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Backscattered Spectra From Rotating and
Vibrating Short Wires and
Their Relation to the Identification Problem

1. INTRODUCTION

Radar reflections may he related to the specific nature of a target—its struc-
ture, cunfiguration, and internal motion. If targets such as trucks, tanks, and
helicopters are illuminated with radar, the reflections contain spectral compo-
nents which are distinet from the Doppler shifts arising from simple translatory
motion. Tor example it is well-known that a rotating helicopter blade modulates
the radar reflections from the helicopter with a frequency related to the rotation
rate of the blade. Vibrating membranes, because of their time varyving position,
also cause modulation in the phase of the target return which results in frequency
shifts. The use of thesc spectral changes in the reflections to classify radar sig-
natures of various targets having internal vibrations and rotations may have pos-
silile applications in vehicle classification,

Many military vehicles have periodic motions, internal and external, with
definite trequencies. These motions affect the radar reflections and may be used
in vehicle identificatioa. Therefore, it would seem that an understanding of these
various phenomena must include an understanding of the contributions of the
vehicular rotations and vibrations, In this paper we examine a short wire under-
going two exceedingly simple motions, rotation and vibration. In these motions
the wire itself is taken to be rigid. The shortness of the wire-that is, short

(Received for publication 21 May 1975,)
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compared with the wavelength of the radar~-means that we can treat the wire 38 a
Ravleigh scatterer. We first determine the scattering mairices for these
motions, and thus cobtain the scattered fields for different polarizations of the
incident field. Applving Fourier techniques to the scattered fields gives the fre-
quency cumponents.

The rotation and vibration spectra are quite different, indicating possibilities
for signature classifications. The differences also suggest possible directions,
both experimental and analytical, for future studies. These would include com-
Lining rotation and vibration, analysis of more complicated structures such as
plates, propellers, und belts, and studies outside the Rayleigh region where the
uhiect dimensions ure no longer small compared wi'h the wavelength. The ulti-
mute goal 15 to be able to synthesize the radar returns from real vehicles, irgin
a 32t of relatively simple models.

There are several appendices. The first is mathematical and descrikes the
polarization of radiation in termrs of a cartesian basis or an equivalent circwmar
basis. With these bases, the formalism becomes quite simple and makes it easy
to set up the polarization scattering matrix. The derivition of the miatrix and its
use are discussed in the same appendix. The three additional appendices deat with
the physical interpretation of the scattering from the wire. The rotating or
vibrating wire may be looked on as a microwave model for Raman molecular
spectroscopy. Although the correspondence between the two is not perfect-since
Raman spectroscopy is a quantum effect-a discussion of one in terms of the other
is illuminating. A second point is the relation of scattering from the rotating or
vibrating wire to the normal Doppler effect. It is true that the rotation and vibra-
tion lead to definite frequency shifts, but they are not the same_as those found with
purely translsting objects. For clarity in discussion the difference must be made
evident. The final appendix contains a brief discussion of the energetic and angu
lar momentum transfers in the scattering process.

2. SCATTERING FROM A ROTATING WIRE

As stated in the introduction, we resirict ourselves in this report to two very
simple motions. In this section we consider a rotating wire which is short co s -
pared with the radiating wavelength. Physically this means that the wire actu az
a point dipole, and that only the lowest electric mode as defined by Harringt~n
and Mautz1 is excited. Equivalently we can say that the wire acts as a Ray.-:»
scatterer.

1. Harrington, R.F., and Mautz, J.R. (1971) IEEE Trans, Antennas Propag.
AP.19:622,
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waanvularlk tolartze oy s The ealor-
rzation state of the wneident neld call
prove to he 1miportant, Shother it b
linearls, circularls, or cllipticdds
pdarized. Consiler 4 sare nnating -
in the v =plaae at constant angulur

veluceity # us shown wn Vigure 1. The
incileat raldiation 1s monochromatic
with frequency o The Jdirection of
propagation is alung the z-axis, that
is, the wave vector k is normal to the
plane of rotation of t‘;w wire, and kx Figure l Wire Rotgtinu in the <y-
and k_ are both zero. For this geo- plane With Angular Velocity
metry, the clectric field of the incident
wsave has no z-component, Maxwell's
equations impose the requirement of continuity of the tangential components of the
electric field at a boundar,. Because of the geometry, the current induced by the
incident field must flow along the wire's axis. Therefore the scattered radiation
must be linearly polarized, since the field in the far zone has one component only.
This is independent ot the polarization of the incident field. Therefore the
reflected or scattered field in the far zone alway s has its electric vector parallel
to the wire at the instant of reflection. Naturally this implies that 8 is much
smaller than 3 o’ which holds for all realizable cases. However, since the wire
rotates, the electric vector reflected at each instant will be linearly polarized in
a direction which depends on the temporal orientation of the wire at that instant.
It is this changing orientation which introduces the {requency & 1nto the spectrum
of the reflected field.

