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in the Wiener adaptive algorithms, the probability density function p(7)
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ABSTRACT

This report 1s a mathematical study of time-domain Wiener adaptive
multichannel filtering using distributed signal models. It presents derivations
for two Viener adaptive algorithms and describes the basic technique for im-
plementing a Wicner adaptive processor with directionally distributed signal

models.

In order to obtain the signal-model crosscorrelation functions nceded
in the Wiener adaptive algorithms, the probability density function p(r) for
e time delay between a reference sensor and the individual channels must
be specified. Analytic derivations of this function are presented for inverse
velocity space models, distributed ring models, and velocity-azimuth space

models. These derivations are of interest in their own right: they are useful

in specifying two-channel crosscorrelation functions for various directional

energy distributions.

Neither the Advanced Resecarch Projects Agency nor the Air IForce
Technical Applications Center will pe responsible for information contained
hercin which has been supplied by other organizations or contractors, and this
document is subject to later revision as may be necessary. The views and con-
clusions presented are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of
the Advanced Rescarch Projects Agency, the Ailr Force Technical Applications
Center, or the US Government,
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SECTION I
INTRODUCTION

This report presents the results of a mathematic study directed
toward implementation of Wiener adaptive multichannel filtering with dis-

tributed signal models.

Section II discusses the reasons for using this form of Wiener
filtering, derives both an unconstrained Wiener adaptive algorithm and a
Wiener adaptive algorithm subject to the same unity-response constraints
as specified in the maximum likelihood adaptive algorithm, and describes
a technique for modeling the signal crosscorrelation functions nceded in

the Wiener adaptive algorithms.

Sections III through V give analytic derivations for the time-lag
probability density function corresponding to specific distributed signal
models. The time-lag probability density function p(7) for the time delay
between the reference sensor and the individual channels is necessary in
order to obtain the signal-model crosscorrelation functions in the Wicner
adaptive algorithms. Section III features inverse velocity space models,
Section IV distributed ring models, and Section V velocity -azimuth space

models.

Section VI summarizes the results of this mathematical study.
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SECTION 11

IMPLEMENTATION OF WIENER ADAPTIVE FILTERING
WITH DISTRIBUTED SIGNAL MODELS

DISCUSSION

A previous adaptive-filtering study (Barnard and O'Brien, 1974) em-
ployed a maximum likelihood adaptive algorithm where the adaptive filter out-

put y(t) was formed using the equation

gty = X A

and the adaptive filter vector A was updated according to the equation
Alt +4t) - A(t) = 2u(t) X T AR-X) = 2u{t) y(t) (R-X) ,

where the filter weight vector A, the data vector X , and the beamsteer out-

put vector X are, respectively,




u(t) is a scalar quantity controlling the convergence rate. The superscript T

denotes vector transpose. M is the number of channels, and 2N+l is the
total length of the adaptive filter in points. After time-shiiting the input chan-
nels to align energy from the specified look direction, the quantities xi(t-j) in-
side the data vector X are the values for chanrel i at time t-jAt , where
At is the sampling interval. Inside each subvector of the beamsteer output
vector X , all vector components are identical and equal to the beamsteer out-
put

M

R = o D %)

i=1
= (Glvages [0 S YAIE

When operating against background noise from the Alaska Long Period
Array (ALPA), the maximum likelihood adaptive algorithm (as implemented in
the study mentioned) functioned well and produced 6 dB signal-to-noise-ratio
improvements with suitably chosen operating parameters. In interfering-event
simulations using ALPA data, the same algorithm produced significant detec-
tion gains but distorted the on-azimuth signal waveform considerably, The

distortion was principally a result of the maximum likelihood design goal

(minimization of the filter output power yz(t) subject to unity-response con-
straints in the beam look direction). In conformity with this design goal, the
adaptive processor attempted to create from the data sample containing the off-
azimuth interfering event a filter output 180° out of phase with the lata sample
containing the on-azimuth event and was partially successful in producing
mutual cancellation of the two events. A possible remedy for this problem is

a Wiener adaptive filtering algorithm, where the design goal is to minimize

the mean square difference between the adaptive filter output and the on-azimuth
signal. Conceivably, such an algorithm might even provide substantial detec-

tion improvement over the maximum likelihood algorithm actually employed.
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The subject of this section is the basic technique for implementing a
Wiener adaptive processor using distributed signal models. Discussion of
specific distributed signal models is confined to later sections of this report,
Subsection B in this section presents derivations for both an unconstrained
Wiener adaptive algorithm and a Wiener adaptive algorithm subject to the same
unity-response constraints in the look direction as specified in the maximum
likelihood adaptive algorithm. Both of the derived algcorithms require some
method for estimating the crosscorrelation functions between the signal and
the cha-nels entering the adaptive beamformer. Subsection C describes a
technique for modeling the crosscorrelation functions needed in the Wiener

adaptive algorithm,

B. DER (VATION OF WIENER ADAPTIVE FILTERING ALGORITHMS

In the case of the unconstrained Wiener adaptive filtering algorithm,

the derivation is relatively straightforward. The error €(t) in estimating

the signal s(t) is €(t) = s(t) - ATX and the mean square error is

2 [s(l) - ATX][s(t) ’ XTA]

= s%(t) - 2AT Xs(t) + ATXX A.

