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The Sodd Science Research Institute of the University of Southern 
Cal'tornia was foun.le.l on July 1, 1072 to permit USC scientists to 
brinK their scientific and technoloKica| skills to bear on social and public 
policy problems. Its ,taff members include faculty and graduate students 
from many of the Departments and Schools of the University. 

SSRI's research activities supported in part from University funds 
and in part by various sponsors range from extremely basic to relatively 
applied. Most SSRI projects mix both kinds of goals — that is, they con- 
tribute to timdameiiMl knovvle.'ge in the field of a social problem, and in 
doing so, help In cope uith that problem. Typxally, SSRI programs are 
inrerdisciplmary, drawing not only on its own staff but on the talents of 
others within the TSC community. Each continuing program is composed 
of several projects; these change from time to time depending on staff 
and   .ponsor interest. 

At present (Spring, 1975), SSRI has four programs: 

Criminal justice ami juvenile delinquency. Typical projects include 
studies of the effect of diversion on recidivism among I,os Angeles area 
juvenile delinquents, and evaluation of the effects of decriminali/.ation 
of status offenders. 

Decision analysis and social program evaluation. Typical projects 
include study of elicitation methods for continuous probability distribu- 
tions ami development of an evaluation technology for California Coastal 
Commission decision-making. 

Program for data research. A typical project is examination of 
small-area crime statistics for planning and evaluation of innovations in 
California crime prevention programs. 

Models for social pknomtm. Typical projects include differential- 
equation models of international relations transactions and models of 
population flows. 

SSRI anticipate; continuing these four programs and adding new 
staff and new programs from time to time. For further information, pub- 
lications, etc., write or phone the Director. Professor Ward Edwards, at 
the address given above. 
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covanances. A study of generalizability Is conducted by taking measurements 
on persons, stimuli, tasks, etc. that are assumed to be randomly representa- 
tive of a universe an investigator wishes to generalize to. The ratio of an 
estimate of the universe "score" variance to an estimate of the observed 
score variance is the coefficient of generalizability. This is estimated by 
the intra-class correlation coefficient. ANOVA and the Expected Mean Square 
paradigm of Cornfield and Tukey is used to obtain the appropriate variance 
estimates. 

The theory dispenses with unnecessary and unwarranted assumptions, and 
eliminates the distinction between reliability and validity. Any generaliz- 
ability study can be conducted without reference to having a parallel measure 
of the MAU instrument or some external criterion of "success". If a MAU 
technique is compared to some non-MAU technique for doing the same thing then 
it is possible to calculate the coefficient of generalizability for both 
methods thus allowing the investigator to decide which is best for his or her 
purposes. Three numerical examples are given of the theory. Preliminary in- 
vestigations have indicated that MAU models and techniques based on such mod- 
els may be "bette-" than non-MAU models since the former have a tendency to 
reduce the interaction between judges and the thing being judged when such 
interaction represents inconsistency of judgment. 
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Assessing the Reliability and Validity 

of Multi-Attribute Utility Procedures: 

An Application of the Theory of Generalizability 

J. Robert Newman 

Social Science Research Institute 

University of Southern California 

Most important decisions involve choosing among alternatives with 

mtiltiple value characteristics.    For example,  in deciding what home to buy. 

some of the value relevant characteristics might be: number of rooms, price, 

location, potential as an investment, and so on.    A set of multi-attribute 

utility (MAU) models and procedures have been proposed as an aid in making 

such decisions (Edwards. 1971; Raiffa, 1968, 1969). 

The basic idea of a MAU procedure is to "Divide and Conquer" (Raiffa. 

1968. p.271).    There are three basic steps in this process.    First, the 

decision problem is broken up into littl. pieces (attributes) along natural 

lines depending upon the nature of the task.    Second, separate judgments are 

made about each of the component pieces.    As a rule, there are two such 

judgments, numerical judgments about the imporcance of each attribute relative 

to each other and numerical judgments about the "worth" or utility of each 

attribute to each of the competing decision alternatives.    Finally, these 

separate judgments are aggregated using some fomal algebraic rule and this 

Is used as an aid to the final decision. 

Advocates of MAU procedures have offered them as a replacement for 

"whollstic" procedures in which the decision maker forms an overall  intuitive 

evaluation of a decision alternative.    Such advocates have also argued that 

MAU procedures are "betted in the sense that they are more reliable and 
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valid than wholistic procedures. It Is this comparison that forms the Mtl- 

vatlon behind this paper which stems from a disillusionment with the way multi- 

attribute utility (MAUM) models and procedures are being assessed as to their 

reliability and validity. I would like to suggest a re-fonnulatlon thay may 

resolve a good many conceptual and practical difficulties. The refomulatlon 

Is based on some work of Lee Cronbach and his Associates (Cronbach, et al.. 

1972) and Is called the Theory of GeneralIzablllty. Before describing what this 

theory Is all about and why I think ft may be of considerable use In studies of 

MAU models, let me first give an example of the conceptual difficulties that 

the classical theory can lead to. 

Consider the concept of validity. Under the classical theory validity 

(sometimes called predictive validity, concurrent validity or convergent vali- 

dity) Is defined as the relation between the measuring Instrument and other 

criteria of "success". If. for example, you had a method for assessing the 

amount of anxiety In a person via a paper and pencil test and could demonstrate 

that such scores correlated highly with an Independent physiological measure of 

anxiety (e.g., palmer sweating) then you could argue that the paper and pencil 

test did Indeed have validity from a psychometric standpoint which also makes 

sense from a behavioral 3t9ndpo1nt. The basic references on the classical theory 

of validity are Gulllksen (1950) and Lord and Novlck (1968). Now consider how 

Mau techniques have been validated. Fisher (1972). Huber. Daneshgar. and Ford 

(1971). and more recently Gardiner (1974) used as the validating criterion for 

various MAU techniques wholistic judgment In certain decision situations. Each 

of these Investigators demonstrated that decomposed additive utility models 

(MAU techniques) correlated highly with Intuitive wholistic Judgments In judg- 

■■■    — 
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ment tasks and used tfefi results to argue that the additive utility models 

were therefore valid in 'he sense that they were capable of predicting a cri- 

terion. namely, the wholistic judgments. There is an obvious error in logic 

here. If the decomposed additive utility models are supposed to be "better" 

than wholistic judgments, why use wholistic judgment as the validating criteria 

for the MAU technique? 

There are other difficulties. It can be demonstrated that wholistic 

juo^ents are not as reliable as decomposed judgments (Fisher. 1972; Gardiner. 

