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ON THE STABILITY OF «OH-AOTONOMOUS 

UIFFEKEriTIAL EQUATIOHS x - [A + B(t)]x, 

\IITU SKEW-SYHMETRIC MATRIX 3(t) 

A. P. Mcrgan an<! K. S. Narondra 

ABSTRACT 

In this paper we characterize (in Theorea I) the imlforu ob^totit 

stability of equations of the fom 

!—* X   I 
r i       T' 

ä(t)      -B(t)T 

B(t) 'J 

where A + AT is stable in terns >..f the "richneLa" cf B(t).    The equation 

is stable if and ^nly if B<t) is sufficient!-' rich.    We actually obtain 

stability results for a uuch broader class    i systeus  (Thecr^u«» 2 ai.Jl 3) 

whose behavior is sinilar to the one above.    Such systoas have cuue up 

recently in soue adaptive control problems. 

10/ 
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I. 
I. Introduction 

the purpose of this paper Is to characterize the uniform asymptotic 

stability of certain nou-cutonomous linear systems of the form 

x A -B 

r. I 0 ! 

«I 

where A ■ A(t) is a time varying stable oxn matrix snd B " B(t), C • C(t) 

are time varying mxn matrices. Such equations arise in connection with 

questions of adaptive identification and control as described in Harendra 

and iCudva [3]. 

Theorem 1 below is illustrative of the type of result we have obtained. 

It is a corollary to the more general Theorems 2 and 3. We state and discuss 

these result.? in section II giving examples and some indication of proofs, 

including the presentation of a key lemma. 

Some results concerning (non-uniform) asymptotic stability have also 

been obtained, aiA  thetie are seated in section III. In section IV we dis- 

cuss in more detail the control applications of this work, which are sum- 

marized as Theorems 4 and 5. Section V contains the longer proofs. 

Previous work on the stability properties of this type of system has 

been done by Yuan and Wonhea [5). They found sufficient conditions for 

asymptotic stability in the case that the system can be put in the form 

e ■« Ee + *x + ^u 

•     T 
4 = -fex 

f • -Feu . 

(See section IV, Theorem 4 for more details.) Anderson in [1] considered 

some almost periodic cases, obtaining sufficient conditions for uniform 

asymptotic stability. 

maU&mimammmii&m 



II. Stateaent of hain Theoreas 

The follovlng Theorrxi 1 gives a complete characterization of unlfom 

T 
aayiq>totlc stability when A + A is stable and C - P. It is a corollary 

to Theoreus 2 and 3, which we will state after a discussion of Theoren 1. 

First, however, we establish some notation and state several defini- 

tions. The nxn tiae varying natrix A - A(t) is called "stable" if the 

systen x - A(t)x is uniformly asyoptotlcally stable. The length of x e Rn 

is denoted "|x|". If A is an nxn natrix, "IAI" denotes the unlfom noni 

of A derived frou ix|. 

The equ.'.llbriua state x H 0 of the uniformly stable differential 

equation x » f(x,t) is unlfomly asyuptotically stable (u.a.s.) if for sone 

Ej^ > 0 and all e. > 0 there is a T « Tie^tJ >  0 such that if x(t) is a 

solution and |x(t0)| < e., then |x(t)| < e, for all t > t0 + T. If T de- 

pends on ty, then x ^ 0 is (non-uniforuly) asymptotically stable (a.s.). 

Theoreo 1. Let A ■ A(t) be an nxn natrix of bounded piecewise con- 

T 
tinuous functions such that A + A is stable. Let B(t) be an inxn tntrix 

of bounded piecewise continuous functions. Then the systen 

A 

B 

-B T-i r«- 
JW 

(D 

is u.a.s. if and only if there are positive numbers T » GQ» and 6Q such 

that given t.. > 0 end a unit vector w e R , there is a t- e [t^.t, + TQ] 

such that h + 60 
1  8(1)^ dT t  Go ' 

Corollary 1. If i>(t) is suooth, |B(t)| is unifornly bounded, and 

there are real nuubers a > 0 and b such that 



|B(T) wjäT > a(t2- t^ ♦ b 

I' 

for all unit w c S. and all t, > t. > 0r then (1) Is u.a.s. 

