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ABSTRACT

This report presents the relations necessary to define the motion of a

target in the gravitational field of the earth. In order to express this

target motion in the frame of a radar, ma appropriate set of coordinate

systems (and transformations) is introducei. Target tracking in the form of

a Maximum Likelihood Estimator is discussed, The problem of interceptor

mis3 distance is treated from the standpoint of the uncertainty volumes

associated with estimated target state vectors.
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SECTION 1--INTRODUCTION

ARIES is a system simulation computer program developed by Lincoln

Laboratory to study radar tracking and coiuand guided intercepts in a

realistic radar environment. Written in FORTRAN and designed for execution J
on the CDC 6600 computer, it has considerable versatility in the specifica-

tion of radar, target, tracking and environmental models.

1.1 Program Purpose

ARIES is designed to be a useful analytical tool for several allied

areas. Originally ARIES was used in the strategic BMD area to estimate the

metric state vector (position and velocity) of tracked targets, and then to I
extrapolate ahead in time to determine an intercept point for an ICBM. The

radar measurements were subject to environmental effects which were reflected ,

in the intercept miss distances. Refraction and scintillation models were

used in ARIES, and the effects of various calibration schemes on target

location accuracies were studied. ARIES was also used to study the problem

of multipath in low angle tracking and to examine the effectiveness of

various proposed schemes to overcome degradations in prediction caused by

multipath. The use of ARIES in BMD studies was tenninated in the sulmner of

1974.
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More recently, a modified endoatmospheric version of ARIES, known as the

HWLPTR (Hostile Weapons Location Projectile Tracking Radar) Program, has been

used in the tactical area for the evaluation of a radar's performance in

"backtracking" an incoming artillery or mortar shell to determine its point

of launch. The resulting point estimation error CEP values also assist in

the evaluation of the drag model error effects and in the study of the overall

performance of hostile weapon location systems.

1.2 Program Features

Since the ARIES Program provides a fairly elaborate system simulation,

it is useful to tabulate the various features incorporated in ARIES. The

major components of the simulation are summarized below:

1. Target trajectories---accepts input of target state vectors in

several coordinate systems. Trajectories with launch angle, reentry

angle or minimum energy constraints from a given launch location to

an impact point are also available.

2. Radar models---both mechanically steered (dish) and phased array

radars are modeled. Radar sensitivity, beamwidth, frequency and

location are specified by inputs. Range and angle measurement

precision are also specified by inputs. J
3. Radar measurement modeling

a. Target modeling---static cross-section measurements on real

targets are used in conjunction with rigid body dynamics (Euler's

.. 1
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equations) to obtain realistic dynamic RCS simulations. Constant

and sinusoidal, as well as an analytic cylinder, RCS options are

also available.

b. Noise and propagation effects --- radar measurements are corrupted

by receive; noise (S/N dependent), range-independent noise effects

(jitter, quantization, etc.) and uncorrected propagation effects.

Tropospheric and ionospheric refraction are assumed to be cor-

rected to within random percentages (input parameters) of the

true values. Ionospheric scintillation and mnltipath effects

corrupt the data but are assumed to be uncorrected in the

measurement model.

4. Trajectory estimation (Target Tracking) -- -Maximum Likelihood Estima-

tion (M.E) of the target trajectory is performed based on measurementi;"
data collected at specified PRF's over specified track intervals.

Individual measurements are weighted according to their measurement

variances. ARIES could be easily extended to use recursive tracking

algorithms.

S. Target Discrimination--- (Not presently implemented.) Conceptually,

discrimination algorithms would be implemented to det-rmine whether

a particular simulated target constituted a threat to the defended

area.

6. Interceptor modeling---(Not presently implemented.) Flight charac-

teristics of one or more interceptor types would be utilized to

3

-~ ~ ~ ~ ~~w jg~ -'•~,, • •,•. ,•4.,_z ....ilk-•_ . .. .,.. .



conduct a command guided intercept. Currently, the program extra-

polates the estimated and true target state vectors to various time

(or altitude) points after termination of track to obtain miss

distances. Miss distance statistics are computed from the accumiu-

lated miss distances observed on a series of Monte Carlo tests.

In addition to the above simulation components, ARIES also accommodates

multiple radars, multiplc targets and multiple track intervals on a given

simulation run. The feature of malking many Monte Carlo runs for a given

scenario permits the generation of meaningful miss distance statistics. A

building block/subroutine program structure lends itself to reasonable

straightforward modifications of or additions to the program.

The input/output of the ARIES Program is engineer oriented. For input,

simulation data cards are conveniently grouped into "packets" (each packet

defines a target model, a radar model, an environmental model, etc.) which

the engineer may simply stack up, together with packets specifying the desired

simulation "scenario" For output, an 8½1" x 11" ARIES Test Report (see

Appendix II of Reference 1) is generated which provides the engineer with

descriptions of his input model parameters and scenarios, along with the

resultant shiulation data and statistics. The outputs are all organized into

Flogical sections which are indexed -for ready reference. Outputs from ARIES

also include trajectory plots superimposed on a world map, plots of true and

measured target cross-section, and a radar measurements tape containing metric

and RCS data fo-,c processing by other programs.
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1.3 Program Documentation

Th- ARIES Program is documented in three separate Lincoln Laboratory

Technical Notes as follows:

1. The ARIES Program - A General Overview and Users' Guide

2. The ARIES Program - Coordinates, Transformations, Trajectories and
Tracking

3. The ARIES Program - Analysis and Generation of Simulated Radar
Measurements

The first report presents a general discussion of the ARIES Program,

including the logical organization of the program and descriptions of all

subroutines. All of the options available to a user are discussed and the

methods of setting up the input "packets", including controls to activate the

various options, are presented. A typical run, including a complete ARIES

Test Report (output), is discussed in this first volume.

The second and third volumes contain all of the relevant mathematics and

the models used in ARIES. Most of the det!rministic mathematics (coordinate

systems and transformations, trajectory generation and estimation, miss

distance calculations, etc.) are in the second report. The third report is

primnarily concerned withthe generation of radar measurements, including the

corruptive effects of noise, radar biases, propagation and time-varying radar

cross-section.



1.4 Organization of This Report

In Section 2, some aspects of the WGS66 earth model are presented. This

includes a truncated version of the series representation of the gravitational

field. The various coordinate systems used in the ARIES Program are defined

in Section 3. Target accelerations due to gravitational forces and due to

atmospheric drag forces (not imiplemented in ARIES) are derived in Section 4.

A simple predictor-corrector algorithm for the integration of the target

equations of motion is also derived. In Section 5, all of the transformations

among the various coordinate systems are derived. The problem of defining

realistic target trajectories is addressed in Section 6. Only targets which

are launched from and impact on the earth are considered. For given launch and

impact points, the user can also specify the launch elevation angle or the

7 ~reentry angle or he can request a minimum energy traj ectory. The trajectories

are first derived for a central force field (Keplerian motion.) and thenj

perturbed to account for the actual gravitational field. Section 7 presents

one type of target tracking algorithm; namely, an "after-the-fact" maximum

likelihood estimate of the trajectory which best fits the accumulated radar

measurements. From the state vectors generated by trajectory fitting on

several Monte Carlo runs and the known (true) target position, one can develop

an error covariance matrix representing the uncertainty in predicted target

position at an assumed intercept point. This covariance matrix and the related

handover error ellipsoid and error sphere are presented in Section 8.

6



SECTION 2--EARTH MIDEL

The model for the earth used in the ARIES Program is taken directly from

the 1966 World Geodetic Survey (WGS-66). In this model the earth's shape is

given as a surface of revolution obtained by rotating an ellipse around its

minor axis. The resulting surface is referred to as an ellipsoid or as an

oblate spheroid. As part of this same su-rrey, the coefficients required for

an expansion of the earth gravitational field in spherical harmonics were also

derived from the measured data.

The parameters of the WGS-66 earth model, as used in the ARIES Program,

will be defined and summarized in the following sections.

2.1 Earth Ellipsoid

The representation of the earth as an ellipsoid is principally a matter

of mathematical convenience; that is, actual points on the earth's surface will

depart "n varying amounts from the corresponding points on the ellipsoid.

However, on average, the ellipsoid will be a good representation. The earth

ellipsoid is defined by the Equatorial and North polar radii (semi-major and

semi-minor axes). These values are:

Re - 6378.145 Km (2-1)

Rn = 6356.760 Km (2-2)

Two other parameters of the ellipse, the flattening factor f and the eccentric-

ity e, are also of interest

"Ell1
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f --- E--= •(2-3)
e

[1 =f2f .081820 (2-4)

The oblique view of the earth given in Figure 2.1 and the cross-sectional

view given in Figure 2.2 aid in the definition of positions on the earth

surface. Longitude is defined as the angle between the plane containing the

Greenwich meridian and a plane containing any other meridian; longitude is

measured in an easterly direction from the Greenwich meridian.

The earth rotates around its polar axis, as indicated in Figure 2.1, with

an angular rate of

W = 7.29211515 x 10"5 radians/second (2-5)

There are two latitude angles defined for the earth ellipsoid, as indicated

in Figure 2.2. Both angles are referenced to the equatorial plane. The

geodetic latitude € is defined as the angle between the local normal to the

earth ellipsoid and the equatorial plane. Mathematically, it is defined by

tan -- 1 - (l-f)1Te (2-6)

1 ztan€ 1 ; ir/2 o 7i/2 (2-7)
(i-f) 2 

?n

8
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Fig. 2.1. Oblique view of earth.
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Fig. 2.2. Cross-sectional view of earth.
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Note that the extension of the local normal to the equatorial plane does not

in general pass through the center of the earth (exceptions occur when 4-0 and

*=T/2). The geodetic latitude is the usual survey latitude. It is also the

latitude determined from astronomic observations.

