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ON THE STABILITY OF NOW-AUTONOMOUS
VIFFERENTLAL EQUATIONS x = [4 + B(t)]x,

WITU SKEW-SY.HMETRIC MATRIX 3(t)
A. P, Mcrgan and X, S. Nerendra
ABSTRACT

In this paper we characterize (in Theorem 1) the unifort: as muptotic

stability of equations of the fom
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where 4 + AT is stable in terus of the "richme.s" cf B(t)., The equation

Y

is stable if and cnly if B(t) is sufficientlr rich. We actually obtein
stability results for e uuch broader class .. systeus (Thecive 2 aul 3)
whose behavicr 1s sindiler to the one ebove, Such systens have cone up

recently in soue adaptive contrel prebloecs.
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I. Introduction
The purpose of this paper is to characterize the uniform asymptotic

stability of certain nou-cutonomous linear systems of the form

i-l lf;J_—BT5 ’x}
v) B0y,

where A = A(t) i8 a time varying stable nxn matrix and B = B(t), C = C(t)

are time varying mxn matrices. Such equations arise in connection with
questions of adaptive identification and control as described in Narendra
and Kudva [3].

Theorem 1 below is illustrative of the type of result we have obtained.
It 1s a corollary to the more general Theorems 2 and 3. We state and discuss
these results in section II giving examples and some indication of proofs,
including the presentation of a key lerma.,

Some results concerning {(non-uniform) esymptotic stability have also
been obtained, and thesie are scuted in section IIL., In section IV we dis-
cuss in more detail the control applications of this work, which are sum-
marized as Theorems 4 and 5. Section V contains the longer proofs.

"'revious work on the stability properties of this type of system has
been done by Yuen and Wonham [5). They found sufficient conditions for
asyuptotic stability in the case that the system can be put in the form

e = Ee + ¢x + Yu
¢ = -PexT

‘;‘ L 'réu .

(See section IV, Theorcm 4 for wore details.) Anderson in [1] considered
sone almost periodic cases, obtaining sufficient conditions for uniform

asyuptotic stability.
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I1. Statement of Main Theorems

The following Theorem 1 gives a complete characterization of uniform
asynptotic stability when A + A? is stable and C = B, It 18 & corcllary
to Theoreus 2 and 3, which we will state after a discussion of Theoren 1.

First, however, we establish some notation and state several defini-
tions. The nxn time varying matrix A = A(t) is called "stable" 1f the
systen x= A(t)x is uniforuly asymptotically stable. The length of x € B
is denoted "|x|". If A is an nxn matrix, "|A|" denotes the uniforn norn
of A derived frou |x]|.

The equl!librium state x = 0 of the uniformly stable differential
equation x = £(x,t) is unifornly asyuptotically stable (u.a.s.) 1f for some
€ > 0 and all €y >0 there 18 a T = T(el,ez) > 0 such that if x(t) 1s a

solution and lx(to)l < €, then |x(t)| < e, for all t > ¢  +T. If T de-

2 “0
pends on to, then x = 0 1s (non-uniforuly) asyuptotically stable (a.s.).
Theorem 1. Let A = A(t) be an nxn natrix of bounded pleccewise con-

tinuous functions such that A + A? is stable. Let B(t) be an uxm matrix

of bounded plececwise continuous functions. Then the systen

x.] A -BT B rx
N e (1>
y B |0 J l_y

is u.a.s. 1f and only if there are positive numbers TO’ €g> and 60 such

that given tl > 0 and a unit vector w ¢ Rn, there 18 a t2 £ [tl,t1 + TO]

such that t2 + 60

I B(1) W dt
t

>

_Eoo

) |

Corollary 1. If b(t) is suooth, {ﬁ(t)l is unifornly bounded, and

there are real nuubers a > 0 and b such that




t 3

2
I IB(T)Twld‘t 2 a(t,- t)) +b

(") ‘1

for all unit w ¢ X and all t2 > tl > G. then (1) is u.a.s.
Corollery 2. If (1) is u.a.s., then there are real nuibers a > 0 and
b such that
t, .
I |3() wlat > a(t,- t) +b

t ..
for all unit vectorsiw ¢ & and all t, >t

12 0.

