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ABSTRACT

. This report presents the relations necessary to definz the motion of a
target in the gravitational field of the earth. In order to express this
target motion in the frame of a radar, an appropriate set of coordinate
systems (and transformations) is introducel. Target tracking in the form of
a Maximum Likelihood Estimator is discussed, The problem of interceptor
miss distance is treated from the standpoint of the uncertainty volumes

associated with estimated target state vectors.
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SECTION 1--INTRODUCTION

ARIES is a system simulation computer program daveloped by Lincoln
Laboratory to study radar tracking and command guided intercepts in a
realistic radar environment. Written in FORTRAN and designed for execution
on the (DC 6600 computer, it has considerable versatility in the specifica-

tion of radar, target, tracking and environmental models.

1.1 Program Purpose

ARIES is designed to be a useful analytical tool for several allied
areas. Originally ARIES was used in the stratcgic BMD area to estimate the
metric state vector (position and velocity) of tracked targets, and then to
extrapolate ahead in time to determine an intercept point for an ICBM. The
radar measurements were subject to environmental effects which were reflected
in the intercept miss distances. Refraction and scintillation models were
used in ARIES, and the effects of various calibration schemes on target
location accuracies were studied. ARIES was also used to study the problem
of multipath in low angle tracking and to examine the effectiveness of
variours proposed schemes to overcome degradations in prediction caused by
multipath. The use of ARIES in BMD studies was terminated in the summer of

1974.
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More recently, a modified endoatmospheric version of ARIES, known as the
HWLPTR (Hostile Weapons Location Projectile Tracking Radar) Program, has been
used in the tactical area for the evaluation of a radar's performance in
"backtracking'" an incoming artiliery or mortar shell to determine its point
of launch. The resulting point estimation error CEP values also assist in
the evaluation of the drag model error effects and in the study of the overall

performance of hostile weapon location systems.

1.2 Program Features

Since the ARIES Program provides a fairly elaborate system simulation,
it is useful to tabulate the various features incorporated in ARIES. The

major components of the simulation are summarized below:

1. Target trajectories---accepts input of target state vectors in
several coordinate systems. Trajectories with launch angle, reentry
angle or minimum energy ccnstraints from a given launch location to
an impact point are also available.

2. Radar models---both mechanically steered (dish) and phased array
radars are modeled. Radar sensitivity, beamwidth, frequency and
location are specified by inputs. Range and angle measurement
precision are also specified by inputs.

3. Radar measurement modeling
a. Target modeling---static cross-section measurements on real

targets are used in conjunction with rigid body dynamics (Euler's
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equations) to obtain realistic dynamic RCS simulations. Censtant
and sinusoidal, as well as an analytic cylinder, RCS options are
also available.

b. Noise and propagation effects---radar measurements are corrupted
by receive: noise (S/N dependent), range-independent noise effects
(jitter, quantization, etc.) and uncorrected propagation effects.
Tropospharic and ionospheric refraction are assumed to be cor-

rected to within random percentages (input parameters) of the

true values. Ionospheric scintillation and multipath effects
corrupt the data but are assumed to be uncorrected in the
measurement model.

Trajectory estimation (Target Tracking)---Maximum Likelihood Estima-

tion (MLE) of the target trajectory is performed based on measurement

data collected at specified PRF's over specified track intervals,

R T

Individual measurements are weighted according to their measurement

variances. ARIES could be easily extended to use recursive tracking

CERTTp b o s

algorithms.
Target Discrimination---(Not presently implemented.) Conceptually,

discrimination algorithms would be implemerted to determine whether

a particular sinmulated target constituted a threat to the defended

arca.
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6. Interceptor modeling---(Not presently implemented.) Flight charac- i

teristics of one or more interceptor types would be utilized to
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conduct a command guided intercept. Currently, the program extra-
polates the estimated and true target state vectors to various time
(or altitude) peints after termination of track to obtain miss
distances. Miss distance statistics are computed from the accumu-

lated miss distances observed on a series of Monte Carlo tests.

In addition to the above simulation components, ARIES also accommodates

multiple radars, multiplc targets and multiple track intervais on a given

simulation run. The feature of making many Monte Carlo runs for a given
scenario permits the generation of meaningful miss distance statistics. A
building block/subroutine pregram structure lends itself to reasonable
straightforward modifications of or additions to the program.

The input/output of the ARIES Program is engineer oriented. For input,
i simulation data cards are conveniently grouped into "packets'" (each packet
defines a target model, a radar model, an environmental model, etc.) which
the engineer may simply stack up, together with packets specifying the desired
simulation "'scenario''. For output, an 8%' x 11" ARIES Test Report (see
Appendix II of Reference 1) is generated which provides the engineer with

descriptions of his input model parameters and scenarios, along with the

resultant simulation data and statistics. The outputs are all organized into
logical sections which are indexed for ready reference. Outputs from ARIES 3

also include trajectory plots superimposed on a world map, plots of true and ‘ E

measured target cross-section, and a radar measurements tape containing metric

and RCS data for processing by other programs.

e N T BRE  EE  re eART,  haiC

e e R e e
F=y




e R T AR R TN R R R e e e

1.3 Program Documentation

Th_ ARIES Program is documented in three separate Lincoln Laboratory

Technical Notes as follows:

1. The ARIES Program - A Gereral Overview and Users' Guide

2, The ARIES Program - Coordinates, Transformations, Trajectories and
Tracking

3. The ARIES Program - Analysis and Gerieration of Simulated Radar
Measurements

The first report presents a general discussion of the ARIES Program,
including the logical organization of the program and descriptions of all
subroutines. All of the options available to a user are discussed and the
methods of setting up the input ''packets', including controls to activate the
varicus options, are presencted. A typical run, including a complete ARIES
Test Report (output), is discussed in this first volume.

The second and third volumes contain all of the relevant mathematics and
the models used in ARIES. Most of the det2rministic mathematics (coordinate
systems and transformations, trajectory generation and estimation, miss
distance calculations, etc.) are in the second report. The third report is
priinarily concerned withthe generation of radar measurements, including the
corruptive effects of noise, radar biases, propagation and time-varying radar

cross-section.
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1.4 Organization of This Report

In Section 2, some aspects of the WGS66 earth model are presented. This
includes a truncated version of the series representation of the gravitational
field. The various coordinate systems used in the ARIES Program are defined
in Section 3. Target accelerations due to gravitational forces gnd due to
atmospheric drag forces (not implemented in ARIES) are derived in Section 4.

A simple predictor-corrector algorithm for the integration of the target
equations of motion is also derived. In Section 5, all of the transformations
among the various coordinate systems are derived. The problem of defining
realistic targ=t trajectories is addressed in Section 6. Only targets which
are launched from and impact on the earth are considered. For given launch and
impact points, the user can also specify the launch elevation angle or the
reentry angle or he can request a minimum energy trajectory. The trajectories
are first derived for a central force field (Keplerian motion) and then
perturbed to account for the actual gravitational field. Section 7 presents
one type of target tracking algorithm; namely, an "after-the-fact' maximum
likelihood estimate of the trajectory which best fits the accumulated radar
measurements. From the state vectors generated by trajectory fitting on
several Monte Carlo runs and the known (true) target position, one can develop
an error covariance matrix representing the uncertainty in predicted target
position at an assumed intercept point. This covariance matrix and the related

handover error ellipsoid and error sphere are presented in Section 8.

TN et L T O I et T
il Ly S 3 ! s 5
AR T R

et Tt o R gt
TN S ¥ AR LT

e SN2



E
£
F
B
L,
5,

o

SECTION 2--EARTH MCDEL

The model for the earth used in the ARIES Program is taken directly from
the 1966 World Geodetic Survey (WGS-66). In this model the earth's shape is.
given as a surface of revolution obtained by rotating an ellipse around its
minor axis. The resulting surface is referred to as an ellipsoid or as an
oblate spheroid. As part of this same survey, the coefficients required for
an expansion of the earth gravitational field in spherical harmonics were also
derived from the measured data.

The parameters of the WGS-66 earth model, as used in the ARIES Program,

will be defined and summarized in the following sections.

- 2.1 Earth Ellipsoid

The representation of the earth as an ellipsoid is principally a matter
of mathematical convenience; that is, actual points on the earth's surface will
depart in varying amounts from the corresponding points on the ellipsoid.
However, on average, the ellipsoid will be a good representation. The earth
ellipsoid is defined by the Equatorial and North polar radii (semi-major and

semi-minor axes). These values are:
R, = 6378.145 Km (2-1)

R, = 6356.760 Km (2-2)

Two other parameters of the ellipse, the flattening factor f and the eccentric-

ity ¢, are also of interest
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The oblique view of the earth given in Figure 2.1 and the cross-sectional

view given in Figure 2.2 aid in the definition of positions on the earth

surface. Longitude is defined as the angle between the plane containing the

Greenwich meridian and a plane containing anv other meridian; longitude is
measured in an easterly direction from the Greenwich meridian.
The earth rotates around its polar axis, as indicated in Figure 2.1, with

an angular rate of
wg = 7.29211515 x 107" radians/second (2-5)

There are two latitude angles defined for the earth ellipsoid, as indicated

in Figure 2.2. Both angles are referenced to the equatorial plane. The

geodetic latitude ¢ is defined as the angle between the local normal to the

earth ellipsoid and the equatorial plane. Mathematically, it is defined by

tang = - —p— = -;gﬁ[(l-f)\/Rg-nz']‘-l (2-6) '
dn
tané = 1 E-; -n/2 s ¢ < 1/2 (2-7)
(1-£)2 "
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Note that the extension of the local normal to the equatorial plane does not
in general pass through the center of the earth (exceptions occur when ¢=0 and
¢=n/2). The geodetic latitude is the usual survey latitude. It is also the
latitude determined fram astronamic observations.