Geocentric latitude *c, on the other hand, is simply the angle formed by

the equatorial plane and a vector from the center of the earth to a point on

the earth surface. It is defined by

tanoc = z (2-8)c n

or, in terms of geodetic latitude,

tanoc - (1-f) 2 tano (2-9)

The radius of the earth at an arbitrary location on the surface can be

expressed as

R = nn1 co2c (2-10)

41-e2CO2sZc

or, in terms of geodetic l1P4--,Ae,

R R Rl-cesin24i (2-11)

It is frequently necessary to compute the altitude of a target above

the earth ellipsoid. That is, for a target at a location (noZo) outside the

I10
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ellipse, it is desired to find the minimum of

,h = 4(,o-n) 2 + (zo-z) 2  (2-12)

subject to the constraint that (n,z) is on the surface of the ellipsoid:

S2
2 + z R2(2-13)

(1-f) 2  e

A direct attack on this minimization leads to a quartic equation which is very

difficult to solve. Fortunately, the eccentricity of the earth ellipsoid is

quite small and a reasonably accurate approximation can be made. This approx-

imation is simply to take the difference betwtuen the distance frcM the center

of the earth to the target and the radius of the earth in the same directi.on:

Shh (2-14)

where0 0 l 2 osA

r0 = /r 2 
+2 (2-15)

and

cosA= (2-16)"0 
IJ-

A detailed evaluation of the error in this simple relation for h° has not been

made; however, sample computations indicated worst-case errors of the order of

ii _



10 meters for altitudes around 2000 Km and about 4 meters for altitudes around

700 Km.

For the purposes of the ARIES Program, the above model for ho is probably

adequate. However, a refinement trý the relation can be made by taking first

order perturbations of n and z around ho. Such a procedure yields

h h (l-c2cos2A) (2-17)

Sample calculations indicate wcrst-case errors of only 3 meters for h = 2000 Km

and only 0.5 meters for h = 700 Km.

Assorted coordinate systems associated with the earth model and appropriate

transformations between each pair of these coordinate systems will be defined

in Sections 3 and S. j
2.2 Earth Gravitational Field

The gravitational potential of the earth is generally expanded in a

series of spherical harmonics. The most important component of the potential

is the point mass potential

V (r) (2-18)

where the gravitational constant G is

G = 3.986012 x 1014 (meters) 3/(second) 2  (2-19)

12
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and r is the radius from the center of the earth. Additional contributions to

the gravitational potential result from the mass distribution of the earth.

These perturbations of the point mass potential are expanded in spherical

harmonics. One series of harmonics depends only on latitude; these are called

the zonal harmonics. All remaining terms of the harmonic series have a

dependence on both latitude and longitude; these are called tesseral harmonics.

The ARIES Program only considers the zonal harmonics in the gravitational

potential model. That is, the potential is given by

9 (Ren
V(r) = \~ i~(sinA] (2-20)r n=2 n

where Cn is the coefficient of the nth zonal harmonic and Pn(, is the

Legendre polynomial of the first kind of order n. The angle A is the angle I
between the equatorial plane and the vector from the center of the earth to

the target position. The first order harmonic is zero as a result of the

symmetry of the gravitationaJ ficld. Since the coefficient of the secondI

zonal harmonic ir roughly three orders of magnitude greater than all. other

coefficients, the ARIES Program is further simplified to include only the

point mass potential and the second zoal gravitational harmoniL. (Additional

zonal harmonic coef/iints, th.)ugh the ninth, are available in the ARIES

Program; they are easily implemented in Subroutine GRAVTY.)

1i
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Values for the harmonic coefficients in the gravitational potential model

are

C2  1.08271 x 10 -

C3 =-2.630 x 10-6

C4= -2.35 x 10~

C5 =-0.265 x 106

C=0.66 x106

C7 = -0.46 x 10 6

Gb = +0.53 x 1

C9 =0.24A x 100 (2-21)

14
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SECTION 3--COORDINATE SYSTEM

Several different coordinate systems are used in the ARIES Program. The

various operations performed i, the Program (e.g., trajectory integration,

target tunbling, radar measurement generation) all have preferred coordinate

frwaes for their evaluation. In the sections below the various coordinate

systems employed by the ARIES Program are defined. The transformations

between the various coordinate systems are presented in Section 5.

3.1 Earth Centered Inertial Frame (ECI)

A primary inertial frame employed by the ARIES Program is the Earth

Centered Inertial (ECI) frame. The origin of this frame is at the center of

the earth, the z-axis passes through the North Pole, end the equatorial plane

of the earth lies in the x-y plane. At the reference time (typically the

launch time of the target), the x-axis of the ECI frame passes through the

Greenwich meridian. The x, y, and z axes shown in Fig. 2.1 form an ECI frame

if the axes are held fixed in space rather than rotating with the earth.

The equations of motion for ballistic targets have their simplest form in

the ECI frame. Consequently, it is the preferred frame for trajectory genera-

tion and trajectory integration.

3.2 Earth Centered Fixed Frame (ECF)

This frame is essentially the same as the ECI frame, except that it

rotates with the earth. Usually the x-axis is defined to point through the

S~15
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equator at the Greenwich meridian and the y-axis is defined to point through

the equator at 900 East longitude.

The ECF frame is a convenient frame for the definition of locations on

the earth surface. Radar sites, target launch points and target impact points

are fixed points in an ECF frame.

3.3 Radar Coordinate Systems

There are four different coordinate systems associated with the radars.

Z"',Two of these are peculiar to a phased array radar (XRF, Y , Z~ and R, U, V).

One coordinate system (R, A, E) is associated with a conventional, mechanically

steered radar. The fourth coordinate system is an earth surface fixed frame

or radar XYZ frame. Radar measurements are typically made in either RAE or

RUV coordinates. The cartesian frames are useful for many computations and

provide the necessary cartesian frames for definition of RAE and RUV coordin-
ates.

3.3.1 Radar Cartesian Coordinates (XYZ)

The Radar Cartesian Frame is defined such that the X-Y plane is tangent

to the earth ellipsoid and the Z-axis is pointed outward along the local

vertical. The X-axis points East and the Y-axis points North. This set of

coordinates is illustrated in Fig. 3.1. Usually the origin of this coordinate

frame will coincide with the radar location or with the target launch point.

If the radar is not located on the earth ellipsoid, but is actually at height

H above the ellipsoid, then the radar X-Y planeL will be parallrl to the tangent

plane to the earth ellipsoid.

16
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3.3.2 Radar RAE Coordinates

The RAE coordinates are defined relative to the radar cartesian coordin-

ates as indicated in Fig. 3.2. R is the distance (range) from the origin (the

radar) to the target. The azinuth, A, is the angle from the Y-axis (North) to

the projection of the range vector, R, into the X-Y plane. Azimuth is measured

clockwise from North toward East. The elevation angle, E, is measured (positive

up) from the X-Y plane to the range vector, R.

3.3.3 Phased Array Radar Face Cartesian Coordinates

The cartesian coordinates (XR, YRF ZR) are defined with respect to the

phased array radar face as indicated in Fig. 3.3. The radar face lies in the

XF-YRF plane, with the XRF-axis horizontal and the YRF-axis pointing upward.
The ZRF-axis points outward along the normal to th,,• array face. i-

The orientation of the phased array face is defined by the azimuth and

the elevation of the phased array boresight (i.e., the phased array Z-axis).

Azimuth and elevation, in this case, a~r measured in the same sense as defined

above for radar RAF coordinates.

3.3.4 Phased Array RUV and Ria6 Coordinates

The RUV and Ra8 coordinate systems are def 1 relative to the Phased

Array Radar Face Cartesian Frame. R is the di:, .ice (range) from the origin

(the radar) 1:, t-ie target. Target direction in angle is measured by the

direction cisines with respect to the XRF and YRF axes. These direction

17
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cosines ire designated U and V, respectively. Note that conical surfaces sT

about the XRF and about the YRF axes are defined by U = constant and by V =

constant; the intersection of these cones defines the direction to the target.

(In the usual spherical coordinate system (Ro4) 0 defines a cone about the z-

axis and 0 defines a plane containing the z-axis; the intersection of the

conical surface and the plane defines target direction.)

The angles a and 8 can also be used to measure the direction to a target

with respect to the Phased Array Radar Pace Cartesian Frame. In this case, a

and B are the arcsines of U and V, respectively. Note that (n/2-a) and (-n/2-8)

are the direction cosine angles with respect to the XRF and axes. TheR

phased array broadside direction is characterized by U = V = 0, which corres-

ponds to direction cosine angles of 7r/2 (and, therefore, a = 8 0). 1

L:: 3.4 Target Coordinate Systems :I

The target tumbling and RCS generation program, utilize several different

coordinate systems whici are unique to this particular subject. In particular,

the following frames are employed:

1. Principal body axes frame - this frame has its origin at the center

of mass of the object and rotates with the object. 4

2. Momentum frame - this is an inertial frame with its z-axis aligned

with the momentum vector. (The momentum vector is invariant in an

inertial frame.)

18



3. Local horizontal frame - this frame has its z-.axis in the direction

of the ECI velocity vector and its y-axis normal to the trajectory

plane.

These frames are inter-related by the target Euler angles. The local

horizontal frame is directly defined from the target position and the target

velocity in the ECI frame.

Complete details about these coordinate systems and transfonrations among

them are presented in Section 7 of Reference 2.

ki

II
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Fig. 3.3. Phased array radar face cartesian coordinates.
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SECTION 4--BALLISTIC EQUATIONS OF MOTION

In thi, Section the equations of motion for a target on a ballistic

trajectory are presented. The first part gives the required relationship for

target motion in the presence of only the gravitational field of the earth.

Atmospheric drag effects are not included in the acceleration model for

the ARIES Program, but it seems desirable to explain how they -iight be added

to the model. This is done in Section 4.2.

The last part (4.3) explains the predictor-corrector technique for

trajectory integration in the ARIES Progrem.

4.1 Target Acceleration Due to Gravity

A target located at a position (x,y,z) outside the surface of the earth

experiences gravitational forces which result in the following target accelera-

tions*

VV(r) (4-1)

t.here V is the gradient operator

x ýLxx {y3y+ ~z~ZI

and V(r) is the grav.tational potential function defined in Section 2.2. Tar-

get position is given in the ECI coordinate frame. The three cartesian

components of the acceleration vector can be shown to be:

*Lower case script characters denote vector (or column matrix) quantities.

