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3 CHAPTER I
%7 INTRODUCTTON 3
? Ctatement of the Problem 3
g : The F-15 air:zraft, currently entering the Air i
év é Force inventory, is equipped with Pratt and Whitney Air- .é
% % craft F-100-PW-100 augmented turbofan engines (8:2). é
: The F-100 engine differs from older engines in the Air _é
% Force inventory in two major respects: 1. the design }%
g incorporates state-of-the-art te hnology and 2. tae ég
: engine employs modular construction. An optimal, field i
% level replacement policy for the engine modules is needed ?;
3 (9). ¥
The F-100 engine is composed of five modules é
E (11:48-49). As shown in Figure 1.1, they are the fan %
; module, core module, fan drive turbine module, augmen- ;
? tor/exhaust module, and the gearbox module. In addition ;

to the modules, a number of external accessories (e.g.,
plumbing, wiring, actuators, probes, valves, pumps, etc.)

are required to compiete the engine (18:9-2A--9-5), When

VI YT

performing maintenance on the F-100 engine, the technician

has certain sequences he must follow. These sequences

T

result from the physical order of the modules on the

cugine, For instance, to remove the fan drive turbine

it P U U PRICE EYCE-E LY T 81 2 N ,..,..,«..—.,Luj
a ks P Rl i ko b b i Sttt ik PRI S Pt SRS S B . T
PR PR TIC Cos : 5




Figure 1.1

F-100 Engine Modules
(Courtesy Pratt and Whitney Aircraft Company)

e fab s

ro

= vl

[ VR SRR S VN GO Joy WPP-Sgv DI Ry e T W

U PR THPCRE U SRR T J

FEE N



o A P DTN " PRATDAIITE Ty I P I TPUE, v virmon, ot < Ao e b eve < o~ mn meeima emes seem .

S e s 1, N

module, the augmentor/exhaust module must be removed first
(18:3-29). Similarly, in order to remove and replace the
core module, both the fan module and fan drive turbine
modules must first be removed. If the core module required
replacement and there were nothing wrong with the fan drive
turbine module, the latter module would be removed solely
to facilitate the maintenance on the core module and then
be: reinstalled. 'There may be opportunities, however, when
it is advisablc to replace rather than reinstall the fan
drive turbine module when it is already removed from the
engine. To look at the extreme case, if less than one
operating hour remained before the fan drive turbine module
were due wandatory replacement, reinstallation of the same
module would be of doubtful merit. At the opposite extreme,
if several thousand hours of life remained, other things
being equal, replacement of the module would be unwise.
Thus, at one end of the spectrum, one would expect to incur
eZcessive maintenance manhours and downtime because the
opportunity to accomplish concurrent maintenance is fore-
gone; at the other, much useful service life is foregone.
Comewhere along the continuum an optimal tradeoff between
maintenance cost and lost service life exists. A policy
which optimizes the replace-not-replace decision for the

F-100 engine modules has not yet been developed (7;9).

.
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et et B A s




D e T pgE—e s
N T ———T——n 7

T T T S
BRI R 1S T - Bt

lmportance of the Problem

The acquisition cost of an F-100 engine is approx-
imately $1.7 million. F-100 engine replacement parts are
correspondingly expensive (7). The high cost of the F-100
engine and its sub-components has spurred certain efforts
to optimize logistic support for the engine. For instance,
the Air Force Logistics Command (AFLC) uses a model called
MOD-METRIC to provide improved depot management of inven-~
tory levels for both the basic engine and its modules
(13:472). ] MOD-METRIC utilizes historical consumption
data and forecast flying hours in order to compute required
engine and module stocks. 'The end objective is to deter-
mine the smallest stock level (and, therefore, cost) which
will provide required support (13:472). MOD-METRIC facili-
tates decision making at the ¢ V. - : level., Further
reduction in cost should be possible if the base level
decision on when to replace modules can be facilitated (9).
IMarther development of the example given previously should
clarify this point. If work is required on the engine core

module (which requires removal of the fan drive turbine

1M(>U~I’H-;’l'l<l<l is an extension of the METRIOC (Multi-
iehelon=Technique=for-Recoverable-ltem=-Control ) model
developed for the USAF by the RAND Corporation as a method
nf determining stock levels for recoverable items (13%:472).
METRIC addressed a multi-echelon (e.g., both depot and
field level ), multi-item inventory system. MOD-METRIC
extends the METRIC model to include an indentured inven-
tory system. The F-100 engine modules, for instance, are
an indenture of the basic engine (13:472).
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module), under what sitations should the technician

‘ replace, rather than simply reinstall, the fan drive

turbine module? Under the current operating criteria,
each module (except the augﬁentor/exhaust module) is
given a maximum operating time (MOT) at the end of which
a time-change is required (7). In our example, if one
hour remained on the fan drive turbine module until
time-change was required, the technician would probably
decide to change the fra drive turbine module now rather

than reinstall the same module and then, one operating

. hour later, remove it again. These factors lead to the

following questions: where, in the continuum of pos-
sibilities, is the bre. : oint between replace and not
replace which will result in minimal cost and ?. is the
effort required to deteimine the breakpoint worth the
savings which result from its determination? Determi-
nation of the replace-not-replace breakpoint is of
considerable current interest in the F-15 System Program
Office (SP0), at Air Force Logistics Command (AFIC) Head-
quarters, at Tactical Air Comm¢ 2d (TAC) Headquarters, and

at the field level (7:39).

Objectives

The objectives of this thesis wepe to develop an
#lgorithm which would locate the economical
replace-not-replace breakpoint for the five modules com-

Prising the F-100-PW-100 engine installed in the F-15
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aircraft and to investigate sensitivity of this breakpoint

to the algorithm's input variables.

Scope

It should be recognized that deciding whether or
not to replace an unfailed part is only one of several
similar decisions faced by the maintenance technician.
For example, USAF Technical Order 2J-1-31 provides
guidance on when to field repair and when to returm to
depot components which have already failed (31). Tech-
nical Order 2J-1-27 provides guidance on when to minor
overhaul at depot level and when to major overhaul at depot
level components which have failed (30). This thesis will
address only the decision on whether or not to replace an
unfailed moiule at the field level. A statistical model

rather than inspection criteria will be used to anticipate

failure.
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CHAPTER I1
LITERATURE REVIEW AND RESEARCH QUESTIONS

Air Force Jet Engine Maintenance 4

The Air Force engine maintenance program consists
of two echelous--Jet Engine Intermediate Maintenance (JEIM)
and depot overhaul/repair (2:vii). JEIM is base level
repair. Depo! overhaul/repair refers to extensive tear-
down and renewal performed at either an Air Logistics
enter or contractor facility.

Periodic maintenance of jet engines consists of
scheduled inspections at intermediate level and scheduled
major overhaul at the depot level. 1In «ddition to
periodic or scheduled maintenance, unscheduled maintenance
can and does occur. Unscheduled maintenance requirements
pay be generated for either the base level or depot level.
As an example, catastrophic failure of a component would
generate an unscheduled maintenance requirement at the
base and/or depot 1eve1.1 Usually unscheduled maintenance
is more costly than scheduled maintenance (10:223),.
Unscheduled maintenance is basically corrective, whereas

scheduled maintenance ig basically preventive (29:1-1).

By catastrophic failure is meant failure charac-
terized by sudden, unexpected damage or loss.

7
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Standard jet engine maintenance cycle. Figure 2.1 illus-
trates the standard Jet Engine Maintenance Cycle. The
Standard Jet Engine Maintenance Cycle is the wost common
(11,. When an aircraft engine is reported operating out-
side of established performance parameters or does not
neet some specified ingpection criterion an unscheduled
mainticuance action is generated. A maintenance technician,
or team of maintenance technicians is dispatched to the
aircraft to analyze the discrepancy. Normally the e¢agine
will be analyzed or "trouble shot" to determine the reason
for the discrepancy. Depending upon several factors (such
as estimated repair time, type ér failure, inability to
determine cause for failure, availability of a repair
asset required, etc.) a decision will be made to attempt
repair on the aircraft or remove the engine from the air-
craft and take it into the shop. Assuming the engine was
removed and is operable, the next step, normally, is to
perform a test cell run to isolate the_mali‘unction.1

Next, the engine is routed through the jet engine repair
shop and the defective components replaced. For exces-
sively damaged engines requiring large manhour expenditures,

a decisgsion may be made to ship the entire engine to a depot

1If the engine is not operable, the malfunction
18 known with a high degree of certainty, or in order to
save time the engine may be routed directly to the jet
engine repair shop (9).
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10

overhaul facility. Thus, the engine becomes an unscheduled
requirement at the depot.

Engines in the Air Force inventory typically have
an established maximum operaiing time (MOT). On reaching

its MOT, an engine is removed from the aircraft in which

it is installed and returned to the depot for majior over-

haul. Removal on reaching MOT is a scheduled maintenance

e
E Y

; action.

F-100 engine maintenance cycle. Figure 2.1 also illus-
trates the F-100 engine maintenance cycle. The F-100

engine maintenance cycle differs from the standard jet
engine waintenance cycle because of the modular construc-

tion of the F-100 engire (11).

AT, L AL NI

¢ Unacheduled intermediate level maintexance is

esgentially the same until the F-100 engine is removed

[T RS

from the aircraft. Normally, a test cell run is made
prior to engine disassembly.1 On the test cell run, the
dcfect which caused engine removal is isolated to a
specific module. In the repair shop, the defective module (
is removed and replaced with a serviceable module from the i

stock maintained in the repair shop (13:473). The intent

- e T L A e oAt - W
N s o i 44‘1::,‘—
it e I a2 b A Tk S 9. it kS R

of removing and replacing modules is to minimize the time

[ U S,

1As was true with the standard jet engine main- :
tenance cycle, the engine may be routed directly to the '
re:pair shop.
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required to return the engine to serviceable condition
(7). Engine modularization was one of the design steps
toward minimizing repair cycle time on the F-15 aircraft
(16). Repair of mouules is scheduled separately from
repair of the entire engine and does not delay returning
the cngine to serviceable condition. If base level repair
is infeasible, the module is returned to the depot for
overhaul or repair.

Each of the F=-100 engine modules (except the
augmentor/exhaust module) is assigned a maximum operating
+ime (MOT). When a module reaches its MOT, the engine of
which the module is a part is removed from the aircraft
and brought into the intermediate lewvel repair shop. The
module which reached MOI is removed, replaced with a
servicrable nodule from the chop stock, and returned to

the depot for overhaul.

Optimal Maintenance Theory

Jorgenson, McCall and Radner (10:20-77) in a

KAND Corporation report entitled, Optimal Maintenance of

Otochasgtically Failing Equipment provide a comprehensive

treatment of the mathematical determination of optimal
maintenance policies. As developed in their report,
miintenance problems may be divided into two
clusnes-=detceministic and stochastic (10:1).  Determi-
nistic problems are those where the requirements and

outcomes of every maintenance action are known with
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certainty. For stochastic problems, on the other hand,
the requirements and outcomes of maintenance actions are
random in nature (10:1). That is, the amount of service
life produced by a unit of equipment between the time
when a maintenance action is performed on it and the time
of failure is random in nature rather than known before
hand. Jet engine failures are stochasti: in nature; in
fact, the stochastic nature of aircraft engine failures
underlies the adoption by the USAF of the actuarial method
of predicting aggregate engine failures (29:1-1-u1-4),

The question formulated in the statement of the
problem, earlier in this thesis, was when to replace an
engine module which had already been removed frow the
engine but which, itself, had not yet failed or reached
MOT. Replacement and not-replacement were the only
alternatives considered. This limitation is reasonable
since the field level maintenance echelon does not have
the option of repairing an engine module removed by
reason of accumulated time, but must return it to the
depot (7;9).

The three independent variables which determine
the optimal average expenditure per unit time are
replacement cost bgfore failure, replacement cost after
failure, and the hazard rate (21:71-74). Jorgenson,
McCall and Radner note that:

If replacement costs more after a failure than
before, in the absence of uncertainty the equipment
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will always be replaced just before it fails. For
stochastically failing equlpment, replacement just

before failure is impossible due to uncertainty

about when failure will occur [10:205].
For the stochastic situation it may or may not pay to
replace the equipment before failure, i.e., establish a
maximum operaving time or opportunistic replacement
policy. keplacement is justifiable if two conditions
are satisfied: 1. the time tc failure distribution for
the piece of equipment must demonstrate wearout, and
?. 1t must cost more to replace the piece of equipment
after failure than before (10:221). Kkeplacement prior to
failure, however, results in the loss of some unused life.
Thus; the optimal decision depends on the tradeoff between
the value of unused life and the cost of the avoided
failure (10:207).

A generally used technique for determining if an
equipment 1tem demonstrates wearout i examination of the
hazard rate of the equipment item {(24:7/,=171,., Hazard
rate is defined as the ratio of the number of failures
occurring in a time interval to the number of egquipment
units which survived until the beginning of the inverval,
divided by the length of the time interval (24:161).
Figure 2.2 illustrates a typical hazard rate function
known as a "bathtub" curve. In this gen<ral case rthe
hazard rate initially decreases with age, remains conatant
for s period of Lime, and Lhen inereascs,  'he equipment

ihem demongtrates weasrout when the hazard rato ineroeases

(24:174).
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Even if the equipment item exhibits wearout,

replacement before failure would still not be Jjustified

unless it costs more to replace the item after failure

than before (10:223). Replucement cosi, ecither before or

after failure would generally include the’opportunity

. cost of the downtime while the equipment is out of
service and the actual dollar replacement cost (10:224).

Opportunity cost normally is a measure of lost revenue

(22:472-47%). National cefense, the product of military

operations, is by nature not priceable (29:36-37). Thus,

ar amount of lost revenue cannot be determined. This is

not to say, however, that the opportunity cost of incurred

downtime must necessarily bc 1enored. Jorgenson, Mclall

and Radne:r have suggested thav the purchase price of an
equipment itew be amortized over its total expected life.
In this manner, a cost per unit of operation (e.g., hour,

cycle, etc.) can be determined (10:224). The value of

the amcunt of equipment operating time foregone by sone

replacement action is an opportuunity cost.

Intuitively,; one would expect that a replacement

before failure would result in less downtime than a

replacement, after failure (10:2722). For instance, a

re:placrement after fzilur: is generally an unscheduled

maintenance action. As an unscheduled action is unexpected,

it generally incurs greater gqueue (waiting) time before

it ARtk 2
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the replacement action is begun. Jorgenson, McCall and
Radner (10:22%) point out that:

. » « a second factor determining replacement
costs is the amount of resources needed to perform
the action. Usually, more resources are needed
for an unscheduled replacement for three reasons:
(1) generally a more complex maintenance operation
is involved, and a :>iled part may have consider-
ably lower trade-in value than an unfailed one;

(?) additional resources are needed to repair
parts damageé by the inservice failure; and

(%) it is often necessary to transport maintenance
resources to the failed system.

