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INTRODUCTION 

This addendum details the statistical procedures utilized in prepar- 

ing the report, Decision Risk Analysis for XM204, 105MM Howitzer, Towed 

Reliability/Durability Requirements (PAA-TR-1-73).  A computer program 

was developed for this study to simulate DT/OT II testing, analysis of test 

data, the decision made based on this analysis, and the funding implica- 

tions of this decision. 

A two-parameter Weibull family was assumed to describe durability 

failures.  The test results were used to estimate the two parameters 

for each subsystem:  carriage, recoil system, tube, and breech.  This 

was followed by a test of hypothesis which tested whether sufficient 

information was available to reject the hypothesis that the required 

durability had been obtained.  The subsystem durability was then used 

to compute replacement requirements over the system lifetime. 

PROBLEMS 

The first statistical problem, parameter estimation, was unusual in 

that a large number of subsystems would survive testing.  This occurred 

as the carriage was a long-lived subsystem and the test truncation point 

was near the expected carriage life.  Also, other failed subsystems would 

be replaced until one of the following occurred: 

a. The carriage failed« 

b. The truncation point was obtained. 

c. No additional back-up subsystems were available. 

Thus, for each subsystem the test data would consist of rounds-to-fallure 

Mazza, Thomas N. and Banash, Robert C., PAA-TR-1-73.  Decision Risk Analysis 
for XM204, 105MM Howitzer, Towed Reliability/Durability Requirements> Systems 
Analysis Division, Plans and Analysis Directorate, US Army Weapons Command, 
April 1973. 



and random truncation points.  Parameter estimation was performed by 

maximizing the log likelihood equations. 

The next problem was to use these data in a test of hypothesis. 

This was accomplished by using the large-sample distribution properties 

of maximum likelihood estimaters, i.e., that the parameters have a joint 

normal distribution.  The a-percentile confidence interval is approxi- 

mately ellipsoidal; the a-percentile durability boundary was obtained 

by maximizing over this ellipse. 

The third problem was solving for the number of renewals in a 

specified time interval.  This was accomplished, initially, by the 

2 
method of Lomnicki and later (to save computer time), by taking averages, 

The purpose of this addendum is to detail these procedures. 

PARAMETER ESTIMATION 

The form of the density function for the two-parameter Weibull 

distribution used in this study is: 

f(t) = Xata 1e"At dt   t>0;a>0;A>0 . (1) 

Consider the following subsystem-life test.  M-like systems are placed 

on test and each system is composed on one critical subsystem and several 

different noncritical subsystems.  A total system configuration is required 

to conduct the test; however, with respect to probability of failure, 

each subsystem is assumed to be independent.  As each non-critical sub- 

system failure occurs, the failure time is noted, and the failed subsystem 

2 
Lomnicki, Z. A., A Note on the Weibull Process.  Biometrika 53, 375-381 
(1966). 



is replaced with an identical new subsystem.  Each of the M systems con- 

tinue with the test, with failed noncritical subsystems being replaced, 

until either a predetermined system truncation point (for example, when 

a stated number of rounds have been fired) is reached or until a critical 

subsystem failure occurs.  This test differs from the well-known Type I 

and Type II censoring in that the subsystem truncation points are ran- 

dom variables as is the number of each type of noncritical subsystems 

put on test. 

Let N be the total number of a particular noncritical subsystem 

put on test.  Let n of these subsystems fail and their failure times be 

observed.  The remaining m = N - n subsystems are removed from test at 

the truncation points T-, T2, T3,...T .  Then the logarithmic likelihood 

function lnL(a,A), based on the above sample where (1) is the applicable 

failure density function, is given by 

n n        m 
lnL(a,A) - nlna + nlnA + (a-1)  E lny - A I y.  - A I    x       (2) 

i=l   ± i=l      j=l 3 

where 

y. ■ an observed failure time, 

and 

Then 

x :. = a system truncation point. 

n        N 
lnL(a,A) = nlna + nlnA + (a-1) I  Int.-A Z    t* (3) 

i=l  X  i»l  *" 



where 

t± - y± ± <_n 

x n < i <. N. 