To calculate the effects of rotation, we first write the incident and scattered

waves in terms of the cartesian basis (?:,f') described in Appendix A,

2. Schoendorf, W.H. (1972) Freauency Spectrum and Backscattered Return
From a Rotating Short Wire, PA-267, Lincoln Laboratory, M.LT.,

Cambridge, Massachusetts.
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E ‘}.xx-},}‘_\‘cxp i(kz -z t). (1)
)
] The unit vector along the wire is u, and 3 is the angle between the wire and the
\ x-ax1s. The wire rotates with angular velocity 6; therefore § equals 8t. Owing
to the requirement of continuity of the tangential components of E at a surface,
3 WL an Vrte gs in terms of E‘ as
1 .
~ ES=c(&Lib
; =c G.wEl+¢.0E D )
ot E 2 U B

3

a field linearly polarized in the direction of the wire. In Eq. (2), C is a propor-
tionality constant. Bv taking the x and ¥ components of Es, we find

S. gt A2 i A A A AL i)
ES:C_(x-W7E, +(&x- UG- WE |,

»

P

and

S (A AVA A A2
= . vy 3%+ (v R
L_y C _‘(x u)(ys u)k O u) E_v! (3a)

\ u s aatine o s diae

But, Eq. (3a) may be written in the matrix form of Eq. (A2) in Appendix A

s i
b Ey Ey
3 =CR
4 s -1
v E, (3b)

1
3

where [R] is the scattering matrix. Since
E
: (%- 1) =cos@ =cos (§t) etc., (4)

Egs. (3a) and (3b) enable us to determine the matrix elements Ty of the scattering
matrix [R],

cox i ’J
S P I S PP P S TR PPN, ST NN UL B IO VT L SR TS 0 S IO N U I SN U PSR S L . ki




T

fadli o o

"

e s o

> L2 )
= (%-u)" cus” (A1)

r

11

r,, (0" sin” (60

Ty Ty * (-U) G- U) - san (Gt cos (B 1) (3)
=1/ 2sin(2H1).

Lquations (3a) und (36) relate the seattered feld to the incrdone eld, provaded
euch is expressed 1in terms of the cartesian busis (;..3:). If the ey lont freldas
expressed 1n terms of the circulur polurization Lasis (I‘., 1) wnd o sish v deter-
mine the reflected field 1n terms of the same basis, we apply Lg. (17 of \ppen-

dix A,
S .
. «1
Ly y By
=CQ "RQ . {s)
S Jd
Er Er

The circular scattering matrix Q'1 R Q is easily calculated to bhe

(r“+r22) (r“ -r22*21r12)

Q@ 'rQ:1/2 . : @
(r“ - r22-2n‘12) (r“ *r.zz)

With the help of Egs. (3) and {7) we can determine the backscattered field for
the above geometry, when the incident field is known. The main obtiective, how-
ever, is the determination of the spectra of the scattered fields. To obtain the
spectra or frequency dependence of these fields, we apply Fourier techniques,
since delta functions allow us to use Fourier transforms for periodic functions as
<rell as aperiodic ones, the Fourier series becomes a special case of the trans-
form. The convolution theorem states that the Fourier transform of a product of
two functions is proportional to the convolution of their individual transforms.
Since the temporal functions we deal with are simple trigonometric functions,
their transforms are combhinations of appropriately weighted delta functions, The
trigoniometric functions and their transforms are shown in Figure 2. The convolu-
tions are easily calculated graphically and are shown in Figure 3. By adding the
various convolutions we obtain the desired spectra.
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Figure 2, Fourier Transforms F(v) of
Varjous Trigonometric Functions f(t).
The dotted lines indicate imaginary
quantities

We now consider three examples with the rotating wire.
Example 1: The wire rotates in the xy-plane with uniform velocity 9,

The incident field is Ioit circularly polarized (LCP), of unit magnitude, and
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propagates in the z-direction,

o eao s mas oL

§i=f,expfi(kz-xot)]. (8)

T TR

é In terms of Eq. (A9) of Appendix A, EL equals unity and ER equals zero., The
L scattered field a
& S. S £ +ES ﬂ"
DindE N 5 > -3 . [{¢}
! l; _EL +Ep Jexp[ 1(kz+mot)] {9
A
g 15 computed from Eqs. (6) and (7), and the amplitudes are found to be
1
1 S _
i E[ = (c/2) (ry;tr;) and

.s = - - -3
En (cl2)( 11" Taz 21r12), (10)

where the rij are given by Eq. (3). It is clear, therefore, that, although the
incident field is in a pure LCP state, the reflected field is a mixture of I.CP

and RCP (ripnt circularly polarized) statcs. Since, from Fq. (3)

vy =rgg=2ir gl - Iryy eyl

II{f"]/IL‘R] -1, (11a)

The left und right components are therefore equal, which we know must be
true because of the linear polarization of the scattered fieldl,
We car also obtain the vquality of the two components from the criterion

of Rayvleigh scattering. Since the scattered power is proportional to the fourt..

pover of frequency, we cun write

12 e (2 Th aemng .
|1.L|//|1.R! e, (11b)

Since 8 is much smaller than Lo the ratio is approximately unity.

The time dependent components of the reflected field are proporticnal to
(r“ 4 r22) exp (- 1wot) and (r“ “Tyy - 21r12) oxp (~is ot)

12
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The real par of these expressions is

Re ES(t)1-C" 2c052(ét)cos(wot)

-sin(zét)sin(wotn. (12)

The Fourier transform of Eq. (11), computed easily from Figures (3a) and
(3d), indicates that the spectrum consists of two lines of equal strength at the

two frequencies w _ and (w 0+2§). Each line is of different polarization, the

o
shifted one being of the polarization admitted by the transmitting antenna.
Tke contributions at (wo - 28) cancel.

If the incident field were RCP of unit magnitude and propagating in the

z-direction (so that ER were unity and EL zero), we would again obtain two
spectral hines but at (v - 28) and w

Example 2: The wire rotates in the xy-plane with uniform velocity 8,
just as in Example 1. The incident field is still of unit magnitude but is now
linearly polarized.