The condition given in Tueoreu 1 is a "richness’ condition for B(t).
It says that for any uait direction w, B(t)Tw is "periodically” large; or,
at least that B(t)Tw docs not dawp down to zero. The condition requires
the: there be 2 fixed length of tiue, Ty such that 5(t) “points in all
dircctions” as t takes om velues in any intcrvel of length To. Also it

requires that 3(t) raintain sufficient length. However, it requires even

wore then this, sincc the condition of corollery 2,
2
[ |B(r) *w|dt > a(ty- t)) +b
t
1
is not sufficient.

It 1s therefore apparunt that, for fixed w, the sign changes that
B(C)Tw g§ocs through arc also significant. B(t)Tw nust not only be peri-
«dically large (over intervals of length TU) but it rust naintein the sare
sign for o fixed interval of tiue (of length 60). (Sce the cxauple below.)

It is iuuediate that the condition: thore are positive nurbers '1'o

anc €5 such that |ttt f

2 0

l[ B(T)Tw dr
= tl

for z11 unit w € R~ and tz >t

t> g
= 0

12 v

s e
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ie sufficicat but not necesszary for (1) to be u...s. (In this case 60 cen

be chosen arbitrarily anc does pnot depend on w.)

The following exauple illustrates sone of thc above couwents. Let

a - L %’, and define e squarc wave function with incrcasing frequency
n=1
u(t): [0,») + R} by

[1 if tE[ak,ak'l'T(;%T)-]

. 1
o2 4 & clay + 7ary » 2!

u(t) =

then tne two diieusional syste:.

i1, - -MJH}}

Ly ) s 0 iy

(#here a is a positive nuibir)is not u.a.s. Note, however, that
t

2
! lum) [de = (t,- t)).

]

Thus the necussary concition of corol’ary 2 is not sufficicnt. Also, com=
pare this with the following courents oun the category PS*,

We should point out that corollary 1 can be generalized as follows.
Instcad of requiring that B(t) be suooth and Iﬁ(t)l be bounded, we nake
the souewhat less restrictive assunption that the couponents of B(t) be
contained in the set PS*, definod as a convenient category of imput fune-

tions by Yuan anc Wonhat: in [5]. (However, we nust keep the integral

T
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assuuption.) PS* is the set of all picccwise suooth functions g:{0,») -+ Rl
that are unifortly bounded, whose derivatives are unifornly bounded (where

defined), and for which the iatervals over which g 1s stooth do not shrink

to 0.

For exavple, an input function g Jdefined to be comstant on intervals
(ab,an+1) where & ..~ a 1s bounled below as n + = is in I3*.

Theoren 1 is an fumediate corollary to the following two theoreus, which
are our nain results.

Theorecu 2. Let A(t) be a2 stable nxn watrix of bounded piccewise con-
tinuous functions. Let P(t) be a syucetric positive definite natrix of
bounded continuous functions such that P + PA + A?P is stable. (ieny such
F exist. See the ciscussion below.) Let 5(t) be an nxc natrix of bounded
piecuwise continuous functions.

Assure that there exist positivc nucbers TO'EO’ and 60 sach that given

tl > 0 and a unit vector w ¢ Ru, there is a t, e[tl,t

t, + 60

B(T) W dr > ¢

1 + TO] such that

.
%2

Then the systeun

e

r .o
; A "-Br [x @

o= b 2
| 3P | 0 J“y

e

is u.a.s.

Coroliary 1 and the couwents about Yuan and Wonhan's PS* in the Jis-
cussicn following 1t hold cxactly a2s written in this cas-,

"P(t) 1s positive cdefinite" means that there exist porivive constants
a and 8 such that axTx < xTP(t)x < Bx?x for all x ¢ R” end 21l t. We vay

interpret the stability of P+ PA + A;P to nean that P+ PA + ATP = -Q where

Q = Q(t) 1s positive cdefinite.
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By Krasovskii's thooren, the uniforu asymptotic stabilicy of x = A(t)x

izplies that given any continuous syunetric positivc definite Q(t), there

éxists a continuous syumctric positive Jefinite P(t) such that P+PA+ ATP =

-Q. (Sce darendra and Taylor (4], p. 62, or Halanay [2], p. 44, thecoren 1.6°F.