=

. . : 73 ok AR . : :
When the Widrow approximation XX = XX is used in this expression, the

gradient of the mean square error is

v [ez(t)] - 2%%XTA - 2v,

where




T\-'l'(t).s(t)
V = Xs(t) = :
‘_}ZM“Z s{t) R

— ==
p—— ———

;I(H N) s(t)

XM(t+;\]) 5(t)

_xl(t-N) s(1)

E(M(t-.N) s(T)_

The method of steepest descent specifies that the adaptive filter vector

moves in the direction opposite to that of the gradient:

A(t+ At) - A() = 21(1) [v-xxTal = 2u(t) v - y(vx]

In the case of the Wiener adaptive algorithm with unity-response con-

straints in the look direction, the constraints are expressed in the matrix

i

; equation
‘3 =

l‘ 1 ooololo]}
“ -() '....'.O-
; Lo e |
2 :

Oo-ooooloo
-O ........()-

! l

L

[o------O

escess000s 00000 s0000000000000S Ol.lll.llo

Moo

]
[1......1 ] .[o ] o Bt |

Ollll.l O‘

(T A

>
H
O

[eeeses 0]

=1l sssee 1=

N AR N EO

where each of the row subvectors [1-----1] or [O----O] in the constraint matrix

has M components and where D is the (2N+ 1) -dimensional vector
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corresponding to a white frequency response in the look direction. Symbolically,
the constraint matrix equation may be written CA=D, where C is the 2N+ 1 by

. M(2N+t 1) constraint matrix and A is the M(2N+ l)-dimensional adaptive filter

vector, The adaptive filter must move in the direction opposite the gradient

! V[ez(t) A (D - CA) ]:2 XXTA -2v+ cTA 2

where A is the Lagrangian multiplier vector

A (-N)]

] A(-1)
(. A= x(0)
A(1)

escesssses

\ LA(N)

] The update equation is

A(t+ At) = A - p(t) [ZXXTA -2V + CT/\] 3




and the Lagrangian multiplier vector is determined by premultiplying this

.
equation by the constraint matrix C:
) T T b
D=CA(t+At) =CA - u(t) RCXX A -2CV + CC A {|.
Rearrangement of this equation yields !
T 1T
u(t) CC A = CA-D] £ o2u(t) [cv - CXX A] ) !
|
|
:| or
| £\ 1 i
A= Z(CC ) [CV - CXX A],
so that the adaptive filter update equation is
» ¥
l i TR T
| A(t+ At) - A(t) = 24 (t) [C (CC ) C - ][XX A - V] ’
" TR " p
The matrix CC  is the (2N+1) by (2N+1) diagonal matrix
' ul =
I M O [ AEN RN NN ENRENN] 0
";. O. Nl. O..----oo-- 0 -

O""""':"O M .O
O es0cssssscsses 0 M

b e

-1
T T
and the matrix C (CC ) C is the M(2N+1) by M(2N+1) matrix
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where each of the 2N+1 submatrices JM is an M by M matrix

element equal to one.

O e O
]

o

with each

Premultiplication of any M (2N+1)-dimensional column

vector by the matrix C produces a column vector where all M elements in

each of the 2N+l subvectors are identical and equal to the average of the corres-

ponding elements in the original column vector.

update equation reduces to

At +AL) - A(t) = 2M(t) [ym (X -X) - (V- V)] ,

where each element of the vector

'ﬂH—N}J

L V(t+N)

]

<l
™ pese

or

A

——

r
<t 1
ses v 008
s
4
[l

Asx a result, the adaptive filter
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is equal to

M
= S {CD) 50

i=1

v(t-j) =

If the adaptive filter vector A initially satisfies the constraint matrix
cquation CA = D, the adaptive update equation produces adaptive filter vectors
A which also satisfy the constraint equation. Because of computer roundoff
error, however, the filter vector A must periodically be adjusted to satisfy

the constraints.

C. ESTIMATION OF THE CROSSCORRELATION VECTOR

Since seismic adaptive processing must be performed in the time do-
main to obtain continuous time traces, the technique described in this sub-

section computes the signal model crosscorrelation function components

xi(t—j) s(t) of the vector V = Xs(t) directly in the time domain as a function

of the time lag 7 between the signal as seen by the reference sensor and the

signal as scen by the i-th sensor.

If the power spectrum of the signal were white, the required cross-
correlation function would simply be the probability density function p(7)
for the signal's time lag 7 between the reference sensor and the i-th sensor.
For a given distance d between the two sensors, the probability density func-
tion for 7= « cos #/V depends on the joint probability distribution for € and
V , where 0 is the arrival angle of the signal and V 1is the apparent velocity

of propagation (see Figure II-1).

In order to reflect the signal power spectrum, the crosscorrelation
function components x, (t-j) s(t) are obtairied by convolving the probability
: :

density functicn p(7) for the specified distributed signal model with the auto-

correlation function corresponding to the estimated signal power spectrum,




! Va
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d

is, for incoming energy, the arrival angle {in the plane of the
array) relative to the line joining the two sensors

is the apparent velocity of propagation with respect to the plane
of the array

is the distance between the two sensors

is the time lag of incoming energy between the lwo sensors

d cosf
\Y%

FIGURE II-1

DIAGR AMMATIC REPRESENTATION OF THE FACTORS DETERMINING
THE TIME LAG OF THE SIGNAL BETWEEN TWO SENSORS




By choosing the power spectrum of the data as the model for the signal spectrum,

the adaptive b-amformer can be made to function solely as a directional-filtering

processor.

