observed., In the event that a target appears within one of the cells

of interest, one obtains the following expressions for €15 €n, and G.

e, (k) = eS(x) + e'{(k) (5.2-1L)

c T
e,(k) = ey(k) + e, (k) (5.2-15)
The quantities ei(k) and e;(k) are the clutter contributions to the
totel backscattered signal and will in general be express~d in the form
indiceted in equaticns (5.2-9a) and (5.2-9b). Target contributions
to the backscattered signal asre indicated by ei(k) and eg(k) and these

terme find expression in equations (2.5-17a) and (2.5-17bj. Application

R A

of equations (5.2-14) and {5.2-15) to generel definition of G ir equation

o e

(5.2-10) gives

! k+M )
7 L e (2) . e (4) e, (k)
o) = AT 2y 500 T T |ofew 2P (5-2-26)
=k-M 29k

Firally, uscing the appropriate combination of expressions for

e s and G, one may express ‘he receiver output, er, in general.

er(k) = el(RW + G(k)ee(k) (5.2-17)

¥ T T T T e T kac i A il i dia i L i U N LR A ’mm
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5.3 Evaluation of Ferforuence

In this section, the output of the cancellation system as indicated

genereally in equation (5.2-17) will be evaluated for several different

situations. These situations are itemized belcow.
1. Only clutter is present in the radar system's field of view.
2. Both a target and clutter are in the system's field of view,
and target occurs in the range cell presently beil.g examined.
3. Both a target and clutter are in the system's field of view.

The targst occurs in a rang> cell whose returns are used in

the evaluation of he present G function, but that cell is
not the cell presently being examined.
For the first case, the needed expressicns for €1 € and G are
rrovided by equations (5.2-9a), (5.2-9b), and (5.2-13). The receiver

output signal is

i
1
¥
;

er(k) = el(k) + G(k) eg(k). (5.3-1)

Equation (5.2-13) reflects the assumption of cell-to-cell uniformity,
and when this concept is applied to the definitions of ey and e, 8 sim-

plificatior in form results.

-328.7
KeTe Ok Nk 5 -ngOAzi
= ¢ ¢ (o,, B,)e (5.3-2a)
e, (k) o [y, £318.,] 3 G lo, By i
k i=1

+JTKeTe-J260Zk M - 328,07,
2,0 S 5..12, G la,, 8) (5,3-2h)
25 (%) v (5., +I73,,12 (ayy B, )e

1=1
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-y [8y; 378,

G(k) =
20!

One may now evaluate the system output under the assumption of cell~
to~rell uniformity by substituting the above expressions for e1s €p»

and G into the system output equation, (5.3-1).

Kepe . ” ~128,02,
e (k) = [8,, #3181 2 ¢(q,, B, )e
r 5 Z2 11 - 127, i i
= k 1=l

~428,Z,
[s., #378,.] (+3T)Ke e
. (-1 ) 11 =""12° "= T (5. +J75,,]
+3T [821 :JTsé;T' “Erzi 21 v 22
N
k 5 -328,87,
. G (ai, Bi)e " =0 (5.3-4)
i=1

In the second case, the approupriate expressions for €1 o and

G come from (5.2-1%), (5.2-15) and (5.2-16).

e (k) = e (k) + G(r)e,(k)
M
_ -1 e, (2) 2 (k) )
= el (2M+1) 2 ORI R (5.3-3)
2=k-M
¥k
k+M
(2)
oM -1 “1 .
: (2M+1)e1(k) * (2M+1 e (L) ep(i) (5.3-6)
2=k-H
Lék
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2% 1\ (8 2978,,)
'(Eﬁ;i) 1) - (336) (8, #785,5) 2 (5.3-7)

c
=(§M%{<afk) + Gl(k)eg(k> + é{(k) + Gl(k)eg(k> (5.3-8)

What seems to be a new parameter, Gl(k), appears in the last step of
equation (5.3-8). Actually, comparison of Gl(k) with the G(k) of equation
(5.2-13) leads one to conclude that the two parameters are the same.
This latter observation simplifies evaluating equation (5.3-8) since

the first part of the equation,
C c
ey (k) + G, (klej(k) ,

should now be recognized as being the same as equetion (5.3-4). Thus,

e, (k) = (—2—3-“;1-) [e1(k) + G (x)ep(k)] (5.3-9)

The statement defining the third case specifies that while the
target is not in the cell p.resently being examined it is located in
one of the cells being used to evaluate G. It is assumed for this
analysis that the target is in cell m, and thus el(k) and e2(k) are

given by equations (5.3-2a) and (5.3-2b) respectively while

k+M

. T e (2) el(m)] '
G(k) = (ZM;I) ya 82(1) + eg(m) . ().S—lu)

L=k-M
£¥#m

This expreesion for G along with the specified expressions for e and

¢, may be used to cbtain the following expression for €.

I'.l.lII'!I.."lIﬁIIllIllIIIlIIIIIIlIIliH-llI---H-!l-ﬂ'-'.ﬁ--"‘-’ e i
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o e (m)
e (k) = e (k) + Glk)ey(k) = (-EM%T) e;(k) - ;:-m- e5(k) (5.3-11)

ey(n) el(m) + el(n)
e, (m)

(5.3-12)
eg(m) + eg(m)

Equation (5.3-11) will be further analyzed for two special situatioms.
The first situation, which might be referred to as the high-noise en-

viromment, corresponds to the mathematical statements

c T,

el(m) >> el(m, and (5.3-13a)
c T

ee(m) >> ee(m) . {5.3-13b)

When equations (5.3-13a) and (5.3-13b) are applied to equation (5.3-12),

the following approximations are valid.

(m)  eS(m)
el(m‘ : eé Z (5.3-14)
eptm eg(m)
c
N fa c,. e;(m) ]
er(k) N (Eﬁ:i) el(m) - eg(m) eg(k). (5.3-15)

The following results are useful in working with equation (5.3-15).

c . .
el(m) (1 [s11 :43512] (5. 316)
+T [821 +I7S,,,] .

eg(m)




P TR T T e

T T TN T

Ty YN T T NIRRT OO i

p g s T S

80
-J28 .2 N
eg(m) C( : TKeTe 0k [ ]i 2( ) ~J28AZ
e (k) = S., +JTS G (a., 8,)e
eg(m) 2 VE-Zi 11 - 12 & i i
Cc
= e (k) (5.3~17)

The result of applying equation (5.3-1T7) to equation (5.3-15) is given

in equation (5.3-18).

e (k) : (—aﬁf) [ef(1) - (k)] = 0 (5.3-18)
A second interesting situation arices for equation (5.3-11) when
eg(m) >> eg(m) and (5.3-19a)
eg(m) >> eg(m) . (5.3-19b)

These assumptions lead to what might be called the large signal environ-

ment, and the output signal, €. is determined to be

er(k)Z(-é-d-%-f) eg(k)- - eg(k) . (5.3-20)

5.4 Comparison of Performance

In section 5.3, expressions were developed for the output of the
cancellation system under various conditions, and in this section, the
results obteined for the cancellation system shall be compared with
the appropriate results for the reference system, The basis of com-

parison, in most cuses, shall be the ratic CR which is defined below.




el et bkl

B A o waid Tl bt i Bedong!

Fig. 5.k-1.

Output voltage and load impedance.

i i MR M . ik s =

81



or g PT—— IR T
" - M ™ e ' ; )
82
CR = -Sutput pover of the reference system (5.4-1)

output power of the cancellation system

The method of power calculation requires some discussion. Figure
(5.4<1) shows a potential, E, applied across the terminals of a general
impedance, Z. From the theory of netowrk analysis [43], one recalls
that vhen E and Z are represented in phasor notation the complex power

delivered toar absorbed by 2Z is

2
p=JEL° (5.4-2)

In the present analysis, E represents the output signal of the radar
receiver, and Z corresponds to load impedance of the network driven

by the receiver output. Now apply the following definitions.
- = <
er(L)REF Z output signal from reference receiver.

the load Impedance of the reference receiver.

i1l

Zger

Prer

1

the output power of the reference receiver.

er(k)CAN 2 output signal from cancellation receiver.

ZCAR 7 the load impedaiice of the cancellation receiver,

i1

P the output power of the cancellation receiver.

CAN

P
REF (5.4=3)

CR = ——

Poan

2
) le () pppl ™ Zoaw (5.1ok)

5
1“  Zgew
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If Zo,y = Zppp then
je_(x) |2
CR = —t BEF__ (5.4=5)

2
Ier(k)CAnl

It is the form of CR indicated in equation (5.4-5) that will be evalu-
ated in the following material.