1:‘=i-expci(kz-wot)]. (13)

Therefore E_ is unity and Ev zero. To express the scattered field in terms
of L and R, we apply Egs. (A12) and (Al4a)

S -1
Lx Ex
=CR
] o
l‘_v L_\'
and (14)
.5 <5
I:L 1] X
=Q
.8 ~S
ER E;
Therefore,
ni 1:; 1
. -1 il BPIES |
*CQ "R =CQ "R
o Ey 0], (15)

13
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which yields
s _ .
Ej = (clJ/2) (ry, +1r12). and

ElS‘ =(C/.Z)(r; _iry,)

where the T3 are given by Eq. (5) as before. Again the magnitudes of the
two romnanerits are equal, and the reflected field is linearly polarized,

The time-~-dependent components of the reflected field are proportional to
(r“ :irlz) exp (- ixo',). The real part of these expressions is

Re (ES ] = C2cos® (§t) cos (u_ ). (16)

The Fourier transform of Eq. (16), computed from Figure (3a), indicates
that the spectrum consists of three lines at w and (woé:ZO). The side lines
are each half the magnitude of the center frequency line at Wy
As might e expected, this is exactly the result we would obtain by adding
the spectra of a unit LCP and a unit RCP field as computed in Example 1.
For a linearly polarized field is decomposable into equal L. and R components.
Example 3: The wire rotates with an angular velocity 8 in a plane per-
pendicular to axis '}3 shown in Figure 4. The axis makes an arbitrary angle ¢
with the direction of propagation which coincides with the z-axis. The unit
rotation axis f) has components (0, siny, cosy). The axis of the wire is
always normal to f), and at time to such that 8 ty equals ~/2 it lies in the yz-
plane. Therefore, f':o which equals fx(to) has components (0, +sing, cosy).
As the wire rotates it acquires an x-component, and the general time depend-
ence of the wire's direction is

u(t) - X cos (8 t)*ﬁo sin (3 t)

=% cos (§t)+¥ sing sin (§1) - 2 cosg sin (B 1). (17)

Substituting this value into Eq. (5), we obtain for the elements of the scatter-
ing matrix

14
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Y = (x - ) = cos B,

ria = (% 1) (§' 1) =siny sin (§t)cos (Bt)
=1/2sing sin(28t), and
Loy = (§' . 6)2 = sinz& sin® (CTOR (18)

If we compare Eq. (18) with Eq.
(5), we see that the time dependency y
of the scattering matrix has remained
unchanged. " herefore, there will be
no chang in the frequency components
of the spectra as compared with those
obtained in Examples 1 and 2.

- M
<
-

3. SCATTERING FROM A VIBRATING WIRE

The second motion considered in this

report is vibration. As before, we shall Figure 4. Wire Rotating About

examine a short wire which acts as a point p-direction Which Makes an

: .; . . Ansle ¢ With the Direction of
dipole. Let the axis of the wire be oriented Propagation. At instant shown
parallel to the x-axis of Figure 1, so that the wire dircction ﬁo is in the
the wire vibrates in the z-direction with yz-plane

an oscillation {requency 8. The position
of the wire as a function of time is, therefore,

z5z, sin (B t). (19)

Again, as in Section 2, the incident radiation is monochromatic with frequency
wy (w0>>é) and propagates in the z-direction. Consequently, the motion of the
wire is parallel to the direction of propagation, always advancing or retireating
with respect to the source.
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] To compute the elements of {R], we remember that the axis of the wire fx is
f" parallel to x. The elements of the matrix are

1 by e

rsk-u ,

Yoy =(§r- 1) =0, and

r12=(§-ﬁ)(9-ﬁ)=o, (20)

since G\v . ) equals zero at all times for this geometry.
therefore

Q-IRQ=1/2[1 1]
114,

The matrix Q"' RQ is

o

—

3 and

P Ry

Q-lm(l/,_,z.)[i 8]

both of which are time independent.

We now upply these matrices to Examples
1 and 2 of Section 2.

ladaccade aii

Example 1: The incident ficld is LLCP, of unit magnitude, and prop-
agates in the z-direction.

L -1 *L

=CQ RQ .

5 -
F‘R 1"R , and

T e

1 1) [n {1
={C/2) [1 1] [o]: .212) l_i]. (22)

The scattered field is linearly polarized, since EL and ER are equal,

R

Example 2: The incident field is linearly polarized (with Ev equal to
zero), of unit magnitude, and propagates in the z-direction.

16
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i Ll eqQin| ™
R -S W
' En E,

: (¢].73) [{ g] [(1)] (23)
- «'/.fz)[{].

g Again the scattered field is linearly polarized, with equal left and right com-

e L i)

ponents. The reflected field will always be polarized with its electric vector
3 parallel to the wire (that is, in the x-direction) regardless of the state of
] polarization of the incident field. Obviously, if the incident field is polar-
ized in the y-direction, there will be no reflected field,

As we have already mentioned, the scattering matrix is time independent,
vet there is a temporal variation in the position of the wire. To take account

T

of this temporal variation, we apply Eq. (9). In the case of the rotating
wire, the receiver and wire were fixed so that the term exp (-ikz) was a

R,

constant which we could disregard. With the vibrating wire this term is a
function of time and so must be considered. Equation (9) becomes

ES = [Ei f. +E§ ﬁ] exp) -i [k z, sin (8 t)'-'rot] ( . (24)

Equation (24) shows clearly that the effect of vibration on the scattered field
is a phase modulation, whereas that of rotation is an amplitude modulation.