1974). Therefore we are using a less reliable criterion to provide evidence for 

predictive validity for a more reliable MAU technique. Aside from an apparent 

error of logic here, consider what the classical theory of reliability and 

validity has to say about such a situation. There are two cases to consider: 

Correction for an unreliable criterion 

If. according to the classical model. >ou have a reasonably reliable 

measuring technique and you are using a fallible criterion to assess its validity 

then it is logically unfair to make it appear that the measuring technique is 

less valid than it really Is. It is desirable, therefore, to correct predictive 

validity coefficients for attenuation In the criterion measurement (Gulliksen. 

1950). The formula for such correction Is 

r' xy JUL 

A yy (i) 

where r'xy is the corrected validity coefficient. rxy Is the correlation between 

the measuring Instrument x and the criterion y. and r  Is the reliability of 

the criterion y. (Note: the expression/^ is referred to as the Index of 

   ■-'■- - ■   -—- - - . . „ .. — . ..,—.— 
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relfabtMty.) 

Gardiner (1974. p. m) presents test.retest correlät1o„s (jn<|ex re)._ 

atflttles) for holistic jud^nts as having an average of .75 and validity 

«efficients having an „erage of .66.   This Utter was the largest average of 

the two calculations he did In correlating his MoUI-Attrlhute Rating Scale 

WARS) with the intoltlve „holistic Judgments.   Thus applying the above Hm,U 
using his results we have: 

66 
xy ■  .88 

.75 

This, of course, according to the classical theory, „„kes Gardiner's 

HARS technique have appreciably higher validity than he reported. 
Shrlntaoe of validity roeffldents 

Any validity coefficient, whether It be a correlation between a predictor 

(«asure.ent) and a criterion or whatever. Is designed to yield the best possible 

prediction for the sample of data on which it was developed. If the prediction 

action which the coefficient represents actually was applied to a new sample 

of data the predictions Invariably would be worse and the resulting validity 

coefficient lower. This pheno.enon Is called shrinkage of the validity co- 

efficient. The ^ount of shrinkage Is an Indication of how «uch bl.,« upwards 
the origin., cotffMm w., The ^^ ^^ ^ ( ^ ^ ^ 

the origin., v.Hdlty coefficient for this upw,rd bias. The t*mU  Is: 

rxy . t» - 0 . rx/,( l^ n     H (2) 

where ?xy Is. the .stated corrected coefficient: rxy „ th, 0Hgin., coeff1c1e„ti 

, _ -    - -       —  ■ - 
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and N is the number of observations 1n the original sample. When we apply this 

formula to the results presented by Gardiner who used a sample of size N = 14 

subjects, and whose average validity coefficient was .66 we have 

A 
r 
xy ■ [1 - (1 - .662){^)] ^ T7 

,58 

Thus we see the classical theory tells us to correct the coefficient upwards to 

provide for a fallible criterion and to correct it downward to provide for the 

over estimate due to sampling errors and capitalizing on chance in the vali- 

dating sample. The Classical theory does not tell us which of these coefficients 

is "best". 

One possible solution is to use the classical theory to first reduce the 

over estimated validity coefficient using formula (2) and then apply the correc- 

tion for attenuation formula (1) to adjust for a fallible criterion. If we do 

this with Gardiner's data the obtained estimate Is now .77. 

All of these coefficients make sense, If we adopt the classical theory 

and use It as a guideline to assess the validity of the measuring Instrument. 

I think you will agree, however, that things can be a little confusing. There 

should be a better way, and Cronbach and his associates have Indicated that 

thece Is Indeed a better way which they call a Theory of Gererallzability. 

The Theory of GeneralIzabilitY 

Basic Concepts 

To ask the question of how reliable or dependable a measure Is, Is to 

ask how well one can generalize from the observation at hand to some universe 

or domain of observations to which It belongs. To ask about rater agreement 

■■■^-..^ ;--■   r. ^ ^-....^■■.  .^-.-^^—,l,-,■,,,  ■ . .^^ u. 
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in MAU studies is to ask how well we can generalize from one set of ratings to 

ratings 'rom all possible raters who might have been chosen to actually do the 

rating in the particular study. The theory requires the investigator to specify 

the universe of conditions of observation over which he wishes to generalize. 

Conditions is a generic term referring to observers (raters), forms of stimuli, 

occasions, etc. In addition to generalizing to a universe of raters, for example, 

we may also wish to generalize to a universe of situations in which the ratings 

were made. Miller, Kaplan, and Edwards (1968) studied the efficacy of a Utility 

model performing under four military logistical situations. It may be of inter- 

est to know how well one could generalize from these four situations to all 

possible situations which the particular four represented. Gardiner (1974) 

used 15 "typical" housing development permit requests in hU  application of 

MAU techniques to Coastal Zone Management Decision Making. It is of interest 

to know how representative these 15 permit requests were and therefore how well 

one can generalize to the universe of such permit requests. 

Questions concerning generalizability are substantive not just methodo- 

logical. They require thinking about the class of observations and not just 

the measuring technique which gathered the observations at hand. 

The following are requirements or assumptions of the theory: 

(a) The universe is defined unambiguously. It must be clear what con- 

ditions fall within the universe. 

(b) Conditions are experimentally Independent. For example, a person's 

score or rating In one condition does not depend on the fact that he or she 

has or has not been previously observed under other conditions. 

(c) Conditions are randomly selected from the i-niverse of conditions. 

lÜr^ü^iiHuM 
"■■"-— -- ■ - ■ — -   
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This assumption is crucial but no assumptions are made about the content of 

the universe or about the statistical properties of the conditions within the 

universe. The restrictive and unnecessary assumptions of the classical theory 

such as uniform variances and co-variances of two or more samples of items, 

persons, etc. are eliminated. 

If we wish to generalize to persons (raters) then for each person p, the 

universe score Mpi is defined as the expected value E(X .) of the observed 

score Xpi. over all conditions in the universe. If we wish to generalize to 

situations then a universe situation mean is defined in a similar fashion. If 

we define generically, Xc as the sample observatio-- of some condition c and 

Mc as its expected value in the population, the:, we can define the squared 

correlation G x M = estimated universe score variance 
c c  estimated observed score variance 

as the coefficient of general inability which indicates how well one can genera- 

lizf rrom the observed data to the universe score. This definition requires 

Xc and Mc to be random variables. We will see shortly when we discuss estimates 
2 

of 6 x M that the intra-class correlation coefficient (Haggard, 1958) is a 
C C      2 

lower bound of G x M and can be easily estimated from analysis-of-variance 

(AWVA) designs. 

