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The Social Science Research Institute of the University of Southern
California was founded on July 1, 1972 to permit USC scientists to
bring their scientific and technological skills to bear on social and public
policy problems. lts staff members include faculty and graduate students
from many of the Departments and Schools of the University.

SSRI’s research activities, supported in part from University funds
and in part by various sporsors range from extremely basic to relatively
applied. Most SSRI projects mix both kinds of goals — that 1s, they con-
tribute to fundamental knowledge in the field of a social problem, and in
doing so, help to cope with that problem. T'vplcally, SSRI programs are
interdisciplinary, drawing not only on its own staff but on the talents of
others within the U5C community. Each continuing program is composed

of several projects: these change from time to time depending on staff
and .ponsor interest.

At present (Spring, 1975), SSRI has four programs:

Criminal justice and juvenile delinquency. Typical projects include
studies of the effect of diversion on recidivism among Los Angeles area

juvenile delinquents, and evaluation of the effects of decriminalization
of status offenders.

Decision analysis and social program cvaluation. Typical projects
include study of elicitation methods for continuous probability distribu-

tions ana development of an evaluation technology for California Coastal
Commission decision-making.

Program for data rescarch. A typical project is examination of
small-area crime statistics for planning and evaluation of innovations in
California crime prevention programs.

Models for social phenomena. Typical projects include differential-
equation models of international relations transactions and models of
population flows.

SSRI anticipates continuing these four programs and adding new
staff and new programs from time to time. For further information, pub-

lications, etc., write or phone the Director, Professor Ward Edwards, at
the address given above.
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covariances. A study of generalizabilitv is conducted by taking measurements
on persons, stimuli, tasks, etc. that are assumed to be randomly representa-
tive of a universe an investigator wishes to generalize to. The ratio of an
estimate of the universe "score" variance to an estimate of the observed
score variance is the coefficient of generalizability. This is estimated by
the intra-class correlation coefficient. ANOVA and the Expected Mean Square
paradigm of Cornfield and Tukey is used to obtain the appropriate variance
estimates.

The theory dispenses with unnecessary and unwarranted assumptions, and
eliminates the distinction between reliability and validity. Any generaliz-
ability study can be conducted without reference to having a parallel measure
of the MAU instrument or some external criterion of "success". If a MAU
technique is compared to some non-MAU technique for doing the same thing then
it is possible to calculate the coefficient of generalizability for both
methods thus allowing the investigator to decide which is best for his or her
purposes. Three numerical examples are given of the theory. Preliminary in-
vestigations have indicated that MAU models and techniques based on such mod-
els may be "bette~" than non-MAU models since the former have a tendency to
reduce the interaction between judges and the thing being judged when such
interaction represents inconsistency of Judgment .
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Assessing the Reliability and Validity
of Multi-Attribute Utility Procedures:
An Application of the Theory of Generalizability
J. Robert Newman
Social Science Research Institute
University of Southern California

Most important decisions involve choosing among alternatives with

multiple value characteristics. For example, in deciding what home to buy,

some of the value relevant characteristics might be: number of rooms, price,

location, potential as an investment, and so on. A set of multi-attribute

utility (MAU) models and procedures have been proposed as an aid in making
such decisions (Edwards, 1971; Raiffa, 1968, 1969).

The basic idea of a MAU procedure is to
1968, p.271).

"Divide and Conquer" (Raiffa,
There are three basic steps in this process. First, the

decision problem is broken up into little pieces (attributes) along natural

lines depending upon the nature of the task. Second, separate judgments are

made about each of the component pieces. As a rule, there are two such

Jjudgments, numerical Judgments about the importance of each attribute relative

to each other and numerical Judgments about the "worthh or utility of each

attribute to each of the competing decision alternatives. Finally, these

separate judgments are aggregated using some formal algebraic rule and this

is used as an aid to the final decision.

Advocates of MAU procedures have offered them as a replacement for

“wholistic" procedures in which the decision maker forms an overall intuitive

evaluation of a decision alternative. Such advocates have also argued that

MAU procedures are "better" in the sense that they are more reliable and

-
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valid than wholistic procedures. It is this comparison that forms the moti-
vation behind this paper which stems from a disillusionment with the way multi-
attribute utility (MAUM) models and procedures are being assessed as to their
reliability and validity. I would like to suggest a re-formulation thay may
resolve a gocod many conceptual and practical difficulties. The reformulation

is based on some work of Lee Cronbach and his Associates (Cronbach, et al.,

1972) and is called the Theory of Generalizability. Before describing what this
theory is all about and why I think it may be of considerable use in studies of
MAU models, let me first give an example of the conceptual difficulties that

the classical theory can lead to.

Consider the concept of validity. Under the classical theory validity
(sometimes called predictive validity, concurrent validity or convergent vali-
dity) is defined as the relation between the measuring instrument and other
criteria of "“success". 1If, for example, you had a method for assessing the
amount of anxiety in a person via a paper and pencil test and could demonstrate
that such scores correlated highly with an independent physiological measure of
anxiety (e.g., palmer sweating) then you could argue that the paper and pencil
test did indeed have validity from a psychometric standpoint which also makes
sense from a behavioral standpoint. The basic references on the classical theory
of validity are Gulliksen (1950) and Lord and Novick (1968). Now consider how
Mau techniques have been validated. Fisher (1972), Huber, Daneshgar, and Ford
(1971), and more recently Gardiner (1974) used as the validating criterion for |
various MAU techniques wholistic Jjudgment in certain decision situations. Each 3

of these investigators demonstrated that decomposed additive utility models 1

(MAU techniques) corvelated highly with intuitive wholistic Judgments 1n judg-
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ment tasks and used these results to argue that the additive utility models

were therefore valid in ‘he sense that they were capable of predicting a cri-
terion, namely, the wholistic Judgments. There is an obvious error in logic
here. If the decomposed additive utility models are supposed to be "better"
than wholistic Judgments, why use wholistic Judgment as the validating criteria
for the MAU technique?