The real part of the exponential of Eq. (24) is a term proportional to
cos[kzosin(é t) - 1ot] , the Fourier transform of which gives the spectral
dependence of the scattered field. Since the reflection matrix is time
independent, it can be disregarded as an influence on the spectrum. The
Fourier transform cf the real part of the exponential is plotted in Figure 5
(sce Champeneys).

3. Champeny, D.C, (1973) Fourier Transforms and Their Physical Application .,
Sec. 2.5, p.36. Academic Press, New York.
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f(1) = Acos| kz,sin(dt)+ws, 1]

L] T
i
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nz-w

Figure 5. Spectral Dependence of a Phase Modulated Field.
Each line is a Bessel function of order n, Jn(kzo)

f(t) =cos [kzo sin (Ot)-'rot] , and

F(r)==

S8

. ,:Jn (kz )6 (r-1 -nd)+J (kz )6 (r+u o+né)}. (25)
The spectrum is an infinite series of equispaced lines, each line being
proportional to a Bessel function of order n where n runs from minus to
plus infinity. The nth side line measured from ", is proportional to
I (kz 0).

An alternative derivation shows a clear physical relation between the modula-
tion and the Doppler cffect., From Eq. (19) the velocity of the wire is

v =éz° cos (§t), (26)
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which gives a Doppler shift

o rov/cf(-oézo/c)cus(ét). 27)

Since frequency may be interpreted as a time rate of change of phase, we write

e

=xoﬁf_,x=xoi(loézo/c: cos (). (28a)

When integrated, Eq. (28a) gives the phase as

21tz z /) sin ). (28b)

The spectral dependence is obtained by taking the Fourier transform of cos2 as
before. In Eq. (28b) ~o/c equals ko‘ so that the results of the two approaches
are identical. It is also worth noting (and not unexpected) that the phase 2 is
directly proportional to the displacement amplitude Z,e Therefore the greater
Z g the greater the effect-all other factors being equal.

For a further discussion of the relation betwecen the Doppler effcet and rotating
or vibrating wires, see Appendix B,

b DISCUSSION

The body of this report has been concerned with the backscattered fields and
their spectra, obtained from short wires performing periodic motions. By choos-
ing the "short™ wire, we simplificd the problem and reduced the scattering to that
from a point dipole or simple Rayleigh scatterer. The motions examined are
rotation and vibration. A wire undergoing these motions provides a scattering
model applicable to the complicated radar returns which comprise the identifica-
tion problem.

Given the short wire as the scatterer, we find that the spectrum from the
rotating wire is distinct from that of the vibrating wire. In addition, the spectrum
from the rotating wire depends on the state of polarization of the incident field,
unlike that of the vibrating wire for the geon-etrics considered here,

Rotation produces an amplitude modulation. For a linearly polarized incident
field there are two side lines separated from the original frequency by plus or
minus twice the rotation frequency. For a circularly polarized incident field only
one side line appears, also displaced by twice the rotation frequency.

19
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In contrast, vibration produces a phase modulation. The spectrum from the
vibrating wire contains an infinite series of equispaced lines about the incident
frequency line, The interline spacing is the vibration frequency, and the strength
of the nth tine is proportional to the nth order Bessel function Jn(kz o)' where z
is the vibration amplitude, Both spectra, therefore, provide the period of the
relevant motion,

There are, of course, several possible approaches one might take to study
the identification problem. The one we have taken here is quite simple, yet has
a physical interpretation that is easy to grasp. (A large part of this interpreta-
tion is contained in Appendices B, C, and D.) From the characteristic spectra
we can begin the study as a problem in signatures.
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Appendix A

The Polarization Scottering Matrix and the Decomposition of *he Electric Field

When a target scatters an incident wave, the linearity of Maxwell’s eqaations
mmposes a linear relationship between the incident and scattered waves, .\ suc-
cinct and lucid description of this relation is achicved through the scattering
matrix which is written generally as

ES . o
x! exp [‘RR 1 e | ¥
ES Ja~R? 391 gy |g!
Y y

(Al)

In Eq. {Al) kis the wave vector and R is the distance from the target to the point
at which tho~scattered field is observed. The matrix " A} with elements a; is the
scattering matrix, and the incident and scattered fields are described as column
matrices defined in terms of orthogonal x and » components. Kennaugh4 describes
the matrix and its applications at length.

4. Kennaugh, E.M. (1966) Antenna and Scattering Theorv: Recent Advances
1:1-17, The Ohio State University, Columbus, Ohio.
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If we have a monostatic svstem, sou that receiving and transmitting antennas
) are identical, we have the case of buckscattering and the orthogonal bases of the
two fields are the same. Equation {Al) becomes

llb, r r.., rl)‘_
] L P L X
K .
: ES Tor Tanllul
2 A)

N {A2)

in which the proportionalits factor is written as C; the matrix is now called "R”
(for reflection) with matrix ¢lements x-i', and < and x' are identical directions as
well as v and ',

Phy sically, the scuttering process changes the polarization characteristics
of the radiation. For example, if the incident radiation is linearly polarized,
the scattered radiation may have any state of polarization depending on the peculiar
properties of the target., These peculiar properties include, of course, the state
of motion of (he target. The motion of the target leading to changes in what is seen

by the incident radiation means that the matrix " R™ now varies with time.