Geocentric latitude $c» ON the other hand, is simply the angle formed by
the equatorial plane and a vector from the center of the earth to a point on

the earth surface. It is defined by

tan¢C = (2-8)

SN

or, in terms of geodetic latitude,
tang_ = (1-£)? tans (2-9)

The radius of the earth at an arbitrary location on the surface can be

expressed as

Ra

R=Jn+2¢ =& ——— o (2'10)

Jl-ezcosz¢c

or, in terms of geodetic la*i.ude,

R = ReJl-eisin2¢ (2-11)

It is frequently necessary to compute the altitude of a target above

the earth ellipsoid. That is, for a target at a location (no,zo) outside the
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ellipse, it is desired to find the minimum of

h = [(rgm)? + (z,-2)% (2-12)
subject to the constraint that (n,z) is on the surface of the ellipsoid:

+ ———— = R2 (2-13)
a-nz °
A direct attack on this minimization leads to a quartic equation which is very
difficult to solve. Fortunately, the eccentricity of the earth ellipsoid is
quite small and a reasonably accurate approximation can be made. This approx-
imation is simply to take the difference between the distance frcm the center

of the earth to the target and the radius of the earth in the same direction:

R

h =1 - —D 2-14)

0 ° Jl-ezcoszA

where
r, = ng + zg (2-15)
and
9
COSA = — (2-16)
‘o

A detailed evaluation of the error in this simple relation for ho has not been

made; however, sample computaticns indicated worst-case errors of the order of

11
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10 meters for altitudes around 2000 Km and about 4 meters for altitudes around

700 Km,
For the purposes of the ARIES Program, the above model for h, is probably
adequate. However, a refinement o the relation can be made by taking first

order perturbations of n and z around ho‘ Such a procedure yields

= h (1-e2cos?A)

(2-17) .
1o V1-(2-e%)ecos?A’

Sample calculations indicate wcrst-case errors of only 3 meters for h = 2000 Km
and only 0.5 meters for h = 700 Knm.

Assorted coordinate systems associated with the earth model and appropriate
transformations between each pair of these coordinate systems will be defined

in Sections 3 and 5.

2.2 Earth Gravitational Field

The gravitational potential of the earth is generally expanded in a

series of spherical harmonics. The most important component of the potential

is the point mass potential

G
Vo) = = (2-18) ]

where the gravitational constant G is

G = 3.986012 x 10!* (meters)3/(second)? (2-19)

12
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and r is the radius from the center of the earth., Additional contributions to

the gravitational potential result from the mass distribution of the earth.
These perturbations of the point mass potential are exvanded in spherical
harmonics. One series of harmonics depends only on latitude; these are called
the zonal harmonics. All remaining terms of the harmonic series have a
dependence on hoth latitude and longitude;'these are called tesseral harmonics.
The ARIES Program only considers the zonal harmonics in the gravitational

potential model. That is, the potential is given by

n
ver) = §t - nzj:Z <-§9> C P (sint)] @2
where Cn is the coefficient or the nEh zonal hammonic and Pn(c) is the
Legendre polynomial of the first kind of order n. The angle A is the angle
bétween the equatorial plane and the vector from the center of the earth to
the target position. The first order harmonic is zero as a result of the
symmetry of the gravitational ficld. Since the coefficient of the second
zonal harmonic ir roughly three orders of magnitude greater than all other
coefficients, the ARIES Program is further simplified to include only the
point mass potential and the second zoual gravitational harmonir.. (Additional
zonal harmonic cuvef:icisnts, ¢hrough the ninth, are available in the ARIES

Program; they are easily implemented in Suoroutine GRAVTY.)
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Values for the harmonic coefficients in the gravitational potential model

are

1.08271 x 1¢°°

)
N
fi

-2.630 x 10°°

)
w
]

-2.35 x 10°°

0
e
[}

Cs = -0.265 x 10°°
Ce = 0.66 x 10°°

C; = -0.46 x 10°°
Co = +0.53 x 107°
0.244 x 10°° (2-21)
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SECTION 3--COORDINATE SYSTEMS

Several different coordinate systems are used in the ARIES Program. The
various operatiocns performed i. the Program (e.g., trajectory integration,
target tumbling, radar measurement generation) all have preferred coordinate
frames for their evaluation. In the sections below the various coordinate
systems employed by the ARIES Program are defined. The transformations

between the various coordinate systems are presented in Section 5.

3.1 Earth Centered Inertial Frame (ECI)

A primary inertial frame employed by the ARIES Program is the Earth
Centered Inertial (ECI) frame. The origin of this frame is at the center of
the earth, the z-axis passes through the North Pole, and the equatorial plane
of the earth lies in the x-y plane. At the reference time (typically the
launch time of the target), the x-axis of the ECI frame passes through the
Greenwich meridian. The x, y, and z axes shown in Fig. 2.1 form an ECI frame
if the axes are held fixed in space rather than rotating with the earth.

The equations of motion for ballistic targets have their simplest form in
the ECI frame. Consequently, it is the preferved frame for trajectory genera-

tion and trajectory integration.

3.2 Earth Centered Fixed Frame (ECF)

This frame is essentially the same as the ECI frame, except that it

rotates with the earth. Usually the x-axis is defined to point through the

15
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equator at the Greenwich meridian and the y-axis is defined to point through

the equator at 90° East longitude.

The ECF frame is a convenient frame for the definition of locations on

the earth surface. Radar sites, target launch points and target impact peints

are fixed points in an ECF frame.

3.3 Radar Coordinate Svstems

There are four different coordinate systems associated with the radars.
Two of these are peculiar to a phased array radar (XRF’ YRF’ ZRF and R, U, V).
One coordinate system (R, A, E) is associated with a conventional, mechanically
steered radar. The fourth coordinate system is an earth surface fixed frame
or radar XYZ frame. Radar measurements are typicaliy made in either RAE or
RUV coordinates. The cartesian frames are useful for many computations and

provide the necessary cartesian frames for definition of RAE and RUV coordin-

ates.

3.3.1 Radar Cartesian Coordinates (XYZ)

The Radar Cartesian Frame is defined such that the X-Y plane is tangent
to the earth ellipsoid and the Z-axis is pointed outward along the local
vertical. The X-axis points East and the Y-axis points North., This set of
coordinates is illustrated in Fig. 3,1. Usually the origin of this coordinate
frame will coincide with the radar location or with the target launch point.
If the radar is not located on the earth ellipsoid, but is actually at height
H above the ellipsoid, then the radar X-Y plaiic will be parallel to the tangent

plane to the earth ellipsoid.

16
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3.3.2 Radar RAE Coordinates

The RAE coordinates are derined relative to the radar cartesian coordin-

ates as indicated in Fig. 3.2. R is the distance (range) from the origin (the
radar) to the target. The azimuth, A, is the angle from the Y-axis (Nerth) to
the projection of the range vector, R, into the X-Y plane. Azimuth is measured
clockwise from North toward East. The elevation angle, E, is measured (positive

up) from the X-Y plane to the range vector, R.

3.3.3 Phased Array Radar Face Cartesian'Coordinates

The cartesian coordinates (XRF’ YRF’ ZRF) are defined with respect to the
phased array radar face as indicated in Fig. 3.3. The radar face lies in the
XRF-YRF plane, with the XRF-axis horizontal and the YRF-axis pointing upward.
The ZRF-axis points outward along the normal to the array face.

The orientation of the phased array face is defined by the azimuth and
the elevation of the phased array boresight (i.e., the phased array Z-axis).
Azimuth and elevation, in this case, arc measured in the same sense as defined

above for radar RAF coordinates.

3.35.4 Phased Arrav RUV and Rog Coordirates

The RUV and Rof coordinate systems are def | relative to the Phased

Array Radar Face Cartesian Frame. R is the div .xce (range) from the origin

(the radar) t> tae target. Target direction in angle is measured by the

direction cnsines with respect to the XRF and YRF axes. These direction

v AR
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cosines are designated U and V, respectively. Note that conical surfaces
about the XRE and about the YR axes are defined by U = constant and by V =
constant; the intersection of these cones defines the direction to the target.
(In the usual spherical coordinate system (Ro¢) O defines a cone about the z-
axis and ¢ defines a plane containing the z-axis; the intersection of the
conical surface and the plane defines target direction.)

The angles o and 8 can also be used to measure the direction to a target
with respect to the Phased Array Radar Face Cartesian Frame. In this case, o

and B8 are the arcsines of U and V, respectively. Note that (n/2-a) and (n/2-B)

are the direction cosine angles with respect to the XRF and YRF axes. The
0, which corres-

g = 0).

phased array broadside direction is characterived by U = V

ponds to direction cosine angles of /2 (and, therefore, o

3.4 Target Coordinate Systems

The target tumbling and RCS generation program; utilize several different

coordinate systems whicl are unique to this particular subject. In particular,

the following frames are cmployed:

1. Principal body axes frame - this frame has its origin at the center

of mass of the object and rotates with the object.
2. Momentum frame - this is an inertial frame with its z-axis aligned

with the momentum vector. (The momentum vector is invariant in an -

inertial frame.)

et it e i e S o W ke
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3. Local horizontal frame - this frame has its z-axis in the direction

of the ECI velocity vector and its y-axis normal to the trajectory

plane.

These frames are inter-related by the target Euler angles. The local
horizontal frame is directly defined from the target position and the target
, velocity in the ECI frame.
Complete details about these coordinate systems and transformations among

them are presented in Section 7 of Reference 2.
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Fig. 3.1. Radar cartesian coordinates (XYZ).
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¢ Fig. 3.2. Radar RAE coordinates.

“"5‘_; ke i \!&‘Ll«"_l ‘;%Hﬁi\b‘:"‘ im.&:m." Lo T AT e *'T A ey i v.:; A J-‘;,-‘ ,‘;‘_-‘.

b i Al R

20

itk aa i v a ol Bl s i ki £ 2 e s st 2o’



RN TR TR

Fig. 3.3. Phased array radar face cartesian coordinates.
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SECTION 4--BALLISTIC EQUATIONS OF MOTION

In this Section the equations of motion for a target on a ballistic
trajectory are presented. The first part gives the required relationship for
target motion in the presence of only the gravitational field of the earth.

Atmospheric drag effects are not included in the acceleration model for
the ARIES Program, but it seems desirable to explain how they might be added
to the model, This is done in Section 4.2.

The last part (4.3) explains the predictor-corrector technique for

trajectory integration in the ARIES Program.

4.1 Target Acceleration Due to Gravity

A target located at a position (x,y,z) outside the surface of the earth
experiences gravitational forces which result in the following target accelera-

tions*
X = 9V(r) (4-1)

wnere V is the gradient operator

_ . 3 .3 . 3 .
V-&x-g')-(""»(_yé*}—;"'&za—z- (42)

and V(r) is the gravitational potential function defined in Section 2.2. Tar-
get position is given in the ECI coordinate frame. The three cartesian

components of the acceleration vector can be shown to be:

*Lower case script characters dencte vector (or column matrix) quantities.
Upper case script characters denote matrices.
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=

9
g2 = 22 = C Py (sinA) (4-7)
n=

In these relations P (+) is the derivative of the Legendre polynomial with

respect to its argument. Also,

r = \[x2+y2+22 (4-8)

. _z )
SinA = 7 (4-9)

The following recursion relation for the derivatives of the Legendre poly-

nomials

Pla(@ = @+ D[aPi) - By (@] + P (@) (4-10)
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is useful for the computation of g, and g,. Note also that

Pi(a) = 0, PI(a) =1 and Pi(a) = 3. (4-11)

Given the target position and the target velocity in the ECI frame at a
particular reference time, together with the above definitions for target
accelerations, the motion of the target in the ECI frame is completely defined
over the entire trajectory. This statement, of course, ignores any effects
due to atmospheric drag.