Note that the proof given in dalanay, although stated for continuous A(t),
holds for piecowise continuous A(t).)

Theoren 3. Let A(t) be a stable nxn natrix of bounced piecewisc con-
tinuocus functions. Let B(t) and C(t) bc nxu watrices cf bounded piecewise

continucus functions. Suppose that the systeu

vl I- Ty
X - ! A B ! X (3)
(S

is u.c.». Then there are positive real nuubers TO’GO’ and €9 such that given

t, -~ 0 an< a unit vectcr w, there is a t.e{t,,t, + T.] such that
1= 2°'171 J
t.+ 6
2 0
WIRY ST
f B(T)'w dt |2 ¢ .
t2

Corollary 2 holis excetly as written in this cese also.

1he corments nade after the staterent cf Thecrew 1 apply to Theorens
2 and 3. The conditicn which is nccessary anu sufficicent for u.a.s. 28 a
"richness" conuition for B(t), which hcwever involves a subtlety concerning
the sign changes of B(t)Tw as t > o,

The follcwing is a key cbservation, used in the prcof of Theoreu 2.
Consicer cquation (2), and assunc that the hypothesis of Theorer: 2 holds.
We shall use the notation 2(t) = ix(t),y(i;)]T froL. novw con.

Lawa, Let € ane 6 be given posit.ve nubers. Then there is o
T = T(el,d) such thet if z(t) is a sclution of (2) and Iz(tl)lf €)1 then

tuere exists soue t, e[;l,tl + T] such that (y(tz)( < d.

it




The leun:a says that if B(t) is sufficicatly rich, then; for any
solution z(t) = [x(t).y(t)]T. y(t) gets '‘pericdically" small.

We will aow outline the proof of Theoren 2, which is writtean out in
detail in gection V. Definec the Lyapunov functicn V(z,t) = V(IX,Y]T.t) =
XP(t)x + yTY. Then V(z,t) < -klxl2 where k is some pcsitive nutber. Thus
1f |y| is suall and |z| is not, then |x| is nct. In this case, |V| is large
and V(z,t) is decreasing. Sincc v < 0, we have uniforu stability, anc the
observations of the previcus two sentences show that |z| is pericdically
getting seziler and sualler. Uniferw asyaptotic stability fcllows.

The procf of the lemua can be easily derived frou the fcllowing two
subleauas.

Sublema 1. Let €1 > € > 0. Then there is an n = n(el,ez) such that
if z(t) = [x(t),y(t)]T is a sclution of (2) with lz(t1)| < ey and
S = {t e[tl,w):lx(t)l > €5}, then u(S) < n where u denctcs Lebesque measure.

This sublotma helds without any restriction on B(t). It states that
there is a uniforu liuit on the auocunt of tire 2 soluticn starting inside

the € bzll can renain cutside the ¢, ball., It therefore irplics that if

2
z(t) is any scluticn of (2), then x(t) + 0. It alsu irplies the following.

Given €1 > > 0, therc is 2 T > 0 such that 1f z(t) is a solution cf (2)

)

with lz(tl)! <€), then therc 18 a t, e[tl,t + T] such that lx(tz)l <€

1 2°

We conjecture that sublerna 1 can be iuproved to say that x(t) + 0
exponentially. (See ciscussion in section III.,
Assurze that the hypothesis cf Theoren 2 holds., Then we have

Sublewriz 2, Let 6§ > O and e, > 0 be given. Then therc exist positive

1

nuwbers ¢ and T such thet if z{t) is a solution of (2) with iz(tl)l <€

anc if Iy(t}! > 6 for t e[tl,t + 1], then there is a ty e[tl,t1 + T)] such

1
that |x(t)] > e.




Taus, if b(t) is “rich” and |y(t)| is large, thon |x(t)| must be peri~
vileally lerye. The latia is cstcblished frer the twe sublonties as fcllows.
If y(t) 1s nct pericciczlly suall, then the sublaisas iiply that x(t) is
piriocicelly both large anc swall. But subletrz 1 puts zn upper bcund con
this typc of bchevior. The cdetails cf the proof <f the lema arc in
scction V.