For array sensors with well-equaiized signal outputs, the average auto-

correlation function across channels can serve as a model for the signal auto-

correlation function:

M M
s(t-k) s(t) = I\l/l Z xm(t-k) xm(t):l\l—d Z xm(t-k) xm(t)
m=1

m=1

If the sensor responses differ by a simpl: scale factor, then an amplitude

correction can be made:

M 4300}
e————— {]
si(t-k) Si(t):T\_A Z xm(t-k) xm(t) 1 e
m=1 M Z (pmm(o)
m=1 2

where Wii(O) and ([)mm(O) denote the average power for the channels denoted
by the subscripts i and m, respectively. (Since the crosscorrelation function
m is being estimated and the strength of the i-th sensor affects only
the term xi(t-j). only an amplitude corre:tion is made instead of a power
corr:ction.) For good results in eliminating the variations in sensor response,

i od . .
the power ratios (Pi.l(O)/ (pmm(O) ne to be reasonably stable

In the later secticns of this report, formulas for the probkability density
function p(t) will provide expressions for p(T) as 2 continuous function of

the time lag T . The r nzerc values of p(r) lie within the interval

<7< max N

d
v . Wk
min min

1I-10




where d is the maximum distance to the reference sensor and V_ .
max min

is the minirnum apparent propagation velocity across the plane of the array,

so that the frequency bandwidth for p(T) is infinite. On the other hanrd, the

autocorrelation function to be convolved with p(T) in estimating xi(t-j) s(t)
is available only at integer multiples of the sampling interval At. In well-
designed processing systems, spectra of signals and noise lie nredominantly

within the frequency band

IA

Woere ¥
7 7
where W = 1/At is the bandwidth corresponding to the sampling interval

At, and it is not a bad approximation to assume that the spectrum of the data
lies entirely within the Land indicated. If the unmodified probability density
function p(T) were samplec¢ and then convolved with the available values of
the estimated signal autocorrelation function, then the frequency components
of p(7) outside the sampling bandwidth would, in effect, alias back into that

bandwidth. A remedy for this problem is to compute & continuous convolution

of p (1) with

sinc Wr =

sin TWr

W itT# 0

at integer multiplies of the sampling interval At by numerical integration. The
number of computed values should be sufficient to extond at least beyond all lags
T for which p(7) is nonzero. Convolution with sinc W7 removes from p(T)
all spectral components outside the sampling bandwidtia, If an infinite-tength
version of this bandlimited and sampled version of p(T) were convolved with

an infinite-length sampled autocorrelation function estimate, the result would

1I-11
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be the true sampled convolution of the probability density function p(7) with

the bandlimited autocorrelation function estimate. In practice, of course,

both of these functions must be truncated to a finite length, If the point length

is 2L+1 for the modified version of p(T) and 2(N+L) +1 for the autocorrelation
function estimate, then the Fourier transform of the (2N+1)-point-long convolu-
tion output is the desired signal-model crosspower spectrum convolved with

[sin T2 L+1) § At] / [sin 7fA c], which is the fourier transform of the

(2 L+1)-point-long sampling function for the modified srobatility density function
p{7). If the number of points 2L+ 1 is sufficiently large and the estimated signal-
model power spectrum is sufficiently smooth, the signal-model crosscorrelation
function estimates for m) will be relatively free of spectral window

cffects.

In the following sections, analytic derivations are given for the probabil-
ity function p(r) corresponding to specific distributed signal models. These
derivations generally are obtained using a transformation from the specified
velocity-azimuth probability distribution to a new two-dimensional space where

the time lag 7 is one of the coordinates.
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SECTION III
INVERSE VELOCITY SPACE MODELS

s BASIC APPROACH

In this section, the signal-model probability distributions are
specified as a function of the two-dimensional inverse velocity vector
—
— \J
e

- —
V-V

where 7 is the incoming energy's apparent velocity in the plane of the array.
The coordinate system axes are oriented so that the e coordinate points in the
same direction as the line from the i-th sensor to the reference scasor

(as shown in Figure III-1). The time lag T corvesponding to a particular value

-
of u is

X 1

ar = ~d

The probability density function p(To) is determined by taking the limit as
AT approaches zero for the quantity (1/ At) times the probability between T
o

and T + At:
o

I1I-1




—
~—

-~
%
(o]
"
(o]

1 1 I

Vi

i

_._.__--.--._._.._-)’

&

~

L
\

is the vector location of the i-th sensor
is the vector location cf the reference sensor

is the distance between the two sensors

A%

V-V

-
u =

is the inverse velocity vector corresponding to
the apparent velocity across the array

is the incoming energy's apparent velocity in
the plane of the array

FIGURE II-1
THE BASIC INVERSE VELOCITY SPACE MODEL
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For this model, the probability density is uniform on the disk Ffl < Uda o
where u =1/v _ and V__. is the minimum apparent velocity across the
max min min
array:

—LZ_ if ITﬂ(u
Tu i

max
v

ax

p(st u )=

0 if IT;I >u
max

The probability density function p(7) for the time lag 7 is

‘/ g 3
2.Ju S 0
max X
2
mTu

d

1]

p(T)

max

577 DOl
2 1 X
Tu d —(u )
max max




for | < cI/Vmin and zero elsewhere. Figure 111-2 displays p(7) for this model,

whose principal application arises in connection with infinite-velocity P waves,

G ANNULAR MODEL

In this model, the probabilit; density is uniform on the annulus
u . <[el< a , where u =1/v ., ,u . =1/V ,and V ., and V
min max max min’ min max min max
are the minimum and maximum apparent velocities, respectively, across the

array:

if u |, <M< u

/2 2 l) min max

T u -u
max mi

s 0 if m < umin or 'ﬁ'l > umax :

The probability density function p(7) for the time lag 7 is

P 2 [ 2 2
2 u -u -fu . =-u )
—_— min be 1fux§u
u
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and zero for ,Tl>d/vmin' Figure I1I-3 presents p(7) for the annular model
at nine values of V . /V .
min max

D, SECTOR-OF-ANNULUS MODEL

In this model, the probability density is uniform on the sector of the
annulus u_ <|3l <u between 6 . and g , which are the mini-
min max min max
mum and maximum arrival angles relative to the line joining the i-th sensor

and the reference sensor. That is to say,

2 ]
2 B “min < Fﬂ J “max
(0 -0 . Nu -u_
max min’' max min
sad Hmin <8< omax
plu_,u ) =
2
0 otherwise.