There are other difficulties. It can be demonstr.*ed that wholistic
Juusrents are not as reliable as decomposed judgments (Fisher, 1972; Gardiner,
1974). Therefore we are using a less reliable criterion to provide evidence for
predictive validity for a more reliable MAU technique. Aside from an apparent
error of logic here, consider what the classical theory of reliability and

validity has to say about such a situation. There are two cases to consider:

Correction for an unreliable criterion

If, according to the classical model, yuu have a reasonably reliable

- measuring technique and you are using a fallible criterion to assess it validity

then it is logically unfair to make it appear that the measuring technique is
less valid than it really is. It is desirable, therefore, to correct predictive

validity coefficients for attenuation in the criterion measurement (Gulliksen,

1950). The formula for such correction 1s

r
' = xz
. (1)

Tyy
where r'xy 1s the correctad validity coefficient, rxy 1s the correlation setween

the measuring instrument x and the criterior y, and ryy 1s the reliability of

the criterion y. (Note: the expression /ryy s referred to as the index of
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reliability,)

Gardiner (1974, p. 111) presents test-retest correlations (index reli-

abilities) for wholistic judgments as having an average of .75 and validity

coefficients having an average of .66. This latter was the targest average of

the two calculations he did in correlating his Multi-Attribute Rating Scale

(MARS) with the intuitive wholistic Judgments. Thus applying the above formula

using his results we have:

p . .66
.75

2

Xy

This, of course, according to the classical theory, makes Gardiner's

MARS technique have appreciably higher validity than he reported.
Shrinkage of validity coefficients

Any validity coefficient, whether it be a correlation between a predictor

(measurement) and a criterion or whatever, {s designed to yield the best possible

prediction for the sample of data on which it was developed. If the prediction

equation which the coefficient represents actually was applied to a ney sample

of data the predictions invariably would be worse and the resulting validity

coefficient lower. This phenomenon is called shrinkage of the validity co-

The amount of shrinkage 1s an 1ndication of how much biased upwards
the original coefficient was,

efficient.

The classical theory has a formula for ce

rrecting
the original validity coefficient for this upward bias,

The formula {s:

Ty ™ [1-(1- TG SR R (2)

wher ?
ere Xy

Is the estimated corrected coefficient; r

Xy is the original coefficient,




e

and N is the number of observations in the original sample. When we apply this
formula to the results presented by Gardiner who used a sample of size N = 14
subjects, and whose average validity coefficient was .66 we have
= _ _ 2\, 13 1 &
b [1-(1-.66°)( g5 )]

= .58

Thus we see the classical theory tells us to correct the coefficient upwards to
provide for a fallible criterion and to correct it downward to provide for the
over estimate due to sampling errors and capitalizing on chance in the vali-
dating sample. The Classical theory does not tell us which of these coefficients
is "best".

One possible solution is to use the classical theory to first reduce the
over estimated validity coefficient using formula (2) and then apply the correc-
tion for attenuation formula (1) to adjust for a fallible criterion. If we do
this with Gardiner's data the obtained estimate is now .77.

A1l of these coefficients make sense, if we adopt the classical theory
and use it as a guideline to assess the validity of the measuring instrument.

I think you will agree, however, that things can be a 1ittle confusing. There
should be a better way, and Cronbach and his associates have indicated that

thece is indeed a better way which they call a Theory of Gereralizability.

The Theory of Generalizability
Basic Concepts

To ask the question of how reliable or dependable a measure is, 15 to
ask how well one can generalize from the observation at hand to some universe

or domain of observations to which 1t belongs. To ask about rater agreement

,
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in MAU studies s to ask how well we can generalize from one set.of ratings to

ratings from all possible raters who might have been chosen to actually do the
rating in the particular study. The theory requires the investigator to specify
the universe of conditions of observation over which he wishes to generalize.
Conditions is a generic term referring to observers (raters), forms of stimuli,
occasions, etc. In addition to generalizing to a universe of raters, for example,
we may also wish to generaiize to a universe of situations in which the ratings
were made. Miller, Kaplan, and Edwards (1968) studied the efficacy of a Utility
model performing under four military logistical situations. It may be of inter-
est to know how well one could generalize from these four situations to all
possible situations which the particular four represented. Gardiner 11974)
used 15 "typical" housing development permit requests in his application of
MAU techniques to Coastal Zone Management Decision Making. It 1s of interest
to know how representative these 15 permit requests were and therefore how well
one can generalize to the universe of such permit requests.

Questions concerning generalizability are substantive not Just mgthodo-
lTogical. They require thinking about the class of observations and not Just
the measuring technique which gathered the observations at hand.

The following are requirements or assumptions of the theory:

(2) The universe is defined unambiguously. It must be clear what con-
ditions fall within the universe.

(b) Conditions are experimentally independent. For example, a person's
score or rating in one condition does not depend on the fact that he or she

has or has not been previously observed under other conditions.

(c) Conditions are randomly selected from the vniverse of conditions.




This assumption is crucial but no assumptions are made about the content of
the universe or about the statistical properties of the conditions within the
universe. The restrictive and unnecessary assumptions of the classical theory
such as uniform variances and co-variances of two or more samples of items,
persons, etc. are eliminated.