Equation (5.3-4) shows that the output of the cancellation system
is zero when only clutter appears in the field of view of the radar,

and thus

le (k) gugl® = 0 (5.4-6)

The output of the reference system given the same constraints imposed

on equation (5.3-4) is

Ke, S -328.2 k -J28 42
e (k) .__2._.1}.,,‘1 Ok ¥y 6%(a,, B,)e 0 (5. 4-7)
r REF z2 i i
X i=1
= aed® (5.4-8)
Thus,
le_ (k) pgel® = >$0 , and (5.4-9)
the cancellation ratic may be shown to be
2
CR = %— = (5.4=10)

The eignificance of equation (5.4-10) is that it states that the
cancellat!. n system offers infinite improvement in clutter cancellation

when compared to the reference system.
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The radar system output under the conditions outlined in case
two of section 5.3 contains both a desired component, referred to as
the signal, and an undesired component, called noise. When thec system
output ccntains both desired and undesired components, one finds that
an excellent criterion for judging system performance is a ratio which
indicates the relative strength of the signal to the noise. This cri-
terion is referred to as a signal-to-noise ratio [Ll4], and the ratio

is defined in equation (5.k-11).

- output signal power ]
SNR output noise power (5.4-11)

The reference system has an output
e (k) = e“(k) + e (k) (5.b-12)

where ec(k) is the noise or clutter component, and eT(k) is the signal
or target component. This leads to the signal-to-noise ratio for the

reference system given in equation (5.4-13).

T 2
le Ge)] ~~—— (c.4-13)

SNR =
|eci’k)|2 + 2Re <;-C(k) eT(k)>

It is evident from equaticn (5.3-9) that the cancelletion system
cutput contains no noise or clutter component so that the signal-to-
noise ratio for the cancellation system is infinite.

When the operating conditions satisfy the specifications of the
third situation in section 5.3, one wishes to minimize the system out-
put since any output under these conditions amounts to noise. The
cancellation ratio will agair be used a the criterion of performance,
and the following expression. a-~e used in evaluating the cancellation

rati-
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N
KewSyy —928p%y &K 2 ~J2898Z,
er(k)REF = T e ZG (ai, Bi)e = ASllB (5.4=1k)
k i=]
Ke, ~-J2B.
A=—te o’ (5.4-15)
2y
N
k B
-Jas AZ
B= Y G°(sy, 8,)e O 1 (5.4-16)
i=]
le (k) pel® = [4B1% 52, (5.4-17)

The output of the cancellation system in a high noise environment
as given by equation (5.3-18) is zero, and thus, the output noise power

is zero. Thus,

2

2
|AB|€ 8

CR = 0

If the large signal environemnt assumptions are used, one finds
that the output of the cancellation system is given by equation (5.3-20).

The notation may be simplified if the following definitions are applied.

es(k) = ABC/VE (5.1-19)
eS(k) = +JTADB/Y2 (5.4-20)
C =5, £, (5.4-21)
D=5, #TS,, (5.4-22)

F = .{(m)/eg(m) (5.0-73)
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The cancellation system output in the above notation is

e (k) y = /5-?2M . [c +jFTD] (5.4=2))
+
2
le (X)) = _J£!1L_.§ [lc|® +2m(c"Frp) + [FIDI?] (5.4-25)
2(2m+1)

The large number of parsmeters in this equation makes it difficult to
see the nature of overall variations. The following assumptions are

restrictive in nature but do aid in clarifying the system effects.

T=1.0 (5.4-26)
je

F=e' =cosl() +J sin(9) (5.4-27)

One further point bears mentioning before the analysis is continued.
Since the output of both the reference system and the cancellation system
is randam in nature, theoretical correctness demands that the expres-
sion used for output power be a statistical expectation. Thus equation
(5.4-5) becomes

El e (k) e | )

CR = 5 (5.4.28)
E(ler(k)CAN! }

where E{ + } denotes a statistical expectation [15].

2 2 2
E{Ier(k)REF' } = E{|AB|"} - S (5.4-29)
" 2
E{ler(k)CANl‘} - E([aB]7) | [lc|? :glm(C“DeJe) . lnla] (5.1-30)

2(2M+1)2
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2Sf1(2M+1)2 (
CR = — 5.4-31)

[[c|? +21m(c De?®) + D3]
. 2(2M+l) 11
2 2

[811 * 28, + 8y, 22 <(811 Sp1 *+ Sip Spplein(e) #(s),8,,- 12)°°S(°)>]
(5.4%-32)

An interesting result is obtained if the cancellation ratio is
evaluated with the output of the ordinary system replacing the output
of the reference system and if 6 equals 180 degrees. Under the stated

conditions

CR = (2m+1)2 (5.4-33)




6.0 PERFORMANCE OF THE CANCELLATION SYSTEM WITH A REALISTIC RAIN MODEL

6.1 The Rain Model

There are bdasically two major areas involved in specifying a rain
model, The first area is concerned with describing the individusl rain
perticle, ané this aspect of rain modeling has been delt with in chapter
3 vhere a major emphasis was on defining particle size and shape.
Particle size and shape affect the radar system equations through the
S matrix elemerts defined in equation (2.3-6), and nothing in this
chapter will be done to alter the nature of the influence that particle
size and shape have on the system equations.

The second aspect of rain modeling is concerned with the nature
of large scale rain systems. Here individual particle characteristics
are lost and cnly overall effects are noted. In chapter 5 it was as-
sumed that the rain system was characterized by overall uniformity,
but the present goal is to establish a less restrictive and more re-
alistic model for the rain system. In pursvit of the stated goal,
the following assumptions will be applied.

1. The rain particles exhibit a uniform spatial distridbution

over the range cells.

2. Particle size and orientation will be treated as random vari-
ables, and it is assumed that they are statistically indepen-
dent of the particle position parameters. The distribution
of particle size presented in chapter 3 will be used here.

3. The number of vnarticles occuring in a range cell is strictly
random, and the distribution function for the number of par-

ticles will te determined in later work. It is assumed that
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the number of particles is statistically independent of par-
ticle size, shape, orientation and location.

4., Although several parameters relating to the rain are random
in nature, it is assumed that the statistical distributions
describing the various parameters are inveriant in time and
space.

5. It is agsumed that the clutter returns from one range cell
are statistically independent of the clutter returns from any

other range cell.

6.2 System Equations

The physical system bieng analyzed here is the seme as the one
presented in Figure 5.2-1, and so the definitions for el(k), ea(k),
and G(k) given in equations (5.2-9a), (5.2-9b), and (5.2-10) respectively
are valid here. However, for several reasons including both ease of

notation and statistical considerations the following forms will be

4 used.
] e, (k) = /é_(xl(k) + JYl(k)) (6.2-1)
y e
e (k) = %‘1—_1-'& ()(2(k) + JYe(k)) (6.2-2)
4 '2
: e kM e (2) M e (2) e (k)
I -1 A e | 1 1
| G(k) = (_2M+l) z=§-M e, (1) (2M+l Em €2V * e (k)
L¥#k
( -1 . el(k)
= 2M+1> ¢ (k) + 3:7‘27 (6.2-3)

- YN Y T s LB A TR T AR




The quantities Xl, Yl, xz, and Y2 are determined by the following.
Jv.. (k)
8y94 (k) £378, 5, (k) = a, (x) e (6.2-4)
I, (k)
Spy (K) #3780, (k) = a,, (k) & 2 (6.2-5)
28,02, = 8, | (6.2-6)
M
2 \
xl(k) = géi G (ai, Bi)ali(k) cos(yli(k) - ei} (6.2-7)
N
L
R = 3 ¢lay, 8)ay, (k) sinfry, ) - o) (6.2-8)
N
k [a]
Xp(k) = 50 6%(ay, B;)ay (k) con fry, (k) - ei) (6.2-9)
N
L
Y2(k) = 2;1 G (ai, Bi)azi(k) sin (yzi(k) - 91) (6.2-10)

Equations (6.2-1) through (6.2-10) may be used to express the

system output as well as the magnitude squared of the system output.

e (k)
e (k) = el(k) + G(k) + ey(k) - el(k) + (5;4%1) [G‘(k) + éﬂ} e (k)
G*(k) * e, (k)
i (emafl) 1% - —TzETy (6.2-11)
2 * o VP 2 4M * .
Ier(k)l = e (k) + e (k) = ("Z'F«'E) |el(k)| - Y Re (e, (k)e,(k)C (k)>
l6"(x)|? le,(x) |2

+ (G6.2=12)