III. Non-uniforr asyiptotic Otavility

We present three propesiticns concorning asyiptotic stability, de-

ferring proofs uncil sccticn V.

Prepusition 1, Let a = A(t) be an nxn natrix of bcunded plecewise

coutinuous fuactiuns such thet A + a' 1s stoble. Lct 5(t) ba an Lxn uatrix
of bounced plecewisc continucus functions.
aAssu.e that 1if z(t) = [x(t),y(t)]1 is a scluticn tce (1), then there are

pcesitive constants a anc K sucn thst
-a(t-to)
|x(e)] <K e fer 21l e > ¢ty -
(shic chulce of & anu K .ay <cpond specifically cn z(t).)
Then (1) is asyptotienlly stable if and cnly 1f therc are positive

nw.bers €. and 60 such that 1f w € R™ is o unit vcetcr, then there is =

Y]
scquencz t > @ with
n t 48
'nU |
I b(T)LW ar! > €, for o1l n.
tn g

Fropesition 1 is, c¢f course, & non-uniforc version of Theeren 1, Sic-
ilar rceoults anclogous to Thecrews 2 ane 3 2lsc helds The conditiin re-
qui. . expunential convergence of Ix(t)l tu zerc coan bo weskeneo to the

requireacent that

ke W Sl
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I |x(r)|dr < =,
‘o

e coujecture that this zlways happens (withcut any cenditicns cn B(t)) and
therefore that the expunential coavergence cenditicn can be cuittel fren.
Fropusition 1. If this conjecture is truze, then we woull have a2 couplete
cheracterizaticn of asyiptctic stability =nalcgcus to that for uniform:
asyrptctic stability.

rropositicn 2 below shows that for the twe <inensicnal case we cen drop

the expcacential convergence cuniition frou the sufficicency part of Prcpesi-~

ticn 1. acwever, in the prcof we aveid, rather than scttle, the conjecture.

Propositicn 2. Let a:[to,w) +> Rl be bounded, piccowisc continusus and
stable. Let b:[tg,w) - Rl be piccewise continucus and bouncded., If there

arc p.sitive constants € anc 60 and a2 sequence tn =+ » guch that

tn+60 J

I b(t)dt
t

n
then the twe ditensicnal systew:

fcr all n,

2 €

' (4)

[_b(:) O_i y

:’c“‘ I"a(t) -b(cﬂ .rx
)
is asyuptotically stable.

The fullowing propcsition is used tu prove both Propesitirn 1 and 2.

Prcposition 3. Let A anu B be 28 jiven in Thecrew 2, Ccnsider sclu-

cions z(t) tu equaticn (2). If, for ecvery z(t) and 6 > 0, there is a se-
quence € > @ such that Iy(tn)l < &8, then (2) is asyrptctically stable.
This result says that 1f the nen~-unifori. emeleg to the lemna fer

“hecre 2 helds, then the nen=unifeorc analcg for Theorcw 2 holds.
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IV. Applicaticns te Contrcl Thecry

The type cf equaticns discusscl in carlier secticns have core up ce-
cently in conmecticn with contrcl problems Ccaling with the adaptive cb-
server. It also appears rcascnable tc assume that questions regarding the
uniforc asyptotic stability of sililar non-sutoncuous equaticns will in-
creasingly occur in awaptive control problans where paraccters of the sys-
teus can be adjustec at the discretion cf the designer, i.e. parts of the
vector diffcerential equation caa be chosen. In this sccticn we character-
ize the uniforw asyrptotic stability of twe types of equations which arose
in the context of icontification (Sce Narencra and Kudva [3], for cetails.

Also ciupare Yuan and Wonhau ([5]).

Theoren 4. Consicer the systa:

= g + 0x + Yu

= -IexI (5)

e

©e

= -Feu;

e

where E 1s a stable nxn constant watrix, ¢ € Rn, ¢ 18 nxn, ¥ is nxu, T 1is

T AR

NWNTE | TIOR AT

a syutotric positive definite wpatrix such thet TE + ETF is stabl~, cad
xa[to,m) > Rn, u:[to,m) + R" are plecewise continucus, unifcruly bounded
vieetor velued functiuns.