Subreoutine GRAVTY is used to compute the gravitational acceleration

components of a target state vector.

4.2 Target Acceleration Due to Atmospheric Drag

The ARIES Program does not include the target deceleration effects caused
by atmospheric drag. However, for completeness, a brief discussion of

atmospheric drag is included.

Atmospheric drag results in a component of acceleration in the direction

of the velocity vector given by:

ap = ~ 3 Cp Ao v2/ (w/g) (4-12)

where
p = coefficient of drag of the reentry body .

cross-sectional area of the reentry body

>
[}

atmospheric density

°
]
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v = body velocity (magnitude)
w = body weight
g = acceleration of gravity

The parameters CD’ A and w depend on the shape and size of the target and
would have to be inputs to the ARIES Program. Atmospheric density is a
function of several parameters including altitud», temperature, latitude, and
longitude. An appropriate atmospheric density profile would also have to be
input to the program, either as an analytic formula or as a table. Body
velocity is in either an ECF frame or an earth surface fixed (i.e., radar XYZ)

frame. With the following definition

Ch = Cy/v (4-13)

target acceleration due to drag can be written as

= !
anx = Cp V&

= -
py = “Cp Vy

where Vs vy and v, are the three cartesian components of velocity in an ECF
frame. These accelerations must then be transformed to the ECI frame and
added to those due to gravity to obtain total target acceleration in the
atmosphere. (The atmosphere is typically defined to cover the altitude regime

from 0 to 300 Kft (91.44 Km). Re-entry altitude is defined to be 300 Kft in

the ARIES Program.)
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- The addition of atmospheric drag would result in a better modeling of

target motion. However, it would add considerable complexity to the ARIES
. Program, particularly in the trajectory generation and trajectory estimation
areas, without any significant impact on the radar measurement modeling which

is a major part of the ARIES Program.

4.3 Predictor-Corrector Trajectory Integration

Trajectory integration in the ARIES Program is performed with a predictor-

corrector integration scheme. The procedure for integration from t, = 0 to

!

- t, = At is explained below.
If the accelerations at the beginning, a(0), and end, a(at), of the inter-
val were known, the acceleration over the interval could be approximated by a

straight line:

a(t) = a(0) + ﬂ%i@l t (4-15)

The position and velocity at time At are then obtained from

At t
x(0) + v(0)at + 5 dt s a(t)dr (4-16)
0 0

x(Aat)

x(0) + v(0)at + a(0)(at)2/2
+ [a(at)-a(0)](at)2/6 (4-17)

and

v(at)

v(0) + a(0)at + [a(at)-a(0)]Aat/2 (4-18)




In practice, of course, a(at) is not known so the integration must be
done in two steps. First, based on the known target position at t = t,, the

accelerations ay» and a, are computed from the gravity model. Then, target

3y

position and velocity are predicted for time t = t, = t, + At:

Xp(t *rat) = x(t)) * v(t))ot +a(t)(at)?/2 (4-19)

vp(t1+At) v(tl) +a(t))at 4-20)

From the predicted position at t = t,, the end-point accelerations are computed.
Then a final correction of the predicted (integrated) position and velocity

is made:

x(t,) Xp(tz) + la(ty)-a(t,)1(at)?/6 (4-21)

v(t,y) = vy(ty) + lalty)-a(t )]at/2 (4-22)

This procedure is, of course, performed simultaneously on all three cartesian
coordinates of the ECI state vector.

The extrapolation (integration) of a target state vectur from t, to t; is
performed by Subroutine EXTRAP (X,T2). The components cf the input target

state vector X are:

X(1) = T1l, valid time of the state vector
X(2-4) = ECI positions in x, y, z

X(5-7) = ECI velocities in x, y, z

X(8-10) = ECI accelerations in x, y, z

X(11) = target altitude




BT L T

Integration is performed with a maximum step size of 1 second to prevent a

buildup of errors. (Tests have indicated that At = 1 second gives very
accurate results,) The target state vector is valid for the time T2 when it

is returned to the calling program from Subroutine EXTRAF.
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SECTION 5--COORDINATE TRANSFORMATIONS

The ARIES Program utilizes several different coordinate systems as defined
in Section 3. Results of operations performed in one coordinate system are
frequently required in a different coordinate system. For example, a trajec-
tory is integrated in an ECI frame, but it is used in a Radar RAF (or RUV)
frame for the generation of radar measurements.

This Section presents all coordinate transformations relevant to trajec-
tory generation, trajec*ory estimation and tracking error evaluation. Some
additional transfnrmations involving body coordinate systems for RCS generation

are given in Ref. 2, Section 7.

5.1 Between ECI and ECF

At the reference time (usually t = 0), the ECI and ECF frames are
coincident. Both have their x-axes through the equator at the Greenwich
meridian and their z-ases through the North Pole., At a later time t the ECI
frame is unchanged but the ECF frame has rotated with the earth through an
aﬁgle wet. Let the subscript I indicate a component in the ECI frame and the
subscript F a component in the ECF frame. Now it is easily shown that the

rotation around the z-axis by an amount wet results in the transformation

xF COSwet sxnmet 0 xI
Ypl = -sinmet COSwet 0 Y1 (5-1)
Zg 0 0 1 LzI

29




or, by defining the coefficient matrix as G(t) and the position vectors as X

and xF:*

Xp = G(t)xI (5-2)

If one takes the time derivative of Eqn. (5-1), the following transformation

of the velocity vector is obtained:

0w, O el
Xp = 60 %y + Loy 0 Opxgp= G(E) | ¥ymw Xy (5-3)
0o 0 0 2]

where the dot over a vector (or, a vector component) indicates a derivative
with respect to time. The second term in Eqn. (5-3) results from the contin-
uous rotation of the ECF frame relative to the inertial frame. For the ARIES
Program we require only position and velocity transformations between ECI and
ECF frames. Target accelerations are used only for trajectory integration
(ECI frame) and therefore do not have to be transformed.

The transformation matrix G(t) represeants an orthonormal transformation.

Consequently, G(t) is orthogonal; i.e., the inverse is equal to the transpose:
st)t = e)T
The reverse transformation, from ECF to ECI, is therefore given by

Xy = G(t)TxF (5-4)

*Script characters denote matrices (lower case for column matrices; upper case
for N x M matrices).
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for positions and by

0 we 0 XF'weyF
k= 60 ip - |wy 0 o, 60| rprogxe|  5-9)

0 0 0 2.,

1

for velocities.

Subroutine ECIECF (XI,XF,TIME) is used to transform the state vector X\l
in ECI coordinates to the state vector XF in ECF coordinates. TIME is the
interval in seconds since the two frames were coincident. Subroutine ECFECI (XF,

XI,TIME) performs the inverse transformation.

5.2 Between ECF and Radar XYZ

Consider a radar located at geodetic latitude ¢, longitude A (measured
east from the Greenwich meridian) and at height h above the earth ellipsoid.
The process of transforming from the ECF frame to a radar XYZ (East, North,

Up) frame can be visualized as the following sequence of operations:

1. Rotation by angle X about the z-axis.

2. Rotation by angle ¢ about the y-axis,

3. Translation by the local earth radius along the x-axis.
4

Rotation by angle (¢-¢C) about the y-axis.

WL

Translation by h along the x-axis.

Coordinate interchange to obtain the desired East, North, Up sequence.
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The appropriate matrices for these nperations are:

-

1. COSA sinn O

B = |-sinx cosx O (5-6)

L 0 0 1

2. ' cos¢C 0 s_impC

C = 0 1 0 |, where tan¢c=(1-e2)tan¢ (5-7)

[51n¢c 0 cos¢C

3. -R

ch
0 |, where Reh =

~
]

____EEL____ (5-8)
\/1—e§cosz¢C

0

4, ' cos(¢-6.) 0 sin(e-4.)
0 1 0 (5-9)

A=
"

-sin(¢-¢.) 0 cos(¢-4.)

E =10 0 1 (5-11) :
:

1 0 0 ]

1

v
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If the subscript R refers to the radar frame, then we can write

Xp = {EDCB}xF + E{h+Dne} (5-12)

When the indicated matrix multiplications are performed, the resulting

relations are:

Xp = AxF + b (5-13)

where
~-sinA cosA 0
A = |-sin¢ cosh -sin¢ sinrx  cos¢ (5-14)
COS$ COSA cos¢ sinx  sing
and
0
b = Reh sin(¢-¢c) (5-1%)

'Reh cos(¢-¢c)-h

Since b simply represents a translation, it does not enter into the
velocity transformation. For the velocity transformation f:om ECF tc radar

XYZ, we have simply:

(5-16)

The matrix A is orthogonal, so the inverse transformation, Radar XYZ to

ECF, is

33




T T
Xp = A xR-A b (5-17)
and
. T,

The transformation matrices A and b are initially computed in Subroutine
SETUP(W,A) where W is a three vector containing radar longitude, geodetic
latitude and height above the earth ellipsoid. The A and b matrices are
returned in the transfer vector A. This vector A is then passed to Subroutines
ECFXYZ(XF,XR,A) and XYZECF(XR,XF,A) to perform the actual coordinate trans-

formations.

5.3 Between Radar XYZ and RAE

The Radar Range, Azimuth and Elevation are defined in Section 3.3.2. They

are related to the Radar XYZ coordinates as follows:

R = ’x2+y2+22

A= tan'l(x/y), 0s Acx 2n (5-19)
~ . =1 m . 'IT/

E = sin (z/R), -"/2 < E< /2

The proper quadrant must be detemmined for A sc that A ranges from 0 to 2.

Time derivatives of R, A and E yield:

34

WS L N

R e




RIS bl iyt

A= ORX9)

x2+y?

_ (2R-zR)

R+ 7

(5-20)

These transformations from Radar XYZ to Radar RAE are performed by Subroutine

XYZRAE.