Upper case script characters denote matrices.
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x--- 1  (4-3)

r3

-Z91 9 (4-5)
r3  r3

where

7.g - n=2(R~nCPn?(s i) (4-6)

9 = (R e snA (4-7)

In these relations Pn(. is the derivative of the Legendre polynomial with

respect to its argument. Also,

r =jX_ 2+y_+_Z2' (4-8)

and

siPA z (4-9)
r

The following recursion relation for the derivatives of the Legendre poly-

nomials

P+(ax) =(2 + )[c1P (cc) ý P~((x)] +Pn' (a) (4-10)
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is useful for the computation of g, and g2 " Note also that

Po(a) 0, P'(a) = 1 and P'(c) = 3a. (4-11)

Given the target position and the target velocity in the ECI frame at a

particular reference time, together with the above definitions for target

accelerations, the motion of the target in the ECI frame is completely defined
over the entire trajectory. This statement, of course, ignores any effects

due to atmospheric drag.

Subroutine GRAMTY is used to compute the gravitational accele'.,ation

components of a target state vector.

4.2 Target Acceleration Due to Atmospheric Drag

The ARIES Program does not include the ta.-get deceleration effects caused

by atmospheric drag. However, for completeness, a brief discussion of

atmospheric drag is included,

Atmospheric drag results in a component of acceleration in the direction

of the velocity vector given by:

aD -- A P v g -2)

where

CD coefficient of drag of the reentry body

A cross-sectional area of the reentry body

P atmospheric density
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v = body velocity (magnitude)

w = body weight

g = acceleration of gravity

The parameters CD, A and w depend on the shape and size of the target and

would have to be inputs to the ARIES Program. Atmospheric density is a

function of several parameters including altitud'2, temperature, latitude, and

longitude. An appropriate atmospheric density profile would also have to be

input to the program, either as an analytic formula or as a table. Body

velocity is in either an ECF frame or an earth surface fixed (i.e., radar XYZ)

frame. With the following dufinition

(4-13)

target acceleration due to drag can be written asD C' vx
a = -C' vy=" '%Vy I

aDz =-CI v (4-14)

where vy and v are the three cartesian components of velocity in an ECF
x' y z

frame. These accelerations must then be transformed to the ECI frame and

added to those due to gravity to obtain total target acceleration in the

atmosphere. (The atmosphere is typically defined to cover the altitude regime

from 0 to 300 Kft (91.44 Km). Re-entry altitude is defined to be 300 Kft in

the ARIES Program.)

25
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The addition of atmospheric drag would result in a better modeling of

target motion. However, it would add considerable complexity to the ARIES

Program, particularly in the trajectory generation and trajectory estimation

areas, without any significant impact on the radar measurement modeling which

is a major part of the ARIES Program.

4.3 Predictor-Corrector Trajectory Integration

Trajectory integration in the ARIES Program is performed with a predictor-

corrector integration scheme. The procedure for integration from ti = 0 to

t 2 =At is explained below.

If the accelerations at the beginning, a(O), and end, a(At), of the inter-

val were known, the acceleration over the interval could be approximated by a

straight line:

a(t) = a(0) + a(At)-a(O) -(4-15)
At

The position and velocity at time At are then obtained from

At t
x(At) = x(O) + v(O)At + I dt I a(T)d¶ (4-16)

0 0

= x(O) + v(O)At + a(O) (At)2/2

+ [a(At)-a(O)] (At) 2/6 (4-17)

and

v(At) = v(O) + a(O)At + [a(At)-a(O)IAt/2 (4-18)
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In practice, of course, a(At) is not known so the integration must be

done in two steps. First, based on the known target position at t - tj, the

accelerations ax, a> and az are computed from the gravity model. Then, target

position and velocity are predicted for time t = t t1 + At:

xp(t,+At) : x(t,) + v(t,)At + a(tl)(At) 2 /2 (4-19)

v (t +At) = v(tl) + a(t1 )At '4-20)

From the predicted position at t = t 2 , the end-point accelerations are computed.

Then a final correction of the predicted (integrated) position and velocity

is made:

x(t 2) = Xp(t 2 ) + [a(t2)-a(t)] (At)2-/6 (4-21)

V(t 2 ) = Vp(t 2 ) + [a(t 2 )-a(t )]At/2 (4-22)

This procedure is, of course, performed simultaneously on all three cartesian

coordinates of the ECI state vector.

The extrapolation (integration) of a target state vector from tj to t, is

performed by Subroutine E.XTRAP (X,T2). The components cf the input target

state vector X are:

X(l) = TI, valid time of the state vector

X(2-4) = ECI positions in x, y, z

X(5-7) = ECI velocities in x, y, z

X(8-10) = ECI accelerations in x, y, z

X(11) = target altitude
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Integration is performed with a maximum step size of 1 second to prevent a

buildup of errors. (Tests have indicated that 't ; 1 second gives very

accurate results.) The target state vector is valid for the time T2 when it

is returned to the calling program from Subroutine EXTR'd-P.

Al

.I
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SECTION 5--COORDINATE TRANSFORMATIONS

The ARIES Program utilizes several different coordinate systems as defined

in Section 3. Results of operations performed in one coordinate system are

frequently required in a different coordinate system. For example, a trajec-

tory is integrated in an ECI frame, but it is used in a Radar RAF (or RIV)

frame for the generation of radar measurements.

This Section presents all coordinate transformations relevant to trajec-

tory generation, trajectory estimation and tracking error evaluation. Some

additional transformations involving body coordinate systems for RCS generation

are given in Ref. 2, Section 7.

5.1 Between ECI and ECF

At the reference time (usually t = 0), the ECI and ECF frames are

coincident. Both have their x-axes through the equator at the Greenwich

meridian and their z-axes through the North Pole. At a later time t the ECI

frame is unchanged but the ECF frame has rotated with the earth through an

angle Wet. Let the subscript I indicate a component in the ECI frame and the

subscript F a component in the ECF frame. Now it is easily shown that the

rotation around the z-axis by an amount Wet results in the transformation

XC cosw t sinw t 01FFe e jI]

YF -'wt coswet 0 j (5-1)

L lj0LJ i
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or, by defining the coefficient matrix as 6(t) and the position vectors as x

and XF

F ((t)I-2)

If one takes the time derivative of Eqn. (5-i), the following transformation

of the velocity vector is obtained:

=W G0jk 0 [w j{ = G(t) (5-3)

where the dot over a vector (or, a vector component) indicates a derivative

with respect to time. The second term in Eqn. (5-3) results from the contin-

uous rotation of the ECF frame relative to the inertial frame. For the ARIES

Program we require only position and velocity transformations between ECI and

ECF frames. Target accelerations are used only for trajectory integration

(ECI frame) and therefore do not have to be transformed.

The transformation matrix G(t) represents an orthonormal transformation.

Consequently, G(t) is orthogonal; i.e., the inverse is equal to the transpose:

G(t) 1 = G(t)

The reverse transformation, from ECF to ECI, is therefore given by

X G(t)T x (5-4)

*Script characters denote matrices (lower case for cohlmn matrices; upper case
for N x M matrices).
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for positions and by

forvlcii sr

JzweYF

k ~) k -x -G-t +Wx (5-S)

for velocities.

Subroutine ECIECF (XI,XF,TIME) is used to transform the state vector XI

in ECI coordinates to the state vector XF in ECF coordinates. TIME is the

interval in seconds since the two frames were coincident. Subroutine ECFECI(XI,

XI,TIME) performs the inverse transformation.

5.2 Between ECF and Radar XYZ

Consider a radar located at geodetic latitude ,, longitude x (measured

east from the Greenwich meridian) and at height h above the earth ellipsoid.

The process of transforming from the ECF frame to a radar XYZ (East, North,

Up) frame can be visualized as the following sequence of operations:

1. Rotation by angle x about the z-axis.

2. Rotation by angle A about the y-axis.

3. Translation by the local earth radius along the x-axis.

4. Rotation by angle (0-c) about the y-axis.

S. Translation by h along the x-axis.

6. Coordinate interchange to obtain the desired East, North, Up sequence.

.'
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The appropriate matrices for these operations are:

-1. [cosx sinX 0

B -sinX cosX 0 (5-6)

0 0 1

2. cosiy 0 ' i

C 1 0s where tan c=(1-e 2 )tan4 (5-7)

[:e hj where Reh = l1- 2COS 24Oc,(8

-sin(€-c) 0 coso(4-Pc)J

35. -

-:'h= : (5-10)j

Fh¢R
in

6. [ C 0

5.-h . -

h 0 (5-10)

L 0
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If the subscript R refers to the radar frame, then we can write

X= {EDCB}xF + E{h+DAe} (5-12)

When the indicated matrix multiplications are performed, the resulting

relations are:

XR = AxF + b (5-13)

where

[ -sinX cosX 0 1
A = j-siný cosX -sino sinx cosý (5-14)

Icosý sinx si
L cos" cosX sinij

and

0
b = Rh sin(-ýc) (5-15)

-Reh cos(0-%c)-h

Since b simply represents a translation, it does not enter into the

velocity transformation. For the velocity transformation f:'om ECF to radar

XYZ, we have simply:

R= AkF (5-16)

The matrix A is orthogonal, so the inverse transformation, Radar XYZ to

ECF, is

33
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FY1 x A xR Ab (5-17)

and

k, A kR (5-18)

"The transformation matrices A and b are initially computed in Subroutine

SETUP(W,A) where W is a three vector containing radar longitude, geodetic

latitude and height above the earth ellipsoid. The A and b matrices are

returned in the transfer vector A. This vector A is then passed to Subroutines

ECFXYZ(XF,XR,A) and XYZECF(XR,XF,A) to perform the actual coordinate trans-

formations.

5.3 Between Radar XYZ and RAE

The Radar Range, Azimuth and Elevation are defined in Section 3.3.2. They

are related to the Radar XYZ coordinates as follows:

R = jx2+y2+z2

-1
A =tan (x/y), 0 A 2w (5-19)

E = sin (z/R), -'/2 </2

The proper quadrant must be determined for A so that A ranges from 0 to 2w.