Under certain circumstances, replacement before
failure may cost less for at least one additional reason.
To use the F-100 engire as an example, when ccre module
failure or removal for maximum operating time (MOT) is
the only reason for engine disassembly, all costs asso-
ciated with removing and replacing the engine in the
aircraft, transporting the engine to and from the repair
shop, and removing and replacing the inlet fan module
(in order to gain access to the core module) are sunk
znsts against the core umdu.le./l In this event, if the
inlet fan module were replaced with a new module rather
than simply being reinstalled, tlLz2n the additional engine
removal and replacement, engine transportation, and module
removal and replacement costs would be avoided.

Replacement of the inlet fan module (or any other module)

1 . i
'he: inlet fan module, gearbox module, fan drive
turbine modulc and augmentor module must be removed to
psin complete access to the core module (18:5-7--5-71),
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given that its removal were required for another reason
is an opportunistic replacement (10:224).

In summary, the following factors can be expected
to result in different costs for replacement before
failure and replaceament after failure:

1. Differences in downtime required for the replace-
m<nt action.

2. Differences in resources required for the replace-
ment action.

3. Opportunistic replacement when removal is required
to support mandatory maintenance of another component.

Interviews with representatives of the Product
Support Division, Pratt and Whitney Aircraft Company (27),
the prime Air Logistics Center (ALC) for the F-100 engine
(2€), and personnel of the Edwards Air Force Base F-15
Joint Test Force (33;5;12;20) were ccaducted to determine
if it is possible to currently measure the differcnce
in resources or downtime for replacement before and after
failure. Although the personnel interviewed acknowledged
chat there are probably such differences, the data to
determine such differences are not currently available,
The difficulties in determining resource differences can
be illustrated by examining depot overhaul costs. Whereas
depot overhaul of older technology engines involves
literally complete teardown of the engine, this is not

Ltrue: for the F-100 engine, Currently, the depot overhaul
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approach for the F-100 engine is to look at each engine
individually and only replace: 1. parts which have met
or nearly met cycle limitations and 2. failed parts.q
Thus, the resources required to overhaul an F-100 engine
at depot are dependent not only on the reason precipi-
tating overhaul (e.g., MOT, damage beyond field level
capability to repair, or opportunistic replacement) but
slsn on the age, condition, and accrued cycles of the
engine components. econdly, data available on F-100
engine depot overhauls are very limited. 'The San Antonio
ALC (the prime AIC for the F-100 engine) received the
first F-100 engine for overhaul in January 1975. As a
result of the uncertainty over what maintenance actions

a typical engine will require and the lack of a developed

data base, a distinction cannot as yet be made between

the cost to depot overhaul a failed engine or module and
one: which is unfailed (26).

A similar difficulty exists when one attempts to
dctermine differences in resources or downtime required

for intermediate level engine maintenance. Manhour and

1Cycle in this context is used in a different
sense than when speaking of a maintenance cycle (see
page 8 ). Many of the components on the F-100 engine
have cycle limitations, where a cycle is generally con-
sidered an exercise of the engine throttle from idle to
an advanced power setting and back to idle. The concept
of cycle limitations is undergoing much discussion at the
current time (7;9) and is not addressed in this thesis.
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clockhour data on F-.00 intermediate level engine wain-
tenance are obtainable from two sources: 1. the Pratt
and Whitney Aircraft Company F-100-PW-100 Qualitative,
Quantitative, Personnel Requirements Information (QQFPRI)
(17) and 2. from data maintained by the Human Factors
Test Office of the F-15 Joint Test Force, Edwards Air
Force Base (12). Neither the QQPRI nor the Human Factors
Test Office currently makes a distinction between the
manhours or clockhours to perform maintenance on unfailed
modules and similar requirements for failed modules.
First, there is no effort at this time to make such a
distinction and secondly, it is questionable if such a
distinction could be made at this time consideriag the
formative state of available data.

Of the three factors which can result in a cost
difference between replacement of a failed module and
unfailed module, only the savings. through opportunistic
replacement of a module which is already removed is
tractable at the current time. It is this savings
rosulting from opportunistic replacement of an unrailed
removed module which is explored in this thesis. As
possible savings resulting from less resources or less
downtime required for replacement of an unfailed wmodu.e
are not considered, we believe that total savings from
opportunistic replacement are understated. The effect

of uncertainty about the total savings resulting froax
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opportunistic replacement was explored through sensitivity
analysis and is discussed later.
Jorgenson, li:Call and Radner have shown how to

find an optimal opportunistic maintenance policy for a
system composed of two componeﬁts, one of which is
? constant hazard (10:244-251), The Jorgenson, McCall and
i Radner model is developed in terms of decision rules.

Over the interval O<n SN where N is the maximum oper-

ating time (MOT) and n is the module age beyond which

opportunistic replacement is worthwhile, a module is

replaced at failure in the interval O<n, replaced at
failure or opportunistically in the interval nS N, and
mandatorily on reaching ege N. The values of n and N

which will result in least cost can be determined

analytically for any given combination of cost to b
replace before failure, cogst to replace after failure and :

hazard rate,

Once values for n and N are established, they,

in effect, form a replacement policy. The object of
this thesis is to develop an algorithm which will enable
managers to find the optimal replacement policy for the
modules of the F-100 engine. For the F-100 engine,
maximum module operating times (N) have been established
(7). The breakpoint (n) between replacement at failure
and opportunistic replacement has not been established.

'hus, the algorithm developed in this thesis solves only
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for the optimal value of n, giver a fixed value for N.

In the literature reviewed on optimal preventative main-
tenance policy determination (6:271-283%3;10:205-268;
19:229-24G;21:61-67;35:267-280) a general algorithm which
can be directly applied to the F-100 engine module was

not found.

Regearch Questions

1. What algorithm can bc developed for a five module
system which, for any combination of module operating
hours and hazard rates, will determine the optimal
opportunistic replacement policy?

2. How sensitive is the optimal opportunistic
replacement policy to uncertainty about the underlying
railure distribution?

3. How sensitive is the optimal opportunistic
replacement policy to cost ectimate uncertainty?

4, What is the magnitude of the savings which can
e realized by an opportunistic replacement policy when

compared with a replace at failure policy?
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CHAPTER III

METHODCLOGY

Introduction

This chapter describes the method used to answer
the research questions. The procedures used to determine
hazard rates and cost data are described. Next, the
structure of an optimal replacement policy for the five
module system is discussed. Iainally, procedures to
determine sensitivity of the optimal policy to failure

rate uncertainty and cost uncertainty are described.

Hazard Hate Models

In Chapter I1, the hazard rate was described as a
tool for determining if a component exhibited wearout and
as an input to determining the optimal replacement policy.
This section will discuss how hazard rates may be modeled.

Shooman (24:160-170) has shown how to develop a

hazard rate function from failure data. If the time scale

in 4 hazard rate graph is divided into intervals, the data

hazard rate for cach interval may be calculated as the
fraction of components surviving until the beginning of
the interval, but failing during the interval, divided by
the interval length. Algebraically the data hazard rate
is defined as
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[n(t;) - n(t, + &t;)] /n(t;)

A
2 (3.1)

Z4(t) =

for t;<tsSt; + At; where Zd(t) is the data hazard rate,
nftl) is the number of survivors at the beginning of

pririod o, n(hi + A t.) is the number of survivors at the
end of the period tir 88, is the width of the period in

time units, and t is the total observation time. As an
example, if there were 113 survivors at the beginning of

the period, 24 failures during the period, and the period
were 1000 hours

Z4(t) = Lz - ?}%55:»2“241/115 « 0002124

(3'2)

Although the hazard rates for each interval may
simply be plotted on a histogram, Shooman (24:185) points
out that in order to generalize from sample data to the
population of similar components it is essential to fit
the failure data with a mathematical model. Of the wide
range of models available, Shooman (24:195) suggests that
the piecewise linear, exponential, and Weibull models are
sufficiently inclusive that virtually all hazard rates
may be described by them. Figure 3.7 illustrates each of
these models. Included with cach illustration is the

Fpencral alpehraie form of the model,
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Fitting failure data with a mathematical model
is a two step process: 1., choosing the appropriate
wmodel and 2. determmining model parameters (24:457).
As Shooman (24:457) indicates: "The initial procedure
in the choice of a m I'l is to plot the histogram for

Z4(t) from the failure data." A judgement is then made
from inspection of the Zd(t) function. If inspection is

not, adequate to determine the appropriate model, more
powerful analytical and graphical ftechniques are avail-
able (24:458-4672), For instance, if the underlying time
to failure distribution is exponential (i.e., the hazard
rate is constant), a plot of the number of operating

hours at which a component failed vs. the natural loga-
R | .. .
rithm of v where i is the sequence number of the ith

failure and N is the number of components in the original
population, will be a straight line (24:459-460). Similar
terchniques are applicable to the Weibull model and piece-
wise Linear wodel (04:46,0-40¢6,%),

kstimation of model parumeters, once Lhe appro-
priate model hus been selected, can be accomplished
through either least squares estimates, moment estimates,
or maximum-likelihood estimates (24:464). Shooman (24:464)
recommends the maximum~likelihood estimator and Jorgenson,
McCall and Radner (10:251) also employ the maximum

likelihood esftimator. It is used in this th.sis because
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its validity and applicability is widely accepted by

regsearchers.

Engine Failure Data

Universe description. An F-100 engine prototype was

first operated in flight on 27 July 1972 (8:2). Since
that time, the F-100 engine and its modules have under-
gone a number of modifications to resolve various
after-burner, fuel control, and other component malfunc-

tions., As a result, the F-100 engine inventory consists

of a number of different configurations.

ngine Modules Otudied

On the advice of the Engine Project Office, F-15
System Program Office (9), the population of F-100 engine
modules studied was limited to those modules originally
installed on engines serial numbered 023 and subsequent,
with the exception of engine number 050. At the current
time,; engines serially numbered 023 and above, except
for engine number 050, are of like configuration and are
the operational configuration.

''he: data which must be collected in order to
determine a particular module's (e.g., fan module, core
module, etc.) hazard rate are the times at failure of
those modules which have failed. Time at failure is a
discrete, infinite, ratio level random variable. Time
at failure data are available through two sources:
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1

. the Engine Status Reporting System, D024, for engines
and modules assigned to operational units and 2. through
the F-15 System Program Office for engines and modules
assigned t« Air Force and Contractor Research, Develop-
ment, ‘lest and bvaluation (kDI%k) units (9).

Reporting instructions for the Engine Status
Reporting System are contained in Air Force Manual 400-1,
"Selective Management of Propulsion Units" (34:4-5).

The source document utilized in recording the collection
of propulsion unit data is the Air Force Form 1534 (34:5).
Subsequent to completion by responsible personnel at an
Air Porce Base, AF Forms 1574 are key punched and the data
transmitted by Automatic Digital Network (AUTODLN) to
Oklahoma City Alr Logistics Center (QCALC/ACDT ), Tinker
Air Force Base, Cklahoma where it 1s monitored, processed
and wmaintained (3%4:12), Engine or module operating time
at. failure and serial number are specifically collected
by *“his system.

The Base Engine Manager, designated in accordance
with Air Force Manual 400-71, is responsibie for auditing
and controlling AF Forms 1534 submitted from his base
9421 ,.  He develops local procedures in aceordance
with wnich an initial eheck of Lhe aceuracy of AR Porm
"534 data 1o wade. A second check on dnata validity ig
accouplished by ~dit routines within the LDO24 system ('4:19 ).

f'inally, at the end of each month, OCAMC/ACDT provides
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the Base Engine Manager with a reconciliation listing
(DO24AEH1A) which the engine manager compares with his
original AF Forms 1534 and verifies for accuracy (34:5).

As discussed above, data on RDT&E engines are
available through the F-15 System Program Office. The
data used in this thesis were maintained in mechanized
form by the F=15 Join% Test Force at Edwards Air Force
Base, California. Although the data are not subjecht to
validity checks uas visible as thosc provided by the D024
system, F-15 System Program Engine Project Office per-
sonnel express confidence in the validity of their data
(9.

Certain engine and module removals are precipi-
tated by events other than engine or module failure.
Specifically, it was necessary to purge the collected
data of removals to facilitate other maintenance on an
sireraft, or removal caused by other management
d~~icions. 'lhe lngine Status Reporting System includes
codes to distinguish between reasons for removal.
Computer programs have previously been developed to sort
engine failure data by removal code (14:78-82). For
RDT&E engines, the data were screened utilizing the same
programs developed for D024 data after reformatting.

As the F-1OQ engine 1s Jjust entering the inven-

tory, total operating hours and the total number of

wodule removals are quite low. An initial computer tape
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containing all DO24 reporting trzusacvions for F-100
modules through 30 March 1975 contained only one reported
module failv~e. A subsequent tape containing data through
June 1975 revealed three additional removals. Data
obtained from the F-15 Joint Test Force were more produc-
tive though still containing a limited number of data
points. The total number of failures and maximum time

removals by module type were as follows:’I

Table 3.1

Maximum 'I'im¢ kemovals and Fallures by Module
Type keported by F-15 Joint Test Force?

Module Type Failures Maximum Time Removals
Fan 16 2
Core 5 8
Fan Drive Turbine g 4
Gearbox 8 o

We: believe thot the number of reported module fajilures and
maximum operating Lime removals are jasufficient to
rel:ably determine the underlying hazard rute. Shooman

(4457, £or instance,; notes that statistical techniques

A
'The augmentor module is not assigned a MOT and
for this reason was not examined.

2€ethods used to screen the raw data orn module

transactions are described in Chapter V.
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of analysis begin to be of significant benefit when at
least 20 components have been life tested. None of the
modules listed in Table 3.1 experienced a total number

of removals (failures plus maximum time removals) greater
than 18. However, data which was available was analyzed
to determine a best initial estimate of the hazard rate
function for each module. Hazard rate functions thus
determined were used to find an initial optimal value of
n (the breakpoint between replace at failure and oppor-
tunistic replacement) and to investigate sensitivity of

this value to changes in the hazard rates.

Cost Factors and the Structure of an Optimal Policy

As previously pointed out, in addition to knowing
the hazard rate, one must also know the relative costs
2f replacement before failure and replacement after
failure tc determine if replacement before failure is
varranted. In Chapter II, the factors which could be

expected to result in less cost for replacement before

failure were fuund to be: 1., fewer required resources,

W
’

. less downtime for replacement and 7. opportunistic
replacement, when an cquipment, jtem was alrecady removed,
Murther, in Chapter 1I, the¢ arca of interest for this
thesis was delimited to determining an optimal policy

for opportunistic replacement. As the reader will recall,

this limitation was o-:casioned by the, as yet, unsettled

state of the data on resource costs for F-100 engine
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maintenance actions. Opporturistic replacement policies
have been explored by Jorgenson, McCall and Radner ,
(10:123-126) and others (6:271-283;21:61-71;38:267-270),
the most complete treatment being by Jorgenson, McCall
and Radner. A specific approach which recognized the
savings realizeable through replacement of a component
which has already been removed to facilitate other main-
tenance was not found in the literature. Such an approach
is developed her as an extension of the Jorgenson, McCall
and Rkadnecr model.

Following Jorgenson, McCall and Radner (10:7°44-251)
one may divide the cycle from depot overhaul to the next
subsequent depot overhaul of a sirgle module into two

regions as illustrated in Figure 3.2.