If we wish to generalize to persons (raters) then for each person p, the
universe score Mpi is defined as the expected value E(Xpi) of the observed
score Xpi over all conditions in the universe. If we wish to generalize to
situations then a universe situation mean is defined in a similar fashion. If
we define generically, Xc as the sample observatio of some condition ¢ and
Mc as its expected value in the population, the: we can define the squared

correlation sz . estimated universe score variance

cc estimated observed score variance

as the coefficient of generalizability which indicates how well one can qenera-
lize from the observed data to the universe score. This definition requires
Xc and Mc to be random variables. We will see shortly when we discuss estimates
of sz M that the intra-class correlation coefficient (Haggard, 1958) 1s a
lower goﬁnd of 6°

(ANOVA) desigyns.

XM and can be easily estimated from analysis-of-variance
cec

Note that this definition does nct require an outside or independent
criterion against which to assess the dependability of the measuring technique.
Any study of the measuring technique will have {ts own generalizability. This
1s equivalent to what some investigators have called the “external valfdity"
of the study (Campbe'l and Stanley, 1963). When a study has been completed

and a relation found between some independent and dependent variable then




questions of external validity refer to what populations can this relation be

genzralized to, and how extensive {s this generalization? This as contrasted

to internal validity which refers to how precise (reliable) the study was in

the first place.l It is possible, of course, to have highly precise experiments

that have little generality. The converse is not true. Experiments with Tow
internal validity are highly imprecise and thus cannot have much generality.

Campbell and Stanley note, and correctly so, that internal validity is the

sine qua non of a good research design but unless special cautions are taken,
the results of a carefully designed study are not representative and hence not
generalizable. The ideal design should be high in both internal and external
validity. The theory of generalizability meets this problem head on by re-

quiring the investigator to be very explicit about what universe he wishes to

generalize to and thus forcing him to design "representative" experiments with

the zeal advocated by Egon Brunswik (1956).
G and D Studies

The theory makes the distinction between generalizability studies (6

study) and decision studies (D study). The D study provides information from

which decisions about individuals, groups, and/or situations are made, while

the G study is used to assess the actual measuring technique. The design of

G and D studies may be one and the same but they are often different. The

distinction between G and D studies is more than a mere recognition of the fact

that certain studies are carried out during the development of a measuring
instrument and then the instrument 1s util{zed in other studfes for practical
Purposes. The distinction is particularly crucial for anyone who advocates the

use use of certain techniques which are claimed to be better than others. Such

R P —
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claims usually can be demonstrated in laboratory-like studies but these tech-
niques may then be used to make very important and practical social judgments
such as Coastal Zone Management decisions. The distinction is particularly
important for MAU studies to clarify analyses of just how ratings are assessed
and used. In Gardiner's study of Coastal zone decisions each subject (rater)
gave a utility judgment on all attributes and an importance weight on all
attributes. The intra-class correlation among raters (coefficient of generali-
zation) if it were calculated would igncre differences in rater bias. This
would be the appropriate coefficient in a subsequent D study if the raters

used in that study also maderutility and importance weight judgments on all

the attributes. However, if the raters in a subsequent D study differed on
what attributes they judged or, as might well be the case in practical situa-
tions, different persons provided the utility and importance weight judgments,
then one would need to know the intra-class correlation that treats such things
as rater leniency, possible differences in giving utility judgments versus
importance weight judgments, and so on.

Generalizability and Construcc Validity

We began this paper by being concerned about the reliability and validity
of multi-attribute uti1ity techniques. We then argued that the classical
theories of relfability and validity are not satisfactory. Validity in par-
ticular s suspect primarily 1f, by validity, one means how well a measuring
instrument correlates or predicts some external criterton. It is often the
case that this criterfon {s {tself suspect either because of doubtful relevance

to what 1s really intended to be measured, or the criterion {tself may be un-

relfable. Because of these difficulties, psychometricians have introduced




another definition of validity called construct validity. The basic idea of
construct validity 1s that any measuring instrument should have behavioral op
psychological meaning in terms of some useful psycholegical construct that it
Purports to measure. The construct of anxiety, for example, is a useful and
highly valid construct since it can be demonstrated that several different

ways o measuring that construct (e.g., Manifest Anxiety scales, palmar sweating)
all correlate reasonably well, and what is of even more importance, the measure-
ment of anxiety in People enables you to make differential predictions about
other behaviors for people who are located on different scale locations of the
anxiety scale. High anxiety individuals, for example, perform quite differently
in learning tasks than lTow anxiety individuals. Closer to home, the construct
of utility can also be demonstrated to have high construct validity since when
utilities are measured in both animals and humans one can make differentia]

predictions based on these measurements in a wide variety of situztions (Greeno,
1968, ch. 2).

ditfons within that universe. The calculations yielding one or more coeffi-
cients of generalizability tell the investigator how well the observed scores
represent the universe scores. The universe can be considered as a construct
that he introduces since he thinks it has explanatory op predictive power.
Thus the investigation of generalizability can pe seen to be an investigation
of construct validity., Thus, it 1s not necessary within this framework to
make a distinction between reliability and validity. This notion has been
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sample of all items in the domain or universe of items.

recognized before by Tryon (1957) who introduced the idea of a domain samplin¢

model in which a sample of items in any test could be considered a random

out that if the sampled items were tapping some interesting domain of behavior

then reliability could also be considered as behavior domain validity and it

is not necessary to distinguish between the concepts of reliability and validity.
Although they use different philosophical reasons, Miller, Kaplan and
Edwards (1967) have also recognized that the distinction between reliability

and validity is useless especially when one is concerned with decision making
systems. They introduce the concept of intellectual coherence which they equate

with construct validity for decision systems. To quote these authors:

Validation is simply establishing the coherence of a procedure,
or several procedures. Thus no sharp line separates the concept
of reliability from that of validity; both concepts refer to
agreements among measures, and a continuum exists from cases in
which the measures essentially repeat the same procedure (reli-
ability) to cases in which rather different procedures seem to
measure the same thing (validity). (Miller, et al., 1967, p.48)

And further on, ...