Time derivatives of R, A and E yield:
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These transformations from Radar XYZ to Radar RAE are performed by Subroutine

L XYZRAE.

The transformation from RAE to XYZ is performed by Subroutine RAEXYZ with

the use of the following relations:

x =R sinA cosE

y =R cosA cosE

z =R sinE (5-21)

and

Jk S s inA + yA

S cosA -xA

I s inE + R cosE (5-22)

where

S 1~cosE - RE sinE (5-23)
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5.4 Between Radar XYZ and Phased Array XYZ

The definition for the Phased Array XYZ coordinate system was given

previously in Section 3.3.3. Basically, the orientation of the arrayI face is

defined by the azimuth A• and the elevation lp of the normal to the arrav face.

The array face lies in the xp-yp plane with x horizontal and vp up. The z 5

axis is aligned with the array normal. (The subscript p has the same meaning

as the subscript RF used in Sections 3.3.3 and 3.3.4.)
If we start with the arrav face coordinates coincident with the radar x)":

i I i

frame (that is, the array is pointed up), then the following sequence of

transformations gives thie desired Radar .ý'C' to Phased .,rrav X.Y"' trans formation:

x -1 0 1 0(0 os.\ -sinA\0Xp 1 0 sinE -cosE s in\ cosA 0 (5-24)

0 10 cosE sinE 0 0 1!R

or,

-1p A 5 -2 5rpR

where

[ c nA o
4 /-io snl s,5-26,

AiPrLI sPnEr -cos:.p Sin:.L, cos) p . .,

L.sirL cosE• cos-ýA cosE, -i nLJ
L p'
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Note that when Ap= E= 0 (i.e., the phased array is pointed north), Xp=-XR,

= zR and zp YR' as would be expected from the definition of the phased

array XYZ coordinate system.

The velocity transformation is simply

k2 =A (5-27)p rp R

Since the "trix A is orthogonal, the transformation matrix for con-
rp

verting from Phased Array XYZ to Radar XYZ is simply the transposed matrix ArpT

Subroutine XYZXRF(XR,XP,Y) is used to convert a state vector xR in Radar

XYZ to a state vector x in Phased Array XYZ coordinates. The reverse trans-

formation is performed by Subroutine XRFXYZ(XP,XR,Y). In both Subroutines the

two element vector Y contains the azimuth Ap and elevation E of the phased

array normal.

5.5 Between Phased Array XYZ and RUIV

The Phased Array range and "angle"' coordinates RUV are defined by:

R "f&2+y2+z2ypp pP"

U = xp/R = sina, -1 s U 5 1

V = R.= sinB, -1 = V s 1 (5-28)

The velocity relations are obtained by taking derivatives of Eqn. (5-28):
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R = p / +z R )/R
p p Pp p

U U IJ)/R
p

S= ,-VR)/R (5-29)

The transformation from Phased Array XYZ coordinates to Phased Array RUV

coordinates is performed by Subroutine XRFRUV(XP,RUV).

The inverse transformation, from RUV to Phased Array XYZ, has the

following relations:

X = RU

Y = RV

Z - R1-U2-V2 - RW (5-30)

and j
u ,U + RM

k V + RV
R(UJ+VV) (5-31)

Z- - -'

This transformation is performed by Subroutine RUVXRF(RUV,CP).

5.6 Target Coordinate Systems

The target tumbling and RCS generation programs utilize several different

coordinate systems which are unique to this particular subject. These coordi-

nate systems are briefly defined in Section 3.4. A complete description of

38
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these coordinate systems and the transformations among them are presented in

Section 7 of Reference 2.

5.7 Other Combinations

The coordinate transformations defined above consider only transformations

between quite closely related coordinate systems. Other transformations may

be obtained by the use of a sequence of the above transformations. For example,

to transform a target state vector in the ECI frame to a target state vector I
in the Phased Array RUV frame, the following sequence of transformations would

be performed:

1. ECI to ECF (ECIECF)

2. ECF to Radar XYZ (ECFXYZ)

3. Radar XYZ to Phased Array XYZ (XYZXRF)

Phased '--ray XYZ to RUV (XRFRUV)

The m.n.es in parentheses are the names of the ARIES Subroutines which perform

the indicated transformations. This particular transformation (ECI to Phased

Array RUV) and the transformation from ECI to Radar rA, are qui-e important

and, consequently, they are available by calling a single Subroutine ECIRAD

(XI,W,N,TYPE. .7 is input state vector in ECI coordinates, W is the out-

put state vector in Radar coordinates, N is the identification number of the

Radar (for use in multiple Radar coverage) and TYPE identifies the radar as

either a dish radar or a 3ed array radar.
•4
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The coordinate transformations defined in Sections 5.1 to 5.5 provide all

the information required to transform a state vector from one frame to any

other frame. More than orn• subroutine may have to be called, as in the above

example, but the key point is that the capability does exist.

5.8 Radar Coverage Limits

A conventional dish radar usually has the capability of illuminating and

tracking a target over the entire hemisphere above the local horizon plane.

On the other handa phased array is usually a permanently fixed installation

(the array normal direction does not change). Consequently, the coverage of a

phased array radar face is limited to a fraction of the hemisphere. Typical

phased array coverage lies in the range of 1/4 to 1/3 of a hemisphere.

For a phased array radar, in particular, it is important to test the

target state vector to determine whether the target lies within the assumed

field of view of the phased array. This test is performed on the RAE target

state vector in Subroutine LIMITS(N,RAE,FLAG). The radar number N and the tar-

get state vector in RAE coordinates are inputs to the subroutine. FLAG-l is

returned if the target is in the field of view; FIAG=O, otherwise. For a dish

radar, the test simply amounts to checking that target elevation is greater

then zero. A phased array radar, on the other hand, is assumed to have the

capability of viewing a sector in azimuth and elevation about the boresight

pointing direction. For example, if the boresight azimuth of the phased array

is , then one-third hemisphere coverage is achieved by applying azimuth

bounds of Ap - 7/3 and A + T/3 and elevation bounds of 0 and 1T/2. Both

40
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azimuth and elevation are checked against the phased array radar coverage

bounds to determine whether the target is within the field of view. Note that

it is easier to define phased ar-ray coverage limits in azimuth and elevation,

rather than the normal phased array U and V coordinates.
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SECTION 6- -TRAJECTORY GENERATION

The ARIES Program requires the capability of generating a wide range of

target trajectories to simulate various radar/target geometries. For the

present requirements, it is sufficient to consider only target trajectories

launched from and impacting on the surface of the earth. In addition,

atmospheric drag is ignored and the trajectories take the short way around the

earth from launch to impact.

The trajectory generation process requires the following inputs:

1. Lunchlonitud an geoeti lattud

2. Imauct longitude and geodetic latitude

3. Type of trajectory

a. Launch angle specified, or

b. Re-entry angle specified, or

c. Minimum energy

The procedure used in the generation of a trajectory is to first get a good

trajectory estimate using Kepler's equations for satellite motion in a central

force field. Perturbations of this first estimate are then made to account

for the zonal harmonics of the gravitational field and to account for the

oblateness of the earth ellipsoid.

Section 6.1 contains a brief summary of the equations which define the

motion of an object in an elliptic orbit around the earth (central force field

only). This is followed by a discussion of initialization of the trajectory
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state vector subject to the launch, impact and type of trajectory constraints

in Section 6.2. Finally, the procedures employed in perturbing the initial

state vector to obtain the desired precise state vector are presented in

Section 6.3.

6.1 Equations for an Elliptic Orbit

In this Section, a set of equations is developed for target motion in an

elliptic orbit which intercepts the surface of the earth. Figure 6.1 illustrates

the geometry of the prcblern as viewed in the plane of the trajectory. (Note

that this plane is only defined in the ECI frame.) Since two of the trajectory

types considered involve specification of angles (launch angle or re-entry

angle), the following derivations of the orbit parameters contain launch

elevation as an explicit variable.

Most standard physics textbooks contain the derivation of the orbital

motion of an object in the presence of the point mass gravitational potential.

They are sunmarized here for the gravitational potential of the earth.

Radius (center of earth to ellipse):

r a le2) (6-1)r Tecoso

where a is the semi-major axis, e is the eccentricity of the orbit and 0 is the
central angle measured from apogee (see Fig. 6.1). Note that the true anomaly

is measured from perigee and is equal to (ir-o). The radius can also be defined

in terms of the eccentric anomaly Ec:

43



~~~~~-~~~l - 3z -- __ _ __ _ __ _ __1__ _ __

TRAJECTORYI

LANC IMAC

00* 0

Fig. 6.1. Geometry of an elliptic trajectory as viewed in the
orbit plane.
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r a(l-ecos) (6-2)

If these two definitions for r are equated, it can be shown that true anomaly

and eccentric anomaly are related by:

tan(Ec/2) = etan("2 • (6-5)

Two other parameters are also of interest:

Mean motion:

7 n = • (6-4)

Mean anomaly:

M = n(t-T) (6-5)

or.,

M Ec-esinEc (6-6)

where T is the time of passing perigee and G is the gravitational constant de-

fined by Eqn. (2-19). For a full orbit, Ec ranges from 0 to 2 N. i also goes

from 0 to 2i, so the orbital period is

T 2w•/n (6-7)

The total energy and the angular momentum are constants Lor the orbit. That

is,

-(t2 +r2 6 2 ) --G constant (6-8)r
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and

r26 H - constant (6-9

Now we want to express the various orbital parameters in tt;,ms of the

launch elevation. A first step is to demonstrate that the angle ai in Figure

6.1 is equal to 2E. As a means of proving this statement, write the equations

for the circle and ellipse as

= R (6-10)e

2

(x-ae)2  Y a2  (6-11)

l-e2

Then cowpute the unit vectors tangent to the circle and ellipse at the launch

point (Recos0o,Resin~o)0

i isinoo - ycosoo; circle (6-12)

.ýXsinoo - -< (cos(O -e)
- X 0 Y 0 ellipse (6-13)

e2-
Vl+e -ecoseo

The elevation angle E is now determined as the inverse cosine of the dot

product of the unit vectcrs iand 'ce:

1-ecoso
cosE=~. (6-14)c e =le 2-2cs 0
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Use of the identity cos2E = 2cos 2 E-l, yields

i-e 2 -2ecoso(l-ecoseo)
cos2E = (6-15)

l+e 2 -2ecoseo

Application of the Law of Cosines to the triangle formed by the vectors from

the foci of the ellipse to the launch point (see Figure 6.1) yields:

4a 2 e2 = R2 + (2a-R )m-2Re(2a-Re)cOSc (6-16)

e e e e~cs

This relation can be rewritten in the form

l-e 2 -2ecos% (l-ecose)
COSa 0 (6-17)

l+e 2 - 2eco sO0

when the definition

a = Re (l-ecosOo)/(l-e 2) (6-18)

is used. (This is Eqn. 6-1 evaluated at the launch point r - Re, 0 = 0.)

Inspection of the expressions for cosc and co52E demonstrates that a = 2E.

The Law of Sines can also be applied to the triangle to obtain an

alternate expression for the major-axis of the ellipse:

2a-Re ResnRe e R ' (6-19)

sin00 sin(Tr -2E -0
0 0
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or

R F ___

a r sT-eu (6-20)[ si G(E+%Jo 0

Also from this triangle we have that

2ae 2a-Re.(.-21s m-Ffi• = (6-21) ",<

The use of Eqn. (6-20) in Fqn. (6-21) yields, after some manipulation, the !:

following relation for eccentricity:

sine
e = i (6-22)

sin (E+O T 0I
If the total energy at apogee is equated to the total energy at perigee, then

it can be shown that the angular momentum, H, is given by

H = VGal(-e 2) (6-23)

Now, the total energy at launch can be equated to the total energy at apogee

(r= a(l+e) at apogee):

2 G _1 H2 G G
Re 2 a2 (l+e) a(l+e) -

or,

VL = .2aV (6-25)
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The use of Eqn. (6-20) for a gives the desired result:

v r2'G [ sino
L Re [sino+sion(2E+Oo) (6-26)

The eccentric anomaly at launch (see Eqn. 6-2) is given by

SCos' _e(6-27)

and the eccentric anomaly at impact is

ECI 2ir-ECL (6-28)

From ECL and ECI, the mean anomalies at launch and impact can be computed.

The difference between the two is

AM = MI-ML = 2 (r-EcL+esinEcL) (6-29)

Use of this value of AM, then yields an expression for time of flight

At = tI-tL = AM/n =VI AM (6-30)

This completes the sunmmary of the elliptic orbit parameters for object

motion in a central force field.
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6.2 Trajectory Initialization

The summary presented above in Section 6.1 gives the parameters of a

Keplerian eliiptic orbit in a convenient form for use ii, obtaining an initial

estimate ef the target state vector. In this Section, the equations will be

specialized to acconmnodate particular trajectory constraints.

Let the launch point have longitude XL and geodetic latitude L and let

the impact point have values xI and ýI. The geocentric latitude is readily
computed from the geodetic latitude. A unit vector from the center of the

earth to the launch point is given by

-4-L Acx cos4cL coSXL+4 COO cL sinX.+Tz sin cL (6-31)

During the flight of the target the earth rotates an amount wetf, where we is

the rotation rate and tf is the time of flight (initially unknown). The impact

longitude is rotated by this amount

XI, X I + (0etf (6-32)

and a unit vector in the direction of this rotated impact point is

I's c°S4l cosx 1'+,y cosýcl sin'+ sinmcl (6-3"•

The earth central angle, 200, between the launch and impact points is given

y by

cos2o0 = (IILj (6-34)
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or

cos2 0o = cosoel cOSoCL cos(XL-xl,)+sinocI sin5 cL (6-35)

It is ,, eful to have a vector in the trajectory plane which is orthogonal

to the l7aunch unit vector:

n= L = '- C°SZ®otL (6-36)

This vector is tangent to the unit sphere and in a direction from launch

toward impact. The magnitude of this vector is readily shown to be Isin(2%o)1,

soI

n
Zn =i-•i- = (ZI,-cos 2 %oZL)/sin20o (6-37)

Since the trajectories are assumed to always be the short way around the earth,

0 < 0o < Tr/2 and the magnitude sign on sin20o is unnecessary.

The velocity vector at launch lies in the plane defined by the unit

vectors iL and in. If the launch speed is vL and the launch elevation is E,

then the launch velocity vector in the ECI frame can be written as

= vL (L sinE+ ncosE) (6-38)

This velocity vector combined with a vector, RLiL, from the center of the 14

earth to the launch point gives a complete ECI state vector at the launch

point (RL is the radius of the earth at the launch point). By means of the

coordinate transformations defined in Section 5, this state vector can be put

, Sl
u ?I
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into any desired coordinate system. The remainir, part of the problem --

namely, assigning appropriate values to vL and E--is considered below.
VL

6.2.1 Minimum Energy Option

It is frequently desirable to fly the target along the trajectory which

requires the minimum amount of energy at launch. This is achieved by

minimizing the launch speed. The minimum launch speed in the L-. frame occurs

for a launch elevation of

S0
E T 0 (6-39)

Unfortunately, this is minimum energy in the ECI frame, rather than an earth

surface fixed frame where the minimum likely will occur under different

conditions due to coriolis effects. If the components of the launch position

are denoted by xL, YL' ZL and the components of the 'n vector by n , ny, nz,

then the velocity components in the ECF frame are

VL(sinE(XL/RL) + cosE nxi + weyL

vy --vL[sinE(yL/RL) + cosEfly -) eXL

vZ V L[sinE(zL/RL) + cosE nz] (6-40)

The magnitude squared of the velocity in the ECF frame is

v 2  v +2 2+e2) + 2.WeVL cosEyhnx-XLny) (6-41)L e L LxeyL

5?
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This relation indicates that the elevation angle which minimizes v2 will only

coincide with the elevation which minimizes v when the last term is zero.

The last term contains the z-component of the cross product of L and Ln which

is non-zero unless the trajectory plane (ECI) contains the North Pole.

The procedure employed for minimization of v2 is to search for the eleva-
tion angle E which results in zeio slope:

where IVLC°S({2E+O°)si~ i{E°o+B~~~°

"--"2L+ + cosEcoso (6-42)
- VL sno+ sin(2E+o 6-2

0 0

where

Se(yLnx-xLny)

Note that the minimum occurs at E = r/4 - 0/2 for a Polar orbit ($-=0). An
0

initial guess of E = n/4 - 00/2 is made, followed by steps of 0.01 radians

until the zero of dV2 /dE is bracketed. Then a two-point linear approximation

of dv2 /dB is used in an iterative scheme to locate the value of F. which

minimizes v2 . This value of E is then used to compute the orbit parameters a,

e, ECL' AIM and At. The new time of flight At is compared to the previous

value and the whole procedure repeated, unless the difference is less than one

second.

Finally, the ECI state vector with the position vector, RL•L, and the

velocity vector vL [given by Eqn. (6-38)] is transformed to an earth surface

fixed XYZ frame (Radar XYZ). The final optimization of the state vector (which,

among other things, accounts for flattening of the earth and for the effects

of the second gravitational harmonic) is discussed in Section 6.3.
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6.2.2 Launch Angle Specified

This option requires the determination of an initial velocity vector vL

in the ECI frame which when transformed to an earth surface fixed frame (at

the launch point) has the proper elevation of the velocity vector. That is,

if vx, vr and vz are the components of the velocity vector in the earth

surface frame, then

EF = tan- (vz/• ) (6-43)

must be made equal to the desired launch angle, ED.

An iterative procedure for the determination of the velocity vector vL

follows. For a given value of the elevation E in the ECI frame, compute the

corresponding launch speed (Eqn. 6-26), and launch velocity vector (Eqn. 6-38).

Convert the ECI launch state vector thus determined to an earth surface XYZ

frame at the launch point. Then compute the launch elevation angle from

Eqn. (6-43) and compare it to the desired value ED. If EF is not close enough

to ED (e.g., 0.001 radians), choose a new value of E and repeat the calcula-

tions. The initial choice of E is taken to be ED; thereafter, the new is

derived from the old as

En+l =En + (ED-EFn)

Once the elevation E and launch speed vL are determined, the orbit

parameters a, e, ECL, AM and At are computed. The new time of flight is
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compared to the previous value and the whole procedure repeated, unless the

difference is less than one second.

The final ECI state vector is then transformed to the launch point

"Radar" XYZ frame. Launch speed, azimuth and elevation are computed from the

Radar XYZ velocity vector to provide the initialization of the final trajectory

optimization discussed below in Section 6.3.

6.2.3 Re-entry Angle Specified

This option is very similar to tht described above for the launch angle

specified case. In fact, the initialization procedure is exactly the same,

except that the desired launch elevation is given by

ED = IERI + 0.017

where ER is the re-entry angle in radians (ER < 0). The additional 0.017

radians (1 degree) is the result of observing that typically re-entry angles

(magnitude) are smaller than the launch angles by 0.01 to 0.02 radians.

The procedures outlined in Section 6.2 above lead to reasonably good

estimates of launch state vectors based on a homogeneous, spherical earth

model. As a consequence of the simplified earth model, the target trajectory

will not impact at exactly the desired coordinates. The problem then is to

perturb the launch velocity vector in such a way that the target will impact
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at the desired point and, in addition, will satisfy the launch angle, re-entry

angle or minimum energy constraint.

An iterative technique for this launch state vector optimization is

51 presented below in a general mathematical context. Then the specific cases of

interest--launch angle specified, re-entry angle specified, minimum energy- -r~il are considered as three separate special examples.

6.3.1 A Solution of Nonlinear Equations

k:• The impact longitude, impact latitude and re-entry angle are nonlinear

functions of the launch velocity vector due to the oblateness of the earth and

due to the gravitational harmonics of the earth's field. In this section, an

iterative technique for perturbing the launch velocity vector, such that the I
trajectory will ultimately impact at the correct latitude and longitude with
the desired re-entry angle (if specified), will be presented. I

Let v be the launch velocity vector and let y be a vector containing the K
quantities--impact longitude, impact latitude and re-entry angle. Actually, I
it is the vector, q = y-•d, which is to be minimized. In this case, Yd is the

vector of the desired values of y. The relation between q and v can be -

expressed as I

q = f(v) (6-44)

where f(v) is a nonlinear function of the vector V. The objective is to deter- '

mine v such that q = 0. A perturbation AV of the vector v results in
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q + q= f(v+Av) + JAy (6-45)

where J is the Jacobian

3q, q q
av a a

2 3,

aq2  q2  aq
S -v-- (6-46)

Dq3  3q3  aq3

av 3 a
2 3

Now let v be an initial guess (obtained from the initialization described in

Section 6.2). Then,

qo f(Vo) (6-47)

If

q f(V +AV ) f(V) + JV
0 00 00

is to be zero, then it is required that

f(Vo) + JoAvo qo+JoAV 0

or,

AVo " = -Hoqo (6-48)

57



where H J J-. Now let

J, J +A (6-49)

be a new estimate of the Jacobian where A is a perturbation on the previous

estimate. Then

q, =f(V0 +AV0 ) = qo+J 1AV0

qO+JoAVo+AAvo

or

q, AAvo) (6-50)

since JoAVo = -JoHoqo "qo" The problem now is to determine the matrix A

such that Eqn. (6-50) is satisfied. If it is further required that

AAu = 0 (6-51)

for Au orthogonal to AVo; i.e.,

TAV U 0, (6-52)
0

then it can be shown that A has the unique solution

qA•vT
A = (6-53)

0 00
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This gives a new value for ,he Jacobian, Ji = Jo+Ao, but what is actually

required is the inverse of J

= H O i + qiv 0 ~

0 0
I Hoq I -1

H1 (6-54)

The well known matrix identity (Householder Identity)

(1+T)- =T I  VT

permits H1 to be expressed as

0H q16v HO
H1 =H o  01 00 (6-56)

AVooVo+AVToHoq

Thus, when initial guesses of v and Ho, are available (or computed), the

00

iterative procedure is to compute qonq f(Vo Vo H qo' t4' v +AV

tc., until lqn5 satisfies the desired error criterion. The initial value for
the vector vo is obtained by the procedures described in Section 6.2. l

Initialization of Ho is accomplished by perturbing vo, one component at a i

time, and computing the changes in the components of q; i.e.,

59



• • i!

Joii V I 0, kj (6-57)

The resultant matrix J is then inverted to obtain Ho" '

The iterative technique for the solution of nonlinear equations, described

above, is quite general. It will now be specialized to the cases of interest.

First note that the function f(v) used to relate v and q is simply the

ballistic equations of motion described in Section 4. The velocity vector, v,

[Launch speed 1 1
v= /Launch azimuth (6-58) 1

Launch elevation

is converted to earth surface fixed XYZ coordinates at the launch point. This

is followed by a conversion to an ECI state vector for use by the trajectory

integration routine. ',, trajectory is next integrated ' :ither the re-entry

altitude or the impact point (or both) and the appropriate values for the y

vector are computed, where

Re-entry angler
y= Impact longitude (6-59)

Impact latitude

The q vector is simply the difference between the computed y vector and the

desired vector

i
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6.3.2 Launch Angle Specified

For this case, the launch elevation angle is held fixed at the desired

value. Launch speed and launch azimuth in an earth surface (radar) fixed

frame are perturbed as described above. When the iterative procedure has

converged to the impact point (longitude and latitude), the launch velocity

vector still has the desired elevation angle but the launch speed and launch

azimuth are altered to achieve the proper impact point including the effects

of gravitational harmonics and the oblateness of the earth ellipsoid.

The constraint on re-entry angle does not apply in this case, so the

first column of the H matrix is set to zero to prevent perturbations of th3

velocity vector v due to re-entry angle errors. Also, the launch elevation

angle is not included in the perturbations so the third row of the H matrix

is set to zero. Thus,

H 22 H 23 (6-60)0 0
it is readily shown that tie method of updating the H matrix (Eqn. 6-56)

results in a propagation of the null elements after they are initially

zeroed.

Subroutine NONLIN (entry point SLV2) is called to perform the launch

velocity optimization when the launch elevatlon angle is specified.
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6.3.3 Re-entry Angle Specified

For this case, the re-entry angle enters the canputations as a constraint.

Also, the launch elevation angle is perturbed in the optimization. The H

matrix used in generating launch velocity vector perturbations therefore has

all non-zero elements. Convergence of the iterative procedure, in this case,

results in a launch velocity vector which impacts at the desired longitude

and latitude and which has the requested re-entry angle.

Subroutine NONLIN (entry point SLV3) is called to perform the launch

velocity optimization when the re-entry angle is specified.

6.3.4 Minimum Energy Optimization

The procedure for launch velocity vector optimization subject to the

minimum energy constraint is somewhat more caoplicated than the above two

. cases. It is first assumed that the initialization described in Section 6.2.1

is close to the true minimum. Then, the launch angle specified option is

called three times with E = Eopt, E = Eopt+AE and E = Eopt-AE, where Eopt is

the launch elevation angle derived from the initialization described in

Section 6.2.1 and AE is currently set to 0.005 radians. The three launch

speed-launch elevation pairs are next fitted with a parabola to determine the

elevation which minimizes the launch speed. A final call to Subroutine NONLIN

(entry point SLV2) with this elevation angle results in a launch velocity

vector corresponding to a minimum energy trajectory between the specified

launch and impact points.

62

-A