Replace At Failure Only Oﬁegll)‘;gf‘tﬁﬁigg;i‘;ﬁy
[ . *
o Region A n kegion B -
O N

Module Age —d=

Figure 3.2
Module Depot Overhaul Cycle
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In region A (i.e., age less than n) a module would be
replaced and returned to the depot only at failure.! In
region B, a module would be replaced both at failure and
opportunistically. Opportunistic replacement is meant
to be the replacement of a module when it is removed to
facilitate maintenance but is still operable. N is the
maximum ouerating time where modules are mandatorily
removed from service., For modules of age less than n,
opportunistic replacement before failure costs more than
reinstalling the same module., For modules of age greater
than n, opportunistic replacement before failure costs
less than reinstalling the same module.

The mechanics of Figure 3.2 may be understood by

considering the underlying costs involved. During a

ingl

QD

cycle from depot to overhaul, certain costs are

[0}

1way

1O}

\\J

incurred and others may or may not be incurred.
rmceptually, the problem is similar to the analysis of
fixed and variable costs discussed in economics
r7p:463-46F), Tor a single overhaul cycle, the fixed

nsts are:

1Specifically, the module would be returned to
the depot only if it experienced a failure beyond the
capability of an intermediate level maintenance facility
Lo repair. When gathering data on module times at
failure in support of this thesis, only failures precipi-
tating a return to a depot level facility were counted.
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1. The cost to pack a module for shipment to the
depot and to unpack a module upon receipt at the inter-
mediate level.

2. Trcasportation cost from the intermediate main-
tenance level to the depot and back.

7. 'The cost to overhaul the module at depot. As
will be explained in Chapter V this cost will always
be agsumed to be the same. Further, this cost includes
packing and unpacking costs at the depot.

In Chapter II, it was argued that how one assigns
the costs to remove and replace the engine in the air-
craft, transport the engine to and from the intermediate
maintenance snop, and remove and replace a module on the
engine depends on the circumstances causing module
removal. Given that, for instance, the fan module failed,
then these costs would be attributable to the fan module.
On the other hand, if the core module had failed and
removal of the unfailed fan module were required for core
module repair, then these costs would be attributable to
the core module. Subsequent replacement of the fan
module, given that ithe engine were already removed from
the aircraft, transport~. to the intermediate maintenance
shop, and disassembled, would not generate additional
costs to perform these actions. The expected engine
roemovs ]l and replacement, transportation, and disassoembly

and rcassembly costs attributable to the fan module depend
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on the probability of the fan module being replaced either

at failure or alternmately upon it being replaced oppor-

tunistically.

One may note by reference to Figure 3.2 that the
probabilities of replacement at failure and opportunistic

replacement could be expected to bear some relationship

g

to the sizes of region A and region B. Although the
specific relationship remains to be examined, it does not
seem unreasonable that as region A shrinks in relation to

region B, the probability of opportunistic replacement of

the fan module would increase, Ixpected expenditures on
engine removal, reinspallation, transportation and disas-
sembly/assembly attributable to the fan module are egual
to the dollar cost to perform these tasks multiplied by
the probability of incurring them. Thus, as region B

increases in proportion to region A, expected expenditures

ek e AL a itk MY U a3 i e e M

on engine removal, reinstallation, transportation, disas-
sembly and assembly attributable only to the fan module
would decrease,

There in, however, a penalty for inercasing the
size of region K. In region A the fan module is replaced
only if it fails. In region B the fan module is replaced

for failure or opportunistically. As region B increases

e e it b L e e ik Sl o S e

‘n moves towards zero) the probability of early oppor-
tunistic replacement increases and one would expect that !

cycle length, i.e., the mean time at removal (MTAR)
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would decrease. Figure 3,3 illus.rates the general rela-
tionship between cost and cycle length. As n moves from
N toward O, total cost, which is composed of fixed cost
arnd variable cost, would decrease. The cycle length over
which we would spread these ensls, however, would also
decrease:

Thus, it is not immediately obvious if a decrease
in total cost per overhaul cycle is advantageous or not.
One must look further and determine cost per operating
hour (10:247). The optimal value of n would be that n
which results in minimum cost per operating hour,

Following our discussion thus far, suppose that
total cost is some function f(n) and that cycle length
iz also a function g(n); both f(n) and g(n) are monotonic
snd increasing in the interval (O, N). Let h(n) be cost

per hour as a function of n where

n(n) = 85 (3.3)

Following accepted methods of marginal analysis (18:50~83),

the point of minimal total cost per operating hour could

be found by setting

4 h(n) = & é‘%= 0 (3.4)

nnd solving for Lhe value of n which would make this
relationship true. Analytic development of equation (3.3)

and an algorithm for solving for n are discussed in
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Chapter IV, Mathematics of the Algorithm.

S R Wonethen Peremcters and Ooat Factons: o
za e ction Parameters and Cost Factors

In practice the parameters of the hazard rate
function are not gencrally known with certainty (10:2%7).
Murthermore, the total cost under an optimal policy may
not differ signiticantly from the cost under a
replace-at-failure policy. As an example, Jorgenson
(10:228) described a system whose optimal policy produced
only a 2.5 percent savings over the replace-at-failure
policy. Therefore, before implementing an optimizing
policy, it would be worthwhile to determine the policy's
sensitivity to uncertainty in hazard rate parameters and
cost parameters.

In order to determine sensitivity of the optimal
value of n and the optimal policy cost to uncertainty
about the hazard rate parameters, all input variables
except one of the hazard parameters were held fixed while
that parameter was varied over a range on either side of
the initial estimate. This procedure was then repeated
for each of the other parameters., Sensitivity to cost
uncertainty was also examined in the same manner by
varying one cost input at a time while all other inputs
wers: held constant,

Finaully, a comparison between cost of operating
the gystem until failure and the cost of optimal replace-

ment was made to determine the significance of savings,
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if any.

Summary List of Assumptions
1. The cngine failure data collected for this thesis

are valid. For operational engin:s this assumption is
based on an examination of the process by which data are
generated, recorded, and accumulated as described earlier
in this chapter. For RDT&E engines, this assumption is
based on discussions with the kngine Project Office, F-15
System Program Office.

2. The hazard function of each of the five modules

is independent of the other modules. This assumption is

based on discussion of the t.o-component system by Jorgenson,
McCall and Radner (10:244-251),

3. Transportation costs and depot overhaul costs for
mndules returned to the overhaul facility are assumed to

b the same whether the module has failed or not.

Summary List of Limitations

1. The algorithm developed in this thesis to deter-
mine an optimal replacement policy is applicable only to
a five component system. Similar methodology can be used

in other systems. Further, the only decision the policy

!
|
|
|
.g

will facilitate is whether or not to replace a component
which has not yet failed.

7« Generalizations derived from the data gathered

T PN PR

by this research can be made only to the population of
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F-100 engine modules originally installed on F-100 engines

023 through 049 and engine 051, and to subsequent modules
meeting the same design specifications.

3. Opportunistic policies for unfailed modules that
are not removed to facilitate other maintenance were not
considered.

4. Conceptually, it is optimal economically to snlve
for n and N simultaneously but in this thesis N is given.
Logically, in practice we prope toward an appropriate N

through carcful observation of failurcs,

e
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CHAPTER 1V
MATHEMATICS OF THE ALGORITHM

Introduction

This chapter presents the mathematics of the
algorithm used to find an optimal value of n for a given
set of hazard function parameters and cost factors. In
egsence, the algorithm is an extension of a model developed
by Jorgenson, McCall and Radner (10:244-251) for a two
component system. The current formulation assumes con-
tinuous underlying time at failure distributions, permits
the second component (in this case the core module) to have
a general hazard function, and solves for n; the Jorgenson,
McCall and Radner model on which it is based assumed
discrete distributions, restricted one system component
to a constant hazard, and solved simultaneously for n
and N,

The: order of prescntation is as follows: (first,
mathematical expressions are derived to calculate expected
cost per cycle; second, expected cycle length is addressed;
third, calculation of conditional probabilities is dis-
cussed; fourth, the method of incorporating core module
age is introduced and finally, the minimization technique

is discussed.

40
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Table 4.7 indicates which modules must be removed
to facilitate removal of other modules. 1t can be seen
that only core module and fan drive turbine module removal

precipitate removal of other modules. It will be recalled

that our interest is in when to replace an unfailed module

which has already been removed to facilitate maintenance

e aamaii

on another module, It can be seen from Table 4.1 that the

fan, fan drive turbine, augmentor/exhaust and gearbox

2t i i B s

modules under certain circumstances will require prior

removal to facilitate maintenance on another module. The
augmentor/exhaust module, however, does not have an estab-
lished depot overhaul interval (7). All repair is
accomplished at the field level and, from the standpoint of

the algorithm developed in this chapter, the

augmentor/exhaust module will not be considered. The fan
module, fan drive turbine module and gearbox modules are
remsved to facilitate maintenance on the core modulz. Thus
we need only explore when to replace unfailed fan modules,

fan drive turbine modules and gearbox modules when they

are removed to facilitate maintenance on the coure module.

The algorithm is developed below in terms of the fan module

it iz equally applicable to the fan drive turbine and gear-

Loy modales,
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Table 4.7

Engine Module Removal Sequence

Module Requiring Removal

Other Modul . Whi-i Must
Be Removed {1 Support

Fan

Core

Pan Drive Turbine
Augmentor/Exhaust

Gearbox

None

Fan, fan drive turbine,
augmentor/exhaust, gear-
L oX

Augmentor/exhaust

None

None
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Opportunistic replacement before failure is

warranted only if 1. opportunistic replacement costs

less than reinstalling tae module and 2. the module has

an increasing hazard rate in the region where opportunistic
policies are considered. Whether or not a module satisfies
the second criterion is determined by examining its hazard
rate as discussed in Chapters III and V. The algorithm
developed in this chapter would be exercised only if the

hazard criterion were met.

Determination of Expected Cost

Figure 3.2 from Chapter III is redrawn here for
ready reference. The reader will recall that in region
LA,y the fan module is replaced and returned to the depont
only if it sustains a failure requiring depot overhaul.
In region B, the fan module is replaced and returned to

the depot if it either fails or reaches its maximum oper-

. . : . 1
ating time or if the core module is removed for any reason.

11t should be noted that the possibility of inter-
m:dinste level reparable failures exists in both regions.
"hus, it il necessary to screen dats from which hazard
param:ters arpc determined for the fan module, fan drive
turbine module and gearbox module in such a manner that,
only depot. reparable failures are included. ‘The simpli-
fying assumption 1s made here that all faiiuares for module
age >n are depot reparable only. OSc¢rictly, this is not
likely to be true. The direction of probable bias resul-
ting from this simplification is discussed in Chapter VI.
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Define:

N

Age of -ue fan module at which mandatory
replac/ uent of the fan module occurs given
survival until that age,

Earliest agé of the fan module at which
opportunistic replacement is permitted:
n is the leading edge of region B,

Probability that an engine requires field
level replacement of the fan module and the
core module simultaneously between n and N
given survival of both until n,

Probability that an engine requires field
level replacement of the fan module before
the core module betiween n and N given
survival of both until n,

Probability that an engine requires field
level replacement of the core module before

the fan modulie between n and N given survival
of both until n,

Probability of fan replacement before age n,

Probability that an engine requires field
level replacement of the fan module and
core module simultaneously in the i-th

interval between n and N given survival of
both until n,

Probability that an engine requires field
replacement of the fan module first in the
i-th interval between n and N given survival
of both until n,

Probability that an engine requires fiecld
replacement of the core module first in the
i~-th interval between n and N given survival
of both until n,

anlt. )

JFan

Probability of fan module failure between
fan module age t:.j and fan module age ty

given survival until fan module age tj’

ek YT ROV TLS FLr PP TTY PR PSSR e Poerey R Ter PORR B ESE el Pt t bLE
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QCORE( t t )
kcorel Jcore
Probability of core module failure between
core module age tj and core module age te
given survival until core module age tj’
fFan(t) Fan module failure probability density
function,
fﬂorn(t) Core module failure probability density
T function,
FANREP Fan module field level replacement cost,
FANDEP Fan module depot overhaul cost,
~ FANPACK Cost to package the fan module for shipping
and unpackage upon receipt,
FANSHIP Round trip shipping cost for the fan module
' between the field level repair shop and the
depot,
FANMOT Fan module maximum operating time,
JOREMOT Core module maximum operating time,

The probability of fan module removal for failure in the

interval (O, n) is simply

q(f) = fn fpan(t) dt (4.1)

o}

Consider an interval of width &t between n and
N where §t = ti+1 - ti and &8t is sufficiently small that
only one of the possibilities g;(fc)y q,(£&), or qi(fb)

can occur in the interval, lDuring the i-th interval,
Lhe probability that the fan module, the core module, or

both are removed given both are installed at the same tinme,
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both are the same age, and given survival of both until
n is

q;(f Ueln) = q;(fc) + qi(fc) + qi(f?:'). 4.2)

When n< LiSN - §t, then

as(te) = [1 - Qran(e; | m) ]e (%.3)
[1 - QCORE(t.lIn)]O
QFAN(tiMl ti).
QOORE(t; 1 | %)

and when N - § t<tiSN and N = COREMOT

g (fc) = [1 - QFAN(N - 3 tI n)]- (4.4)

[1 - QCORE(N - & t| n)].
QFAN(N| N - & t)

since core removal would then be certain.1 Similarly, if

N - & t<tiSN when N = FANMOT then

q;(fe) = [1 - QFAN(N - 8 ¢ | n)]- (4.5)

[1 - QCORE(N - & t| n)].
QCORE(N| N - & t)

‘'he terms qi(f'é') and qi(fc) are developed similarly. When ‘

e e Rt st TR

i mie i wmmn T

n«.r;.LsN - & t, then

1‘l‘hr: conditional probabilities developed in lhis ‘
chapter may not be intuitively clear. A more complete .
mathematical treatment is found in Appendix H. '
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q;(fc) = [1 - QFAN(ti| n)]- (4.6)
[1 - QCORE(t, . | n)].
QFANCE; 14 ] £33
and, when N - § t<t,<N and N = COREMOT qi(rE) = 0,
but if N = FANMOT then
q.l‘(ra‘;, = [1 - QFAN(N - § | n)]. (4.')

[1 - QUORE(N | n)] ]
Also, when n<tiSN -8 t,

q;(Te) = [1 - QFAN(H, |n)]. (4.8)

[1 - Q,CORE(ti| n)].

QCORE(t, .| ty)

but, when N - & t <t, <N and N = COREMOT
1(Te) = [1 - qeanen | w)]e (4.9)

[1 - QUORE(N - & t | n)] )
but q.(Tc) = 0 if N = FANMOT.

then, where M = (N - n)/ § t such that M is an integer,

M

Q(fe) = '21 q; (fc) s10)
1=’
1 _

Q(fg) = Z qi(«fc), and (4.']4’)

i =]
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M -
i=1

1t should be noted that q (fc), qi(fé). and q; (%) are

approximations of Ed"E' Q(fe), f’f Q(fc), and qu Q(fe)

respectively. The accuracy of the approximation depends

on how many segments the interval (n, N) is broken

into--that is on the size of § t. A more complete dis-

cugsion of approximation accuracy is found in Appendix F.
FANPACK, FANSHIP and FANDEP were previously defined
a: the cost to package and unpackage the fan module, ship
the module to and from the depot and accomplish fan module
depot repair. FANPACK, FANSHIP and FANDEP are experienced
with certainty during a single overhaul cycle. FANREP,
the cost of field level removal, however, is experienced
only if the fan module fails in the interval (0, n) or is
removed before the core module in the interval (n, N).