Corollary 2. If (1) Is u.a.s., then there are real nuubers a > 0 and 

b such that 

t. 

j |B(T)Tw!aT > a(t2- t^ + b 

for all unit vectors w e & and all t, > t, > 0. 

The condition given in Theoreu 1 is a "richness'' condition for ß(t). 

T 
It says that for any unit direction w, B(t) w is "periodically" large; or, 

at least that B(t) w aoes not daup down to zero. The condition requires 

thrc there be a fixed length of tiiue, T-,, such that B(t) "points In all 

directions'' as t takes on values in any interval of length TQ. Also it 

requires that 3(t) maintain sufficient length. However, it requires even 

uore than this, since the condition of corollary 2, 

^2 
|B(-r)'xwldT > a(t2- t^ + b , 

is not sufficient. 

It is therefore apparent that, for fixed w, the sign changes that 

T T B(t) w goes through are also significant.    B(t) w taust not only be peri- 

odically large (over intervals of length T^.) but it u.ust maintain the sair-e 

sign for a fixed interval of tiue (of length 6Q).    (Sec the exauple below.) 

It is ii;i4fcdiate thcit the condition:    thore are positive nunbers TQ 

! t„+ t.. 
and e^ such that 

I., B(T) w dx ^e0 

for all unit w e R and t2 > ^ >  0 



is sufficieat but not necessary for (1) to be u.c.s. (In this case 6Q  can 

be chosen arbitrarily anu does not depend on w.) 

The following exauplc Illustrates soue of the above couuents. Let 

-' 1 
3^ " ^ — , and define a square wave function with increasing frequency 

n»l 
u(t)i  IG,») •*- R1 by 

flif te[ak.ak + I^iI5-] 

u(t) -< 

l:lif tel«k + 2TSiT'Vi3 

1   - 

-1 t 
Vi 

then tne two dimensional system.. 

0 

(»here o is a positive nuri)tr)i8 not u.a.s.    Note, however, that 

f 2 

J       |u(T)idT   -   (t2-   t^. 

Thus the necussary condition of corollary 2 is not sufficient. Also, con- 

pare this with the following couL-ents ou the category PS*. 

Wc should point out that corollary 1 can be generalized as follows. 

Instead of requiring that B(t) be suooth and |B(t)| be bounded, we uake 

the souewhat less restrictive assuuption that the couponents of B(t) be 

contained in the set PS*, defined as a convenient category of input func- 

tions by Yuan and Wonhau in [5]. (However, we uust keep the integral 



assutjption.) PS* Is the set of all plccewlsc suooth functions g:(0,») •*■ R 

that arc unlfomly bounded, whose derivatives arc uniforrJLy bounded (where 

defined), and for which the intervals over which g is suooth do not shrink 

to 0. 

For example, an input function g defined to be constant on Intervals 

(ao,an4pl) where a^v- a is bounded below as n -»• « is in FS*. 

Theoren 1 is an liuuediate corollary to the following two theoreDS, which 

are our nain results. 

Theorea 2. Let A(t) be a stable nxn uiatrix of bounded piecewise con- 

tinuous functions. Let ?(t) be a synaetric positive definite r^trix of 

T 
bounced continuous functions such that P + PA + A P is stable.  (Many such 

i  exist. See the discuiasion below.) Let b(t) be an nxn uatrix of bounde-i 

plecuwise continuous functions. 

Assaoe that there exist positive nudbers T0,eQ, and 5Q such that given 

t- > 0 and a unit vector w e B?,  there is a t- e[t1,t1 + T-] such that 
t2 + 60 

Then the system 

B(T^
T
W dT 

x 

^yj 

^eo 

l-B 

B«P | 0 
»^ V.  «/ 

(2) 

is u.a.s. 

Corollary 1 and the couuents about Yuan and Wonhau'j PS* in the dis- 

cussion following it hold exactly as written in this cas--. 