~~~~~~~~~~~~~~ .'. • :, , .-: /-• .'. ;-' • ' .:: , , . . -. : ;. .• ... ... '. .......-

6.4 TraJectory Information

The presentation given above concerns the generation of target trajectories

subject to certain constraints. There is the alternate possibility that a

target state vector for a particular trajectory is available for input to the I
program directly. In this case, it is desirable to determine various parameters

(e.g., launch point, impact point, re-entry angle) of the trajectory for

documentation of a particular run of the ARIES Program. The mathematics for

computation of the relevant trajectory parameters are presented below.

6.4.1 Input State Vectors

There are eight options for specification of a target trajectory as

explained in Reference 1, Section 5.3. Options 6, 7 and 8 are the minimum

energy, launch angle specified, jnd re-entry angle specified options which

require the trajectory generation processing discussed above. The other five

options require the input of a complete state vector in a particular coordinate

frame as follows.

1. ECI XYZ

2. Radar XYZ

3. Radar RAE

4. Phased array XRF

S. Phased array RUV

Each of these five options requires a state vector time of validity (tag time).

Options 2 through 5 also require the radar longitude, geodetic latitude and
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height above the earth ellipsoid to be specified in the input stream. Options

4 and 5, in addition, require the azimuth and elevation angles of the phased

array boresight. The ECI State Vector (Option 1) is referenced to a particular

longitude at the launch time (TAL - 0); this longitude is a required input.

(Option 9 for a satellite orbit has not been implemented.)

The first step in the handling of these input state vectors is to call a

series of coordinate transformation subroutines to finally obtain a state

vector in ECI coordinates referenced to the Greenwich meridian. This ECI

State Vector is then integrated backward in time to the launch point (Sub-

routine LAUNCH) and forward in time to the altitude of re-entry and to the

impact point (Subroutine IMPACT). The State Vector returned from Subroutine -

LAUNCH has a tag time referenced to time of Iaunch (TAL).

6.4.2 Launch, Impact and Re-entry Parameters

Both the LAUNCH and the IMPACT Subroutines require trajectory integration

to a specified altitude (zero for launch and impact points, 300 Kft. for

re-entry). At the specified altitude, the state vector is appropriately

transformed to determine the target longitude and geodetic latitude. The

launch elevation angle, impact angle or re-entry angle is also determined as

the angle between the velocity vector and the local horizontal plane. The

azimuth angle of the velocity vector at launch is also determined. Each of

these computations is performed in a radar XYZ frame centered at the longitude,

latitude and altitude of the target.
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Consider an ECI target state vector, xI, somewhere along a trajectory.

The altitude of the target (above the earth ellipsoid) is given approximately

by (Eqn. 2-14):

R
h = r - n (t-61)

S22cos2A'

where r = 77,y+z+, cosA = p/r and p = . (As before R is the North

polar radius and E is the eccentricity of the earth ellipsoid.) The angle A

is approximately equal to the geocentric latitude of the point on the surface

of the earth from which altitude is measured (i.e., the normal to the earth

ellipsoid passing through the target position). A first approximation to

the geodetic latitude is therefore

=tan 1ZI (6-62)

The longitude of the target is given by

X = - At, 0 X i 2 r (6-63)

where the second term accounts for the rotation of the earth from the reference

time of the ECI frame (usually TAL = 0) to the tag time of the state vector.

Uhe parameters X, € and h give the position of the target with respect to

the surface of the earth. It is also desirable to determine the azimuth and

elevation of the velocity vector with respect to an earth surface fixed frame
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at this position. To accomplish this, the following three unit vectors are

defined:

L =CO ix +- +sin iz (6-64)

i = - (6-65)

i3 = -sin , + - +coso z (6-66)3 P z:-

The unit vector i- is normal to the earth ellipsoid at latitude i; -2 is normal N

to Zi, parallel to the equatorial plane and points to the east; '3 is normal to j
both -i and i2 and points to the north. That is; iL' z2 and '3 correspond to

the Z, X and Y axes of a radar XYZ frame. The components of the velocity

vector in the ECF frame are ".

ýF I_+weYI

"~F I ~eXI :

iF ±I (6-67)

The target speed in the ECF frame (or radar XYZ frame) is

= 0/7kX;2;+_:,_2_+,2 ' (6-68)v •F 'F F
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The components of the velocity vector in the earth surface fixed frame are

obtained by taking the following dot products

= = cos] + sine I (6-69)

"YIX:F+XIYF
VX k -V _____ (6-70)S 2 F P

VV I I+(6-71Vy 3 F +-sin +COSý ±1 (6-71)

where vF = YxF+iyIF+z.F Note that the effects of the rotation of the earth

cancel in the expressions for vz and vy. The elevation angle of the velocity

vector (which may be the launch angle, impact angle or re-entry angle) is given

by

Ev sin-t( (6-72)

and the azimuth angle of the velocity vector is given by

Av tan'(•) (6-73)

The computation of X, o, h, Ev and AV for an ECI state vector are per-

formed in Subroutine ANGLES. Subroutines LAUNCII and IMPACT both call Subrou-

tine ANGLES after the ECI state vector has been integrated forward or backward

to the relevant target altitude. Various parameters of launch (X, ,EvAv),
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re-entry (x,0 ,E,) and impact ( y are saved in the target information

files.