B ki th 1 : i i bounded by th

reaking up the angular range omin<0 < emax into sections bounded by the
transition angles -, 0, ™ encountered as 0 sweeps from 6 . to @ con-

' min m

id implifi inati : . d i-
siderably simplifies the determination of p(r). If omm an omax are speci
fied so that -2 7 Semin< 21w, -2mW< 0maxgz m, and omin < omax < omin
then there are no more than three sections, each lying either in the first and
second quadrants or in the third and fourth quadrants, Sections can be mapped
into the first and second quadrants in such a way that the probability density as

a function of 7 is unaffected. Figure III-4 depicts a procedure for determining
the minimum angle & and the maximum angle 3 of each section after the appro-
priate mapping onto the first and second quadrants., Once the subdivision of the
1 i to the first and -
angular range emin <0<0.x and the mapping onto the first and second quad

rants have been completed, the probability density function p(7) is determined by

adding the contributions from the appropriate sections at the time lag 7. If the

minimum angle @and the maximum angle B after mapping onto the first and

4+ 21,




\' IAY% = 0.6
min  mpx R
o T
3
pm]
i "n,
\\‘ =
A\ /v = 0.7
min max .
T
plr)e
/\“* /!
N :
== i
| |
R = 0.8
| min’ mpx |
- .I'.r' '-_‘1 T
1 : \
; - Illrlv : |||I1||||r - D-Jl \II'.
‘ | min max i T
-~ |
| ba ﬁ
2
. - p(Th 'Il Sk min
1 FE ——
ik - J ‘_ |". X md |
i .. o \ B /
,- \ | |
[ = v . /V = 0.5 y - ‘
1 min. - mg \ v . IV = 0.9
| > | Ymin'  mpx
F f T l
: =L = .
i d " d
T=- T=
] vV o, vV .
‘ min min

FIGURE III-3

| ¥ TIME -LAG PROSBABILITY DENSITY FUNCTION
 E FOR THE INVERSE VELOCITY SPACE ANNULAR MODEL
AT NINE VALUXS OF Vn

A
1in.  max

-7




( START )

N=
Nt 1

; T\l \.. - even

e

ndd ¢

@« = g . - TEST+ nm
N min

B - -

N ()ma.\: TEST + 7

Ms<s

S5TOF

no 497 yes

FIGURE III-4

PROCEDURE FOR MAPPING ANGLES BETWEEN

0 D ¢

min

l

. ONTO FIRST AND SECOND QUADRANTS

111-8




1

R
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second quadrants both lie in the same quadrant and the annulus between i S8
and U is thick enough, there will be a range of u for which the extremal
values of u_ are located on the section boundaries U = (u cos 8, u sinf) and

u= (u cosa, usina). On the other hand, if o lies in the first quadrant and B

in the second quadrant or if the annulus is thin enough, there will be a range of

u_ for which the extremal values of u lie on the circles !G"= LN and [TQ= Wit
Figure III-5 illustrates these two possibilities when « and B both lie in the first
quadrant, The case shown in Figure III-5(a) corresponds to the condition U .y COSB

:umin cos «, while the case shown in Figure III-5(b) corresponds to the condition

u ., cosa< u cosf@.
min max

On the line 7= (u cos ¥, u sinYy), u_ = 7/d and uy = 7tan Y/d, so
that s =7tan af/d or uy = Ttan B/d whenever a section boundary corresponds
to the extremal value for uy at the time lag 7. For any given pair of angles
@ and 8, there are three possible u intervals where the formula for p(r) is
different. In the first and last of these intervals, one extremal value of u is
on a section boundary, while the other is on a circular arc. In the middle inter-

val, both extremal values lie either on circular arcs or on section boundaries.

Let

2
L9 2 2
d( ()max- omin)(umax B umin‘)
_ 2
- i i .
d(emax_ omin) V&' ) e
min max

I m/2< B, then the first interval is u cosff <u <min{u ., cosfl,
max = Tx = min

u cos «) and
max




A 18

/! max

.IF .-'__'__,-l-"""-..'L -~ 4
- »
X

(b) Time-Lag Overlap Between Section Boundaries

FIGURE III-5

THE TWO FIRST-QUADRANT POSSIBILITIES AFFECTING THE FORMULAS
FOR THE TIME-LAG PROBABILITY DENSITY FUNCTION
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FECete |

for (d cos ,B/Vm.m) <7 Smf‘in [(d cos 'B/Vmax)' (d cos /Vmin)]'

then the first interval is u ., cos 8 £u_< min (u cosf8, u
min X max

p(7)

i
A

Ttané } /uZ L uZJ

d min b e
- K Ttanf 1 I (VmaxT) Z—l
B d v d l

— max

min

Ifﬂ( T /2,

cosa ) and

for (d cos ,B/Vmax) < 7 <min [(d cos /Vmin)' (d cos a/Vmax)]. If

B = w /2, the first interval is of zero length, and the formula for the second
interval should be used at 7 = 0. If max (u cosfB, u
max

min (u cosa, u
max

min

min

interval are on circular arcs and

= J;Z - u2 u2 - u2
p(r) = max X min X

CcO
SB)S_quA

cosa), then the extremal values of u in the second
y

V . 1\ A
- K 1 mm) l_ 1
- vV . d \Y%
min max

for max|(d cos B/Vmin), (d cos ,B/Vm

ax

(d cos a/V )]. If min (u cosa, u . Cosa)<u < max(u
max max ST

u_. cos B), then the extremal values of u in the second interval are on section
min

boundaries and

p(

T) =

min

b

K]