'■P(t) is positive definite" lueans that there exist pot itlve constants 

a and ß such that ox x < x P(t)x < 3x x for all x e R and all t. We uay 

interpret the stability of P + PA + AT? to uean that P + PA + A P ■ -Q where 

^ ■ Q(t) is positive definite. 

s^MmMmi* 



By tfxasovskil's th^orct, the uaiforu asynptotic stablll'cy of x » A(t)x 

loplles that given any continuous syjcetrlc positive definite Q(t), there 
T 

exists a continuous syuuetrlc positive definite P(t) such that P + PA + A P ■ 

-Q. (See i^arendra and Taylor 14], p. 62, or Ualanay (21, p. 44, theorcia 1.6". 

fiiote that the proof given In äalanay, although stated for continuous A(t), 

holds for plcccwlse continuous A(t).) 

Iheoreu 3. Let A(t) be a stable nxn natrlx of bounded plecewlsc con- 

tinuous functions. Let B(t) end C(t) be nsu natricM of bounded plecewlse 

continuous functions. Suppose that the systeu 

i A  -B 

1 0 
■[■; 
j ^ J 

(3) 

Is u.«..a. Then there are positive real nuüiers TQ,&-.,  and e0 such that given 

t. ^ 0 and a unit vectcr w, there is a t0e.[t^,t,  + T^] such that 
t2+ 60 

1 i>(T)Tw di j > e0 • 

'2        ! 

Corollary 2 holds exactly as written in this case also. 

jthe coDuents uade aftur the statement of Thecreu 1 apply to Theorens 

2 am' 3. The condition which is necessary anu sufficient for u.a.o. ..s a 

"richness" conuition for B(t), which however involves a subtlety concerning 

T 
the sign changes of B(t) w as t -»■ ». 

The following is a key observation, used in the proof of Theoren 2. 

Consider equation (2), and assuue that the hypothesis of Thc-ireu 2 holds. 

We shall use the notation z{t)  ■ ix(t),y(u)J1 frot. now on. 

tixua.    Let c, and 6 be given positive nuLibers. Then there is a 

I ■ T(e ,ö) such that if z(t) is a solution of (2) and jzU^j^ e^ then 

there exists soue t2 e[w^tj^ + T] such that jy^)! < 5. 

mm 



The leuua says that if B(t) is sufficiently rich, thans for any 

solution z(t) - [x(t),y(t)] , y(t) gets 'periodically" snail. 

We will new outline the proof of Thcoren 2, which is written out in 

T 
detail in section V. Dgfine the Lyapunov function V(z,t) - V([x,y] ,t) - 

I       T       « 2 
x P(t)x + y y. Then V(z,t) < -k|xj where k is soiie positive nuther. Thus 

if jy| is soall and |z| is not, then |x| is not. In this case, |v| is large 

and V(z,t) Is decreasing. Since V < 0, we have uniforu stability, and the 

observations of the previous two sentences show that |z| is periodically 

getting SD^iler and sueller. Unifcru asyaptotlc stability fellows. 

The proof of the leuaa c:m be easily derived froti the following two 

sublcsLtas. 

Subleoja 1. Let e. > e« > 0. Then there is an n ■ nCc.,e2) such that 

T 
if z(t) » [x(t),y(t)] is a solution of (2) with [zU^j < €.l and 

S ■ {t eCt,,») j|x(t)| >  EoK then vi(S) < n where u denctos Lebesque rieasure. 

This subletoa holds without any restriction on B(t). It states that 

there is a uniforu liuit on the auount of tine c. solution starting inside 

the e, ball can reuain cutaide the e2 ball. It therefore irplics that If 

z(t) is any solution uf (2), then x(t) ■*■ 0. It also ii4>lie8 the following. 

Given e.. > e, > 0, there is a T > 0 such that if 2(t) is a solution cf (2) 

with jzU.)! < e,, then there is a t, cLt-.t. + T] such that !x<t2)| < e2. 

We conjecture that sublen^a 1 can be iuproved to say that x(t) -* 0 

exponentially.  (See discussion in section III./ 

Assure that the hypothesis cf Theoreu 2 holds. Then we have 

Subleuaa 2._ Let 6 > 0 and e. > 0 be given. Then there exist positive 

nuubers e and T such that if z(t) is a solution of (2) with |z(t.)| < c- 

and if |y(t)j > 6 for t ett^.t^^ + T], then there is a t2 eltj^^^^ + T] such 

that |x(t2)| > e. 
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laus. If b(t) is •'rich" and iy(t)| is larte, then |x(t)| cust be pcri- 

uüically lar^c. IHö lai-a is cstnblishec' fret, the twe sublcri.es as fellows. 