Lo @ s dca AUl

Before continuing with the determination of “ R7, we first formulate the
description of the fields in terms of orthogonal polarization states. Our treat-
ment of the polarization follows that of Jackson. 3 Since the propagation of light
is rectilinear and is a transverse wave phenomenon, the electric vector is always
located in a plane normal to the propagation vector. Therefore, the electrie
vector may be described in terms of two linearly independent unit vectors. We
shall use ¥ and Q to denote unit polarization vectors in the ¥ and v directions. As
we shall see, we can also construct a pair of complex unit orthogonal vectors
{. and Rthat correspond to left and right circular polarization respectively and
are related to x and C through a straightforward transformation,

The electric field I of a wave propagating in the z-direction may be written
as

E (z,t) -[Ex X4 Ey Q] (‘xp[i(kz - vot)] , (A3)

where k is the wave vector and Yo is the circular frequency. The amplitudes
E,{ and Ev are complex quantities which allow for a possible phase differeince

between the x and y compouents of the field. If li\_ and E\, have the same phase,
the wave is linearly polarized with the resultant electric vertor E oriented at an

‘ 5. Jackson, J.D. \1962) Classical Electrodynamics, Chap. 7, p. 202. John
Wiley and Sons Inc., New York.
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i angle 2 with the x-axis such that
- -l e
2 =tan (Exl E}_). {A3)

If a phase difference exists between E‘ and E\" the wave is elliptically polarized.
A particular case is that for which E\: and Ev are equal in magnitude, but
their phases differ by =/2 rad. Equation (A3) becomes

E(z, t)= E, (x=iy) exp[i(kz - xot)] . (A5)
Taking the real part of Eq. (A4), we find for the components of the field

Ex =Eucos kkz -uot), and

E\-=;Eo sin(kz - 'ot). (A6)

f «

Facing the wave, that is*looking along the negative z-direction towards the

propagating wave, what does one see? Taking the positive sign in Eq. (A3),

(and therefore the negative in Eq. AG), we find that the ~lectric vector has a

constant magnitude and rotates with frequency . ° in the couaterclockwise sense.

This polarization state is designated as left circularly polarized (LCP). Taking

the negative sign in Eq. (A5), we find constant magnitude for the electric vector,

as before, but a clockwise rotation. This we call right circularly polarized (RCP).
To describe a general state of polarization, we have used two orthogonal

unit vectors, X and _Q', as our basis. An equally valid basis is the circular pair,

L. and R defined as

L=(1/.73) (x+iy), and
R=(1/72) (x-iy) (A7a)

with properties

"

I:*-A’ﬂ*o .= 0and

L5 L-p*f-

1]
-
.
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The ve stor T correspon L. to pure LLCP and the vector fto pure RCP. Solving
4 A A
3 Eqg. () for s unl v leads to the inverse transformations

-0/ DU R und
1 Y603 (-~ R (A8)

. C e : . LA A
The circular basis is fulls equivalent to the cartesian basis, x and y, for .he

wave description. In terms of the circular basis £q. (A3) becomes
L

(s

E ='EL f- Ep Iy e:-:p[i(kz - vUt)], (A9)

where Ll and ER are complex amplitudes. In general, we can write the ratio of
I-.L and r.R us

o

ER/EL-‘ rexp (iz). (A10)

In Eq. {(A10), r denotes the ratio of the magnitudes of the two amplitudes, and o
is their phase differcnce.

If EL and ER differ in magnitude, (that is, r is not unity), but their phase
difference is zero, Eq. (A10) describes an elliptically polarized wave. The
principal axes of the ellipse described by the electric vector are in the directions

LS i e s - it ad Ui ent o s bdoa il

of X and +. The ratio of the semi-major tc the semi-minor axis is (1 +r)/(1 -~ r),
If the phase difference 2 between EL and ER is non-zero, the axes of the
ellipse are rotated by /2.

>

3 If the phase difference is zero, and the two amplitudes are equal (r equals
unity}, the wave is linearlv polarized.
L.astly, if either EL or ER is zero, the wave is circularly polarized.
The matrix formulation of these transfo mations greatly facilitates our
r calculations, ‘e start with the equivalence of the two bases (§:,§') and (ﬁ, R)
d and define the two transformation matrices, "QJ} and its inverse [Q'IJ, as

Q- (1/./-2)[_; i‘] :

-1 1 i
Q -(1/./5)[, _i]

ok s o0 Bl

a4

Y

(Alla)
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s such that
‘ QQ!=1 (Al1b)
f where I is the identity matrix. Writing the amnlitudes as column matrices, we

can apply the matrices of Eq. (Alla) to write the transformations of any wave as

T

E E

E l_ L] . Q1 X

¢ ‘_ER Ey

}

3

E and (a12)
A E, E;

= Q .
4 Ey ER

With Eq. (A12) we can transform easily from the cartesian to the circular
amplitudes, and vice versa for any arbitrary wave.

In Eq. (A2) we have related the cartesian amplitudes of the scattered and
incident waves through the scattering matrix "'R], where [R] is the cartesian
scattering matrix. Using Q and Q'l, we can compute the circular scattering
matrix that relates the circular amplitudes of the scattered and incident waves.
If the incident field is given in terms of the circular basis, its cartesian com-
ponents are

i i

MEEIRE

A i

Ey Er (A13)

The scattered field is then

25 Ei_l il
Xi.- X)) -
=CR c:CRQ| L
wS it A
“y “R (Al4a)
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with C ua proportionality fuctor. Since

S S
E E%
L. Q-l X,
S S
LR L},J

(Al14b)

we find as our final eguation for the circular components of the scattered field

N -1 rEi
- ¢ RrQ

=S -1

ER Exr

(A15)

Therefore, the circular scattering matrix is Q-1 RQ.