It would not be experienced if the core module failed

before the fan module in the interval (n, N). Therefore,

Lhe cxpected cosl in the interval (0, N) is
(eost ) (4.1%)
FANPACK + FANGSHIDP + FANDEP

o pavrep ofa(£) « [1 = q(£)]elqCte) + @Y’

TWe will use the convention that if both the fan
module and core module require removal at the same time

(e.g.y simultaneous failure) FANREP is chargeable to the
fan module,

- i
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Determination of Expected Cycle Length

The expected value of a discrete probability

distribution is

B(k) = #, = X ki(k) (4.4 )
where k is a discrete random variable and P(k) is the
probability of observing the value k (%7:148)., The
equivalent ~xpression for a continuous distribution is

b
E(x) = wy = f xf(x) dx (4.15)

a
where x is a continuous random variable, f(x) is its

density function and a and b are the limits of integration
(37:193),

In the interval (0, n), the probubility of fan

module replacement was

n
q(f) = 'O/ fFan(t) dt (4.?)

and in the interval (n. N) the probability of fan module

replacement is

P(replacement in interval (n, N)) = (4.16)

M - _
[’} - qff)].Z[ql<fC) + ql<fc) + ql(fc)]
i=1

Phe expected time at replacement of the fan module then ig

hr‘..»» -~
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E(time at replacement) =

n
[ t o Lo (t) dt

+[1 - q(f)])e

M-1

2: {(ti +

ty o 4) -
£ = [og(ge) + 45 (£8) + q;(Fe)] )

«[1 - q(£))e[1 - QCORE(N | 0) ] "
where the term

(1 - a(£)]e[1 - QCORE(N| 0)]
in the probability of fan module and core module suirvival
until N. The expected time at replacement is also the

nxpected cycle length since the fan module is returned

to the depot on replacement.

(Cnnditional Probabilities

QFAN( t;

) and Q,CORE(tk t ) are

t
kFan JFan core jcore

conditional probabilities. Using a derivation by Papoulis

(15:179), the conditional probability of module removal
between tj and tk given survival until té can be expressed
as

Ft,) - F(yj)

(4.18)
UERISPY

*(removal | survival until tj) =

1It is assumed that replacement occurs at the mid-
point of the interval (ti, ti+1>'
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where F(t) is the cumulative distribution function evaluated

at t.

Core Module Age and Difference in MOT's

It would not normally be true that both the fan
module and core module would have the same number of
accumulated hours., To illustrate with an obvious example,
if at some fan module age t a new (0 time) core module
were installed on the cngine, the differcnce between core
module and fan module age would be t hours. As corc
module age can have significant effect on the probability
of core module removal, it is important to provide for
core module age as an input to the algorithm. Further,
although at the current time both the core module and the
fan module have the same maximum operating time (MOT)
this will not necessarily be true in the future. A
difference in fan module and core module MOT is also an
imphrtant input t . the algorithm. To illustrate, if the
tan module and core module were of the same age at the
time: of fan module opportunistic replacement and the corc
module had the earlier MOT. the fan module cycle could not
last longer than the amount of time remaining on the core
module. Core module removal at its MOT given survival
to its MOT is a certainty. Therefore, we would, with
certainty, ship the fan module to the depot on achievement

nf core module MOT under an opportunistic policy.

e wa
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The following method will be used to incorporate
core module age and a difference between fan module MOT !
and core module MOT into the algorithm. Let

FANTIME 8 Age of fan module A

CORETIME ® Age of core module

4 time & FANTIME - CORETIME

and
A MOT & FANMOT - COREMOQT

Then, alternatively, we may express CORETIME and COREMOT
in terms of FANTIME and FANMOT as

CORETIME

]

FANTIME - A time (4.19)

and

CORIMOT = FANMOT - A MOT. (4.70)
FANMOT could be reached first if

FANMOT - FANTIME < COREMOT - CORETIME

EREPPQECI L

which, by definition, is the same as

FANMOT - FANTIME <FANMOT - A MOT - (FANTIME - A time)

or, mere simply

T ek L

& time> AMOT.

Then, if A time>4MOT

N = FANMOT, (4.21) %
i
snd If Atime = & MOT i
1
N = FANMOD = COREMOT (4.22)

but if A time < A MOT

e e sk kA el e i Sl T

e s e

N = FANMOT - A time + 4 MOT. (4.23%)
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The conditional probability QCORE(tk I td ) is
core ‘core
read as the probability of core module failure between core

module age td and core module age Ty given survival until

core module age tj‘ When the difference between FANTIME

and COREI'IME is A time, the conditional probability

QCORE(tk ) can be expressed in terms of FANTIME

| t.
core acore

as QCORE(t, - A;timel t - A time) where this expres-
fan

dtan
sion appears in Equations (4.3), (4.4), (4.5), (4.6)y (4.7),
(408)Q (4-9) and (4017)0

Minimization Technique

Expected cost per hour is determined as the ratio
of expected cost per cycle to expected cycle length.
kxpected cost per cycle and expected cycle length are
expressed by kquations (4.13) and (4.17) respectively.
Minimization of this ratio is tractable through numerical
techniques (10:123). The technique used in this thesis
wés to nalculate the expected cost per hour as the value
of n was stepped in 10 bhour increments from C to 250
hours. This process was then repeuated as core age was
increased in ten hour increments from zero to 250 hours.
For each value of core age, the optimal value of n was
Lhat valuc which resulted in least. cxpected cost, per hour.
Choice of tLen hour increments for n and core age was in

large measure arbitrary. Obviously, one could make

B,

I
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the interval as sma as desired. Smaller intervals,
however, exact a penalty in computer processing time.
Using ten hour intervals, 1.2 processing hours were
required to run the program listed in Appendix F in the

batch mode on the computer available at Wright-Patterson

Air Force Base. )
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CHAPTER V
DATA ACQUISITION AND ANALYSIS

bost, Data

Ceveral clements make up the costs involved in
modular e¢ngine repair actions (5). The costs addressed
in this research effort were: 1. module depot overhaul
costss 2. base-to-depot and return transportation coste,
3. module packing and unpacking costs and 4. inter-
mediate (field) level repair costs. Each of these cost
elements will be discussed separately in this section.
Detailed calculaticns and the data used are found in
Appendix B, For consistency, all base level repair costs
are assumed to take place at Edwards Air Force Base,

Galifornia.

Lepot costs. Overhaul at depot level is accomplished to

return a module to like-new configuration. Several

b
By

factors such as depot material cust, depot manhour cnst

aun

and depot overhead are elements of the single cost

referenced in this thesis as depot overhaul cost. In s

ot

Chapter II it wss noted that depot overhaul cost per
engine or module can be highly variable. Thus, reduction

of depot overhaul cost to a single figure ignores the

fe e TR R LT Ol e A

conaiderable uncertainty inherent in this cost. More
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detailed cost data, however, is not yet available. For

this —eason, the officially accepted module depot over-

haul costs were utilized as a starting point to determine ;
an optimal policy and to investigate sensitivity of the g
policy. i

The officially accepted module overhaul costs
were taken from San Antonio ALC/MAWWF letter of 12 March
1975 entitled Module Depot Overhaul Costs (7).

Base to depot transportation costs. Engine modules for

the F-100 engine are shipped by truck and classified as

machinery, parts, steel (25), Charges for this movement

are based solely upon weight. AFLC/MMP provided a ~hirt

-t b

showing the weight of each module when properly packed

in its shipping container (7). A shipping rate schedule

(kdwards Air Force Base, California to San Antonio Air

]

Y
Logistics Command, Texas) which showed cost per %
handred-weight was supplied by the Office of the Chief of !

Transportation/DCTRF, Kelly Air Force Base, Texas. Multi-

Fliication of the appropriate rate schedule by the module
chipping welpht gave the cost of once way movement of ecach

individial module, Jlince overhaul action requires a new

module o be sent to the base, as well as shipment of the

i

»ld one to depot, complete transportation cost involves

tvw,-vway shipment which dcubles the cogst thus calculated.

intermediate (field, leovel costs. Several costs are

!
‘i
i
i

incurred at field level, consisting of manpower charges

B R
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and, if ppropriate, material charges. All manpower costs
were figured based upon standard team sizes of four, three :
or two technicians as required for the action. Ccsts per g
clockhour were calculuted for each size standard team 1
based upon wage rates found in AFM 177-101. Three sources
were used to obtain estimates for the clockhours required
for each task. The three ﬁotential sources were: 1., Quali-
tative and Quantitative Personnel Requirements Information
(QQPR1) (17), a document provided by Pratt and Whitney to
predict manhour requirements, 2. time and motion studies
from videotape films produced at Edwards Air Force Base
during technical order validation work and 3. subjective
estimates based upon a supervisor's actual experience on i

the F-100 engine. A comparison of the three estimates is

presented in Table E.11. The QQPRI figures were predic-
tions made based'upon engineering design. Validation of
the figures is as yet incemplete but preliminary results
woye inconelusive 717),  Time and motion studies fram
videotgpe: films were found to be poor estimates since
technical order val (dation action requires considerable
time to stop and document difficulties found. OSubjective
estimates based upon experience were declared to be the
mos' consistent, valid figures available at this time
712;20). Since these eatimutes reflect 100 percent
utilization of personnel, an allowance facto: of 1.67

provided by the F-15 JTF at LEiwsrds Air Force Bace was

2 " a [ e et At m e n e e et dl feefew s X Al I TRE TR s e RS
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applied to convert these estimates to expected average
performance. Manhour estimates are available in Appendix
B for comparison purposes. Estimated clockhours multiplied
by team costs per clockhour established the manhour costs
for each task. Material costs were determined by pricing
the materials c¢onsumed in each task. The field level

tasks necessary for this analysis were: 1. module

remeval and replacement/reinstallation, 7. module packing
for shipment, %. engine removal and replacement/reinstal-
lation and 4, base transportation to engine shop. kach

task will be discussed individually below.

Module removal and replacement/reinstallation., Since

this thesis addressed opportunistic replacement at the
module level, only removal and repl.~ement/reinstallation
at the aggregate module level were considered. Field level
zndule repair costs were not considered. Expendable
msterial required for module removal and replacement was
incladed o provide a total field level module pemoval and
replacement /reinstallation coct,

viodule packing for shipment and unpacking upon receipt.

Crnly manpower cost was involved in packaging the module
for shipment once removed from the engine; material is not
consumed during this task.

kngine removal and replacement/reinstallation, The

~ngine change operation essentially consists of three

operations: . removal, 7, roeinotallation and 4., tLram.

L e e R S o D R P A TR et

2 L S e

RS

IR,
L S

;
o

}!

7

Q 2 il i O "
PUPSPEET e 3 s e o s w R L RN T



60
Team composition cost multiplied by clockhours required
determined manhour costs. Interestingly, an engine change i
has been made in as little as 20 minutes, showing the !
accomplishments possible when a highly trained team is i
used and all tools and equipment are prepositioned (7;9). ;

No consumable material was found to be required for engine
change.

Base transportation. 'The time and tecam size required

Lo move the engine from the aircraft to the engine shop

for teardown and repair constitute the basis for calcula-
ting base transpc ation cost. For the present situation,
this cost is almost neglible but is included for complete-
ness. If a Queen Bee operation, currently under discussion, |
is adopted for the F-100 engine, base transportation costs i
as defined would become an inter-base transportation cost

for the complete engine and could be substantial.

lindule PFailure Data

v sources vere avallable for module failure
data--operationsl engine data obtained through the stan-
dard engine status remorting system and RDTZE engine data
nbtained through the F-15 Joint Test Force at Edwards Air
Force Base, California. A complete computer program pack-
age written in FCRTRAN is provided in Appendix C to
manipulate standard engine status reporting system “AFM
470="1) data. Acknowledgement must be made to the thesis

team of Pansza and Weods 714) for development of many of
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the programs included herein. Operational flying has pro-
duced too few engine failures to date for any significant
results using this reporting system.

RDT&E engine data provided the only other source
of engine removals for the F-100 engine. A tailor made
reporting system is in use at Edwards Air Force Base,

California which provides data in a format incompatible

with AFM 400-17 formating. Data was obtained in paper out-

put form from the F-15 Joint Test Force YF-100 Engine
Module Report., Data was keypunched onto punch cards for
input into the CREATE system, an AFLC Honeywell €35 Dual
I'rocessor computer at Wright-Patterson Alr Force Basc, A
final check on data conversion from report form to punch
card form was accomplished by verifying all cards. This
operation involves essentially retyping all data using the
punched card just produced and the original worksheets.,
Computer programs were developed to structure the large
volume of data into a readable format and screen it for

module removals due only to failure or expiration of

established operating hours. Since these programs were

de:veloped for only one time uso,only the lopic of their

operation 18 presented in Appendix C. g future failure

data on the F-100 engine will be recorded in the standard
cngine status reporting system; programs which will screen

this data are presented in some detail. A listing of RDT&E

removal times upon which the failure distribution parameters




were computed is presented in Appendix D. Recalling the
discussion of potential hazard rate models from Chapter
111, the researchers were next faced with the decision
as to which model was most appropriate to model the
failure data produced. The models, as recommended by
Shooman are: 1. exponential hazard, 2. piecewise
linear hazard and 3. Weibull hazard (24:194). Shooman
further notes that "a good way to treat these (component
failure) data is to compute and plot either the failure
density function or the hazard rate as a function of
time (24:160)." The development of the data hazard rate
was presented in Chapter III of this document. Shooman
recommends the use of "engineering Jjudgment" to select
the modei most appropriate for the data being analyzed
(P4 457), Selection of the Weibull model was based upon
its acceptaole general fit when plotted against datas
hoazard computations and its wide usage in reliability
vork (74:°905%6:°9%,,  Kurthergore, the Weibull permits
modeling both increasing and decrceasing hazard rates with
the same mathematical formula (P4:'90). 'This was of con-
siderable value when performing sensitivity analysis.
Ilote »f the data failure rateg are found in
Figures 5." thru 5.4, The Weibull functions determined
to fit the data by the program contained in Appendix E
are shown on the samc¢ graphs. One notes the relative

"noiseness" of engine failure data as described by ianszsa
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and Woods previously (14:45). This wide variation requires

additional caution when using a small number of failure

SRR

1 points to establish a statistical distribution describing ]

module failures. %
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CHAPTER VI

RESULTS AND CONCLUSIONGS

kesults

Initial data output. Figure H.7 in Appendix H is a sample

of the data output provided by the FORTRAN program
described in Appendix F. There is, as anticipated, a
point of minimum cost per hour. For the baseline cost
and failure rate parameters developed in Appendices B and
Ii, minimum cost per hour occurred at approximately 730
hours. The optimal cost per hour under an opportunistic
replacement policy was approximately $.0% less than “he

cost under a replace at failure policy.