This function yields the following likelihood equations 

£   +    I    lnt4-X     I    ta  lnt,   = 0  , (4) 

and 

3a      °    i-i    *   i-i 

lf§L-f   -j^-0. (5) 

Solving (5) in terms of X and substituting into (4) yields 

5 + *. lnti - r2- • j, fct lnti - ° • (6) 
i=l       _ a   i=l 

i 
i-1 

Equation (6) can be solved for by a standard iterative procedure but by 

writing (6) in the form 

N n 
E tilnti Z  lnt± 

««).i=S X_i=I_=o,       (7) 
it» 

1-1 X 

8 



3 
it has been shown that if we find a K(a-) < 0 and a K(a2) > 0 and a, 

and a9 are within a sufficiently narrow interval such that a. < a < a« 

a linear interpolation will yield the required value.  While this method 

will eventually yield an answer, it would appear that the rate of con- 

vergence can be immensely improved by utilizing basic search techniques. 

In addition, the search space can be reduced by choosing an initial a_ 

4 that is relatively close to a.  Dubey has suggested that the moment es- 

3 
timators be utilized for the initial value and Cohen developed a table 

of values relating a and the sample coefficient of variation.  Tables 

relating the coefficient of variation to a require external storage 

areas (disks/tapes/drums) or, if internal to a computer program, take 

up precious core storage.  Therefore, the following equation is utilized 

which yields an initial estimator based on the coefficient of variation 

which is within 0.1% of similar table values. 

^ * .64364 + .18035 csch(z) - .0317523z + .000684128z2       (8) 

- .00129259 csch2(z) + .619344(e"Z) + .534717(e~2)4 

+ .54047 (e"Z)7 

where 
2 Q 

z ■ —Y~    * cv = coefficient of variation. 

x 

With this initial estimator, a "direct search with acceleration" is utilized 

to obtain the maximum likelihood estimate (MLE) of a or a. 

3 
Cohen, A. C., Maximum Likelihood Estimation in the Weibull Distribution 
Based on Complete and on Censored Samples.  Technometrics 7 (4), 579-588 
(1965). 

4 
Dubey, S. A., On Some Statistical Inferences for Weibull Laws, Naval Re- 
search Logistics Quarterly 13, 227-251 (1966). 



5      rt 
It has been shown that — is distributed independently of a and X 

and has the same distribution as a.  Therefore, the bias in a is independent 

of the true value of a and  X and is only dependent on the sample size 

n.  A table of unbiasing factors B(n) was developed so that E[B(n)a] * a. 

The values in this table are approximated by the following equation: 

B(N) = .06541717052 - .00006172777867n + .997393979 tanh10 (n) 

-220.5624312 tanh7 (In n/n)-1.86171021(ln n)(tanh(ln n/n2))   (9) 

+.01424021769(In n) tanh10 (n)-39302536740000.tanh8(ln n/n3) 

Once the MLE of a is obtained from the search of equation (7), the ap- 

propriate unbiasing factor equation (9) is applied before solving for 

X, using equation (5). 

AN ILLUSTRATIVE EXAMPLE 

Ten systems are placed on test and the truncation point, T., for 

each system is given (in rounds) below. 

T1 - 35,142 T6 - 76,958 

T2 - 43,839 T? - 78,962 

T3 - 45,540 Tg - 79,864 

T4 - 61,471 T9 - 91,190 

T5  -  66,681       T10 -  95,202 

During the course of the test, 23 failures/replacement (Y ) of sub- 

system z occurred at the following time: 

Thoman, D. R., Bain, L. J., and Antle, C. E., Inferences on the 
Parameters of the Weibull Distribution.  Technometrics 11 (3), 445-460 
(1969). 

10 



y i     "  33,748 7 9- 36,102 Yl7 - 14,326 

y 2  -  24,898 y10  . 6,822 yi8 - 27>959 

y 3  -  10,376 yu  . 28,824 7l9 " 10>128 

y 4  -  27,186 y12  - 37,452 Y20 " 31,864 

y 5  "  34,377 y13  . 1>170 y21 - 9,366 

y 6  "  13,591 yu  . 39,886 y22 " 21>978 

y 7  "    878 y15  . 10)212 y23 - 12,924 

y 8  "  41,524 y16  - 24,029 

and at the time of each system truncation, the following subsystem times 

(x.) were observed: 

x x -  1,395 

x 2 "  8,564 

x 3 - 18,354 

x ,  - 12,624 
4 

x   - 25,157 

This sample for subsystem z is from a population in which a *= 1.364 and 

X = .00000102336.  This data can be summarized as: 

23 23 
n = 23, N=33, I   t.«499618, Z t. «14396873864. 