(2M+1)°

Chil il i S b it At it L L Ao Rl M A e i LSRR L L RN e o i S R

TR TR TR TR TR T e T a
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2
ey )12 = 1AL 1200 + ¥200)) (6.2-13)
2 2
|e2(k)|2 = -I?J—,L,-L"J— [Xg(k) + Yg(k)] (6.2-11)
2
o000 e = AL Tfe ) 0,00 + 1,00 1,00)
+ J(Xl(k) Yo(k) - X,(k) Yl(k))] (€.2-15)

) T Ixy(e) + gy ()]
¢ x) = 2=§-M CERI SAOETAO)|
Lk

M pe(m) (1,00)1,(0) - 1,(0)1,0)) - m(m) iy (0,08 + 1, (09, (0))

=1‘Z

L=k-M LK X2(2) + Y2(2)
i (2 2 )
_ %‘ Re(T) {x, (2)X,(2) + yl(z)ya(z)) + Im(T) {X,(2)Y,(2) - xl(z)YQ(z))
<+
! 2=k-M |T|2(x§(9.) + Yg(l))
29k

(6.2-16)

2
60 |2 =(1§:M FRe(T)(xe(z)Yl(z) - Xl(z)Yz(z))+ Im(T)(Xe(z)Yl(R.) - xl(z)Ya(z)')
L

2 [,2 2
=K- T X Yo (
Q:km_ b (2(2) + Y z)) }
135 fne('r) (xl(z)xz(z) + Yl(z)y2(z))+ In(T) (xe(z)yl(z) - xl(z)YQ(z))‘ ¢
+
o |Ti2(x§<z) + ng)
¥k - =
(6.2-17)

The relationship given in equation (6.2-18) will be useful in later

work with equation (6.2-17).
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N 2 N N N
Z s,) = }: af + }: Z 848, (6.2-18)
1=1 im] i=] . J=1

i#)

As a result of the random nature of the rain as outlined in the
preceeding section, much of the evaluation done in this chapter will
be done in a statistical sense. This means that power will be defined
as E{Ixie} vhere the cperator E{ - } is the expectation operator presented

by Thomas [45]. Thus the output noise power of the cancellation system is

2
E{|er(k)|2} " 2‘:1) E{|el(k)|2} - (D;fl)a E{Re <eI(k)e2(k)G‘(k)>}
2
* (2;'4-1) E(e (x)|? |ey(x) |2} (6.2-19)

Now consider, in order, the three expectation terms eppearing on

the right hand side of the equality in equation (6.2-19).

2
Ble, )% = ={AL 1o + 2001} (6.2-20)

Examinaetion of equation (5.4-15) reveals that A is not random in nature

so that

e
Bile, ()% = AL (20200 + 50200m) . (6.2-21)

From appendix A,

M
E{xf(k)} = E{N} E{ﬁ—g’-‘aﬂ} E{uf} , and (6.2-22)
L
E(Y2(k)) = E(W) E{‘-’-gwl} E(o’) (6.2-23)
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Appendix B showe that
K2
E(N.} = KV, I, . (6.2-2L)
and appendix C indicates that
E{Gh(a.ﬂ)} = 0.70808 . (6.2-25)

Consider the remaining unknown factor E(ai}. From equation (6.2-4),

a, = |sll :,rrslel . (6.2-26)
Thus

o2 =82+ 7% &2 zaxm<'rslls12> , and (6.2-27)
E{af} = E{sill + |'r|2 E{sfe} F2Im <E{T811812}> . (6.2-28)

Consideration is now given to the second term,
»
re (Ete; (x) e,(x) &°(x)}) , (6.2-29)

in equation (6.2-19). Application of ccndition five in section 6.1
in conjunction with the development in appendix D permits the preceeding

term to be expressed as
Re (E(ey (k) e,(k)} E(G-(k)}) . (6.2-30)

Equations (6.2-1) and (6.2-2) may be used to obtain an expression

for eI(k)eQ(k).

LIII I _ _ ) .. ——— s am o ... - NPT

I W vy <
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2
er (k) e,(x) = HAL [m(w) (1, 00,00 + 1, 0re,000)

+ Re(T) (Xl(k)Yz(k) - Xg(k)Yl(kO]
talglg [%e(T) (xl(k)xg(k) + Yl(k)yz(k))
- Im(T) (Xl(k)Ye(k) - Xe(k)Yl(k))] (6.2+31)
E{e;(k)ez(k)} = ﬂ%‘—z— [Im(T) (E{xl(k)xz(k)} + E{Yl(k)Yz(k)})
+ Re(T) (E{Xl(k)Ya(k)} - E{Xa(k)Yl(k)})]
JJ%E [Re(T) (E{Xl(k)xz(k)} + E{Yl(k)Y2(k)})
- Im(T) (E{)(l(k)Yz(k)} - E{X?_(k)Yl(k)})] (6.2-32)
The cross correlation terms in the preceeding equation are evaluated

in appendix E.

Now attention must be given to the evaluation of E{G“(k)}. From

equation (6.2-3),

) el(l)
G (k) =
e2l15
=k .M
¥k

(6.2-33)

% xl(z) + JYl(z)
* T (X,1%) + 37, (%) (6.2-34)

QM
LAk
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e [ IX (0)Y,(0) = X,(2)Y, (0)]Re(T) + [X(£)X,(2) + ¥, ()Y, ()] In(T)

- F 2 12 2
EEE;M 17|12 [B(e) + ¥5(2)]
29k

J R {0 (X () # 1, (0)7,(1) IRe(T) = (X, (0)Y,(2) = Xy(2), () }In(T)
- ,

Pr? 712 130 + Y3()]
Lék

The assumed uniformity in space and time of the statistical distributions

allows the the expectation of G“(k) to be expressed in the following

form.
r [x, (2)Y,(2) - X, (L)Y, (2)]Re(T) + [X, (2)X,(2)+y, (£)Y,(1)]T)
E(G (k) = :gﬂé gl 2 2 21 °2 s - AR R
7| [x5(2) + ¥5(2)]
siow | K% 041 ()8 Re (D) - X, (1T, (0)-Ky ()Y, (1) Im(T)
|z1? [X2(2) + Y2(2)]

(6.2-36)

Evaluation of E{G"(k)} requires that the expectation of the quantities

xl(x)Ye(z) xz(l)Yl(z) xl(z)xz(l) Yl(z)ya(z)

~ » » ,a.nd
X5(2) + Yg(l) xg(z) + Yg(z) xg(n) + Yg(l) xg(z) + Yg(l)

be determined. The required expectetions are in the form cof three dimen-
sional integrals, and appendix G shows how the integrals may be reduced

to two dimensional forms.
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The third term of equation (6.2-1%) may now be expressed as

1 2 2
E(|a°(x)|"} - E

as a result of the work culminating in equation (6.2-30). E{iez(k)lal

is evaluated in the same manner us was E{|e (k)|2}.
2 2
2o, (0] = 2L AL (re2(x)) + miv2001) (6.2-37)

From appendix A,

4

E(X3(k)} = E(K, } E;E-ggdilg E{ag} , and (6.2-38)
L

z{rg(k)} = z{nk} E)%—-ﬂ-“—’-* E{ag} . (6.2-39)

Equation (6.2-5) may be used to show that

2

2 2. 2 =
|u2| =35 + |T] Spp +2Im(TS,,5,,) (6.2-10)
Thus,
2 2 2yl 1T
E{la2| } = E{S,,} + || E(s,,} + 2Im(T) E(5,,S,,} . (6.2-b1)

IG‘(k)i2 is indicated in equation (6.2-17) as being the sum of two
squared quantities. Each of the two squared quantities may, through

application of equation (6.2-18), be shown to be as indicated in the

follnwing.

R
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sy

s n()((z) (2 ) z) ((z ) z)2
Z (T X,(2)Y, H}( N, () + In(TI\X,(2)Y, (2)-X, (£)Y,(2) .
e (1% (50 + r3m)
24
‘% f‘z"": Re('r)(&(z)Yl(t)-xl(l)Ya(t))+Im('r)(x2(z)YJ1(£)-xL(t)Y2(l))
e Al |z|2 @gm . ng)
L¥k ¥k
24)
Re(T) (xz(a Y, ()-x, (4 )Yz(J)) + Imvr)(xz(a )Y, (3)-%, (3 )Ye(ﬂ
Iv1? (kg) + ygu))
(6.2-42)
The above represents the first term of equation (6.2-17), and the fol-
lowing is another form for the second term in the same equation.
2
% Re(T) (xl(z)xz(i)+yl(z)Y2(z))+ L'n('rixz(z)xl(m-xl(L)YQ(z))
+

=k~-M

I7}2 (xg(n) + Yg(l))
L¥k

kM ke Re('r)(xl(z)x2(z)+x1(z)Y2(z))+Imcr(x2(r)¥1(n)-xl(n)xa(z))

Z Z 7|2 (xg(z) . yg(z))

L=k-M  J=k-M
29Kk ¥k
L¥) s

RSP R
atEaa i

Re(T)(xl(J)xz(J)-l-Yl(J)Ya(J)) + Im(T’(xz(”Yl‘J)"‘1‘”"2"”) (6.2-43)
NE (Xg(d) + YS(J))

Note that when T is real the following simplified form results for |G~(k) |2.