Figure 9.7 is a plot of cost per hour versuz the
location of n for the fan drive turbine module when the

replacement core module is of age zero. Figure €.. 1is a

3
|

similar plot when the core module is of age 240 hours.
The effect of core module age is gquite dramatic when n
i3 located early in the fan drive turbine overhaul cycle. 1

In both the case of a zero time core mndule and a 49

hour old core module, however, %he curves are relatively
flat in the region near 095) hours. Figure (.7 1s a plot
o cost per hour versus the location of n for the gearbox, ’

given replacement core age of zero.

o8
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Sensitivity analysis. The fan drive turbinc¢ module was
chosen arbitrarily for sensitivity analysis. It is

anticipated that trends observed for the fan drive

turbine would also be true for the gearbox module although
the values of savings per hour, cycle length and other
output variables would of course be different.

Tables G.1 and Figure G.7 in Appendix G contain
a sumpary of changes in the location of the optimal n, cost
per operating hour, expected savings per operating hour
under an opportunistic policy and expected cycle length

as the algorithm input parameters were varied. The
results are summarized briefly in Figure 6.4.

For the range of cost estimates and haéard para-
meters expiored when cost inputs or hazard parameters
were changed one at a time, expected savings under an :
opportunistic policy only exceeded $.10 per operating §

hour when the replacement core mocdule Weibull m parameter

okl ki

was 1.0 or when the replacement core module k parameter

we 1,10, With k = .10, the expected savings were

$.1438 per hour. With m = 1.0, the expected savings were !
$.4317 per hour. The Weibull m parameter determines the
shape of the distribution while the k parameter deterumines
scale, In general, the w parameter primarily affects

the rate of change of the hazard rate while the k para-

e & it Mt ks L e

meter for a given value of m primarily influences the

number of failures per time unit. An m parameter value
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of 1.0 and k parameter value of 0.10 were the highest
tested during sensitivity analysis.

Very limited sensitivity analysis was conducted
varying two parapeters at a time. We were interested in
observing the effect on cost per operating hour when
both variable costs were increased and the core module
experienced either a relatively high m or k parameter
value. With the core module k parameter equal to 0.10
and MODTREP (field level replacement cost) increased
$100 over the base line (a 12 percent increase) savings
per operating hour under an opportunistic replacement
policy were approximately $.17. When the core module m
parameter was increased to 1.0, and MODTREP simultaneously
increased by $100, saving per operating hour increased
to §.54.

The mean value of savings per operating hour,
for those algorithm input parameter combinations tested,
was approximately $.06 per operating hour. Translating
this figure into savings per ear using the fiscal year
1981 flying program of 175,000 flying hours (vhich re-
quires approximately 350,000 operating hours) when F-15
fleet acquisition will be complete, savings on the crder
of $21,000 per year might be anticipated undeir an oppor-
tunistic maintenance policy. We wish, however, to stress

that the output data summarized in Appendix H and discussed

in this chapter are no better than the hazard parameter

Sk

e P
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estipates and cost inputs used. Hazard parameter estimates

and cost estimates are, in owr opinion, fraught with
considernble uncertainty at present, The main interest
of t g  .tors of this thesis was in developing a method
to find .. éptiygﬁ'replacement policy. The data output

provided is me. - illustrate only the general range of
values which ;- ™. ve observed., With better hazard rate
parameter estimates and better cost inputs, the relative
magnitude of savings under an opportunistic replacement
poliey could change significantly. Illustration of this
possibility is found in the behavior of cnst per operating
hour when more than one inpufr to the algorithm was changed

at one time. Further, there are several inherent assump-

" tions and limitations in the algorithm which must be

understood. These assumptions and limitations are dis-

cusgsed in the next section.

Review of Assumptions and Limitations

The algorithm developed in Chapter IV will deter-
mine the optimal opportunistic replacement policy given
the assumptions and limitations which are built into it,.
‘The assumptions and limitatinns which were initially
identified as pertinent to the research are listed in
Chapter II. Certaiun of these relate primarily to data
gathered in support of the research. Those which are

incorporated into the algorithm are:

F - - T R o TBT U F o L e S il .
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Module hazard rate functions were assumed inde-
pendent of one another. This is an assumption which
seldom holds true in practice, Certain types of eﬁgine
failures will quite freq-.ently result in damage to more
than one component of an engine, As an example, foreign
object damage (resulting from ingestion of a bird or
other solid object) may cause portions of the irlet fan
to process through the.core module causing damage to the
high speed compressor. The probable bias of the assump-
tion of independent hazard rates would be to increase
the number of replacement actions in the interval (n, N)
which result from joint failure of two or morc modules.
The convention used in this thesis was to charge the full
value of the replacement cost to the module replaced
opportunistically (e.g., fan module or fan drive turbine
module) in the event of this occurence. Thus, relaxing
this assumption (which would require a considerable

increase in the complexity of the algorithm) would probably
result in decreased savings per operating hour and a shift
of the optimal location of n towards N.

Transportation costs and depot costs were assumed
Lo be the same for failed and unfailed modules. As dis-
cussed in Chapter V, depot overhaul costs are not yet
well defined. A single cost for failed and unfailed
modules was used due to lack of a more explicit cost infor-

mation. A8 Jorgenson, McCall and Radner (10:222) point
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out, however, onc would normally expect the cost to repair
an unfailed module to be lower since fewer components
should require replacement and overhaul actions should

be facilitated.

A more subtle question, related to overhaul costs,
was overlooked when developing the algorithm. We did not
include the impact of changes in n on the spare modules
required to fill the various segments of the depot repair
and transportation pipelines. Note that as n approaches
0O, the expected cycle length would decrease, which would
cause required gpare levels to increase., The probable
bias from this omission would require study to ascertain
with confidence, for as cycle length decreased (and the
number of modules depot overhauled per year increased)
depot overhead costs would be spread over a wider base,
Given these conditions, use of a single cost estimate
for depot overhaul of a module would be even more ques-
tionable. We suggest, however, without any Jjustification
other than intuition, that the cost due to increased
spares requirements would probably predominate, In this
case, the bias would be to increase fixed costs, decrease
savings per operating hour under an opportunistic policy,
and shift the optimal location of n towards N, kxplieit
consideration of che effects of a changce in n on spares
requirements and depot overhead will, again, entail an

increase in the complexity of the algorithm.

et

Lt




When developing the algorithm, an additional

assupption which became necessary was that all failures

in the interval (n, N) of the module for which opportunistic

replacement was being studied result in shipment to the
depot. This is probably not an unreasonable assumption
for values of n cloge to an optimally located N, where
wearout would be significant. The assumption is essen-
tially indefensible as n approaches O, however, If the
agaumption were valid, there would be scant Justification
for an intermediate level module repair capability. We
suggest, however, based on results of the sensitivity
analysis, that the region of interest where the optimal

value of n is most likely to be found is near N rather

than near O, The probable bias resulting from the assump-

tion that module failures in the interval (n, N) are
depot reparable only would be to increase expected cycle
length under an opportunistic policy and decrease the
probability of a field level replacement action. Both of
these effects would result in a decrease in cost per
operating hour under an opportunistic replacement policy.
There is an inherent limitation in solving for n

independent of N, 'I'o illustrate, during sensitivity
analysis the maximum operating times for the fan drive
turbine and core modules were experimentally increased to
500 hours. When this change was incorporated, optimal

cost per operating hour dropped to $36.97 which i3 eight

[ S—



percent less than that achieved with MOT's egqual to 250
hours. Based on the results of the study by Jorgenson,
McCall and Radner (10:225-235), it is economically optimal
to solve for n and N simultaneously. Only a wmoderate
change to the FORTRAN program in Appendix F--including an
additional do-loop to scan over the range of interest for
maximum operating time and additional statements to store
minimum costs ag the do-loops were executed--would be
required, but the hazard function must be clearly defined
over the relevant region:

At the time inféfviews were conducted to gather
cost data (20), the subaecé of test cell procedures for
the F-100 engine was not-well gsettled. The original con;
cept was to accomplish engine trouble shooting on the
aircraft prior to in shop maintenance. There is at the
present time a trend towards engine trouble shooting on
the test cell prior to an engine undergoing maintentnce.

Test cell cost was not included in the calculation of

base level replacement cost. One would expect inclusion

of this cost to result in increased savings per hour under
an opportunistic replacement policy, since it is a variable

cost, and movement of the optimal value of n away from N.

Conclusions

With the limitations and assumptions outlined
above, an algorithm has been developed to determine the

optimal location of the breakpoint between the replace at
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failure region and the opportunistic replacement region

of the module overhaul to overhaul cycle. This answers
research question number one. Sensitivity of the optimal
location of the breakpoint to changes in hazard rate
parametérs and changes in ccat inputs was examined through
sensitivity analysis. The optimal location of the break-
point varied from the maximum opersting time to 30 hours

leas than the maximum operating time for those values of

input hazard rate parameters snd cost inputs studied. o

This answers research guestion number two. As the inputs

e et T

to the algorithm were varied, expected savings possible

under an opportunistic policy varied from less than §.07
per operating hour to slightly over $.50 per operating o
hour. Only in the case of a core module Weibull m para- i
meter equal to 1.0 did expected savings exceed $.15 per
hour. Thus, expected savings per hour under an oppor-
tunistic policy is relatively insensitive to changes in ;
cost and hazard rate parameter inputs. This anawers research i
question number three. The average magnitude of expected
savings under an opportunistic policy was $.7¢ per opera-
ting hour for those hazard rate parameters and cost inputs
studied. 8.06¢ per operating hour represents an approxi-
rate 0.7 percent savings over a rep:.ace at failure pulicy.
In terms of the FY-81, F-15 flying »rogram, savings on

the order of $27,000 might be expected. This answers

research question number four.
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Recommendations

Although the authors would like to believe that
this thesis reflects a moderate amount of research effort,
we recognize that we have barely scratched the proverbial
surface in terms of the amount of work yet to be done in
the area of aircraft engine module opportunistic replace-
ment policy. 'In particular, we would suggest that effort
be directed toward: 1. improving hazard rate parameter
r3timates and cost estimates as the F-15 aircraft and F-100
engine accrue more operational experience, 2. incorporating
necessary changes into the algorithm so that some of the
restrictive assumptions employed in this thesis can be
relaxed, 3. exploring the effect of changes in cycle
length on spares requirements and depot overhead charges
and 4. performing additional sensitivity analysis by
varying more than one input variable at a time and expan-

ding the range within which variables are tested.
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APPEMDIX A
DEFINITIONS

Augmented Turbofan Engine - A basic turbofan jet engine

’ with an augmentor attached to discharge end of
turbine gection. An augmentor mixes the hot turbine
discharge gases and the relatively cool fan bypass
air. The mixture thus obtained is burmed in the
after-bumer seguents. '

Catastrophic PFailure - A failure characterized by sudden,
unexpected damage or loss.

Concurrent Maintenance - Accomplishment of two or more
independent maintenance actions at the same time.

Cycle Time - The length of time from installation of a
module until its removal for maximum operating time
(MOT), failure, or opportunistic replacement.

Veterminigtic -« The result of a given action is known
with complete certainty.

Downtime - Any time period in which an aircraft or com-
ponent is not available for use. This is normally
classed as Not Operationally Ready-Maintenance
(NORM) or Not Operationnaly Ready-Supply (NORS).

Echelons -~ Levels of the maintenance organizational
hierarchy.

End Item - An item selected for specific configuration
and accounting control. (e.g., aircraft engines
and airframes).

Fixed Costs - Those costs known to occur with certainty
during a single cycle. For this research, fixed
cost included engine removal and installation costs,
module packing and unpacking costs, and transporta-
tion cogts for a module between bas: ani overhaul
facility.

Lost Gervice Life -~ The sacrificed, otherwise available,

service life of a component due to replacement before
failure,

83
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Module Construction - The concept where functionally and
phrsically associated parts are removable as units.

Opportunistic iHeplacement - The replacement of an end item
specifically during a time when the item must be
removed to perform other maintenance (e.g., replace-
ment of the removed inlet/fan module given mandatory
core replacement).

w4cen Bee Operation - The maintenance concept of assigning
intermediate level maintenance capability for specific
typey model and series of aircraft engine to a
centralized location which, in turn, provides support
to other bases, 'Inder this concept, supported bases
would basically have only remove and replace or minor
repair capability.

Ltochastic Failure - The time at which failure oceurs is
not known with certainty, i.e.y the time at failure
is governed by a probabilistic mechanism. Only the
expected time of failure can be determined.

Test Cell kun - Operation of a Jet engine on a specially
designed fixture (cell, after removal from an air-
craft bu* prior Lo teardown, specifically accomplished
to isoia*e a defective component or components, Test
cell runs also are made after build-up or repair to
verify maintenance actions.

Troutle-shoot - The maintenance actions necessary to
isolate a defective component or components. This
may be accomplished on the aircraft or after removal.

Jariable Josts -~ Costs which vary in amount or may or may
not occur during 8 single cycle., As an example, in
the event of opportunistic replacement, certain costs
are not incurred which would be incurred in the event
nf a replacement at failure,

weaprout -« he characteristic where hazard rate increages
with age.
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APPENDIX B
COST DATA
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Table B..

L i
g on s e 0 IR AR

Standard Four Man Team Costs

E ‘ . 4 Fersonnel ZCost jer
: liumter ieguires Har Wape nute P
: Humber iequirea ank Aayge xin Cinckhour

——
[
:
tl'\
3
N
-t

84.75 $ 4.75
Sgt $2.9 $ 3.97

- . ~ . .
:'u'tal . Ca% -8 /Ha)u!‘ e & o & ¢ o o

.« o o $75.25

jer nour worked., dource: AMM 177<501

e 2
Jubie B, %

.tandard inree Man Team Cos*ts C 4

P . N . . .. v ’- I“‘ - C t Pe
Wazber hejuired | nank | wage hate € Bogggékhgﬁr r

u'gfl 33-9? ' 3092 :
1 $3.°9 $ 6.58 1

Total Team CoSt/HOUD o o 4 6 o s o o o 810,50

‘e hour worked. Source: AFM 177-101
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Table B.4

standard Two Man Team Costs

= —
Number Required | Rank | Wage Rate Persog?gékggig ber
] 1
4 Sgt $3.92 $3.92
4 ATC $3.29 $3.29
Totel Team Cost/Hour . o« o e o o« ®$7.2°
q?er hour worked. Cource: AFM 177=-101
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Table B.8
Engine Change Costs1

& -

Task - Te=am Size Clockhours Cost
Hemoval 4 1.5 $ 38.20
Iastallation 4 1.5 $ 38.20
Trim 4 3.0 $ 76.40

Total Cost [ ] ® L] L4 [ L] L2 [ 3 [ - [ [ L ] L] [ [ '152.80

"No material consumed in this task (20) .
SAMPLE CALCULATION: i
Engine removal requires a four (4) man team for *.5 hours, j

{clockhours) x (allowance factor, x (team cost/hour’

= task cost

{(1.5) x (7.67) x ($75.25) = §38.20




Table 3.9
Base Tracsportation Cost
e ——eene . = —————
Task Tean Size | Clock Hrs Cost
-+ + 4
Movement from acft. 1 §
to shop 2 0.375 .52
Movement from shop 1
to acft. 2 0.375 $4.52
.l -
TOtllCOlt................. ’9.04

SicEEL L

1Eltiﬂit0! were 15-30 minutes so the average was used.
Total R&R Engine Costs = $161.84 (which is the sum of total

costs from Table 8 and 9).