The transformation from RAE to XYZ is performed by Subroutine RAEXYZ with

the use of the following relations:

X = R sinA cosE
y = R cosA cosE
z = R sinE

and

S sinA + yA

%
[{]

S cosA - XA

e
1

R sinE + RE cosE

(3
n

where

S = R cosE - RE sinE

35

(5-21)

(5-22)

(5-23)
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5.4 Between Radar XYZ and Phased Array XYZ

The definition for the Phased Array XYZ coordinate system was given
previously in Section 3.3.3. Basically, the orientation of the array face is

defined by the azimuth Ap and the elevation Ep of the normal to the arrayv facc,

The array face lies in the xp-yp plane with xp horizontal and yp up. The zp )
axis is aligned with the array nomal. (The subscript p has the same meaning ;;
as the subscript RF used in Sections 3.3.3 and 3.3.4.) 4
If we start with the array face coordinates coincident with the radar XYZ if
frame (that is, the array is pointed up), then the following sequence of Ef
transformations gives the desired Radar iYZ to Phased Array XYi trans{omation: §?
xp -1 0 0]]1 0 0 cosAp -51n.~\p 0 Xp ;
vi=10 -1 0{10 sinE_ -cosE sinA\ cosA, 0 (5-24; 3
’p P p P P I e
z 0 0 1]|0 cosE. sinE 0 0o 1|]: '
P P j% R.
or,
)\p = Arpy'R (5-25)
where E
-cos.«p s1nAp 0 %
Co= iy eq o) sinkE cosF (5.- S
*rp ~,m.«p smEp coskp Slan ;oj.p '5-26) . %
sinAp cosEp cosAr cosEp sinkp ; 5

S0

PR P2E L% RN TV P R Y B




Note that when Ap = Ep = 0 (i.e., the phased array is pointed north), xp = -Xp>

"p p

A array XYZ coordinate system.

= 2p and z_ = Yp» aS would be expected from the definition of the phased

The velocity transformation is simply

k= A_X (5-27)

Since the r-triv Arp is orthogonal, the transformation matrix for con-
vgrting»from Phased Array XYZ to Radar XYZ is simply the transposed matrix ATpT.
' Subroutine XYZXRF(XR,XP,Y) is used to convert a state vector XR in Radar
XYZ to a state vector‘xp in Phased Array XYZ coordinates. The reverse trans-
formation is performed by Subroutine XRFXYZ(XP,XR,Y). In both Subroutines the

two element vector Y contains the azimuth Ap and elevation E_ of the phased

p
array normal.

5.5 Between Phased Array XYZ and RUV

The Phased Array range and "'angle’' coordinates RUV are defined by:

R= 2+2+2

Jgp Yp"p

U = xp/R = gsina, -1 s U s 1

V= yp/R = sinB, -1 <V g 1! (5-28)

The velocity relations are obtained by taking derivatives of Egqn. (5-28):
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v +2 2
(XpXp Yt 2ptp) /R

c-
1]

(Sp-UR)/R

<.
I

(yp-vfz)/R (5-29)

The transformation from Phased Array XYZ coordinates to Phased Array RUV
coordinates is performed by Subroutine XRFRUV(XP,RUV).
The inverse transformation, from RUV to Phased Array XYZ, has the

following relations:

X = RU
Y =RV
Ry1-U2-VZ = RW {5-30)

[}
[}

and

RU + RU

e
L]

RV + RV

3 o< pw - B_(L’l‘UflVi (5-31)

<
)

This transformation is performed by Subroutine RUVXRF(RUV,XP).

5.6 Target Coordinate Systems

The target tumbling and RCS generation programs utilize several different
coordinate systems which are unique to this particular subject. These coordi-

nate systems are briefly defined in Section 3.4. A complete description of
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these coordinate systems and the transformations among them are presented in

Section 7 of Reference 2,

5.7 Other Combinations

The coordinate transformations defined above consider only transformations

between quite closely related coordinate systems. Other transformations may

be obtained by the use of a sequence of the ahove transformations. For example,

to transform a target state vector in the ECI frame to a target state vector
in the Phased Array RUV frame, the following sequence of transformations would

be perfcrmed:

1. ECI to ECF (ECIECF)

2. ECF to Radar XYZ (ECFXYZ)

3. Radar XYZ to Phased Array XYZ (XYZXRF)
¢ Phased *~ray XYZ to RUV (XRFRUV)

The nQQes in parentheses are the names of the ARIES Subroutines which perform
the indicated transformations. This particular transformation (ECI to Phased
Array RUV) and the transformation from ECI to Radar RAE, are¢ qui.e important
and, consequently, they are available by calling a single Subroutine ECIRAD
(XI,W,N,TYPE). 7 is :i input state vector in ECI coordinates, W is the out-
put state vector in Radar coordinates, N is the identificatibn number of the
Radar (for use in multiple Radar coverage) and TYPE identifies the radar as

either a dish radar or a sed array radar.
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The coordinate transformations defined in Sections 5.1 to 5.5 provide all
the information required to transform a state vector from one frame to any
other frame. More than or2 subroutine may have to be called, as in the above

example, but the key point is that the capability does exist.

5.8 Radar Coverage Limits

A conventional dish radar usually has the capability of illuminating and
tracking a target over the entire hemisphere above the local horizon plane.

On the other hand, a phased array is usually a permanently fixed installation
(the array normal direction does not change). Consequently, the coverage of a
phased array radar face is limited to a fraction of the hemisphere. Typical
phased array coverage lies in the range of 1/4 to 1/3 of a hemisphere.

For a phased array radar, in particular, it is important to test the
target state vector to determine whether the target lies within the assumed
field of view of the phased array. This test is performed on the RAE target
state vector in Subroutine LIMITS(N,RAE,FLAC). The radar number N and the tar-
get state vector in RAE coordinates are inputs to the subroutine. FLAG=1 is
returned if the target is in the field of view; FLAG=0, otherwise. For a dish
radar, the test simply amounts to checking that target elevation is greater
then zero. A phased array radar, on the other hand, is assumed to have the
capability of viewing a sector in azimuth and elevation about the boresight
pointing direction. For example, if the boresight azimuth of the phased array
is Ap’ then one-third hemisphere coverage is achieved by applying azimuth

bounds of Ap - /3 and Ap + /3 and elevation bounds of 0 and n/2. Both
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azimuth and elevation are checked against the phased array radar coverage
bounds to determine whether the target is within the field of view. Note that

it is easier to define phased array coverage limits in azimuth and elevation,

rather than the normal phased array U and V coordinates.
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SECTION 6--TRAJECTORY GENERATION

The ARIES Program requires the capability of generating a wide range of
target trajectories to simulate various radar/target geametries. For the
present requirements, it is sufficient to consider only target trajectories
launched from and impacting on the surface of the earth. In addition,
atmospheric drag is ignored and the trajectories take the short way around the
earth from launch to impact.

The trajectory generation process requires the following inputs:

1. Launch longitude and geodetic latitude
2. Impact longitude and geodetic latitude
3. Type of trajectory

a. Launch angle specified, or

b. Re-entry angle specified, or

¢. Minimm energy

The procedure used in the generation of a trajectory is to first get a good
trajectory estimate using Kepler's equations for satellite motion in a central
force field. Perturbations of this first estimate are then made to account
for the zonal harmonics of the gravitational field and to account for the
oblateness of the earth ellipsoid.

Section 6.1 contains a brief summary of the equations which define the
motion of an object in an elliptic orbit around the earth (central force field

only). This is followed by a discussion of initialization of the trajectory
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state vector subject to the launch, impact and type of trajectory constraints
in Section 6.2. Finally, the procedures enployed in perturbing the initial
state vector to obtain the desired precise state vector are presented in

Section 6.3.

6.1 Equations for an Elliptic Orbit

In this Section, a set of equations is developed for target motion in an
elliptic orbit which intercepts the surface of the earth. Figure 6.1 illustrates
the geometry of the prcblem as viewed in the plane of the trajectory. (Note
that this plane is only defined in the ECI frame.) Since two of the trajectory
types considered involve specification of angles (launch angle or re-entry
angle), the following derivations of the orbit parameters contain launch
elevation as an explicit variable.

Most standard physics textbooks contain the derivation of the orbital
motion of an object in the presence of the point mass gravitational potential.

They are swmmarized here for the gravitational potential of the earth.

Radius (center of earth to ellipse):
_ a(l-e?) i
T = T-ecoso (6-1)

where a is the semi-major axis, e is the eccentricity of the orbit and O is the
central angle measured from apogee (see Fig. 6.1). Note that the true anomaly
is measured from perigee and is equal to (v-0). The radius can also be defined

in terms of the eccentric anomaly E_:
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Fig. 6.1. Geometrv of an elliptic trajectory as viewed in the
orbit plane,
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T = a(l-ecosEC) (6-2)

If these tWo definitions for r are equated, it can be shown that true anomaly

and eccentric anomaly are related by:

tan(E_/2) =\H‘;—§ tan(%52) (6-3)

Two other parameters are also of interest:

Mean motion:
n= ‘/G/a3 (6-4)

Mean anomaly:
M= n(t-t) (6-5)
or,
M= Ec-esinEC (6-6)
where t is the time of passing perigee and G is the gravitational constant de-

fined by Eqn. (2-19). For a full orbit, E. ranges from 0 to 2n. M also goes

from 0 to 2r, so the orbital period is

T = 27/n (6-7)
The total energy and the angular momentwn are constants for the orbit., That
is,

L (F241202) - ’i_‘l(-; = constant (6-8)
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r20 = H = constant (6-9)
L Now we want to express the various orbital parameters in te:msAof the
' launch elevation. A first step is to demonstrate that the angle a in Figure
6.1 is equal to 2E. As a means of proving this statement, write the equations
for the circle and ellipse as
x2+y2 = Rg (6-10)
2
(x-ae)2 + L — = a2 (6-11)
1-e?
Then comrpute the unit vectors tangent to the circle and ellipse at the launch
point (RecosOO,R651nOO):
Cn e . Lo ‘.
4. = 4, sin0y LyCOSOO, circle (6-12)
£.sin0 - 4_(coso_-e)
Ay = et © ", ellipse (6-13)
J1+e2-2ecoseo'
The elevation angle E is now determined as the inverse cosine of the dot
product of the unit vectcrs LC and &e:
1-ecosOO
: cosE = ,écq'e = : - (6-14)
% y/1+e?-2ecos0
{/ f 460
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Use of the identity cos2E = 2cos?E-1, yields

- a2, -
1-e 2ecos@0(1 ecoseo)

CosZE = (6-15)

1+e2-2ecos®o

Application of the Law of Cosines to the triangle formed by the vectors from

. the foci of the ellipse to the launch point (see Figure 6.1) yields:

4ale? = Rg + (Za—Re)z-ZRe(Za-Re)COSa (6-16)

This relation can be rewritten in the form

1-e2-2ecoseo(1-ecoseo)
cosa = (6-17)
1+e2-2ecoso0

when the definition

a-= Re(1~ecosoo)/(1-e2) (6-18)

is used. (This is Eqn. 6-1 evaluated at the launch point r = Re, 0= oo.)

Inspection of the expressions for cosa and cos2E demonstrates that o = 2E.