M My ()Y, (2) ~ X, (2)Y,(2)] 2
iG‘(k)I‘?-Z [2 1 XY ] .

2=k-M
24k

T é(g(z) R yg(n,))




tuk-M  jwk-M
2k Jok
17

2
S A ORRADIAT .
T—(xg(z) + Yg(lﬁ

ff iﬂ:‘ X2t (-5, (07,(0) ] [r,(00 (-5, )%0)]
fr(xg(z) + Yg(l)) T(XS(J)WS(J))

Le=k-M
Lex

k+M k+M

5 [ 0] [rany(arer (1), (0) (6.2-LL)
= t-k.ul T(xg(ng(J)j T@g(a) + ng)

2¥K . J¥k

43

g E{ |6 (x)|%} = oM E

2 2
[Xo(2)Y, ()17 - 20x, (£)%,(2)Y, (2)Y,(2)] + [X (2)Y,(2)]
ORI

(X, (2)%,(2)]2 + 2{X, (1)X,(2)y, (2)1,(2)] + [Yl(z)Yz(z)]gi

+ M E{—= =

’ Tz(xg(z) + yg(rc))2
12
xe(z)Yl(z) - X, (2)Y,(8)

+ (WMP-2m) |E
T(xg(z) + yg(z))

S

[LV]

r .
. xl(z)xzt(z) + xl(z)Yz(z)
T@(n) + yg(z))

~d
-

+ (hM2-2M)

(6.2-k5)

Effectively, the last two terms of equation (6.2-45) were evaluated
in the discussion of E{G”(k)}. Evaluation of the first two terms of

equation (6.2-45) requires knowledge of

(xa(uhrl(u))2 ‘

E
?[X5(2) + ¥5(2))°

7

(XI(Q)YQ(Q)\‘Q z

T2[Xg(2) + Yg(z)]‘?

-
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2
¢ (1)1,00)

‘I‘2 xg(z) + YS“E]Qi .

yand E

A technique 1s presented in appendix F whereby the above expectations

may be reduced to two dimensional integrals.

6.3 Lower Bound on Performance

Conditions were specified in chapter L under which the lower bound
of performance resulted for the ordinary system. Those same conditions
will be applied here to the cancellation system equations for the purpose
of comparing the performance of the cancellation system with the known
lower bound of performance of the ordinary system. The conditions de-

scribed in chapter 4 require that

- v 2
2 ] e
cos“(y) * 7 . (6.3-1)
r
2 Voo ?
sin“(¥) = 1 -{7 , (6.3-2)
r
sin(g) =1 , and (6.3-3)
cos(z) =0 . (6.3-4)

Under these conditons, the S matrix elements become

5]
]

1T oey - (o) (LN (6.3-5)

12 " (8y-8y) (v, /v,) Vi-( VIV, % (6.3-6)

(2]
L

= lgem) (V)7 v, (6.3-7)

T v O U R Wy e R b
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Other results from chapter four which will be used here are

2
2 _|_"& 6 2 3
g [‘g:-;-;gg-} do [8.25 - 0.2“4:10 + 0.023(10] ’ (6.3-8)
2
ne
gf = [;—-—1-3] dg [8.33 + 0.112dg] , (6.3-9)
x 10
2
(g.-292 w |—d a8 0.0024 + o 0041543°] (6.3-10)
Eiﬁ%? Py 102. o LO. . o . .
= -—-—--"1 i d6 [8.29 - 0 0672a2 +0 0115d3 0 OO“OTSdl‘] (6.3~11)
gxzy 6x109 0 . - 0. 0 . 0-.¢_ gl ¢ .
-do/z
v, = 10.105 [1-e J . (6.3-12)

and the drop size distribution is

3 ~yd
P(a,) = L~ dg e O (6.3-13)

Evaluation of the cancellation system's output equation requires
v owvledge of various moments of the S mairix elements. The required

moments are given below.

' 2 Y
E{Sfl} = E(Ei} - 2E{Bx(8x"8y)(vw/'vr)2} + El(gx-gy)?(vn/vr) } (6.3—-114)

E(sZ,} = El(g-8 )° (V,/v)%) - B((g,~g,)° (v,/v)") (6.3-15)

e TEOT TR T PmRTER W e
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E{Sgel = E{(gx-gy)z (vm/vr)"} + 2E{g, (g6 ) (vw/vr)z} + E{gi} (6.3-16)

B(5),5,,} = Elg, (6,g,) (V/V)) - () Elg,(ge,) (V,/V))

1
1
|
1
3
:
_%
2
|

Bl(g-g,)? (/v + B) Bllg,mg)? (V,/7)°)  (6.3-17)

E{SuSzz}

Ble, (g,-a,) (T /V)%) - El(gmg ) (V,/v,)")

+

Ble.g,)} - Ble (a8} (VV,)7) (6.3-18)

Evaiuation of equations (6.3-14) through (6.3-18) is accomplished
in appendix G, and the following material shows how to apply the results !
obtained to determine the cutput noise for tne cancellation system. 4
The fcllowing assumes that T is real. J

L -
Eflel(k)lz} = [a]? E(N,} E{-G—%lﬂ} . E{sil} + 1% E{S;i} (5.3-19)

2

- \ ‘
E{e;(k)ee(k)} = -ilﬁ-l-z-'r— [(E{Xl(k)Ya(k)} - E{X2(k)Y1(k)}j 1
-J (Efxl(k)xg(k)} + E{Yl(k)Y2(k):)] (6.3-20)

1412
. FIA L - 2
= -J-,zl— TE{Nk} E{G (a,B)} E(T)E{gllsze-sm}

2 :
- ST 3= |
J E18)35,59 + 51,5, ﬂ (6.3-21)
2 2 (.12 " (as8) 2 Dol
E{[ey (1)1} = 77 [A]® E{N )} R{-—5=2==) - ﬁ.{s;m} + 155, (6.3-20)




"T1-£°y 914

( "HH/ *Wyi) ALISNAINI NIVH

0oz 00T og o 0z oT g 1 2 T
1 T T T T | _ !
. -~
*OdS8/ i GE = ¥A
- —
"0ES/W ST = WA
— .
T —
TIVH DNILTEW HO¥d NIVH
WILSAS NOILVITAONVYD
= 904 OLLVY NOILLVTTIONVD =1
L I i Lot 1 1 !

[¥aN
(|

("db) OILVE NOLLVTILIONVO




T WAANT I

ik ek e L

SRS e I

™
o
~

e R ke R AR R A

2-g°c 34

("u¥H/°WW) ALISNIINT NIVY

00¢c 00T 03 on 0c 0T g c T 6'0
1 ] ] i | | ] 1 ] ]
. -1 G
*OHS/W OE = MA
- - 0T
- + ¢t
*OES/ KW ST
b -1 02
= LIETS DNILTEW WOHd NIVE = 2
WILSAS NOILVITIONYD
H04d QILVY NOILVTIZONVD
- -] ot
11 1 1 11 1 1
N - o0 - > T

. e i

(9P} OILVH NOLLVTIAONVO




= | A

=Sty BT

(“HH/ WA) ALISNGLINI NIVY

002 00T 09 o 02 0T g n 2 1 5%
W 1 1 1 1 T 1 [] ] i
W.n,
i o - >
*OFS/ W 0f = ¥A
| - <t 2
¢ z
3 a
{ 2
] o - st N
"DES/ W ST = ¥A 3
4 o}
2
>
-3
5
__ MONS DNIITAW WO¥d NIVY + <z -
WILSKS NOILVITADONVD w
¥Cd OILVY NOLLVTIZONVD ot -
Ll ] ] L | a




ST T T T

TS T T

N
o
—~

T e e e eI T g e T ez . -y c e mae -

wa3sAS d D AIBUTPIQ °*SA WIISAG LOFIRTIIDUED
Juawaaoidw] uOTIe[T2OUER) UO PUNOg I3MO7]
uﬂ'Mom ow..ﬂom