Section 2 of the ARIES Test Report for a particular run of the Program

(see Reference 1, Appendix II) contains trajectory information for each target.

In particular, the following information is available in the Test Report:

1. Initial state vector data

2. Initial conditions for target tumbling and RCS computations

3. Launch parameters

4. Re-entry parameters

S. Impact parameters

i.~i
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SECTION 7- -MAXIMUi4 LIKELIJED TRAJECTORY ESTIMATION

At present the only "tracking" alaorithm built into ARIES is the Maximum-

k Likelihood Estimator (MLE). The MLE does not provide estimates of a target's

position after each radar measurement, as do-recursive-type tracking schemes

such as the cz-ý tracker or a Kalman filter. Instead, the MLE provides ARIES

only with an endpoint state vector estimate, valid at the end of the track

interval(s) of interest. Duiring the "track" interval itself, the MLE Subrou-

tine \tkXUIK simply stores up the (noisy, biased) radar position measurements,

along with the variances ol each measurement.

Once all such measurements have been accumulated, the MLE attempts to

find that endpoint state vector estimate which minimizes the "residual errors"s

between the physical trajectory (uniquely defined by the endpoint state vector)

and the set of radar measurements. The error used in this minimization is

formed as the sum of the weighted, squared differences between the physical

trajectory and the set of radar measurements. Each error residual is weighted

according to the standard deviation of the corresponding position measurement.

F". Since each error residual is weighted according to the variance of the

corresponding position measurement, the final state vector estimate corresponds

to a minimum variance estimate. This minimum variance estimate is also a

maximum likelihood estimate of the trajectory, when the measurement errors

have a zero-mean, Gaussian distribution. If there are no bias eriors in the

data (such as those due to inadequate calibration or those due to imperfect

correction of tropospheric or ionospheric refraction effects), the trajectory

69



estimation procedure described below corresponds to Maximum Likelihood

Estimation. An extension of the procedure to include estimation of biases

would again result in Maximum Likelihood Estimation of both the state vector

and the biases.

7.1 The MLE Method

Let xs be a reference ECI state vector at an arbitrary reference time ts.

(Note that x is the state vector to be perturbed to achieve the "optimal",

weighted least-squares trajectory fit to the measurement data. For this study

the state vector is valid at the endpoint of the tracking interval, but this

is not a basic constraint.) Also let the set of radar measurements at N

points in time ti, t 2,...tN, be denoted by the vectors xm(ti), i1l, 2,...N.

These radar position measurements may be either in RAE or RUV coordinates

dependent on whether the radar is a dish type or a phased array type. The

reference ECI state vector x. is integrated successively to the times of the

radar measurements. At each of these times, the state vector xs(ti) is

transformed to the appropriate radar frame (RAE or RUV) to form the set of

"estimated" position vectors, 4r(ti). It is the weighted, squared differences

between rm(ti) and ts(ti) which are minimized in the trajectory fitting

process.

It has been shoun in Section 5.2 that the transformation from an ECI state

vector into radar XYZ (East-North-Up) coordi-,ates can be performed via:

st(t) =A(ý,X)G(t)xs(t)+b(7 ) (7-1)0
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where the transformation matrix G(t) accounts for the rotation of the earth in

time t (see Eqn. 5-1). The transformation matrix A(¢,X) and the translation

vector b(o) are those used to transform from an ECF frame to a radar XYZ frame

(see Eqns. 5-14 and 5.15). For a phased array radar, the additional trans-

formation from radar XYZ to phased array XYZ (see Eqn. 5-26) must be included

so that the vectors xsr are defined in the proper coordinate system for the

radars.

Also, we have denoted

s [y] (7-2)

u JECI

*!i[ and

Xsr (7-3)

radar

where the time dependence is implicit in these definitions.

From Equation (7-1) it is clear that a perturbation in x will lead to a

corresponding perturbation in xsr:

6Xsr =AG 6x (7-4)

Actually we want to relate perturbations in the reference state vector x to

perturbations in the "estimated" target position as To do this for the RAE
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case, we use Eqn. (5-21) in Eqn. (5-20) to determine the relation between

perturbations of t and xsr:

= ¢ 6sr (7-5)

where the matrix C is given by

ScosEsinA cosEcosA sinE '

C cosA/RcosE -sinA/RcosE 2 (7-6)
L-sinEsinA/R -sin~cosA/R cosE/RJ •••.-•

For a phased array radar (RUV coordinates) the matrix C is -q.

RU RV RW

R -N --U(7-7)

where W =l -U2-V. Note tha. the matrix C varies as the target moves along. . . . -

its trajectory; for simplicity, this time dependence has not been explicitly

included in the above relations.

Combining Equations (7-4) and (7-5) one can then relate perturbations in

the position-measurement vector directly to perturbations in the ECI state

vector:

rs= CAG6xs (7-8)

Back to the NLE problem: Given the reference state vector x., the MLE Sub-

routine MAXLIK first uses the equations of motion (Section 4.3) to obtain x si
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and then Equation (7-1) to obtain Xsr at each measurement time. Next the xsr

state vector is transformed into %s (the set of target position estimates

based upon the ECI reference vector xs), using the appropriate transformations

(given in Section 5.3 for an RAE radar, and in Sections 5.4 and 5.5 for an RUV

radar).

In deriving the MLE estimator, we assume that perturbations in the refer-

ence state vector positions xs and rates k at time ts cause corresponding

perturbations in xs(ti) via the equation

6xs(ti) = 6xs + (t.-ts)6ks (7-9)

This assumption becomes increasingly valid as 6x ard 6k become small, as

they do on successive MLE iterations.

The result of the above discussion is as follows: Given perturbations

about the end-of-track ECI position estimate x and rate estimate k at a time

ts, we may determine the corresponding perturbation in the target position

estimate at time ti in radar measurement coordinates using Equations (7-8) and

(7-9) to obtain:

fts(ti, 6 x U,6 X) F(ti)[6xs + (ti-ts)6ks] (7-10)

where we have defined

F(ti) = C(ti)A G(ti) (7-i1)

At this point we have a set of radar measurement data tm(ti), a set of "esti-

mated" target positions ts(tj) based on the reference ECI state vector xs(ts)
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i.ntegrated t-, the appropriate times, and a set of position error estimates A

S~ t)from Eqn. (7-10). These are now comibined in a quadratic form as

follows:

N
Q = 1{in~ti) - S(ti) -

6&L5(ti,
6X5 ,6ks)T

W(tj){4%M(tj) q i;(tj) -6&s(t.,6Xsx,6k 5)) (7-12)

where W is a weighting matrix taking into account the quality of the radar's

position i..aasurenents. Thus, for an RAE radar:

10 0
is02(ti) .i

(O(ti) 0 1C(7-13)
oY2 (t.)

0 01

where is the range measurement variance, aA is the azimuth measure-

ment variance, and a2(t I is the elevation measurement variance for the radar

measurements at time t. For a phased array radar (RUV data), a2 is replaced

by a2and 02by 2.For simplicity, let the argu~ments t~ be simply denoted
0U E .

I ~ by the index i,. Then with the additional definitions
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6& (i) r(i) (7-14)

in s

and

f(i,6Xs, "s) = SA(i)-M r (i,64 X,6X ), (7-15)

Eqn. (7-12) becomes:

NTN (i,6×s as)TW(i)[f(i,6Xs,) s)] (7-16) S

i"=1

If the components of 6xs are denoted by 6xs, 6ys, 6zs, then to minimize Q one

must set the partial derivatives of Q with respect to 6xs, 6ys, and 6z, to

zero: .

sN T ]T( 6f (i',Xs'6(s)
2 .[(i,6x 6) W(i) 0 (7-17)a =1 S

here a takes on the values 6xs, 6ys and Sz Three simultaneous equations

are generated from Eqn. (7-17) which may be combined into the single matrix

S~~equa ti on

S[f(i,GXs,6x )k W(i)F(i) (0,0,0) (7-18)
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Similarly, if the components of 6kare denoted by As 6ýs 61 and if the

partial derivatives of Qwith respect to 6±.t6s-9 and 62 re set to zero, then

the following matrix equation results:

N
~[6(i,t6x s6k)]rW(i)F(i)(t -t) (0,0,0) (7-19)

The ML Estimator simply has to solve these linear equations for ýxandU

S. sv

then the end-of-track state vector estimate can be updated: th

Xse X~~l +~ (7-20)

Cs,new ~s,old + 7-1

The matrix equations for the N Estimator, Eqns. (7-18) and (7-19), can bes

written in a more compact form as follows. First take the transpose of these

equations adsbttethexprsinfr6itsk ro Eq. (71)

s@

Then define the following vectors and matrices

N

d EF (i)W(i)&'i(i) (7-22)

i=1

N
nEw (t=ts)o W(i)6st(i) (7-22)

N

d1 E T(i) W(i)6F (i) (7-24) J
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N
M2 (ti-.S F (i)W(i)F(i) (7-25)

N
M3 ; i (ti-ts)2FT(i)W(i)F(i) (-7-26)

With these definitions, Eqns. (7-18) and (7-19) become

6X + M2 6k (7-27)

d = M26x + M36k (7-28)

Equations (7-27) and (7-28) may be combined into a single (partitioned)

matrix equation

dl M~I M2 •s i

- . ---- . . . . . . . (7 -2 9 )
2 Mj2, M3 6s ,;

which is readily solved by Subroutine MAXLIK via a call to Subroutine SIMEQN.

In Subroutine MAXLIK of ARIES, the corresponding FORTRAN arrays are defined as

A (7-30)
M2 ', 

,•

and [!]!
nB (7-31)
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These are not to be confused with the A and b which were defined above in

Equation (7-1).