The Law of Sines can also be applied to the triangle to obtain an

alternate expression for the major-axis of the ellipse:

Za-Re Re
. = (6-19)
S1nd 51n(i-2E-06)

T,
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Re sineo
as= 1 + §Iﬁf§E¢6;T (6-20)

Also from this triangle we have that

2a-R
Zae  _ e R
SinZE smo° (6-21)

The use of Eqn. (6-20) in Eqn. (6-21) yields, after some manipulation, the

following relation for eccentricity:

_ sinE ' i
e = STRE*0) +Oo (6-22)

If the total energy at apogee is equated to the total energy at perigee, then

it can be shown that the angular momentum, H, is given by
H= \/Ga(l-ez) (6-23)

Now, the total energy at launch can be equated to the total energy at apogee

(r = a(l+e) at apogee):

1 1 ) _ G ]
MR T 7 = " 7 (6-24)

or,

(6-25)
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The use of Eqn. (6-20) for a gives the desired result:

sine '
2G 0
vi =[5 1= r (6-26)
L \/Re [sm@o+sm(2E+00)]

The eccentric anomaly at launch (see Eqn. 6-2) is given by

. a-Re1 '
ECL = CoSs _EEfJ - (6-27)

and the eccentric anomaly at impact is
ECI = Zn-ECL (6-28)

From ECL and ECI’ the mean anomalies at launch and impact can be computed.

The difference between the two is
AM = M;-M = Z(n-ECL+esinECL) (6-29)
Use of this value of aM, then yields an expression for time of flight

At = tI-tL = AM/n =‘/%§‘ M (6-30)

This completes the summary of the elliptic orbit parameters for object

motion in a central force field.
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6.2 Trajectory Initialization

The summary presented above in Section 6.1 gives the parameters of a
Keplerian eliiptic orbit in a convenient form for use i1 obtaining an initiai
estimate‘cf the target state vector. In this Section, the equations will be
specialized to accommedate particular trajectory-constraints.

Let the launch point have longitude Ay and geodetic latitude oL and let
the impact point have values M and ¢y. The geocentric latitude is readily
computed from the geodetic 1atitude._‘A unit vector from the center of the

earth to the launch point is given by

‘L =g cos¢CL costMy cos¢cL 51nxL+&

x sin¢CL (6-31)

Z

During the flight of the target the earth rotates an amount “etf’ where We is

the rotation rate and te is the time of flight (initially unknown). The impact

longitude is rotated by this amount

A = AL ¥ wgte (6-32)

I'
and a unit vector in the direction of this rotated impact point is

41, = 4 cos¢CI cosAI,+4

. » . --{-v\
< y SR 51nAI.+AZ sine g (6-2

The earth central angle, ZOO, between the launch and impact points is given

by

cosZOo = iI"LL (6-34)
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cosZ(-J0 = COS¢.1 COSé cos(AL-AI,)+sin¢cI sin¢CL (6-35)

It is .-~ .- eful to have a vector in the,trajectory plane which is orthogonal

to the izunch unit vector:
ne= (LL X LI.) X iL = iI' - cosZoOLL (6-36)

This vector is tangent to the unit sphere and in a direction from launch
toward impact. The magnitude of this vector is readily shown to be Isin(ZOo)l,

SO

i = ﬁ = (4[1-c0820 41 )/5in20, (6-37)

Since the trajectories are assumed to always be the short way around the earth,
0 < €y < m/2 and the magnitude sign on sin2o is unnecessary.

The velocity vector at launch lies in the plane defined by the unit
vectors {L and Ln. If the launch speed is v, and the launch elevation is E,

then the launch velocity vector in the ECI frame can be written as

vy, = vL(iLsinE+incosE) (6-38)

This velocity vector combined with a vector, RLLL, from the center of the
earth to the launch point gives a complete ECI state vector at the launch
point (R, is the radius of the earth at the launch point). By means of the

coordinate transformations defined in Section 5, this state vector can be put
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into any desired coordinate system. The remainir ; part of the problem --

namely, assigning appropriate values to vy and E--is considered below.

6.2.1 Minimum Energy Option .

It is frequently desirable to fly the target along the trajectory which
requires the minimum amount of energy at launch. This is achieved by
minimizing the launch speed. The minimum launch speed in the EL{ frame occurs

for a launch elevation of
m Oo
E = y i (6-39)

Unfortunately, this is minimum energy in the ECI frame, rather than an earth
surface fixed frame where the minimum likely will occur under different

conditions due to coriolis effects. If the components of the launch position

are denoted by Xy Yo 2L and the components of the in vector by n, ny, n,,

then the velocity components in the ECF frame are

= VL[sinE(xL/RL) + cosE n * wyp

VX = »
Vy = VL[SinE(yL/RL) + cosE ny] - WX ;
v, = vi [sinE(z;/R;) + cosE n,] (6-40) . %

The magnitude squared of the velocity in the ECF frame is

v2 = vi + wz(xi+yi) + ZwevL cosE(yLnx-any) (6-41)
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This relation indicates that the elevation ahgle which minimizes v? Will only
coincide with the elevation which minimizes vi when the last téfm is zero.
The last term contains the z-component of the cross producp_of LL and in which
is non-zero unless the trajectory plane (ECI) contains the North Pole. |

The procedure employed for minimization of v? is to search for the eleva-

tion angle E which results in zesu slope:

v, cos(2E+0 ) + BcosEcoso
L 0 o} (6-42)

dv? _ v
dE L sin, + sin{ZE+0_)
where

B = me(yLnx-any)

Note that the minimum occurs at E = n/4 - 60/2 for a Polar orbit (8=0). An
initial guess of E = n/4 - 90/2 is made, followed by steps of 0.01 radians
until the zero of dv?/dE is bracketed. Then a two-point linear approximation
of dv2/dE is used in an iterative scheme to locate the value of E which
minimizes v, This value of E is then used to compute the orbit parameters a,
e, ECL’ AM and At. The new time of flight At is compared to the previous
value and the whole procedure repeated, unless the difference is less than one
second.

Finally, the ECI state vector with the position vector, RL{L’ and the
velocity vector v, [given by Eqn. (6-38)] is transformed to an earth surface
fixed XYZ frame (Radar XYZ). The final optimization of the state vector (which,
among other things, accounts for flattening of the earth and for the effects

of the second gravitational harmonic) is discussed in Section 6.3.
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6.2.2 Launch Angle Specified

This option requires the determination of an initial velocity vector 29
in the ECI frame which when transformed to an earth surface fixed frame (at
the launch point) has the proper elevation of the velocity vector. That is,
if vy, v, and v, are the components of the velocity vector in the earth

Y
surface frame, then

-1
Eg = tan " (v,/, §+v§) (6-43)

mst be made equal to the desired launch angle, Ep.

An iterative procedure for the determination of the velocity vector vy,

follows. For a given value of the elevation E in the ECI frame, compute the

Convert the ECI launch state vector thus determined to an earth surface XYZ
frame at the launch point. Then compute the launch elevation angle from

Eqn. (6-43) and compare it to the desired value Ep. If EF is not close enough
to Ej (e.g., 0.001 radians), choose a new value of E and repeat the calcula-
tions. The initial choice of E is‘taken to be ED; thereafter, the new is

derived from the old as

En+1 =E ¢ (ED'EFn)

Once the elevation E and launch speed v, are determined, the orbit

parameters a, e, ECL’ AM and At are computed. The new time of flight is
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corresponding launch speed (Eqn. 6-26), and launch velocity vector (Eqn. 6-38).
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compared to the previous value and the whole procedure repeated, unless the
difference is less than one second.

The final ECI state vector is then transformed te the launch point
"Radar' XYZ frame. Launch speed, azimuth and elevation are computed from the
Radar XYZ velocity vector to provide the initialization of the final trajectory

optimization discussed below in Section 6.3.

6.2.3 Re-entry Angle Specified

This option is very similar to th.t described above for the launch angle
specified case. In fact, the initialization procedure is exactly the same,

except that the desired launch elevation is given by

Ep = |Ep| + 0.017

where Ep is the re-entry angle in radians (ER < 0). The additional 0.017
radians (1 degree) is the result of observing that typically re-entry angles

(magnitude) aré smaller than the launch angles by 0.01 to 0.02 radians.

6.3 Launch State Vector Optimization

The procedures outlined in Section 6.2 above lead to reasonably good
estimates of launch staté vectors based on a homogeneous, spherical earth
model. As a consequence of the simplified earth model, the target trajectory
will not impact at exactly the desired ccordinates. The problem then is to

perturb the launch velocity vector in such a way that the target will impact
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at the desired point and, in addition, will satisfy the launch angle, re-entry
angle or minimum energy constraint.

An iterative technique for this launch state vector optimization is
presented below in a general mathematical context. Then the specific cases of
interest--launch angle specified, re-entry angle specified, minimum energy--

are considered as three separate special examples.

6.3.1 A Solution of Nonlinear Equations

The impact longitude, impact latitude and re-entry angle are nonlinear
functions of the launch velocity vector due to the oblateness of the earth and
due to the gravitational harmonics of the earth's field. In this section, an
iterative technique for perturbing the launch velocity vector, such that the
trajectory will ultimately impact at the correct latitude and longitude with
the desired re-entry angle (if specified), will be presented.

Let v be the launch velocity vector and let y be a vector containing the
quantities--impact longitude, impact latitude and re-entry angle. Actually,
it is the vector, g = Y-Yq» which is to be minimized. In this case, Ygq is the
vector of the desired values of y. The relation between ¢ and v can be

expressed as
q = £(v) (6-44)

where f(v) is a nonlinear function of the vector v. The objective is to deter-

mine v such that ¢ = 0. A perturbation Av of the vector v results in
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q *+ Aq = £(v+av) + Jav (6-45)

where J is the Jacobian

3q, 3q, 8q, ]
v, v, 3V,
9q aq 3q
. 2 2 2
J = _— (6-46)
av1 ’c)v2 3\13
aq3 aq3 Bq3
Vv, v, av3d

Now let Vo be an initial guess (obtained from the initialization described in

Section 6.2). Then,
q, = f(vo) (6-47)

It

q = f(vo+Av°) = f(vo) + JoAvo

is to be zero, then it is required that

"

f(vo) + JOAVO qO+JOAvo =0

or,

- (6-48)

>
<
1]
[
[
o]
£
o]
]
]
x
[®)
L
(o]
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where H & 77, Now let

I, = A (6-49)

be a new estimate of the Jacobian where A is a perturbation on the previous

estimate. Then

qy = flv ravy) = q *T 8v,
= qo+JOAv0+AAvo
or
q, = Abv, (6-50)

since JoAvo = -JOHOq0 = -q,- The problem now is to determine the matrix A

such that Eqn. (6-50) is satisfied. If it is further required that
Adu = 0 (€-51)
for Au orthogonal to AV, i.e.,

tvisu = 0, (6-52)

then it can be shown that A has the unique solution

T

q,8v

N (6-53)
AVOA\)O

ian A ISR

Zod,
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This gives a new value for che Jacobian, J1 =] +Ao, but what is actually

(o)

required is the inverse of J,:

3,7t = [JQ+AO]‘1

Hl =
. ) T -1
= IH -1 + ———T—qlAUo
0 Av_"Av
N o O
’- H q -1
_ o'l T
= |1 + Z—ﬂr——— Avo .Ho (6-54)
Vo AUO

The well known matrix identity (Householder Identity)

T.-1 _ uvT
(T+uv™) " =1 - . T (6-55)
+vu

permits H, to be expressed as

H g,ov H
H = Hy - —— — (6-56)
Av v tav Hogy

Thus, when initial guesses of Yo and H_, are available (or computed), the

O’
iterative procedure is to compute q = f(vo), by, = -Hoqo, Hl, V) = v v,
etc., until anl satisfies the desired error criterion. The initial valuc for

the vector Vo is obtained by the procedures described in Section 6.2.