We assert that no external measure of the performance of a Jjudg-
ment-based decision-making system is possible. Any such measure
would have to compare the decisions the system made with decisions
made some other way, and there would have to be some good reason
to suppose that the decisions made the other way were right ones.
But 1f we reject the idea that the business of a decision-making
system 1s to imitate some individual's decisions (in which case
the only point of building the system would be to save the indi-
vidual the trouble of making those decisions himself), then no
basis remains for asserting that the decisions made by one pro-
cedure (e.g., by the commander) are inherently a¢propr1ate simply
because they were made by that procedure, regardless of their
cantent. An examination of the merit of decisions in terms of

their content is a matter of intellectual coherence or reliability,
not validity. -

We assert also that intellectual coherence or reliability is
very measurable and 1s in fact what we want the output of a

Tryon also pointed
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decision-making system to have,

We are {n strong agreement with these statements. Also, we believe that
“intellectual coherence or reliability" can be demonstrated using the Theory
of Generalizability.

Analysis of Variance (ANOVA) and Variance Components

The theory of generalizability in the conduct of both G and D studies
makes extensive use of ANOVA models which are more general and incorporate as
special cases the familiar correlational designs utilized by the classical
approach. ANOVA designs distinguish between random and fixed factors. A
random factor is one in which the levels of the factor are considered a sample
from a universe of all possible levels whereas a fixed factor exhausts all
levels of interest for that factor. It should be obvious from the previous
discussion that a coefficient of generalization for any condition of a G or D
study makes sense only if the levels of the factor for that condition are
random. A fixed factor in an ANOVA design exhausts all the levels of interest
for that factor and there 1s nothing to generalize to. However, many G and D

studies may employ both fixed and random factors (mixed designs).

The general procedure in conducting either a G or D study is to utilize
an ANOVA design which will then yield the familiar sums-of-squares and mean
squares. The conduct of F tests, however, is rarely done since one is not
usually interested in testing hypotheses but rather in estimating various

expected values of the mean squares in the fashion suggested by Cornfield and

Tukey (1956). These estimates are then used to report the results of the study

in terms of the components of variance accounted for and an estimate of the

coefficients of generalizability. We will dispense with the formal theory

which 1s well presented 1n Cronbach, Gleser, Nanda and Rajaratnam (1972) and




any good ANOVA book such as Winer (1970), or Kirk (1968) and proceed to give

several numerical examples.
Examples
The first example uses fictitious data in a simple study of how to analyze
Judgments of the importance of attributes as they might be obtaired in a typi-
cal MAU study. The second two examples are more complicated and use data from
actual experiments.

Example 1: Analysis of raters making importance judgments about attributes.

In MAU studies one task for the "expert" subjects is to make judgments
of importance for each of the attributes under consideration for the decision.
Suppose we have four experts rate each of six attributes on importance on a
10 point scale ( 1 = least important; 10 = most important). The result might
be 1ike that reported in Table 1.

Since we are interested in how well the rater might be doing at this task
we ask guestions about the generalizability of the measuring instrument, i.e.,
the raters judging importance of attributes. The data in Table 1 are easily
analyzed by ANOVA with the results given in Table 2.

Insert Table 2 about here

The expected mean squares E(MS) 1n the last column of Table 1 are the
population values of the sample variances (mean squares). For those readers

not familiar with expected mean squares the following intuitive explanation 1s

offered: each expectation consists of an error variance component, since 411
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Table 1

Importance k  .igs Gie- by 4 Raters
on Each of 6 Attributes

Attribute
1 2 3 4 5 6 Mear (é)
1 2 5 1 7 2 6 3.84
2 4 7 3 9 4 8 5.84
Rater 3 5 1 9 6 8 5.34
4 3 6 2 8 1 4 4,00

Mean (A) 3.00 5.75 1.75 8.25 3.25 6.50 4.7%

14.




Table 2
Analysis of Variance of Ratings

Degree of Sums of Mean Expected Mean
Source of Variation Freedom Squares Square  Square E(MS)

A (Between Attributes) & 122.50 24,50 2
2

Ue + 4UA2

B (Between Raters) 3 17.50 5.83 0,2+ 56,2

AB (Residual) 15 18.50 1.22 42

—_ —_— e

TOTAL 23 158.50
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sample measurements are infested with error Plus a "weighted" variance component

of the assumed treatment effect, in this case the effect due to the rows (raters)

and that due to columns (attributes). Each treatment variance is weighted by

the number of sample values that contributed to each treatment level mean. For

example, the sum-cf-squares due to attributes in Table 1 came from the fact

that each column (attribute) mean is deviating from the grand mean, with each

deviation beirg squared and summed. Each of these squared values, hcwever, are

representing the four values that went in to calculate each mean. Thus the

expected value component for the effect due to attributes (

oAZ) vets weighted
by 4.

In a similar fashion six values contributed to the mearn for each row

effect and thus the expected value component for the effect due to
weighted by 6.

raters gets

The general method for obtaining the expected mean squares E{MS) for

ANOVA designs is straight forward byt involves tedious algebra. Fortunately,

Cornfield and Tukey (1956) have provided a convenient algorithm which enables

one to set down the appropriate expected mean Squares for any ANOVA design.
This algorithm {s explained in Kirk {1968) and Winer (1970).

lation of expected mear squares are

Since the calcy-

S0 crucial for the theory of generalizability
a version of the Cornfield and Tukey algorithm 1s given 1n the appendix to this

paper,
Once the expected mean Squares are set down 1t {s a matter of simple
algebra to estimate the variance components in the experiment.