'tan B - tan ol

d

)] <7 < min|(d cosa /V_,
m

n

max

)’
cos f3,

N -



Lo o g T AL

for min [(c] cosa/V ), (d cosa/V
min ma

ol

\:)] <+ < max [ (d cos B/Vmin),

d cosB/V >\)]. If the limits for the second interval are cqual, then only
max

the formulas for the first and third intervals should be used. If w/2<« ,

then the third interval is max (u_, cosfB, u cos@) < u gu . cos &« and
min max £~ min
Ttancw 2 2
p(t) = K ' -Ju . -u ‘J
L d min X
\ 7
- K Ttanao 1 \/ ( max
d \ d
L max

for max [ (d cos B/V ), (dcosa/V . )] <7 <(dcosal/V ). If a <7w/2,
max min m

ad ax

then the third interval is max (u cosf3, u . cosa)<u < u cos « and
max min <X max

2
p(T),K[\/u _ye . Jtana
L max X d
(TN
- K 1 _\ min ; Tian g
vV . c d

min

for max [(d cosa/V | ), (d cos a/V ) <t<(dcosa /V__ ). If a= 7/2,
* min max e min

then the third interval is of zero length, and the formula for the <econd interval

should be used at 7= 0.

Figures III-6 and III-7 portray the time-lag probability density function

PUTHNGL RVS B /iy = 0.1 and V_, /v = 0.9, respectively, for vari-
min  max min’ max

o)
ous 30 sectors.
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SECTION IV
DISTRIBUTED RING MODEL

In this form of distributed signal model, all incoming energy is con-
centrated at a single apparent velocity V with respect to the plane of the

array. The incoming energy, however, is distributed over a range of arrival

angles with respect to the line joininyg the i-th sensor to the reference sensor.
If the probability density function p()(()) is known between the arrival angles
-7 and 7, the probability density function p(7) for the time lag T can be easily
determined. First, a transformation from velocity-azimuth space to delay-
azimuth space is made with the formula

d cosf ,
\Y

where d is the distance between the two sensors. The line V=constant is
transformed into a cosine curve (as shown in Figure IV-1). For a given time

lag T, the corresponding angles are 6= cos T (vt /d) and 0= - cos _1(VT/d).

When any time lag To is less than -d/V, the probability P(T S-To) that
T is not greater than ‘rO is the constant value zero. Correspondingly, when
any time lag To is greater than d/V, the probability P(T < 'ro) is one. Thus
the probability density function p(T) is zero for |7|>d/V. Between
T= -d/Vand 7= d/V,

-1 VTo -1 VT:)
P(TSTO) =1~ F() CcOs d - F(‘) -COS ~—d-— ,

Iv-1
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TRANSFORMATION FROM VELOCITY-AZIMUTH SPACE
TO DELAY-AZIMUTH SPACE FOR DISTRIBUTED RING MODE L,
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i where Fn(()) is the cumulative distribution function for the arrival angle 0.

Thus, for!Tl < d/V, the time-lag probability density function is

dP(1< T )
(1) y SRy §
| PiT, d 'ro
{
! VTt Vr
o d -1 ( o) 5 ( o)
} e 1-1?) cos T +F0—Cos T ‘
(@)
ll ; A% Z11E
= Py d d
i /1- (VTU/d)
-
= + P Cos_i (VTO) i (_V_)
}0 d / d I
V1- (V7 /d)
— O —_—
I so that
‘:coq_l (VT)jl + [cos_ (VT ]
-CO € — b
Py d Po d o
l Y
/g -
1 — T
() = )
d
0 for > -
or |7l 7
If the arrival angle probability density function pn(()) is nonzero when 8 is an

integer multiple of 7, there will be a discontinuity in p(r) at iTl= d/v: as|r|

1 approaches d/V from smaller absolute values, p(7T) goes to infinity; for all

values ofl'r'greater than d/V, on the other hand, p(r) is zero.




o
Figure IV-2 depicts, for select=d 30 sectors, the probability density
function p(r) corresponding to the uniform angular probability density func-

tion

1
if
0 -0 . ' Um'm< 0 <(’max
max min
b (9) =
A
0 otherwise,
(6] o . .
In the case where @ . = -10 and ¢ = 20, the probability density
min max

approaches o as T approaches d/V from the left,

Figure IV-3 pictures p(r) when the incoming energy is equally likely
at all possible arrival azimuths. The time-lag probability function approaches
® as T approaches + d/V moving outward from 7= 0. This figure illustrates
the limiting case for the inverse velocity space model when V. /V .

min  max

approaches one (compare with Figures III-2 and 111 - 3).