Initialization of Ho is accomplished by perturbing v,» One component at a

time, and computing the changes in the components of ¢; i.e.,
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P

G S

g g

i A




q.' .
7. = %

0ij AV

(6-57)
0j Aoy = 0, k#j

The resultant matrix J0 is then inverted to obtain Ho.
The iterative technique for the solution of nonlinear equations, described
above, is quite general. It will now be specialized to the cases of interect.
First note that the function f(v) used to relate v and ¢ is simply the

ballistic equations of motion described in Section 4. The velocity vector, v,

Launch speed
v = | Launch azimuth (6-58)

Launch elevation

is converted to earth surface fixed XYZ coordinates at the launch point. This
is followed by a conversion to an ECI state vector for use by the trajectory
integration routine. T.e trajectory is next integrated ¢ _ither the re-entry
altitwle or thcvhnpact point (or botli) and the appropriate values for the y

vector are computed, where

Re-entry angle
y = |Impact longitude (6-59)

Impact latitude

The ¢ vector is simply the difference between the computed y vector and the

desired vector Yq-
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6.3.2 Launch Angle Specified

For this case, the launch elevation angle is held fixed at the desired

i

value. Launch speed and launch azimuth in an earth surface (radar) fixed

~ frame are perturbed as described above. When the iterative procedure has

converged to the impact point (longitude and latitude), the launch velocity
vector still has the desired elevation angle but the launch speed and launch
azimuth are altered to achieve the proper impact point including the effects
of gravitational harmonics and the oblateness of the earth ellipsoid.

The constraint cn re-entry angle does not apply in this case, so the
first column of the H matrix is set to zero to prevent perturtations of thz
velocity vector v due to re-entry angle errors. Also, the launch elevation
angle is not included in the perturbations so the third row of the H matrix

is set to zero. Thus,

0 Hy, Hp
H=]o Hy, H, (6-60)
0 0 0

It is readily shown that t'e method of updating the H matrix (Eqn. 6-56)
results in a propagation of the null e¢lements after they are initially
zeroed.

Subroutine NONLIN (entry point SLY2) is called to perform the launch

velocity optimization when the launch elevation angle is specified.
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6.3.3 Re-entry Angle Specified

For this case, the re-entry angle enters the computations as a constraint.
Also, the launch elevation angle is perturbed in the optimization. The H
matrix used in generating launch velocity vector perturbations therefore has
all non-zero elements. Convergence of the iterative procedure, in this case,
results in a launch velocity vector which impacts at the desired longitude
and latitude and which has the requested re-entry angle.

Subroutine NONLIN (entry point SLV3) is called to perform the launch

velocity optimization when the re-entry angle is specified.

6.3.4 Minimum Energy Optimization

The procedure for launch velocity vector optimization subject to the
minimum energy constraint is somewhat more complicated than the above two
cases. It is first assumed that the initialization described in Section 6.2.1
is close to the true minimum. Then, the launch angle specified option is
called three times with E = E

E = Eo t+AE and E = E t-AE, where E0 ¢ is

opt’ p op p
the launch elevation angle derived from the initialization described in
Section 6.2.1 and AE is currently set to 0.005 radians. The three launch
speed-launch elevation pairs are next fitted with a parabola to determine the
elevation which minimizes the launch speed. A final call to Subroutine NONLIN
(entry point SLV2) with this elevation angle results in a launch velocity

vector corresponding to a minimum energy trajectory between the specified

launch and impact points.
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6.4 Trajectory Information

The presentation given above concerns the generation of target trajectories

subject to certain constraints, There is the alternate possibility that a

target state vector for a particular trajectory is available for input to the

program directly. In this case, it is desirable to determine various parameters

(e.g., launch point, impact point, re-entry angle) of the trajectory for

docurentation of a particular run of the ARIES Program. The mathematics for

computation of the relevant trajectory parameters are presented below.

6.4.1 Input State Vectors

There are eight options for specification of a target trajectory as

explained in Reference 1, Section 5.3. Options 6, 7 and 8 are the minimum

| .energy, launch angle specified, and re-entry angle specified options which

require the trajectory generation processing discussed above. The other five

options require the input of a complete state vector in a particular coordinate

frame as follows.

1. ECI XYZ

2. Radar XYZ
. Radar RAE

3
4, Phased array XRF

5. Phased array RUV

Each of these five options requires a state vector time of validity (tag time).

Options 2 through 5 also require the radar longitude, geodetic latitude and

<
3
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height above the earth ellipsoid to be specified in the input stream. Options

4 and 5, in addition, require the azimuth and elevation angles of the phased

array boresight. The ECI State Vector (Option 1) is referenced to a particular
longitude at the launch time (TAL = 0); this longitude is a required input.
(Option 9 for a satellite orbit has not been implemented.) *

The first step in the handling of these input state vectors is to call a

series of coordinate transformation subroutines to finally obtain a state

vector in ECI coordinates referenced to the Greenwich meridian. This ECI

State Vector is then integrated backward in time to the launch point (Sub- i

routine LAUNCH) and forward in time to the altitude of re-entry and to the

impact point (Subroutine IMPACT). The State Vector returned from Subroutine

LAUNCH has a tag time referenced to time of 'aunch (TAL).

6.4.2 Launch, Impact and Re-entry Parameters

Both the LAUNCH and the IMPACT Subroutines require trajectory integration f

to a specified altitude (zero for launch and impact points, 300 Kft. for

re-entry). At the specified altitude, the state vector is appropriately , 4
transformed to determine the target longitude and geodetic latitude. The |
launch elevation angle, impact angle or re-entry angle is also determined as
the angle between the velocity vector and the local horizontal plane. The
azimuth angle of the velocity vector at launch is also determined. Each of
these computations is performed in a radar XYZ frame centered at the longitude,

latitude and altitude of the target.

1 et s T e AR s T I i il e

64

n




bt St e e e CU S e e S N

Consider an ECI target state vector, Xp» somewhere along a trajectory.

The altitude of the target (above the earth ellipsoid) is given approximately

by (Eqn. 2-14):

R
. h=r - =y (b-61)
V1-c2cos?A
where r = /xf+y%+z%, cosA = p/r and p = x%+y%. (As before R, is the North

polar radius and € is the eccentricity of the earth ellipsoid.) The angle A
is approximately equal to the geocentric latitude of the point on the surface
of the earth from which altitude is measured (i.e., the normal to the earth
ellipsoid passing through the target position). A first approximation to

the geodetic latitude is therefore

¢ = tan | ———r- (6-62)
(1-e2)p

The longitude of the target is given by

-1 )’I
A=tan {(—] - wAt, 0 < X < 2r (6-63)
Xq e
where the second term accounts for the rotation of the earth from the reference
time of the ECI frame (usually TAL = 0) to the tag time of the state vector.
The parameters A, ¢ and h give the position of the target with respect to

the surface of the earth. It is also desirable to determine the azimuth and

elevation of the velocity vector with respect to an earth surface fixed frame
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at this position. To accomplish this, the following three unit vectors are

defined:
. Xy, Y1,
4, = cos¢ 5 x + 5—'&y *+ sin¢ 4, (6-64)
T, v 6-65
dy = - 5= 4 * B—-Ly (6-65)
. NS SRS O :
A, = -sind 6—-4x + 3—-4y + cosé £, (6-66)

The unit vector il is normal to the earth ellipsoid at latitude ¢; 4, is normal
to 4,, parallel to the equatorial plane and points to the east; {, is normal to
both 4, and 4, and points to the north. Thaf is; Ll, Ly and £, correspond to
the Z, X and Y axes of a radar XYZ frame. The components of the velocity

vector in the ECF frame are

Xp*ugyy

<
T3
]

= V17%eXr

iF = ZI _ (6-67)

The target speed in the ECF frame (or radar XYZ frame) is

v =\/i%+9%+2% (6-68)
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The components of the velocity vector in the earth surface fixed frame are

obtained by taking the following dot products

X Xty ¥
cos¢[—£—%;—£—#] + sin¢g 2

V, = 4 g = I (6-69)
. YREXUE o0
Vg T AyVp T (6-70)
XX +y Y
= (. ov. = -sins| LI IT"T ]
vy = Ly°Vp 51n¢[—~ 5 ] + Cos¢ 21 (6-71)

where Vg = &xXF+&y?F+LZiF. Note that the effects of the rotation of the earth
cancel in the expressions for v, and Vy The elevation angle of the velocity
vector (which may be the launch angle, impact angle or re-entry angle) is given

by

.-l Ve
EV = sin (?—> (6-72)

A, - tan'l<;5> (6-73)

The computation of A, ¢, h, Ev and Av for an ECI state vector are per-
formed in Subroutine ANGLES. Subroutines LAUNCH and IMPACT both call Subrou-
tine ANGLES after the ECI state vector has been integrated forward or backward

to the relevant target altitude. Various parameters of launch (x,¢,Ev,AV),
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re-entry (A,¢,Ev) and impact (A,¢,Ev) are saved in the target information

files.
Section 2 of the ARIES Test Report for a particular run of the Program
(see Reference 1, Appendix II) contains trajectory information for each target.

In particular, the following information is available in the Test Report:

1. Initial state vector data

2. Initial conditions for target tumbling and RCS computations
3. Launch parameters

4. Re-entry parameters

5. Impact parameters
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SECTION 7--MAXIMWM LIKELIHOOD TRAJECTORY ESTIMATION

At present the only '"tracking" algorithm built into ARIES is the Maximum-
Likelihood Estimator (MLE). The MLE does not provide estimates of a target's
position after each radar measurement, as do recursive-type tracking schemes
such as the a-5 tracker or a Kélman filter. Instead, the MLE provides ARIES
only with an endpoint state vector estimate, valid at the end of the track
interval(s) of interest. During the "track" interval itself, the MLE Subrou-
tine MAXLIK simply stores up the (noisy, biased) radar position measurements,
along with the variances o1 each measurement.