For example,
the varfance component for factor A (attributes) 1s




4

24.50 - 1.23
4

[ G2 = M- M,
t

4 5.82

| Where GAZ is an estimate of the variance component oAZ and MSA and MSe are the

mean squares for the A factor and error respectively. Since this was an ANOVA

E with only one observation per cell the MS for interaction is the error variance

. component. Incidentally, while variance components cannot be negative, esti-

:' mates of such components can be negative due to sampling error. If any variance
estimate is negative, it should be set equal to zero. (An example of such a

possibility is given in the third example.)

The estimate of each variance component and the percent of variance

accounted for in the experiment can be 1isted in the following diagram:

Variance

Component A B AB(Res) | Total
Variance

Estimate 5.82 77 1.23 7.81
Percent of

Variance 74 10 16 100

This {s a fairly precise experiment with about 16% of the variance due
to "error" and thus 84% {s predicted variance.

Now, we can estimate the coefficient of generalizability (Gz) for the

experiment as follows:
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‘%2 - Estimated Universe Score Variance
Estimated Observed Score Variance
A2
A
AT, A 2
e

%

# 5.82
5.82 + 1.23

= .83

This is a version of the intra-class correlation coefficient and Cronbach,

Ikeda, and Avner (1964) 11lastrate that the intra-class correlation coefficient

1s an estimate of the lower bound of Gz.

An interpretation of 62 s that it {s the Proportion of universe score

variance accounted for by knowledge of the observed score variance.

Another interpretation 1s as follows:

A
The closer 62 1s to one
the more representative is the sampled data of the univ

erse of interest. Al-
though a 22 of .83 1s quite respectable,

1t 1s well to ask of the G study why
1t isn't higher? For the data given 1n Table i the answer Tes

of interaction between the

in the presence

raters and the thing being rated (attribute impor-

tance). A glance at the numbers 1n Table 1 indicates that there is excellent

agreement between raters 1 and 2; rater 3 {s for the most part in agreement

Rater 4 {s different from
Any 1ncons1stency in such raters shows up 1in the inter-

but deviates somewhat with the first two raters.
raters 1, 2, and 3.

action term and therefore tends to inflate the error variance component, In

T T L e —
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order to move the :oefficient of generalizability (GZ) cleser to one, a reduc-
tion in this interaction would have to occur.

Example 2: The JUDGE Experiment. (A Decisicn (D) Study)

As our second example we use the experimental results of & somewhat
novel application of decision theory to a Tactical Air Contrel System provided
by the work of Miller, Kaplan and Edwards {1967, 1968). They have proposed a
system called Judged Utility Decision Generator (JUDGE) for allocating air
strike missions to requests in tactical air control environments. A key con-
cept of JUDGE is that value Judgments (estimation of military worth associated
with requests) can be made directly and in real time by appropriately trained
personnel, and that the system should, in principle, maximize the aggregate
utility over all the dispatching decisions it makes. The sctual details of how
JUDGE works is not important for this discussion. What is important is that
the system makes extensive use of human judgments which are computer assisted
and the advocates of this system claim that it might be a better system than
that presently being used by the Air Force in tactical situations. In order
to lend support to this notion these investigators conducted a laboratory study
comparing JUDGE against a version of the currently used system called Direct
Air Support Center (DASC). We have taken the 1iberty of using the data reported
for this experiment to 11lustrate the basic concepts and interpretations of the

theory of generalizability and what 1is presented below should not be construed

as an interpretation of the Miller et al. experiment, In the experiment, each
of 14 subjects participated in both the JUDGE and DASC modes of tactica) command,
in four simulated air tactical command stations, and there were two replications

of the experiment. Thus from an ANOVA design viewpoint this can be considered

- Y T ar Lonr——



as a three factorial design with Systems, Situations, arnd Subjects being the

three factors of interest or, more specifically, a 2 (systems) x 4 (situations)

x 14 (subjects) design with two (?) replications per cell (each subject per-

formed twice). Two dependent variables were used in this study: a measure of

efficiency and a measure of effectiveness.1

Since the main purpose of this study was to decide which system, JUDGE

or DASC, was the best, we will fiprst consider the analysis of the results of

the study as a D (decision) study. Table 3 presents the ANOVA summary of the

results using the effectiveness measure as the dependent variable. (The results

for the efficiency dependent variable are similar and will not be

The calculation of the Expected Mean Squares E(MS)

are fixed and the C (subjects)

assumes the A and B factors
and Within Replicates are random factors,

Again, once the expected mean squares are set down it is a matter of simple

algebra to estimate the variance components of the factors and their intes-

actions in the experiment. For example,

the variance component for factor A
(Systems, JUDGE vs. DASC) is estimated by

112

. 1834.33 - 9.89
112

= 16.29

1. The data are presented in Appendix B of Miller, Kaplan and Edwards (1968).




—— ST

ST+ RN W TR mmm— e m— ="

T iem———
v

Table 3

ANOVA Surmary Table for the Judge Experiment

Degree of Sums of Mean Expectied Mean
Source of Variation Freedom Squares Squares Square E(MS)
A (Systems) 1 1834.33 1834.33 0.2+ 80, 2 4+ 1120.2
e AC A
B (Situations) 3 21.70 7.23 024 40 2 4 5go 2
. : e B * 20%
C (Subjects) 13 63.89 4.91 oez + 16°c2
| 2 2
AB 3 65.82 21.94 0 + 20p5 % + 280,
2 2
AC 13 128.57 9.89 05" + 80,
BC 39 114.94 2.95 024 40 2
: ’ e BC
ABC 112 91.51 0.82 °e2
TOTAL 223 2320.76
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Variance