Figure IV-4 represents the probability density function p(T7) for the
timc iag T when the arrival-angle probability density is normally distributed

about some angle 00:

(6-6,)°

202

1
pO) = —F/— ¢
0
For this figure, the standard deviation 0O 1is 157, Strictly sperking, therc is
an infinite discontinuity at T = 4 d/V in all cases, but the probability associated
with these discontinuities is sometimes minuscule and the discontinuity for such

cases is not shown in the figure.
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TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE DISTRIBUTED RING
MODEL WITH A UNIFORM DISTRIBUTION OVER VARIOUS 30° SECTORS

IV-5




——

=
T Se—
v

FIGURE IV-3

TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE DISTRIBUTED RING
MODEL WITH INCOMING ENERGY EQUALLY LIKELY AT ALL AZIMUTHS
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SECTION V
VELOCITY-AZIMUTH SPACE MODELS

A, B£SIC APPROACH

In this scction, the signal-model probability distributions are specified
as a function of the apparent velocity V in the planc of the array and the
arrival angle f with respect to the line joining the i-th scensor to the refer-
ence sensor. The cumulative distribution functicn  F( TO) for the time lag
T i.c., the probability P(rg TO) that 7 is less than or equal to some arbi-
trary time lag T is obtained by integrating over all points (V, 6 ) corres-

ponding to time lags less than or cqual to 7 :
0

F(r) = Plrgr) = j j p(V, ) d g dv,

e
TS,
where p(V, 8) is the probability density at the point (V, 0). The transformation

of variables
Tz — =10

facilitates the evaluation of the double integral above. If the probability density
is nonzero only inside the rectangle specified by V.. < VLV and

min —  max
-7 < 0 < mFigure V-1 illustrates the corresponding arca in (7, #) space. The

shaded area corresponds to the specified rectangle in (V,0) space. After

transformation, the cumulative distribution function F( 71 ) is
0

TO T
F(r ) =f f p(V,0) |J (1,0) l dodr,

- 00 -




FIGURE V-1
N FROM (V, 9) SPACE TO (7T

) SPACE
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where J(r,g) is the Jacobian

v
a0

86
a0

-d cos#f -d sin8

TZ T

- cos@

2

probability density function for the time lag 7 is

LT

dF(r) s p(V,0) cos 0da
LT

1
p(r) = dr - m

For bivariate polynomial probability densities

M N

p(V,8) = Z Z 2, vip)

i=0

j=0
M N w
Z 2: (d cos()) 0"’ ’
= aau ~—m
ij T
j=0

i=0

the integrand is of the form




M N
E Z b.. (cosf) 1+10J
1)

i=0 ;=0

and can be cvaluated analytically.

B. UNIFORM RECTANGULAR DISTRIBUTION

In this model, the probability density is uniform over a rectangle

in velocity-azimuth space:

1 if Vmin<V< Vmax
-V . -6__.
(Vmax mm)( emax 6mm) and 9 . <g<@
; _ min max
piV, 6)=
0 otherwise,

The time-lzg probability density function is

d r
p(7) = — - cos 6d 6
IT'T(Vmax min)( omax Omin) J
6(r)
d sin 6
'T'T(Vmax ) Vmin)( omax_ omin)
0(7)

If the shaded areas above g and below ¢ . in Figure V-1 are removed,
max min

then the rema’ning shaded area determines the limits of integration for ¢ at

any particular time lag 7. Since the angles 0 along the curved boundaries

-1 -1
in Figure V-1 are of the form cos (V7/d) and -cos =~ (V 7/d), the following

identities are useful in the integral evaluation:

LR ]

i Gar R e o e ks



2
. -1 ( ) 1-( )
sin | cos d 1

As in the case of the Section II1 sector-of-annulus model, subdividing the
angular range g . <0<8 into sections bounded by the multiple-of-7
min max
transition angles encountered as 0 progresses from § . to 7] facilitates
min ma>

the determination of p(7). As before, sections can be mapped into the first

and second quadrants so that the probability density as a function of 71 is un-

affected. The same procedure outlined in Figure I11-4 is also sufficient to

ascertain the minimum angle « and the maximum angle fof each section

after mapping onto the first and second quadrants, Addition of the contributions

from the appropriate scctions at the time lag 7 again determines the probabil -

ity density function p(7). If 6 . and 0 are specified su that -27<¥
min max mi

-27T<P <2m, and § . < 0 < § . + 2m, then therec are no more than
max min max ™ min

three such sections.

The extremal values of 8 for any particular time lag 7 lie either on
horizontal section boundaries or on arc-cosine curves. The boundaries in
the rectangular velocity-azimuth model correspond precisely to the boundaries
of the inverse-velocity sector-of-annulus model in Section III. The difference
between the two models is the probability density within the boundaries: if the
uniform rectangular velocity -azimuth model were expressed in terms of the
inverse velocity model, the probability density would rise as the vector magni-

tude |_ff| decreases. As in the case of the sector-of-annulus model, there are,

for any give pair of angles « and B, threce possible 7 intervals where the formula

for p(7) is different. In the first and last of these intervals, one extremal value
of @ is on a horizontal section boundary, whilc the other is on an arc-cosine
curve. In the middle interval, both extremal values lie either on arc-cosine

curves or on horizontal section boundaries.

V-5
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) <7<

If 7/2<fB, then the first interval is (d cos B /Vnin
1

min | (d cos ’B/Vmax)’ (d cos (Y/Vmin)] and

-1 VminT .
d{ sin:B - sin {cos —-E-—)

lTl T(Vrna.x Y )( Y -0 )

min max min

2 2 .
\/ﬂ - (VminT) -d sin

2
(Vv -V N6 - :
max min’ ' max min

p(7)

If 8 <7/2, then the first interval is (d cos ’B/Vmax)s 7T < min [(d cos,B/Vmin),

« d
(d COS(Y/Vmax)] an \Y; T

-1
d! sinfB - sin | cos ( x:ax

p(7)