Once all such measurements have been accumulated, the MLE attempts to

find that endpoint state vector estimate which minimizes the 'residual errors"
between the physical trajectory (uniquely defined by the endpoint state vector)
and the set of radar measurements. The error used in this minimization is
formed as the sum of the weighted, squared differences between the pﬁysical
trajectory and the set of radar measurements. Each error residual is weighted
according to the standard deviation of the corresponding position measurement.
Since each error residual is weighted according to the variance of the

corresponding position measurement, the final state vector estimate corresponds
to a minimum variance estimate. This minimum variance estimate is also a

maximum likelihood estimate of the trajectory, when the measurement errors

have a zero-mean, Gaussian distribution. If there are no bias eriors in the
data (such as those due to inadequate calibration or those due to imperfect

correction of tropospheric or ionospheric refraction effects), the trajectory
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estimation procedure described below corresponds to Maximum Likelihood
Estimation. An extension of the procedure to include estimation of biases
would again result in Maximum Likelihood Estimation of both the state vector

and the biases,

7.1 The MLE Method

Let Xg be a2 reference ECI state vector at an arbitrary reference time ts.
(Note that Xg is the state vector to be perturbed to achieve the ''optimal"',
weighted least-squares trajectory fit to the measurement data. For this study
the state vector is valid at the endpoint of the tracking interval, but this
is not a basic constraint.) Also let the set of radar measurements at N
points in time Ty ty,eaty, be denoted by the vectors nm(ti), i=1, 2,...N.
These radar position measurements may be either in RAE or RUV coordinates
dependent on whether the radar is a dish type or a phased array type. The
reference ECI state vector Xg is integrated successively to the times of the
radar measurements. At each of these times, the state vector xs(ti) is
transformed to the appropriate radar frame (RAE or RUV) to form the set of
"estimated' position vectors, ns(ti). It is the weighted, squared differences
between nm(ti) and ns(ti) which are minimized in the trajectory fitting
process.

It has been shown in Section 5.2 that the transformation from an ECI state

vector into radar XYZ (East-North-Up) coordi-.ates can be performed via:

X (1) = ACs,0)6(1)x (t)+b(s) (7-1)
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where the transformation matrix G(t) accounts for the rotation of the earth in

time t (see Eqn. 5-1). The transformation matrix A(¢,A) and the translation
vector b(¢) are those used to transform from an ECF frame to a radar XYZ frame
(see Eqns. 5-14 and 5.15). For a phased array radar, the additional trans-
formation from radar XYZ to phased array XYZ (see Eqn. 5-26) must be included

so that the vectors Xg are defined in the proper coordinate system for the

radars.

Also, we have denoted

X
xg = |y (7-2)
Z]ec1
and
X
Xgp = |V (7-3)

Z Jradar

where the time dependence is implicit in these definitions.
From Equation (7-1) it is clear that a perturbation in Xg will lead to a

corresponding perturbation in Xyt
x o = AG 6x (7-4)

Actually we want to relate perturbations in the reference state vector xg to

perturbations in the "estimated' target position Rge To do this for the RAE
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case, we use Eqn. (5-21) in Eqn. (5-20) to determine the relation between

perturbations of . and Xgp'
Gns =C X gy (7-5)
where the matrix C is given by

cosEsinA cosEcosA sinE
¢ 8 cosA/RcosE -sinA/RcosE 0 (7-6)
-sinEsinA/R  -sinFcosA/R cosE/R

For a phased array radar (RUV coordinates) the matrix C is

RU RV RW

>
A=

1-Uu2 -V -UW (7-7)
W 1-V2 oW

where W = ¢ETﬁ?TV?i Note tha. the matrix C varies as the target moves along
its trajectory; for simplicity, this time dependence has not been explicitly
included in the above relations.

Combining Equations (7-4) and (7-5) one can then relate perturbations in

the position-measurement vector directly to perturbations in the ECI state

vector:

sng = CAGSX (7-8)

Back to the MLE problem: Given the reference state vector Xg» the MLE Sub-

routine MAXLIK first uses the equations of motion (Section 4.3) to obtain X
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and then Equation (7-1) to obtain X

r at each measurement time. Next the X

state vector is transformed into g (the set of target position estimates

based upon the ECI reference vector xs), using the appropriate transformations
(given in Section 5.3 for an RAE radar, and in Sections 5.4 and 5.5 for an RUV
radar).

In deriving the MLE estimator, we assume that perturbations in the refer-
ence state vector positions Xg and rates is at time t . cause corresponding

perturbations in xs(ti) via the equation ;
= - v - C
8x (t;) = 8xg + (t;-t )X, (7-9)

This assumption becomes increasingly valid as dxs ard % become small, as

they do on successive MLE iterations.

The result of the above discussion is as follows: Given perturbations
about the end-of-track ECI position estimate X, and rate estimate kg at a time
t , we may determine the corresponding perturbation in the target position
estimate at time t, in radar measurement coordinates using Equations (7-8) and

(7-9) to obtain:
éns(ti,dxs,éis) = F(ti)[éxS + (ti-ts)éksl (7-10)
where we have defined
F(ti) = C(ti)A G(ti) (7-11)

At this point we have a set of radar measurement data nm(ti), a set of 'esti-

mated' target positions ns(ti) based on the reference ECI state vector xs(tg)
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integrated t> the appropriate times, and a set of position error estimates
dns(t;) from Eqn. (7-10). These are now combined in a quadratic form as

follows:

N
- . s N L
Q= Egi{&m(ti) " rg(ty) - Sng(Ey,6xg,8%4))

w(ti){nm(ti) - ”s(ti) - dns(ti,st,éks)} (7-12)

where W is a weighting matrix taking into account the quality of the radar's

position i.casurements. Thus, for an RAE radar:

[ 1 0 0 )
ey 4 1
we) & o 3 ¢ (7-13)
oA(ti)
0 0 . 1
oE(ti)

where uﬁ(ti) is the range measurement variance, qﬁ(t;) is the azimuth measure-
ment variance, and °§(ti) is the elevation measurement variance for the radar

measurements at time t;. For a phased array radar (RUV data), oﬁ is replaced

e T

by 03 and of by 03. For simplicity, let the arguments t; be simply denoted

by the index i. Then with the additional definitions -
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sn(i) 8 no(1) - (i), (7-14)

and

§is0xg,0%0) = OR(1)-6ng(i,6x,6%), (7-15)

Eqn. (7-12) becomes:
N T .
Q= 1_2_:1 §(1,6x,8) W IF(E,6x 6% )] (7-16)

If the components of 8x  are denoted by 8, Syg, 2, then to minimize Q one
must set the partial derivatives of Q with respect to 6xg, 8y, and fz  to

zero;

aﬂ(i,éxs,éi )

N
3Q _ . . T, . s’ _
5-3 - zi§=l:[5(1,<sxs,axs)] W(i) - =0 (7-17)

‘here o takes on the values 6xs, 6ys and 8z. Three simultaneous equations
are generated from Eqn. (7-17) which mey be combined into the single matrix

equation

N
_thé(i,ﬁx\.,éis)lTw(i)F(i) = (0,0,0) (7-18)
i= -
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Similarly, if the components of Gks, are denoted by st, ays, §2_, and if the

s’
partial derivatives of Q with respect to st, cys and 62, ave set to zero, then

the following matrix equation results:
3 T
2. [§(1,6x,,6% )1 WHYF(i) (t;-t.) = (0,0,0) (7-19) : '
& s’ s i’s :

The ML Estimator simply has to solve these linear equations for éxs‘and 6%

then the end-of-track state vector estimate can be updated:
*s,new =~ %s,o1d T s - (7-20)

s new = *s,o1d * ®%s (7-21)

The matrix equations for the ML Estimator, Eqns. (7-18) and (7-19), can be
written in a more compact form as follows. First take the transpose of these
equations and substitute the expression for 5(i,dxs,6is) from Eqn. (7-15).

Then define the following vectors and matrices K

*FL) W) 64 (i) (7-22)

A
[]]
M=

(a8
1}

N
, _Zl(ti-ts) FL ) w(i)sa(i) (7-23)
1=

=
u

N T
le (DW(L)F (1) (7-24)
i=
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N
M, = 3 (b e JF (W) F(E) (7-25)
i=1 t S
N Ty or g s
My = i§1(ti-ts)2F (DW()F(i) (7-26)
. With these definitions, Eqns. (7-18) and (7-19) become
d, = Mldxs + Mzsks (7-27)
d2 = M,6x  + M 8% (7-28)
Equations (7-27) and (7-28) may be combined into a single (partitioned)
matrix equation
d1 le M2 8xg
-——-f = -'---: --------- (7'29)
d, Mzi My 8%
which is readily solved by Subroutine MAXLIK via a call to Subroutine SIMEQN.
In Subroutine MAXLIK of ARIES, the corresponding FORTRAN arrays are defined as %
L é
. Ml E M2
AS feetos (7-30) 3
My 1M,
and dl
BE |- (7-31)
d
2
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These are not to be confused with the A and b which were defined above in

Equation (7-1).

Note that the ML Estimator is an iterative procedure: An initial,
reference state vector Xg is determined (equal to the true target state vector
in ARIES), then perturbations éx_ and 8k  are determined by the above pro-
cedure. The new value of X from Eqns. (7-20) and (7-21) is then used to
repeat the process. Since ARIES starts with an excellent value for Xgs the

convergence of this process is very rapid; in fact, only two iterations are

used.,

7.2 Error Residuals

The residual errors between the target-position measurement for the radar
nm(i) and the target-position prediction ns(i) at each time t; (where ns(i) is
computed from Xg» the final-iteration value of the MLE end-of-track state
vector estimate) are computed via

NPTMAX
Mean square range residuals = 12_:1 [ér, (i)12 (7-32)
where.NPTNMX is the number of measurements made during the Monte Carlo run,
and where ér, is the first component of the residual error vector é1 defined
in Equation (7-14). Similar mean square residuals are computed for the other
two components of ¢x. These mean square residuals are computed for each Monte
Carlo run, and then averaged over all runs. The resultant mean-square-resid-

uals are printed out in Section 11 of the ARIES Test Report.
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SECTION 8--HANDOVER STATE VECTOR QUALITY

In ARIES, the MLE state vector estimate of the position and velocity cf a
target at the end of a tracking interval (or extrapolated ahead in time beyond

the end of the tracking interval) will not, of course, correspond exactly to

the true position and velocity of the target, due to the various noises and
biases which were present in the radar measurements, as explained fully in

Reference 2. The error vector at any time between the extrapolated state-

vector estimate ¥ and the true state vector Xt rue is defined as
e = (- xtme (8'1)

where both x and x are 6-component ECI state vectors.

true
The volume spanned by the error vector ¢ is of interest to the command

guided intercept problem, since it represents the uncertainty in the handover

intercept position of the target. If the interceptor is being guided by a
different radar than the one which tracked the target (i.e., a radar with a

different set of biases, tracking at a different elevation with different

amounts of refraction, etc.), then the error as defined in Equation (8-1) is
of chief interest, as described below in Section 8.1. If, however, the same
radar is tracking both the target and the interceptor, then the biases would

tend to wash out, and the uncertainty after subtracting out the mean error is

of more significance, as described in Section 8.2.
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8.1 Correlation Matrices

On the mth Monte Carlo simulation run the ARIES Test Program computes a

""correlation' matrix estimate via

a

m eme$ (8-2)

>

where ¢ is the error defined above in Equation (8-1) on the mth Monte Carlo

run. These correlation matrix estimates are then averaged over all runs:
MC
P .
C2ip X G (8-3)

It is clear from Equation (8-2) that each of the correlation matrices Cm
is symmetric; hence C is symmetric and only the '"lower half' is printed out
in Section 12 of the ARIES Test Report, as explained in Reference 1.