1 1      X 

It follows that x = 21722.52, s2« 154083086.858, and the coefficient of variation 

cv - .3265.  Then from (8) the initial estimate of a-1.81.  To obtain the 

maximum likelihood estimate, a is varied in equation (7) until |K(a)| is mini- 

mized.  This results in a=1.6421 and applying the unbiasing factor for a 

sample size of 33, a = 1.5731. 

11 

x 6    " 
40,855 

X7    " 
5,863 

X 
8 

38,806 

X9    " 
14,662 

X 
10 

8,940 



TEST OF HYPOTHESIS 

Consider the following failure density function: 

ft 1  \ta 

f(t;ct,A) « aAt   e   dt a>0;X>0;t>0 . (10) 

When the resulting sample likelihood function of a life test can be written 

N 
as -X E  t a 

L - jlaXt«"1 e-Xtia] e ^+1 J (11) 

then, this function yields the following partial derivatives of the loga- 

rithmic likelihood equations: 

^|St = 2. + °  lnt _ x E  t 
a Int. = 0 , (12) 

3a   °   1-1    1 1-1 i    l 

* -f  "j,  ^ =°' <13> 

£& - =f - X   5  t.a (Int.)2 - 0 , (14) 
3a    a      1=1 

32lnL _ -n  _ „ (15) 
2 " "T"      ' 

lot ■ - X *l" «*, = ° • <16> 

12 



The maximum likelihood estimate (MLE) a and X can be obtained by 

solving (13) in terms of X and substituting into (12).  Having obtained 

the MLE for the parameters of the Weibull law, it is then possible to 

determine confidence limits for meaningful parametric functions such as 

durability and reliability. 

Durability can be defined as the probability that a randomly selected 

item from an infinite lot will continue to perform satisfactorily without 

a durability failure beyond to and is given by 

ProbtT^ t0] * J     fT(t)dt = exp(-Xt0
a) ■ 

to 

(17) 

If the parameters a and X are known, the above problem is completely solved 

and the exact answer is given by (17); however, usually these parameters 

are unknown.  It is well known that the large sample MLE is approximately 

normally distributed about the true parameter value as a mean for large 

samples.  This is a powerful tool and will be used to establish confidence 

limits on durability when the true parameters a and X are unknown.  Assum- 

ing the above, it follows that 

F   c 1 a-a,X-XI 
Cll   Ci2 

C21    C22 

where 

a-a 

X-X 
X (2)  , 

Cn  -  -E 
32lnL 

3a' 

Mood, A. M., Introduction to the Theory of Statistics. 
Inc., New York, New York, 1950. 

(18) 

(19) 

McGraw-Hill Book Co., 

13 



C22 

and 

-DM • 

From  (14)  and   (19) 

CH     =    E [i * \! •1
a<i"')2] ■ 

C     a,,  N2 . a-l-Xt .. 
Examine I - /  t (lnt) aXt e   dt 

J  0 

and let 

H = ta, 

do) = at^dt , 

lno) = alnt , 

lnt = i lnw , a          ' 

*■ = -^(lnu) 

then 

I = -^-    co(lnu))  e" W du , -V f oüdna)! 
a2 ■*> 

From page 578 of referenced literature , equation 4.358(2) 

(20) 

c» = c21 - - [4S]   • (21) 

(22) 

Gradshteyn, I.S., and Ryzhik, I.M., Table of Integrals, Series, and Products, 
Academic Press, New York, New York.  1965. 

14 



J7 xv"1eyx(lnx)2dx ■ r(v)/yV{[^(v)-ln(M)]2+ g  (2,v-l)} 

y > 0,v > 0 

now let 

and 

then 

I = X    r°° a "l~/°°a)(lna))VXa,da) - Xr(2)/(a2X2){[if/(2)-lnX]2+C(2,l)} 

r(2) 

Xa2 
tW(2)+ln|]2 + £(2,1)} 

Q 

From page 1073 of referenced literature , equation 9.521(1) the Riemann's 
Zeta Function 

C(z,q) -  £ z > 1 
N=0  (q+N)' 

/.  £(2,1) - ~ + JT + JT +-T +^ + ••' 1   22  3^   ^   5Z 

o 
From page 260 of referenced literature , equation 6.4.10 the Polygamma 
Function 

00 

/(z^C-D^N!  Z  (z+k)^"1    (z*),-l,-2,...) 
k=0 

8 
Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions with 
Formulas, Graphs, and Mathematical Tables, National Bureau of Standards.  US 
Government Printing Office, Washington, DC.  1970 

15 



•     • 

00 

/. ^(1) = (-1) 12 I  (l+k)~2= T + 4 + -T + 4+--' 
k«0       L      2l      3Z  4Z 

i 
• 

therefore, 
• 

5(2,1) = ^(1) 
. 

and 

1= ^ {[<M2)+ln±]2 + ^(1)}  . 