I
i i ik A b acs 4 n. . AL s
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APPENDIX C

PROGRAMS USED TO SCREEN
MODULE FAILURE DATA
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APPENDIX C

PROGRAMS USED TO SCREEN
MODULE FAILURE DATA

This appendix contains a copy of each different

AT,

type of computer program used in the module failure data
screening portion of the research effort. The progrunﬁ
included here are representative of the programs used;

B T T S T

i.e., some programs used were duplicates of the programs
here with the exception of the data files processed.

The manner of presentation used for this appendix
will be to list the variables and/or files used in each

program, followed by an actual listing of the programs.
Listing the programs was made possible by use of a
computer rrogrem, NICELIST, developed by Major Jim Abbott,
Computer Support Section, School of Systems and Logistics,
whom the authors sincerely thank. .
Many of the computer programs listed in this

appendix and used in the research effort were developed :j
by Pansza and Woods (14:95-121) and are used with their

peraission.

e e it e b s ot e .
ot ot st o bbb e
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praa converts data from BCD tape to
file.

m The msgnetic tape containing the trans-
action histo: of all opersational F-100 engines through

NEWTAPE - The permanent disk file containing the
htamtodbythemmm This data was
obtained from the magnetic tape WYATY.
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memory from maghetic tape VEAST
A1 - Module Berial m.
A2 - Staticn (Bese) Meme.
A3 - Date of Tremsaction.
M - Module Tremsaction and Module condition.

A5 - Module Removel Reason and Module Hours Since
Overhaul.

A6 - Engine Designation and Engine Serial Number.

N - A counter used to indicate the nusmber of records
processed,
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A - Varisvtle uvsed in reed
elemente of the data file 3
hsvonontpiﬁmoht&hnomhcffaﬂmtm

retained to simplify formatting coupatidility with other
progrems,

mn-mmleuutoxemtomaum
five u&lu this data element FA refers to a fan
sodule ent: 7 refers to a core module entry. JC refers
e t:n /mm uii'a rﬁ'umm m aodul
augaentor e, oa e.
€9 refers to an entire engine ent:y.

B - Variable used in reading the last 45 data ele-
ments in the data file NEWTAPE2. These data elements

contain information such as data of rt, reason for
report, reason for removal (if approp ate), engine
operating hours as of this date, serial number.

I - A counter used to indicate the total number of
data records processed.

J = A countexr used to indicate the numbar of inlet
fan module records processed.

K = A counter used to indicate the number of core
module recoids processed.

L =« A counter used to indicate the number of fan
drive/turbine module records processed.

M - A counter used to indicate the number of
sugmentor/exhaust modules records processed.

N = A counter used to indicate the number of gear-
box module records processed.

NENG - A counter used to indicate the number of whole
engine records processed.

II - Variable used to sum the number of records
written to wmodule files and the eagine file,

i e R RSB
. M . b L dd s diis ity
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A - The file ]line numsber associated with ome record.

E - The Module Serial Number. In this format the
mfp.‘ :crtor‘s code and all leading seros have been strip-
off.

¥ ~ Defined all the data in one reccrd except that
defined by the variables A and E above.

SEN - Module serial number. A mechanism used to
dstermine if the transaction just read by the progream
SHOLST was related to a Module Serial Number that was
different from the one previously read.

Z - A counter used to indicate the number of records
processed.

OCAMA1/DATA1/INPAN - ASC 1I permanent file structure
containing the transaction history of the inlet/fan
modules. OCAMAY is a catalogue of all data from the
D024 Engine Status Reporting System. DATAT1 is a sub-
catalogue containing all data prior to screening for
errors. INFAN is the file name

P

i
i
1
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E1. Progrea ZEROPT Variables and(or Files Used.

: A - The file line number associated with one data
record.

B - Module Serial Number.
C -~ Engine designator and Module Removal Reason.
D -~ Module Operating Time.

E - Defined all the data in one record except that
defined by the variables A, B, C and D above.

SEN - Module Serial Number. A mechanism used to
determine if the transaction just read by the program
ZEROPT was related to a Module Serial Number that was
different from the one previously read.

N - A counter used to indicate the number of records
processed.

OCAMA1/DATA1/INFAN - ASC (I file: structure as
defined in Program SNOLST.
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F1. Progrea BRCHECK Varisbles and(or Files Used.

A~ Line Number, Module Serial Number and Module
Designator.

B - Module Removal Reason.

C - Defined all the data in one record except that
defined by the variables A and B above.

RM - A vector used to store each different module
removal reason during the execution of that part of the
program BRCHECK which identified these values. Also
used to provide a listing of the different values.

N - A counter used to indicate the number of records
processed.

J = A counter used to index the vector RM.

RFAIRC - ASC II permanent file containing the trans-
action history of those sample modules.
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G1.

Progran ZHEROCEE Varisbles spd/oxr JFiles Use
B - The file line number associated with ome record.
C - Type module code,

D - Zerves.

E « Module Seriul Number

F - Station (Base) Kame.

G - Date of Treansaction.

: H - Module Tramnsaction and Module Condition.

é | J = Module Removal Reason.

E K - Zero.

o M - Module Hours Since Overbsul.

- ¥ - Blank.

t P - Engine Type.

- S and T - Engine Serial Number.

Z = A counter used to indicate the number of records {
processed. 3

L A 14 i =
[ .
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A - Line number associated with ome file record.
B - Module Serial Wusber, o
BB -~ Module Desigmnator.

C - Module Removal Reason.

D -~ Module Operating Time.

E-Dctinduulmhumonimozdm:gt
those defined hy the variables A, B, BB, C, and D above.

S -~ Module Serial Number. A mechanism used to
determine when all of the trensactions pertaining to a
given Module Serial Nuaber have been processed.

OPT - Module Operating Time. A mechanisa used to
detect an erronecus decreass in operating time.

¥ « A counter used to indicate the total number of
records processed.

WYATT - ASC II permanent disk file that contained the
screened module transactic histories.
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C « Module Operating ‘i .me.

D - Defined as all the data elements in one recoxd
except those defined in the variables A, B and C above.

N - A counter used to indicate the tHtzl nuaber of
records processed.

WYATT - Permsnont disk file that contained the trans-
action history records of all modules.
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A - Line Fumber, Module Serial Nuaber and Module
Designator.

B « Mudule Removal Reuason.
C = Module Operating Time.

UV - Defined as all the data in one record except
that defined by the variables A, B and C above.

N - A counter used to indicate the total number of
records processed.

M - U""*d as an indication to the progrem, that the
first transaction with a removal reason had been processed.

TIME - Module rating Time. A mechanism used to detect
duplication of le operation time points between suc-
cessive module removal transaction,

WYATT - Permanent disk file that contained the trens-
action history records of all modules.
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K1. Program RRMOVALS Variables and/or Files Used.

FILENAME - Variable name used for the name of the
data file to be read from.

RITEMAME -~ Variable name used for the name of the
data file to be written to.

A - Defined all the data in one record for the first
23 spaces.

REMOVAL - Variable used to contain Removal Code
entries from data file.

B = Defined all the data in one record for the last
23 spaces.

I - Counter used to count number of records read
from FPILENAME.

J = Counter used to count number of records written
to RITEFILE.
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Programs to handle Edwards Air Porce Brce RIT&E

Y R YT ST ST

Engine Data were developed to manipulate the data provided
into the proper format for usage beginning with Program

KR e T

SPLIT-0C. The programs listed in this appendix were then

used to screen all) files of obvious errors,

Since the
initial manipulation programs were designed for one time

R

usage only, the authors have not included them in this
] 3 document.
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APPENDIX D

MODULE TIMES AT PAILURE

' ~ Module
Fan Drive
Inlet/Fan | Core Gearbox Turbine
Lata
Produced 1.6 14.6 21.7 47.5
2.9 64.0 60.8 64,0
6.1 86.7 127.1 72.9
9.8 180.5 1647 75.4
18.2 237.5 174 4 78.5
23.9 207.4 84.7
27.6 220.4 163.7
29.5 220.7 174.8
32,6 203.0
32.7 208,2
49.0 238.6
101.8 239.4
112,
122.0
135.6
159.2
Number of
MOT Rmvls 2 8 6 4
Kecorded
Total No.
of DATA 18 13 14 16
Points
m Parameter | _o 2407 |-0.0132 | 0.6607 0.71019
egtimate
Std Error | 5.0829 | 1.1106 | 0.1250 0.0800
of Estimate
k Parameter | 4 02099 | 0.00205 | 0.00014 0.000163
Estimate
ted Error | 5 0090 | 0.00092 | 0.00005 0.000043
ol Estimate ]

-

As determined using LIKELY2, Appendix E.
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DEVELOPMENT OF A COMPUTER PROGRAM TO PERFORM MAXIMUM
LIKELTHOOD ESTIMATES (MLE) OF THE PARAMETERS |
OF A TRUNCATED WEIBULL DISTRIBUTION 3
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AFPEMDIX E

DEVELOPMENT OF A COMPUTER FROGRAM TO PERFORM MAXIMUM
LIKELIHOOD ESTIMATES (MLE) OF THE PARAMETERS
OF A TRUNCATED WEIBULL DISTRIBUTION

In working with data from component life cycle
testing, it is usually desireble to generalize from sample
data to the entire population of similar components.
Shoowan (24:195) points out the essentiality of fitting
failure data to a statistical distridbution for this purpose.
Shooman further urges use of maximum likelihood estimators
for parameter estimation, once a gpecific distridbution is
selected, since they offer "the most flexible and powerful
of modern estimation techniques (24:472)." As discussed
in Chapter V, the authors chose the Weibull distribution
for this research effort. The specific form of the Weibull

dis“ribution used is:

Probability m+"
Density : £(t) = KtBe ~ Ke™" /(me?) (E." )
Function

n =i

K 20

where o and K are the parameters of the distribution and

t is the variable of intereste--in this situation--time.
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Once failure data was screened and data points
established (See Appendix C for procedure used), the task
becane to determine the appropriate parsameters for the
Weibull distribution to model each module hazard rate.
One notes the existence of an established maximum opera-
ting time (MOT) for each module, except the augmentor/exhaust
module, This MOT essentially truncates the distribution
and this effect must be addressed in order to have valid
parameter estimates. |

Maximum likelihosd estimates (MLE) of the shape
and scale factors of a truncated, Weibull distribution
have been developed by Shooman (24:477). The expressions
for the shape factor, m, and scale factor, K, where r is
the number of failures in time T, n is the number of
components in the original population and tys Tor o 0 oy

t, are the failure times of the r components are:

im
r
n+’
. 121 ®i 1oty + (aer)™* 1ar 1
1 > 1n t, = <= ’ - (E.3)
i 3 m+T
T 1a s £,%*7 & (ner)r®*

i=1

bid

o e i
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Equation (E.3) cannot be solved explicitly for m.
Shooman (24:477) recommends graphical solution, that is
plotting the left side of Equation (E.3) against the right
side. Although this is certainly an alternative, the cur-

rent authors decided to take advantage of the coxputational
power of the computér and develop a FORTRAN progrsm which
would search for a value of m which would satiafy Eouation
(E.3). It can be noted that the left side of Equation (E.3),
% not containing m, is a cnnstant, This simplified the
E progragming in that only the right side of the equation
z needed to be repetitively recalculated., A graphical chart
i depicting the computer search operation is included in
i Figures E.7 and E.2. A copy of the program, LIKELY2 is
included later in this appendix., In order to verify that
the program functioned properly, a number of data files ! ?

with known Weibull shape and scale parameters were created

using the inverse transform method. One file of 7000 data

elements was created with a positive shape parameter and
one of the same yize with a neugative shape parameter,
With n set equal to r and the truncation point set Jjust
sbove the value of the largest data element, LIKELY? was

used to estimate the parameters of the underlying distri-

rrn i e dmons o i it o L s sl

bution. Finally, the positive shape parameter file was
truncated by simply splitting the file into two smaller
filea, one containing values greater than the truncating
point and ocne smaller than the truncating point. ILIKELY2

eees ke -.:;.im-.'nmm.“
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was then used to estimste parameters from the truncated
data file. BResults retumed by LIKEILY? were found to De
statistically acourate at the 95 percent coanfidence level
when compared to the pareameters used originally to write
the data points.

Forwilae are also available (24:482-483%) to find
the esmount of variance involved in each estimate of the
parameters a and K. The expressions for parameter esti-
mation variance for a truncated Weibull hazard model where
2 is the estimate of the shape parameter, K is the estimate
of the scale parameter, n is the number oi: components in
the original population, r is the number of observed
failures in the test poriod"l‘. and ti’ ta. e o o9 b, are

the failure times for the r components are:
Var K ™ K°/r (E.4) |
'{ k-
1/K ’
Var o ™ 4 -
2 o f t'nq-’\ TD'O'" (E.5)
(‘*1‘ ) 1.1 b + (n‘r) !
|
(a+1) 4
fu ]
3
1 £, 3% (lat,)° + t,® + ™Y (1n1)° :
. o LT: ! R
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Using Chebyshev's inequality (24:483) which states

that:

p(|o-.-|zm)s£z (E.6)

where:

® random variable with an arbitrery
distribution

» expected value of © or E(9)
number of standard deviations
standard deviation of @ or LS
one may determine appropriate confidence bands for the
parageter estimates,
The computer program developed in FORTRAN to find
MLE's and their variances is shown in Figure E.4. Basically,
the program consists of a Main Program and seven furction
subprograms. The main program initializes all variables,
reads data elements in, determines when z has been esti-
mated to an accuracy of .00007 and provides output.
Inspection of the right hand side of Equation (E.3)
revealed its monotonic behavior, Because of this behavior,
the interval bisection offered considerable computational
efficiency and was incorporated. Function subprograms
were used to perform summing operations and computation
of the variance of the m parameter due to its complexity.
Table E.1 lists the variable names used in the main
program with their associated meanings. Figure E.3 is a
simplified flowchart of the wain program.

: i iAot




ANS

FILERAME

JR

T(J)

BIGT

ALT

ART

LK

X1OoW
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Table E.1
VARIABLES USED IN LIKELY?2

Character variable used to determine if
full explanation of progrem usage is
desired.

Character variable used to contain the
name of the file containing data to be
analyzed.

Counter used in summing subprogrems.
Counter used in do=loop.

Vector used to store failure data points,

The value for the Weibull parameter "m"
for which this progrem was developed.

The truncation point specified.
Number of elements in original population.
Individual data points, as read from file.

Counter used to determine number of data
points read in.

Variable used to store the computed value
of the left side of Equation (E.3).

Variable used to store the computed value
of the right side of Equation (E.3).

The value for the Weibull parameter “K"
for which this program was developed.

Dupmy variable used in reading the line
nuabers on the data file (once read these
numbers are discarded).

Variable used to store the value of XM
for interval bisection computations.
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XHIGH

XDIF
XKVAR

137
Variable used to store the value of XM
for interval bisection computations.
Difference between XHIGH and XLOW.

Variance of Weibull "K" parameter esti-
mate computed using MLE's.
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Initialize All
Variables

. Kead
In
DatarPoints

Compute A
ALT

Step

Step
n by ".1

m by +.7

NOTE:

1. Once ART exceeds
ALT when m :.. 4y the
program uses the inter-
val bisection method 1
to determine m to
required accuracy.