For the error ellipsoid calculations (see Section 3.3), it is necessary

to diagonalize the "position' correl.tion matrix P by means of an orthogonal
transformation (P is the upper left-hand quadrant of C; P is a 3 x 3 matrix).
This diagonalization is only possible if the matrix P is positive definite;

i.e., if the quadratic form xTPx is non-negative for all real values of the

variables X, and is zero only if each of the X5 variables is zero. For the

P matrix, this statement translates to the condition

R AR ,
MC’%QI (x ) = Mc-zgl (X €)X e n*Xe ) 2 0
80




R P S P e LTSI . . 5 o
QA b " SRR o e 1 2 Bt At riit AR AL 2 ) s 2 4 e AT St £

which is obviously non-negative. If MC=1 or MC=2, it can be readily shown

that there are an infinite number of non-zero values of the xi's for which the
above quadratic form is zero. This violates the conditions for P to be posi-
tive definite. For MC > 3, it is not generally possible to make the quadratic
form equal to zero with non-zero values for the xi‘s. Exceptions are possible
if the error vectors are linearly related; this is unlikely in the case at
hand, particularly for large values of MC. The reason why the position
correlation matrix is singular for one or two Monte Carlo runs can be simply
explained as follows: a volume in space requires three non-parallel vectors
for its definition (one error vector defines a point, two error vectors define
a plane). Consequently, for the ARIES Program to generate meaningful error
volumes based on position errors, it is necessary to perform a minimum of

three Monte Carlo runs.

8.2 Covariance Matrices

If the mean error 2 (obtained by averaging over all Monte Carlo runs) is
subtracted from the error, an estimated covariance matrix could be obtained on

each Mont 2 Carlo run via

S i s bbey D sSitisalRg

D & (e, D D' (8-4)

and then averaged over all Monte Carlo runs to obtain

3

ptl % 9 (8-5)
MC &4 “m

T T

o et
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In practice, what is actually done by ARIES is to first compute ¢ via Equation

(8-3), and next compute

- _1
¢

—

MC
2 e (8-6)
m=1

and finaliy to obtain ? using the relation

o (8-7)

Oy
1
|

D =

As with the correlation matrix é this covariénce matrix 5 is symmetric and
thus only the lower half appears in Section 12 of the ARIES Test Report.

The "position" covariance matrix P (the upper left-hand 3 x 3 sub-matrix
of ﬁ) is singular for MC < 4; the process of subtracting the means of the
errors effectively reduces the dimensionality of the space by one. Conse-
quently, for the ARIES program to generate meaningful error volumes based on
the position error covariance matrix, it is necessary to perform a minimum of

four Monte Carlo runs.

8.3 Handover Error Ellipsoid

The correlation and covariance matrices described in the preceding
sections are for the errors as measured in the basic ARIES ECI coordinate
system described eariier in Section 3.1. The drawback of such matrices is
that all elements are non-zero - that is the X, Y, 7 error compcnents are

correlated in this ECI frame.
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To eliminate the correlations between the error vector components requires

the definition of a new coordinate frame. Let a 'position' correlation matrix
P be defined as the upper left-hand quadrant of a correlation matrix c (or of

a covariance matrix D):

(8-8)

(e}
n
[
]
'
m——p———

Then we want to determine a new coordinate system such that the ECI position
error vector eT = (e,,e,,e;) is related to the position error vector (e')T =

(e;,e;,e;) in the new coordinate system via the transformation matrix Q:

e' = Qe (8-9)

where Q is the normalized modal matrix of P with the property that Q'1 = QT.

The new "position" correlation matrix P' is then easily shown to be related to

P via
p' = olpg (8-10)

Given the symmetric, nonsingular matrix P, the problem is to find the
matrix Q such that QTPQ is a diagonal matrix. This is a standard problem
(c f., Hildebrand, Reference 5), equivalent to determining the eigenvalues of

the matrix P via setting the following determinant to zero:

|P-x1] = 0 (8-11)
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where X is an eigenvalue. For this case there are three such eigenvalues;

they are the roots of the cubic equation

Pilyd Py Py |

- - - 3- 2- - -
21 P,,-A P, ACepAc-gA-T = 0

Pay P, Py

P

where

=
it

'(P11+P22+P33)

2 2 2
= Py,PygtPy Py +P) Py, P55 -P 5-Py,

Kel
]

2 2 2 i _
T = P3P, *P Py tP, P 2P )P, P o -P (PP

The solution of . (8-12) is well known. Define

[s)
]

q - p?/3
R
b=r- gﬂ + %7 p3

For a positive definite matrix, compute

-1 b /-27
=CO - e ——
¢ [ [ 2 PE ]

and obtain the eigenvalues as

)‘1=[2'%C°S%]‘§
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Ay = 2‘/— 3-5 cos (% + §1> - g- (8-20)

-
A, = L2‘/-_H‘\§cos <% - %’1) - g- (8-21)

Since the matrix P is positive definite, the eigenvalues ()‘1 ,x?_,x3) are all

real and positive. It then follows that P' has the desired diagonal property:

N, 0 0
Pl=]o x, 0 (8-22)
0 0

The square roots of the diagonal elements of such diagonalized ''position'
correlation (or covariance) matrices can be thought of as the semi-axes of an
ellipsoidal error volume - that is, the errors in this new coordinate frame

are uncorrelated and have rms values ‘/'X 1', ‘/Az' and ‘/Xg'. Ay» X, and A, are also

printed out in Section 12 of the ARIES Test Report.

8.4 Handover Error Sphere

While the coordinate transformation Q used in the preceding section

rendered uncorrelated errors, the eigenvalues ), A, and A; alone are insuffi-

1 b
cient to specify the uncertainty volume of the target state vector at hand
over. The orientation of the ellipsoid axes must also be taken into account.
In order to avoid this complexity, it is often more usetul to think of an

"uncertainty sphere'' - namely a sphere of radius, R, centered at the
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(extrapolated) handover point, with R chosen such that the error vector lies
within the sphere with probability = 0.99.

The diagonalization of the position correlation (or covariance) matrix

assures us that the error components in the new coordinate frame (see preceding
section) are uncorrelated. If further we assume these errors to have 'normal . |

“ar "“Gaussian" dist%ibutions,lthen the probability of the error vector e'

- [defined in'Equation (8-9)]1 is given by

A

X2 _y: o 22

e AR e i il

) G'Y'AT'TAZ'W”
ple’) = T - 2 p(X,Y,2) (8-23)
) m 1 %2 M3 :

N

(where for notational convenience the components eI, e;, e; of the error

~vector ¢' have been replaced by X, Y and 2, respectively) . The probability of

the error vector tfelling within a sphere of radius R is

T T R

R /RZ -X2 \/RZ -X2.y2'
p(le'] <R) = 8/(.1)(/ dy / p(X,Y,2)dz (8-24)
0o 0 0

where due to the symmetry we only have to integrate over one-eighth of 1

the sphere. If we use Equation (8-23) in (8-24), alorng with a set of

normalized variables defined by

(8-25) ;

.

X =

860




y = _._...Y_. (8_26)
Nriw

2 = —&_ (8-27)
T,

then we obtain

X
_x2
p(le'| <R) = §'s/dxex/ dy
m
0

where we have defined:

« = RO (8-29)
y = RS, (8-30)
, = R\ (8-31)

XZ
R4 / e %" dz (8-28)

(@]
i

O
"

]
1]

Note that the integration is now over an ellipscid rather than a sphere.

If we transform y and z to polar coordinates r and 0, where

7 r =N (8-32)
§ 0 = tan ' (z/y) (8-33)

then we may replace the two inner integrals of Equation (8-28) with
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/2 r(0) n/2

2 _v2r¢
do re’’ dr = - %/ [e r (O)-1]do (8-34)
0 0 0

This integration gives the area of an ellipse in the y-z plane. The semi-axes

of the ellipse are ll-x/cz Cy and ﬁ-x/cz C,. Also, the distance from the
X X

origin (y=z=0) to the ellipse is

(8-35)
1 - (1 - (—%)sinzo

Z

Use of the double angle formula, 2sin?e = 1-cos20, in Eqn. (8-35) results in

the following relation

xz
(-5
2 Cx Y
r<(e) = 7

(8-36)

®)

N
T~
1
oSSR

> co0s20

or,

_ 1
() = g coszo (8-37)

where

1 -<——r>— (8-38)
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and

2 > (8-39)
2(1 - 3‘—>c2
cz/y
\
Substitution of Eqn. (8-37) into Eqn. (8-34) gives
\
n/2 r(0) ™
do T = Ll - S R F
re " dr = |7 ?Xpl K[+K,cosg (40 (8-40)
0 0

where the change of variables 20 = ¢ has been used.
When Equation (8-40) is used to replace the inner two integrals of (8-28),

we obtain

C T

x v
P(IQ'I < R) = 1?5/ dx e-xZ{‘n "/exp%-k——_q%l—ca-ggqu)} (8'4])
U 1 2
0 0

The double integral in Eon. (8-41) cannot be reduced any further; there-
fore, it is evaiuated numerically by a Gauss quadrature method.

1f we specify an error sphere radius R, Equation (8-41) allows the compu-
tation of the probability that the error vector iies within the sphere. Ilow-
ever, it 1s usually desired to find the value of R which gives a probability
of 0.99. This value of R is found numerically by means of the secant iterative

method described in Reference 4.
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