If y(t) is net periodically suall, then the subleu-as i^ly thnt x(t) is 

periodically both large and suall. But sublüii-s 1 puts an upper bound en 

this type of behavior. Iha details cf the proof cf the leu a are in 

section V. 

III. Won-unifert. ^syi-ptotic Stability 

We present three prepesitions concerning asyi-ptotic stability, de- 

ferring pr-ofs until section V. 

Preposition 1. Let A ■ A(t) be an nxn r*itrix of bcunded piecewise 
T continuous functions such that A -I- A is stable. Let 5(t) be an um matrix 

cf bounucd piecewise continuous functions. 

T iuäsuue that if z(t) » Lx(t),y(t)] is a solution tc (1), then there are 

positive constants a and K such that 

-aCt-tJ 
|x(t)| < K e       for all t > t0 . 

(ihe choice cf a ano K .»ay depend specifically on z(t).) 

Then (1) is asy-optütically stable if and only if there are positive 

nukiers e,, ane 6^ such that if w e R" is a unit vector, then there is -- 
d    u 

sequv-nce t   -*■ K with 

b(T)fw dt j > e0 for r.ll n. 

tropesitiwn 1 is, of course, a non-oiiforu version of Thoorci.. 1.  Sie- 

ilar reoults analc^eus tc 'Iheorei_b 2 anu 3 alsc held. Ihe concitien re- 

quii^i^ exponential convergence of |x(t)| to zero can bo weakene*. tc the 

requirement that 



|X(T) dr < « . 

We c&ujecturc that this always happens (without any ccnciticns en B(t)) anc 

therefore that the expenential convergence cendttion can be caittcC frcii 

tropusition 1. If this conjecture is true, then we would have a coLplete 

characterization ^f asyi^ptctlc stability analcgcus to that fcr unlfon; 

asytptotic stability. 

Proposition 2 belcw shows that for the two diuenslcnal case we can drop 

the exponential convergence condition frou the sufficiency part of Prcpcsi- 

ticn 1. however, in the proof we aveiö, rather than settle, the conjecture. 

Propositlcn 2. Let a;[t0,<») -»■ R be bounded, picccwise continuous and 

stable. Let bi[t.,<») -»• K be piecewlse continuous and bcunded. If there 

arc positive constants eQ and 60 and a sequence t -»• « such that 

ii;-"- b(T)dT > e0  fcr all n, 

then the two diuenslcnal systeu 

k]   ra(t) -b(t)i rx' 

u^ 

(4) 
b(t)   0 ) 

is asyuptotlcally stable, 

Tho following propesition is useu to prove both Propositl n 1 and 2. 

Preposition 3. Let A and B be as siven in Thecreu 2. Consider solu- 

tions 2(t) to equation (2). If, for every z(t) and 6 > 0, there is a se- 

quence t •*■ ^ such that |y(t )| < 5. then (2) is asyi-ptctically stable. 

This result says that if the non-anifon.. analog to the lei^na fcr 

'iheoruu 2 holds, then the ncn-unifcru analog for Theorem 2 holds. 
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IV. Applications to Centre! Thöcry 

The: type c£ equations discussed in earlier sections have coce up ire- 

cently in connection with control problens dealing with the adaptive cb- 

server. It also appears reasonable to assuoe that questions rcsarding the 

unifort. asy-jptotic stability of similar non-eutonouous equations will in- 

creasingly occur in adaptive control problems where parai^eters of the sys- 

teus can be adjusted at the discretion of the designer, i.e. parts of the 

vector differential equation can be chosen. In this section we character- 

ize the uniform asymptotic stability of two types of equations which arose 

in the context of identification (See Narencra and Kudva [3], for details. 

Also coupare Yuan and Wonhau [5]). 

Iheorec 4. Consider the System 

tie + ftx + *u 

■ -lex (5) 

-Feu 

where E is a stable nxn constant catriXj e e R , * is nxn, V is nxia, T  is 

T 
a syu-etric positive definite uatrix such that TE + £ T is stab)'-, cn^ 

x-[tn,») -*■ Rn, u;[t,,«) + Ru are pieccwisc continuous, uniforuly bounded 

vector valued functions. 