Equation (A15) applies to any scattering matrix TRJ]. We have imposed no

restrictions on it, but have provided a way of going from the cartesian to thc
circular form, once TR] is known.
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Appendix B

The Doppler Effect and Scotterers With Periadic Motion

In the Doppler effect, as evidenced by the use of radar reflections to deter-
mine target velocities, the motion of the target introduces a change of frequency
in the scattered radiation. This frequency change is a function of the relative
velocity between target and radiation source. Measurement of the change provides
information about the target velocity. In this report, we have discussed frequency
changes occurring with rotating and moving wires. The first is an amplitude
modulation, the second a phase modulation. Are we justified in subsuming these
frequency changes caused by periodic motions of a target under the general class
of Doppler phenomena?

B.1 THE ROTATING WIRE AND THE DOPPLER EFFECT

The normal Doppler effec: is radial, that is, the scalar product between
the target velocity and the radar propagation vector is noi-zero. If the pro-
duct is zero, there is no effect. This i3 equivalent to the stutement that there
is no classicial transverse Dopple. effect. This is illustrated by Sommerfeld6

6. Sommerfeld, A. (1954) Optics, Chap. 11, Sec. 13, p. 72, Academic Press,
New York.
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] in his discussion of reflection trom a moving marror,  If the mivror has o

i

velocity compouent wlong the propagation direction, the frequeney changes upon
reflection. I, however, the mirror moves at right ungles to the propagation
direction, the light 1s reflected with no change in frequency. To explain this,
one must remember that the vire (unlike the mirror) is not an invariant when

-y

rotating. A large plane mrror with a vniform reflecting surface presents a
constant aspecet to the incident radiation, when moving transversely. The

rotating wire is, however, continually changing its aspect. Were the mirror

TR TR

rotating, there would be no frequency change. \be conclude that reflection by a

wer

short wire, rotating in a plane normal to the propagation direction, does have
an effect which may be regarded as a classical transverse Doppler shift.

-

It is importont to stress that this shift is not related at all to the relativistic
transverse Doppler effect, 7 which is a consequence of the fact that clocks run
4 differently when viewed from different inertial sysiems. The relativistic trans-
verse Doppler effect is second order in v/e, where v is the relative velocity

between object and source and ¢ is the veloeity of light. The effects described )
in this report, however, are first order in v/c.

B.2 THE VIBRATING WIRE AND TIHE DOPPLER EFFFCT

The frequency change caused by periodic vibration is a normal Doppler
phenomenon. In Section 3, the phase modulation is derived within the Doppler
framework (cf. Eqs (26) - (28)). The direcction of vibration assumed in Section 3
is always parallel (or anti-parallel) to the propagation direction. If the wire
vibrated in the xy-plane, normal to the propagation direction, there would be no
effect on the frequency of the reflected radiation. ‘The only effect would be on the ’
position of the return in the xy-plane. In this sense, the frequency change ‘
associated with vibration is simpler than that due to rotation, since it can be
interpreted as a straightforward periodic Doppler effect.

7. Mgller, C. (1972) The Theory of Relativity, 2nd ed. Sec. 2.11, p. 59,
Clarend »n, Oxford, England.
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Appendix C

The Relation Between Raman Scottering and the Spectra of the
Backscottered Field From Wires With Periodic Motion

The spectrum of the field scattered from the rotating wire is characterized
in general by three lines, one at the frequency . of the incident field and two
displaced symmetrically by twice the rotation angular frequency from Lo This
spectrum is strongly reminiscent of that of Raman scattering from a rotating
molecule. MNoreover the spectrum from the vibrating wire has similarities to
that from an oscillator which is the simplest model of a vibrational Raman
scatterer. Close examination shows clearly that these similarities are not
fortuitous. However, there are definite differences between scattering from
macroscopic wires and molecules which preclude a one-to-one correspondence.
A study of both similarities and differences is helpful~indeed, very helpful-in
understanding the physical meaning of the two phenomena.

C.1 THE RAMAN EFFFCT AND THE ROTATING WIRF,

Raman scattering frcm rotating molecules is a quantum mechanical
phenomenon, although a classical theory exists which does offer considerable
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insight. Detailed discussions of the effect are found in both ller:r.bc‘rg8 and
Kohlrausch. 9 The classical theory is given by Cabannes and Rocard. 10

The quantum explanation of the effect is described simply. An incident photon
of energy T o interacts with a rotating molecule. It can be scatiered so that its
frequency and, therefore, its energy remain unchanged. IHowever, scattering with
a change in frequency is also possible. The scattering molecule has discrete rota-
tional energy levels. If the molecule absorbs energy from the incident photon (so
that the molecule is raised to a higher energy level), the scattered photon has less
energy and, therefore, a smaller frequency than does the incident one. The
converse is also true. The interaction may be such that the molecule loses energy
and drops to a lower level. This energy is taken up by the radiation field so that
the scattered photon has greater energy and, therecfore, a higher frequency than
those of the incident photon. The frequency © arising from absorption (or emis~
sion) is related to the energy difference between the two levels as

LE-N7. (cn

These levels are, of course, discrete and their eigenvalues are determined by
solution of the relevant Schrddinger equation which contains the rotational kinetic
energy term. For the rigid rotator these levels are

E=h%J@+1)/21, (C2)

where J is the rotational quantum number and has the integral values, 0,1,2,...
and I is the moment of inertia. The selection rules for the Raman transitions are

AJ=0,%2, (C3)

and the intensity of the transition depends on the change of the molecular polar-
izability in a fixed direection during the rotation. When J equals zero, there is
no energy change and the undisplaced line is observed.