Note that this definition does not require an outside or Independent 

criterion against which to assess the dependability of the measuring technique. 

Any study of the measuring technique will have its own generalizability. This 

is equivalent to what some Investigators have called the "external validity" 

of the study (Campbe 1 and Stanley, 1963). When a study has been completed 

and a relation found between some independent and dependent variable then 
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questions of «ternäi valtmji refer to what populations can tMs relation be 

oen=ral1zed to. and how extensive Is this generall.atlonj This as contrasted 

t» jBjEMlalMüHrtdl ™f™  f "ow precise (reliable) the study was In 

the first place. It f. possible, of course, to have highly precise experiments 

that have little generality. The converse Is not true. Experiments with low 

internal va.ldlty are highly Imprecise and thus cannot have much generality 

Campbell and Stanley note, and correctly so. that Internal validity Is the 

line gua non of a good research design but unless special cautions are taken 

the results of a carefully designed study are not representative and hence not 

generallzable. The Idea, design should be high In both Internal and external 

validity. The theory of generallzablllty meets this problem head on by re- 

quiring the investigator to be very explicit about what universe he wishes to 

9eneral1ze to and thus forcing him to design "representative" experiments with 

the zeal advocated by Egon Brunswlk (1956). 

S and D Studies 

The theory makes the dl.tlnctlon between generallzablllty studies (« 

study) and decision studies (0 study,. The D study orovldes Info^atlon f™ 

which decisions about Individuals, groups, and/or situations are made, while 

the G study Is used to assess the actual measuring technlgue. The design of 

• and 0 studies may be on. and the same but they are often dlff.rnnt  'he 

distinction between fi .„d 0 studies Is more than   recognition of the fact 

"'' Certa,n "^ ""'" -t during the development of . measuring 

instrument and then the Instrument Is utilized In other studies for pr.ctlc.1 

Purposes. The distinction Is particularly crucial for anyone who advocates the 

 0f CertSln teChn1<' '«» '" """»< to be better than others. Such 

  .^^^  - - ^--^-»———-*-J-- 
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claims usually can be demonstrated in laboratory-like studies but these tech- 

niques may then be used to make very important and practical social judgments 

such as Coastal Zone Management decisions. The distinction is particularly 

important for MAU studies to clarify analyses of just how ratings are assessed 

and used. In Gardiner's study of Coastal zone decisions each subject (rater) 

gave a utility judgment on all attributes and an importance weight on all 

attributes. The intra-class correlation among raters (coefficient of generali- 

sation) if it were calculated would ignore differences in rater bias. This 

would be the appropriate coefficient in a subsequent D study if the raters 

used in that study also made'utility and importance weight judgments on all 

the attributes. However, if the raters in a subsequent D study d-fffered on 

what attributes they judged or, as might well be the case in practical situa- 

tions, different persons provided the utility and importance weight judgments, 

then one would need to know the intra-class correlation that treats such things 

as raUr leniency, possible differences in giving utility judgments versus 

importance weight judgments, and so on. 

Generalizability and Construcc Validity 

We began this paper by being concerned about the reliability and validity 

of multi-attribute utility techniques, tie then argued that the classical 

theories of reliability and validity are not satisfactory. Validity in par- 

ticular 1s suspect primarily If, by validity, one means how well a measuring 

Instrument correlates or ppedlcts some external criterion. It Is often the 

case that this criterion Is Itself suspect either because of doubtful relevance 

to what Is really Intended to be measured, or the criterion Itself may be un- 

reliable. Because of these difficulties, psychometrlclans have Introduced 

-■- ■ 
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another def,„,tlon of validity caUed construct vaHdUy. The bastc idea of 

construct vaHdUy is that any measuri„g <ntTmM ^ ^ ^^ „ 

Psycho,ogica, raea„i„5 i„ ten„s of sme usefu, ^^ ^^ ^ ^ 

Purports to measure. The construct of anxiety, for examp,e, i, a usefu, and 

h13h,y vaiid construct since it can he d^onstrated that sever,, «f^ 

ways of .easurin, that construct (.., ,f„t Anxfety sca,eS) palmar 

an correiate reasonahiy wen. and what is of even more imp0rtance. the .easure- 

-t of anxiety in Peopie ena.ies you to ^.e differentia, predictions ahout 

other hehaviors for peopie who .re iocated on different scaie ,ocations of the 

—y scaie. High anxiety individuais. for examp,e. perfo™ qu,te d,fferent,y 
" 'aan„,ng tasks tha„ ,„, anxiety ^^     ^ ^ ^ ^ ^^ 

-my can a,so be demonstrated to have high construct vaiidity since when 

«nitl« are measured in both anima,s and h.ans one can make differentia. 

Predictions based on these .easure.ents , de var)ety of .^^ ^ 

The theory of genera,i2abi,ity has imp,ications for construct vaiidity 
e t e0ry requ)res ,„ )nvesUgator ^ ^^ i G ^  

"-« I« «• - then make observations under two or .ore seiected con- 

-nions within that universe. The ca,cu,.tions yie,d,ng one or .re coeffi- 

cients of g.n.r.,i2,bi,ny te„ the investier how we,, the observed scores 
represent the universe scorp«  th. 4 
that he in, , ' "" '" COnSld*red « ' «"t«et 

introduces since he thin.s it has exp„„.tory or predictive power. 

"  . Investition of g.ner.,iMbi,ity can be seen to be an invention 

l ;:   y- Thus•n u mt—™- ^—- 
™ka a distinction between re,i,bi,ity and vaiidity. This „otio. *.  beM 

■■-■  ■—-i ■ 

 J 
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recognized before by Tryon (1957) who Introduced the idea of a domain sampllm 

model in which a sample of items in any test could be considered a random 

sample of all items in the domain or universe of items. Tryon also pointed 

out that if the sampled items were tapping some interesting domain of behavior 

then reliability could also be considered as behavior domain validity and it 

is not necessary to distinguish between the concepts of reliability and validity. 

Althoigh they use different philosophical reasons. Miller, Kaplan and 

Edwards (1967) have also recognized that the distinction between reliability 

and validity is useless especially when Dne is concerned with decision making 

systems. They introduce the concept of intelleccual coherence which they equate 

with construct validity for decision systems. To quote these authors: 

Validation is simply establishing the coherence of a procedure, 
or several procedures. Thus no sharp line separates the concept 
of reliability from that of validity; both concepts refer to 
agreements among measures, and a continuum exists from cases in 
which the measures essentially repeat the same procedure (reli- 
ability) to cases in which rather different procedures seem to 
measure the same thing (validity). (Miller, et al., 1967, p.48) 

And further on, ... 