Then (5) is U.O.J. if and unly if there are positive constants TQ.EQVÖQ 

such that given t. > 0 an^ a unit vectcr 

w 
w 
1        n    .L: 

. £ K  X K 
,n+u 

there is a t2 e [titt-, + TQ] such that 
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II.. 
h+'o I 

[X(T)T.U(T)T]W  dT  j >   tQ   . 

If |x(t}|  anc |u(t^   are defined and bounded, then the above condition 

can be replaced by; 

There exist a > 0 and b such that 
t,r 

.T    /vT, j     |lx(T)T,u(T)Tlw|dT > a(t2- tj) + b 

fcr all unit w e R x R and all t2 > t.. 

This cci^letes the statuuent of Thecrei- 4. 

In the context of identification, x * Ax + 3u where A is a constant 

stable uatrix and B is a constant catrix. Thus x is always bounded. 

This theoreu follows at once frou Thecreus 2 and 3 and their corollaries, 

dote also the coui^ents in section II which allow us to assuue "u(t) e PS*" 

in place of "|u(t)| bounded". 

The next theorem concerns a type of equation which also arises in 

identification scheues. (See Narendra and Kudva [3], p. 553. Also see 

Anderson [1], p. 2.20.) 

Theoreu 5. i-et A be a stable nxn constant luetrix, and let P be a 

T 
positive definite sy-a^etric uatrix such that PA + A P is stable. Assuue 

that there exist non-zero vectors d and h such that Pd ■ h. Let v(t) be 

a piecewlse continuous bounded vector valued function. Then the sybteu 

« 

-v(t)'d 

h-y(tr 

0 

is u.c.jä.  if and only if there are positive constants TQ.CQ, and 6« such 

that if t, > 0 and w is a unit vector, then there is a t2 e[t1,t. + T^J 

such that 
r^^O 

V(T)   «W dT ie0  ' 
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t 

If |v(t)| is bcunded cr v(t) e PS*, then the ebcve ccndltlcn can be 

replaced by. 

there exist a > 0 and b such that 

t2 

|V(T) «wläT > a(t2 - t.) + b for all unit w. 

Jtl 

This cocpletes the stateuont c£ Theureu 5. 

This thecreu is Irmwuiate froo Theoreus 2,3, anc corollaries. (Of 

course, we could also easily derive a versicn of Theorem 5 with A,h,d, and 

? tiue varying. However, these are constant in the application cited.) 

Note that, by the tCaluan-Yckubovich leixa, the conditions 

T 
a) PA + A P stable for scae positive definite syonetric P, and 

b) ?d « h  for sotic d,h 

T     -1 
are equivalent tc the concition that the transfer matrix H(8) = h (sI-A) d 

be positive real.  (Uarendrc and Taylor [4], p. 49.) 

V. Proofs of Theoreus 

Wa shall present proofs tc Thecreu 2, the letna.  and sublecmas, Thecreo 

3, and Propositions 1,2, anc 3. The proofs of the corollaries and the 

couuent in section II abcut PS* are routine and therefore ouitted. 

It will be convenient tc use the nctaticn 

r * 
X 

r  TT  „n+Ei 
• [x.y] e R 

Also, for convenience, we assunc |A(t)| < 1 and |B(t)|5 1 for all t. 

Proof of Theorem 2. 

1. By hypothesis we »aay choose positive constants a,ß,a,b such thzt 

T   T        T 
a x x < x P(t)x < 3x x  anu 

T    T T 
a x x < x Q(t)x < bx x   for all x. 
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where -q(t) = P(t) + P(t)A(t) + A(t) P(t). Without loss of generality, 

assuue 8 > 1 and a « 1. 

Define V(2,t) « xTP(t)x + yTy. Then 

V(z,t) - 2xT(P(t) + P(t)A(t) + A(t)TP(t))x - -2xTQ(t)x < -2axTx. 

If z(t) is a solution of (2), then the above icplies that |z(t)| Is ncno- 

toniclly non-increasing as t •*■ *>.    Thus we have unifcru stability. 