The classical theory presupposes a change in the polarizability arising from
the molecular rotation. The rotation affects the polarizability so that

a=a,ta, exp (x2»rR t), (C4)
8. Herzberg, G. (1950) Molccular Lpectra and Molecular Structure; I. Spectra
of Diatomic Molecules, Chap. IlI, p. 66, Van Nostrand, New York.

9. Kohlrausch, K.W. F, (1931) Der Smekal-Raman Effekt, Springer, Berlin,
Germany.

10. Cabannes, J., and Rocard, Y. (1929) J. Phys. Rad. 10:52, Paris, France.
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where a, is the average polarizability, a, is the amplitude of the periodic change
caused by rotation and wp is the angular frequency of rotation. The factor 2
appears because the polarizability is the same for the molecule rotated through
180° as before. An incident field E exp (iu,ot) induces a time-dependent dipole
moment P,

Raath Lo el L SR,

P=qgE exp (i e t), (C5)

which contains terms proportional to exp[i(uoi 2mR)t] as well as exp (iu‘ot).
Thus both th.e classical and quantum theories multiply the rotation frequency by
2 so that 21’R appears in the scattered spectrum as it does for the rotating wire. |

R g LT

('I‘he 2 in the quantum theory arises from the selection rule, Egq. (C3).) |
In the classical theory, there are no restrictions on the values yR can have.

) ‘
E Unlike the quantum theory, all frequencies are allowed. 7The classical theory is '
- obviously very close to that used in Section 2 for the rotating wire. We may, ‘
; therefore, regard the rotating wire as equivalent o a 1ocating macromolecule. {
E There ure at least two significant differences, however, between this macro- '

molecule and a rotating molecule obeying quantum theory. The rotating wire

considered as a molecule does not have a set of discrete energy levels. Its
kinetic energy T is related to the velocity of rotation 1R as

eyl 2
-1/‘:11R. (C6)

which is quite different from Eq. (C2). Since T is not quantized, neither is 1 R’
The energy is a continuum.
More important, perhaps, ‘5 the fact that the wire cannot be considered apart

from its source of power., This also differs from the molecular case for which

we regard the molecule (at least to the first approximation) as being isolated. The
power source or motor drives the wire at constant angular velocity. If energy is
supplied to the wire by the incident wave (a decrease in scattered frequency), the
motor does a little less work. If energy is supplied by the wire to the scattered

field (an increase in scattered frequency), the deficiency is made up by the motor.
In effect, the energy of the wire never changes or, equivalently, the macromolecule
remains in the same energy level, independent of the scattering process. This

contrasts with the molecular Raman effect which leaves the molecule in a different
energy state.
A third point which should be remembered is that the orientation of the rota-

tion axis of the wire to the propagation direction of the field is at our disposal,
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whereas orientation of molecules is difficult and not possible for all cases. Hence
Raman scattering from molecules is often from a randomly oriented assembly,
while scattering from a rotating wire provides a simpler well-defined system,
especially as regards polarization effects.

e L ) oo g

C. THE RAMAN EFFECT AND THE VIBRATING WIRE

T

Raman scattering from vibrating molecules is also a quantum mechanical
phenomenon. The simplest vibrating molecule is diatomic; each atom moves
with respect to the other in simple harmonic motion. Such motion is equivalent
to harmonic motion of the reduced mass about an equilibrium position. This is

I

represented by a harmonic oscillator whose Schriddinger equation is readily
solved. The energy eigenvalues of the solution are

E(n) =hu .. (n+1/2), (C7)

where w_ . is the oscillation frequency. Transitions between these levels lead
to energy changes in the oscillator and, hence, in the radiation field, The selec-
tion rules for allowed Raman transitions are gAn=£1; that is, transitions are
allowed only between adjacent vibrational states, Therefore, illumination with
light of frequency A will produce a spectrum containing a line at % and two

F Raman lines at (woﬁu:osc).
3 The classical theory of Cabannes and Rocardlo interprets the effect i terms i
3 of a time-varying molecular polarizability
i = i
a=a, +a1 exp (i ‘osct)' (C8)

where o is the average polarizability, as before, and o, is the amplitude of the
polarizability change caused by vibration. The resultant dipole moment induced
by the incident field will contain terms proportional to exp[i('v 0*%os c)] and

exp (iw 0t). These three frequencies will appear in the spectrum of the scattered
light. This differs from the vibrating wire which produces a scattered spectrum
with an infinite series of lines separated by frequency incrementsw

RN TRRLTR XTI TR

osc’
The vibrating wire examined in this report is less closely related to the

vibrating molecule than is the rotating wire to the rotating molecule. The mole-
cular vibrations correspond to internal vibrations within the molecule-unlike the
wire, the molecule is not rigid. These internal deformations are responsible for
the change in polarizability. The rotating molecule may, nowever, be looked at as

L i
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[ essentially rigid. Therefore, for rotation the analogy between the wire and
: molecule is considerably closer than for vibration.
o

T

T

a

P

v

Y

33

R T N T LV A TR e STV e PRI & TENET RS o A0 TP PLN It R TN DI TTN SR AT 3 TP Haza apy
& Siakedas” I e e <os cas prana it an e

4
_J
et im ek n rmme wmmeaav A

earan rmw



[ailEate

T T P

T TR

R TRT=w Ry RACAT SN Nk vy Rl MG S el & Canh b il aa s gl Y i dier b A

Fadreisi oo T RTINS . e o

Y o

£2

L b B

R

Appendix D

Energetic and Momentum Considerations

The interaction between the incident field and the scattering wire can lead to
an exchange of energy and of angular momentum between the wire and the field,
We know from the de Broglie relation that energy is a function of frequency.