Component A B c AB AC BC | ABC |Error Total
Variance

Estimate 16.29 | .o7 .25 .68 1.13 | 2.13 .93 .82 22.30

Percent of 73

Variance 00 01 03 05 09 04 04 100%

the different systems (JUDGE vys. DASC) dominates the picture. The JUDGE system
was considerably more effective than DASC. (The mean effective performance
was 18.77 for JUDGE as Contrasted with 13,05 for DASC.) However, this factor

was so strong, i.e., accounted for such a large percentage of variance we can

more revealing than Just reporting F ratios which can be very misleading. For
example, the F ratio testing the significance of the ABC tria} interaction
against the error term yielded an F of 3.26 which, for 39 and 112 degrees of




System in a simulated tactical air control environment than DASC, we can turn
our attention to determining the generalizahility of JUDGE as contrasted to
DASC. To do this, we will reanalyze the data for each system separately. This
is valid since the initial design was completely crossed, i.e., all subjects
participated in all conditions of the experiment.

Analysis of the JUDGE Experiment: A Generalizability (G) Study

As an illustration of how a generalizability study may proceed, we have
reanalyzed the JUDGE experiment as two 2-factor experiments; one with the
subjects operating under the DASC System and the other with the same subjects
operating under the JUDGE system. Two separate ANOVAs were carried out with

the results displayed in Tables 4 and 5. 1In Tables 4 and 5, the A factor

(situations) is considered fixed and the B factor (subjects) and within repli-
Cates are random effects. The appropriate expect2d mean squares are given in
the last column of each table and from these estimates of the variance compo-
nents and the percent of total variance can be calculated and are given under
each table. Now since we wish to generalize to the population of subjects we

can estimate a coefficient of generalization for each of the two systems as

follows: ez GBZ
AT N2 L A2 » A factor fixed
% T %p *o,
A =
62 (DASC) = —1.27 .30
1.27 + 1,80 + 1.22
A .37
6 (JUDGE) - .37

36 + .20 + .42

o,




ANOVA Summary:

Degree of

TABLE 4

DASC System

{
{

Sums of Mean
Source Freedom Squares Square Expected Mean Square
: 2 2 2 {
A (S1tuations) 3 78.25 26.08 o + zaAB + 28°A {
B (Subjects) 13 148.46  11.42 crez + 80,2
2 2
AR 39 187.70 4.81 Oq + ZUAB
Within replicates 56 68.10 1.21 agz
Total 111 482.51

Variance

Component A B AB Error (e) Total

Variance

Estimate .76 1.27 1.80 1.22 5.05

Percent of

Total Variance 15 25 36 24 100




TABLE 5

ANOVA Summary: JUDGE System

2r

D:gree of  Sum of Mean
Source Freedom Squares Square Expected Mean Square
: 2 2 2
A (Situations) 3 9.26 3.09 %q + ZUAB + 28°A
B (Subjects) 13 42.99 331 o+ 8oy’
AB 39 31.75 81 o2+ 20,2
: ) e AB
Within replicates 56 23.42 42 ot
Total 111 107.42
Variance
Component A B AB Error (e) | Total
\
ol o .08 | .36 | .20 | .42 |1.06
Percent of
Total Variance 7 34 19 40 100




Thus we see that the JUDGE system has a higher coefficient of generalizability
and thus can be considered as more dependable (reliable and valid) than the
DASC system. We need not seek nor rely on some outside independent crite; ion
to help us reach this decision. We can also see that the DASC system is not
that much worse than JUDGE with respect to its generalizability for subjects,
being onl, seven percent "poorer'. This was due primarily to th2 fact that
the interaction of subjects x situations variance component was higher for

the DASC system than for the JUDGE system. This interaction term gets in-
cluded in the estimate of the total observed score variance. Also, what it
means from a behavioral standpoint, is that the subjects when in the DASC

mode were not being as consistent in their responses to the four situations

as when performing in the JUDGE mode. It should be remembered that the

tasks for the two subjects are different in the two systems. In DASC the
subjects are asked to make dispatching-1ike decisions in the simulated tacti-
cal situations whereas in JUDGE they are making value judgments (estimatsion

of military worth associated with requests for a mission). These value
Jjudgments are expressed numerically combined with an estimated probability

of "ki11" along with certain constraints such as the avaflability of afr-
craft,and the dispatching design is made automatically by a computer generated

dispatching rule. The data presented in Tables 4 and § indicate that when

subjects are asked to make value Judgments and these Judgments are then
used in an automatic algorithm then the entire system responds more con-

sistently to varfous situations. With this design the presence of interaction

effects tends to reduce the generalizability over any set of conditisns.

One final point before leaving this example. Although the situations
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factor was fixed in this analysis, it does appear that thic was a stronger in-

dependent variable when the subjects were performing under the DASC system (15%

of the total variance) than when they were performing under the JUDGE (7% of
the total variance).

This might Suggest that in a future @ study in which

f generalizability to situations might be & desired goal that the DASC system
- might fare better than JUDGE.

Actually no such prediction can be made until
the actuel 6 study is performed with the situations variable being included
in the design of the study as a random factor,

However, it is often the case

that generalizability to situations, stimuli,

tasks, and so on are as impor-
tant, if not mere important, as generalizations about people.