2. We will now show that given e. > e, > 0 there is a Y with 0 < y < 1  and 

an M > 0 such that if z(t) is a solution of (2) with 

e2 < V(z(t),t) < e2  for t e^,^ + M], 

when there is a t2 eE^.tj^ + II] such that V(z(t2),t2)  < yVCzCtj) ,t.). 

Since V(z(t),t) is non-increasing, this Inplies uniforc asynptctic 

stability.    The above fact follows routinely frou tin lei^ua and the relation 

• T 
V(z(t),t) < -2ax(t) x(t). However, for ccupletenoss, we will write cut the 

details. 

Choose positive nunbers c. and c2 so that 1-c, > 0, /(l-c-)//ß ~lcj/ö. >  0 

and 0 < 2ac2(/(l-c1)/y^ - 2c2/v^ )
2 < 1. 

(Say c, - 3/4 and c2 ■ /ä /g/ß  .) 

Use the lecoa to obtain T when e " e,  and ß ■ e?  °  cl' 

Define Y - 1 - Uac^/ä^T/Zä - Ic^/a) ] and M - T + c2.    We shall 

show that for this y and K our result holds. 

We want 0 < y < 1.    But this is clear fron the chcicc of c.  and c2. 

Let tj t{tvv.1 + T] be such that  |y(tp|  i ^ ' ^2 ' \'    If V(z(tp,tp < tr 

we are done.    Aasuiae V(z(t2),t2) > e2.    Then 

VCzCtJ,),^) - x(tpT P(tpx(t^) + |y(tp|2 implies 

e|x(tj)i2 > v(z(tp.tp - 6 > vuctp.tpa-c^. 
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T Now x • Ax - B y gives, fcr any t > tl. 
ft 

|x(t')|  -  |x(t)|  <  |x(t)  - x(tp|   < j     |A(T)X(T)  - B(T)y(T)|dT 

< (1 + l)|z(tp|  (t-tj) - 2|z(tp|  (t-tp, 

since we have assuucd |A(T)|  < 1 and |B(T)|  < 1 for all T. 

If we let t- ■ ti + c-, then we see that 

|x(t)|  > |x(t')|  - 2(t2- 4)|2(t')| 

> (/Ö^T/Zß)  /V(z(tJ),t') - 2c2|z(tp| 

> (/(i^T/^) /V(z(t'),t') - (2c2/^) vVfzltpTtp 

> /V(z(tp,tp (/(l-^)/»^ - 2c2/^) 

für all t e [t2,t2]. 

Then V(z(tp,tp - V(z(t2).t2) - 

to t '2 
-V(z(T),T)dT > 2a 

f 2    2 

|x(T)rdT > 

t' tf Z2 t2 
2 

2a • c2 • V(z(tp.tp • (/(l-cp/Zß - 2c2/^) 

Thus V(z(t2),t2) < V(z(tp,t') • Y. and we are dene. 

Proof of the Lema. 

Let 6 > 0. By the ccu^ents after the statement cf sublenna 1 and by 

sublecua 2, the assuiaption for sone solution z(t) that |y(t)| > 6 Implies 

that there is an e > 0 such that |x(t)| is repeatedly both less than e/2 

and greater than e. Now this eventually leads tc a contradiction with sub- 

lenv.a 1, wh«n we let e^^ ■ IzCtj] and e2 * G/2. Since all these results 

are uniform, we conclude that |y(t)| < 6 repeatedly (unifomly). This 

yields the leuna. 
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Proof of SubleDua 1. 

T 
This ia iuuediate frou the relction V(z,t) < -2ax x.    We can choose 

2 2 

Proof of Subleuue 2. 

1. iy hjrpothesls, we have TQ.EQ, an;! 60 given, obeying the condition In 

the stateuent uf Theureu 2.    Let z(t) be a solution with Initial condition 

izU.)!«: e;L.    Suppose that |y(t)|  > 6 for all t e [t^^ + T] where T = T0+ «Q. 

2. djv x ■ iix - B yinplles, for any t > t-, that 
t+6. 

x(t + 60) - x(t) + AC 

!x(t + v I L 
t+6n 0   T 

3(T) y(T)äT! 