Equation (22) can now be written as 

cn = "T + "1" {[*<2>+ln X I2 + *1(1>} (23) 
a   a 

where 

* (2) -  .4227843351 , 
and 

if»1 (1) = 1.6449340668 . 
• 

From (16) and (21) 

TN    «  1 c12 = ^ tl i„tiJ (24) 

Examine 

I = /V Int «At""1 e'^dt 

and let 
a) «  ta » 

d(A) =  ata~ dt, 

lna) ■  alnt , . 

lnt =  lnu)/a , 

• 

16 

• 



then 

wlnw e   dw 
0 

From page 576 of referenced literature , equation 4.352(1) 

A [' 

fM  x^1 e~yX lnxdx = — r(v)|>(v)-ln(u)]  u > 0,v > 0 
JO pv 

let 

v - 2 , 

u = X , 

x ■ 0) , 

then 

I - £ y°° uliuu e"Xw da, = (^)(^)r(2)[^(2)-lnX] 
A 

5T- [♦(2)+ln J] 

Equation (24) can now be written 

and it follows that 

cl2-fs-I*<2>+lnT}    ' (25) 

C22»7 • (26) 

As just shown, the C   matrix is the inverse asymptotic variance- 

covariance matrix of (A,a) and is obtained by taking the negatives of 

the expected values of the second order derivatives of logarithms of the 

likelihood functions.  Using (18), we can now obtain the appropriate con- 

fidence limits for the true probabilities .  In the case of reliability 

7Loc. Cit. 

17 



or durability, we want to insure that the true reliability or durability 

is above some minimum value R or D at a desired confidence level.  From 
m    m 

(18), then, 

Cn(a-a)2 + 2C12(X-A)(Ü-a) + C22(A-A)*X
2(2) .       (27) 

The above equation describes the boundary of a confidence region in the 

parametric space (a,A).  It is approximately chi-squared distributed with 

two degrees of freedom and will serve to determine an ellipsoidal confi- 

dence region in the (a,A) space.  In order to obtain the upper confidence 

limit, all that is required is to search the parameter space, (27), 

varying a and A until the durability function (17) is maximized. 

A PROCEDURE FOR COMPUTING EXPECTED NUMBER OF RENEWALS 

Let X-, X«, X«,... be a renewal process, that is, a sequence of 

independent, nonnegative and identically distributed random variables 

which are not all zero with probability one, with the probability den- 

sity function f(X) and the distribution function F(X).  Sk - X^ X2+.. . 

X, is interpreted in renewal theory as the time up to the kth renewal 

and the probability that S, < x is given by the k-fold convolution of 

FK(x) "/ FK-1 (x~t} d F(t)» 

where 

F0(x) = 1. 

The primary purpose of this procedure is to calculate N which is 

defined to be the maximum suffix K for which S.< t, subject to the 

18 



convention N ■ 0, if X. > t.  In this application, the X±  represents 

successive lifetimes of the object being renewed, and N is the number of 

renewals made by time t, subject to the original object having been in- 

stalled at time 0, i.e., N is the number of renewals in (0,t). 

The usual procedure for determining various functions of Renewal 

Theory is to find the Laplace Transforms of these functions and then re- 

vert to the time domain. However, in the case of the Weibull distribution, 

9 
this approach is not convenient and Smith and Leadbetter have developed 

an expansion of the Renewal Function into a power series of t where a is 

the Weibull shape parameter. White demonstrated a procedure for eval- 

uating the higher moments and cumulants of the number of renewals N and 

1/2 
computed the mean M(t) and the standard deviation, (Var N )   , of N . 

2 
Lomnicki developed a method to evaluate the distribution of the number of 

renewals which is defined by the family of functions W (t) where 

Wk(t) = Fk(t) " Fk+l(t)    (k=0,l,...) 

and is the probability of exactly k renewals in (0,t). 

In order to be able to evaluate more of the various forms of the 

renewal functions in the case of the Weibull renewal process, the basic 

method developed by Lomnicki was used. 