An illustration

of such a case is given in the next numerical example.
Example 3:

Analysis of the Gardiner Study on Coastal Zone Management Decisions
Gardiner (1974)

*n his study applying multi

-attribute utility techniques
to Public Policy decision making had his subjects make Judgments about whether

certain permit requests for various developments along the Southern California

Coast should be approved or disapproved by a Coastal Commission which has the

authority to approve or deny such requests,

The subjects, some of whom were
actual commission members, made

Intuitive wholistic Judgments and also made '
value or worth Judgments about the worth of each permit along

efght different
attributes charac

terizing each nermit request. The attributes, which 1ncluded

such things as the height of the proposed develo
edge, and amount of parking space,
such decisions,

pment, distance from the water's

were those that are actually used in making
Gardiner took special pains to select a

semple of 15 permits
that were "typical"

of the kind that usually come before - ‘a Coastal Commission.

He wiso was interested in comparing two sub-groups of his

et o ok o e e B m i o g

subjects who described
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themselves as "Developers", i.e., generally leaning toward develcpment of the
coastal line, and "Conservationists", who were gene-ally opposed to develop-
ments that might destroy the natural coastal line. One phase of his analysis
utilized a two factor ANOVA, with the groups (Developers vs. Conservationists),
and permits being the iwo factors. He had 15 permits and 7 subjects in each
group, thus this was a 2 x 15 factorial design with 7 replications per group.

The results are given in Tables 6 and 7. Table 6 is the result for the whc?-

jstic evaluation of permit worth and Table 7 is for the MAU evaluation of

permit worth.

E T T T R Y el kel s e
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In these two tables the group factor (Developers vs. Conservationists)
js considered fixed and the permit factor and within replicates are considered
to be random.

The coefficients of generalizability (Gz) for the two analyses given

in Tables 6 and 7 are:

2
62 = 8
> » A factor fixed
2 2
9% * 9g * %
6 (wholistic) = e = .32
274.58 + 157.94 + 431.35
2 . 124.78
G [{80) - .54

125.78 + 0 + 106.09
Thus, the MAU technique is more dependable (generaiizable) than its

wholistic counterpart. In other words, if one were to generalize to the domain

or population of all possible permits (of the kind investigated in ardiner’'s
study) then one would be in a better position using MAU than wholistic judgments.
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TABLE 6

ANOVA Summary: Wholistic Evaluation
of Permit Worth

Source Degree of Sum of .  Mean
Freedom Squares Square Expected Mean Square
A (Group) 1 13,675.24 1375.24 2 + Topgl + 1050,
B8 (Permits) 14 59,845.38 4274.67 °e2 + 14°82
2 w 2
AB 14 21,516.18 1536.87 Te + 'OAB
Within replicates 180 77,643.00 43135 2
Total 209 172,679.80

Variance

Component A B AB | Error(e)| Total

variance

Estimate 115.60] 274.53 | 157.94 | 431.35 979.42

Percent of

Total Varfance | 12 28 16 44 100
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TABLE

7

ANOVA Summary: MAU Technique Evaluation
of Permit Worth

Source

Degree of

Sums of Mean
Freedom Squares Square  Expected Mean Square
A (Group) ] 2128.51  2128.5] oez + 70ABZ + 1050A2
6 (Permits) 14 25,942.00  1853.00 oez + 14<:B2
AB 14 1086.82 77.63 5% 49,5 2
e AB
Within replicates 180  19,096.20 106.09 oez
Total 209 48,253.53

Variance 1

Component A B AB Error (e)| Tota]

L, 19.54|124.78| 0 | 106.09 | 250.41

Percent of

Total Variance 08 50 0 42 100

1. The mean square estimate (
to sampling error and

C)

was sé@ to zero.

for the AB interaction was negative due
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Note that the distribution of predicted var?ance is quite different
for the two methods with the most dramatic difference being the elimination
of the interaction component when the subject's responses are used under the
MAU technique. The statements made earlier are worth repeating here: When
human judgment is being used in any scientific or practical study, any inter-
action between the human judges and the objects, conditions or persons being
Jjudged may be a form of inconsistency and lowers the dependability (generaliz-
ability) of those judgments. There may be an important principle here, one of
considerable theoretical and practical importance. Any "divide-and-conquer"
technique such as a MAU technique may minimize or at least reduce substantially
interaction sources of variance due to inconsistency thus making any study or
application of the technique easier to interpret. This is not to say that
components of variance due to interaction should always be reduced. There are
certainly situations in which individual differences represent valid differences
in judgments about utilities. Arch conservationists may have quite different
ideas about what is "best" for the California coastline than arch developers.
We certainly would not want a techrique that blurs or reduces such differences.
The theory described in this paper must be applied to such situations in lab-

oratory and "field" studies to see how useful the theory is in such situations.

Comment on Random Sampling

The theory of generalizability makes one powerful assumption: any sample
of observations must be a representative random sample from the universe or

population one wishes to generalize to. The question immediately arises as to




whether one should truly use the operation of complete random sampling of

conditions from some universe in order to generate the set of conditions to be
used in any G study. Presumably Brunswik (1956) would argue yes but I would

argue that 1t is not a necessity. The choice of the levels of a factor in an

ANOVA design must rest with the investigator and it is the responsibility of
that investigator to state whether that factor is random or fixed for any given
sftuation and give h's reasons,

with.

which other investigators may or may not agree

It may be that the use of random sampling may be the best way to choose

the levels as, for example, in the study of form perception using methods

suggested by Attneave (1954).
in his study,

In selecting what development permits to be used
Gardiner could have used some random sampling scheme such as going

to the files of proposed permits in the California Coasta] Commissfon's office

and by using some random plan select his 15 pemits. However, this runs the

risk, with a fairly high probability, of yielding a set of 1§ permits that were

not as representative of the universe of permits as it should be. What Gardiner

did was to rely on expert judgment (his own) to select a 1ist of permits that

would be useful in his study. This 1ist covered a broad range of typical permits

that included almost all of the kinds of proposed developments of interest to
the study and the practical application in mind,

The assumption of random sampling in any G or D study should remain that:

an assumption on the part of the investigator. Of course all the principles

involved 1n good experimental design should be employed to make that as

sumption
reasonable and plausible.