T)X(T) - J(T) y(T)dT, which gives 

t+6. 

x(t) + k(T)x(T)dT|    . f j       -    j    A\l.J   -r A( 

We snail see below that we can uake the second teru arbitrarily siiall and 

tn«s first teru relatively lar^e by appropriate choices of t and e.    This 

will prove the result. 

3.    Ue have yCt) - B(T)P(T)X(T).    Thus, "when x is snail, y is flat."    Ilore 

precisely, given T' and M' positive constants, there is a 6 > 0 such that if 

z(-:) - [x(T),y(T)]T is a solution to  (2) with |X(T)|  < 9 for all 

T e ttp^ + T'], then |y(T) - yCt^l  < e' for all T c[t1,t1 + T]. 

Let e' - Ü En»6 

260 
ii1 - e,, and T* - T » TQ + ÖQ, and fix 6 for these 

choices, 
6e(,       6e0 

4.    Define e - uln {—^   , rr1 »^•    T'fc sha11 nCT7 8how that the s^l^^-a 
8   8öo 

holds for this choice of T and e. If lx(t2)| > e for S'jnc t2 e[tltt1 + T], 

wc are done. Assune !x(t)| < e for all t e[t1,t1 + TJ. 

ft+6n E 5 
Then |x(t) +  A

,
(:T)X(T):T| < e + t'SQ < _0. for any t ett^ + IQ].  (Uc 

have assuned 1A(T)| < 1 and |B(x)| < 1 for all T.) 



t'+Ö, 
if        U T By hypothesis there la a t' z[t.tt, + TrA such that > \    3(T) wdT 

yitj 110 {} 
whBre tf5 "f?(i?r • 
But t'+fi. t'+e. 

|f     B(T)
T
(V; jyCtJl - y(T))dT|   <    f lyCt.) - y(T)|dT 

^t' ~   't'     T 

^o ^ " T"  ' 

because |x(T)i < e < 8 fur x elt,,^ + T].    (See 3. above.) 

Therefore t'+j. t^+i. 

B(T)
T

W ds 

iuplyina 

lyXt^l If 

ift,+60T     I e06  e0 

B(T)Ty(T)ClT 
e06 

£,.6  en6  eft6 

Thus lx(t' + 60)| > -5 1 T " e ' 

16 

ie0 

This coupletes the pruof uf subler^aa 2. 

Proof of TheoreL. 3. 

1. Assuue (to ^et a contradiction) that the conclusion of the theorou is 

false. Then given any positive T0,60,c0, there is a unit vector w and a 

t. > 0 such that 

1 r^o 
B(x) w dx < e0  f^r each t2e[t1,t1 + TQ], 

2, Since (3) Is assur.ed to be u.a.s., there is a T such that if 2(t) is a 

sülutljn with jzCt^l < 1, then |z(t1 + T| < -j • Fix this T for the re- 

mainder of the proof. 

3. Define 

I'Mt) ! 0 
D(t) -   

!C(t) 
an:   E(t) 

0      rB(t)T| 

0     j   0      1 
and conpare 2 « [D + K]z and z' - Dz' via variation of constants: 
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2(t) - Z'(t) + T) E(T)2(T)eT 

^T j < |  .  (*) 

where zCt^ - z'Ct^ and «'(t.t) is the state transition tatrix of z' - DCOzV 

The proof now proceeds as fellows. We will find a unit vector w end 

T 
a t. > 0 such that the solution 2(t) to (3) with z(t,) - [0,wl obeys 

|Jt, *,(tl+T»T> E(T)z(T)dl 

This» coubined with the variation of constants foruula, inplies that 

laCt.)! « 1 and jzCt^ T)| > T , contradicting the choice of T,  (Note that 

T • 
z* it) -  [0,wl is a cunstant solution for z' - Dz'.) 

3. Ue will need the following, which is easy to prove. 

(1) There is a constant R > 0 such that ^'(t.t)! < R whenever t > T > 0, 

(ii) Given e > 0, there is a 6 > 0 such that if I*, - T»! < ö sn^ 

t > Tj, für i •• 1,2, then jt'Ct,-^) - *'(t,T2)| < e. 