Then (5) is u.c.s. if and only if therc are pusitive constents TO’EO’GO

such that given £ 2 0 an. a unit vectcr

therc is a t, € [tl,tl + TO} such that




11
E £+,
! I [X(T)T,u(t)T]w dr
ity

1f |§(t}| an¢ Iﬁ(tf: arc defined an< bounded, then the above ccndition

: Eo L4

can be replaced by:
There exist a > 0 anc b such that
)
T T
I [ [x(1) " ,u(r) “Jw|dt > a(t,- t;) +b
t
.
fcr 2ll unit w ¢ R x & and all1 t2 > tl'
This ccupletes the stateuent of Thecrer 4.
In the context of ilentification, x = Ax + Bu where A 4s a ccnstant
stable uatrix anc B is a constant catrix. Thus x is always bouncad.
This theorcu follows at once fron Thecreus 2 and 3 and their cercllaries.
dote alsc the coutents in section IT which ailcw us to assuue "u(t) e PS*“
in place of "|u(t)| beuncec".
The next theorei concerns a type of equation which also arises in

icdentificaticn schewes. (See Narendra ancd Kuéva [3], p. 553. Also see

anderson [1], p. 2,20.)

Yheorew 5. et A be a stablc nxn constant wetrix, and let P be &

pcsitive definite sy.netric natrix such that PA + ATP is stable., Assune

)
K
:
3
3

that there exist non-zerc vectors ¢ anl h such that P& = h. Let v(t) be
a plecewise continuous boundel vector veluel functicn. Then the systel.
x| & | newe)™ ) =
~).VJ L—v(t)*‘d'r ’ 0 |y
18 u.c.3. uf and only if there are pcsitive ccnstants To,eo, and 60 such
that 1if tl > 0 and w 15 2 unit vector, then there 1s a t2 e[tl,tl + TO]
such thsat |

S

t2+60 .
f v(t) rw lt] > ¢

t,

0 .

i
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If IG(t)‘ is beunded cr v(t) ¢ PS%k, then the ebcve conditicn can be
replaced by.

there exist 2 > 0 anC b such that
t2 T

I [v(r)" v}t > a(t2 = tl) +b for all unit w.
t
1

This corpletes the stateuent of Theoreu 5.

This thecrew is iomediate froo Thecreus 2,3, and ccrollaries. (Of
course, we could also easily derive a versicn of Theorer 5 with 4,h,d, and
P tive varying. However, these are ccnstant in the application cited.)

Note that, by the xeluan~Ycokubovich lem.a, the coenlitions

a) Pa + ATP stable for scue positive definitc syunetric P, and

b) Pd=h for scue d,h
ere equivalent tc the concition that the transfer uatrix H(s) = hT(sI-A)-ld
be pousitive real. (darencre and Teylor [4), p. 49.)

V. Prcofs of Thecreus

We shall present prcoufs tc Thecrew: 2, the lerna ané sublermas, Thecren
3, anc¢ Propositions 1,2, anc 3. The procfs of the ccrcllarics and the
coument in section II abiut PS* are routine and therefore cuitted.

It will be convenient tc usé the nctaticn

x-\

7
z = = [x,y] €
y

-

Also, for convenience, we assuze |A(t)| < 1 and |B(t)|< 1 for all t.

Rp+m

Procf of Thecrei 2.

1. By hypothesis we way chouose positive constants o,B8,a,b such that

< xT P(t)x < BxT X and

®°
“0-3
»
A

< Xt At)x < bx x for all x,

©
xb—]
»

A

T - U
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2

where -@(t) = ﬁ(t) + P(t)a(t) + A(t)TP(t). Without loss of generality,

i

assu.e 8 > 1 and a % 1.
befine V(z,t) = xTP(t)x + yTy. Then : 3
V(z,t) = 2x' (B(t) + P(£)A(t) + A(t)TP(t))x = -2x°Q(t)x < -2ax'x.
If 2(t) is a scluticn of (2), then the sbove implies that |z(t)| is tcno-
tonic'lly non-increasing as t + @, Thus we have unifcru stability.
2, We will ncw show that given & > €y > 0 there is a y with 0 < y < 1 and

an M > 0 such thet if z(t) is a soluticn of (2) with
€y < v(z(t),t) < €y for t e[tl,tl + M],

chen there is a t, e[tl,tl + 1f] such that V(z(tz),tz) < Y‘V(z(tl).tl)-

Since V(z(t),t) is non-ircreasing, this iuplies unifurn asycptotic
stability. The ebove fact follows rcutinely from th: lemma and the relaticm
6(z(t),t) < -Zax(t)Tx(t). However, for ccupletencss, we will write cut the
cetails.