("¥H/°WA) XLISNAINI NIVM

002 00T o0g oY 02 0T g 1 2 T S0

B L) T T T T T 1 T

— — m.o
*0dS/*W ST = HA

= N -— ma.ﬂ

*0dS/ W 0E = ¥A
- - O-N
- TIVE DNILTIW WOMd NIVY -15°¢
WILSXS NOLLVTIHONVO ¥0d OILVYH
| NOILVTTIONYD NI LNAWNIAOHAWI o

("9P) INTWIAOUIWI
OILVY NOILVTTIONVD

r as e o cwe me won L




wa1s45d°) AIBUTPI( *SA waIshg uorjerIadue)
JuawldAoadw] uoyleTTIOUBRY) U0 punog Iomo7

"S-€°9 "9y

("MH/°WA) ZLISNALII NIVY

00¢ 00T 08 o 014 0T § kit 2 1 &0
LI | L 1 i L I I
- —5°0
\lll TOES/ I ST = ¥A
anad — .
"OES/W Ot = dA l\ st
— — O.N
- ~&°C
LHATIS DNILTEA WOdd HNIVvH
WELSAS NOLLVITHONVD d0d .
™~ OILVd NOILVITAONVD NI INAWIAOHIAI —0°¢
1 1 AL | 1

("HP) LNAWIAOHANI

OILVd NOILVTTIONYD




ey
i

Rilent L

TR comr i

107

walsig 4D LIvuipip *sa w3384S uoy3eTTaouE)
juswaaoadu] uogIeTTIOUR) uo punog iamog
9=ty B4

(“¥H/'WW) ALISHEINI NIVM

002 00T 0g on 02 0T § f 2 1 5°0

1 | D | | | L 1 § 1 [ §

B .\,: *DFS/W ST = ¥A =50

R -10°1
\\\\\\\\\\\\\\l\ll!x 11llllHHHHHHHHHIIIIIJIIIII
/

e \ ~G6°T

*03S/'H 0 = HA
oz
j
- MONS DHILTAW WOMA NIVY —1s°¢e
KALSAS NOILVTIZONVD ¥Od OILVH

o NOLLVITIONVD NI INIWIAOHIWI 4o

1 i N | i [ | 1 1 i

(°dP) LNIWIAOUIWI
OLLVY NOILVTIZINVD




i
L
3
;

T G Lo Fobali o XS T T RaLATRE S it Rt ; . o

The terms presented in equations (6.3-19), (6.3-21), and (6,3-22)
may be reduced to simple algebraic expression by the techniques presented
in appendix G, but no means has as yet been found that accomplishes the
same reduction for the moments of G°(k). Thus, the moments of G°{k)
have been evaluated by numerical integration techniques presented in
appendix H.

When the numerical values of equations (6.3-19), (6.3-21), and
(6.3~22) are combined with the evaluated moments of G“(k) according
to equation (6.2-19) the result is an expression for the output noise
power of the cancellation system. The value for noise power thus obtained
may be taken in ratio, according to equation (5.L4-5), with the output
pover of the reference system to obtain the cancellation ratic. Note

that the referencé system output power is
2y 2 [a]2 4 o2 .
E{|ep(k)ppel ) = |A] E(N } E(G (o,8)) E(s];} . (€.3-23)
Numerical data are presented in the following figures which describe
the performance of the cancellation system relative to the reference system

for various reln sources over a wide range of rain intensity.

6.4 Upper Bound on Performance

As indicated in chaepter four, the conditions which lead to the upper

bound of performance for the ordinary system are

sin”(r,) (6.0-1)

1]
(@]
-

(€.4-2)

]
[
-

cosz(ﬂ)
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cosa(v) = V: , and

]

s1nZ(y) = 1 4= .

The S matrix elements are defined to be
Sjp=eg

812 =0 , and

v 2
Sp0 = & * (B8)) T~
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(6.4-3)

(6.4-b)

(6.4-5)

(6.4-6)

(6.4-1)

under these constraints. Evaluation of the cancellation system output

equation is carried out in the same manner as was used in the enalysis

of the lower bound case with the exception that the above expressions

for the S matrix elements are used rather than those given in section

6.3.

Numericel data in the form of the cancellation ratio is shown in

the following figures. Again various rain sources are considered, and

the variation in performance with rain intensity is also shown.

B P TP I
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A 7.0  CONCLUSIONS

Based on the computer simulations and the rain model described
in paragraph 6.1 of this report, rain cancellation improvement of
1 dB to over 8 dB can be achieved over that of circular polarizatioun
when a rain polarization estimater is used to determine the proper
j% null polarization. These results are illustrated in Figures 6.3-4
through 6.3-6 and 6.4-2 and represent rain of certain origins.

A study of this tvpe must be followed by an experimental program

in order to subject the technique to real world environments.
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APPENDIX A: ANALYSIS OF MOMENTS FOR RANDOM SUMS

Asssume that it is desired to find the statistical moments of the

random quantity

n
X= Z _Ui (A-1)
i=1

vhere n and U, are both random in nature, Beckmahn [46] has shown that
the density function for the variable X i3

x

£(x) = } P(n) p(x(“)) (A-2)
n=0

where P(n) is the discrete density function of n and p(X(n)) is the cone-

ditional density function of X given a specific value of n.

The mean value of X is calculated as follows. 4

E{X} = I x £(x) ax (A~3)
| B J x 1 R pc™) ax (A-3)
- p=0
E y = T PB(n) J x(n) p(x(“)) dx(n) (A-5)
n=0 -
(n) is Gaussgian then

1 IT X
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(n) )
p(x(?)) = Lo e |=X 5 )] (A=6)
ov2nn 2n o J
where a = E{Ui} (A=7) :
and o° = E{(Ui - 2)%) (A-E) 1
Returning to the mean value calculation,
- -] N
E{x} = § P(n) +n - E{U, } (A-9)
n=0 3
= E{U,} + E{n) (A-10)
The mean squared value of x is
] 2 T2 :
; E{x"} = I x" f(x) dx (A-11) '
| ;
) o« g
! = J x° J P(n) p(x(n)) ax (A=12) ]
l © = :
i =0 |
? :
| : 1?2, )y o (n) !
? = } P(n) f x p(x' ") ax (A-13) }
n=0 R
co in)
Again, if x is Gaussian then
o
9 ;3 AR
E(x"} = § P(n) *no (A=l
{ n=0
E = &{n} + o (A-10)

The foregoing analysis may be applied to the evaluation of moments of

xl(k). xg(k), yl(k)’ and ya(k). All four quantities arc the recult of o

the gunstion o oloo

summation ot rvandom tevme, Aand the number of Lerms irn
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random. Beckmann [4€] observes that terms having the foru exhibited by

xl(k). yl(k), xa(k), and y2(k) tend to be Gauesian in nature if the number j
of terms in the appropriate summations is large. The number of terms in

the summations corresponds to the number of rain particles in a range cell,

and the material of Chapter 3 indicates that the number of particles in a

range cell is generally very large. Thus, the density function for xl(k) is

-(x (n)(k) - na)?

p(xl(n)(k)) ——— exp 1 5 (A-16)
ov2mn 2no

where

a= E{Ge(ai, Bi)ali(k) cos(Yli(k) - ei)} (A-17)

= {6P(o,, 8,)a,, (6) cosly,, (k) cos(o, )}
. E{Gz(ai. 8, e, (k) sin(yli(k))sin(ei)} (A-18) :

and

o® = E{(y, - )% (A-129)

The conditicn of uniform particle distribution means that ei, as
defined in equation (5.2-6), is uniformly distributed between the symmetric

extremes + OM and - GM vhere

8y = EBOAzM . (A-20)

Thue, the density function for ei is

o(o,) = -é—le—— ) (A-21)

M

L)
=
L1
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eM =+mn ,m=1, 2, 3, ... (A~22)

then a in equation (A-17) equals zero, but another stutement of the conditior.

given in equation (A-22) is

ct SM
2 bz, = —52-= E; (A-23)

where tp is the transmitter pulse length and ¢ is the speed of light. Equation
(A-23) may be rearranged to obtain

tp =:tm/fo (A-2L)

where fo is the carrier frequency of the transmitter. In the following
work i% will be assumed that the condition of equaticn (A-2k) is satisfied.
Application of conditions one and two as stated in secticn 6.1 to

equation (A-18) and (A-19) gives the following.

E{Gz(a, B)a. cos v} E{cos 8}

@
i

1
+ B(G?(a, B)ay sin v} Esin 0} . (A-25)
=0 (A=0€)
o? = E(U,°) (A=07)
= E{Gh(a, B)a12 cose(yl -98)} (A-28)

- AEENa, 8)a)))
+ E(G'(a, 8)&12 cos(2y, - 20)}] (A-r0)
= (%JE{Gh(a, £)} E{ale} (A=3C)
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Thus, from equations (A-10) and (A-15)
E{xl(k)} = 0 (A-31)
N
E{xlz(k)} = E{Nk} E{SLJE%?JQLJ E{alz} (A-32)

The moments for xg(k), yl(k), and ye(k) are evaluated in a manner

similer to that used above for xl(k), and the results are presented below.