Let e " Tc^- and choose 6 so that (ii) holds. We lose no generality 
XOx 

assuuing 6 < T. Fix this 6 for the rtuainder of the proof, 

4. We will establish (*) in 2. above as follows. First we show that we 

can "factor ♦'(t. + T,T) out of the integral". This will be done by parti- 

tioning the interval [tpt, + T] suall enough via t.< t2<,..< tr ■ t1 + I 

so that «'(t. + TfT) is essentially equal to the constant natrix 

ij'Ct, + T, t.) for T EU^iit^l« Then, by carefully choosinp t^ and w, we 

.t^ T 

B(T)y(T)dT 
Lake ! .t,+ T 

E(T)z(T)dT i: ij suall. 

It is iuportant here that we can use the u.a.s. of (3) and the fact that 

y = C(t)x to conclude that y(t) becoucs arbitrarily "flat" unifcrT:ly ns 

t ■♦■ «. The result then follows. 

5, tissune t, has been chosen.  (We shall specify how tc do this later.) 

T 
Partition l^,^ + T] using t^ t2<...< tr where ti+1- ^ < 5 and r < ^ + 2. 
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(Recall that T is defined ia 2, an- 6 in 3. above.)    Then 

lftl+T r    f^ ♦'(t- + T,T) E(T)Z(C)JT - Z ♦,(t1 + T.t.) E(T)z(T)dl 
,Jti       t, ^Vl 

r    t i 
< Z       It'Uj+T,-.) - ^(ti+T.tJl   |E(T)||Z(T)UT 

i-2 1ti_1   
L xi 

r 1 1 I r    f^ < Z    6 • ~r •  1.1 < ±    .    Also    IE        «'(t, + T»t.) E(T)z(t)d 
i-2 ■LDi " ö !i-2 J 

r   Ir'1 T Z    R       3(T) y(T)dT 
i«2        ■'t x 4     '   ^i-l 

We shall shew that with an appropriate choice of t-  and w - yCt,), we 

have 

ci-l 

3(T) y(T)dT < ^   for all i . 

Then the last inequality above will he bounded by -r  , Conbining this with 

the previous inequality yields (*) in 2. 

6. V7e now show how tu cheese t, and w. 

Since y - Cx and (3) is u.a.s., we uay show that there is a t' > 0 

such that if z(t) is a solution with (zCt,)] < 1 and t^, > t', then 

|y(t) - yup  < j^ for all T e[t.,t1 + T],     (Coi.;paru 4.  above and the 

proof of subleriua 2, part 3.)    Thus 

t, t, j        t^ 

f      B(T)Ty(T)dT -  f    B(T)Ty(t1)dT      <  f  |3(T)||y(T) ~ y^)  dx 
ti-l, tl-l '        ti-l 

< 6 RT16 when t, + T > t,  > t..  > t.  > t' and t.  - t,   , < 6. 

We now apply 1.  ebeve.    Let  (T0,60,e0) - (T + t',6,6/RT16),  rnd con- 

clude that there is a unit vector w and a t,  > t' such that 

f  3(T)TW : 
Jti-1 

T      -    RT16 

for all t, + T > tj^ > t^ > t1 when t^ - t^ < 6. 
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It follows that 

:1-1 

< m     for all 1. 

ft 

using y(t.)  ■ w a^d the above two Inequalities, This conpletes the proof 

of Thecreu 3. 

Proof of Proposition 1, 

Firs: note that |y| - |Cx| < |x| < |z0|Ke"a(t'V inplics | |y(t)|dt < ». 

Therefore, given s > 0, we can find t, > t0 such that |y(t) - yCtj,)] < e 

for all t > t,. iünw a non-uniforn version of sublerma 2 holds, nnd this 

inplies the following ncn-unifoni version cf the leuna: 

Leuii^a. Given 6 > 0, there is a sequence t ■♦■ " such that |y(t )| < 6. 

With this leuna, sufficiency follows fron Preposition 3, 

The proof of Theoreu 3 is also easily adapted to establish necessity, 

using the above "flatness" of y(t). 

Pr^cf of Proposition 2. 

We use Prcj/OS-Jtion 3. The condition on y can be established by a siuple 

adaptation of the proof cf the letaia. Unfortunately, this ntlnptation does 

not seeu to generalize to higher di:iensi:ns. 

Proof of Proposition 3. 

This is exactly like the proof of Theoreu 2 frou the leuua. 
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