AV -V N -0

raax min max min

d sinf3 - \/dz - (Vma\'T) &

2 i S e

max min max min

If B= 772, the first interval is of zevro length, and the formula for the second

interval should be used at 7= 0,

If max [(d cosB/Vmin), (d cosfB /Vmax)] < 7 ¢min [(d cos (Y/Vmin),

(d cosal/V )] , then the extremal values of 6 in the second interval are on
max

arc-cosine curves and




T BT T SR

e TR Y

-w

T (V -V . )oe -6 .
max min = ‘max min

. 0 .
max min’" max min

.tV
min max

- 2 2 2 2
(6 -0 {/(T -(v . 1) +\/d -(V 7) ]
max min min max

If min [(d cos «/V . ),(d cosa/V )]<_T<max [(d cosB/V . ),(d cosf/V
min max = min

)]

max
then the extremal values of § are on horizontal section boundaries and

q lsinﬁ- sin o ,

p(t) =

( RN -0 .
T max min max min

If the limits for the second interval are equal, then only the formulas for the

first and third intervals should be used.

If m/2<«, then the third interval is max[(c} cos B/V ),
max

(decosa/V_. )] g7 <(dcosalV ) and
min - max

s v 'T._
d { sin |cos ( ma:\)

I

-sin «
? d $
p(r) = =
[rlr(V -V . N6 -0
max min max min
2 2
d sina - /d = (V 7‘)
i max
2

TV -V _ )8 -0 .
max min max min




R

L

If ®< T/2, then the third interval is

d 5 [} d d 1 d
max | ( cos,B/Vmin) (d cos a/Vmax)]STg ( cosa/me) an

(V - )
) -1 min ]
d {sin (cos i - sin «

T (V -V .6 -0 _.)
min’’ m

max ax min

p(r) -

2 2
Jd -(V__.. 1) - d sine
_ min
TN AR I
max min max omin
If «= 7 /2, the third interval is of zero length, and the formula for the second

interval should be used at 7= 0.

Figures V-2 and V-3 present, for the uniform rectangular velocity-
azimuth distribution, the time-lag probability density function p(7) at
v . IV =0.landV . /V = 0.9, respectively, for various 30° sectors.

min  max min  max
AtV |V = 0.1, there are sharp peaks near T= 0 in Figure V-2 (in
min’  max

sharp contrast to the corresponding inverse velocity model of Figure III-6).
AtV . /V = 0.9, however, there is a strong resemblance in Figure V-3

in.  max
to the comparable inverse velocity model time-lag probability density functions

in Figure III-7.
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TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE UNIFORM
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FIGURE V-3

TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE UNIFORM
RECTANGULAR VELOCITY -A ZIMUTE MODEL AT
VA = 0.9 FOR VARIOUS 30 SECTORS
min  max
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TAPERED-VELOCITY UNIFORM-A ZIMU TH DISTRIBU TION

In this model, the probability density is nonzero within a rectangle

in velocity-azimuth space and is the product of the velocity probability density

function p(V) and the arrival angle probability density function p(f):

p(Vv, 8) = p(V) p(0)

The velocity probability density function p(V) is smooth and falls off to zero

at the minimum and maximum velocities,

long intervals b uadratic functions.,
g

V . gV (2v. .+ V V35
min min max

In the second interval, in which (2V

9

max min

where V = .
med min max

where (V . + 2V Y/ 3LVLEV
min max max

?

p(V) =
2(V

It is specified over three cqually

In the first interval, where

(V + Vv )/2 is the mean velocity. In the third interval,




Figure V-4 shows the velocity probability density function p(V). If V_ and
a
V, designate the minimum and maximum velocity, respectively, for the i-th

interval, then

(3-i) V., +iV

min max

3

(4-0) V. + (i-1) V__
b 3

ax

The arrival-angle probability density function p(#) is uniform between

0 . and @
m

min ax’

(2] - f . i ﬁmin<0<9max

p( @) = max min

0 otherwise,

As in earlier models, breaking up the angular range ¢ . <6<§
min max

into sections in accordance with the procedure depicted in Figure III-4 and

subsequently adding the contributions from the appropriate ~ections can

simplify determination of the time-lag probability density function p(7).

As before, « and 3 denote the minimum angle and the maximum angle, re-

spectively, of each section after mapping o1i the first and second quadrant.

At the time lag 7, the contribution to p(7) from each scction is

w
max

1 d
= d ,
== p(V,0) cos 6d 6
min
where » . and w arc the minimum and maximum angles, respectively,
min max

at the time lag 7 after the rectangle described by agsf<f and V.. <VV
min max

is transformed into (7, #) space. The term |7l in the denominator may be

replaced by 7 if the integration limits are reversed when 7 is necgative.
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FIGURE V-4

TAPERED VELOCITY PROBABILITY DENSITY FUNCTION




The contributions from ecach velocity interval at the time lag 7 must be

determined separately and summed to obtain the contribution from cach

sector. In this process, integrals of the form
2 2
ﬁv -VO) cos 01d 0 = / (2_52_5_9_ - VO) cos 0df

[—;- sin ) (cos2 0+ 2€|
1
i sin 0 cos 0 + =0+ V2 sin f}
2 2 o

1 2 VOT
sin ) [g cos ) - (—5—) cos

vV 7
2
f‘}-(o)()

3 d
occur for each velocity interval.