We assert that no external measure of the performance of a judg- 
ment-based decision-making system is possible. Any such measure 
would have to compare the decisions the system made with decisions 
made some other way, and there would have to be some good reason 
to suppose that the decisions made the other way were right ones. 
But if we reject the idea that the business of a decision-making 
system is to imitate some individual's decisions (in which case 
the only point of building the system would be to save the Indi- 
vidual the trouble of making those decisions himself), then no 
basis remains for asserting that the decisions made by one pro- 
cedure (e.g., by the commander) are inherently appropriate simply 
because they were made by that procedure, regardless of their 
content. An examination of the merit of decisions In terms of 
their content is a matter of Intellectual coherence or reliability, 
not validity. 

We» assert also that Intellectual coherence or reliability is 
very measurable and Is in fact what we want the output of a 

- — 
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decision-making system to have. 

We are tn strong agreement with these statements. Also, we believe that 

"intellectual coherence or reliability" can be demonstrated using the Theory 

of Generalizability. 

Analysis of Variance (ANOVA) and Variance Components 

The theory of generalizability in the conduct of both G and D studies 

makes extensive use of ANOVA models which are more general and Incorporate as 

special cases the familiar correlational designs utilized by the classical 

approach. ANOVA designs distinguish between random and fixed factors. A 

random factor is one in which the levels of the factor are considered a sample 

from a universe of all possible levels whereas a fixed factor exhausts all 

levels of Interest for that factor. It should be obvious from the previous 

discussion that a coefficient of generalization for any condition of a G or D 

study makes sense only If the levels of the factor for that condition are 

random. A fixed factor In an ANOVA design exhausts all the levels of Interest 

for that factor and there 1s nothing to generalize to. However, many G and D 

studies may employ both fixed and random factors (mixed designs). 

The general procedure in conducting either a G or D study Is to utilize 

an ANOVA design which will then yield the familiar sums-of-squa*-es and mean 

squares. The conduct of F tests, however. Is rarely done since one Is not 

usually Interested in testing hypotheses but rather In estimating various 

expected values of the mean squares In the fashion suggested by Cornfield and 

Tukey (1956). These estimates are then used to report the results of the study 

In terms of the components of variance accounted for and an estimate of the 

coefficients of generalizability. We will dispense with the formal theory 

which Is well presented In Cronbach, Gleser, Nanda and Rajaratnam (1972) and 

■ — - - ■ ■ ■ 
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any good ANOVA book such as Winer (1970), or Kirk (1968) and proceed to give 

several nunerlcal examples. 

Examples 

The first example uses fictitious data In a simple study of how to analyze 

judgments of the Importance of attributes as they might be obtained In a typi- 

cal MAU study. The second two examples are more complicated and use data from 

actual experiments. 

Example 1: Analysis of raters making Importance judgments about attributes. 

In MAU studies one task for the "expert" subjects Is to make judgments 

of Importance for each of the attributes under consideration for ehe decision. 

Suppose we have four experts rate each of six attributes on Importance on a 

10 point scale ( 1 = least Important; 10 = most Important). The result might 

be like that reported In Table 1. 

Insert Table 1 atrut here 

Since we are Interested In how well the rater might be doing at this task 

we ask questions cbout the general liability of the measuring Instrument, I.e., 

the raters judging Importance of attributes. The data In Table 1 are easily 

analyzed by ANOVA with the results given in Table 2. 

Insert Table 2 about here 

The expected mean squares E(MS) In the last column of Table 1 are the 

population values of the sample variances (mean squares). For those readers 

not familiar with expected mean squares the following intuitive explanation is 

offered: each expectation consists of an error variance component, since all 

-- 
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Table 1 

Importince k      igs G1 -e   by 4 Raters 
on Each of 6 Attributes 

14. 

Rater 

Mean (A) 3.00 

Attribute 

1 2 3 4 5 6 Mean (R) 

1 2 5 1 7 2 6 3.84 
2 4 7 3 9 4 8 5.84 
3 3 5 1 9 6 8 5.34 
4 3 6 2 8 1 4 4.00 

5.75     1.75     8.25     3.25     6.50 4.75 

...--..^^ .      ._ ■■■^ — ^_.^—^»^ 
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Table 2 

Analysis of Variance of Ratings 

A (Between Attributes) 5 

B (Between Raters) 3 

AB (Residual) 15 

TOTAL 23 

Sums of 
J>3uares_ 

Mean 
_Square 

122.50 

17.50 

18.50 

158.50 

Expected Mean 
.Square EfMS) 

24.50 

5.83 

1.23 
°e2 + S2 

2 
ae 

15. 

— - --------      - -    _ - 
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^1. mn^u are )nfested vm error p, we(ghted„ ^^^^ ^^^ 

of the „s^ed treatment effect. ,„ thU c.se tKe effect dUe to the .ows (reters, 

- *t «. to co.^s (ettrtbotes). Each treats variance .. mi^ by 

the nimber of samp,e values that contributed to each treatment ,eve1 «an  For 

«-»1.. the s^-cf-souares due to attributes In Table . ca« frM the fact 

that each column .attribute, mean ,s devlatln, fro* the grand mM,  with each 

representin, the four values that «nt In to calcuUte each TOan. Thos the 

expected value exponent for the effect due to attributes (,/, aets we1ghted 

^ «• in a similar fashion six values contributed to the n,e.„ for e«h row 

effect and thus the expected value co.ponent for the effect due to raters gets 
weighted by 6. 

The general «thod for obtaining the expected „an squares «MS, for 

Cornfield and Tukey (»56, häve prov(ded , „„^^ ^^ ^ enab]e' 

one to set down the appropriate expected mean squares for any ANOVA design 

M* a.gorltNn Is explained In K1rk (,«, and Winer »,70,. since the caicu- 

't,0n;f "^^ ,ü,reS W S0 ^"1 '- «- «^ of generall^nity 

;.p
v;;:,on of m wi"d - ^ —-« * **** * mt 

Once the expected «an square t d0M, tt „ , mUf „ 

; e
9e 7°est,Mte * ,,nce cofflponents ,n th' •^-- ^ -p-e. 

the variance component for factor A (attributes, 1s 

-- ■*   - —     —,-■.. .-^ 1^*^^^—....... —. 
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• 2   MS. - MS oA  - _A e 

24.50 - 1.23 

= 5.82 

A 2 2 
Where aA is an estimate of the variance component o. and MS. and MS are the 

mean squares for the A factor and error respectively. Since this was an ANOVA 

with only one observation per cell the MS for interaction is the error variance 

component. Incidentally, while variance components cannot be negative, esti- 

mates of such components can be negative due to sampling error. If any variance 

estimate is negative, it should be set equal to zero. (An example of such a 

possibility is given in the third example.) 