Choose positive numbers ¢ anc c, 8¢ that l—cl > 0, /(I:EIYY/E -2c2//3 >0
end 0 < 2ac, (Y(Tc /Y8 = 2¢,/Ya )% < 1.

(Say c, = 3/4 anC c, = Yo /8/8 .)
Use the lemma to cbtain T when ¢ = € and § = €y > €+

vefine Yy = 1 - [2ac2(¢(1—c1)/J§ - 2c2//5)2] an( M =T + Cye We shall

shcw that for this y and 4 our result holds.

We want 0 < y < 1. But this is clear from the chcelce of ¢ anc Cye

gy -

Let ti E[tl,tl + T) be such that Iy(té)l <8=¢) . If V(z(ti),té) < €5

we are dJdcne. 88Ul V(z(té),té) 2 €y Then
T 2
V(z(ty),t3) = x(t3)" P(ep)x(ey) + [y(t))|” tcplies

le(ti)lz > Viz(t)),ty) - 6 2 V(z(ty),t;) (1-c,).
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Now x = 4x - B’y gives, for any t > té,
ft

Ix(e)| - |x(0)] < |x(t) = x(e))] < J [A(T)x(t) - B(1)y(1)]|at
£

< @+ Dja(e)] (t-t)) = zlz(té)l (t-t3),
since we have assuced |A(1)| < 1 and |B(7)| < 1 for all 1.

If we let t, = té + Cyy then we sec that

|x(®)] > |x(t))] - 2(t,- ) ]z(t))]
(A-c) 1B A L) - 2¢,]2(e)]

v

tv

(VT-c)//8) AG(E),t]) - (2¢,/7a) AG(E),E))

v

W) )Y (H(T-c) /B - 2¢,//a)

for all t ¢ [té,tzl.
Then V(z(té),té) = V(Z(tz),tz) =
t, ' t, )
J -¥(z(1),7)dt > 2a J |x(1)|%dt >
té té
2a + ¢, + V(z(t)),t)) - (/(_1?5;)_//5- 2¢,/7a) 2,

Thus V(z(tz),tz) < V(z(té),té) * v, and we are dene.

Proof of the ilLetwua.

Let 6 > 0. By the ccuaents after the stateuent cf sublerma 1 and by
sublemua 2, the assuuption for some solution z(t) that |y(t)| > & ivplies
that there is an ¢ > O such that |x(t)| is rcpeatedly both less than e/2
and greater than €. How this eventually leads tc a contradiction with sub-

leura 1, when we let e = lz(tl)l and ¢, = €/2. Since all these results

1
are unifori, we conclude that ly(t)l < § rcpeatedly (unifornly). This

yields the leurna.
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Prcof of Sublema 1,

This 1s fineliate frow the reletion ﬁ(z,t) < -ZaxTx. Wle can chocse

2
n(el.ez) =€ /28822.

Prouf of Subleime 2.

1. by aypcthesis, we have To.eo, and 60 given, cbeying the conditica in

the stateucnt of Theorot 2, iet z(t) be a sclution with inftial condition

lz(tl)lf €, Suppise that ly)| > 8 fer all t e [tsty + T) where T = T+ 80

2, dowx = AX - B‘yinplies, for any t > tl’ thet
t+60

x(t + 60) = x(t) + J L{t)x(t) - b(t)Ty(T)dT, which gives
t

t+60 . ! t+60

5(z) y(T)dt| - | z(t) + J A(t)x(T)dt| .

fx(t + 801 &

t t

We snall see peluw that we can ueke the secend tern arbitrarily suall and
tne first tern relatively large by appropriate choices of t and e, This
will prove the rusult,

3. ile heve y(r) = B(t)P(t)x(t). Thus, "when x is suall, y is flat." llore
precisely, given T' anc M' pesitive constonts, there is a € > 0 such that if
z(7) = [::(t).y('t)]T is & sclutiun to (2) with |x(1)| < @ for all

T e [tl.tl + T'], then |y(1) - y(tl)l <¢e' for all 1 e[tl,tl + T].