Summarz

This paper has presented a theoretical ratfonale for assessing the de-

pendability, validity,

rel{ability or Intellectual coherence of multi-attribute

e e s s e s
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utility models and techniques. If an investigator is advocating the use of a
MAU model or procedure he or she is interested in generalizing from obser-
vations at hand to a universe or domain of observations that are members of
that same universe. The universe must be unambiguously defined but it is not
necessary to assume that universe as having any statistical properties such as
uniform variances or covariances. A study of generalizability (G study) is
conducted by taking measurements on persons, stimuli, tasks, etc. that are
assumed to be randomly representative of a universe an investigator wishes to
generalize to. The ratio of an estimate of the universe "score" variance to an
estimate of the observed score variance is the coefficient of generalizability.
This is estimated by the intra-class correlation coefficient. ANOVA and the
Expected Mean Square paradigm of Cornfield and Tukey is used to obtain the
appropriate variance estimates.

The theory dispenses with unnecessary and unwarranted assumptions, and
eliminates the distinction between reliability and validi%y. Any G study can
be conducted without reference to having a pa~allel measure of the MAU instru-
ment or some external criterion of “success". If a MAU technique is compared
to some non-MAU technique for doing the same thing then it is possible to cal-
culate the coefficient of gencralizability for both methods .us allowing the
investigator to decide which is best for his or her purposes. Preliminary
investigations have indicated that MAU models and techniques based on such
models may be "better" than non-MAL models since the former have a tendency
to reduce the interaction between judges and the thing being judged when such
interaction represents inconsistency of Judgment. The extent of this principle,

if indeed 1t is true at all, needs further work,
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! f Appendix A
: An Expected Mean Square Algorithm o
The theory of generalizability requires an investigation to estimate |

variance components. This in turn requires the calculation of the expected
value of the mean squares (MS) generated by an analysis of variance (ANOVA)
study. The calculation of these expected mean squares E(MS) is straightforward
but fnvolves tedious algebra. Fortunately, Cornfield and Tukey (1956) have
provided a convenient algorithm for generating the E(MS)s for any ANOVA design.
Tais procedure is explained in standard texts such as Winer (1971), and Kirk
(1968).

The procedure is illustrated below by following a set of rules. This
is a modification of that provided by Kirk (1968, p. 209-210).

Rule 1. Write the linear model for the design. If, for example,
there are two factors A, B and n replications the model is:

Rule 2. Construct a two way table such as Table A as follows:
(a) The rows of the table are labeled as the factor effects
excluding the general mean. The columns of part 1 of the table
are labeled with the subscripts and the 1imit of the subscript
(number of levels of each factor).
(b) Part 2 of the table is labeled as E(MS)

R N g e A
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i TABLE A
Expected Values of Mean Squares for a Two Factor
ANOVA Design

] 2
j J m
[ a b n E(MS)
a 2 b 2
l Bj a 1 - %- n oez +n(1 - %)oABZ + naog
a b 2 2
| e 1 1 (1 - ﬂﬁ* 0p
1jm N e
Rule 3. Each entry below each column in part 1 is determined as
follows:

(a) If the column heading appears as a subscript of a row tern
enter the sampling fractions appropriate for that column 1 - %3 |
etc., where a and b are the levels of each fac;or and A and B are the

total number of possible levels.

(b) If the column heading does nut appear as a subscript of a
row term enter the appropriate letter for that column, e.g., a, b, n,

etc. in the row.

(c) The last row should contain all ones under each column head-
ing. For most designs there is no sampling fraction for the replicates
effect, since the n replicates for any experiment 1is usually very small
relative to the total number of possible replicates, i.e., (1 - ﬁ) =

for large N.

* - ﬁ-) = ] since in almost all applications the number of replications n 1s

considered very small relative to all possible replication N.




Rule 4. For each row in part 2 of the table (E(MS)) list the variance
of the linear model term that contain all the subscripts of the row term,
for example, the subscript of the first row is i. Variances in terms of

the linear model that contain subscript i are cez, °ABZ’ and oAz.

Rule 5. The coefficients of the variance for each E(MS) are obtained
by covering up the columns headed by the subscripts that appear in a row
and multiplying each row E(MS) variance by the remaining terms in part 1
of the table. For example, the coefficients in the first row for oAZ are
n and b which are found in the first row of the table. The coefficients
for °A82 are n and (1 - %) which are found in the third row of the table.

The coefficient for °e2 is always 1.

The E(MS) for any main effect always includes the error variance oez
Plus all variance terms in which it is ircluded. In other words the E(MS)
is a weighted sum of a1l the variance components that contain the subscripts

of the main effects.

Rule 6. The sampling fractions (1 - %), (1 - EJ, etc. tend to reduce
the variance term for which they are coefficients and suppress them com-
pletely when the factor is fixed. For example, if factor A is fixed ar
thus a exhausts all levels of interest a = A and (1 - %) = 0. If the
factor is considered random and a is small relative to A the sampling frac-
tion is one. There may be practical situations in which values for the
sampling fractions between 0 and 1 may be appropriate but these two values
are most often usad.