E =hu, (D1)

The symbol h is Planck's action constant divided by 2n. Thercfore, if the
frequency of the scattered light differs from that of the incident by £, its
energy must also differ, and by the amount haw,

A second point made by quantum theory is that light particles always carry
angular momentum. FPhotons may exist in either one of two states, LCP or RCP,
An LCP photon has a positive helicity and an angular momentum +h, Similarly,
an RCP photon has a negative helicity and an angular momentum -h. These are
the only two allowed values of photon spin or intrinsic angular momentum, More-~
over, spin angular momentum is frequency independent. No matter what the
photon frequency may be (from radio waves to J-rays), a single photon can have
angular momentum £h only. Nonetheless, the net angular momentum of linearly
polarized light is zero. This is because linearly polarized light consists of equal
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1 numbers of LCP and RCP photons. If a beam is lincarly polarized with N photons
of cach type, the total angular momentum 1s thus + N plus - N or zero.

A In all the cases we have considered, our scattere. has been a short wire, The :
i reflection from such a wire (whether rotating, vibrating, or stationary) is alwass ’
linearly polarized, regardless of the state of motion of the wire. (For rotation A :
must be small compared with Tor U condition which holds for all realizable mech- ,
anical rotation rates.) This lincar polari-ation is a consequence of scattering

from the linear short wire, which acts as a point dipole. Ilowever, one must be

careful in discussing the backscattered wave. It “s true that the reflected radia-

tion is alway s linearly polarized, and in the direction parallel to the orientation of

the wire at the instunt of reflection. [For the rotating wire, this orientation is not

>

Salomy sl

B SR

constant with time. The direction of polarization rotates with twice the velocity of
the wire. The doubling of the velocity is a consequence of the fact that iu half a

period the wire has returned to its original state as seen by the incident radiation.

IFor example, if the reflected vave is linearly polarized in the x-direction at a
given time, the wave reflected a quarter of a period later (~/2 8) is linearl. polar- ;
ized in the y-direction-provided, of course, that the electric vector of the incident
wave has a y-component. At a time half a period later (=/8), tne reflected wave
is again polarized in the x-direction.

If the incident field is circularly polarized, it carries net angular momentum.
Yet those photons which are backscattered form a linearly polarized field, If N
photons (all LLCP) are scattered, N1 units of angular momentum have disappeared
from the radiation field and must have been taken up by the wire. FFrom this we
conclude thot the radiation field has exerted a torque on the wire, Juring the
scattering. ' erefore, work has been done on or by the mechanical system of the
wire and its driving motor,

L.et us consider the Fxamples of Sections 2 and 3.

Rotation-Example 1: The incident field is LLCP and is monochromatic
with frequency o The buckscattered field is linearly polarized and has

lines at "o and (uow 28). Therefore, the incident field has exerted a torque

3 on the wire which has resulted in « loss of field angular momentum. Secondly,

g the wire (and therefore its driving motor) has supplied ecnergy to the scattered

field, thereby increasing the frequency of part of the field from 1,10 ('o'* 28).
Rotation-Example 2: Both the inciden: and scattered fields are linearly

polarized so that there has been no exchange of angular momentum. More-

over, there are an equal number of photons having the two frequencies

(-xo+25) and (10 -28). If there are N with cacl frequency, their total energy
is 2N (hn 0). But this is precisely the energy of the incident photons which
were scattered. Therefore, there has been no exchange of energy between field
and wire.
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D.1 VIBRATING WIRE

The angular momentum considerations depend on the state of polarization of
the incident field. The reflected field is always linearly polarized, so that it
carries no net angular momentum. If the incident field is also linearly polarized,
3 the net angular momentum of the radiation field before and after scattering is
l zero. If the field is circularly polarized, it has net angular momentum which is
; lost in the scattering process. This is evidenced as a torque acting upon the
vibrating wire which must be balanced by a counter-torque exerted by the driving o
mechanism to prevent rotation of the wire. This represents work done by the
3 driving mechanism, in other words, an energy current flowing to or from the
wire.

The spectrum of Figure 4 is symmetric about the frequency of the incident
3 field w o apart from the signs of some lines. The intensity of a given line is
proportional to the square of that spectral field line; therefore, the energy
spectrum is truly symmetrical about x o If we sum over all the lines, therefore,

we find that the total scattered energy does not differ from that of the incident
field which has been scattered, even though it is distributed over an infinite
number of lines, all uut one of which has a frequency different from the incident
frequency. Note that any energy changes in the radiation field must involve the
motor drive of the wire, either as an energy sink or source. This differs from
the molecular Raman scattering in which the energy change involves a quantum
jump of the molecule from one level to another as we discussed in Appendix C.
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