E{x2(k)} = 0 (A-33)
4

Elx,2(k)} = E(N} E{-"—(ﬁg—?l} Bla,’) (A=3k)

E{yl(k)} =0 (A~35)
L

E{ylz(k)} = E{Nk} E{g-iggnﬁlﬂ E{alg} (A-36)

E{ye(k)} =0 (A~3T)
L

Bly,2()} = ey ) 2L Bly (o 2 (A-38)
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APPENDIX B: THE MEAN VALUE OF Nk

The material in Chapter 3 indicates that the volumetric particle
density is of the form

K2
PD = KlI (B-1,

where I is the rain intensity, and K1 and K2 are constants determined

by the type of rain. Additionally, 1 may be represented as

I= IO + 61 {B-2)

vhere Io is the mean valuc of the rain intensity, and 6I is the random
component of the rain intensity.
Calculation of the total number of particles is accomplished by

forming a product of the cell volume, VP’ and the particle density, PD.

N, = FD + V, (B-3)
o
= xl(ro + §I) Vi (B-4)
K K
_ 2 S§Iyq 2 _
-KleIO (1 + (-T;)] (B-5)

It will be assumed that 6I is & zero mean Geussian variate and that most

of the time
(%L) << 1, (B=€)
0
Thus
K, K, 81
N T K VI (1 + I ] , and (B=7)
¥, (n-8)

ElNk} = KlV:I

= 0

TR T e e
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The values of K, and X, are provided in Table B.1.
3
: Table B.l. Parameters K. and K for
1 several rain sources.
: SOURCE OF K, K,
: RAIN
e MELTING 38k 0.31
3 HAIL
3 MELTING 203 0.31
; SLEET
t
MELTING 87.5 0.39
SNOW
‘%
B
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APPENDIX C: EVALUATION OF THE FOURTH MOMENT OF THE RADIATION
CHARACTERISTIC
The radiation characteristic assumed for this work is in

any plane passing through the axis of propagation

2J1(x)
X

G(x,Q) = ,02x2x, = 3.83 (18) (C-1)

where J,(x) is the Bessel function of the first kind and first
order, and where x and Q are defined in FIG. C-1. It is assured
that the particle position parameters, x and Q, are statisticaily
independent of one another and that the distributions of these

variables are uniform.

p(x,8R) = E?fL—- (c-2)
u

The fourth moment of G(x,R) which is required for the analysis

in chapter 5 is of the form

Xy an
E{Gh(x,ﬂ)} = I J Iffl(x)l: 1 aQ dx (g-3)
0 0 X LE
16J’1*(x> ( L
= —- dy (C-L)
X
X l " J
0
Xu
3. ()
. 16 1 X ay (C-5)
T X L
u X
0
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Attempts st evaluating equation (C~5) analytically in closed
form have thus far been unprodnctive, and therefore, an evaluation
was affected by means of numerical integration. The numerical

method used was a Newton~Cotes five point formula as suggested by

Weeg and Reed [48] with an increment in the independent variable,
X, of 0.01.

(c-7)

E {G*(x,2)} = 0.70808
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APPENDIX D: STATISTICAL CONSIDERATIONS OF A PRODUCT

It is assumed that several random processes exist and may be divided
into two groups, x and y, such that the members of the groups exhibit %
the characteristics that x, and xJ are statistically independent if i # jJ,
that Yy and yJ are statistically independent if i # ), and that x; and yJ
are statistically independent if i # J. Under the stated conditions, one

may represent the Joint density function of elements of {he two se+s as

follows by application of the concept of conditional probability.

p(xl, ees Xos Yys oees yn) =

p(xl,yl)p(xa, vee X5 Yoo eee ¥ le, yl) (p-1)

The assumed independence requires that the individuel or joint out-

comes of Xy and ¥y in no way influence the realizations observed for the

other x and y elements. Thus

p(xe, cees Xy You eeen ¥ le, yl) =

» Yoo ++0 ¥, ), and (p-2)

p(x2. ceey X o

n
p(xl, cees X3 Yis eees ¥ ) =

n

p(xl, yl)p(xe, vevs Xy Ypr eees yn). (D-3)

Let a function f exist such that

f = x1 ‘Y, " 8 where (D=1)
g = g(xa, cevs Xy Ypu ees yn). (D=5)
Then
E{f} = ér... fxlylg(xz, cees yn)p(xl, x2).

p(x2, cees yn)dx1 e dyp (D-€)
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f.'.fg(xgg . v ey yn)p(x2, « .,yn)d;c2 .

2(n-1)

f:fx ¥, p(x,,y,)dx,dy
1Yy PiXp»¥; /0%,

E{g} - E{xlyl,

. dxndy‘? « s dy

(D-7)

(D-8)
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APPENDIX E: THE CROSS CORRELATION OF Xl(k), Xe(k), Yl(k), AND Yz(k).

The cross correletion of the four parameters xl(k), xg(k), yl(k),
and Ye(k) is full described by the six quantities E{Xl(k) Tl(k)},
Elx,(k) Y, (k)}, Elx, (k) x,(1}, E(Y, (k) Y,(k)}, Efx, (k) Y,(x)}, and
E{xz(k) Yl(k)}. These quantities will be eveluated in the stated order,
and it should be noted that all conditions imposed or assumed in section

6.1 are applied to the following calculations.

Nk
xl(k)yl(k) = Gz(ai, Bi) ali(k) cos(yli(k) - ei)
i=1
N
. g Gg(ui, Bi) ali(k) Sin(Yli(k) - ei) (E-1)

o ) a2, (k) i( (x) e)) ( (x) 6.
(a5 B8;) oy, (k) sinfy, (k) - 6;)jcosly, (k) -8,

n
oY
ntjz
—

N N
k
+ Z Ge(ai, Bi) Gg(al,Bz)ali(k)au(k) cos(yli/k) - 91)
i=1 =1
i#8
. sin(yu(k) - ez) (E-2)
0:2
E(X, (k)y, (&)} = E{N,} E(G*(a,8)) E{El sinQYl} . E{cos 26}
2
!
+ E{-z—- cos ?Y]_: « E{sin 26}J (F-3)

=0 (F-k)
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xa(k)Ye(k) = g Gz(ai,si)aei(k) cos(vei(k) - ei)

Ny

. Z Gg(ai,ei)azi(k) sin(Yei(k) - ej_) (E~5)
i=1

N
k
\

H 2 .
= Z G (ui,Bi)aei(k) cos (721(}() - Si) 51n(72i(k) - Bi} +
i=]1

e o M

Z Zc.2(ai’si)Gz(ul,BZ)Yﬁ(k)am(k)cos(yei(k)-e])siu(yzz(k)-ez) (E~6)
1=1 #=1
L#1

2
(2
E{xe(k)Yg(k)} = E{Nh} E{Gh(a,B)}LE;‘?—Q- sin272§ * E{cos20}
2
%
+ E;é—- cos2‘y2$ . E{sin26}] (E-7)
= 0 (E-8)
N
K 5 , .
X, (k)X (k) = Z 6%(a,,8, a,  (k)cos (200 - o)
i=]1
N,
Z Ge(“i'ei)°21(k)°°5('21(k)"95.) (F-9)
i=)
N

X
} b Oqp (e, (k) 3 e
= E G (01.31, cosi.'“(k)ﬂei(k)—cs \

\

1)

R T T T O
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* cos (1, (k) - Yei(k))]*'

B Ny
:E: :E: Gz(ai.Si)GQ(az,Bz)ali(k)aez(k)cos(Y 2(k)-ez) cos(yaz(k)-el) (E-10)
i=1 &= '
i#L
Bl{x, (x)x,(k)} = E{N } F{G“( 8)} r£ ‘12 (v,+v,){ E{cos26)
1 x2 = k ) a, ) cos Yl ‘Y2 cos
a. o [0 JE )
+E _%_g_ sin(y,*+v,) Elsin20) + E; ; 2 cos(yl-72§] (E-11)
a.a
= E{Nk} E{Gh(a,B)} Eg ;' 2 cos(yl-Y2)$ (B-12)

The following expressions, cbtained from equations (6.2-4) and (6.2-5),

may be applied to equation (E-12),

S.. # s12 Im(T)

cosy, = i (E-13)
o
1
5., R (T)
siny, = 120 £ (E-1%)
1 N
S,, *3,, In(T)
cosY, = 2l g2 (E-15)
a
2
ts22Re T)
siny, = -— (E-16)
z a
2
Thus equation (E-12) may be rewritten as
B{x, (k)x,(k)} = E{N_} Eth(a 8)] |E °172 COBY,COBY
1 2 K ’ e 1l 2
‘(l G?
+ E' 5 ainylsinyz (F-17)

A AL

[T
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= B(N } E{¢"(a,8)) r('l') £ (s t s Im(T)) 5, + s, Im(1)
kWU % l_e °11 * P12 (21‘“22 |

+ slzsgaaz('r)(] . (E-18)

§ The fourth term tn be evaluated is E{Y, (k)Y (k)}.