The estimate of each variance component and the percent of variance 

accounted for in the experiment can be listed in the following diagram: 

Variance 
Component 

Variance 
Estimate 

Percent of 
Variance 

This Is a fairly precise experiment with about 16X of the variance due 

to "error" and thus 84« Is predicted variance. 

Now, we can estimate the coefficient of general liability (G2) for the 

experiment as follows: 

A B AB(Res) Total 

5.82 .77 1.23 7.81 

74 10 16 100 

- ■ -  
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A? 

tsttmated übserved Score Variance 
A 2 

18. 

= .83 

i? vrvf the i'ntra"ciass correiation coefficient ^ c~. 
^ ^ ^ ^ "^ ** -e intra-class c^Hatlon coe^clent 

is an estimate of the lower bound of G2. ^tficient 

An Interpretation of a2 fi that it I« n 
at 1t 1S the ProPo^ion of universe score 

variance accounted for by knowledae of ^   k 
y Knowledge of the observed score variance 

Another interpretation is as follows- If *. ö       . 
n^..   tM 

0M0WS- If the experiment were to be re- 

— -„ then «. th, saBK attr(butesi ^ ^^^ 

- «^ .. .e two $ets of raters wu,d ^ 83 The        - ; 

•t 1sn t h,3h.r? F.r * data g)van „ T8b,e    ^ 

raters 1 2 *nH i  «  , «'rrereni from 
S ' 2' "* 3- *• '"-^«^ 1n sUch P.t ows up „ „, (nter. 

«tlon t.™ .„d therefor, tends to 1„f,.te the error v.H.nc. e error variance component, in 

   — mnuia^jMiMH 
■--■--- ■   • ■ 

.  .,.  ... — .-.... .—^— 



W"  ' '  1 — -  ^ ■^«^WW '•I'11" '  "  '■,   " ' 

111 mm 

19. 

order to mve  the ooeffklent of gererellzablHty (G2) closer to one, , reduc- 

tion in tMs Interaction would have to occur. 

Example 3: The JUDGE Experiment. fA Dectslrn (D) Study) 

As our second example we use the experimental results of e somewhat 

novel application of decision theory to a Tactical Air Control Syst«, provided 

by the work of Miller. Kaplan and Edwards (1967. 1968). They have proposed a 

system called Jud9ed Utility Decision Generator (JUDGE) for allocating air 

strike missions to requests In tactical air control environments. A key con- 

cept of JUDGE is that value Judgments (estimation of military worth associated 

»It» requests) can be made directly and in real time by appropriately trained 

personnel, and that the system should. In principle, maximi« the aggregate 

utility over all the dispatching decisions It makes. The .cta.1 details of how 

JUDGE works 1s not important for this discussion. What is Important is that 

the system makes extensive use of human judgments which are computer assisted 

and the advocates of this system claim that it might be a better syst«, than 

that presently being used by the A1r Force in tactical situations. In order 

to lend support to this notion these investigators conducted a laboratory study 

comparing JUDGE against a version of the currently used system called Direct 

A1r Support Center (DASC). W. have taken th. liberty of using the data reported 

for this experiment to illustrate the basic concept, and interpretations of the 

theory of generallzabtltty and what 1s presented below should not be construed 

as an interpretation of the «iller et .1. experiment. In th. experiment, each 

of 14 subjects participated in both the JUDGE and DASC modes of tactical contend. 

1n four simulated air tactical co*nd stations, and there were two replications 

of the experiment. Thus from an ANOVA design viewpoint this can be considered 

.-JJ-^.^. -  -   -    .-■■:«■>■. 
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as . three factor»! design with Systems. SU.aMons. .„« Subjects tetng the 

three factors of interest or. .ore specifically, a Z  (syst^s) x 4 (situations) 

x 14 (subjects) design with two (?) replications per cell (each subject per- 

fo™ed twice). Two dependent variables were used in this study: a measure of 

efficiency and a measure of effectiveness.1 

Since the main purpose of this study was to decide which system. JUDGE 

or MSC. was the best, we will first consider the analysis of the results of 

the study as a D (decis^n) study. Table 3 presents the MOVA sugary of the 

results using the effectiveness measure as the dependent variable. (The results 

.flr-lh!.!.f.f!!!!lc!.lt^r van'ab'e are simnar and wi"mt be *****■) 
Insert Table 3 about here 

The calculation of the Expected Mean Squares E(MS) assu.es the A and B^äctörs 

are fixed and the C (subjects) and Within Replicates are rando. factors. 

Again, once the expected .ean squares are set down it is a .atter of simple 

algebra to estimate the variance exponents of the factors and their inter- 

actions in the experiment. For example, the variance exponent for factor A 

(Systems. JUDGE vs. DASC) is estimated by 

0 2 . MSA - MS 
'AC 

112 

. 1834.33 - 9.89 

112 

■ 16.29 

1. The data are presented in Appendix B of Miller. 
Kaplan and Edwards (1968). 

'*-"■- ■ --.-.-■.—^■.■.^.—---J.^.„ ■■ - ^ ■-- • ■'--'■ --— -■"■- 1  --: • - - ■ • ■ - - ■""- •  ^ i - wtm 
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Table 3 

ANOVA Summary Table for the Judge Experiment 

Source of Variation 
Degree of 

Freedom 

1 

Sums of 
Squares 

1834.33 

Mean 
Squares 

1834.33 

Expected Mean 
Square E(MS) 

A (Systems) 
ae2 + 8aAC2 + 112öA2 

B (Situations) 3 21.70 7.23 CJe2 + 4oBC2 + 56oB2 

C (Subjects) 13 63.89 4.91 0e2 + 16oC2 

AB 3 65.82 21.94 
Ce2 + 2oABC2 + 28oAB2 

AC 13 128.57 9.89 ae2 + 80AC2 

BC 39 114.94 2.95 0e2 + 40BC2 

ABC 112 91.51 0.82 a2 

e 

TOTAL 223 2320.76 



        m* 
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-an squares for the A factor and the AC Inters.       '    AC    * ne AC 1nteraction respecttvely. 