The contribution to p(7) is

27(; 3 .*m()l% cosz()
2(V -V (0 - T

: 0 .
max min max min

T A% T

A\’ in min
_(__IJL_) cOs + <__.___.
d d

in the first velocity interval,




—

1

Y

0

b
9d gin
2
4(V A I -0 )T f)
max  min’  max  min a
27d ’ 1 2
- : ] sin ()‘} cos 0
3 4 3
(V -V o) (o -0 )T
max min max min
0
b

\Y T \Y T2 \Y T )
med cos @ + med 2 mecl )
() s _— 2] - (—m)
d d 3 d p

a

in the second velocity interval, and

27 (13 . 1 2
3 7 sm()? cos
2(Vv -V )Y (W -0 )T :
max  min max  min
18]
b
Vo7 v irR% 5 v T
_( mas ) cos 0 4 ( max > P (_ma:\ 0
d d 3 d
(7’]

in the third velocity interval, where f and ()b are vet to be specified,

3

In the discussion which follows, V_is the minimum velocity of the
a
i-th velocity interval and V} the maximum velocity, If n/2 < a < B, there is
)
a contribution to p(71) when (d cos [$/V )<T<(d cos /Vl), In this casce, the
a )

3

upper integration limit is

1 Var
Hb: cos ( d )

when (d cos 3/V )<rg(d cos «/V ) or Ul) = «a when (d cos /Vq)\'r <(d cos (y/Vh).
a a 3

The lower integration limit is g = /3 when (d cos BV y<r<(d cos,’-}/Vl) or
a 2 >

e e . T e
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| o, = cos

1 when (d cos ﬁ/Vb) <7<(d cos O/Vb).

If a<f3<m2, there is a contribution to p(7) when (d cos B/ Vb)<T<
(d cosa/V ). In this case, the upper integration limit 1s ()b: 3 when
a

(d cos B/Vb)<7<(d cos H/Va) or

when (d cos f3/V )< T<(d costY/Vfl). The lower integration limit is
a :

V. T

-1 b
0, = oS (—3)

when (d cos B/Vb)<7_<_(d cos «f Vb) or ()a =« when (d cosa/Vb)< T< (d cos a/'Va).

If asm/2<f3, there is a contribution to p(7)

when (d cos 3/ V )<7<(d cos @/V ) and the upper integration limit is always
a a

The lower integration limitis ) = 3 when (d cos f3/ Va) <7< (d cos B/Vb) or
a

1 when (d cos li/Vb)ﬁTS(d cos af Vb) or ()a = « when (d cos a/Vb)< 7<(d cos a/Va).




If a<r/2< Band 7= 0, there is no simple method to eliminate the
powers of 7 in the denominator of the integrals to be evaluated. However,

the probability P( 0< 7 <7) that To lies between 0 and 7 is
o

p(g) A6| av

-1 vr
(T)

.
) -4

max

x ¥
> »
m——

min

when 7 is small enough, and the probability dens:ty function p(7) is

<71 <
PO=Ter) 1 f -1 VT
min

T = 3 =5 77 [sin (T) p(V)dv
max

\

min

A%

1 p(V) VdV
Td( e

max ()xnin) . /1_(_\/d_7)2

min




1
d( ¢ - 4 )

nax nin

pl) J p{V) vdv

\Y
min

v

min + max

2d( ¢ -

max min

since the integral expression is simply the average velocity for a velocity

probability density function symmetrical about (V... + V 2.
min max

For the tapered-velocity uniform-azimuth distribution, Figures V-5

and V-6 depict the time-lag probability density function p{(r) atV _  /V =
min  max

0.1l ana V | /V = 0.9, respectively, for specified 30o sectors. In this
min  max

particular model, the functions p{7) are smooth and continuous unless

¢ . or { is an odd integer multiple of 7/2. The probability density
min max

functions p(7) in Figure V-6 resemble those of Figure III-7, IV-2, and V-3:

when the minimum and maximum velocities are nearly cqual, the dominant

infl 7) is apparently the = ifi nle 3
influence on p(7) is apparently the zpecific angular range 0m'1n< 0 < Omax

of the uniform azimuthal distribution.
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FIGURE V-5

TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE TAPERED-
VELOCITY UNIFORM-A ZIMUTH MODEL AT
VvV . /V = 0.1 FOR VARIOUS 30° SECTORS
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TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE TAPERED- 3
VELOCITY UNIFORM-AZIMUTH MQDEL AT
A /Vma\(: 0.9 FOR VARIOUS 30" SECTORS
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SECTION VI
SUMMARY

This report has presented two algorithms for implementing Wicner
adaptive multichannel filtering with distributed signal models.  These algo-
rithms may prove usecful in eliminating or ameliorating problems previously
encountered with maximum likelihood adaptive multichannel filtering., Among
these problems are mutual cancellation of interfering cvents, signal distor-
tion, and sensitivity to slight deviations from an ideal plane-wave signal
model. The two algorithms discussed require some method for estimating
the crosscorrelation functions between the signal and the channels entering
the adaptive beamformer. These crosscorrelation functions are estimated
by convolving the time-lag probability density function p(7) corresponding to
a specified velocity-azimuth incoming-energy distribution with the signal
autocorrelation function, which is approximated by averaging the input-channcl

autocorrelation functions.

Estimating the time-lag probability (lcrlwsity function p(7) for various
directionally-distributed signal models is an interesting problem in its own
right. In this report, three basic models are described.  The firstis an
inverse velocity space model, in which the signal-modet probability distri-
butions are specified as a function of the two-dimensional inverse velocity
vector W = V/({; . {;), where V is the incoming cnergy's apparent velocity
in the planc of the array. The sccond is a distributed ring model where all
incoming energy is concentrated at a single apparent velocity V with respect
to the planc of the array, but is distributed over a range of azimuths according
to a known probability density function po(()). The final model is a velocity-
azimuth space model, in which the signal model is specifi. d both as a function
of the apparent velocity V in the plane of the array and as a function of the

arrival azimuth £,
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