Z Gz(ai, 81)“11(1‘)51“(”11(1‘)‘91)

yl(k)Ya(k)

Z Gg(ai,Bi)azi(k)’sin (721(1;)-91) (E-19)

; a,, (k)a,., (k)
I Z: Gh(ai.Bi)—n—é—%i—- [cos (Yl(k)-vz(k))

-cos (Yl(k)-Yg(k)-Zei)] +

-, a., (k)a, (k)
E LGZ(“i’Bi)GQ(“z'Bz) i ) = [°°S(Yli(k)‘ei”"zn(k)"ez) |
- COB (yli(k)-eiﬂm(k)-ez)] (E-20)
‘ E{Y . (x)Y.(k)} = E{N, } E{Gh(a 8)} E;alaz cos(y.-v,) 1
: 1152 K SRR 172’y 1
= E{xl(k)xz(k)) (E-21)
xl(k)Ye(k) = Z Gg(ai,Bi)uli(k)cos(Yn(k)-ei)‘ ]




BCL T Mt L M

133
Nk
~ ’
z :G (ai,Bi)aZi(k)sin{\Yzi(k)-ei) (E~22)
i=l
N
k 4 \ali(k)az‘i(k) ,
= G (a,8,) 3 [sin{Ixyli(k)wei(k)-Eei)
i=1

+ sin (YQi(k)-Y]i(k))] +

N N

' - 2 p
i ZG (0y,8,)6%(ay,B) 5

i=1 =1
1#2

*+ sin (722(1‘)“’11(1‘)'92*91\’]
\ /

E{xl(k)Y2(k)}

ali(k)anz(k)

[sin (yli(k)wzz(k)-ei-el)

(E~-23)
a. o
E{Nk} E{Gl‘(u,s)} Eg é 2 sin(y2—vl)2 (F-2L)
+ BN} E(G*(a,8)) (2) Egs 5. s Tm(T)
- k » 2 22°11 © "12 J
R (T) - 5., (s21 z S22m(T)) Re(T)i (E-25)
+ E(Nk} « E{(G (a,B)} 5 E{822[811 7 Slelm(T)]

~ 8,557 5 5,,In(T)]} (E-26)
N
Xz(k)Yl(k) =2G2(a1,81)021(k)cos (Yzi(k)-ﬁi;;
i=1
M
.Z Gz(ai,Bi)ali(k)sin (Yli(k)_ei) (E~-27)

i=1




"

a,, (k)a,, (k) :
=0 6o 8, 2L~ [sin(yli(k)wﬁ(k)-zei)
i=}

+ stn (yn(k)-vai(k))] ‘

2

Nk Nk
a,, (k)a, (k)
2 2 0?(a;,8,)6%(a, 8,) 21t [sin fry g (0141, ()-0, -

i=l 2=}
1se

+ sin (yu(k)-ya(k)-ezwi)]

el %1%
Elx,(x)Y, ()} = E{N,} E{(G'(a,8)} E;—Q—— 31“(71'72)$

a. o
= -E(N,) £(6%(a,8)) Ez—;—g sin(y2-yl)$

= -E{xl(k)Ya(k)}

¢

(E-28)

(E-24)

(E-25)

(E-26)
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APPENDIX F: THE REDUCTION IN DIMENSION OF INTEGRALS USED TO EVALUATE

TRE EXPECTATION OF G-(k) AND |G*(k)]|%

Evaluation of E{G"(k)} requires the determinstion of

X, (2)X,(2) ¥, (2)1,(2) ARG AL
) E 1)
() + 20| " 1w« 2w’ xz(z) F2m | NEw - 2o
X, ()x,(2) X (z)x ()
) L ]/// X, (2),X.(2),Y. (2),Y.(2Max, (2)...aY. (1)
xg(z) + 'rg(z) X2 O Ye(z) ( 1 2 1 2 )d 1 2
(F-1)

Wilks [20] indicates that integration of the density function, p(-),
with respect to Yl(z) will result in a marginal density function of

three variables with the same means and variances. Thus,

xl(z)x (2) X, (1)X,(2)
x2(g)+y2(z) x2 (2)+Y2(z) P(Xl(l).xe(l),YQ(Q)Xm(l)..,dye(g)

(F-2)

Appendix A points out that the X and Y parameters are zero mean
Gaussian variates, and thus the joint density function may be expressed

in the form

-lc.x?

X7 4 C Xy # C5]

(F-3)

(%, (1), %,(2).1,(0)) = Kge

The quadratic form appearing in the exponential is known to be positive

definite [4T], and thus N is known to be positive [50]. Therefore,

s b o .
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2
c
(2)%,.(2) C,Yr (2) -[C.- 1‘—2 ]
.x_l._.____. /f(;l ) [ % \ e S 40 ax,(2)ay,(2)

x2(2)+ya(z) c. /o

krﬁ(zm (1))

(F-b)

where the inverse of the covariance matrix of the variables Xl(l),

xz(z), and Ye(z) is

A; = la b ¢ (F=-5)
d e T
h 1
and
¢, = a/2 (F-€)
¢, = [(b+d)X2(2)+(c+g)Y2(£)]/2 (F-T)
¢y = [exg(l)+(f+h)X2(£)Y2(£)+iY§(2)]/2 (F-8)
A : (F-9)

R T

A similar approach is used in evaluating the other expectation

terms. The results are presented below.

P o

Y, ) -
(2)Y,(2) f/ ol [cs" o ax,(£)a,,(2) (F-10)
xe(z)ﬂ' (2) ey, Ty,

vhere the inverse of the covariance matrix of the variables Yl(l),

YL(E), and Xe(l) is

Py
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137 ;
=ia b ¢ (F-11) ;
d e f E
n i E
C) = a/2 (F-12) §
Cs = [(bra)Y,(2) + (CHg)X,(2)]/2 (F-13) ,
Ce = [ng(E) + (£+n)X,(2)Y,(2) + ixg(z)l/z (FP-14)
- Ky = —573 1 (F-15)
(2n) . /aet(AF)
+o = Cg i
X (2)Y,(2) -K.C Y. (2) -[Cp- =] '
E{;——%—} =f/( 1;_ )(g = \ . 3T ax,(2)ay, (1) A
X5 (2)+¥5(2) o ac, Ve, X ()Y (2)/ f
(F-16) 2
H
4o 2 '
g2 L 0 | K "% ngl ax,(2)ay,(2)
2 2 = e 1\2(0)+¥2(2) ® 2 2
X5 (2)+Y5(2) J ac,/c, |\, -
i (F-17) :
s The following expressions are derived for use in evaluating %
E(|6-(x)|%). %
i

(¥ 2% (l) . (E)X W (2),%,(2),Y,( ) (8. (2)
E 'X L x £),Y ()1 ax. (2 LAY, (2
[x2(2)+Y2(2)]2 /jf [x2(2)+Y (R T 2

(F-18)




e 2

C./7 c -[c- 1 xe(z)
- fxl? [—-1-+-%-] "_ 2 ax,(2)ay,(2) (F-19)

2 1 [Xg(.%)ﬂ'g(l)]z 2

Y2 (2)¥2(2) K,.C Y2(8) -[c
E{——eeee—ee f/zé [ c > 5 e G-Eg;;dx (z)dy(n)
[x2(2)+Y ()17 2c,/G, % ) (xB(e)ev3(0)]

(F-20)
ﬁé 2
(2)¥5(2) j[x X c, Yz(ﬂ.) Jc T"]
1dx )ay (&)
)[xz(z)u"’(z)la} 2C f—[ ] [X2(2)+Y2(2.)]2 © Hard
(F-21)

<+

2 2
E T%(0) }.f/—-——&csﬁ{l- + C5] %) ;[C6Tih ax,(ay{2)
(w21 J J o2 G 5 2 e

(F-22)
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APPENDIX G: MOMENTS OF THE S MATRIX ELEMENTS
Expectations of S2., 82, 82, S..S.., S..5.., and S..5, are
110 S12° 5o 5118150 8175,0s 12500

required for the evaluation of certain terms appearing in chpater

six. These terms will be evaluated in the stated order here.