TMs estate of each variance exponent and the percent of tot 1 

accounted for In the expert can be listed in th , "" 
listed In the following diagram: 

Variance 
Component 

Variance 
Estimate 

Percent of 
Variance 

16.29 

73 

.07 

00 

c AB AC BC 

.25 .68 1.13 2.13 

o: 03 05 09 

ABC 

,93 

04 

Total 

•82  22.30 

04 100% 

■*. that tMs was a very precjse experiTOnti o 

the different syst«,s (JUDGE vs D«C) - • "" *" ^ 

- —v ^ effec. :t r::;:
the p,ctüre- ^ JüDSE -- 

- so strong. ..... accounted for J MSC-)   H—. tMs factor 

KT very „«,. aboüt the ^ '   9e "^^ of var,a„ce «e can 

P-fn8 the .Sü,ts of * « j" ^ eXWr,TO"t-   ^"y - 

- -aH„g .an Just JZ       Zl^T ^ ^ ^ ^ 
—.«- f ^ testt„8 th. ^rrrr: ;:;;rn9'For 
"Mnst tho «^ t.m *.,« .„ f of 3 26 wMcii

th;        tr,•, ^»"-«otlon 

—• «• M*,, s^n^an. i><.^^Z^ " ^ ^ 

UMIMMi -^—   — ^ _.        . . ^ -'—-•- -   ■ 
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syste. in . ,ta,.ud tactical .lr control environ^nt tnan DASC. we can turn 

our attention to detemlnlng the generaluablllty of JUDGE as contrasted to 

ÜASC. To do this, we win reanaIyze the data for each syste™ separately. This 

1. valid since the initial design was c^pletely crossed, i.e.. .„ subjects 

participated In all conditions of the experiment. 

Analysis of the JUOK ExoerW- a r.^ri>Uzabu„r  ^ ^ 

As an Illustration of how a general lability study may proceed, we have 

reanalyzed the OUOGE experiment as two 2-factor expe.-iments; one with the 

subjects operating under the DASC syst™ and the other with the same subjects 

operating under the JUDGE system. Two separate ANDVAs were carried out with 

the results displayed In Tables 4 and 5. ,„ Tables 4 and 5. the A factor 

Insert Tables 4 and 5 about he re 

(snuations) is considered fixed and the . factor (subjects) and within replL 

cates are random effects. The appropriate expected mean scares are given in 

the last column of each table and fr, these estimates of the variance c.po- 

nents and the percent of total variance can be calculated and are given under 

each table. Now since we wish to generalize to the population of subjects we 

can estimate a coefficient of generalization for each of the two systens as 
follows: 

. A factor fixed ¥* V * *. 
S2 (DASC) -   1-27 

1.27 + 1.80 + 1.22 

^2 
(JUDGE) 

_.37 

.36 + .20 ♦ .42 

.30 

.37 

■ '■ J 
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Variance 
Component 

Variance 
Estimate 

Percent of 
Total Variance 

A 8 AS Error (e) Total 

.76 1.27 1.80 1.22 5.05 

15 25 36 24 100 

24. 

Source 

ANOVA Sui 

Degree of 
Freedom 

3 

13 

39 

56 

TABLE 4 

roiary: DASC 

Sums of 
Squares 

System 

Mean 
Square Expected Mean Square 

A (Situations) 

B (Subjects) 

AE 

Within replicates 

78.25 

148.46 

187.70 

68.10 

26.08 

11.42 

4.81 

1.21 

'e* + 2-AB2 + ^A2 

ae
2 ♦ 8aB2 

0e2 + 2aAB
2 

^e2 

Total 111 482.51 

- „_^_1————-.-^ 
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TABLE 5 

ANOVA SUiTinary:    JUDGE System 

Source 
Degree of 
Freedom 

Sum of     Mean 
Squares    Square Expected Mean Square 

A (Situations) 

B (Subjects) 

AB 

Within replicates 

Total 

13 

39 

56 

9.26 

42.99 

31.75 

:3.42 

3.09 a/ + 2aAB
2 + 28a/ 

3.31 ae
2 + 8aB

2 

•81 ae2 + 2<7AB2 

.42 a 2 

111 107.42 

Variance 
Component 

Variance 
Estimate 

Percent of 
Total Variance 

A B AB 
i  

Error (e) Total 

.08 .36 .20 .42 1.06 

7 34 19 40 100 
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Thus we see that the JUDGE system has a higher coefficient of generalizability 

and thus can be considered as more dependable (reliable and valid) than the 

DASC system. We need not seek nor rely on some outside independent crite; ion 

to help us reach this decision. We can also see that the DASC system is not 

that much worse than JUDGE with respect to its generalizability *or subjects, 

being only seven percent "poorer". This was due primarily to thj fact that 

the interaction of subjects x situation«; variance component was higher for 

the DASC system than for the JUDGE system. This interaction term gets in- 

cluded in the estimate of the total observed score variance. Also, what it 

means from a behavioral standpoint, is that the subjects when in the DASC 

mode were not being as consistent in their responses to the four situations 

as when performing in the JUDGE mode. It should be remembered that the 

tasks for the two subjects are different in the two systems. In DASC the 

subjects are asked to make dispatching-like decisions in the simulated tacti- 

cal situations whereas in JUDGE they are making value judgments (estiitution 

of military worth associated with requests for a mission). These value 

judgments are expressed numerically combined with an estimated probability 

of "kill" along with certain constraints such as the availability of air- 

craft.and the dispatching design is made automatically by a computer generated 

dispatching rule. The data presented in Tables 4 and 5 Indicate that when 

subjects are asked to make value judgments and these judgmsnts are then 

used in an automatic algorithm then the entire system responds more con- 

sistently to various situations. With this design the presence of Interaction 

effects tends to reduce the general izability over any set of conditions. 