2. Once ART drops
below ALT when the
program is -, uses
. %nterval bisect as in

T S

FET SR S SR W SNCD - il

Figure E.3

Cimplif'ed Flowchart of Main Program f §
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APPENDIX P
FORTRAN FORM OF THE ALGORITHM

The algorithm developed in Chapter 1V was
programacd in FORTRAN and is shown in Figure P.”2.
kasically, the program consists of a Main Prograp and
five function subprogrems. The main progrsm iﬁicializes
failure distribution paremeters and cost inputs, contains
two do=loops which increment the value of n and the age
of the core module, manipulates probabilities and expec-
tations returned by the subprogreams, and provides data
output. Tha function subprograms perform the detailed
calculations of probabilities and expected values.

Table F.1 lists the variable names used in the
pnuin program with their associated meanings. [lhroughout
“he program, MUD1 refers to the module for which the
»pt . mALl cpportunistic replacement policy is being deter-
z..u4., MOD? refers to the c-re module. The program couid
ve ured for any two component system where it is desired
ts find the optimal opportunistic replacement policy ior
one of the components given the maximum coperating times
and failure distribution paremeters. For this reasgon,
the symvols MOD1 and MODE were used rather than, for
instaﬁca. fan and core,
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Wuserical solution for the optimal value of n is
performed in the main program. PFigure F.1 is a simpli-
fied flow chart of the main progrem. The value of MOD2AGE
ic initially set at O at line 400, The value of TSTAR is
initisally set to O at line 600. Lines 610 through 640
determine the difference., if any, between MOD2AGE and
TSTAR, calculate the maximum remaining hours on MOD1,
and determine if the value of N represents MODIMOT or'
MODZMOT. Lines 660 through 840 make the necessary calls
t the function subprograms to determine values of CYCLE,
TCOST and HOUKCOST. These three values are printed out
along with MOD2AGE and TSTAR. The program then loops
back, increments the value of TSTAR by MODTMOT/25 hours
and determines CYCLE, TCOST and HOURCOST once more. TSTAR
is incremented in MODIMOT/25 hour steps until MODIMOT is
reached. Once MODIMOT is reached, the progream loops back
to line 440, increments MODZ2AGE by the value of SCAN,
sets the value of TSTAR to zero, and increments TSTAR
in MOD'MOT/?5 hour steps once more. This pattern of
incrementing 'CTAR from O hours te MOT hours and then
incrementing the value of MOD2AGE is continued until
MOD2AGE equals 25 times the value of SCAN, If SCAN ie set

at MOD2MOT/25, the final value of MOD2AGE will equal
Mob2MOT .

As currently written, the progran prints one line
of cutput for each value of MOD2AGE and TETAR, By deleting

-
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line 970 and inserting the following statement betwensn lines

930 and 940, the program will print the optimal value of
TSTAR (and the associated values of CYCLE, TCOST and HOUR-
COST) for each Qalue of MOD2AGE:
FRINT 5, MOD2AGE,XSTAR,HOURCOST,CYCLE,TCOST
Function subprogram SINGMEAN performs the integral

STAR
X7 - .(I t® fyorq (£) At (F.1)

numerically using Simpson's rule (23:14)., Numerical
evaluation was necessary since (F.71) has a closed form for
the Weibull PDF only when the limits of integration are 0O
and infinity. In order to insure that SINGMEAN functioned
properly, a special "test" Main Program was designed with
Just sufficient statements to pass arguments to SINGMEAN
and print results. The Weibull PDF was sketched for

m = ,71019 and k = .000163 which were the maximum likelihood
estimates of the parameters of the fan drive turbine module,
The value of the PDF is approximately zero for values of t

beyond 500 hours. DMean time to feilure was analytically

determined a3 (74:221)

) L \ /(e g o

§ = P(ET*)km+1)(ETT) ] (1'.2)
''he analytical mean of a Weibull distribution with
m = ,71079 and k = ,000163 is 200,172 hours, A value of
t =« 6000 hours which is well beyond 500 hours was passed
to SINGMEAN. The absolute error of the value of XMU1
returned by SINGMEAN is gensitive to the number of segments
used in numerical approximation of the integral., With 200

segments, error was over six percent. By increasing the

ol 4 Lt B 2
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nusber of segments to 2000, the wean returned by SINGEA
was 201,683 which is approximstely .8 percent ervror. The
relatively large number of segaents used in STHGMNEAN is
the prisary resscn the algoritha requires 1.2 hours of
processing time. Further increasing the zumber of seg-
ments in BINGMEA

would require even longer processing
'tina, For this reason, .8 perceat error was accepted.
@ho complete algorithm was run omce with 5000 segments
to determine if the optimal value of TETAR was sensitive
to residual error in SINGMEAN. The optimal value of TSTAR
was the same as that found using 2000 segments in SINGMEAN.,
HOURCOST was approximately .07 percent higher using 5000
segnents. This difference is felt to be insignificant.
Function subprogram QMOD caloulates the value of

P(t) - F(t,)

F(tltdststk) = m (F.3%)

J
for the Weibull PDF. No approximations are used in this

function subprogram. The subprogram was checked individually,
however, in the same manner as SINGMEAN and returned the
analytically correct probability. 7
Funntion subprogrems QFCBAR, QFBARC and QQFC are

essentially similar. The mechanics of the three function
subprograms are illustreted here by reference to function
QFCBAR. In Chapter IV, the probability of the fan module
requiring replacement before the core module in the

interval (n, N) given fan module sumvival until n and core
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module survival uatil n - a t was

M
ULD) = § 9, (£D) (F.4)
i=1

when n<tiSl - §t,

where
9 (£T) = [1 - QrAN(t, | n)]‘ (F.5)
[1 - acormce,,q | m)]e
QPAN(E; 4 | ;)
and when N - g ¢ <tiSN q.l(fé') = O if N = COREMOT but if
N = FANﬁOT then
ay () = [1 - QRANGY - 4 £ | n)]e (F.6)

[‘l - QCORE(N | n)]
Punction QFCBAR performs this summation. Three values are
returned by the subprogram. In addition to the value of

(F.3) the subprogrem also returns

Mt
QReBARL = 3 (Bt Yia) g, 08 ()
ie1 c
and
M—1 (t +« t )
b A 1?—1!‘ 9, (£8)  (r.8)
i=1

QFCBARL is used to pass the value of X4 to the main program.

YMU1 is used to pass the contribution of Q(fc) to the cal-
culation of

1
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L OIS F g
) i i+1 [qi(fc) + qi(rc)+qi(f0)] (F.9)
i=1

required by Equation (4.17) in Chapter IV. Function sub-
programs QQFC snd QFBARC differ from function QFCBAR only
. in that they perform calculations invol#ing qi(fc) and qi(fb)
regpectively.
Function subprograms QFCBAR, QFBARC and QQFC were
checked by writing a short main program with Jjust sufficient

statements to pass the necessary arguments and print results.
The value of

M
1= % qy(fe) + q;(Fe) + q;(£8) (F.10)
i=1

over the interval (0, t) is equivalent to

[1 - Fmom(t)] . [1 - Fmona(t)] (F.11)
Thus comparing the value of (F.10) with the analytic two

component system reliability for some time t provides a
check on the function subprograms. This check was per- :
formed for a value of XM1 = .66, XK1 - .000141, XM2 = -.1316 |

and XK2 = .002051., The analytic reliability is .3%4. With

700 segments in each of the function subprograms, the value
of (F.10) wag .3%6 which is .€ percent error.

A second check of subprograms QFCBAR, QFBARC and
" QRFC is possible by comparing the mean time at failure

T . CONPP

of a two component system returned by the subprograms

with the apalytically determinsd mesn time &t failure, A
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For a system of Weibull components, mean time at failure
may be calculated &an :lyticalily over the interval (0, ®®)
when the component m parameters are equal (2}:22'1)1 ¥or
n = .66004 and k values of .000141 and .002051, analytic
mean time at failure is 48.%8 hours. The m and k values
cihosen are in the range relevant to distributions studiecd
:n this thesis. "The mean d~termined by QFCBAL, QIBARC
and QQFC was 48.48 hours which is an error of approximately
.2 percent. Functions QFCBAR, QFBARC and Q¥C, like
SINGMEAN, require an upper bound for tne interval over
which approximation is to be accomplished. For the m or
k values chosen, the PDF's are approximately O beyond

t = 500 hours. An upper bound of 2000 was used to check

the subprograms.

"'he formula for calculating 3ystem mesn time to
failure is

, , Ky o+ ks Vimer,
()
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Table F.1
PROGRAM SYMBOLOGY

o REEIAG  T

U

L K Maximum possible age at replacement of

: module 1, Refer to Equation (4,.21) in
Chapter 1V.

n ) MOD2AGE Age of module 2.

3 MOD1PACK Dollar cost to pack and unpack module 1 at

3 the field level,

g MOLDEP Dollar cost to depot overhaul modulc 1.

— MODTREP Dollar cost to remove and rcplace module 1,

This cost includes the cost to remove the
engine from the aircraft, transport the
engine to the repair shop, perform the in
shop module removal and replacement, trans-
port the engine from the shop to the aircraft,
reinstall and trim check the engine.

T IR R T S

MCD1SHIP Costy in dollars, to transport module 1 between
the field repair shop and the depot. Chipping

T A T

cost is round trip.

g MoDiMOT Module 1 maximum operating time. %
] A
1 “oL2MoT Modulie 2 maximum cperating time. '
F LaAe weibull m parameter for module ., ;
‘ Lv” Wieioull k parameter fopr module 7, i

s Welibuali . purameter for moduie .,

1K Welbull k parameter for module ~,

GCAN Amount oy wnich module 2 age is incremented

in 3.-1loo0p.

JELTANM Di. srence between modulo(‘ MOT and module
<. MOT?. Kkefer to Equaticn (4.,20) in Chapter
Iv.
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TSTAR
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CYCLE
HOURCOST
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XSTAR
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X4
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Breakpoint between rezlace é.t failure region
and opportunistic replacement region. TSTAR
is equivalent to n as used in Chapter IV,

Total cost per cycle in dollars.
Cycle length in hours.
Cost per hour in dollars per hour.

Variable used to store the lowest value of
hourcost.

The value of TSTAR associated with XLOW.
Counters used in do-loops.

Maximum hours remaining on module 1 before
replacenment.

Difference between module 1 age and module
%vage. Refer to Fquation (4.19) in Chapter

Switeh variable used to pass information on
which module will reach its MOT first.

Probability of module 1 requiring repiacement
before module 2 in the interval n«<tgN

given survival of both until TSTAR and TSTAR -
DELTAT respectively.

Probability of module ¢ requiring replacement
before module 7 in the interval TSTAR<t gN
given survival of both until TSTAR and
TSTAR-DELTAT respectively.

Probability of module 1 and module 2 requiring
simultaneous replacement in the interval

TSTAR <t &N given survival of both until

TSTAR and TSTAR-~ DELTAT respectively.

Defined analogously to X7 over the interval
TSTAR «t «N.

Defined analogously to X2 over the interval
TSTAR«<t =N,

Defined analogously to X3 over the interval
TSTAR <t =N,

Probability of module 1 failure in the interval

C« t« TSTAR.

ke I TP MOl Ay i P m 7 Mt St w7
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SR R

X8 Reliability of module 1 in the interval
Ogt swrg.
X1 Probability that module 1 requires replace-

ment btefore module 2 in the interval
TSTAR <t g N given module ? survival until
TSTAR-DELTAT.

y P I'mbability that module ° requires replace-
ment before module 1 in the interval

ISTAk <t N given module ” survival until
TSTAR=-DELTAT.

X33 Probability that module 7 and module ” require
simultaneous replacement in the interval
; TSTAR ®t =N given module 2 survival until

T SRR IR ST TETs T e o R e e

4 TSTAR-DELTAT.
Xude Defined analogously to X111 over the interval
TSTAR«st <N,
; ' X55 Defined analcgously to X22 over the interval
b TSTAR < t «N.
’ X66 Defined anal :gously to X33 over the interval
TSTAR =t = N.
My The contribution to mean time to removal of :
module 1 by the interval Ost $13TAk. |
M2 The contribution to mean time ¢ removal of ;

module * by the interval TSTAR <t €N,
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Initialize Costs
lnd Failure Distribution
Paremeters

Set Value
of TSTAR
T

. L
B e BT ST TNV 2rE

157 .

T Cost = MOD"PACK + MOD1SHIP

+ MOD1DEP + MODTREP(Probability
of MOD1REP)
Cycle = 1
Expected Cycle Length
Print Cycle Cost =
Output T Cost/Cycle
Pigure §." -%
Bimplified Flowchart of Main Frogram NEWL-MOU i

0 A AR o i iAot AR 0 1 ] VD SR et e wh




B S AU ...n:.....dalﬁ

EREE LB BRI B

158

2 ZeveeM. M4 IWAEALNTD P OIlviTligsases 2 ¢E
= . .\V

]

e

: ‘ ivvls = d7L1al el
: yroetif = SlnSui,. 1L
] cui 1y = 470U 9E
1T = AOWE R S

2xire

YI¢Q I€0Dxv»s¥ 2.3€¢

el

a0 = relln aid

2302 = 1M LUk e

o AT.] |

€]l ONIZVEI40 SO IXNVe ATTNCD. ¥ el
9L

1Cagn® = ZxX 91

21 13 °==liX 261

g1 = ax drvl

&1 1L%¢ sheX el

2321

SEILS.VHEYd 01INEIHLISIC ABNTIVAssvrs 1

.
[ N

08

b 15,

IKIEENL SAIMQ XVd 3AURLS HICNA TilORyerxs bo 3 ]
bo %

by 51

UGRD NOISIDSHG FIunea

1050 2Q04 10k LUK IWZE o8

d3UICON * dTHS 1U0R * dIH1QOA * ADVE 1UUR TV =8 ¢

4OV cGOR SN v 3E )

GCH-TMIN Jo SuraisTi
2°d aamB1y

R T Wi o~ HIEEIL b v b e et o

PR TS P TC N S e pe




159

»wl1SO01

JOAICOH = N ((E0VCLl0h=Ldmhid T 1° (v L

ITOAD

FOUCI 0 ik Yo sobe by et = -

i m plsh e
ERARIRIYE TRETID § IS T R 3 )
A0Ye JOn HYIG! & IV2IT=C ey
CUa(C(l = DDIVO]E) = ¢v i€l iy