Note that the ML Estimator is an iterative procedure: An initial,

reference state vector xs is determined (equal to the true target state vector

in ARIES), then perturbations 6xs and U are determined by the above pro-

cedure. The new value of x from Eqns. (7-20) and (7-21) is then used to

repeat the process. Since ARIES starts with an excellent value for x., the

convergence of this process is very rapid; in fact, only two iterations are

used.

7.2 Error Residuals

The residual errors between the target-position measurement for the radar I

tn(i) and the target-position prediction kst(i) at each time ti (where rs(i) is.

computed from xs, the final-iteration value of the MLE end-of-track state

vector estimate) are computed via

N". 1AX
Mean square range residuals S [6r 1 (i)] 2  (7-32)

where NPIMAX is the number of measurements made during the Monte Carlo run, '3
and where 6r1 is the first component of the residual error vector 6M defined j
in Equation (7-14). Similar mean square residuals are computed for the other

two components of 6r. These mean square residuals are computed for each Monte

Carlo run, and then averaged over all runs. The resultant mean-square-resid-

uals are printed out in Sect Lon 11 of the ARIES Test Report.

I
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8.1 Correlation Matrices

On the mth Monte Carlo simulation run the ARIES Test Program computes a

"correlation" matrix estimate via

T '2
Cm emn (8-2)

where em is the error defined above in Equation (8-1) on the mth Monte Carlo

run. These correlation matrix estimates are then averaged over all runs:

A A MC
C CA (8-3)

m=l

It is clear from Equation (8-2) that each of the correlation matrices Cm

is symmetric; hence C is symmetric and only the "lower half" is printed out

in Section 12 of the ARIES Test Report, as explained in Reference 1.

For the error ellipsoid calculations (see Section 3.3), it is necessary

to diagonalize the "position" correlation matrix P by means of an orthogonal

transformation (P is the upper left-hand quadrant of C; P is a 3 x 3 matrix).

This diagonalization is only possible if the matrix P is positive definite;

i.e., if the quadratic form xTPx is non-negative for all real values of the

variables xi, and is zero only if each of the xi variables is zero. For the

P matrix, this statement translates to the condition

MC MC
T e m)2 1__ (xe em+X em)2 > 0

m ~ m 1 im 2 2M1 3 3MWm=l m =I l
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which is obviously non-negative. If MC=l or MC-2, it can be readily shown

that there are an infinite number of non-zero values of the xi's for which the

above quadratic form is zero. This violates the conditions for P to be posi-

tive definite. For MC Ž 3, it is not generally possible to make the quadratic

form equal to zero with non-zero values for the xi's. Exceptions are possible

if the error vectors are linearly related; this is unlikely irn the case at

hand, particularly for large values of MC. The reason why the position

correlation matrix is singular for one or two Monte Carlo runs can be simply

explained as follows: a volume in space requires three non-parallel. vectors

for its definition (one error vector defines a point, two error vectors define

a plane). Consequently, for the ARIES Program to generate meaningful error

volumes based on position errors, it is necessary to perform a minimum of

three Monte Carlo runs.

8.2 Covariance Matrices

If the mean error e (obtained by averaging over all Monte Carlo runs) is

subtracted from the error, an estimated covariance matrix could be obtained on

each Mont 3 Carlo run via

A T
Vm = (% -) (em.-,)T (8-4)

and then averaged over all Monte Carlo runs to obtain -

n1 (8-5)
m=
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In practice, what is actually done by ARIES is to first compute C via Equation

(8-3), and next compute

I - 1 M C
e e. i(8-6)

and finally to obtain D using the relation

V e J (8-7)

As with the correlation matrix C this covariance matrix D is symmetric and

thus only the lower half appears in Section 12 of the ARIES Test Report.

The "position" covariance matrix P (the upper left-hand 3 x 3 sub-matrix I
of D) is singular for MC < 4; the process of subtracting the means of the

errors effectively reduces the dimensionality of the space by one. Conse-

quently, for the ARIES program to generate meaningful error volumes based on

the position error covariance matrix, it is necessary to perform a minimum of

four Monte Carlo runs.

8.3 Handover Error Ellipsoid

The correlation and covariance matrices described in the preceding

sections are for the errors as measured in the basic ARIES ECI coordinate

system described earlier in Section 3.1. The drawback of such matrices is

that all elements are non-zero - that is the X, Y, Z error components are

correlated in this ECI frame.
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To eliminate the correlations between the error vector components requires

the definition of a new coordinate frame. Let a "position" correlation matrix

P be defined as the upper left-hand quadrant of a correlation matrix C (or of

a covariance matrix V):

- -- -- (8-8)

Then we want to determine a new coordinate system such that the ECI position

ilk error vector eT = (e, ,e2,e3) is related to the position error vector ( T

(e',e',e3) in the new coordinate system via the transformation matrix Q:

e= Qe (8-9)

where Q is the normalized modal matrix of P with the property that Q _OT.

The new "position" correlation matrix P' is then easily shouwn to be related to

P via

pi 2Tp (8-10)

Given the symmetric, nonsingular matrix P, the problem is to find the

matrix Q such that TTPQ is a diagonal matrix. This is a standard problem

(c f., Hildebrand, Reference 5), equivalent to determining the eigenvalues of j

the matrix P via setting the following determinant to zero:

P-XII 0(8
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where X is an eigenvalue. For this case there are three such eigenvalues;

they are the roots of the cubic equation

P11" P 1 2  p 1 3

P2 1  p2 2 -X P2 3  = -X 3 -pX2-qX-r = 0 (8-12)

•: ~Pa Pa Pa- '

31 32 33

"where

P = "-(P +P2 2 +P3 3 ) (8-13)

q2  - p 2  (8-14)

2 2 2 .2P P (8-1S)
r=P 13 P 2 2+P 2P 3 3+P 2 3P1 1  12P 2 3 13 p1 22P33

The solution of.(8-12) is well known. Define

a = q - p2 /3 (8-16)

b7- + p3  (8-17)

For a positive definite matrix, compute

Cos-[ 2 a (8-18)

and obtain the eigenvalues as

21 = ~Cos P- (8-19)
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[2 = [ cs0j(8-20)

X3  [2 rcsT 3 (8-21) i

Since the matrix P is positive definite, the eigenvalues (X1,~, 3  are all

real and positive. It then follows that P' has the desired diagonal property:

X 0 0

P2 (8-22)

The square roots of the diagonal elements of such diagonalized "position"

correlation (or covariance) matrices can be thought of as the semi-axes of an

ellipsoidal error volume - that is, the errors in this new coordinate frame

are uncorrelated and have rms values rl, F and F3. X , and X are also

printed out in Section 12 of the ARIES Test Report.

8.4 Handover Error Sphere

While the coordinate transformation Q used in the preceding section

rendered uncorrelated errors, the eigenvalues A',, X2 and X3 alone are insuffi-

cient to specify the uncertainty volume of the target state vector at hand

over. The orientation of the ellipsoid axes must also be taken into account.

In order to avoid this complexity, it is often more useful to think of an

"uncertainty sphere" = namely a sphere of radiw ,, centered at the
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(exti'apolated) handover point, with R chosen such that the error vector lies

within the sphere with probability = 0.99.

The diagonalization of the position correlation (or covariance) matrix

assures us that the error components in the new coordinate frame (see preceding

section) are uncorrelated. If further we asstume these errors to have "normal"

or "Gaussian" distributions,'then the probability of the error vector e'

[defined in Equation (8-9)] is given by

x 2  y2. Z2
•i:1 Tq TX_ 3

p(e p(X,YZ) (8-23)!!:(2 n) 1..5. (-------

(where for notational convenience the components el, e2, e; of the error

vector e' have been replaced by X, Y and ; respectively). The probability of

* the error vector falling within a sphere of radius R is

p( e'I < R) = 8]dXf dY J p(X,Y,Z)dZ (8-24)

0 0 0

where due to the synmetry we only have to integrate over one-eighth of

the sphere. If we use Equation (8-23) in (8-24), alor.g with a set of

normalized variables defined by

x - (8-25)
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Y
y (8-26)

z (8-27)

then we obtain
2 '2 '

C 1,7 -

8x -- 2
p(Ie' < R) 8 dxe dye-Y2 e-z 2 dz (8-28)11.5

where we have defined:

C =I~rX a(8-29)

Cy =R/j-21 (8-30)

S-- R/ V73(8-31)

Note that the integration is now over an ellipsoid rather than a sphere.

If we transform y and z to polar coordinates r and 0, where

0 tan" (z/y) (8-33)

then we may replace the two inner integrals of Equation (8-28) withl
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f fffI
do re -r2 drr2(=--d (8-34)

0 0 0

This integration gives the area of an ellipse in the y-z plane. The semi-axes

of the ellipse are C andf7ICz. Also, the distance from the

origin (y=z=O) to the ellipse is

c2
•/i- -Cysi2

Use of the double angle formula, 2sin2 o = l-cos2o, in Eqn. (8-35) results in

the following relation

r2(0) = (1 Y (8-36)
CY 2cos20

or,

12
r2 o - ? +~ os2-0 (8-37)

where

k ( 2 2 (8-38)

2(18
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and

C2

2k2 (8-39)

2 x X2 )C2

Substitution of Eqn. (8-37) into Eqn. (8-34) gives

_r(O) 2 T]

J df re- r dr i -f c- dJ (8-40)

0 0

where the change of variables 20 = has been used.

When Equation (8-40) is used to replace the inner two integrals of (8-28),

we obtain

C x"r

p(Ie'l < R) -- L dx ex T -fexp dk+kcsd (8-41)

0 0

The double integral in Ecin. (8-41) cannot be reduced any further; there-

fore, it is evaluated numerically by a Gauss quadrature method.

, If we specify an error sphere radius R, Equation (8-41) allows the compu-

tation of the probability that the error vector lies within the sphere. flow-

ever, it is usually desired to find the value of R which gives a probability

of 0.99. This value of R is found numerically by means of the secant iterative

method described in Reference 4.
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