One final point before leaving this example. Although the situations 

MMfe. ^ ..  _ . — ._. — ' -       ■'— ^——*—- 
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factor „as fixed tn th.s a„a,ysjs. ,t does appear ^ ^ ^ a ^ 

dependent var,a6,e „hen the su6jects wene perfonn.ng under tHe OASC syste-n (>* 

«f the tou, vertence) then when they were perfom.n, under the JUDGE (7. of 

«- tote, v,r,a„ce).   Th.s mt,ht surest that In a future , study „ which 

nmrtiUMMt, to situations raight he a desired goa, that the DASC systOT 

^ht fare better than OUDGE.   ActuaHy no such prediction can he .ade untl, 

«- «tu., . study is perfo™ed with the situations varlaMe heln, Included 

" the des1gn of the study es a rando. factor.    However. It Is often the case 

that genera,1MM,1ty to situations. st1muH. tas.s. and so on are as Inpor- 

tant. If „ot .ere 1mportant. as genera,1zat1ons ahout people.   An 1„ustrat1on 

of such a case Is given In the next numerical example 

ardlner (lg7a, 1. „. 5tudy app,y1ng „.„^^ " ^ — 

certain permit reouests for various develo^ents a,ong tht Southern Ca,1forn1a 

Coast Sh„u,d he approved or d1sapproved hy a Coasta, mission which has the 
.u hor1ty t0 appfove or dan> sueh ^     ^ ^^^^^ ^ ^ ^ ^ 

«-1 emission m„b.rS. made Intuitiv. whoHstlc Jud^ents and „so made 

**, as the h.1ght of «. proMsed d.v.lw.nti dmance 

c   decisions.   Gardiner took sped,, p.l„s „ Mm , ^ of „ ' 

*. « interested In comparln, two sub.groUp, of hi. JuWKt. who desert 

.   ...    -    _...  
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themselves as "Developers", i.e., generally Itaninci toward development of the 

coastal line, and "Conservationists", who were generally opposed to develop- 

ments that might destroy the natural coastal line. One phase of his analysis 

utilized a two factor ANOVA, with the groups (Developers vs. Conservationists), 

and permits being the i.wo factors. He had 15 permits and 7 subjects in each 

group, thus this was a 2 x 15 factorial design with 7 replications per group. 

The results are given in Tables 6 and 7. Table 6 is the result for the whcl- 

istic evaluation of permit worth and Table 7 is for the MAU evaluation of 

permit worth. 

Insert Tables 6 and 7 about here 

In these two tables the group factor (Developers vs. Conservationists) 

is considered fixtd and the permit factor and within replicates are considered 

to be random. 
2 

The coefficients of generalizability (G ) for the two analyses given 

in Tables 6 and 7 are: 

GB 

2 .       2 ,      2 
Of»      +   O.«      +   0 

B AB e 

, A factor fixed 

G^ (wholistic) 

G^ (MAU) 

274.58 

274.58 + 157.94 + 431.35 
.32 

124.78 
.54 

125.78 + 0 + 106.09 

Thus, the MAU technique is more dependable (generalizable) than Its 

wholistic counterpart. In other words, if one were to generalize to the domain 

or population of all possible permits (of the kind investigated In Gardiner's 

study) then one would be in a better position using MAU than wholistic Judgments. 
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Source 

A (Group) 

B (Permits) 

AB 

Within replicates 

Total 

29. 

TABLE 6 

ANOVA Sunmary: Wholistic Evaluation 
of Permit Worth 

Degree of  Sum of .  Mean 
Freedom Squares   Square %%££  Mean Square 

Variance 
Component 

Variance 
Estimate 

Percent of 
Total Variance 

1 

14 

14 

180 

13.675.24 13^75.24 a* *   Jo^2 ♦ 105a/ 

59.845.38  4274.67  a 2 + 14oB
2 

e    B 

21.516.18  1536.87  a 2 + 7oA 
2 

6    AB 

77.643.00   431.35  a 2 

209   172.679.80 

115.60 

AB 

274.53 

12 28 

Error (e) Total 

157.94 

16 

431.35 

44 

979.42 

100 

i 

:       .  „^      -  - - ■ .---.~^..-      - 
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TABLE 7 

ANOVA Summary: MAU Technique Evaluation 
of Permit Worth 

Source 

A (Group) 

Ü (Permits) 

AB 

Within replicates 

Total 

Degree of 
Freedom 

1 

14 

14 

180 

Sums of 
Squares 

2128.51 

25,942.00 

1086.82 

19,096.20 

Mean 
Square  Expected Mean Square 

2128.51  ae
2
+ 7aAß

2
+105aA

2 

1853.00  ae
2 + 14aB

2 

77.63  oe
2 + 7oAB

2 

106.09  a 2 
e 

209   48,253.53 

Variance 
Component A B AB1 

1  
Error (e) Total 

Variance 
Estimate 19.54 124.78 0 106.09 250.41 

Percent of 
Total Variance 08 50 0 42 100 

1. The mean square estimate (£„„) for thP AR W«...,.^ 
to sampling error and was s§f to zero   1nteract10" was negative due 

- ---— ■  — - — -     
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Note that the distribution of predicted variance is quite different 

for the two methods with the most dramatic difference being the elimination 

of the interaction component when the subject's responses are used under the 

MAU technique. The statements made earlier are worth repeating here: When 

human judgment is being used in any scientific or practical study, any inter- 

action between the human judges and the objects, conditions or persons being 

judged may be a form of inconsistency and lowers the dependability (generaliz- 

ability) of those judgments. There may be an important principle here, one of 

considerable theoretical and practical importance. Any "divide-and-conquer" 

technique such as a MAU technique may minimize or at least reduce substantially 

interaction sources of variance due to inconsistency thus making any study or 

application of the technique easier to interpret. This is not to say that 

components of variance due to interaction should always be reduced. There are 

certainly situations in which individual differences represent valid differences 

in judgments about utilities. Ar-.h conservationists may have quite different 

ideas about what is "best" for the California coastline than arch developers. 

We certainly would not want a technique that blurs or reduces such differences. 

The theory described In this paper must be applied to such situations in lab- 

oratory and "field" studies to see how useful the theory Is In such situations. 

Comment on Random Sampling 

The theory of generalIzablllty makes one powerful assumption: any sample 

of observations must be a representative random sample from the universe or 

population one wishes to generalize to. The question Immediately arises as to 

.-^ .-^-^.^—^—   - -  i—■ n ^^^^^^(B 
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whether ore should truly use the operation of complete rardo* sanpltrg of 

cordlUors from sone urtverse 1r order to generate the set of conditions to be 

used in any G study.   Presumably Brunswlk (1956) «ould argue yes but I «uld 

argue that It Is not a necessity.    The choice of the levels of a factor In .„ 

ANOVA design mat rest with the Investigator and It Is the responsibility of 

that investigator to state aether that factor 1s random or fixed for any given 

situation and give h's reasons, which other Investigators may or may not agree 

with.    It may be that the use of randm sampling may be the best way to choose 

the levels as. for example. In the study of torn perception using methods 

suggested by Attneave (1954).    ,„ selecting what develop pemlts to be u-ed 

in his study. Gardiner could have used some random sampling scheme such as going 

to the files of proposed pemlts 1n the California Coastal mission's office 

and by using some random plan select his 15 pewits.    However, this runs the 

rttt. with a fairly high probability, of yielding a set of 15 pe™its that were 

not as representative of the universe of pewits as It should be.    What Gardiner 

*d was to rely on expert Judgment (his own) to select a list of pemlts that 

that included almost all of the Mods of proposed develo^ents of Interest to 

the study and the practical application m mind. 