I OLOO (e i°L1°]*INveC Ll 1)Y=l X9
¢y = 1 | (C 65

CCE/LAC) = (G ABS

(Fovequss = LL¢f (N ¥als

= I (FWECHA=T02dQA IO TN L0 Y 4] ;96
e, = I eg

( THE LY ¥ i1 0ov¢
((v°rid) e »°54)1Ynid £ EG
(/7)IVaE0d £ ¢S

(7)) vt i3 ¢ 2%

¢ IKlHd et

€ Jrltd Qor

SAncap) om POIX e

(1 = (D)IVOTIINVYIS = SOV ELMN. ALy
JCODENOH Y 1SL AWl *1k1EC 9P
] | bvw&ﬂ w.u.m*

vC'l = v (U IS9P

*h . FYLS] PEY

106200Gn = 10A100x = 31150 229

‘1 = YOS Ay

2 = IO¥SUN SO

£ lilEc 26t

£ M€ IRE

it

XRYBE XSS RN 2R JNOL
LWHLIAOOTY [0 aass s DBCE

BB EERERE SRS X228 DT

e

Tl o= N¥DC (R

i

P

FuEAR,

e i i e



P e = yme s e G ey

PLAL
T3l 30 AN IR L T o

ETIES 8 LY DO IS 2

¢ L1 6

2 ®» XN ((HEVELON=L0n200 ) L i (VIS T=103 G0 ) )] 6
1= X149 216

o+ HYISL = 1 & 6

I (L 548

1S0L S TOAD  ISOD4NVHSEVISL SN ¢ *e 1116 Mo

ISOOEA0A = OTX (HOTLTT°LEOUN0:H) 4] 'iLe

HYISL = H¥VISX (MOTX°T T 1000 NCH:IS] I9€

FTI0AIZ71S02L = 1SGOENDE. 268

{ULXPSIXHGGR4PPX)= “1)*h ¢ €NnXe1 X = FTOAD .:v8

) (LXEEXS 11 XI#G2H 1006 +STULTORSSTHS LIOR+ADV4 IO = 1SOQL EE

7
<,
¥
>

(ENKA®ZARASINGAIREX 3 ENnX ITH 5
(YVISIC I S INYIOLIE = INaX B w
3X¥6X = 99X Wk ]
<X#GX = GGX 261 A
HxavX = rrX el
AXs€X = tE€X AL
dxagX = ¢ZX (9L
IX#IX = 13X ¢
LX = *l= EX oL
(EVISI® Ot 1AX*1aX)CUND = ¢X €L
o400 = 9X MRl
TOEVHAC = X AL
TIVEIR = X WL
(EANA*TOH00 *IVITIUCXTANCNCHVLISL ZAX  1IX*ZRX* 1AX)OH400 = £X 369
(ZONASTOUVAH0  IVITSUC XTINONCEVISL X IAX *2uX  LtAXIDEVENK = X Jev
CINAASTHVRDAD STV ITIU  XIANON CHVISE AX S IFX *ZHX® ERXDHVEDSC = 1X 3L9 .
SANTINGD & 3299 :
g8 CLOO ((IONZ2AUR=LORZUC) *2O° (EVISL=-Luk 1CMW )Y 2] ¢ i

ey RS oo Pt

Lzl

i s e




161

[ 2 .

Rt A R M B G . - R a2 SR o 5 o SR B 11 W00 T i
T dgr T e R T 5

B 1 V1. RRTANPEL

1JS = “IHyuld oLkl

IS = 1A e

STRLS LN Do T JRREST of |

(CLelL)2C TP (e iN X2 1IN X ¢ JUSE = [USE 1 621

ETNu X i X41105X ¢ IUS = 10S iwed

(L1 X HX)J0wL = £DAE Led
(LVITEC-CL IVIIZG=HV ISI* T2 X O XICuiis = 1 = WPk (1923
QLEVISI AX 1L.XICHN T = *1 = 1) +6G28

g+ 11l =21 vt

Ce(Cl = IILYQNid) + vlsl = §1 €24

gt w1 0C G220

*A02/(HVIGL=) = ( 4208

*, = 10SS (21

vom ENX8 = CINXE 3 1 TINRXE 8 JUS 8]}

PSS 10SEINGX 2NN X 1TINIX A 10ISIOTnE STIEN0U 1811

. YOWIY 6L
CEONASTIEYRDIC  IVITE NN I HY TS TOERR® XX ® 1AM RV 924D LGIIDNAY 191
ovaily

N2 it

HEN13Y o1t

¥(»G°* = NVIPONIS @wZil

1) 7L+ X)) #3 LL#NX=) ) dXIn ((Xee LIoNX)LL + 1 ¢ 4 = 4 2111
. ‘ced = 4 gotd
A0 TINOD t a6#d

(OO X) 700 14X ) en L LodX=) YaXTa(riams (L+2X)n Il & 4 = 4 28}
s (1 = (1vI4) = 11 2191

gt = J U 09}

Y/l - G Gl

= 4 avil

4 KCISIOIEd ZWNGA L)

(AL XX K XINVTHOHES AOTLONNA 120

b ST LT

byt 373 |

X366




m,uu :
4
d
!
b

162

B

T T TERTE -

R R T Y

o0 9 )

2G4 |

Gz w9l

FHENI3E E9)

155 = JBYSA ¢ dv)

CIM {¥171:x + IS = [58 g

(AVITSO= 118 IViTSC-HV IS Cux el )3uanl = *1 = ZIN.X (Wil
(LCHVISI®IZR 1L OUGS = °t = TIN.X 1561

2 0109 (*Z3°XI4 A0 2 0a K14 d41 os6)

128 = T1oavside (16}

1JSS = Zn:R .96l

IRKILEGD 1 6G)

(CLP1)¥G *SETNIXRC ML X* 1 TOaX ¢ 1USS = IUSS ¢ ¥G)
EINX*CINL X2 1TINNX + I6GS = 1JS (‘€61
(LI113U=L IVITEU= " 225X )u0ie = €TaX 3¢G)
(IVLISC=t1%IVIT3G-4VISI®2Z N < N)GOT = *1 = 2TNeX 2161
(ZIMVISICINX 1 X)CUil = *1 = 1INKX a6

O+ il =<1 corl

Go((t = I)IYOTd) + HVISL = 11 ( B¥|

. 1 = L OGi2wt
M/ (HVISL = N) = U (:9%)

@ = EILIXA = ZTIORXIA = TIPaXee = [OSSEe = JUS 6P
ICSSeIDS ETNAXZTANX® 1INy X GG AGISIDIEd 2TEN0VU Ovrl
_ toIvidd oEPl
(ZNHASTONVA0 S IVITIG X I N EVISLO2AX® 1AX° 2X * LAX)IDEV 14D rOT1LDNNA amvu
Sty

e 777 4

UN3 asElL

NHNI3Y ¢ 86

196 = Eyuddt ¢ GIE

IR X# 110X ¢ [0S = JOS avEdl
CIVIISC=NIVITZG=HVISI CAX CrIUUND = °1 = WX GED
CLICEVISL DX 1L XD0UME = °1 = 1NaX GoEd

2 010D (2°03°A1dn ¥ 12 X143 g}




163

Se e it AP, e

SN INAE + 158 = It¢

EIMWXFSIN. xUINRX 4+ InS = Ju¢€

(v IIE0=-CL  IVITIRG- 11X X)) 1050 = €10 .Y

¢ 01092 (1°I=°X14n)41

+ QLOD (2°05°x121)41

(LN 1LI=C=- 11 13 2=y Hmh.max i X)AUKRD = °| = ZiMiX

QLoEVISI® XX 100010 - 1 11X
= 2r

C+ 11=11

105 = “I0=0u

IJ8S = €MuA

ANNIINGD |
(CLA 1D )¥S PPN XRETNAXR ST TX + IDSS = ICSS
YINEX*ETNRXFZTINN X2 1INKX + ICS = 10¢

(IVITRE=CL IVITBU~- 112X * 2 X)AOHE = v INRX
ﬂNH._H._ux._wxvmczu = £IMiX

(I¥F1TEC-11% IV LT3G-EVISI 26X i X)UORD - *1 = ZIniX
CIL*EVISI® DIX*1ROICOWD - °1 = 1iniX

g+ 11 =21

Ge(1 - DIIVOTY) + H471SY = 11

2%t =11 0G

*A3C/(HYISL - ) = (

* = JLS8S

A = #Aqvxu, = MJDZV.T = CINEXSD = 1TIN4X8 = JOS

19SS 1OS ¢TI X €T X CTINHX * 1IARX GCD NOISIDTEG ZTEMOU

O L o1 ¢

CEMTA® TONT P IVITIC O X IIN M HVISTI AR IR X eh X 14X)D40S 011onn 4

e
?Qﬁu
ce61
L6l
9¢
2561
Gbel
“EEl
g6l
161
261
72681
v
ALRt
9E
acn]
2yl
]|
T4 |
AlE]
a9E)
o611
o8l
2001
9Ll
a6
vl
2881
ceLl
AR
2321
0691
*a91
taF A |




R AL St UL I . - L -~ b

C'T o'

TENIDL AL

SAORICZINNNX = (Ol s A

(C°1 + X200+ X)) LI#NX-))dAF = -"n(lal JLs.8
(CC°1 + . X)70C°1 + X% BILl®xx=))4XT - *1) = %%, ¢ S
((°1 + SX)7C0%1 & X)) 10%4X=))Exa = *1 = SanfMh (GoE :
IFOSE NN CUCAY POISIDIRG Tl _
(CIL®ILL X %0 X)A,0 Lalicns




3
B
3
¥
i
i
i
5
:

APPENDIX G

PROGRAM OUTHUT

65




oo SN S L e Y

Tuw e T

o B, A ol 4§ e

RN gt r COR A e e Tl edinad S UV PR T k&

APFPENDIX G
PROGRAM OUTPUT

.Thia appendix contains ougput¢data-tram the
FORTRAN progrem listed in Appendix P. Figure G.1 is -
sample of the output provided by the prbgrim.-'mdble'e;1
summarizes the results fron~séasitivityfanélyaia and is
presented in the following format: | o

1. Column 1 indicates the input’ variable under study.
?. Column 2 contains the value of. the input variable

under study.

3, The value in column 3 is the optimal value of n

(the breakpoint between the repiace at failure region aﬁd'

the opportunistic replacement region) for the'inpﬁt para-
meters used., Precision is + 10 hours. |

4. The value in column 4 is the exﬁected cost per
hour under the optimal opportunistic replacement policy
for the input parameters used.

5. The value in column 5 is the expected cost per
hour under the corresponding replace at failure policy.

6. The value in column 6 is the difference in
expected cost between the replace at failure policy and
the opportunistic replacement policy.

7. The value in column 7 is the expected cycle lergth
under the optimal opportunistic policy for the inpust
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parameter used.

8. The value in column 8 is the expected cycle length
under the corresponding replace at failure policy. The

baseline valves of the program input variables were:

o

. M1 71019

; XK1 .000163
é X2 -.01316

E XK2 .002051

E MOD1REP $862.52

: MOD DEP $6174 .00

% MOD" PACK $30.10

E MOT'ISHIP $315.84

F MODTMOT 250.0 hours
i MOD2MOT 250.0 hours
E SCAN 10.0 hours
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MODZ2AGE

11,0000
1720000
17,0000
10, QO0X)

10,0000

103, 0000
10,0000
1), 0000
10,0000
10,0000
10,0000
10,0000
10,0000
20,0000
10,0000
10,0000
10,0000
1. 0N00
10,0000
e N0
T8 Ti000)
NI
000
G 3000
1)« D000
173, 0000

TSTAR

0.
10,0000
20.0000
%0+ 0000
40,0000
50.0000
60.0000
70.0000
£0.0000
90,0000

100.0000
110,0000
120.0000
1%0.0000
140,0000
150.0000
160,0000
170.0000
180,0000
190.0000
2000000
210.0000
2000000
23040000
240, 0000
2500000

- 'TRCOST

Yoy 8 v
49,47

48.791
48,09)",
q"/o%'u— o
46,88,
46,3730
45,9091
45,4929
45,1206
44 4948
44 ,23%55
44,0084
47,8111
47,6416
47,4978
43%,%779
43,2803%
47,2034
4% 1458
43 1064
43,0838
47,0771
45,085%
42,1077

Figure G."

CYCLE

139.19%
14%.8107
46,5548
148,71¢Y
150,956
153.0554
155.0147
156.8468

158.524%

160,0803
161, 5084
162.8124
163%,.9964
165,0648
166,0220
166.8725
167,212
168.2725
168.8%12
169, 3020
169.6892
169.9974
170.2%08
170.29%5
70,4895
170,524

Sample Program Outputﬂ

171

TCOST

938,048
7125.9941
l/1 59-8(’;-"/
Y152 1600
'YICA L0359
7176.552%
7188,4919
7200,2255%
7211,.7211
7222 ,9142
7233,7845
7244 . 3069
7254 ,4614
7264 ,2%19
727%,6074
7282.5801
7291, 1464
7299.3057
7407 . 0607
D354 4 17
A
',;5"'”/.’)(481“'
AT YA
VAT
VARS8
7550, 6006

A . .
"Hmgeline hazard rate and cost luputs for fan
darive tupbine; Core Age = 10 hours,

TR LT, LT
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APPEMDIX H
CONDITIONAL PROBABILITIES

Chapter IV made extensive use of conditional

probabilities of the form qi(fc), qi(fb) and qi(réﬁ.

The reader will recall, for instance, that
qs(fe) = |1 - QFAN(t; [ n) Je (H.1)

[1 - QCORE(t, .| ci)].
QFAN(t, 4 | t,) e

WOORECt | | L)

i
ir. the internal n< tis N-§¢t,

where

qi(rc) ® Probability that an engine requires
field level replacement of the fan
module and core module simultaneously
in the i-th interval between n snd §
given survival of both until n, and
QFAN(t t )
kFanl JPan

Probability of fan failure betwcen tj
and % g.ven survival until t.
J

GOOKCY t, ;) =

JCOTQ

kCOP@l

Probability of core falilure betwecn .
J

and tk given survival until td.

Let

fFan(t;alFﬁn.modulé tailure density function. |

(t)fCore mcdule failure density function.
173
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174
‘hen
[1 - QPAN(t, | n)]. [QFAN(ti” ' ti)] (H.2)
: by /ti-n-’l (
. b o t.) dt
1, -_,; IFan("} at. . t’i Ian ' ’
= -
1.:/f" £ (L) dt 1 - i .
{ “Fan .[ fpan(t) At
which is equivalent to
t.

n 1
('1 -j; fF&n(t) dt) -.n/‘ fF&n(t) dt

n
1 ".[ i‘Fan(t) dt

[ i1
. rFan(t) dt

1

4 -jti
rl,.an(t) dt

5]
fti‘i-’.[
k| £y (T) dt

1

which reduces to

Gimilariyv,

['; - QUORE(t, |n)].[QCORE(ti+4 | ti)]
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and Equation (H.1) becomes
a;(fe) = | (H.3)

fti"'“ .([ti*’"‘ , .
ti fmm(t) dt : fcore\t) dt

(1 - r/) fan’t) th1 -_[n £oope(E) dt:)

kquation (H.3) represents the probability ef FAN/COkE

system failure in the interval (ti, ti+1) given survival

until n. The devisor in Equation {H.B) insures that the
probability of failure over the interval (nyo®) is

equal to 1. A geometric interpretation of the conditional
probabilities in Equation (H.3) is shown in Figure H.1,
The PDF has a spike at N where mandatory removal occurs.

q;(¥e) and q,(fC) are developed analogously with the

exception that on¢ module survives through the interval

/ti, ti+1) while the other fails in it.

e




PR

fFan(t).

\

Figure H.1

Geometric Interpretation of Conditiocnal
Frobabilities in kgquation (H.3)
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