As shown by Lomnicki, if we assume that W, (t) is represented by the 

unique series 
00 

Wk(t) -  I ak(s)Ps(t
a) 

s-k 

9 
Smith, W. L., and Leadbetter, M. R., On the Renewal Function for the 
Weibull Distribution.  Technometrics 5(3), 393-396 (1963). 

White, J. S., Weibull Renewal Analysis.  Third Annual Aerospace Reliability 
and Maintainability Conference,  pp 639-637^  Society ot Automotive 
Engineers, Inc. New York, New York.  1964. 

Loc. Cit. 19 



where 
k 

Pk(t) - *        |r    (k«0,l,2,...)  , 

then 

and we have 

where 

and 

a  s     o+k s bk(p) 
Wk(t) - I   Ps(t

a) t   (-D^cp  ^- 
s-k       p-k r 

s       ,    b, (p) 
^(s) - i   ("1}  0 YTPF  (k=o,i,...;s-k,k+i,...) 

Y(r) - r(or+l)/r(r+l)   (r-0,1,...) 

bQ(s) - Y(S).    (s-0,1,...) 

s-1 
b(s)  = I  b (r)y(s-r)    (k=0,l,...;s=k,k+l,k+2,...) 
k+1   r=k 

The expected number of renewals M(t) - E[N(t)] which is the renewal 

function is given by 

M(t) - X    n P[N(t)-n] 
n=0 

M(t) = Z    n W (t) 
n=0 

Since 

is equal to 

Wx(t) + 2W2(t) + 3W3(t) + ... 

F1(t) -F2(t) +2F2(t) -2F3(t) + 3F3(t) -3F4<t) + ... , 

20 



then 

and 

I    n W (t) = Z    F (t) 
n     n=0 n n=0 

M(t) »  I  F (t) , 
n-0 n 

where Fn(t) is the convolution of the cumulative distribution function 

F(t) of the first renewal time and the n-1 subsequent renewal-time dis- 

tributions and is the distribution of S , the time of the nth renewal. 

Now, 

Fk(t) = Wk(t) + Fk+1(t) 

•••+Wk+l
(t)+Fk+3^ 

Ffc(t) £ wr(t) 

r-k 

(k=l,2,3...) 

or 
k-1 

F   (t)  - 1-    I      W  (t), 
r-0       r 

so we can now express F, (t) as 

Fk(t) =  I  E ar(s) Ps(t
a) 

r=k s«r 

Substituting the Poisson cumulative function 

Dg(t) = Ee
-ti 

r=s 

21 



means that 

where 

Fk(t) ■ Z    Bk(s) Ds(t
a) 

s»k 

3k(k) = a^k)  , 

s—1 
& (s) - £ a (s) - E  a (s-1)  (s > k) , 
K      .  r      .   r 

and 

so that 
oo oo s 

M(t) = Z     F (t) « I   D(ta) Z     ß,(s) , 
k-1 *    s=l  S   k-1  R 

or 

M(t) ■ E  C(s) D (ta)  , 
k-1 

where 
s 

C(s) = Z      $ (s)    .   (s«l,2,...) 
k-1  k 

We can now evaluate M, (t), the Renewal Function, W, (t); the probability 

of exactly k renewals; and F (t), the distribution of time of the kth 

renewal.  These functions are very useful in evaluating models of relia- 

bility, inventory, and queueing process. 

Vt) = E(f >) - lQ   (Fn(t)-Fn+1(t)) . 
n=0 

The moments of N(t) may be derived from Mv.(t) by the relationship 

k   k 
E(N(t) ) - Z    t,   M (t)n! 

n-1 k,n n 
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where t,   are the Stirling numbers of the second kind and represent the 
k,n 

number of ways of partitioning a set of k elements into n nonempty subsets. 

In particular 

E{N(t)} = M.(t) , 

and 
E{N(t)2} - M^t) + 2M2(t)  • 

Or, if desired, the moments of N(t) may be derived from the definition of 

expected values. 

E{N(t)K} - I nK Prob(N(t)-n)  , 
n=0 

E{N(t)K} - Z nK{Fn (t)-Fn+1(t)} , 
n-0 

E{N(t)K} - Z    n\(t)  , 
n=0   n 

uu 

E{N(t)K} = E n^Cn-l)^ (t)  . 
n=l 

Next page is blank. 
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