The assumption of rando. sampling In any G or 0 study should reeafn that- 

an ass-nptlon on the part of the Investigator.   Of course ,11 the principles 

involved in good experimental design should be „ployed to make thet assumption 

reasonable and plausible. 

Summary 

This paper has presented a theoretical rationale for assessing the de- 

pendability, validity, reliability or intellectual coherence of multl-attribute 

-■ — -•-■ - ^   
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utility models and techniques. If an Investigator Is advocating the use of a 

MAU model or procedure he or she Is Interested In generalizing from obser- 

vations at hand to a universe or domain of observations that are members of 

that s.\me universe. The universe must be unambiguously defined but It Is not 

necessary to assume that universe as having any statistical properties such as 

uniform variances or covarlances. A study of generalIzablllty (G study) Is 

conducted by taking measurements on persons, stimuli, tasks, etc. that are 

assumed to be randomly representative of a universe an Investigator wishes to 

generalize to. The ratio of an estimate of the universe "score" variance to an 

estimate of the observed score variance is the coefficient of generalizablllty. 

This is estimated by the tntra-class correlation coefficient. ANOVA and the 

Expected Mean Square paradigm of Cornfield and Tukey is used to obtain the 

appropriate variance estimates. 

The theory dispenses with unnecessary and unwarranted assumptions, and 

eliminates the distinction between reliability and validity. Any G study can 

be conducted without reference to having a pQ-allel measure of the MAU instru- 

ment or some external criterion of "success". If a MAU technique is compared 

to some non-MAU technique for doing the same thing then it Is possible to cal- 

culate the coefficient of generalizablllty for both methods :us allowing the 

investigator to decide which Is best for his or her purposes. Preliminary 

investigations have Indicated that MAU models and techniques based or such 

models may be "better" than non-MAL models since the former have a tendency 

to reduce the Interaction between Judges and the thing being judged when such 

interaction represents Inconsistency of Judgment. The extent of this principle, 

if indeed It Is true at all, needs further work. 

i i 
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Appendix A 

An Expected Mean Square Algorithm 
The theory of generalizability requires an investigation to estimate 

variance components. This in turn requires the calculation of the expected 

value of the mean squares (MS) generated by an analysis of variance (ANOVA) 

study. The calculation of these expected mean squares E(MS) is straightforward 

but involves tedious algebra. Fortunately, Cornfield and Tukey (1956) have 

provided a convenient algorithm for generating the E(MS)s for any ANOVA design. 

T/iis procedure is explained in standard texts such as Winer (1971), and Kirk 

(1968). 
The procedure is illustrated below by following a set of rules.   This 

is a modification of that provided by Kirk (1968, p. 209-210). 

Rule 1.   Write the linear model for the design.    If, for example, 

there are two factors A, B and n replications the model is: 

Yijm • " ♦ VV* «« * t* 

Rule 2. Construct a two way table such as Table A as follows: 

(a) The rows of the table are labeled as the factor effects 

excluding the general mean. The columns of part 1 of the table 

are labeled with the subscripts and the limit of the subscript 

(number of levels of each factor). 

(b) Part 2 of the table is labeled as E(MS) 



■ I I 

■a. 

AB 
ij 

•ijm 

Expected Val 
TABLE A 

jes of Mean Squares for a Two Factor 
ANOVA Design 

1 2 

1       j 
a       b 

m 

n E(MS) 

'•jf n 0e2 + ^ - KB2
 
+ "b0A2 

'-t n 0e2 + »^ " ^0AB2 + naoB2 

^i     '-I n 2 4 „  2 
ae + noAB 

1       1 (1 - I) 2 
0e 

Rule 3. Each entry below each column in part 1 is determined as 

follows: 

(a) If the column heading appears as a subscript of a row tern 

enter the sampling fractions appropriate for that column 1 - jr> 1 - f • 

etc., where a and b are the levels of each factor and A and B are the 

total number of possible levels. 

(b) If the column heading does nut appear as a subscript of a 

row term enter the appropriate letter for that column, e.g., a, b, n, 

etc. in the row. 

(c) The last row should contain all ones under each column head- 

ing. For most designs there is no sampling fraction for the replicates 

effect, since the n replicates for any experiment Is usually very small 

relative to the total number of possible replicates. I.e., (1 - J) - 1 

for large N. 

0 - J) ■ 1 since in almost all applioitions the number of replications n is 

considered very small relative to all possible replication N. 

• - —    ■ ■ - ■ 
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Rule 4. For each row In part 2 of the table (E(MS)) list the variance 

of the linear model tem that contain all the subscripts of the row term, 

for example, the subscript of the first row is i. Variances in terms of 

the linear model that contain subscript i are a 2, o*. and o 2 
e  Aß     A ' 

Rule 5. The coefficients of the variance for each E(MS) are obtained 

by covering up the columns heided by the subscripts that appear in a row 

and multiplying each row E(MS) variance by the remaining terms in part 1 

of the table. For example, the coefficients in the first row for o^Z are 
n and b which are found in the first row of the table. The coefficients 

for 0^2 are n and (1 - ^) which are found in the third row of the table. 

The coefficient for oe
2 is always 1 

The £(MS) for any main effect always includes the error variance a 2 

plus all variance terms in which it is included. In other words the E(MS) 

is a weighted sum of all the variance components that contain the subscripts 
of the main effects. 

Rule 6. The sampling fractions 0 - |). (1 - |). etc. tend to reduce 

the variance term for which they are coefficients and suppress them com- 

pletely when the factor is fixed. For example, if factor A is fixed ar 

thus a exhausts all levels of interest a = A and (1 - J-) - 0. If the 

factor is considered random and a is small relative to A the sampling frac- 

tion is one. There may be practical situations in which values for the 

sampling fractions between 0 and 1 may be appropriate but these two values 
are most often used. 
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