v 12 y b
52, = &2 - 2g,(e e 7= + (g,8,)% 7! (6-1)
11 ~ Ex ~ “Bx'8x78, vr} 8x~&y V|
A2 L
E(s2 } = E(g2} - 2E{g.( ){V‘” \ ( )E{V’” (G-2)
11 gx - 8x Sx-sy -"T- r + E gx-gy ‘V;
r \
2 6 2 3, y3 2 Y
Blgxl = | d, [8.25 - 0.2kka) + 0.023d7] 5-dj e dd,
0
- (ﬁ\ 3.25 x 81 _ 0.24h x 101 . 0.023 x 11! (6-3)
2/ " y11 y12 )
2 2\ 2
AR AT A (o)
Egx(exe,)|F J = Bex ! 0 Bl r} G-
T ( .F ) T
2 ,
K Vo l, (ﬁ)(].o.log) 2 \[B.25 x 81 _ 0.2k x 101 , 0.023 x 111
v, } 2 V. . Y1 y12

-2 8.25 x 81 _ 0,244 x 10! + £.023 x 11!
(F+v)? (Z4y) 1! (Fey)12

+ |8:25 » 81 _ 0.2k x 301 . 0.023 x 111] (G=5)
(14v)° (1ey) 1 (14y)12

i A i i o e L
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o) 1- €9 3)° |

. [8.29x 8! _ 0.0672 x 101 , 0.0115 x 111 _ 0.002075 x 12!]

.Y9 Y11 'le Y13

o[8:29 x 81 _ 0.0672 x 101 , 0.0115 x 111 _ 0.002075 x 12
- 1.3 1,11 1,12 1,413
(§+Y) (§+Y) (§+Y) (Efv)

,|8:29 x 81 0.0672 x 10t , 0.0115 x 111 _ 0.002075 x 121 )
(14y)? (1412 (14y)12 (14y)13
(G-6)

oo () - (8 e

r r

1 YT

[é.ooab x 101 , 0.00415 x 121] } h[o.oozh x 101 . 0.00415 x 12!]
Y

+ g|0:0024 x 101 , 0.00M15 x 321] o.ogau x 101 o.ogu15 x 121
(1+y) N2 (1+y)13 (S+v)1! (5+v)13

+ |0.0024 x 101 , 0.00u15 x 121 (6-T)
(24y) 1} (2+y)13
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The following notation is adcpted in order to simplify represen-

' tation of the following work.

A =32
A, = 8.25x8]
A, = 0.2h4kx101
A, = 0.023x11!

2
A. = (10.1os/vr)
A6 = 8. 29)‘8!
A7 = 0.0672x10!
Ag = 0.0115x11!
A9 = 0.002075%12!

AlO = 0.002L4x10!

All = 0.00415%121

A2

A

13

b s Lt Lt

0.33x81.

0.112x10!

1¢

11

12

13

15

16

17

18

19

20

21

22

ft

[
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) o v 2 o (v L
S (%‘*-Qy) V: - (Q-gy) (-‘-,:)

y
E{sa}-El( _5)2_"_":2_3(-)212
12 lsx vy |V, Ex =8y v

2
2 V. Alo A
E{(Ex‘sy) (";;‘ = A].AS -G;_ + -G:;—l]

-g[ﬁg+$;]+ffl_g+i1_1]}

Cg Cg 150~ G5

E{(&-gy)z (V“/Vr)h} is evaluated in equation (G-7).

2 2 (Ve ) {Vw : 2
Sop = (&‘-sy) V; + 23y(81;'8y)\'\7; e,

. .
\'
o *
E{gxgy(v-;) }is evaluated in equation (G-6).

4 2 \
52 2| Vo Ve 2
E(S,,} = Eaye,) v, + kg (g-e,) T + Blg }

(-8)

(G-9)

(G-10)

(G-11)

(G-12)

(G=12)

v\ A, A A A
ol o o2 o8] oo

3]} (G-14)
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3 [ (3 .
o v,, v
- (gee )" (2] + (D) (g -5 )° (-3\ (G-15) f
x"&, (vr) 2 ‘& "By vr/ x
N ’Voo 1 /Vm\x3 i
E{s.,8,,} = E 3x(5X'3y)(Vr' - (3) E sx(ex-gy)\t} i
' '4
:
.{ v 3 '!V \5 !
j ) I Yoo )
- Bllexe)? (=] }+ D) E (g ¢ )% |52 } (G-16) -ﬁ
&y v 2 eyt AV ‘;
!
( )'vvcu } 2 Veo ‘ J I/vm } 3
Edg (g -8 N =Eg—>-Ess—— (G=-1T) ;
‘x Xy (Vr,‘l b4 Vr } L‘x ykvr } )
v A, A, A A, A, A
2 =i\ 2.3,k 2__.3,.% L
E{gx (Vr) ) Al/KS {[Gl A ' GJ -[GS " G ' GT]] (6-28)
v ‘tA, AL A, A A A, A
=\, | %o M,k 1
E{g"g}'(v—;)}_ Al@i[c}l 5, T E%]‘ [GS TT 5T G ]} (619
( (v \3) -sz 3¥ ‘ v 31
g (g -g N:—| 2= E{g5|— - BEg g [=—]| | (46-20)
xxy(vr } er i \fxer )
3
v A, A, A A, A, A
e Ve[t 2] e
r ‘ jL"1 "2 3 5 6 7
A, A A A A A |
2 3 N ] { 2 3 L ] 1
+ 3= = = ] L - (G-21) .
[G9 S0 %l %3 S % } |




(G-23)
An]
Gl2
]} (G-2L)
v_ 2 v L v 2
811822 = Ex(gx"gy) Vr' - (gx-gy)" V" + %(gy - gy(&-gy) V‘: (G_Qs)
r r
| Iy \2 | fv \¥
E{sllsee} = E 8x(gx'gy)(\ﬁ' - E (Gx"gy)ekf
. ‘)
v \2]
+ E{gx.gy} - E gy(gx-gy)(-v:) } (G-26)

2
\')
E{ax(gx-gy)(;‘:;) is given in equations (G-4), (G-5), and (G-6),

L
\'/

and E{(gx_gy)e(v:) } is evaluated in equation (G-T).
r

Mw e i B S O USSP

:
;
.
1

2

5
\
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L
j o

A A A A
E{g)@y} ” Al[—é - al + -G—f- - -2] (‘}—27)

o
N

v
Note also that E y(gx-gy) TI: is expressed in equations (G-6)
r
and (G-1k4).
§

O
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APPENDIX H: NUMERICAL INTEGRATION TECHNIQUES

Numerical integration will be used to evaluate the required moments
of G°(k). The work of Appendix G has shown that the desired moments may
be expressed as two dimensional integrals extending over (-«, +=), but
for the purposes of numerical integration it is desirable that the range of
integration by (0, 1). The change of integration range is accomplished in

the following menner.

+o2 0 ®

j £(x) ax = | £(x) ax + j £(x) dx (B-1)
-C0 -0 0
In the range (-=, 0), let x = &n y so that '
0 1

[200 @ = [ty &, (#-2)
-00 0

and in the range (0, +~), let x = -%n ¥y~ so that

® 0 1
[ 20 ax = - [ etetn ) &x [ otoan ) 2 (8-3)
0 1 0
Thus,
0 1

J £(x) dx = I (£(%n y) ; £{-tn y)] dy. (H-L)
-e0 0

This type of transformation is suggested by Davis and Rabinowitz [51].
The actual numerical integration scheme is basically a Monte Carlo

| technique, but instead of using & nultidimensional random variable generator

el ie
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o ke SRk AR |

to provide the independent variables, a set of linearly independent
equidigtributed sequences is used. A Justification for and 1iiscussion

of this technique is provided by Davis and Rabinowitz [5i]. Integration

wvas carried out using one thousand points of evaluation in eachk quadrant

of the independent variable space, and checke on the accuracy of integratior.

were developed as indicated in the following figures.

il
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PERCENTAGE ERROR IN NUMERICAL INTEGRATION

+0.4

+0.3

+0.2

+0.1

0.0

VARIANCE OF NH

7/

VARIANCE OF w

>

 COVARIANCE OF XX, III\

-
-

1 1 1 | | ] i L1
1 2 y 8 10 20 Lo 80 100
RAIN INTENSITY (MM./HR.)
Fig. H-1l. Accuracy of numerical integration.
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c e
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1 13 | 1 1 1 i R j I |
1l 2 4 ) 8 10 20 40 80 100

RAIN INTENSITY (MM./HR.)

Fig. &-2. Accuracy of numerical integration.
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