Let ¢! = e0'6 g ' = €19 end T' = T = To + 849 ané fix @ for these
26,
0
chcices.,
de Geo
4, vefinec ¢ = vin {— , 53-,6}. We shell now show that the sublertia
0

holcs for this cheice of T and €. If Ix(tz)l > ¢ for sune ty e[cl,cl + T},

we are done. aAssune !x(t)i

A

€ for all t e[tl.tl + T].
€.6
e+ e 60 < _%_ for any t e[tl.t1 + Tol. (Ve

t+6
Then |x(t) + l AQt)x(t)dt|
have assuned |A(1)] < 1 and |B(r)| £ 1 for all 1.)

A

s Sl

w4
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! t'+60
By hypothesis therc is a t! e[tl,t1 + TO] such that !I B(T)det [ > €9
Y(tl) ' t! i
wh = .
ere w Y(tl)
_ ' t
but ! t +60 t +60
i T
;f BT fyep] -y < f ly(ey) - yfer
Yt t! R
) e06 i} eoo

Sy ' 35 =5
0%, "2

because |x(1)| < € < 8 for T elty,t; + T1.  (See 3. abuve.)

Therefore t'+5 £ 146
0 . I : 0 . E06
ly(tl)l i[ B(z)'w ds } - i! 3(1) Y(T)CT < _2__ ,
t' ' t'
T
1r.plying ' t™*% o €0 €n6
B(1)'y(1)dz > g8 - R
‘ t' -0 T 2 ¢
€.6 €6 €6
1 6. _6 .0
Thus |x(t +50)|3 5 > e,

AR

Tails conpletes the procf of sublerse 2,

Procf of Thecren 3,

e

1, assuue (to cet a contradicticn) thet the conclusion of the theorcu is
false, Then given any positive TO’GO’EO’ there 1s 2 unit vector w and a

t, 20 such that
t2+60 ,
B(t)Tw dr' < g for each tze[tl,tl + TO].

t

2
2, Since (3) is asswited tc be u,a.s., there 18 2 T such that if z(t) is a

solution with |z(t1)[ < 1, then |z(t1 + TI 5‘% « Fix this T for the re-

r.ainder of the prouf.

3. Define n“
& o 0 3T

D(t) -z—--~--t--! anl  E(t) = | ——p~—-—

cw ol o {o |

L] L] o
and cunpare z = [D + Elz and z' = Dz' via variation of constants:

ot e
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t
z(t) = z'(t) + I ¢'(t,t) E(r)z(r)ar
Y
where z(tl) - z'(tl) and ¢'(t,1) 1s the state tramsition ratrix of z' = D(t)z'.
The proof now proceeds as icllows. We will find a unit vector w end
> 0 such that t:; solution z(t) to (3) with z(tl) - [O,W]T obeys
t
1
' 3
![tl o' (ty+ T,1) E(rz(n)dr| <5 o (W

atl

This, coubined with-the variation of constants foroula, implies that
[2(t)] = 1 end |2(t;+ T > %-, contralicting the choice of T, (Hcte that
2'(t) = [0,w]T is a cunstant sclution for z' = Dz'.)
3. Ve will nced the fcllowing, which is easy to prove.
(1) There 18 a constant R > 0 such that |@'(t,T)| < R whencver t > t > 0,
(11) Given ¢ > 0, there 1s 2 § > 0 such that 1f |1, - 1,| < 6 en?
t > 1, for 4w 1,2, then [¢"(t,1)) = &' (t,1y)] < €.
Let ¢ = I%f an’ chcose § so that (ii) hclds., We lose no gencrality
assuting 6§ < T. Fix this § for the renainler of the proof,
4, We will esteblish (¥) in 2, above as follows. First we show that we
can "factor <I>'(t1 + T,7) cut of the integral”. This will be dene by parti-
tioning the interval [tl,t1 + T] suall encugh via £i< Ey<eaas t o=t + 1
sc that 0'(:1 + T,17) is essentially cqual to the constant natrix

@'(t1 + T, ti) for 1 s[ti_l,ti]. Then, by carefully chcosing tl and w, we
'
¢ t1+ T

t1+ T
I E(r)z(t)it
t

J B(t)y(t)ir
t

1
1t is fuportant here that we can use the u.a.8. of (3) anl the fact that

vake
guell,

y = C(t)x tc cenclule that y(t) becoues arbitrarily "flat" unifcrrly os
t + », The result then folluows.
5, assune t, hcs been chosens  (We shall specify how tc do this later.)
. . T
Partition [tl,tl + T] using ty< ty<ees< b vhere tiim b S § and r < 3 + 2,

AP v e KR
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(Recall that T is defined in 2, anl § in 3, above.) Then
t,+T t

1 r i
I ¢'(t. + T,1) E()z(e)it - & I $'(t, + T,t.) E(T)z(t)dt!
1 1 i !
tl N 1m2 ti—l
r i
< I [ jo'(e. + T,.) = @'(¢y + T,t)| |E@]]|z()]cr
1 1 i
i=2 ‘¢
i-1
r 1 1 ' r ti
< L 6o === lel <= | Alsgc L o' (t. + T,t,) E(1)z(1)diT
S T :% | o2 1 1
r ty r ti-1
£ R f B(1) y(z)dt .

We shall show that with an apprupriate chcice of ty and v = y(tl), we

have t

1 1
f 8(t) y(1)d
t4-1

Then the last inequality above will te bounded by'% « Conbining this with

< §%f for all i .,

the previous inequality yields (*) in 2,
6, Ve now show how tu choose t, onl we
Since y = Cx ané (3) is u.2.8., we nay show that there 4s o t' > 0
such that if z(t) is a sclution with |z(t1)| Slaond ¢y > t', then
ly(t) - y(tl) < ET%E for 211 1 e[tl,t1 + T}, (Corparc &4, above and the

proof ¢f sublerma 2, part 3.) Thus

£y Ly ' ty
[ B(1) 'y (x)d -J B(1) y(t,)dr f[ I3 Hy () - y(ep) dr
ti-1 ti-1 £1-1

<6 e 1 when t +T > ti 2t.12¢%2 t' end ti -t 1< 8.

We now apply 1. esbcve, Let (TO,Go,eo) = (T +t',6,6/RT16), ~nd con=
clude that there 1s 2 unit vector w and a tl 2 t' such that
t
i 7
‘ f B(1)'w it

|
£i-1
for 2ll t; + T 2ty >t ; 2ty vhen ty - t; 9 <6

S
RT16

<

<
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It follows that ti

I B(t)Ty(r)dt' < %ﬁ for all 1,
t

© -1
using y(tl) = ¥ aud the above two inequalities. This completes the procf

cf Thecrou 3.

Proof of Proposition 1,

Firs: note that |y| = |Cx| < |x| < lzolxe'“(t‘to) ivplies J ly(e)|ae < =,

Therefere, given ¢ > 0, we can find tl 2t such that Iy(t)tg y(t1)| <€
for all t > tl. Now a non-uniforc version cof subleima 2 holdls, and this
inplies the following ncn-unifor: version cf the lewnas

Louwa, Given 6 > 0, there is a sequence tn + » guch that |y(tn)| <8,

With this lcma, sufficiency follows frenm Propesiticn 3,

The proof cf Theoren: 3 is alsc cesily adeptcd tc establish nccessity,
using the ebuve "flatness" of y(t).

Pr_cf of Propusiticn 2.

Ve use Proposition 3. The conditicn un y can be established by a sivple
elaptation of the procf cf the lemne, Unfortunately, this adaptation does
not seel tu generalize to hipher dirensicns,

Proof of Propositiun 3.

Tnis is exactly like the pruof of Thecrex 2 frouw the leuma,

< i) R

B
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